Sample records for early auditory experience

  1. Auditory Reserve and the Legacy of Auditory Experience

    PubMed Central

    Skoe, Erika; Kraus, Nina

    2014-01-01

    Musical training during childhood has been linked to more robust encoding of sound later in life. We take this as evidence for an auditory reserve: a mechanism by which individuals capitalize on earlier life experiences to promote auditory processing. We assert that early auditory experiences guide how the reserve develops and is maintained over the lifetime. Experiences that occur after childhood, or which are limited in nature, are theorized to affect the reserve, although their influence on sensory processing may be less long-lasting and may potentially fade over time if not repeated. This auditory reserve may help to explain individual differences in how individuals cope with auditory impoverishment or loss of sensorineural function. PMID:25405381

  2. Word learning in deaf children with cochlear implants: effects of early auditory experience.

    PubMed

    Houston, Derek M; Stewart, Jessica; Moberly, Aaron; Hollich, George; Miyamoto, Richard T

    2012-05-01

    Word-learning skills were tested in normal-hearing 12- to 40-month-olds and in deaf 22- to 40-month-olds 12 to 18 months after cochlear implantation. Using the Intermodal Preferential Looking Paradigm (IPLP), children were tested for their ability to learn two novel-word/novel-object pairings. Normal-hearing children demonstrated learning on this task at approximately 18 months of age and older. For deaf children, performance on this task was significantly correlated with early auditory experience: Children whose cochlear implants were switched on by 14 months of age or who had relatively more hearing before implantation demonstrated learning in this task, but later implanted profoundly deaf children did not. Performance on this task also correlated with later measures of vocabulary size. Taken together, these findings suggest that early auditory experience facilitates word learning and that the IPLP may be useful for identifying children who may be at high risk for poor vocabulary development. © 2012 Blackwell Publishing Ltd.

  3. Word learning in deaf children with cochlear implants: effects of early auditory experience

    PubMed Central

    Houston, Derek M.; Stewart, Jessica; Moberly, Aaron; Hollich, George; Miyamoto, Richard T.

    2013-01-01

    Word-learning skills were tested in normal-hearing 12- to 40-month-olds and in deaf 22- to 40-month-olds 12 to 18 months after cochlear implantation. Using the Intermodal Preferential Looking Paradigm (IPLP), children were tested for their ability to learn two novel-word/novel-object pairings. Normal-hearing children demonstrated learning on this task at approximately 18 months of age and older. For deaf children, performance on this task was significantly correlated with early auditory experience: Children whose cochlear implants were switched on by 14 months of age or who had relatively more hearing before implantation demonstrated learning in this task, but later implanted profoundly deaf children did not. Performance on this task also correlated with later measures of vocabulary size. Taken together, these findings suggest that early auditory experience facilitates word learning and that the IPLP may be useful for identifying children who may be at high risk for poor vocabulary development. PMID:22490184

  4. Auditory brain development in premature infants: the importance of early experience.

    PubMed

    McMahon, Erin; Wintermark, Pia; Lahav, Amir

    2012-04-01

    Preterm infants in the neonatal intensive care unit (NICU) often close their eyes in response to bright lights, but they cannot close their ears in response to loud sounds. The sudden transition from the womb to the overly noisy world of the NICU increases the vulnerability of these high-risk newborns. There is a growing concern that the excess noise typically experienced by NICU infants disrupts their growth and development, putting them at risk for hearing, language, and cognitive disabilities. Preterm neonates are especially sensitive to noise because their auditory system is at a critical period of neurodevelopment, and they are no longer shielded by maternal tissue. This paper discusses the developmental milestones of the auditory system and suggests ways to enhance the quality control and type of sounds delivered to NICU infants. We argue that positive auditory experience is essential for early brain maturation and may be a contributing factor for healthy neurodevelopment. Further research is needed to optimize the hospital environment for preterm newborns and to increase their potential to develop into healthy children. © 2012 New York Academy of Sciences.

  5. The onset of visual experience gates auditory cortex critical periods

    PubMed Central

    Mowery, Todd M.; Kotak, Vibhakar C.; Sanes, Dan H.

    2016-01-01

    Sensory systems influence one another during development and deprivation can lead to cross-modal plasticity. As auditory function begins before vision, we investigate the effect of manipulating visual experience during auditory cortex critical periods (CPs) by assessing the influence of early, normal and delayed eyelid opening on hearing loss-induced changes to membrane and inhibitory synaptic properties. Early eyelid opening closes the auditory cortex CPs precociously and dark rearing prevents this effect. In contrast, delayed eyelid opening extends the auditory cortex CPs by several additional days. The CP for recovery from hearing loss is also closed prematurely by early eyelid opening and extended by delayed eyelid opening. Furthermore, when coupled with transient hearing loss that animals normally fully recover from, very early visual experience leads to inhibitory deficits that persist into adulthood. Finally, we demonstrate a functional projection from the visual to auditory cortex that could mediate these effects. PMID:26786281

  6. Early but not late-blindness leads to enhanced auditory perception.

    PubMed

    Wan, Catherine Y; Wood, Amanda G; Reutens, David C; Wilson, Sarah J

    2010-01-01

    The notion that blindness leads to superior non-visual abilities has been postulated for centuries. Compared to sighted individuals, blind individuals show different patterns of brain activation when performing auditory tasks. To date, no study has controlled for musical experience, which is known to influence auditory skills. The present study tested 33 blind (11 congenital, 11 early-blind, 11 late-blind) participants and 33 matched sighted controls. We showed that the performance of blind participants was better than that of sighted participants on a range of auditory perception tasks, even when musical experience was controlled for. This advantage was observed only for individuals who became blind early in life, and was even more pronounced for individuals who were blind from birth. Years of blindness did not predict task performance. Here, we provide compelling evidence that superior auditory abilities in blind individuals are not explained by musical experience alone. These results have implications for the development of sensory substitution devices, particularly for late-blind individuals.

  7. Early Blindness Results in Developmental Plasticity for Auditory Motion Processing within Auditory and Occipital Cortex

    PubMed Central

    Jiang, Fang; Stecker, G. Christopher; Boynton, Geoffrey M.; Fine, Ione

    2016-01-01

    Early blind subjects exhibit superior abilities for processing auditory motion, which are accompanied by enhanced BOLD responses to auditory motion within hMT+ and reduced responses within right planum temporale (rPT). Here, by comparing BOLD responses to auditory motion in hMT+ and rPT within sighted controls, early blind, late blind, and sight-recovery individuals, we were able to separately examine the effects of developmental and adult visual deprivation on cortical plasticity within these two areas. We find that both the enhanced auditory motion responses in hMT+ and the reduced functionality in rPT are driven by the absence of visual experience early in life; neither loss nor recovery of vision later in life had a discernable influence on plasticity within these areas. Cortical plasticity as a result of blindness has generally be presumed to be mediated by competition across modalities within a given cortical region. The reduced functionality within rPT as a result of early visual loss implicates an additional mechanism for cross modal plasticity as a result of early blindness—competition across different cortical areas for functional role. PMID:27458357

  8. Auditory motion processing after early blindness

    PubMed Central

    Jiang, Fang; Stecker, G. Christopher; Fine, Ione

    2014-01-01

    Studies showing that occipital cortex responds to auditory and tactile stimuli after early blindness are often interpreted as demonstrating that early blind subjects “see” auditory and tactile stimuli. However, it is not clear whether these occipital responses directly mediate the perception of auditory/tactile stimuli, or simply modulate or augment responses within other sensory areas. We used fMRI pattern classification to categorize the perceived direction of motion for both coherent and ambiguous auditory motion stimuli. In sighted individuals, perceived motion direction was accurately categorized based on neural responses within the planum temporale (PT) and right lateral occipital cortex (LOC). Within early blind individuals, auditory motion decisions for both stimuli were successfully categorized from responses within the human middle temporal complex (hMT+), but not the PT or right LOC. These findings suggest that early blind responses within hMT+ are associated with the perception of auditory motion, and that these responses in hMT+ may usurp some of the functions of nondeprived PT. Thus, our results provide further evidence that blind individuals do indeed “see” auditory motion. PMID:25378368

  9. Musical Experience, Sensorineural Auditory Processing, and Reading Subskills in Adults.

    PubMed

    Tichko, Parker; Skoe, Erika

    2018-04-27

    Developmental research suggests that sensorineural auditory processing, reading subskills (e.g., phonological awareness and rapid naming), and musical experience are related during early periods of reading development. Interestingly, recent work suggests that these relations may extend into adulthood, with indices of sensorineural auditory processing relating to global reading ability. However, it is largely unknown whether sensorineural auditory processing relates to specific reading subskills, such as phonological awareness and rapid naming, as well as musical experience in mature readers. To address this question, we recorded electrophysiological responses to a repeating click (auditory stimulus) in a sample of adult readers. We then investigated relations between electrophysiological responses to sound, reading subskills, and musical experience in this same set of adult readers. Analyses suggest that sensorineural auditory processing, reading subskills, and musical experience are related in adulthood, with faster neural conduction times and greater musical experience associated with stronger rapid-naming skills. These results are similar to the developmental findings that suggest reading subskills are related to sensorineural auditory processing and musical experience in children.

  10. Musical Experience, Sensorineural Auditory Processing, and Reading Subskills in Adults

    PubMed Central

    Tichko, Parker; Skoe, Erika

    2018-01-01

    Developmental research suggests that sensorineural auditory processing, reading subskills (e.g., phonological awareness and rapid naming), and musical experience are related during early periods of reading development. Interestingly, recent work suggests that these relations may extend into adulthood, with indices of sensorineural auditory processing relating to global reading ability. However, it is largely unknown whether sensorineural auditory processing relates to specific reading subskills, such as phonological awareness and rapid naming, as well as musical experience in mature readers. To address this question, we recorded electrophysiological responses to a repeating click (auditory stimulus) in a sample of adult readers. We then investigated relations between electrophysiological responses to sound, reading subskills, and musical experience in this same set of adult readers. Analyses suggest that sensorineural auditory processing, reading subskills, and musical experience are related in adulthood, with faster neural conduction times and greater musical experience associated with stronger rapid-naming skills. These results are similar to the developmental findings that suggest reading subskills are related to sensorineural auditory processing and musical experience in children. PMID:29702572

  11. Auditory Perceptual Abilities Are Associated with Specific Auditory Experience

    PubMed Central

    Zaltz, Yael; Globerson, Eitan; Amir, Noam

    2017-01-01

    The extent to which auditory experience can shape general auditory perceptual abilities is still under constant debate. Some studies show that specific auditory expertise may have a general effect on auditory perceptual abilities, while others show a more limited influence, exhibited only in a relatively narrow range associated with the area of expertise. The current study addresses this issue by examining experience-dependent enhancement in perceptual abilities in the auditory domain. Three experiments were performed. In the first experiment, 12 pop and rock musicians and 15 non-musicians were tested in frequency discrimination (DLF), intensity discrimination, spectrum discrimination (DLS), and time discrimination (DLT). Results showed significant superiority of the musician group only for the DLF and DLT tasks, illuminating enhanced perceptual skills in the key features of pop music, in which miniscule changes in amplitude and spectrum are not critical to performance. The next two experiments attempted to differentiate between generalization and specificity in the influence of auditory experience, by comparing subgroups of specialists. First, seven guitar players and eight percussionists were tested in the DLF and DLT tasks that were found superior for musicians. Results showed superior abilities on the DLF task for guitar players, though no difference between the groups in DLT, demonstrating some dependency of auditory learning on the specific area of expertise. Subsequently, a third experiment was conducted, testing a possible influence of vowel density in native language on auditory perceptual abilities. Ten native speakers of German (a language characterized by a dense vowel system of 14 vowels), and 10 native speakers of Hebrew (characterized by a sparse vowel system of five vowels), were tested in a formant discrimination task. This is the linguistic equivalent of a DLS task. Results showed that German speakers had superior formant discrimination

  12. From Perception to Metacognition: Auditory and Olfactory Functions in Early Blind, Late Blind, and Sighted Individuals

    PubMed Central

    Cornell Kärnekull, Stina; Arshamian, Artin; Nilsson, Mats E.; Larsson, Maria

    2016-01-01

    Although evidence is mixed, studies have shown that blind individuals perform better than sighted at specific auditory, tactile, and chemosensory tasks. However, few studies have assessed blind and sighted individuals across different sensory modalities in the same study. We tested early blind (n = 15), late blind (n = 15), and sighted (n = 30) participants with analogous olfactory and auditory tests in absolute threshold, discrimination, identification, episodic recognition, and metacognitive ability. Although the multivariate analysis of variance (MANOVA) showed no overall effect of blindness and no interaction with modality, follow-up between-group contrasts indicated a blind-over-sighted advantage in auditory episodic recognition, that was most pronounced in early blind individuals. In contrast to the auditory modality, there was no empirical support for compensatory effects in any of the olfactory tasks. There was no conclusive evidence for group differences in metacognitive ability to predict episodic recognition performance. Taken together, the results showed no evidence of an overall superior performance in blind relative sighted individuals across olfactory and auditory functions, although early blind individuals exceled in episodic auditory recognition memory. This observation may be related to an experience-induced increase in auditory attentional capacity. PMID:27729884

  13. Experience and information loss in auditory and visual memory.

    PubMed

    Gloede, Michele E; Paulauskas, Emily E; Gregg, Melissa K

    2017-07-01

    Recent studies show that recognition memory for sounds is inferior to memory for pictures. Four experiments were conducted to examine the nature of auditory and visual memory. Experiments 1-3 were conducted to evaluate the role of experience in auditory and visual memory. Participants received a study phase with pictures/sounds, followed by a recognition memory test. Participants then completed auditory training with each of the sounds, followed by a second memory test. Despite auditory training in Experiments 1 and 2, visual memory was superior to auditory memory. In Experiment 3, we found that it is possible to improve auditory memory, but only after 3 days of specific auditory training and 3 days of visual memory decay. We examined the time course of information loss in auditory and visual memory in Experiment 4 and found a trade-off between visual and auditory recognition memory: Visual memory appears to have a larger capacity, while auditory memory is more enduring. Our results indicate that visual and auditory memory are inherently different memory systems and that differences in visual and auditory recognition memory performance may be due to the different amounts of experience with visual and auditory information, as well as structurally different neural circuitry specialized for information retention.

  14. Review of auditory subliminal psychodynamic activation experiments.

    PubMed

    Fudin, R; Benjamin, C

    1991-12-01

    Subliminal psychodynamic activation experiments using auditory stimuli have yielded only a modicum of support for the contention that such activation produces predictable behavioral changes. Problems in many auditory subliminal psychodynamic activation experiments indicate that those predictions have not been tested adequately. The auditory mode of presentation, however, has several methodological advantages over the visual one, the method used in the vast majority of subliminal psychodynamic activation experiments. Consequently, it should be considered in subsequent research in this area.

  15. Rhythm synchronization performance and auditory working memory in early- and late-trained musicians.

    PubMed

    Bailey, Jennifer A; Penhune, Virginia B

    2010-07-01

    Behavioural and neuroimaging studies provide evidence for a possible "sensitive" period in childhood development during which musical training results in long-lasting changes in brain structure and auditory and motor performance. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 (early-trained; ET) perform better on a visuomotor task than those who begin after the age of 7 (late-trained; LT), even when matched on total years of musical training and experience. Two questions were raised regarding the findings from this experiment. First, would this group performance difference be observed using a more familiar, musically relevant task such as auditory rhythms? Second, would cognitive abilities mediate this difference in task performance? To address these questions, ET and LT musicians, matched on years of musical training, hours of current practice and experience, were tested on an auditory rhythm synchronization task. The task consisted of six woodblock rhythms of varying levels of metrical complexity. In addition, participants were tested on cognitive subtests measuring vocabulary, working memory and pattern recognition. The two groups of musicians differed in their performance of the rhythm task, such that the ET musicians were better at reproducing the temporal structure of the rhythms. There were no group differences on the cognitive measures. Interestingly, across both groups, individual task performance correlated with auditory working memory abilities and years of formal training. These results support the idea of a sensitive period during the early years of childhood for developing sensorimotor synchronization abilities via musical training.

  16. Early experience shapes vocal neural coding and perception in songbirds

    PubMed Central

    Woolley, Sarah M. N.

    2012-01-01

    Songbirds, like humans, are highly accomplished vocal learners. The many parallels between speech and birdsong and conserved features of mammalian and avian auditory systems have led to the emergence of the songbird as a model system for studying the perceptual mechanisms of vocal communication. Laboratory research on songbirds allows the careful control of early life experience and high-resolution analysis of brain function during vocal learning, production and perception. Here, I review what songbird studies have revealed about the role of early experience in the development of vocal behavior, auditory perception and the processing of learned vocalizations by auditory neurons. The findings of these studies suggest general principles for how exposure to vocalizations during development and into adulthood influences the perception of learned vocal signals. PMID:22711657

  17. Auditory Deprivation and Early Conductive Hearing Loss from Otitis Media.

    ERIC Educational Resources Information Center

    Gunnarson, Adele D.; And Others

    1990-01-01

    This article reviews auditory deprivation effects on anatomy, physiology, and behavior in animals and discusses the sequelae of otitis media with effusion (OME) in children. Focused on are central auditory processing disorders associated with early fluctuating hearing loss from OME. (DB)

  18. The Effect of Early Visual Deprivation on the Neural Bases of Auditory Processing.

    PubMed

    Guerreiro, Maria J S; Putzar, Lisa; Röder, Brigitte

    2016-02-03

    Transient congenital visual deprivation affects visual and multisensory processing. In contrast, the extent to which it affects auditory processing has not been investigated systematically. Research in permanently blind individuals has revealed brain reorganization during auditory processing, involving both intramodal and crossmodal plasticity. The present study investigated the effect of transient congenital visual deprivation on the neural bases of auditory processing in humans. Cataract-reversal individuals and normally sighted controls performed a speech-in-noise task while undergoing functional magnetic resonance imaging. Although there were no behavioral group differences, groups differed in auditory cortical responses: in the normally sighted group, auditory cortex activation increased with increasing noise level, whereas in the cataract-reversal group, no activation difference was observed across noise levels. An auditory activation of visual cortex was not observed at the group level in cataract-reversal individuals. The present data suggest prevailing auditory processing advantages after transient congenital visual deprivation, even many years after sight restoration. The present study demonstrates that people whose sight was restored after a transient period of congenital blindness show more efficient cortical processing of auditory stimuli (here speech), similarly to what has been observed in congenitally permanently blind individuals. These results underscore the importance of early sensory experience in permanently shaping brain function. Copyright © 2016 the authors 0270-6474/16/361620-11$15.00/0.

  19. Using Facebook to Reach People Who Experience Auditory Hallucinations

    PubMed Central

    Brian, Rachel Marie; Ben-Zeev, Dror

    2016-01-01

    Background Auditory hallucinations (eg, hearing voices) are relatively common and underreported false sensory experiences that may produce distress and impairment. A large proportion of those who experience auditory hallucinations go unidentified and untreated. Traditional engagement methods oftentimes fall short in reaching the diverse population of people who experience auditory hallucinations. Objective The objective of this proof-of-concept study was to examine the viability of leveraging Web-based social media as a method of engaging people who experience auditory hallucinations and to evaluate their attitudes toward using social media platforms as a resource for Web-based support and technology-based treatment. Methods We used Facebook advertisements to recruit individuals who experience auditory hallucinations to complete an 18-item Web-based survey focused on issues related to auditory hallucinations and technology use in American adults. We systematically tested multiple elements of the advertisement and survey layout including image selection, survey pagination, question ordering, and advertising targeting strategy. Each element was evaluated sequentially and the most cost-effective strategy was implemented in the subsequent steps, eventually deriving an optimized approach. Three open-ended question responses were analyzed using conventional inductive content analysis. Coded responses were quantified into binary codes, and frequencies were then calculated. Results Recruitment netted N=264 total sample over a 6-week period. Ninety-seven participants fully completed all measures at a total cost of $8.14 per participant across testing phases. Systematic adjustments to advertisement design, survey layout, and targeting strategies improved data quality and cost efficiency. People were willing to provide information on what triggered their auditory hallucinations along with strategies they use to cope, as well as provide suggestions to others who experience

  20. Using Facebook to Reach People Who Experience Auditory Hallucinations.

    PubMed

    Crosier, Benjamin Sage; Brian, Rachel Marie; Ben-Zeev, Dror

    2016-06-14

    Auditory hallucinations (eg, hearing voices) are relatively common and underreported false sensory experiences that may produce distress and impairment. A large proportion of those who experience auditory hallucinations go unidentified and untreated. Traditional engagement methods oftentimes fall short in reaching the diverse population of people who experience auditory hallucinations. The objective of this proof-of-concept study was to examine the viability of leveraging Web-based social media as a method of engaging people who experience auditory hallucinations and to evaluate their attitudes toward using social media platforms as a resource for Web-based support and technology-based treatment. We used Facebook advertisements to recruit individuals who experience auditory hallucinations to complete an 18-item Web-based survey focused on issues related to auditory hallucinations and technology use in American adults. We systematically tested multiple elements of the advertisement and survey layout including image selection, survey pagination, question ordering, and advertising targeting strategy. Each element was evaluated sequentially and the most cost-effective strategy was implemented in the subsequent steps, eventually deriving an optimized approach. Three open-ended question responses were analyzed using conventional inductive content analysis. Coded responses were quantified into binary codes, and frequencies were then calculated. Recruitment netted N=264 total sample over a 6-week period. Ninety-seven participants fully completed all measures at a total cost of $8.14 per participant across testing phases. Systematic adjustments to advertisement design, survey layout, and targeting strategies improved data quality and cost efficiency. People were willing to provide information on what triggered their auditory hallucinations along with strategies they use to cope, as well as provide suggestions to others who experience auditory hallucinations. Women, people

  1. Discrimination of timbre in early auditory responses of the human brain.

    PubMed

    Seol, Jaeho; Oh, MiAe; Kim, June Sic; Jin, Seung-Hyun; Kim, Sun Il; Chung, Chun Kee

    2011-01-01

    The issue of how differences in timbre are represented in the neural response still has not been well addressed, particularly with regard to the relevant brain mechanisms. Here we employ phasing and clipping of tones to produce auditory stimuli differing to describe the multidimensional nature of timbre. We investigated the auditory response and sensory gating as well, using by magnetoencephalography (MEG). Thirty-five healthy subjects without hearing deficit participated in the experiments. Two different or same tones in timbre were presented through conditioning (S1)-testing (S2) paradigm as a pair with an interval of 500 ms. As a result, the magnitudes of auditory M50 and M100 responses were different with timbre in both hemispheres. This result might support that timbre, at least by phasing and clipping, is discriminated in the auditory early processing. The second response in a pair affected by S1 in the consecutive stimuli occurred in M100 of the left hemisphere, whereas both M50 and M100 responses to S2 only in the right hemisphere reflected whether two stimuli in a pair were the same or not. Both M50 and M100 magnitudes were different with the presenting order (S1 vs. S2) for both same and different conditions in the both hemispheres. Our results demonstrate that the auditory response depends on timbre characteristics. Moreover, it was revealed that the auditory sensory gating is determined not by the stimulus that directly evokes the response, but rather by whether or not the two stimuli are identical in timbre.

  2. Auditory-neurophysiological responses to speech during early childhood: Effects of background noise

    PubMed Central

    White-Schwoch, Travis; Davies, Evan C.; Thompson, Elaine C.; Carr, Kali Woodruff; Nicol, Trent; Bradlow, Ann R.; Kraus, Nina

    2015-01-01

    Early childhood is a critical period of auditory learning, during which children are constantly mapping sounds to meaning. But learning rarely occurs under ideal listening conditions—children are forced to listen against a relentless din. This background noise degrades the neural coding of these critical sounds, in turn interfering with auditory learning. Despite the importance of robust and reliable auditory processing during early childhood, little is known about the neurophysiology underlying speech processing in children so young. To better understand the physiological constraints these adverse listening scenarios impose on speech sound coding during early childhood, auditory-neurophysiological responses were elicited to a consonant-vowel syllable in quiet and background noise in a cohort of typically-developing preschoolers (ages 3–5 yr). Overall, responses were degraded in noise: they were smaller, less stable across trials, slower, and there was poorer coding of spectral content and the temporal envelope. These effects were exacerbated in response to the consonant transition relative to the vowel, suggesting that the neural coding of spectrotemporally-dynamic speech features is more tenuous in noise than the coding of static features—even in children this young. Neural coding of speech temporal fine structure, however, was more resilient to the addition of background noise than coding of temporal envelope information. Taken together, these results demonstrate that noise places a neurophysiological constraint on speech processing during early childhood by causing a breakdown in neural processing of speech acoustics. These results may explain why some listeners have inordinate difficulties understanding speech in noise. Speech-elicited auditory-neurophysiological responses offer objective insight into listening skills during early childhood by reflecting the integrity of neural coding in quiet and noise; this paper documents typical response properties

  3. How does experience modulate auditory spatial processing in individuals with blindness?

    PubMed

    Tao, Qian; Chan, Chetwyn C H; Luo, Yue-jia; Li, Jian-jun; Ting, Kin-hung; Wang, Jun; Lee, Tatia M C

    2015-05-01

    Comparing early- and late-onset blindness in individuals offers a unique model for studying the influence of visual experience on neural processing. This study investigated how prior visual experience would modulate auditory spatial processing among blind individuals. BOLD responses of early- and late-onset blind participants were captured while performing a sound localization task. The task required participants to listen to novel "Bat-ears" sounds, analyze the spatial information embedded in the sounds, and specify out of 15 locations where the sound would have been emitted. In addition to sound localization, participants were assessed on visuospatial working memory and general intellectual abilities. The results revealed common increases in BOLD responses in the middle occipital gyrus, superior frontal gyrus, precuneus, and precentral gyrus during sound localization for both groups. Between-group dissociations, however, were found in the right middle occipital gyrus and left superior frontal gyrus. The BOLD responses in the left superior frontal gyrus were significantly correlated with accuracy on sound localization and visuospatial working memory abilities among the late-onset blind participants. In contrast, the accuracy on sound localization only correlated with BOLD responses in the right middle occipital gyrus among the early-onset counterpart. The findings support the notion that early-onset blind individuals rely more on the occipital areas as a result of cross-modal plasticity for auditory spatial processing, while late-onset blind individuals rely more on the prefrontal areas which subserve visuospatial working memory.

  4. Compilation and Clinical Applicability of an Early Auditory Processing Assessment Battery for Young Children.

    ERIC Educational Resources Information Center

    Fair, Lisl; Louw, Brenda; Hugo, Rene

    2001-01-01

    This study compiled a comprehensive early auditory processing skills assessment battery and evaluated the battery to toddlers with (n=8) and without (n=9) early recurrent otitis media. The assessment battery successfully distinguished between normal and deficient early auditory processing development in the subjects. The study also found parents…

  5. Inconsistent Effect of Arousal on Early Auditory Perception

    PubMed Central

    Bolders, Anna C.; Band, Guido P. H.; Stallen, Pieter Jan M.

    2017-01-01

    Mood has been shown to influence cognitive performance. However, little is known about the influence of mood on sensory processing, specifically in the auditory domain. With the current study, we sought to investigate how auditory processing of neutral sounds is affected by the mood state of the listener. This was tested in two experiments by measuring masked-auditory detection thresholds before and after a standard mood-induction procedure. In the first experiment (N = 76), mood was induced by imagining a mood-appropriate event combined with listening to mood inducing music. In the second experiment (N = 80), imagining was combined with affective picture viewing to exclude any possibility of confounding the results by acoustic properties of the music. In both experiments, the thresholds were determined by means of an adaptive staircase tracking method in a two-interval forced-choice task. Masked detection thresholds were compared between participants in four different moods (calm, happy, sad, and anxious), which enabled differentiation of mood effects along the dimensions arousal and pleasure. Results of the two experiments were analyzed both in separate analyses and in a combined analysis. The first experiment showed that, while there was no impact of pleasure level on the masked threshold, lower arousal was associated with lower threshold (higher masked sensitivity). However, as indicated by an interaction effect between experiment and arousal, arousal did have a different effect on the threshold in Experiment 2. Experiment 2 showed a trend of arousal in opposite direction. These results show that the effect of arousal on auditory-masked sensitivity may depend on the modality of the mood-inducing stimuli. As clear conclusions regarding the genuineness of the arousal effect on the masked threshold cannot be drawn, suggestions for further research that could clarify this issue are provided. PMID:28424639

  6. Dissociative Experiences and Vividness of Auditory Imagery

    ERIC Educational Resources Information Center

    Pérez-Fabello, María José; Campos, Alfredo

    2017-01-01

    The relationship between dissociation and auditory imagery were assessed, 2 variables that sometime influence on artistic creativity. A total of 170 fine arts undergraduates (94 women and 76 men) received 2 dissociation questionnaires--the Dissociative Ability Scale (DAS), and the Dissociative Experiences Scale (DES)--and 2 auditory imagery…

  7. Early Seizures Prematurely Unsilence Auditory Synapses to Disrupt Thalamocortical Critical Period Plasticity.

    PubMed

    Sun, Hongyu; Takesian, Anne E; Wang, Ting Ting; Lippman-Bell, Jocelyn J; Hensch, Takao K; Jensen, Frances E

    2018-05-29

    Heightened neural excitability in infancy and childhood results in increased susceptibility to seizures. Such early-life seizures are associated with language deficits and autism that can result from aberrant development of the auditory cortex. Here, we show that early-life seizures disrupt a critical period (CP) for tonotopic map plasticity in primary auditory cortex (A1). We show that this CP is characterized by a prevalence of "silent," NMDA-receptor (NMDAR)-only, glutamate receptor synapses in auditory cortex that become "unsilenced" due to activity-dependent AMPA receptor (AMPAR) insertion. Induction of seizures prior to this CP occludes tonotopic map plasticity by prematurely unsilencing NMDAR-only synapses. Further, brief treatment with the AMPAR antagonist NBQX following seizures, prior to the CP, prevents synapse unsilencing and permits subsequent A1 plasticity. These findings reveal that early-life seizures modify CP regulators and suggest that therapeutic targets for early post-seizure treatment can rescue CP plasticity. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Musical Experience, Auditory Perception and Reading-Related Skills in Children

    PubMed Central

    Banai, Karen; Ahissar, Merav

    2013-01-01

    Background The relationships between auditory processing and reading-related skills remain poorly understood despite intensive research. Here we focus on the potential role of musical experience as a confounding factor. Specifically we ask whether the pattern of correlations between auditory and reading related skills differ between children with different amounts of musical experience. Methodology/Principal Findings Third grade children with various degrees of musical experience were tested on a battery of auditory processing and reading related tasks. Very poor auditory thresholds and poor memory skills were abundant only among children with no musical education. In this population, indices of auditory processing (frequency and interval discrimination thresholds) were significantly correlated with and accounted for up to 13% of the variance in reading related skills. Among children with more than one year of musical training, auditory processing indices were better, yet reading related skills were not correlated with them. A potential interpretation for the reduction in the correlations might be that auditory and reading-related skills improve at different rates as a function of musical training. Conclusions/Significance Participants’ previous musical training, which is typically ignored in studies assessing the relations between auditory and reading related skills, should be considered. Very poor auditory and memory skills are rare among children with even a short period of musical training, suggesting musical training could have an impact on both. The lack of correlation in the musically trained population suggests that a short period of musical training does not enhance reading related skills of individuals with within-normal auditory processing skills. Further studies are required to determine whether the associations between musical training, auditory processing and memory are indeed causal or whether children with poor auditory and memory skills are less

  9. Cross-modal activation of auditory regions during visuo-spatial working memory in early deafness.

    PubMed

    Ding, Hao; Qin, Wen; Liang, Meng; Ming, Dong; Wan, Baikun; Li, Qiang; Yu, Chunshui

    2015-09-01

    Early deafness can reshape deprived auditory regions to enable the processing of signals from the remaining intact sensory modalities. Cross-modal activation has been observed in auditory regions during non-auditory tasks in early deaf subjects. In hearing subjects, visual working memory can evoke activation of the visual cortex, which further contributes to behavioural performance. In early deaf subjects, however, whether and how auditory regions participate in visual working memory remains unclear. We hypothesized that auditory regions may be involved in visual working memory processing and activation of auditory regions may contribute to the superior behavioural performance of early deaf subjects. In this study, 41 early deaf subjects (22 females and 19 males, age range: 20-26 years, age of onset of deafness < 2 years) and 40 age- and gender-matched hearing controls underwent functional magnetic resonance imaging during a visuo-spatial delayed recognition task that consisted of encoding, maintenance and recognition stages. The early deaf subjects exhibited faster reaction times on the spatial working memory task than did the hearing controls. Compared with hearing controls, deaf subjects exhibited increased activation in the superior temporal gyrus bilaterally during the recognition stage. This increased activation amplitude predicted faster and more accurate working memory performance in deaf subjects. Deaf subjects also had increased activation in the superior temporal gyrus bilaterally during the maintenance stage and in the right superior temporal gyrus during the encoding stage. These increased activation amplitude also predicted faster reaction times on the spatial working memory task in deaf subjects. These findings suggest that cross-modal plasticity occurs in auditory association areas in early deaf subjects. These areas are involved in visuo-spatial working memory. Furthermore, amplitudes of cross-modal activation during the maintenance stage were

  10. Biological impact of auditory expertise across the life span: musicians as a model of auditory learning

    PubMed Central

    Strait, Dana L.; Kraus, Nina

    2013-01-01

    Experience-dependent characteristics of auditory function, especially with regard to speech-evoked auditory neurophysiology, have garnered increasing attention in recent years. This interest stems from both pragmatic and theoretical concerns as it bears implications for the prevention and remediation of language-based learning impairment in addition to providing insight into mechanisms engendering experience-dependent changes in human sensory function. Musicians provide an attractive model for studying the experience-dependency of auditory processing in humans due to their distinctive neural enhancements compared to nonmusicians. We have only recently begun to address whether these enhancements are observable early in life, during the initial years of music training when the auditory system is under rapid development, as well as later in life, after the onset of the aging process. Here we review neural enhancements in musically trained individuals across the life span in the context of cellular mechanisms that underlie learning, identified in animal models. Musicians’ subcortical physiologic enhancements are interpreted according to a cognitive framework for auditory learning, providing a model by which to study mechanisms of experience-dependent changes in auditory function in humans. PMID:23988583

  11. Cross-Domain Effects of Music and Language Experience on the Representation of Pitch in the Human Auditory Brainstem

    ERIC Educational Resources Information Center

    Bidelman, Gavin M.; Gandour, Jackson T.; Krishnan, Ananthanarayan

    2011-01-01

    Neural encoding of pitch in the auditory brainstem is known to be shaped by long-term experience with language or music, implying that early sensory processing is subject to experience-dependent neural plasticity. In language, pitch patterns consist of sequences of continuous, curvilinear contours; in music, pitch patterns consist of relatively…

  12. Taking Attention Away from the Auditory Modality: Context-dependent Effects on Early Sensory Encoding of Speech.

    PubMed

    Xie, Zilong; Reetzke, Rachel; Chandrasekaran, Bharath

    2018-05-24

    Increasing visual perceptual load can reduce pre-attentive auditory cortical activity to sounds, a reflection of the limited and shared attentional resources for sensory processing across modalities. Here, we demonstrate that modulating visual perceptual load can impact the early sensory encoding of speech sounds, and that the impact of visual load is highly dependent on the predictability of the incoming speech stream. Participants (n = 20, 9 females) performed a visual search task of high (target similar to distractors) and low (target dissimilar to distractors) perceptual load, while early auditory electrophysiological responses were recorded to native speech sounds. Speech sounds were presented either in a 'repetitive context', or a less predictable 'variable context'. Independent of auditory stimulus context, pre-attentive auditory cortical activity was reduced during high visual load, relative to low visual load. We applied a data-driven machine learning approach to decode speech sounds from the early auditory electrophysiological responses. Decoding performance was found to be poorer under conditions of high (relative to low) visual load, when the incoming acoustic stream was predictable. When the auditory stimulus context was less predictable, decoding performance was substantially greater for the high (relative to low) visual load conditions. Our results provide support for shared attentional resources between visual and auditory modalities that substantially influence the early sensory encoding of speech signals in a context-dependent manner. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Effects of musical training on the auditory cortex in children.

    PubMed

    Trainor, Laurel J; Shahin, Antoine; Roberts, Larry E

    2003-11-01

    Several studies of the effects of musical experience on sound representations in the auditory cortex are reviewed. Auditory evoked potentials are compared in response to pure tones, violin tones, and piano tones in adult musicians versus nonmusicians as well as in 4- to 5-year-old children who have either had or not had extensive musical experience. In addition, the effects of auditory frequency discrimination training in adult nonmusicians on auditory evoked potentials are examined. It was found that the P2-evoked response is larger in both adult and child musicians than in nonmusicians and that auditory training enhances this component in nonmusician adults. The results suggest that the P2 is particularly neuroplastic and that the effects of musical experience can be seen early in development. They also suggest that although the effects of musical training on cortical representations may be greater if training begins in childhood, the adult brain is also open to change. These results are discussed with respect to potential benefits of early musical training as well as potential benefits of musical experience in aging.

  14. The experience of agency in sequence production with altered auditory feedback.

    PubMed

    Couchman, Justin J; Beasley, Robertson; Pfordresher, Peter Q

    2012-03-01

    When speaking or producing music, people rely in part on auditory feedback - the sounds associated with the performed action. Three experiments investigated the degree to which alterations of auditory feedback (AAF) during music performances influence the experience of agency (i.e., the sense that your actions led to auditory events) and the possible link between agency and the disruptive effect of AAF on production. Participants performed short novel melodies from memory on a keyboard. Auditory feedback during performances was manipulated with respect to its pitch contents and/or its synchrony with actions. Participants rated their experience of agency after each trial. In all experiments, AAF reduced judgments of agency across conditions. Performance was most disrupted (measured by error rates and slowing) when AAF led to an ambiguous experience of agency, suggesting that there may be some causal relationship between agency and disruption. However, analyses revealed that these two effects were probably independent. A control experiment verified that performers can make veridical judgments of agency. Published by Elsevier Inc.

  15. Comparison of auditory stream segregation in sighted and early blind individuals.

    PubMed

    Boroujeni, Fatemeh Moghadasi; Heidari, Fatemeh; Rouzbahani, Masoumeh; Kamali, Mohammad

    2017-01-18

    An important characteristic of the auditory system is the capacity to analyze complex sounds and make decisions on the source of the constituent parts of these sounds. Blind individuals compensate for the lack of visual information by an increase input from other sensory modalities, including increased auditory information. The purpose of the current study was to compare the fission boundary (FB) threshold of sighted and early blind individuals through spectral aspects using a psychoacoustic auditory stream segregation (ASS) test. This study was conducted on 16 sighted and 16 early blind adult individuals. The applied stimuli were presented sequentially as the pure tones A and B and as a triplet ABA-ABA pattern at the intensity of 40dBSL. The A tone frequency was selected as the basis at values of 500, 1000, and 2000Hz. The B tone was presented with the difference of a 4-100% above the basis tone frequency. Blind individuals had significantly lower FB thresholds than sighted people. FB was independent of the frequency of the tone A when expressed as the difference in the number of equivalent rectangular bandwidths (ERBs). Early blindness may increase perceptual separation of the acoustic stimuli to form accurate representations of the world. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Hemispheric differences in processing of vocalizations depend on early experience.

    PubMed

    Phan, Mimi L; Vicario, David S

    2010-02-02

    An intriguing phenomenon in the neurobiology of language is lateralization: the dominant role of one hemisphere in a particular function. Lateralization is not exclusive to language because lateral differences are observed in other sensory modalities, behaviors, and animal species. Despite much scientific attention, the function of lateralization, its possible dependence on experience, and the functional implications of such dependence have yet to be clearly determined. We have explored the role of early experience in the development of lateralized sensory processing in the brain, using the songbird model of vocal learning. By controlling exposure to natural vocalizations (through isolation, song tutoring, and muting), we manipulated the postnatal auditory environment of developing zebra finches, and then assessed effects on hemispheric specialization for communication sounds in adulthood. Using bilateral multielectrode recordings from a forebrain auditory area known to selectively process species-specific vocalizations, we found that auditory responses to species-typical songs and long calls, in both male and female birds, were stronger in the right hemisphere than in the left, and that right-side responses adapted more rapidly to stimulus repetition. We describe specific instances, particularly in males, where these lateral differences show an influence of auditory experience with song and/or the bird's own voice during development.

  17. Increased Early Processing of Task-Irrelevant Auditory Stimuli in Older Adults

    PubMed Central

    Tusch, Erich S.; Alperin, Brittany R.; Holcomb, Phillip J.; Daffner, Kirk R.

    2016-01-01

    The inhibitory deficit hypothesis of cognitive aging posits that older adults’ inability to adequately suppress processing of irrelevant information is a major source of cognitive decline. Prior research has demonstrated that in response to task-irrelevant auditory stimuli there is an age-associated increase in the amplitude of the N1 wave, an ERP marker of early perceptual processing. Here, we tested predictions derived from the inhibitory deficit hypothesis that the age-related increase in N1 would be 1) observed under an auditory-ignore, but not auditory-attend condition, 2) attenuated in individuals with high executive capacity (EC), and 3) augmented by increasing cognitive load of the primary visual task. ERPs were measured in 114 well-matched young, middle-aged, young-old, and old-old adults, designated as having high or average EC based on neuropsychological testing. Under the auditory-ignore (visual-attend) task, participants ignored auditory stimuli and responded to rare target letters under low and high load. Under the auditory-attend task, participants ignored visual stimuli and responded to rare target tones. Results confirmed an age-associated increase in N1 amplitude to auditory stimuli under the auditory-ignore but not auditory-attend task. Contrary to predictions, EC did not modulate the N1 response. The load effect was the opposite of expectation: the N1 to task-irrelevant auditory events was smaller under high load. Finally, older adults did not simply fail to suppress the N1 to auditory stimuli in the task-irrelevant modality; they generated a larger response than to identical stimuli in the task-relevant modality. In summary, several of the study’s findings do not fit the inhibitory-deficit hypothesis of cognitive aging, which may need to be refined or supplemented by alternative accounts. PMID:27806081

  18. Auditory-motor learning influences auditory memory for music.

    PubMed

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  19. Fragile Spectral and Temporal Auditory Processing in Adolescents with Autism Spectrum Disorder and Early Language Delay

    ERIC Educational Resources Information Center

    Boets, Bart; Verhoeven, Judith; Wouters, Jan; Steyaert, Jean

    2015-01-01

    We investigated low-level auditory spectral and temporal processing in adolescents with autism spectrum disorder (ASD) and early language delay compared to matched typically developing controls. Auditory measures were designed to target right versus left auditory cortex processing (i.e. frequency discrimination and slow amplitude modulation (AM)…

  20. LANGUAGE EXPERIENCE SHAPES PROCESSING OF PITCH RELEVANT INFORMATION IN THE HUMAN BRAINSTEM AND AUDITORY CORTEX: ELECTROPHYSIOLOGICAL EVIDENCE.

    PubMed

    Krishnan, Ananthanarayan; Gandour, Jackson T

    2014-12-01

    Pitch is a robust perceptual attribute that plays an important role in speech, language, and music. As such, it provides an analytic window to evaluate how neural activity relevant to pitch undergo transformation from early sensory to later cognitive stages of processing in a well coordinated hierarchical network that is subject to experience-dependent plasticity. We review recent evidence of language experience-dependent effects in pitch processing based on comparisons of native vs. nonnative speakers of a tonal language from electrophysiological recordings in the auditory brainstem and auditory cortex. We present evidence that shows enhanced representation of linguistically-relevant pitch dimensions or features at both the brainstem and cortical levels with a stimulus-dependent preferential activation of the right hemisphere in native speakers of a tone language. We argue that neural representation of pitch-relevant information in the brainstem and early sensory level processing in the auditory cortex is shaped by the perceptual salience of domain-specific features. While both stages of processing are shaped by language experience, neural representations are transformed and fundamentally different at each biological level of abstraction. The representation of pitch relevant information in the brainstem is more fine-grained spectrotemporally as it reflects sustained neural phase-locking to pitch relevant periodicities contained in the stimulus. In contrast, the cortical pitch relevant neural activity reflects primarily a series of transient temporal neural events synchronized to certain temporal attributes of the pitch contour. We argue that experience-dependent enhancement of pitch representation for Chinese listeners most likely reflects an interaction between higher-level cognitive processes and early sensory-level processing to improve representations of behaviorally-relevant features that contribute optimally to perception. It is our view that long

  1. LANGUAGE EXPERIENCE SHAPES PROCESSING OF PITCH RELEVANT INFORMATION IN THE HUMAN BRAINSTEM AND AUDITORY CORTEX: ELECTROPHYSIOLOGICAL EVIDENCE

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.

    2015-01-01

    Pitch is a robust perceptual attribute that plays an important role in speech, language, and music. As such, it provides an analytic window to evaluate how neural activity relevant to pitch undergo transformation from early sensory to later cognitive stages of processing in a well coordinated hierarchical network that is subject to experience-dependent plasticity. We review recent evidence of language experience-dependent effects in pitch processing based on comparisons of native vs. nonnative speakers of a tonal language from electrophysiological recordings in the auditory brainstem and auditory cortex. We present evidence that shows enhanced representation of linguistically-relevant pitch dimensions or features at both the brainstem and cortical levels with a stimulus-dependent preferential activation of the right hemisphere in native speakers of a tone language. We argue that neural representation of pitch-relevant information in the brainstem and early sensory level processing in the auditory cortex is shaped by the perceptual salience of domain-specific features. While both stages of processing are shaped by language experience, neural representations are transformed and fundamentally different at each biological level of abstraction. The representation of pitch relevant information in the brainstem is more fine-grained spectrotemporally as it reflects sustained neural phase-locking to pitch relevant periodicities contained in the stimulus. In contrast, the cortical pitch relevant neural activity reflects primarily a series of transient temporal neural events synchronized to certain temporal attributes of the pitch contour. We argue that experience-dependent enhancement of pitch representation for Chinese listeners most likely reflects an interaction between higher-level cognitive processes and early sensory-level processing to improve representations of behaviorally-relevant features that contribute optimally to perception. It is our view that long

  2. Early hominin auditory ossicles from South Africa

    PubMed Central

    Quam, Rolf M.; de Ruiter, Darryl J.; Masali, Melchiorre; Arsuaga, Juan-Luis; Martínez, Ignacio; Moggi-Cecchi, Jacopo

    2013-01-01

    The middle ear ossicles are only rarely preserved in fossil hominins. Here, we report the discovery of a complete ossicular chain (malleus, incus, and stapes) of Paranthropus robustus as well as additional ear ossicles from Australopithecus africanus. The malleus in both early hominin taxa is clearly human-like in the proportions of the manubrium and corpus, whereas the incus and stapes resemble African and Asian great apes more closely. A deep phylogenetic origin is proposed for the derived malleus morphology, and this may represent one of the earliest human-like features to appear in the fossil record. The anatomical differences found in the early hominin incus and stapes, along with other aspects of the outer, middle, and inner ear, are consistent with the suggestion of different auditory capacities in these early hominin taxa compared with modern humans. PMID:23671079

  3. Auditory Learning. Dimensions in Early Learning Series.

    ERIC Educational Resources Information Center

    Zigmond, Naomi K.; Cicci, Regina

    The monograph discusses the psycho-physiological operations for processing of auditory information, the structure and function of the ear, the development of auditory processes from fetal responses through discrimination, language comprehension, auditory memory, and auditory processes related to written language. Disorders of auditory learning…

  4. The Role of Musical Experience in Hemispheric Lateralization of Global and Local Auditory Processing.

    PubMed

    Black, Emily; Stevenson, Jennifer L; Bish, Joel P

    2017-08-01

    The global precedence effect is a phenomenon in which global aspects of visual and auditory stimuli are processed before local aspects. Individuals with musical experience perform better on all aspects of auditory tasks compared with individuals with less musical experience. The hemispheric lateralization of this auditory processing is less well-defined. The present study aimed to replicate the global precedence effect with auditory stimuli and to explore the lateralization of global and local auditory processing in individuals with differing levels of musical experience. A total of 38 college students completed an auditory-directed attention task while electroencephalography was recorded. Individuals with low musical experience responded significantly faster and more accurately in global trials than in local trials regardless of condition, and significantly faster and more accurately when pitches traveled in the same direction (compatible condition) than when pitches traveled in two different directions (incompatible condition) consistent with a global precedence effect. In contrast, individuals with high musical experience showed less of a global precedence effect with regards to accuracy, but not in terms of reaction time, suggesting an increased ability to overcome global bias. Further, a difference in P300 latency between hemispheres was observed. These findings provide a preliminary neurological framework for auditory processing of individuals with differing degrees of musical experience.

  5. The perception of prosody and associated auditory cues in early-implanted children: the role of auditory working memory and musical activities.

    PubMed

    Torppa, Ritva; Faulkner, Andrew; Huotilainen, Minna; Järvikivi, Juhani; Lipsanen, Jari; Laasonen, Marja; Vainio, Martti

    2014-03-01

    To study prosodic perception in early-implanted children in relation to auditory discrimination, auditory working memory, and exposure to music. Word and sentence stress perception, discrimination of fundamental frequency (F0), intensity and duration, and forward digit span were measured twice over approximately 16 months. Musical activities were assessed by questionnaire. Twenty-one early-implanted and age-matched normal-hearing (NH) children (4-13 years). Children with cochlear implants (CIs) exposed to music performed better than others in stress perception and F0 discrimination. Only this subgroup of implanted children improved with age in word stress perception, intensity discrimination, and improved over time in digit span. Prosodic perception, F0 discrimination and forward digit span in implanted children exposed to music was equivalent to the NH group, but other implanted children performed more poorly. For children with CIs, word stress perception was linked to digit span and intensity discrimination: sentence stress perception was additionally linked to F0 discrimination. Prosodic perception in children with CIs is linked to auditory working memory and aspects of auditory discrimination. Engagement in music was linked to better performance across a range of measures, suggesting that music is a valuable tool in the rehabilitation of implanted children.

  6. Infants Learn Phonotactic Regularities from Brief Auditory Experience.

    ERIC Educational Resources Information Center

    Chambers, Kyle E.; Onishi, Kristine H.; Fisher, Cynthia

    2003-01-01

    Two experiments investigated whether novel phonotactic regularities, not present in English, could be acquired by 16.5-month-olds from brief auditory experience. Subjects listened to consonant-vowel-consonant syllables in which particular consonants were artificially restricted to either initial or final position. Findings in a subsequent…

  7. Early Visual Deprivation Severely Compromises the Auditory Sense of Space in Congenitally Blind Children

    ERIC Educational Resources Information Center

    Vercillo, Tiziana; Burr, David; Gori, Monica

    2016-01-01

    A recent study has shown that congenitally blind adults, who have never had visual experience, are impaired on an auditory spatial bisection task (Gori, Sandini, Martinoli, & Burr, 2014). In this study we investigated how thresholds for auditory spatial bisection and auditory discrimination develop with age in sighted and congenitally blind…

  8. Auditory presentation and synchronization in Adobe Flash and HTML5/JavaScript Web experiments.

    PubMed

    Reimers, Stian; Stewart, Neil

    2016-09-01

    Substantial recent research has examined the accuracy of presentation durations and response time measurements for visually presented stimuli in Web-based experiments, with a general conclusion that accuracy is acceptable for most kinds of experiments. However, many areas of behavioral research use auditory stimuli instead of, or in addition to, visual stimuli. Much less is known about auditory accuracy using standard Web-based testing procedures. We used a millisecond-accurate Black Box Toolkit to measure the actual durations of auditory stimuli and the synchronization of auditory and visual presentation onsets. We examined the distribution of timings for 100 presentations of auditory and visual stimuli across two computers with difference specs, three commonly used browsers, and code written in either Adobe Flash or JavaScript. We also examined different coding options for attempting to synchronize the auditory and visual onsets. Overall, we found that auditory durations were very consistent, but that the lags between visual and auditory onsets varied substantially across browsers and computer systems.

  9. Adult Plasticity in the Subcortical Auditory Pathway of the Maternal Mouse

    PubMed Central

    Miranda, Jason A.; Shepard, Kathryn N.; McClintock, Shannon K.; Liu, Robert C.

    2014-01-01

    Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system – motherhood – is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered. PMID:24992362

  10. Adult plasticity in the subcortical auditory pathway of the maternal mouse.

    PubMed

    Miranda, Jason A; Shepard, Kathryn N; McClintock, Shannon K; Liu, Robert C

    2014-01-01

    Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.

  11. Neuroplasticity in the auditory system.

    PubMed

    Gil-Loyzaga, P

    2005-01-01

    An increasing interest on neuroplasticity and nerve regeneration within the auditory receptor and pathway has developed in recent years. The receptor and the auditory pathway are controlled by highly complex circuits that appear during embryonic development. During this early maturation process of the auditory sensory elements, we observe the development of two types of nerve fibers: permanent fibers that will remain to reach full-term maturity and other transient fibers that will ultimately disappear. Both stable and transitory fibers however, as well as developing sensory cells, express, and probably release, their respective neuro-transmitters that could be involved in neuroplasticity. Cell culture experiments have added significant information; the in vitro administration of glutamate or GABA to isolated spiral ganglion neurons clearly modified neural development. Neuroplasticity has been also found in the adult. Nerve regeneration and neuroplasticity have been demonstrated in the adult auditory receptors as well as throughout the auditory pathway. Neuroplasticity studies could prove interesting in the elaboration of current or future therapy strategies (e.g.: cochlear implants or stem cells), but also to really understand the pathogenesis of auditory or language diseases (e.g.: deafness, tinnitus, dyslexia, etc.).

  12. Bilateral cochlear implants in children: Effects of auditory experience and deprivation on auditory perception

    PubMed Central

    Litovsky, Ruth Y.; Gordon, Karen

    2017-01-01

    Spatial hearing skills are essential for children as they grow, learn and play. They provide critical cues for determining the locations of sources in the environment, and enable segregation of important sources, such as speech, from background maskers or interferers. Spatial hearing depends on availability of monaural cues and binaural cues. The latter result from integration of inputs arriving at the two ears from sounds that vary in location. The binaural system has exquisite mechanisms for capturing differences between the ears in both time of arrival and intensity. The major cues that are thus referred to as being vital for binaural hearing are: interaural differences in time (ITDs) and interaural differences in levels (ILDs). In children with normal hearing (NH), spatial hearing abilities are fairly well developed by age 4–5 years. In contrast, children who are deaf and hear through cochlear implants (CIs) do not have an opportunity to experience normal, binaural acoustic hearing early in life. These children may function by having to utilize auditory cues that are degraded with regard to numerous stimulus features. In recent years there has been a notable increase in the number of children receiving bilateral CIs, and evidence suggests that while having two CIs helps them function better than when listening through a single CI, they generally perform worse than their NH peers. This paper reviews some of the recent work on bilaterally implanted children. The focus is on measures of spatial hearing, including sound localization, release from masking for speech understanding in noise and binaural sensitivity using research processors. Data from behavioral and electrophysiological studies are included, with a focus on the recent work of the authors and their collaborators. The effects of auditory plasticity and deprivation on the emergence of binaural and spatial hearing are discussed along with evidence for reorganized processing from both behavioral and

  13. Early auditory processing in area V5/MT+ of the congenitally blind brain.

    PubMed

    Watkins, Kate E; Shakespeare, Timothy J; O'Donoghue, M Clare; Alexander, Iona; Ragge, Nicola; Cowey, Alan; Bridge, Holly

    2013-11-13

    Previous imaging studies of congenital blindness have studied individuals with heterogeneous causes of blindness, which may influence the nature and extent of cross-modal plasticity. Here, we scanned a homogeneous group of blind people with bilateral congenital anophthalmia, a condition in which both eyes fail to develop, and, as a result, the visual pathway is not stimulated by either light or retinal waves. This model of congenital blindness presents an opportunity to investigate the effects of very early visual deafferentation on the functional organization of the brain. In anophthalmic animals, the occipital cortex receives direct subcortical auditory input. We hypothesized that this pattern of subcortical reorganization ought to result in a topographic mapping of auditory frequency information in the occipital cortex of anophthalmic people. Using functional MRI, we examined auditory-evoked activity to pure tones of high, medium, and low frequencies. Activity in the superior temporal cortex was significantly reduced in anophthalmic compared with sighted participants. In the occipital cortex, a region corresponding to the cytoarchitectural area V5/MT+ was activated in the anophthalmic participants but not in sighted controls. Whereas previous studies in the blind indicate that this cortical area is activated to auditory motion, our data show it is also active for trains of pure tone stimuli and in some anophthalmic participants shows a topographic mapping (tonotopy). Therefore, this region appears to be performing early sensory processing, possibly served by direct subcortical input from the pulvinar to V5/MT+.

  14. Trait aspects of auditory mismatch negativity predict response to auditory training in individuals with early illness schizophrenia.

    PubMed

    Biagianti, Bruno; Roach, Brian J; Fisher, Melissa; Loewy, Rachel; Ford, Judith M; Vinogradov, Sophia; Mathalon, Daniel H

    2017-01-01

    Individuals with schizophrenia have heterogeneous impairments of the auditory processing system that likely mediate differences in the cognitive gains induced by auditory training (AT). Mismatch negativity (MMN) is an event-related potential component reflecting auditory echoic memory, and its amplitude reduction in schizophrenia has been linked to cognitive deficits. Therefore, MMN may predict response to AT and identify individuals with schizophrenia who have the most to gain from AT. Furthermore, to the extent that AT strengthens auditory deviance processing, MMN may also serve as a readout of the underlying changes in the auditory system induced by AT. Fifty-six individuals early in the course of a schizophrenia-spectrum illness (ESZ) were randomly assigned to 40 h of AT or Computer Games (CG). Cognitive assessments and EEG recordings during a multi-deviant MMN paradigm were obtained before and after AT and CG. Changes in these measures were compared between the treatment groups. Baseline and trait-like MMN data were evaluated as predictors of treatment response. MMN data collected with the same paradigm from a sample of Healthy Controls (HC; n = 105) were compared to baseline MMN data from the ESZ group. Compared to HC, ESZ individuals showed significant MMN reductions at baseline ( p = .003). Reduced Double-Deviant MMN was associated with greater general cognitive impairment in ESZ individuals ( p = .020). Neither ESZ intervention group showed significant change in MMN. We found high correlations in all MMN deviant types (rs = .59-.68, all ps < .001) between baseline and post-intervention amplitudes irrespective of treatment group, suggesting trait-like stability of the MMN signal. Greater deficits in trait-like Double-Deviant MMN predicted greater cognitive improvements in the AT group ( p = .02), but not in the CG group. In this sample of ESZ individuals, AT had no effect on auditory deviance processing as assessed by MMN. In ESZ individuals, baseline MMN

  15. Effects of early auditory experience on the spoken language of deaf children at 3 years of age.

    PubMed

    Nicholas, Johanna Grant; Geers, Ann E

    2006-06-01

    By age 3, typically developing children have achieved extensive vocabulary and syntax skills that facilitate both cognitive and social development. Substantial delays in spoken language acquisition have been documented for children with severe to profound deafness, even those with auditory oral training and early hearing aid use. This study documents the spoken language skills achieved by orally educated 3-yr-olds whose profound hearing loss was identified and hearing aids fitted between 1 and 30 mo of age and who received a cochlear implant between 12 and 38 mo of age. The purpose of the analysis was to examine the effects of age, duration, and type of early auditory experience on spoken language competence at age 3.5 yr. The spoken language skills of 76 children who had used a cochlear implant for at least 7 mo were evaluated via standardized 30-minute language sample analysis, a parent-completed vocabulary checklist, and a teacher language-rating scale. The children were recruited from and enrolled in oral education programs or therapy practices across the United States. Inclusion criteria included presumed deaf since birth, English the primary language of the home, no other known conditions that interfere with speech/language development, enrolled in programs using oral education methods, and no known problems with the cochlear implant lasting more than 30 days. Strong correlations were obtained among all language measures. Therefore, principal components analysis was used to derive a single Language Factor score for each child. A number of possible predictors of language outcome were examined, including age at identification and intervention with a hearing aid, duration of use of a hearing aid, pre-implant pure-tone average (PTA) threshold with a hearing aid, PTA threshold with a cochlear implant, and duration of use of a cochlear implant/age at implantation (the last two variables were practically identical because all children were tested between 40 and 44

  16. Visual influences on auditory spatial learning

    PubMed Central

    King, Andrew J.

    2008-01-01

    The visual and auditory systems frequently work together to facilitate the identification and localization of objects and events in the external world. Experience plays a critical role in establishing and maintaining congruent visual–auditory associations, so that the different sensory cues associated with targets that can be both seen and heard are synthesized appropriately. For stimulus location, visual information is normally more accurate and reliable and provides a reference for calibrating the perception of auditory space. During development, vision plays a key role in aligning neural representations of space in the brain, as revealed by the dramatic changes produced in auditory responses when visual inputs are altered, and is used throughout life to resolve short-term spatial conflicts between these modalities. However, accurate, and even supra-normal, auditory localization abilities can be achieved in the absence of vision, and the capacity of the mature brain to relearn to localize sound in the presence of substantially altered auditory spatial cues does not require visuomotor feedback. Thus, while vision is normally used to coordinate information across the senses, the neural circuits responsible for spatial hearing can be recalibrated in a vision-independent fashion. Nevertheless, early multisensory experience appears to be crucial for the emergence of an ability to match signals from different sensory modalities and therefore for the outcome of audiovisual-based rehabilitation of deaf patients in whom hearing has been restored by cochlear implantation. PMID:18986967

  17. Stuttering adults' lack of pre-speech auditory modulation normalizes when speaking with delayed auditory feedback.

    PubMed

    Daliri, Ayoub; Max, Ludo

    2018-02-01

    Auditory modulation during speech movement planning is limited in adults who stutter (AWS), but the functional relevance of the phenomenon itself remains unknown. We investigated for AWS and adults who do not stutter (AWNS) (a) a potential relationship between pre-speech auditory modulation and auditory feedback contributions to speech motor learning and (b) the effect on pre-speech auditory modulation of real-time versus delayed auditory feedback. Experiment I used a sensorimotor adaptation paradigm to estimate auditory-motor speech learning. Using acoustic speech recordings, we quantified subjects' formant frequency adjustments across trials when continually exposed to formant-shifted auditory feedback. In Experiment II, we used electroencephalography to determine the same subjects' extent of pre-speech auditory modulation (reductions in auditory evoked potential N1 amplitude) when probe tones were delivered prior to speaking versus not speaking. To manipulate subjects' ability to monitor real-time feedback, we included speaking conditions with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF). Experiment I showed that auditory-motor learning was limited for AWS versus AWNS, and the extent of learning was negatively correlated with stuttering frequency. Experiment II yielded several key findings: (a) our prior finding of limited pre-speech auditory modulation in AWS was replicated; (b) DAF caused a decrease in auditory modulation for most AWNS but an increase for most AWS; and (c) for AWS, the amount of auditory modulation when speaking with DAF was positively correlated with stuttering frequency. Lastly, AWNS showed no correlation between pre-speech auditory modulation (Experiment II) and extent of auditory-motor learning (Experiment I) whereas AWS showed a negative correlation between these measures. Thus, findings suggest that AWS show deficits in both pre-speech auditory modulation and auditory-motor learning; however, limited pre

  18. Auditory experience controls the maturation of song discrimination and sexual response in Drosophila

    PubMed Central

    Li, Xiaodong; Ishimoto, Hiroshi

    2018-01-01

    In birds and higher mammals, auditory experience during development is critical to discriminate sound patterns in adulthood. However, the neural and molecular nature of this acquired ability remains elusive. In fruit flies, acoustic perception has been thought to be innate. Here we report, surprisingly, that auditory experience of a species-specific courtship song in developing Drosophila shapes adult song perception and resultant sexual behavior. Preferences in the song-response behaviors of both males and females were tuned by social acoustic exposure during development. We examined the molecular and cellular determinants of this social acoustic learning and found that GABA signaling acting on the GABAA receptor Rdl in the pC1 neurons, the integration node for courtship stimuli, regulated auditory tuning and sexual behavior. These findings demonstrate that maturation of auditory perception in flies is unexpectedly plastic and is acquired socially, providing a model to investigate how song learning regulates mating preference in insects. PMID:29555017

  19. Early auditory change detection implicitly facilitated by ignored concurrent visual change during a Braille reading task.

    PubMed

    Aoyama, Atsushi; Haruyama, Tomohiro; Kuriki, Shinya

    2013-09-01

    Unconscious monitoring of multimodal stimulus changes enables humans to effectively sense the external environment. Such automatic change detection is thought to be reflected in auditory and visual mismatch negativity (MMN) and mismatch negativity fields (MMFs). These are event-related potentials and magnetic fields, respectively, evoked by deviant stimuli within a sequence of standard stimuli, and both are typically studied during irrelevant visual tasks that cause the stimuli to be ignored. Due to the sensitivity of MMN/MMF to potential effects of explicit attention to vision, however, it is unclear whether multisensory co-occurring changes can purely facilitate early sensory change detection reciprocally across modalities. We adopted a tactile task involving the reading of Braille patterns as a neutral ignore condition, while measuring magnetoencephalographic responses to concurrent audiovisual stimuli that were infrequently deviated either in auditory, visual, or audiovisual dimensions; 1000-Hz standard tones were switched to 1050-Hz deviant tones and/or two-by-two standard check patterns displayed on both sides of visual fields were switched to deviant reversed patterns. The check patterns were set to be faint enough so that the reversals could be easily ignored even during Braille reading. While visual MMFs were virtually undetectable even for visual and audiovisual deviants, significant auditory MMFs were observed for auditory and audiovisual deviants, originating from bilateral supratemporal auditory areas. Notably, auditory MMFs were significantly enhanced for audiovisual deviants from about 100 ms post-stimulus, as compared with the summation responses for auditory and visual deviants or for each of the unisensory deviants recorded in separate sessions. Evidenced by high tactile task performance with unawareness of visual changes, we conclude that Braille reading can successfully suppress explicit attention and that simultaneous multisensory changes can

  20. Auditory connections and functions of prefrontal cortex

    PubMed Central

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  1. Language experience enhances early cortical pitch-dependent responses

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Ananthakrishnan, Saradha; Vijayaraghavan, Venkatakrishnan

    2014-01-01

    Pitch processing at cortical and subcortical stages of processing is shaped by language experience. We recently demonstrated that specific components of the cortical pitch response (CPR) index the more rapidly-changing portions of the high rising Tone 2 of Mandarin Chinese, in addition to marking pitch onset and sound offset. In this study, we examine how language experience (Mandarin vs. English) shapes the processing of different temporal attributes of pitch reflected in the CPR components using stimuli representative of within-category variants of Tone 2. Results showed that the magnitude of CPR components (Na-Pb and Pb-Nb) and the correlation between these two components and pitch acceleration were stronger for the Chinese listeners compared to English listeners for stimuli that fell within the range of Tone 2 citation forms. Discriminant function analysis revealed that the Na-Pb component was more than twice as important as Pb-Nb in grouping listeners by language affiliation. In addition, a stronger stimulus-dependent, rightward asymmetry was observed for the Chinese group at the temporal, but not frontal, electrode sites. This finding may reflect selective recruitment of experience-dependent, pitch-specific mechanisms in right auditory cortex to extract more complex, time-varying pitch patterns. Taken together, these findings suggest that long-term language experience shapes early sensory level processing of pitch in the auditory cortex, and that the sensitivity of the CPR may vary depending on the relative linguistic importance of specific temporal attributes of dynamic pitch. PMID:25506127

  2. Auditory Verbal Experience and Agency in Waking, Sleep Onset, REM, and Non-REM Sleep.

    PubMed

    Speth, Jana; Harley, Trevor A; Speth, Clemens

    2017-04-01

    We present one of the first quantitative studies on auditory verbal experiences ("hearing voices") and auditory verbal agency (inner speech, and specifically "talking to (imaginary) voices or characters") in healthy participants across states of consciousness. Tools of quantitative linguistic analysis were used to measure participants' implicit knowledge of auditory verbal experiences (VE) and auditory verbal agencies (VA), displayed in mentation reports from four different states. Analysis was conducted on a total of 569 mentation reports from rapid eye movement (REM) sleep, non-REM sleep, sleep onset, and waking. Physiology was controlled with the nightcap sleep-wake mentation monitoring system. Sleep-onset hallucinations, traditionally at the focus of scientific attention on auditory verbal hallucinations, showed the lowest degree of VE and VA, whereas REM sleep showed the highest degrees. Degrees of different linguistic-pragmatic aspects of VE and VA likewise depend on the physiological states. The quantity and pragmatics of VE and VA are a function of the physiologically distinct state of consciousness in which they are conceived. Copyright © 2016 Cognitive Science Society, Inc.

  3. Trait aspects of auditory mismatch negativity predict response to auditory training in individuals with early illness schizophrenia

    PubMed Central

    Biagianti, Bruno; Roach, Brian J.; Fisher, Melissa; Loewy, Rachel; Ford, Judith M.; Vinogradov, Sophia; Mathalon, Daniel H.

    2017-01-01

    Background Individuals with schizophrenia have heterogeneous impairments of the auditory processing system that likely mediate differences in the cognitive gains induced by auditory training (AT). Mismatch negativity (MMN) is an event-related potential component reflecting auditory echoic memory, and its amplitude reduction in schizophrenia has been linked to cognitive deficits. Therefore, MMN may predict response to AT and identify individuals with schizophrenia who have the most to gain from AT. Furthermore, to the extent that AT strengthens auditory deviance processing, MMN may also serve as a readout of the underlying changes in the auditory system induced by AT. Methods Fifty-six individuals early in the course of a schizophrenia-spectrum illness (ESZ) were randomly assigned to 40 h of AT or Computer Games (CG). Cognitive assessments and EEG recordings during a multi-deviant MMN paradigm were obtained before and after AT and CG. Changes in these measures were compared between the treatment groups. Baseline and trait-like MMN data were evaluated as predictors of treatment response. MMN data collected with the same paradigm from a sample of Healthy Controls (HC; n = 105) were compared to baseline MMN data from the ESZ group. Results Compared to HC, ESZ individuals showed significant MMN reductions at baseline (p = .003). Reduced Double-Deviant MMN was associated with greater general cognitive impairment in ESZ individuals (p = .020). Neither ESZ intervention group showed significant change in MMN. We found high correlations in all MMN deviant types (rs = .59–.68, all ps < .001) between baseline and post-intervention amplitudes irrespective of treatment group, suggesting trait-like stability of the MMN signal. Greater deficits in trait-like Double-Deviant MMN predicted greater cognitive improvements in the AT group (p = .02), but not in the CG group. Conclusions In this sample of ESZ individuals, AT had no effect on auditory deviance processing as assessed by

  4. Areas Recruited during Action Understanding Are Not Modulated by Auditory or Sign Language Experience.

    PubMed

    Fang, Yuxing; Chen, Quanjing; Lingnau, Angelika; Han, Zaizhu; Bi, Yanchao

    2016-01-01

    The observation of other people's actions recruits a network of areas including the inferior frontal gyrus (IFG), the inferior parietal lobule (IPL), and posterior middle temporal gyrus (pMTG). These regions have been shown to be activated through both visual and auditory inputs. Intriguingly, previous studies found no engagement of IFG and IPL for deaf participants during non-linguistic action observation, leading to the proposal that auditory experience or sign language usage might shape the functionality of these areas. To understand which variables induce plastic changes in areas recruited during the processing of other people's actions, we examined the effects of tasks (action understanding and passive viewing) and effectors (arm actions vs. leg actions), as well as sign language experience in a group of 12 congenitally deaf signers and 13 hearing participants. In Experiment 1, we found a stronger activation during an action recognition task in comparison to a low-level visual control task in IFG, IPL and pMTG in both deaf signers and hearing individuals, but no effect of auditory or sign language experience. In Experiment 2, we replicated the results of the first experiment using a passive viewing task. Together, our results provide robust evidence demonstrating that the response obtained in IFG, IPL, and pMTG during action recognition and passive viewing is not affected by auditory or sign language experience, adding further support for the supra-modal nature of these regions.

  5. Multisensory connections of monkey auditory cerebral cortex

    PubMed Central

    Smiley, John F.; Falchier, Arnaud

    2009-01-01

    Functional studies have demonstrated multisensory responses in auditory cortex, even in the primary and early auditory association areas. The features of somatosensory and visual responses in auditory cortex suggest that they are involved in multiple processes including spatial, temporal and object-related perception. Tract tracing studies in monkeys have demonstrated several potential sources of somatosensory and visual inputs to auditory cortex. These include potential somatosensory inputs from the retroinsular (RI) and granular insula (Ig) cortical areas, and from the thalamic posterior (PO) nucleus. Potential sources of visual responses include peripheral field representations of areas V2 and prostriata, as well as the superior temporal polysensory area (STP) in the superior temporal sulcus, and the magnocellular medial geniculate thalamic nucleus (MGm). Besides these sources, there are several other thalamic, limbic and cortical association structures that have multisensory responses and may contribute cross-modal inputs to auditory cortex. These connections demonstrated by tract tracing provide a list of potential inputs, but in most cases their significance has not been confirmed by functional experiments. It is possible that the somatosensory and visual modulation of auditory cortex are each mediated by multiple extrinsic sources. PMID:19619628

  6. Early neural disruption and auditory processing outcomes in rodent models: implications for developmental language disability

    PubMed Central

    Fitch, R. Holly; Alexander, Michelle L.; Threlkeld, Steven W.

    2013-01-01

    Most researchers in the field of neural plasticity are familiar with the “Kennard Principle,” which purports a positive relationship between age at brain injury and severity of subsequent deficits (plateauing in adulthood). As an example, a child with left hemispherectomy can recover seemingly normal language, while an adult with focal injury to sub-regions of left temporal and/or frontal cortex can suffer dramatic and permanent language loss. Here we present data regarding the impact of early brain injury in rat models as a function of type and timing, measuring long-term behavioral outcomes via auditory discrimination tasks varying in temporal demand. These tasks were created to model (in rodents) aspects of human sensory processing that may correlate—both developmentally and functionally—with typical and atypical language. We found that bilateral focal lesions to the cortical plate in rats during active neuronal migration led to worse auditory outcomes than comparable lesions induced after cortical migration was complete. Conversely, unilateral hypoxic-ischemic (HI) injuries (similar to those seen in premature infants and term infants with birth complications) led to permanent auditory processing deficits when induced at a neurodevelopmental point comparable to human “term,” but only transient deficits (undetectable in adulthood) when induced in a “preterm” window. Convergent evidence suggests that regardless of when or how disruption of early neural development occurs, the consequences may be particularly deleterious to rapid auditory processing (RAP) outcomes when they trigger developmental alterations that extend into subcortical structures (i.e., lower sensory processing stations). Collective findings hold implications for the study of behavioral outcomes following early brain injury as well as genetic/environmental disruption, and are relevant to our understanding of the neurologic risk factors underlying developmental language disability in

  7. Auditory global-local processing: effects of attention and musical experience.

    PubMed

    Ouimet, Tia; Foster, Nicholas E V; Hyde, Krista L

    2012-10-01

    In vision, global (whole) features are typically processed before local (detail) features ("global precedence effect"). However, the distinction between global and local processing is less clear in the auditory domain. The aims of the present study were to investigate: (i) the effects of directed versus divided attention, and (ii) the effect musical training on auditory global-local processing in 16 adult musicians and 16 non-musicians. Participants were presented with short nine-tone melodies, each comprised of three triplet sequences (three-tone units). In a "directed attention" task, participants were asked to focus on either the global or local pitch pattern and had to determine if the pitch pattern went up or down. In a "divided attention" task, participants judged whether the target pattern (up or down) was present or absent. Overall, global structure was perceived faster and more accurately than local structure. The global precedence effect was observed regardless of whether attention was directed to a specific level or divided between levels. Musicians performed more accurately than non-musicians overall, but non-musicians showed a more pronounced global advantage. This study provides evidence for an auditory global precedence effect across attention tasks, and for differences in auditory global-local processing associated with musical experience.

  8. Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance.

    PubMed

    Bailey, Jennifer Anne; Zatorre, Robert J; Penhune, Virginia B

    2014-04-01

    Evidence in animals and humans indicates that there are sensitive periods during development, times when experience or stimulation has a greater influence on behavior and brain structure. Sensitive periods are the result of an interaction between maturational processes and experience-dependent plasticity mechanisms. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 show enhancements in behavior and white matter structure compared with those who begin later. Plastic changes in white matter and gray matter are hypothesized to co-occur; therefore, the current study investigated possible differences in gray matter structure between early-trained (ET; <7) and late-trained (LT; >7) musicians, matched for years of experience. Gray matter structure was assessed using voxel-wise analysis techniques (optimized voxel-based morphometry, traditional voxel-based morphometry, and deformation-based morphometry) and surface-based measures (cortical thickness, surface area and mean curvature). Deformation-based morphometry analyses identified group differences between ET and LT musicians in right ventral premotor cortex (vPMC), which correlated with performance on an auditory motor synchronization task and with age of onset of musical training. In addition, cortical surface area in vPMC was greater for ET musicians. These results are consistent with evidence that premotor cortex shows greatest maturational change between the ages of 6-9 years and that this region is important for integrating auditory and motor information. We propose that the auditory and motor interactions required by musical practice drive plasticity in vPMC and that this plasticity is greatest when maturation is near its peak.

  9. Home-based Early Intervention on Auditory and Speech Development in Mandarin-speaking Deaf Infants and Toddlers with Chronological Aged 7-24 Months.

    PubMed

    Yang, Ying; Liu, Yue-Hui; Fu, Ming-Fu; Li, Chun-Lin; Wang, Li-Yan; Wang, Qi; Sun, Xi-Bin

    2015-08-20

    Early auditory and speech development in home-based early intervention of infants and toddlers with hearing loss younger than 2 years are still spare in China. This study aimed to observe the development of auditory and speech in deaf infants and toddlers who were fitted with hearing aids and/or received cochlear implantation between the chronological ages of 7-24 months, and analyze the effect of chronological age and recovery time on auditory and speech development in the course of home-based early intervention. This longitudinal study included 55 hearing impaired children with severe and profound binaural deafness, who were divided into Group A (7-12 months), Group B (13-18 months) and Group C (19-24 months) based on the chronological age. Categories auditory performance (CAP) and speech intelligibility rating scale (SIR) were used to evaluate auditory and speech development at baseline and 3, 6, 9, 12, 18, and 24 months of habilitation. Descriptive statistics were used to describe demographic features and were analyzed by repeated measures analysis of variance. With 24 months of hearing intervention, 78% of the patients were able to understand common phrases and conversation without lip-reading, 96% of the patients were intelligible to a listener. In three groups, children showed the rapid growth of trend features in each period of habilitation. CAP and SIR scores have developed rapidly within 24 months after fitted auxiliary device in Group A, which performed much better auditory and speech abilities than Group B (P < 0.05) and Group C (P < 0.05). Group B achieved better results than Group C, whereas no significant differences were observed between Group B and Group C (P > 0.05). The data suggested the early hearing intervention and home-based habilitation benefit auditory and speech development. Chronological age and recovery time may be major factors for aural verbal outcomes in hearing impaired children. The development of auditory and speech in hearing

  10. Functional and structural changes throughout the auditory system following congenital and early-onset deafness: implications for hearing restoration

    PubMed Central

    Butler, Blake E.; Lomber, Stephen G.

    2013-01-01

    The absence of auditory input, particularly during development, causes widespread changes in the structure and function of the auditory system, extending from peripheral structures into auditory cortex. In humans, the consequences of these changes are far-reaching and often include detriments to language acquisition, and associated psychosocial issues. Much of what is currently known about the nature of deafness-related changes to auditory structures comes from studies of congenitally deaf or early-deafened animal models. Fortunately, the mammalian auditory system shows a high degree of preservation among species, allowing for generalization from these models to the human auditory system. This review begins with a comparison of common methods used to obtain deaf animal models, highlighting the specific advantages and anatomical consequences of each. Some consideration is also given to the effectiveness of methods used to measure hearing loss during and following deafening procedures. The structural and functional consequences of congenital and early-onset deafness have been examined across a variety of mammals. This review attempts to summarize these changes, which often involve alteration of hair cells and supporting cells in the cochleae, and anatomical and physiological changes that extend through subcortical structures and into cortex. The nature of these changes is discussed, and the impacts to neural processing are addressed. Finally, long-term changes in cortical structures are discussed, with a focus on the presence or absence of cross-modal plasticity. In addition to being of interest to our understanding of multisensory processing, these changes also have important implications for the use of assistive devices such as cochlear implants. PMID:24324409

  11. Auditory processing and phonological awareness skills of five-year-old children with and without musical experience.

    PubMed

    Escalda, Júlia; Lemos, Stela Maris Aguiar; França, Cecília Cavalieri

    2011-09-01

    To investigate the relations between musical experience, auditory processing and phonological awareness of groups of 5-year-old children with and without musical experience. Participants were 56 5-year-old subjects of both genders, 26 in the Study Group, consisting of children with musical experience, and 30 in the Control Group, consisting of children without musical experience. All participants were assessed with the Simplified Auditory Processing Assessment and Phonological Awareness Test and the data was statistically analyzed. There was a statistically significant difference between the results of the sequential memory test for verbal and non-verbal sounds with four stimuli, phonological awareness tasks of rhyme recognition, phonemic synthesis and phonemic deletion. Analysis of multiple binary logistic regression showed that, with exception of the sequential verbal memory with four syllables, the observed difference in subjects' performance was associated with their musical experience. Musical experience improves auditory and metalinguistic abilities of 5-year-old children.

  12. Seeing sounds and hearing colors: an event-related potential study of auditory-visual synesthesia.

    PubMed

    Goller, Aviva I; Otten, Leun J; Ward, Jamie

    2009-10-01

    In auditory-visual synesthesia, sounds automatically elicit conscious and reliable visual experiences. It is presently unknown whether this reflects early or late processes in the brain. It is also unknown whether adult audiovisual synesthesia resembles auditory-induced visual illusions that can sometimes occur in the general population or whether it resembles the electrophysiological deflection over occipital sites that has been noted in infancy and has been likened to synesthesia. Electrical brain activity was recorded from adult synesthetes and control participants who were played brief tones and required to monitor for an infrequent auditory target. The synesthetes were instructed to attend either to the auditory or to the visual (i.e., synesthetic) dimension of the tone, whereas the controls attended to the auditory dimension alone. There were clear differences between synesthetes and controls that emerged early (100 msec after tone onset). These differences tended to lie in deflections of the auditory-evoked potential (e.g., the auditory N1, P2, and N2) rather than the presence of an additional posterior deflection. The differences occurred irrespective of what the synesthetes attended to (although attention had a late effect). The results suggest that differences between synesthetes and others occur early in time, and that synesthesia is qualitatively different from similar effects found in infants and certain auditory-induced visual illusions in adults. In addition, we report two novel cases of synesthesia in which colors elicit sounds, and vice versa.

  13. Spatiotemporal differentiation in auditory and motor regions during auditory phoneme discrimination.

    PubMed

    Aerts, Annelies; Strobbe, Gregor; van Mierlo, Pieter; Hartsuiker, Robert J; Corthals, Paul; Santens, Patrick; De Letter, Miet

    2017-06-01

    Auditory phoneme discrimination (APD) is supported by both auditory and motor regions through a sensorimotor interface embedded in a fronto-temporo-parietal cortical network. However, the specific spatiotemporal organization of this network during APD with respect to different types of phonemic contrasts is still unclear. Here, we use source reconstruction, applied to event-related potentials in a group of 47 participants, to uncover a potential spatiotemporal differentiation in these brain regions during a passive and active APD task with respect to place of articulation (PoA), voicing and manner of articulation (MoA). Results demonstrate that in an early stage (50-110 ms), auditory, motor and sensorimotor regions elicit more activation during the passive and active APD task with MoA and active APD task with voicing compared to PoA. In a later stage (130-175 ms), the same auditory and motor regions elicit more activation during the APD task with PoA compared to MoA and voicing, yet only in the active condition, implying important timing differences. Degree of attention influences a frontal network during the APD task with PoA, whereas auditory regions are more affected during the APD task with MoA and voicing. Based on these findings, it can be carefully suggested that APD is supported by the integration of early activation of auditory-acoustic properties in superior temporal regions, more perpetuated for MoA and voicing, and later auditory-to-motor integration in sensorimotor areas, more perpetuated for PoA.

  14. Auditory-visual integration modulates location-specific repetition suppression of auditory responses.

    PubMed

    Shrem, Talia; Murray, Micah M; Deouell, Leon Y

    2017-11-01

    Space is a dimension shared by different modalities, but at what stage spatial encoding is affected by multisensory processes is unclear. Early studies observed attenuation of N1/P2 auditory evoked responses following repetition of sounds from the same location. Here, we asked whether this effect is modulated by audiovisual interactions. In two experiments, using a repetition-suppression paradigm, we presented pairs of tones in free field, where the test stimulus was a tone presented at a fixed lateral location. Experiment 1 established a neural index of auditory spatial sensitivity, by comparing the degree of attenuation of the response to test stimuli when they were preceded by an adapter sound at the same location versus 30° or 60° away. We found that the degree of attenuation at the P2 latency was inversely related to the spatial distance between the test stimulus and the adapter stimulus. In Experiment 2, the adapter stimulus was a tone presented from the same location or a more medial location than the test stimulus. The adapter stimulus was accompanied by a simultaneous flash displayed orthogonally from one of the two locations. Sound-flash incongruence reduced accuracy in a same-different location discrimination task (i.e., the ventriloquism effect) and reduced the location-specific repetition-suppression at the P2 latency. Importantly, this multisensory effect included topographic modulations, indicative of changes in the relative contribution of underlying sources across conditions. Our findings suggest that the auditory response at the P2 latency is affected by spatially selective brain activity, which is affected crossmodally by visual information. © 2017 Society for Psychophysiological Research.

  15. Current understanding of auditory neuropathy.

    PubMed

    Boo, Nem-Yun

    2008-12-01

    Auditory neuropathy is defined by the presence of normal evoked otoacoustic emissions (OAE) and absent or abnormal auditory brainstem responses (ABR). The sites of lesion could be at the cochlear inner hair cells, spiral ganglion cells of the cochlea, synapse between the inner hair cells and auditory nerve, or the auditory nerve itself. Genetic, infectious or neonatal/perinatal insults are the 3 most commonly identified underlying causes. Children usually present with delay in speech and language development while adult patients present with hearing loss and disproportionately poor speech discrimination for the degree of hearing loss. Although cochlear implant is the treatment of choice, current evidence show that it benefits only those patients with endocochlear lesions, but not those with cochlear nerve deficiency or central nervous system disorders. As auditory neuropathy is a disorder with potential long-term impact on a child's development, early hearing screen using both OAE and ABR should be carried out on all newborns and infants to allow early detection and intervention.

  16. Early Experience of Sex Hormones as a Predictor of Reading, Phonology, and Auditory Perception

    ERIC Educational Resources Information Center

    Beech, John R.; Beauvois, Michael W.

    2006-01-01

    Previous research has indicated possible reciprocal connections between phonology and reading, and also connections between aspects of auditory perception and reading. The present study investigates these associations further by examining the potential influence of prenatal androgens using measures of digit ratio (the ratio of the lengths of the…

  17. Tap Arduino: An Arduino microcontroller for low-latency auditory feedback in sensorimotor synchronization experiments.

    PubMed

    Schultz, Benjamin G; van Vugt, Floris T

    2016-12-01

    Timing abilities are often measured by having participants tap their finger along with a metronome and presenting tap-triggered auditory feedback. These experiments predominantly use electronic percussion pads combined with software (e.g., FTAP or Max/MSP) that records responses and delivers auditory feedback. However, these setups involve unknown latencies between tap onset and auditory feedback and can sometimes miss responses or record multiple, superfluous responses for a single tap. These issues may distort measurements of tapping performance or affect the performance of the individual. We present an alternative setup using an Arduino microcontroller that addresses these issues and delivers low-latency auditory feedback. We validated our setup by having participants (N = 6) tap on a force-sensitive resistor pad connected to the Arduino and on an electronic percussion pad with various levels of force and tempi. The Arduino delivered auditory feedback through a pulse-width modulation (PWM) pin connected to a headphone jack or a wave shield component. The Arduino's PWM (M = 0.6 ms, SD = 0.3) and wave shield (M = 2.6 ms, SD = 0.3) demonstrated significantly lower auditory feedback latencies than the percussion pad (M = 9.1 ms, SD = 2.0), FTAP (M = 14.6 ms, SD = 2.8), and Max/MSP (M = 15.8 ms, SD = 3.4). The PWM and wave shield latencies were also significantly less variable than those from FTAP and Max/MSP. The Arduino missed significantly fewer taps, and recorded fewer superfluous responses, than the percussion pad. The Arduino captured all responses, whereas at lower tapping forces, the percussion pad missed more taps. Regardless of tapping force, the Arduino outperformed the percussion pad. Overall, the Arduino is a high-precision, low-latency, portable, and affordable tool for auditory experiments.

  18. Auditory Processing in Infancy: Do Early Abnormalities Predict Disorders of Language and Cognitive Development?

    ERIC Educational Resources Information Center

    Guzzetta, Francesco; Conti, Guido; Mercuri, Eugenio

    2011-01-01

    Increasing attention has been devoted to the maturation of sensory processing in the first year of life. While the development of cortical visual function has been thoroughly studied, much less information is available on auditory processing and its early disorders. The aim of this paper is to provide an overview of the assessment techniques for…

  19. Auditory temporal preparation induced by rhythmic cues during concurrent auditory working memory tasks.

    PubMed

    Cutanda, Diana; Correa, Ángel; Sanabria, Daniel

    2015-06-01

    The present study investigated whether participants can develop temporal preparation driven by auditory isochronous rhythms when concurrently performing an auditory working memory (WM) task. In Experiment 1, participants had to respond to an auditory target presented after a regular or an irregular sequence of auditory stimuli while concurrently performing a Sternberg-type WM task. Results showed that participants responded faster after regular compared with irregular rhythms and that this effect was not affected by WM load; however, the lack of a significant main effect of WM load made it difficult to draw any conclusion regarding the influence of the dual-task manipulation in Experiment 1. In order to enhance dual-task interference, Experiment 2 combined the auditory rhythm procedure with an auditory N-Back task, which required WM updating (monitoring and coding of the information) and was presumably more demanding than the mere rehearsal of the WM task used in Experiment 1. Results now clearly showed dual-task interference effects (slower reaction times [RTs] in the high- vs. the low-load condition). However, such interference did not affect temporal preparation induced by rhythms, with faster RTs after regular than after irregular sequences in the high-load and low-load conditions. These results revealed that secondary tasks demanding memory updating, relative to tasks just demanding rehearsal, produced larger interference effects on overall RTs in the auditory rhythm task. Nevertheless, rhythm regularity exerted a strong temporal preparation effect that survived the interference of the WM task even when both tasks competed for processing resources within the auditory modality. (c) 2015 APA, all rights reserved).

  20. Representation of Sound Objects within Early-Stage Auditory Areas: A Repetition Effect Study Using 7T fMRI

    PubMed Central

    Da Costa, Sandra; Bourquin, Nathalie M.-P.; Knebel, Jean-François; Saenz, Melissa; van der Zwaag, Wietske; Clarke, Stephanie

    2015-01-01

    Environmental sounds are highly complex stimuli whose recognition depends on the interaction of top-down and bottom-up processes in the brain. Their semantic representations were shown to yield repetition suppression effects, i. e. a decrease in activity during exposure to a sound that is perceived as belonging to the same source as a preceding sound. Making use of the high spatial resolution of 7T fMRI we have investigated the representations of sound objects within early-stage auditory areas on the supratemporal plane. The primary auditory cortex was identified by means of tonotopic mapping and the non-primary areas by comparison with previous histological studies. Repeated presentations of different exemplars of the same sound source, as compared to the presentation of different sound sources, yielded significant repetition suppression effects within a subset of early-stage areas. This effect was found within the right hemisphere in primary areas A1 and R as well as two non-primary areas on the antero-medial part of the planum temporale, and within the left hemisphere in A1 and a non-primary area on the medial part of Heschl’s gyrus. Thus, several, but not all early-stage auditory areas encode the meaning of environmental sounds. PMID:25938430

  1. Looming auditory collision warnings for driving.

    PubMed

    Gray, Rob

    2011-02-01

    A driving simulator was used to compare the effectiveness of increasing intensity (looming) auditory warning signals with other types of auditory warnings. Auditory warnings have been shown to speed driver reaction time in rear-end collision situations; however, it is not clear which type of signal is the most effective. Although verbal and symbolic (e.g., a car horn) warnings have faster response times than abstract warnings, they often lead to more response errors. Participants (N=20) experienced four nonlooming auditory warnings (constant intensity, pulsed, ramped, and car horn), three looming auditory warnings ("veridical," "early," and "late"), and a no-warning condition. In 80% of the trials, warnings were activated when a critical response was required, and in 20% of the trials, the warnings were false alarms. For the early (late) looming warnings, the rate of change of intensity signaled a time to collision (TTC) that was shorter (longer) than the actual TTC. Veridical looming and car horn warnings had significantly faster brake reaction times (BRT) compared with the other nonlooming warnings (by 80 to 160 ms). However, the number of braking responses in false alarm conditions was significantly greater for the car horn. BRT increased significantly and systematically as the TTC signaled by the looming warning was changed from early to veridical to late. Looming auditory warnings produce the best combination of response speed and accuracy. The results indicate that looming auditory warnings can be used to effectively warn a driver about an impending collision.

  2. No auditory experience, no tinnitus: Lessons from subjects with congenital- and acquired single-sided deafness.

    PubMed

    Lee, Sang-Yeon; Nam, Dong Woo; Koo, Ja-Won; De Ridder, Dirk; Vanneste, Sven; Song, Jae-Jin

    2017-10-01

    Recent studies have adopted the Bayesian brain model to explain the generation of tinnitus in subjects with auditory deafferentation. That is, as the human brain works in a Bayesian manner to reduce environmental uncertainty, missing auditory information due to hearing loss may cause auditory phantom percepts, i.e., tinnitus. This type of deafferentation-induced auditory phantom percept should be preceded by auditory experience because the fill-in phenomenon, namely tinnitus, is based upon auditory prediction and the resultant prediction error. For example, a recent animal study observed the absence of tinnitus in cats with congenital single-sided deafness (SSD; Eggermont and Kral, Hear Res 2016). However, no human studies have investigated the presence and characteristics of tinnitus in subjects with congenital SSD. Thus, the present study sought to reveal differences in the generation of tinnitus between subjects with congenital SSD and those with acquired SSD to evaluate the replicability of previous animal studies. This study enrolled 20 subjects with congenital SSD and 44 subjects with acquired SSD and examined the presence and characteristics of tinnitus in the groups. None of the 20 subjects with congenital SSD perceived tinnitus on the affected side, whereas 30 of 44 subjects with acquired SSD experienced tinnitus on the affected side. Additionally, there were significant positive correlations between tinnitus characteristics and the audiometric characteristics of the SSD. In accordance with the findings of the recent animal study, tinnitus was absent in subjects with congenital SSD, but relatively frequent in subjects with acquired SSD, which suggests that the development of tinnitus should be preceded by auditory experience. In other words, subjects with profound congenital peripheral deafferentation do not develop auditory phantom percepts because no auditory predictions are available from the Bayesian brain. Copyright © 2017 Elsevier B.V. All rights

  3. The Contribution of Brainstem and Cerebellar Pathways to Auditory Recognition

    PubMed Central

    McLachlan, Neil M.; Wilson, Sarah J.

    2017-01-01

    The cerebellum has been known to play an important role in motor functions for many years. More recently its role has been expanded to include a range of cognitive and sensory-motor processes, and substantial neuroimaging and clinical evidence now points to cerebellar involvement in most auditory processing tasks. In particular, an increase in the size of the cerebellum over recent human evolution has been attributed in part to the development of speech. Despite this, the auditory cognition literature has largely overlooked afferent auditory connections to the cerebellum that have been implicated in acoustically conditioned reflexes in animals, and could subserve speech and other auditory processing in humans. This review expands our understanding of auditory processing by incorporating cerebellar pathways into the anatomy and functions of the human auditory system. We reason that plasticity in the cerebellar pathways underpins implicit learning of spectrotemporal information necessary for sound and speech recognition. Once learnt, this information automatically recognizes incoming auditory signals and predicts likely subsequent information based on previous experience. Since sound recognition processes involving the brainstem and cerebellum initiate early in auditory processing, learnt information stored in cerebellar memory templates could then support a range of auditory processing functions such as streaming, habituation, the integration of auditory feature information such as pitch, and the recognition of vocal communications. PMID:28373850

  4. Auditory Memory Distortion for Spoken Prose

    PubMed Central

    Hutchison, Joanna L.; Hubbard, Timothy L.; Ferrandino, Blaise; Brigante, Ryan; Wright, Jamie M.; Rypma, Bart

    2013-01-01

    Observers often remember a scene as containing information that was not presented but that would have likely been located just beyond the observed boundaries of the scene. This effect is called boundary extension (BE; e.g., Intraub & Richardson, 1989). Previous studies have observed BE in memory for visual and haptic stimuli, and the present experiments examined whether BE occurred in memory for auditory stimuli (prose, music). Experiments 1 and 2 varied the amount of auditory content to be remembered. BE was not observed, but when auditory targets contained more content, boundary restriction (BR) occurred. Experiment 3 presented auditory stimuli with less content and BR also occurred. In Experiment 4, white noise was added to stimuli with less content to equalize the durations of auditory stimuli, and BR still occurred. Experiments 5 and 6 presented trained stories and popular music, and BR still occurred. This latter finding ruled out the hypothesis that the lack of BE in Experiments 1–4 reflected a lack of familiarity with the stimuli. Overall, memory for auditory content exhibited BR rather than BE, and this pattern was stronger if auditory stimuli contained more content. Implications for the understanding of general perceptual processing and directions for future research are discussed. PMID:22612172

  5. Auditory interfaces: The human perceiver

    NASA Technical Reports Server (NTRS)

    Colburn, H. Steven

    1991-01-01

    A brief introduction to the basic auditory abilities of the human perceiver with particular attention toward issues that may be important for the design of auditory interfaces is presented. The importance of appropriate auditory inputs to observers with normal hearing is probably related to the role of hearing as an omnidirectional, early warning system and to its role as the primary vehicle for communication of strong personal feelings.

  6. Effects of Asymmetric Cultural Experiences on the Auditory Pathway Evidence from Music

    PubMed Central

    Wong, Patrick C. M.; Perrachione, Tyler K.; Margulis, Elizabeth Hellmuth

    2009-01-01

    Cultural experiences come in many different forms, such as immersion in a particular linguistic community, exposure to faces of people with different racial backgrounds, or repeated encounters with music of a particular tradition. In most circumstances, these cultural experiences are asymmetric, meaning one type of experience occurs more frequently than other types (e.g., a person raised in India will likely encounter the Indian todi scale more so than a Westerner). In this paper, we will discuss recent findings from our laboratories that reveal the impact of short- and long-term asymmetric musical experiences on how the nervous system responds to complex sounds. We will discuss experiments examining how musical experience may facilitate the learning of a tone language, how musicians develop neural circuitries that are sensitive to musical melodies played on their instrument of expertise, and how even everyday listeners who have little formal training are particularly sensitive to music of their own culture(s). An understanding of these cultural asymmetries is useful in formulating a more comprehensive model of auditory perceptual expertise that considers how experiences shape auditory skill levels. Such a model has the potential to aid in the development of rehabilitation programs for the efficacious treatment of neurologic impairments. PMID:19673772

  7. Music training alters the course of adolescent auditory development

    PubMed Central

    Tierney, Adam T.; Krizman, Jennifer; Kraus, Nina

    2015-01-01

    Fundamental changes in brain structure and function during adolescence are well-characterized, but the extent to which experience modulates adolescent neurodevelopment is not. Musical experience provides an ideal case for examining this question because the influence of music training begun early in life is well-known. We investigated the effects of in-school music training, previously shown to enhance auditory skills, versus another in-school training program that did not focus on development of auditory skills (active control). We tested adolescents on neural responses to sound and language skills before they entered high school (pretraining) and again 3 y later. Here, we show that in-school music training begun in high school prolongs the stability of subcortical sound processing and accelerates maturation of cortical auditory responses. Although phonological processing improved in both the music training and active control groups, the enhancement was greater in adolescents who underwent music training. Thus, music training initiated as late as adolescence can enhance neural processing of sound and confer benefits for language skills. These results establish the potential for experience-driven brain plasticity during adolescence and demonstrate that in-school programs can engender these changes. PMID:26195739

  8. Music training alters the course of adolescent auditory development.

    PubMed

    Tierney, Adam T; Krizman, Jennifer; Kraus, Nina

    2015-08-11

    Fundamental changes in brain structure and function during adolescence are well-characterized, but the extent to which experience modulates adolescent neurodevelopment is not. Musical experience provides an ideal case for examining this question because the influence of music training begun early in life is well-known. We investigated the effects of in-school music training, previously shown to enhance auditory skills, versus another in-school training program that did not focus on development of auditory skills (active control). We tested adolescents on neural responses to sound and language skills before they entered high school (pretraining) and again 3 y later. Here, we show that in-school music training begun in high school prolongs the stability of subcortical sound processing and accelerates maturation of cortical auditory responses. Although phonological processing improved in both the music training and active control groups, the enhancement was greater in adolescents who underwent music training. Thus, music training initiated as late as adolescence can enhance neural processing of sound and confer benefits for language skills. These results establish the potential for experience-driven brain plasticity during adolescence and demonstrate that in-school programs can engender these changes.

  9. Auditory and motor imagery modulate learning in music performance

    PubMed Central

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  10. Opposite patterns of hemisphere dominance for early auditory processing of lexical tones and consonants

    PubMed Central

    Luo, Hao; Ni, Jing-Tian; Li, Zhi-Hao; Li, Xiao-Ou; Zhang, Da-Ren; Zeng, Fan-Gang; Chen, Lin

    2006-01-01

    In tonal languages such as Mandarin Chinese, a lexical tone carries semantic information and is preferentially processed in the left brain hemisphere of native speakers as revealed by the functional MRI or positron emission tomography studies, which likely measure the temporally aggregated neural events including those at an attentive stage of auditory processing. Here, we demonstrate that early auditory processing of a lexical tone at a preattentive stage is actually lateralized to the right hemisphere. We frequently presented to native Mandarin Chinese speakers a meaningful auditory word with a consonant-vowel structure and infrequently varied either its lexical tone or initial consonant using an odd-ball paradigm to create a contrast resulting in a change in word meaning. The lexical tone contrast evoked a stronger preattentive response, as revealed by whole-head electric recordings of the mismatch negativity, in the right hemisphere than in the left hemisphere, whereas the consonant contrast produced an opposite pattern. Given the distinct acoustic features between a lexical tone and a consonant, this opposite lateralization pattern suggests the dependence of hemisphere dominance mainly on acoustic cues before speech input is mapped into a semantic representation in the processing stream. PMID:17159136

  11. Auditory preferences of young children with and without hearing loss for meaningful auditory-visual compound stimuli.

    PubMed

    Zupan, Barbra; Sussman, Joan E

    2009-01-01

    Experiment 1 examined modality preferences in children and adults with normal hearing to combined auditory-visual stimuli. Experiment 2 compared modality preferences in children using cochlear implants participating in an auditory emphasized therapy approach to the children with normal hearing from Experiment 1. A second objective in both experiments was to evaluate the role of familiarity in these preferences. Participants were exposed to randomized blocks of photographs and sounds of ten familiar and ten unfamiliar animals in auditory-only, visual-only and auditory-visual trials. Results indicated an overall auditory preference in children, regardless of hearing status, and a visual preference in adults. Familiarity only affected modality preferences in adults who showed a strong visual preference to unfamiliar stimuli only. The similar degree of auditory responses in children with hearing loss to those from children with normal hearing is an original finding and lends support to an auditory emphasis for habilitation. Readers will be able to (1) Describe the pattern of modality preferences reported in young children without hearing loss; (2) Recognize that differences in communication mode may affect modality preferences in young children with hearing loss; and (3) Understand the role of familiarity in modality preferences in children with and without hearing loss.

  12. Family history of psychosis moderates early auditory cortical response abnormalities in non-psychotic bipolar disorder

    PubMed Central

    Hamm, Jordan P; Ethridge, Lauren E; Shapiro, John R; Pearlson, Godfrey D; Tamminga, Carol A; Sweeney, John A; Keshavan, Matcheri S; Thaker, Gunvant K; Clementz, Brett A

    2017-01-01

    Objectives Bipolar I disorder is a disabling illness affecting 1% of people worldwide. Family and twin studies suggest that psychotic bipolar disorder (BDP) represents a homogenous subgroup with an etiology distinct from non-psychotic bipolar disorder (BDNP) and partially shared with schizophrenia. Studies of auditory electrophysiology [e.g., paired-stimulus and oddball measured with electroencephalography (EEG)] consistently report deviations in psychotic groups (schizophrenia, BDP), yet such studies comparing BDP and BDNP are sparse and, in some cases, conflicting. Auditory EEG responses are significantly reduced in unaffected relatives of psychosis patients, suggesting that they may relate to both psychosis liability and expression. Methods While 64-sensor EEGs were recorded, age- and gender-matched samples of 70 BDP, 35 BDNP {20 with a family history of psychosis [BDNP(+)]}, and 70 psychiatrically healthy subjects were presented typical auditory paired-stimuli and auditory oddball paradigms. Results Oddball P3b reductions were present and indistinguishable across all patient groups. P2s to paired-stimuli were abnormal only in BDP and BDNP(+). Conversely, N1 reductions to stimuli in both paradigms and P3a reductions were present in both BDP and BDNP(−) groups but were absent in BDNP(+). Conclusions While nearly all auditory neural response components studied were abnormal in BDP, BDNP abnormalities at early- and mid-latencies were moderated by family psychosis history. The relationship between psychosis expression, heritable psychosis risk, and neurophysiology within bipolar disorder, therefore, may be complex. Consideration of such clinical disease heterogeneity may be important for future investigations of the pathophysiology of major psychiatric disturbance. PMID:23941660

  13. Experiments on Auditory-Visual Perception of Sentences by Users of Unilateral, Bimodal, and Bilateral Cochlear Implants

    ERIC Educational Resources Information Center

    Dorman, Michael F.; Liss, Julie; Wang, Shuai; Berisha, Visar; Ludwig, Cimarron; Natale, Sarah Cook

    2016-01-01

    Purpose: Five experiments probed auditory-visual (AV) understanding of sentences by users of cochlear implants (CIs). Method: Sentence material was presented in auditory (A), visual (V), and AV test conditions to listeners with normal hearing and CI users. Results: (a) Most CI users report that most of the time, they have access to both A and V…

  14. APEX 3: a multi-purpose test platform for auditory psychophysical experiments.

    PubMed

    Francart, Tom; van Wieringen, Astrid; Wouters, Jan

    2008-07-30

    APEX 3 is a software test platform for auditory behavioral experiments. It provides a generic means of setting up experiments without any programming. The supported output devices include sound cards and cochlear implants from Cochlear Corporation and Advanced Bionics Corporation. Many psychophysical procedures are provided and there is an interface to add custom procedures. Plug-in interfaces are provided for data filters and external controllers. APEX 3 is supported under Linux and Windows and is available free of charge.

  15. Auditory training improves auditory performance in cochlear implanted children.

    PubMed

    Roman, Stephane; Rochette, Françoise; Triglia, Jean-Michel; Schön, Daniele; Bigand, Emmanuel

    2016-07-01

    rehabilitative care is most efficient when it takes place early on during childhood. These results are important to pinpoint the auditory deficits in CI children, to gather a better understanding of the links between basic auditory skills and speech perception which will in turn allow more efficient rehabilitative programs. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Visual processing affects the neural basis of auditory discrimination.

    PubMed

    Kislyuk, Daniel S; Möttönen, Riikka; Sams, Mikko

    2008-12-01

    The interaction between auditory and visual speech streams is a seamless and surprisingly effective process. An intriguing example is the "McGurk effect": The acoustic syllable /ba/ presented simultaneously with a mouth articulating /ga/ is typically heard as /da/ [McGurk, H., & MacDonald, J. Hearing lips and seeing voices. Nature, 264, 746-748, 1976]. Previous studies have demonstrated the interaction of auditory and visual streams at the auditory cortex level, but the importance of these interactions for the qualitative perception change remained unclear because the change could result from interactions at higher processing levels as well. In our electroencephalogram experiment, we combined the McGurk effect with mismatch negativity (MMN), a response that is elicited in the auditory cortex at a latency of 100-250 msec by any above-threshold change in a sequence of repetitive sounds. An "odd-ball" sequence of acoustic stimuli consisting of frequent /va/ syllables (standards) and infrequent /ba/ syllables (deviants) was presented to 11 participants. Deviant stimuli in the unisensory acoustic stimulus sequence elicited a typical MMN, reflecting discrimination of acoustic features in the auditory cortex. When the acoustic stimuli were dubbed onto a video of a mouth constantly articulating /va/, the deviant acoustic /ba/ was heard as /va/ due to the McGurk effect and was indistinguishable from the standards. Importantly, such deviants did not elicit MMN, indicating that the auditory cortex failed to discriminate between the acoustic stimuli. Our findings show that visual stream can qualitatively change the auditory percept at the auditory cortex level, profoundly influencing the auditory cortex mechanisms underlying early sound discrimination.

  17. Congenital deafness affects deep layers in primary and secondary auditory cortex

    PubMed Central

    Berger, Christoph; Kühne, Daniela; Scheper, Verena

    2017-01-01

    Abstract Congenital deafness leads to functional deficits in the auditory cortex for which early cochlear implantation can effectively compensate. Most of these deficits have been demonstrated functionally. Furthermore, the majority of previous studies on deafness have involved the primary auditory cortex; knowledge of higher‐order areas is limited to effects of cross‐modal reorganization. In this study, we compared the cortical cytoarchitecture of four cortical areas in adult hearing and congenitally deaf cats (CDCs): the primary auditory field A1, two secondary auditory fields, namely the dorsal zone and second auditory field (A2); and a reference visual association field (area 7) in the same section stained either using Nissl or SMI‐32 antibodies. The general cytoarchitectonic pattern and the area‐specific characteristics in the auditory cortex remained unchanged in animals with congenital deafness. Whereas area 7 did not differ between the groups investigated, all auditory fields were slightly thinner in CDCs, this being caused by reduced thickness of layers IV–VI. The study documents that, while the cytoarchitectonic patterns are in general independent of sensory experience, reduced layer thickness is observed in both primary and higher‐order auditory fields in layer IV and infragranular layers. The study demonstrates differences in effects of congenital deafness between supragranular and other cortical layers, but similar dystrophic effects in all investigated auditory fields. PMID:28643417

  18. Transplantation of conditionally immortal auditory neuroblasts to the auditory nerve.

    PubMed

    Sekiya, Tetsuji; Holley, Matthew C; Kojima, Ken; Matsumoto, Masahiro; Helyer, Richard; Ito, Juichi

    2007-04-01

    Cell transplantation is a realistic potential therapy for replacement of auditory sensory neurons and could benefit patients with cochlear implants or acoustic neuropathies. The procedure involves many experimental variables, including the nature and conditioning of donor cells, surgical technique and degree of degeneration in the host tissue. It is essential to control these variables in order to develop cell transplantation techniques effectively. We have characterized a conditionally immortal, mouse cell line suitable for transplantation to the auditory nerve. Structural and physiological markers defined the cells as early auditory neuroblasts that lacked neuronal, voltage-gated sodium or calcium currents and had an undifferentiated morphology. When transplanted into the auditory nerves of rats in vivo, the cells migrated peripherally and centrally and aggregated to form coherent, ectopic 'ganglia'. After 7 days they expressed beta 3-tubulin and adopted a similar morphology to native spiral ganglion neurons. They also developed bipolar projections aligned with the host nerves. There was no evidence for uncontrolled proliferation in vivo and cells survived for at least 63 days. If cells were transplanted with the appropriate surgical technique then the auditory brainstem responses were preserved. We have shown that immortal cell lines can potentially be used in the mammalian ear, that it is possible to differentiate significant numbers of cells within the auditory nerve tract and that surgery and cell injection can be achieved with no damage to the cochlea and with minimal degradation of the auditory brainstem response.

  19. Auditory Preferences of Young Children with and without Hearing Loss for Meaningful Auditory-Visual Compound Stimuli

    ERIC Educational Resources Information Center

    Zupan, Barbra; Sussman, Joan E.

    2009-01-01

    Experiment 1 examined modality preferences in children and adults with normal hearing to combined auditory-visual stimuli. Experiment 2 compared modality preferences in children using cochlear implants participating in an auditory emphasized therapy approach to the children with normal hearing from Experiment 1. A second objective in both…

  20. Neural correlates of short-term memory in primate auditory cortex

    PubMed Central

    Bigelow, James; Rossi, Breein; Poremba, Amy

    2014-01-01

    Behaviorally-relevant sounds such as conspecific vocalizations are often available for only a brief amount of time; thus, goal-directed behavior frequently depends on auditory short-term memory (STM). Despite its ecological significance, the neural processes underlying auditory STM remain poorly understood. To investigate the role of the auditory cortex in STM, single- and multi-unit activity was recorded from the primary auditory cortex (A1) of two monkeys performing an auditory STM task using simple and complex sounds. Each trial consisted of a sample and test stimulus separated by a 5-s retention interval. A brief wait period followed the test stimulus, after which subjects pressed a button if the sounds were identical (match trials) or withheld button presses if they were different (non-match trials). A number of units exhibited significant changes in firing rate for portions of the retention interval, although these changes were rarely sustained. Instead, they were most frequently observed during the early and late portions of the retention interval, with inhibition being observed more frequently than excitation. At the population level, responses elicited on match trials were briefly suppressed early in the sound period relative to non-match trials. However, during the latter portion of the sound, firing rates increased significantly for match trials and remained elevated throughout the wait period. Related patterns of activity were observed in prior experiments from our lab in the dorsal temporal pole (dTP) and prefrontal cortex (PFC) of the same animals. The data suggest that early match suppression occurs in both A1 and the dTP, whereas later match enhancement occurs first in the PFC, followed by A1 and later in dTP. Because match enhancement occurs first in the PFC, we speculate that enhancement observed in A1 and dTP may reflect top–down feedback. Overall, our findings suggest that A1 forms part of the larger neural system recruited during auditory STM

  1. Auditory hallucinations.

    PubMed

    Blom, Jan Dirk

    2015-01-01

    Auditory hallucinations constitute a phenomenologically rich group of endogenously mediated percepts which are associated with psychiatric, neurologic, otologic, and other medical conditions, but which are also experienced by 10-15% of all healthy individuals in the general population. The group of phenomena is probably best known for its verbal auditory subtype, but it also includes musical hallucinations, echo of reading, exploding-head syndrome, and many other types. The subgroup of verbal auditory hallucinations has been studied extensively with the aid of neuroimaging techniques, and from those studies emerges an outline of a functional as well as a structural network of widely distributed brain areas involved in their mediation. The present chapter provides an overview of the various types of auditory hallucination described in the literature, summarizes our current knowledge of the auditory networks involved in their mediation, and draws on ideas from the philosophy of science and network science to reconceptualize the auditory hallucinatory experience, and point out directions for future research into its neurobiologic substrates. In addition, it provides an overview of known associations with various clinical conditions and of the existing evidence for pharmacologic and non-pharmacologic treatments. © 2015 Elsevier B.V. All rights reserved.

  2. Rate of Language Growth in Children with Hearing Loss in an Auditory-Verbal Early Intervention Program

    ERIC Educational Resources Information Center

    Jackson, Carla Wood; Schatschneider, Christopher

    2013-01-01

    This longitudinal study explored the rate of language growth of children in an early intervention program providing auditory-verbal therapy. A retrospective investigation, the study applied a linear growth model to estimate a mean growth curve and the extent of individual variation in language performance on the Preschool Language Scale, 4th ed.…

  3. Early auditory evoked potential is modulated by selective attention and related to individual differences in visual working memory capacity.

    PubMed

    Giuliano, Ryan J; Karns, Christina M; Neville, Helen J; Hillyard, Steven A

    2014-12-01

    A growing body of research suggests that the predictive power of working memory (WM) capacity for measures of intellectual aptitude is due to the ability to control attention and select relevant information. Crucially, attentional mechanisms implicated in controlling access to WM are assumed to be domain-general, yet reports of enhanced attentional abilities in individuals with larger WM capacities are primarily within the visual domain. Here, we directly test the link between WM capacity and early attentional gating across sensory domains, hypothesizing that measures of visual WM capacity should predict an individual's capacity to allocate auditory selective attention. To address this question, auditory ERPs were recorded in a linguistic dichotic listening task, and individual differences in ERP modulations by attention were correlated with estimates of WM capacity obtained in a separate visual change detection task. Auditory selective attention enhanced ERP amplitudes at an early latency (ca. 70-90 msec), with larger P1 components elicited by linguistic probes embedded in an attended narrative. Moreover, this effect was associated with greater individual estimates of visual WM capacity. These findings support the view that domain-general attentional control mechanisms underlie the wide variation of WM capacity across individuals.

  4. Auditory and language development in Mandarin-speaking children after cochlear implantation.

    PubMed

    Lu, Xing; Qin, Zhaobing

    2018-04-01

    To evaluate early auditory performance, speech perception and language skills in Mandarin-speaking prelingual deaf children in the first two years after they received a cochlear implant (CI) and analyse the effects of possible associated factors. The Infant-Toddler Meaningful Auditory Integration Scale (ITMAIS)/Meaningful Auditory Integration Scale (MAIS), Mandarin Early Speech Perception (MESP) test and Putonghua Communicative Development Inventory (PCDI) were used to assess auditory and language outcomes in 132 Mandarin-speaking children pre- and post-implantation. Children with CIs exhibited an ITMAIS/MAIS and PCDI developmental trajectory similar to that of children with normal hearing. The increased number of participants who achieved MESP categories 1-6 at each test interval showed a significant improvement in speech perception by paediatric CI recipients. Age at implantation and socioeconomic status were consistently associated with both auditory and language outcomes in the first two years post-implantation. Mandarin-speaking children with CIs exhibit significant improvements in early auditory and language development. Though these improvements followed the normative developmental trajectories, they still exhibited a gap compared with normative values. Earlier implantation and higher socioeconomic status are consistent predictors of greater auditory and language skills in the early stage. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Developmental trends in auditory processing can provide early predictions of language acquisition in young infants.

    PubMed

    Chonchaiya, Weerasak; Tardif, Twila; Mai, Xiaoqin; Xu, Lin; Li, Mingyan; Kaciroti, Niko; Kileny, Paul R; Shao, Jie; Lozoff, Betsy

    2013-03-01

    Auditory processing capabilities at the subcortical level have been hypothesized to impact an individual's development of both language and reading abilities. The present study examined whether auditory processing capabilities relate to language development in healthy 9-month-old infants. Participants were 71 infants (31 boys and 40 girls) with both Auditory Brainstem Response (ABR) and language assessments. At 6 weeks and/or 9 months of age, the infants underwent ABR testing using both a standard hearing screening protocol with 30 dB clicks and a second protocol using click pairs separated by 8, 16, and 64-ms intervals presented at 80 dB. We evaluated the effects of interval duration on ABR latency and amplitude elicited by the second click. At 9 months, language development was assessed via parent report on the Chinese Communicative Development Inventory - Putonghua version (CCDI-P). Wave V latency z-scores of the 64-ms condition at 6 weeks showed strong direct relationships with Wave V latency in the same condition at 9 months. More importantly, shorter Wave V latencies at 9 months showed strong relationships with the CCDI-P composite consisting of phrases understood, gestures, and words produced. Likewise, infants who had greater decreases in Wave V latencies from 6 weeks to 9 months had higher CCDI-P composite scores. Females had higher language development scores and shorter Wave V latencies at both ages than males. Interestingly, when the ABR Wave V latencies at both ages were taken into account, the direct effects of gender on language disappeared. In conclusion, these results support the importance of low-level auditory processing capabilities for early language acquisition in a population of typically developing young infants. Moreover, the auditory brainstem response in this paradigm shows promise as an electrophysiological marker to predict individual differences in language development in young children. © 2012 Blackwell Publishing Ltd.

  6. Manipulation of BDNF signaling modifies the experience-dependent plasticity induced by pure tone exposure during the critical period in the primary auditory cortex.

    PubMed

    Anomal, Renata; de Villers-Sidani, Etienne; Merzenich, Michael M; Panizzutti, Rogerio

    2013-01-01

    Sensory experience powerfully shapes cortical sensory representations during an early developmental "critical period" of plasticity. In the rat primary auditory cortex (A1), the experience-dependent plasticity is exemplified by significant, long-lasting distortions in frequency representation after mere exposure to repetitive frequencies during the second week of life. In the visual system, the normal unfolding of critical period plasticity is strongly dependent on the elaboration of brain-derived neurotrophic factor (BDNF), which promotes the establishment of inhibition. Here, we tested the hypothesis that BDNF signaling plays a role in the experience-dependent plasticity induced by pure tone exposure during the critical period in the primary auditory cortex. Elvax resin implants filled with either a blocking antibody against BDNF or the BDNF protein were placed on the A1 of rat pups throughout the critical period window. These pups were then exposed to 7 kHz pure tone for 7 consecutive days and their frequency representations were mapped. BDNF blockade completely prevented the shaping of cortical tuning by experience and resulted in poor overall frequency tuning in A1. By contrast, BDNF infusion on the developing A1 amplified the effect of 7 kHz tone exposure compared to control. These results indicate that BDNF signaling participates in the experience-dependent plasticity induced by pure tone exposure during the critical period in A1.

  7. Linguistic category structure influences early auditory processing: Converging evidence from mismatch responses and cortical oscillations.

    PubMed

    Scharinger, Mathias; Monahan, Philip J; Idsardi, William J

    2016-03-01

    While previous research has established that language-specific knowledge influences early auditory processing, it is still controversial as to what aspects of speech sound representations determine early speech perception. Here, we propose that early processing primarily depends on information propagated top-down from abstractly represented speech sound categories. In particular, we assume that mid-vowels (as in 'bet') exert less top-down effects than the high-vowels (as in 'bit') because of their less specific (default) tongue height position as compared to either high- or low-vowels (as in 'bat'). We tested this assumption in a magnetoencephalography (MEG) study where we contrasted mid- and high-vowels, as well as the low- and high-vowels in a passive oddball paradigm. Overall, significant differences between deviants and standards indexed reliable mismatch negativity (MMN) responses between 200 and 300ms post-stimulus onset. MMN amplitudes differed in the mid/high-vowel contrasts and were significantly reduced when a mid-vowel standard was followed by a high-vowel deviant, extending previous findings. Furthermore, mid-vowel standards showed reduced oscillatory power in the pre-stimulus beta-frequency band (18-26Hz), compared to high-vowel standards. We take this as converging evidence for linguistic category structure to exert top-down influences on auditory processing. The findings are interpreted within the linguistic model of underspecification and the neuropsychological predictive coding framework. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Diminished auditory sensory gating during active auditory verbal hallucinations.

    PubMed

    Thoma, Robert J; Meier, Andrew; Houck, Jon; Clark, Vincent P; Lewine, Jeffrey D; Turner, Jessica; Calhoun, Vince; Stephen, Julia

    2017-10-01

    Auditory sensory gating, assessed in a paired-click paradigm, indicates the extent to which incoming stimuli are filtered, or "gated", in auditory cortex. Gating is typically computed as the ratio of the peak amplitude of the event related potential (ERP) to a second click (S2) divided by the peak amplitude of the ERP to a first click (S1). Higher gating ratios are purportedly indicative of incomplete suppression of S2 and considered to represent sensory processing dysfunction. In schizophrenia, hallucination severity is positively correlated with gating ratios, and it was hypothesized that a failure of sensory control processes early in auditory sensation (gating) may represent a larger system failure within the auditory data stream; resulting in auditory verbal hallucinations (AVH). EEG data were collected while patients (N=12) with treatment-resistant AVH pressed a button to indicate the beginning (AVH-on) and end (AVH-off) of each AVH during a paired click protocol. For each participant, separate gating ratios were computed for the P50, N100, and P200 components for each of the AVH-off and AVH-on states. AVH trait severity was assessed using the Psychotic Symptoms Rating Scales AVH Total score (PSYRATS). The results of a mixed model ANOVA revealed an overall effect for AVH state, such that gating ratios were significantly higher during the AVH-on state than during AVH-off for all three components. PSYRATS score was significantly and negatively correlated with N100 gating ratio only in the AVH-off state. These findings link onset of AVH with a failure of an empirically-defined auditory inhibition system, auditory sensory gating, and pave the way for a sensory gating model of AVH. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Contextual modulation of primary visual cortex by auditory signals.

    PubMed

    Petro, L S; Paton, A T; Muckli, L

    2017-02-19

    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195-201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256-1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.

  10. Contextual modulation of primary visual cortex by auditory signals

    PubMed Central

    Paton, A. T.

    2017-01-01

    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195–201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256–1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044015

  11. Decoding power-spectral profiles from FMRI brain activities during naturalistic auditory experience.

    PubMed

    Hu, Xintao; Guo, Lei; Han, Junwei; Liu, Tianming

    2017-02-01

    Recent studies have demonstrated a close relationship between computational acoustic features and neural brain activities, and have largely advanced our understanding of auditory information processing in the human brain. Along this line, we proposed a multidisciplinary study to examine whether power spectral density (PSD) profiles can be decoded from brain activities during naturalistic auditory experience. The study was performed on a high resolution functional magnetic resonance imaging (fMRI) dataset acquired when participants freely listened to the audio-description of the movie "Forrest Gump". Representative PSD profiles existing in the audio-movie were identified by clustering the audio samples according to their PSD descriptors. Support vector machine (SVM) classifiers were trained to differentiate the representative PSD profiles using corresponding fMRI brain activities. Based on PSD profile decoding, we explored how the neural decodability correlated to power intensity and frequency deviants. Our experimental results demonstrated that PSD profiles can be reliably decoded from brain activities. We also suggested a sigmoidal relationship between the neural decodability and power intensity deviants of PSD profiles. Our study in addition substantiates the feasibility and advantage of naturalistic paradigm for studying neural encoding of complex auditory information.

  12. Auditory sequence analysis and phonological skill

    PubMed Central

    Grube, Manon; Kumar, Sukhbinder; Cooper, Freya E.; Turton, Stuart; Griffiths, Timothy D.

    2012-01-01

    This work tests the relationship between auditory and phonological skill in a non-selected cohort of 238 school students (age 11) with the specific hypothesis that sound-sequence analysis would be more relevant to phonological skill than the analysis of basic, single sounds. Auditory processing was assessed across the domains of pitch, time and timbre; a combination of six standard tests of literacy and language ability was used to assess phonological skill. A significant correlation between general auditory and phonological skill was demonstrated, plus a significant, specific correlation between measures of phonological skill and the auditory analysis of short sequences in pitch and time. The data support a limited but significant link between auditory and phonological ability with a specific role for sound-sequence analysis, and provide a possible new focus for auditory training strategies to aid language development in early adolescence. PMID:22951739

  13. Inattentional Deafness: Visual Load Leads to Time-Specific Suppression of Auditory Evoked Responses

    PubMed Central

    Molloy, Katharine; Griffiths, Timothy D.; Lavie, Nilli

    2015-01-01

    Due to capacity limits on perception, conditions of high perceptual load lead to reduced processing of unattended stimuli (Lavie et al., 2014). Accumulating work demonstrates the effects of visual perceptual load on visual cortex responses, but the effects on auditory processing remain poorly understood. Here we establish the neural mechanisms underlying “inattentional deafness”—the failure to perceive auditory stimuli under high visual perceptual load. Participants performed a visual search task of low (target dissimilar to nontarget items) or high (target similar to nontarget items) load. On a random subset (50%) of trials, irrelevant tones were presented concurrently with the visual stimuli. Brain activity was recorded with magnetoencephalography, and time-locked responses to the visual search array and to the incidental presence of unattended tones were assessed. High, compared to low, perceptual load led to increased early visual evoked responses (within 100 ms from onset). This was accompanied by reduced early (∼100 ms from tone onset) auditory evoked activity in superior temporal sulcus and posterior middle temporal gyrus. A later suppression of the P3 “awareness” response to the tones was also observed under high load. A behavioral experiment revealed reduced tone detection sensitivity under high visual load, indicating that the reduction in neural responses was indeed associated with reduced awareness of the sounds. These findings support a neural account of shared audiovisual resources, which, when depleted under load, leads to failures of sensory perception and awareness. SIGNIFICANCE STATEMENT The present work clarifies the neural underpinning of inattentional deafness under high visual load. The findings of near-simultaneous load effects on both visual and auditory evoked responses suggest shared audiovisual processing capacity. Temporary depletion of shared capacity in perceptually demanding visual tasks leads to a momentary reduction in

  14. Auditory Perceptual Learning for Speech Perception Can be Enhanced by Audiovisual Training.

    PubMed

    Bernstein, Lynne E; Auer, Edward T; Eberhardt, Silvio P; Jiang, Jintao

    2013-01-01

    Speech perception under audiovisual (AV) conditions is well known to confer benefits to perception such as increased speed and accuracy. Here, we investigated how AV training might benefit or impede auditory perceptual learning of speech degraded by vocoding. In Experiments 1 and 3, participants learned paired associations between vocoded spoken nonsense words and nonsense pictures. In Experiment 1, paired-associates (PA) AV training of one group of participants was compared with audio-only (AO) training of another group. When tested under AO conditions, the AV-trained group was significantly more accurate than the AO-trained group. In addition, pre- and post-training AO forced-choice consonant identification with untrained nonsense words showed that AV-trained participants had learned significantly more than AO participants. The pattern of results pointed to their having learned at the level of the auditory phonetic features of the vocoded stimuli. Experiment 2, a no-training control with testing and re-testing on the AO consonant identification, showed that the controls were as accurate as the AO-trained participants in Experiment 1 but less accurate than the AV-trained participants. In Experiment 3, PA training alternated AV and AO conditions on a list-by-list basis within participants, and training was to criterion (92% correct). PA training with AO stimuli was reliably more effective than training with AV stimuli. We explain these discrepant results in terms of the so-called "reverse hierarchy theory" of perceptual learning and in terms of the diverse multisensory and unisensory processing resources available to speech perception. We propose that early AV speech integration can potentially impede auditory perceptual learning; but visual top-down access to relevant auditory features can promote auditory perceptual learning.

  15. Auditory Perceptual Learning for Speech Perception Can be Enhanced by Audiovisual Training

    PubMed Central

    Bernstein, Lynne E.; Auer, Edward T.; Eberhardt, Silvio P.; Jiang, Jintao

    2013-01-01

    Speech perception under audiovisual (AV) conditions is well known to confer benefits to perception such as increased speed and accuracy. Here, we investigated how AV training might benefit or impede auditory perceptual learning of speech degraded by vocoding. In Experiments 1 and 3, participants learned paired associations between vocoded spoken nonsense words and nonsense pictures. In Experiment 1, paired-associates (PA) AV training of one group of participants was compared with audio-only (AO) training of another group. When tested under AO conditions, the AV-trained group was significantly more accurate than the AO-trained group. In addition, pre- and post-training AO forced-choice consonant identification with untrained nonsense words showed that AV-trained participants had learned significantly more than AO participants. The pattern of results pointed to their having learned at the level of the auditory phonetic features of the vocoded stimuli. Experiment 2, a no-training control with testing and re-testing on the AO consonant identification, showed that the controls were as accurate as the AO-trained participants in Experiment 1 but less accurate than the AV-trained participants. In Experiment 3, PA training alternated AV and AO conditions on a list-by-list basis within participants, and training was to criterion (92% correct). PA training with AO stimuli was reliably more effective than training with AV stimuli. We explain these discrepant results in terms of the so-called “reverse hierarchy theory” of perceptual learning and in terms of the diverse multisensory and unisensory processing resources available to speech perception. We propose that early AV speech integration can potentially impede auditory perceptual learning; but visual top-down access to relevant auditory features can promote auditory perceptual learning. PMID:23515520

  16. Functional Topography of Human Auditory Cortex

    PubMed Central

    Rauschecker, Josef P.

    2016-01-01

    Functional and anatomical studies have clearly demonstrated that auditory cortex is populated by multiple subfields. However, functional characterization of those fields has been largely the domain of animal electrophysiology, limiting the extent to which human and animal research can inform each other. In this study, we used high-resolution functional magnetic resonance imaging to characterize human auditory cortical subfields using a variety of low-level acoustic features in the spectral and temporal domains. Specifically, we show that topographic gradients of frequency preference, or tonotopy, extend along two axes in human auditory cortex, thus reconciling historical accounts of a tonotopic axis oriented medial to lateral along Heschl's gyrus and more recent findings emphasizing tonotopic organization along the anterior–posterior axis. Contradictory findings regarding topographic organization according to temporal modulation rate in acoustic stimuli, or “periodotopy,” are also addressed. Although isolated subregions show a preference for high rates of amplitude-modulated white noise (AMWN) in our data, large-scale “periodotopic” organization was not found. Organization by AM rate was correlated with dominant pitch percepts in AMWN in many regions. In short, our data expose early auditory cortex chiefly as a frequency analyzer, and spectral frequency, as imposed by the sensory receptor surface in the cochlea, seems to be the dominant feature governing large-scale topographic organization across human auditory cortex. SIGNIFICANCE STATEMENT In this study, we examine the nature of topographic organization in human auditory cortex with fMRI. Topographic organization by spectral frequency (tonotopy) extended in two directions: medial to lateral, consistent with early neuroimaging studies, and anterior to posterior, consistent with more recent reports. Large-scale organization by rates of temporal modulation (periodotopy) was correlated with confounding

  17. Early Auditory Evoked Potential Is Modulated by Selective Attention and Related to Individual Differences in Visual Working Memory Capacity

    PubMed Central

    Giuliano, Ryan J.; Karns, Christina M.; Neville, Helen J.; Hillyard, Steven A.

    2015-01-01

    A growing body of research suggests that the predictive power of working memory (WM) capacity for measures of intellectual aptitude is due to the ability to control attention and select relevant information. Crucially, attentional mechanisms implicated in controlling access to WM are assumed to be domain-general, yet reports of enhanced attentional abilities in individuals with larger WM capacities are primarily within the visual domain. Here, we directly test the link between WM capacity and early attentional gating across sensory domains, hypothesizing that measures of visual WM capacity should predict an individual’s capacity to allocate auditory selective attention. To address this question, auditory ERPs were recorded in a linguistic dichotic listening task, and individual differences in ERP modulations by attention were correlated with estimates of WM capacity obtained in a separate visual change detection task. Auditory selective attention enhanced ERP amplitudes at an early latency (ca. 70–90 msec), with larger P1 components elicited by linguistic probes embedded in an attended narrative. Moreover, this effect was associated with greater individual estimates of visual WM capacity. These findings support the view that domain-general attentional control mechanisms underlie the wide variation of WM capacity across individuals. PMID:25000526

  18. The Development of Auditory Perception in Children Following Auditory Brainstem Implantation

    PubMed Central

    Colletti, Liliana; Shannon, Robert V.; Colletti, Vittorio

    2014-01-01

    Auditory brainstem implants (ABI) can provide useful auditory perception and language development in deaf children who are not able to use a cochlear implant (CI). We prospectively followed-up a consecutive group of 64 deaf children up to 12 years following ABI implantation. The etiology of deafness in these children was: cochlear nerve aplasia in 49, auditory neuropathy in 1, cochlear malformations in 8, bilateral cochlear post-meningitic ossification in 3, NF2 in 2, and bilateral cochlear fractures due to a head injury in 1. Thirty five children had other congenital non-auditory disabilities. Twenty two children had previous CIs with no benefit. Fifty eight children were fitted with the Cochlear 24 ABI device and six with the MedEl ABI device and all children followed the same rehabilitation program. Auditory perceptual abilities were evaluated on the Categories of Auditory Performance (CAP) scale. No child was lost to follow-up and there were no exclusions from the study. All children showed significant improvement in auditory perception with implant experience. Seven children (11%) were able to achieve the highest score on the CAP test; they were able to converse on the telephone within 3 years of implantation. Twenty children (31.3%) achieved open set speech recognition (CAP score of 5 or greater) and 30 (46.9%) achieved a CAP level of 4 or greater. Of the 29 children without non-auditory disabilities, 18 (62%) achieved a CAP score of 5 or greater with the ABI. All children showed continued improvements in auditory skills over time. The long-term results of ABI implantation reveal significant auditory benefit in most children, and open set auditory recognition in many. PMID:25377987

  19. The effects of early auditory-based intervention on adult bilateral cochlear implant outcomes.

    PubMed

    Lim, Stacey R

    2017-09-01

    The goal of this exploratory study was to determine the types of improvement that sequentially implanted auditory-verbal and auditory-oral adults with prelingual and childhood hearing loss received in bilateral listening conditions, compared to their best unilateral listening condition. Five auditory-verbal adults and five auditory-oral adults were recruited for this study. Participants were seated in the center of a 6-loudspeaker array. BKB-SIN sentences were presented from 0° azimuth, while multi-talker babble was presented from various loudspeakers. BKB-SIN scores in bilateral and the best unilateral listening conditions were compared to determine the amount of improvement gained. As a group, the participants had improved speech understanding scores in the bilateral listening condition. Although not statistically significant, the auditory-verbal group tended to have greater speech understanding with greater levels of competing background noise, compared to the auditory-oral participants. Bilateral cochlear implantation provides individuals with prelingual and childhood hearing loss with improved speech understanding in noise. A higher emphasis on auditory development during the critical language development years may add to increased speech understanding in adulthood. However, other demographic factors such as age or device characteristics must also be considered. Although both auditory-verbal and auditory-oral approaches emphasize spoken language development, they emphasize auditory development to different degrees. This may affect cochlear implant (CI) outcomes. Further consideration should be made in future auditory research to determine whether these differences contribute to performance outcomes. Additional investigation with a larger participant pool, controlled for effects of age and CI devices and processing strategies, would be necessary to determine whether language learning approaches are associated with different levels of speech understanding

  20. Auditory development in early amplified children: factors influencing auditory-based communication outcomes in children with hearing loss.

    PubMed

    Sininger, Yvonne S; Grimes, Alison; Christensen, Elizabeth

    2010-04-01

    The purpose of this study was to determine the influence of selected predictive factors, primarily age at fitting of amplification and degree of hearing loss, on auditory-based outcomes in young children with bilateral sensorineural hearing loss. Forty-four infants and toddlers, first identified with mild to profound bilateral hearing loss, who were being fitted with amplification were enrolled in the study and followed longitudinally. Subjects were otherwise typically developing with no evidence of cognitive, motor, or visual impairment. A variety of subject factors were measured or documented and used as predictor variables, including age at fitting of amplification, degree of hearing loss in the better hearing ear, cochlear implant status, intensity of oral education, parent-child interaction, and the number of languages spoken in the home. These factors were used in a linear multiple regression analysis to assess their contribution to auditory-based communication outcomes. Five outcome measures, evaluated at regular intervals in children starting at age 3, included measures of speech perception (Pediatric Speech Intelligibility and Online Imitative Test of Speech Pattern Contrast Perception), speech production (Arizona-3), and spoken language (Reynell Expressive and Receptive Language). The age at fitting of amplification ranged from 1 to 72 mo, and the degree of hearing loss ranged from mild to profound. Age at fitting of amplification showed the largest influence and was a significant factor in all outcome models. The degree of hearing loss was an important factor in the modeling of speech production and spoken language outcomes. Cochlear implant use was the other factor that contributed significantly to speech perception, speech production, and language outcomes. Other factors contributed sparsely to the models. Prospective longitudinal studies of children are important to establish relationships between subject factors and outcomes. This study clearly

  1. Speech perception in individuals with auditory dys-synchrony.

    PubMed

    Kumar, U A; Jayaram, M

    2011-03-01

    This study aimed to evaluate the effect of lengthening the transition duration of selected speech segments upon the perception of those segments in individuals with auditory dys-synchrony. Thirty individuals with auditory dys-synchrony participated in the study, along with 30 age-matched normal hearing listeners. Eight consonant-vowel syllables were used as auditory stimuli. Two experiments were conducted. Experiment one measured the 'just noticeable difference' time: the smallest prolongation of the speech sound transition duration which was noticeable by the subject. In experiment two, speech sounds were modified by lengthening the transition duration by multiples of the just noticeable difference time, and subjects' speech identification scores for the modified speech sounds were assessed. Subjects with auditory dys-synchrony demonstrated poor processing of temporal auditory information. Lengthening of speech sound transition duration improved these subjects' perception of both the placement and voicing features of the speech syllables used. These results suggest that innovative speech processing strategies which enhance temporal cues may benefit individuals with auditory dys-synchrony.

  2. Feature assignment in perception of auditory figure.

    PubMed

    Gregg, Melissa K; Samuel, Arthur G

    2012-08-01

    Because the environment often includes multiple sounds that overlap in time, listeners must segregate a sound of interest (the auditory figure) from other co-occurring sounds (the unattended auditory ground). We conducted a series of experiments to clarify the principles governing the extraction of auditory figures. We distinguish between auditory "objects" (relatively punctate events, such as a dog's bark) and auditory "streams" (sounds involving a pattern over time, such as a galloping rhythm). In Experiments 1 and 2, on each trial 2 sounds-an object (a vowel) and a stream (a series of tones)-were presented with 1 target feature that could be perceptually grouped with either source. In each block of these experiments, listeners were required to attend to 1 of the 2 sounds, and report its perceived category. Across several experimental manipulations, listeners were more likely to allocate the feature to an impoverished object if the result of the grouping was a good, identifiable object. Perception of objects was quite sensitive to feature variation (noise masking), whereas perception of streams was more robust to feature variation. In Experiment 3, the number of sound sources competing for the feature was increased to 3. This produced a shift toward relying more on spatial cues than on the potential contribution of the feature to an object's perceptual quality. The results support a distinction between auditory objects and streams, and provide new information about the way that the auditory world is parsed. (c) 2012 APA, all rights reserved.

  3. McGurk illusion recalibrates subsequent auditory perception

    PubMed Central

    Lüttke, Claudia S.; Ekman, Matthias; van Gerven, Marcel A. J.; de Lange, Floris P.

    2016-01-01

    Visual information can alter auditory perception. This is clearly illustrated by the well-known McGurk illusion, where an auditory/aba/ and a visual /aga/ are merged to the percept of ‘ada’. It is less clear however whether such a change in perception may recalibrate subsequent perception. Here we asked whether the altered auditory perception due to the McGurk illusion affects subsequent auditory perception, i.e. whether this process of fusion may cause a recalibration of the auditory boundaries between phonemes. Participants categorized auditory and audiovisual speech stimuli as /aba/, /ada/ or /aga/ while activity patterns in their auditory cortices were recorded using fMRI. Interestingly, following a McGurk illusion, an auditory /aba/ was more often misperceived as ‘ada’. Furthermore, we observed a neural counterpart of this recalibration in the early auditory cortex. When the auditory input /aba/ was perceived as ‘ada’, activity patterns bore stronger resemblance to activity patterns elicited by /ada/ sounds than when they were correctly perceived as /aba/. Our results suggest that upon experiencing the McGurk illusion, the brain shifts the neural representation of an /aba/ sound towards /ada/, culminating in a recalibration in perception of subsequent auditory input. PMID:27611960

  4. Rapid estimation of high-parameter auditory-filter shapes

    PubMed Central

    Shen, Yi; Sivakumar, Rajeswari; Richards, Virginia M.

    2014-01-01

    A Bayesian adaptive procedure, the quick-auditory-filter (qAF) procedure, was used to estimate auditory-filter shapes that were asymmetric about their peaks. In three experiments, listeners who were naive to psychoacoustic experiments detected a fixed-level, pure-tone target presented with a spectrally notched noise masker. The qAF procedure adaptively manipulated the masker spectrum level and the position of the masker notch, which was optimized for the efficient estimation of the five parameters of an auditory-filter model. Experiment I demonstrated that the qAF procedure provided a convergent estimate of the auditory-filter shape at 2 kHz within 150 to 200 trials (approximately 15 min to complete) and, for a majority of listeners, excellent test-retest reliability. In experiment II, asymmetric auditory filters were estimated for target frequencies of 1 and 4 kHz and target levels of 30 and 50 dB sound pressure level. The estimated filter shapes were generally consistent with published norms, especially at the low target level. It is known that the auditory-filter estimates are narrower for forward masking than simultaneous masking due to peripheral suppression, a result replicated in experiment III using fewer than 200 qAF trials. PMID:25324086

  5. Headphone screening to facilitate web-based auditory experiments

    PubMed Central

    Woods, Kevin J.P.; Siegel, Max; Traer, James; McDermott, Josh H.

    2017-01-01

    Psychophysical experiments conducted remotely over the internet permit data collection from large numbers of participants, but sacrifice control over sound presentation, and therefore are not widely employed in hearing research. To help standardize online sound presentation, we introduce a brief psychophysical test for determining if online experiment participants are wearing headphones. Listeners judge which of three pure tones is quietest, with one of the tones presented 180° out of phase across the stereo channels. This task is intended to be easy over headphones but difficult over loudspeakers due to phase-cancellation. We validated the test in the lab by testing listeners known to be wearing headphones or listening over loudspeakers. The screening test was effective and efficient, discriminating between the two modes of listening with a small number of trials. When run online, a bimodal distribution of scores was obtained, suggesting that some participants performed the task over loudspeakers despite instructions to use headphones. The ability to detect and screen out these participants mitigates concerns over sound quality for online experiments, a first step toward opening auditory perceptual research to the possibilities afforded by crowdsourcing. PMID:28695541

  6. Prefrontal cortex involvement in preattentive auditory deviance detection: neuroimaging and electrophysiological evidence.

    PubMed

    Doeller, Christian F; Opitz, Bertram; Mecklinger, Axel; Krick, Christoph; Reith, Wolfgang; Schröger, Erich

    2003-10-01

    Previous electrophysiological and neuroimaging studies suggest that the mismatch negativity (MMN) is generated by a temporofrontal network subserving preattentive auditory change detection. In two experiments we employed event-related brain potentials (ERP) and event-related functional magnetic resonance imaging (fMRI) to examine neural and hemodynamic activity related to deviance processing, using three types of deviant tones (small, medium, and large) in both a pitch and a space condition. In the pitch condition, hemodynamic activity in the right superior temporal gyrus (STG) increased as a function of deviance. Comparisons between small and medium and between small and large deviants revealed right prefrontal activation in the inferior frontal gyrus (IFG; BA 44/45) and middle frontal gyrus (MFG; BA 46), whereas large relative to medium deviants led to left and right IFG (BA 44/45) activation. In the ERP experiment the amplitude of the early MMN (90-120 ms) increased as a function of deviance, by this paralleling the right STG activation in the fMRI experiment. A U-shaped relationship between MMN amplitude and the degree of deviance was observed in a late time window (140-170 ms) resembling the right IFG activation pattern. In a subsequent source analysis constrained by fMRI activation foci, early and late MMN activity could be modeled by dipoles placed in the STG and IFG, respectively. In the spatial condition no reliable hemodynamic activation could be observed. The MMN amplitude was substantially smaller than in the pitch condition for all three spatial deviants in the ERP experiment. In contrast to the pitch condition it increased as a function of deviance in the early and in the late time window. We argue that the right IFG mediates auditory deviance detection in case of low discriminability between a sensory memory trace and auditory input. This prefrontal mechanism might be part of top-down modulation of the deviance detection system in the STG.

  7. Why Early Tactile Speech Aids May Have Failed: No Perceptual Integration of Tactile and Auditory Signals.

    PubMed

    Rizza, Aurora; Terekhov, Alexander V; Montone, Guglielmo; Olivetti-Belardinelli, Marta; O'Regan, J Kevin

    2018-01-01

    Tactile speech aids, though extensively studied in the 1980's and 1990's, never became a commercial success. A hypothesis to explain this failure might be that it is difficult to obtain true perceptual integration of a tactile signal with information from auditory speech: exploitation of tactile cues from a tactile aid might require cognitive effort and so prevent speech understanding at the high rates typical of everyday speech. To test this hypothesis, we attempted to create true perceptual integration of tactile with auditory information in what might be considered the simplest situation encountered by a hearing-impaired listener. We created an auditory continuum between the syllables /BA/ and /VA/, and trained participants to associate /BA/ to one tactile stimulus and /VA/ to another tactile stimulus. After training, we tested if auditory discrimination along the continuum between the two syllables could be biased by incongruent tactile stimulation. We found that such a bias occurred only when the tactile stimulus was above, but not when it was below its previously measured tactile discrimination threshold. Such a pattern is compatible with the idea that the effect is due to a cognitive or decisional strategy, rather than to truly perceptual integration. We therefore ran a further study (Experiment 2), where we created a tactile version of the McGurk effect. We extensively trained two Subjects over 6 days to associate four recorded auditory syllables with four corresponding apparent motion tactile patterns. In a subsequent test, we presented stimulation that was either congruent or incongruent with the learnt association, and asked Subjects to report the syllable they perceived. We found no analog to the McGurk effect, suggesting that the tactile stimulation was not being perceptually integrated with the auditory syllable. These findings strengthen our hypothesis according to which tactile aids failed because integration of tactile cues with auditory speech

  8. Why Early Tactile Speech Aids May Have Failed: No Perceptual Integration of Tactile and Auditory Signals

    PubMed Central

    Rizza, Aurora; Terekhov, Alexander V.; Montone, Guglielmo; Olivetti-Belardinelli, Marta; O’Regan, J. Kevin

    2018-01-01

    Tactile speech aids, though extensively studied in the 1980’s and 1990’s, never became a commercial success. A hypothesis to explain this failure might be that it is difficult to obtain true perceptual integration of a tactile signal with information from auditory speech: exploitation of tactile cues from a tactile aid might require cognitive effort and so prevent speech understanding at the high rates typical of everyday speech. To test this hypothesis, we attempted to create true perceptual integration of tactile with auditory information in what might be considered the simplest situation encountered by a hearing-impaired listener. We created an auditory continuum between the syllables /BA/ and /VA/, and trained participants to associate /BA/ to one tactile stimulus and /VA/ to another tactile stimulus. After training, we tested if auditory discrimination along the continuum between the two syllables could be biased by incongruent tactile stimulation. We found that such a bias occurred only when the tactile stimulus was above, but not when it was below its previously measured tactile discrimination threshold. Such a pattern is compatible with the idea that the effect is due to a cognitive or decisional strategy, rather than to truly perceptual integration. We therefore ran a further study (Experiment 2), where we created a tactile version of the McGurk effect. We extensively trained two Subjects over 6 days to associate four recorded auditory syllables with four corresponding apparent motion tactile patterns. In a subsequent test, we presented stimulation that was either congruent or incongruent with the learnt association, and asked Subjects to report the syllable they perceived. We found no analog to the McGurk effect, suggesting that the tactile stimulation was not being perceptually integrated with the auditory syllable. These findings strengthen our hypothesis according to which tactile aids failed because integration of tactile cues with auditory speech

  9. Speech Recognition and Parent Ratings From Auditory Development Questionnaires in Children Who Are Hard of Hearing.

    PubMed

    McCreery, Ryan W; Walker, Elizabeth A; Spratford, Meredith; Oleson, Jacob; Bentler, Ruth; Holte, Lenore; Roush, Patricia

    2015-01-01

    Progress has been made in recent years in the provision of amplification and early intervention for children who are hard of hearing. However, children who use hearing aids (HAs) may have inconsistent access to their auditory environment due to limitations in speech audibility through their HAs or limited HA use. The effects of variability in children's auditory experience on parent-reported auditory skills questionnaires and on speech recognition in quiet and in noise were examined for a large group of children who were followed as part of the Outcomes of Children with Hearing Loss study. Parent ratings on auditory development questionnaires and children's speech recognition were assessed for 306 children who are hard of hearing. Children ranged in age from 12 months to 9 years. Three questionnaires involving parent ratings of auditory skill development and behavior were used, including the LittlEARS Auditory Questionnaire, Parents Evaluation of Oral/Aural Performance in Children rating scale, and an adaptation of the Speech, Spatial, and Qualities of Hearing scale. Speech recognition in quiet was assessed using the Open- and Closed-Set Test, Early Speech Perception test, Lexical Neighborhood Test, and Phonetically Balanced Kindergarten word lists. Speech recognition in noise was assessed using the Computer-Assisted Speech Perception Assessment. Children who are hard of hearing were compared with peers with normal hearing matched for age, maternal educational level, and nonverbal intelligence. The effects of aided audibility, HA use, and language ability on parent responses to auditory development questionnaires and on children's speech recognition were also examined. Children who are hard of hearing had poorer performance than peers with normal hearing on parent ratings of auditory skills and had poorer speech recognition. Significant individual variability among children who are hard of hearing was observed. Children with greater aided audibility through their

  10. Speech recognition and parent-ratings from auditory development questionnaires in children who are hard of hearing

    PubMed Central

    McCreery, Ryan W.; Walker, Elizabeth A.; Spratford, Meredith; Oleson, Jacob; Bentler, Ruth; Holte, Lenore; Roush, Patricia

    2015-01-01

    Objectives Progress has been made in recent years in the provision of amplification and early intervention for children who are hard of hearing. However, children who use hearing aids (HA) may have inconsistent access to their auditory environment due to limitations in speech audibility through their HAs or limited HA use. The effects of variability in children’s auditory experience on parent-report auditory skills questionnaires and on speech recognition in quiet and in noise were examined for a large group of children who were followed as part of the Outcomes of Children with Hearing Loss study. Design Parent ratings on auditory development questionnaires and children’s speech recognition were assessed for 306 children who are hard of hearing. Children ranged in age from 12 months to 9 years of age. Three questionnaires involving parent ratings of auditory skill development and behavior were used, including the LittlEARS Auditory Questionnaire, Parents Evaluation of Oral/Aural Performance in Children Rating Scale, and an adaptation of the Speech, Spatial and Qualities of Hearing scale. Speech recognition in quiet was assessed using the Open and Closed set task, Early Speech Perception Test, Lexical Neighborhood Test, and Phonetically-balanced Kindergarten word lists. Speech recognition in noise was assessed using the Computer-Assisted Speech Perception Assessment. Children who are hard of hearing were compared to peers with normal hearing matched for age, maternal educational level and nonverbal intelligence. The effects of aided audibility, HA use and language ability on parent responses to auditory development questionnaires and on children’s speech recognition were also examined. Results Children who are hard of hearing had poorer performance than peers with normal hearing on parent ratings of auditory skills and had poorer speech recognition. Significant individual variability among children who are hard of hearing was observed. Children with greater

  11. The effects of divided attention on auditory priming.

    PubMed

    Mulligan, Neil W; Duke, Marquinn; Cooper, Angela W

    2007-09-01

    Traditional theorizing stresses the importance of attentional state during encoding for later memory, based primarily on research with explicit memory. Recent research has begun to investigate the role of attention in implicit memory but has focused almost exclusively on priming in the visual modality. The present experiments examined the effect of divided attention on auditory implicit memory, using auditory perceptual identification, word-stem completion and word-fragment completion. Participants heard study words under full attention conditions or while simultaneously carrying out a distractor task (the divided attention condition). In Experiment 1, a distractor task with low response frequency failed to disrupt later auditory priming (but diminished explicit memory as assessed with auditory recognition). In Experiment 2, a distractor task with greater response frequency disrupted priming on all three of the auditory priming tasks as well as the explicit test. These results imply that although auditory priming is less reliant on attention than explicit memory, it is still greatly affected by at least some divided-attention manipulations. These results are consistent with research using visual priming tasks and have relevance for hypotheses regarding attention and auditory priming.

  12. Auditory Cortical Processing in Real-World Listening: The Auditory System Going Real

    PubMed Central

    Bizley, Jennifer; Shamma, Shihab A.; Wang, Xiaoqin

    2014-01-01

    The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well. PMID:25392481

  13. Auditory Cortex Basal Activity Modulates Cochlear Responses in Chinchillas

    PubMed Central

    León, Alex; Elgueda, Diego; Silva, María A.; Hamamé, Carlos M.; Delano, Paul H.

    2012-01-01

    Background The auditory efferent system has unique neuroanatomical pathways that connect the cerebral cortex with sensory receptor cells. Pyramidal neurons located in layers V and VI of the primary auditory cortex constitute descending projections to the thalamus, inferior colliculus, and even directly to the superior olivary complex and to the cochlear nucleus. Efferent pathways are connected to the cochlear receptor by the olivocochlear system, which innervates outer hair cells and auditory nerve fibers. The functional role of the cortico-olivocochlear efferent system remains debated. We hypothesized that auditory cortex basal activity modulates cochlear and auditory-nerve afferent responses through the efferent system. Methodology/Principal Findings Cochlear microphonics (CM), auditory-nerve compound action potentials (CAP) and auditory cortex evoked potentials (ACEP) were recorded in twenty anesthetized chinchillas, before, during and after auditory cortex deactivation by two methods: lidocaine microinjections or cortical cooling with cryoloops. Auditory cortex deactivation induced a transient reduction in ACEP amplitudes in fifteen animals (deactivation experiments) and a permanent reduction in five chinchillas (lesion experiments). We found significant changes in the amplitude of CM in both types of experiments, being the most common effect a CM decrease found in fifteen animals. Concomitantly to CM amplitude changes, we found CAP increases in seven chinchillas and CAP reductions in thirteen animals. Although ACEP amplitudes were completely recovered after ninety minutes in deactivation experiments, only partial recovery was observed in the magnitudes of cochlear responses. Conclusions/Significance These results show that blocking ongoing auditory cortex activity modulates CM and CAP responses, demonstrating that cortico-olivocochlear circuits regulate auditory nerve and cochlear responses through a basal efferent tone. The diversity of the obtained effects

  14. From CNTNAP2 to Early Expressive Language in Infancy: The Mediation Role of Rapid Auditory Processing.

    PubMed

    Riva, Valentina; Cantiani, Chiara; Benasich, April A; Molteni, Massimo; Piazza, Caterina; Giorda, Roberto; Dionne, Ginette; Marino, Cecilia

    2018-06-01

    Although it is clear that early language acquisition can be a target of CNTNAP2, the pathway between gene and language is still largely unknown. This research focused on the mediation role of rapid auditory processing (RAP). We tested RAP at 6 months of age by the use of event-related potentials, as a mediator between common variants of the CNTNAP2 gene (rs7794745 and rs2710102) and 20-month-old language outcome in a prospective longitudinal study of 96 Italian infants. The mediation model examines the hypothesis that language outcome is explained by a sequence of effects involving RAP and CNTNAP2. The ability to discriminate spectrotemporally complex auditory frequency changes at 6 months of age mediates the contribution of rs2710102 to expressive vocabulary at 20 months. The indirect effect revealed that rs2710102 C/C was associated with lower P3 amplitude in the right hemisphere, which, in turn, predicted poorer expressive vocabulary at 20 months of age. These findings add to a growing body of literature implicating RAP as a viable marker in genetic studies of language development. The results demonstrate a potential developmental cascade of effects, whereby CNTNAP2 drives RAP functioning that, in turn, contributes to early expressive outcome.

  15. Cross-modal attention influences auditory contrast sensitivity: Decreasing visual load improves auditory thresholds for amplitude- and frequency-modulated sounds.

    PubMed

    Ciaramitaro, Vivian M; Chow, Hiu Mei; Eglington, Luke G

    2017-03-01

    We used a cross-modal dual task to examine how changing visual-task demands influenced auditory processing, namely auditory thresholds for amplitude- and frequency-modulated sounds. Observers had to attend to two consecutive intervals of sounds and report which interval contained the auditory stimulus that was modulated in amplitude (Experiment 1) or frequency (Experiment 2). During auditory-stimulus presentation, observers simultaneously attended to a rapid sequential visual presentation-two consecutive intervals of streams of visual letters-and had to report which interval contained a particular color (low load, demanding less attentional resources) or, in separate blocks of trials, which interval contained more of a target letter (high load, demanding more attentional resources). We hypothesized that if attention is a shared resource across vision and audition, an easier visual task should free up more attentional resources for auditory processing on an unrelated task, hence improving auditory thresholds. Auditory detection thresholds were lower-that is, auditory sensitivity was improved-for both amplitude- and frequency-modulated sounds when observers engaged in a less demanding (compared to a more demanding) visual task. In accord with previous work, our findings suggest that visual-task demands can influence the processing of auditory information on an unrelated concurrent task, providing support for shared attentional resources. More importantly, our results suggest that attending to information in a different modality, cross-modal attention, can influence basic auditory contrast sensitivity functions, highlighting potential similarities between basic mechanisms for visual and auditory attention.

  16. A simulation framework for auditory discrimination experiments: Revealing the importance of across-frequency processing in speech perception.

    PubMed

    Schädler, Marc René; Warzybok, Anna; Ewert, Stephan D; Kollmeier, Birger

    2016-05-01

    A framework for simulating auditory discrimination experiments, based on an approach from Schädler, Warzybok, Hochmuth, and Kollmeier [(2015). Int. J. Audiol. 54, 100-107] which was originally designed to predict speech recognition thresholds, is extended to also predict psychoacoustic thresholds. The proposed framework is used to assess the suitability of different auditory-inspired feature sets for a range of auditory discrimination experiments that included psychoacoustic as well as speech recognition experiments in noise. The considered experiments were 2 kHz tone-in-broadband-noise simultaneous masking depending on the tone length, spectral masking with simultaneously presented tone signals and narrow-band noise maskers, and German Matrix sentence test reception threshold in stationary and modulated noise. The employed feature sets included spectro-temporal Gabor filter bank features, Mel-frequency cepstral coefficients, logarithmically scaled Mel-spectrograms, and the internal representation of the Perception Model from Dau, Kollmeier, and Kohlrausch [(1997). J. Acoust. Soc. Am. 102(5), 2892-2905]. The proposed framework was successfully employed to simulate all experiments with a common parameter set and obtain objective thresholds with less assumptions compared to traditional modeling approaches. Depending on the feature set, the simulated reference-free thresholds were found to agree with-and hence to predict-empirical data from the literature. Across-frequency processing was found to be crucial to accurately model the lower speech reception threshold in modulated noise conditions than in stationary noise conditions.

  17. Auditory Alterations in Children Infected by Human Immunodeficiency Virus Verified Through Auditory Processing Test

    PubMed Central

    Romero, Ana Carla Leite; Alfaya, Lívia Marangoni; Gonçales, Alina Sanches; Frizzo, Ana Claudia Figueiredo; Isaac, Myriam de Lima

    2016-01-01

    Introduction The auditory system of HIV-positive children may have deficits at various levels, such as the high incidence of problems in the middle ear that can cause hearing loss. Objective The objective of this study is to characterize the development of children infected by the Human Immunodeficiency Virus (HIV) in the Simplified Auditory Processing Test (SAPT) and the Staggered Spondaic Word Test. Methods We performed behavioral tests composed of the Simplified Auditory Processing Test and the Portuguese version of the Staggered Spondaic Word Test (SSW). The participants were 15 children infected by HIV, all using antiretroviral medication. Results The children had abnormal auditory processing verified by Simplified Auditory Processing Test and the Portuguese version of SSW. In the Simplified Auditory Processing Test, 60% of the children presented hearing impairment. In the SAPT, the memory test for verbal sounds showed more errors (53.33%); whereas in SSW, 86.67% of the children showed deficiencies indicating deficit in figure-ground, attention, and memory auditory skills. Furthermore, there are more errors in conditions of background noise in both age groups, where most errors were in the left ear in the Group of 8-year-olds, with similar results for the group aged 9 years. Conclusion The high incidence of hearing loss in children with HIV and comorbidity with several biological and environmental factors indicate the need for: 1) familiar and professional awareness of the impact on auditory alteration on the developing and learning of the children with HIV, and 2) access to educational plans and follow-up with multidisciplinary teams as early as possible to minimize the damage caused by auditory deficits. PMID:28050213

  18. The influence of musical experience on lateralisation of auditory processing.

    PubMed

    Spajdel, Marián; Jariabková, Katarína; Riecanský, Igor

    2007-11-01

    The influence of musical experience on free-recall dichotic listening to environmental sounds, two-tone sequences, and consonant-vowel (CV) syllables was investigated. A total of 60 healthy right-handed participants were divided into two groups according to their active musical competence ("musicians" and "non-musicians"). In both groups, we found a left ear advantage (LEA) for nonverbal stimuli (environmental sounds and two-tone sequences) and a right ear advantage (REA) for CV syllables. Dichotic listening to environmental sounds was uninfluenced by musical experience. The total accuracy of recall for two-tone sequences was higher in musicians than in non-musicians but the lateralisation was similar in both groups. For CV syllables a lower REA was found in male but not female musicians in comparison to non-musicians. The results indicate a specific sex-dependent effect of musical experience on lateralisation of phonological auditory processing.

  19. Feature Assignment in Perception of Auditory Figure

    ERIC Educational Resources Information Center

    Gregg, Melissa K.; Samuel, Arthur G.

    2012-01-01

    Because the environment often includes multiple sounds that overlap in time, listeners must segregate a sound of interest (the auditory figure) from other co-occurring sounds (the unattended auditory ground). We conducted a series of experiments to clarify the principles governing the extraction of auditory figures. We distinguish between auditory…

  20. Mother’s voice and heartbeat sounds elicit auditory plasticity in the human brain before full gestation

    PubMed Central

    Webb, Alexandra R.; Heller, Howard T.; Benson, Carol B.; Lahav, Amir

    2015-01-01

    Brain development is largely shaped by early sensory experience. However, it is currently unknown whether, how early, and to what extent the newborn’s brain is shaped by exposure to maternal sounds when the brain is most sensitive to early life programming. The present study examined this question in 40 infants born extremely prematurely (between 25- and 32-wk gestation) in the first month of life. Newborns were randomized to receive auditory enrichment in the form of audio recordings of maternal sounds (including their mother’s voice and heartbeat) or routine exposure to hospital environmental noise. The groups were otherwise medically and demographically comparable. Cranial ultrasonography measurements were obtained at 30 ± 3 d of life. Results show that newborns exposed to maternal sounds had a significantly larger auditory cortex (AC) bilaterally compared with control newborns receiving standard care. The magnitude of the right and left AC thickness was significantly correlated with gestational age but not with the duration of sound exposure. Measurements of head circumference and the widths of the frontal horn (FH) and the corpus callosum (CC) were not significantly different between the two groups. This study provides evidence for experience-dependent plasticity in the primary AC before the brain has reached full-term maturation. Our results demonstrate that despite the immaturity of the auditory pathways, the AC is more adaptive to maternal sounds than environmental noise. Further studies are needed to better understand the neural processes underlying this early brain plasticity and its functional implications for future hearing and language development. PMID:25713382

  1. Opposite brain laterality in analogous auditory and visual tests.

    PubMed

    Oltedal, Leif; Hugdahl, Kenneth

    2017-11-01

    Laterality for language processing can be assessed by auditory and visual tasks. Typically, a right ear/right visual half-field (VHF) advantage is observed, reflecting left-hemispheric lateralization for language. Historically, auditory tasks have shown more consistent and reliable results when compared to VHF tasks. While few studies have compared analogous tasks applied to both sensory modalities for the same participants, one such study by Voyer and Boudreau [(2003). Cross-modal correlation of auditory and visual language laterality tasks: a serendipitous finding. Brain Cogn, 53(2), 393-397] found opposite laterality for visual and auditory language tasks. We adapted an experimental paradigm based on a dichotic listening and VHF approach, and applied the combined language paradigm in two separate experiments, including fMRI in the second experiment to measure brain activation in addition to behavioural data. The first experiment showed a right-ear advantage for the auditory task, but a left half-field advantage for the visual task. The second experiment, confirmed the findings, with opposite laterality effects for the visual and auditory tasks. In conclusion, we replicate the finding by Voyer and Boudreau (2003) and support their interpretation that these visual and auditory language tasks measure different cognitive processes.

  2. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex.

    PubMed

    Kostopoulos, Penelope; Petrides, Michael

    2016-02-16

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.

  3. Auditory brainstem response to complex sounds: a tutorial

    PubMed Central

    Skoe, Erika; Kraus, Nina

    2010-01-01

    This tutorial provides a comprehensive overview of the methodological approach to collecting and analyzing auditory brainstem responses to complex sounds (cABRs). cABRs provide a window into how behaviorally relevant sounds such as speech and music are processed in the brain. Because temporal and spectral characteristics of sounds are preserved in this subcortical response, cABRs can be used to assess specific impairments and enhancements in auditory processing. Notably, subcortical function is neither passive nor hardwired but dynamically interacts with higher-level cognitive processes to refine how sounds are transcribed into neural code. This experience-dependent plasticity, which can occur on a number of time scales (e.g., life-long experience with speech or music, short-term auditory training, online auditory processing), helps shape sensory perception. Thus, by being an objective and non-invasive means for examining cognitive function and experience-dependent processes in sensory activity, cABRs have considerable utility in the study of populations where auditory function is of interest (e.g., auditory experts such as musicians, persons with hearing loss, auditory processing and language disorders). This tutorial is intended for clinicians and researchers seeking to integrate cABRs into their clinical and/or research programs. PMID:20084007

  4. Temporal and identity prediction in visual-auditory events: Electrophysiological evidence from stimulus omissions.

    PubMed

    van Laarhoven, Thijs; Stekelenburg, Jeroen J; Vroomen, Jean

    2017-04-15

    A rare omission of a sound that is predictable by anticipatory visual information induces an early negative omission response (oN1) in the EEG during the period of silence where the sound was expected. It was previously suggested that the oN1 was primarily driven by the identity of the anticipated sound. Here, we examined the role of temporal prediction in conjunction with identity prediction of the anticipated sound in the evocation of the auditory oN1. With incongruent audiovisual stimuli (a video of a handclap that is consistently combined with the sound of a car horn) we demonstrate in Experiment 1 that a natural match in identity between the visual and auditory stimulus is not required for inducing the oN1, and that the perceptual system can adapt predictions to unnatural stimulus events. In Experiment 2 we varied either the auditory onset (relative to the visual onset) or the identity of the sound across trials in order to hamper temporal and identity predictions. Relative to the natural stimulus with correct auditory timing and matching audiovisual identity, the oN1 was abolished when either the timing or the identity of the sound could not be predicted reliably from the video. Our study demonstrates the flexibility of the perceptual system in predictive processing (Experiment 1) and also shows that precise predictions of timing and content are both essential elements for inducing an oN1 (Experiment 2). Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Corticofugal modulation of peripheral auditory responses

    PubMed Central

    Terreros, Gonzalo; Delano, Paul H.

    2015-01-01

    The auditory efferent system originates in the auditory cortex and projects to the medial geniculate body (MGB), inferior colliculus (IC), cochlear nucleus (CN) and superior olivary complex (SOC) reaching the cochlea through olivocochlear (OC) fibers. This unique neuronal network is organized in several afferent-efferent feedback loops including: the (i) colliculo-thalamic-cortico-collicular; (ii) cortico-(collicular)-OC; and (iii) cortico-(collicular)-CN pathways. Recent experiments demonstrate that blocking ongoing auditory-cortex activity with pharmacological and physical methods modulates the amplitude of cochlear potentials. In addition, auditory-cortex microstimulation independently modulates cochlear sensitivity and the strength of the OC reflex. In this mini-review, anatomical and physiological evidence supporting the presence of a functional efferent network from the auditory cortex to the cochlear receptor is presented. Special emphasis is given to the corticofugal effects on initial auditory processing, that is, on CN, auditory nerve and cochlear responses. A working model of three parallel pathways from the auditory cortex to the cochlea and auditory nerve is proposed. PMID:26483647

  6. Socio-emotionally Significant Experience and Children’s Processing of Irrelevant Auditory Stimuli

    PubMed Central

    Schermerhorn, Alice C.; Bates, John E.; Puce, Aina; Molfese, Dennis L.

    2017-01-01

    Theory and research indicate considerable influence of socio-emotionally significant experiences on children’s functioning and adaptation. In the current study, we examined neurophysiological correlates of children’s allocation of information processing resources to socio-emotionally significant events, specifically, simulated marital interactions. We presented 9- to 11-year-old children (n = 24; 11 females) with 15 videos of interactions between two actors posing as a married couple. Task-irrelevant brief auditory probes were presented during the videos, and event-related potentials (ERPs) elicited to the auditory probes were measured. As hypothesized, exposure to higher levels of interparental conflict was associated with smaller P1, P2, and N2 ERPs to the probes. This finding is consistent with the idea that children who had been exposed to more interparental conflict attended more to the videos and diverted fewer cognitive resources to processing the probes, thereby producing smaller ERPs to the probes. In addition, smaller N2s were associated with more child behavior problems, suggesting that allocating fewer processing resources to the probes was associated with more problem behavior. Results are discussed in terms of implications of socio-emotionally significant experiences for children’s processing of interpersonal interactions. PMID:27993611

  7. Changes in Properties of Auditory Nerve Synapses following Conductive Hearing Loss.

    PubMed

    Zhuang, Xiaowen; Sun, Wei; Xu-Friedman, Matthew A

    2017-01-11

    Auditory activity plays an important role in the development of the auditory system. Decreased activity can result from conductive hearing loss (CHL) associated with otitis media, which may lead to long-term perceptual deficits. The effects of CHL have been mainly studied at later stages of the auditory pathway, but early stages remain less examined. However, changes in early stages could be important because they would affect how information about sounds is conveyed to higher-order areas for further processing and localization. We examined the effects of CHL at auditory nerve synapses onto bushy cells in the mouse anteroventral cochlear nucleus following occlusion of the ear canal. These synapses, called endbulbs of Held, normally show strong depression in voltage-clamp recordings in brain slices. After 1 week of CHL, endbulbs showed even greater depression, reflecting higher release probability. We observed no differences in quantal size between control and occluded mice. We confirmed these observations using mean-variance analysis and the integration method, which also revealed that the number of release sites decreased after occlusion. Consistent with this, synaptic puncta immunopositive for VGLUT1 decreased in area after occlusion. The level of depression and number of release sites both showed recovery after returning to normal conditions. Finally, bushy cells fired fewer action potentials in response to evoked synaptic activity after occlusion, likely because of increased depression and decreased input resistance. These effects appear to reflect a homeostatic, adaptive response of auditory nerve synapses to reduced activity. These effects may have important implications for perceptual changes following CHL. Normal hearing is important to everyday life, but abnormal auditory experience during development can lead to processing disorders. For example, otitis media reduces sound to the ear, which can cause long-lasting deficits in language skills and verbal

  8. A behavioral framework to guide research on central auditory development and plasticity

    PubMed Central

    Sanes, Dan H.; Woolley, Sarah M. N.

    2011-01-01

    The auditory CNS is influenced profoundly by sounds heard during development. Auditory deprivation and augmented sound exposure can each perturb the maturation of neural computations as well as their underlying synaptic properties. However, we have learned little about the emergence of perceptual skills in these same model systems, and especially how perception is influenced by early acoustic experience. Here, we argue that developmental studies must take greater advantage of behavioral benchmarks. We discuss quantitative measures of perceptual development, and suggest how they can play a much larger role in guiding experimental design. Most importantly, including behavioral measures will allow us to establish empirical connections among environment, neural development, and perception. PMID:22196328

  9. Psychophysical and Neural Correlates of Auditory Attraction and Aversion

    NASA Astrophysics Data System (ADS)

    Patten, Kristopher Jakob

    This study explores the psychophysical and neural processes associated with the perception of sounds as either pleasant or aversive. The underlying psychophysical theory is based on auditory scene analysis, the process through which listeners parse auditory signals into individual acoustic sources. The first experiment tests and confirms that a self-rated pleasantness continuum reliably exists for 20 various stimuli (r = .48). In addition, the pleasantness continuum correlated with the physical acoustic characteristics of consonance/dissonance (r = .78), which can facilitate auditory parsing processes. The second experiment uses an fMRI block design to test blood oxygen level dependent (BOLD) changes elicited by a subset of 5 exemplar stimuli chosen from Experiment 1 that are evenly distributed over the pleasantness continuum. Specifically, it tests and confirms that the pleasantness continuum produces systematic changes in brain activity for unpleasant acoustic stimuli beyond what occurs with pleasant auditory stimuli. Results revealed that the combination of two positively and two negatively valenced experimental sounds compared to one neutral baseline control elicited BOLD increases in the primary auditory cortex, specifically the bilateral superior temporal gyrus, and left dorsomedial prefrontal cortex; the latter being consistent with a frontal decision-making process common in identification tasks. The negatively-valenced stimuli yielded additional BOLD increases in the left insula, which typically indicates processing of visceral emotions. The positively-valenced stimuli did not yield any significant BOLD activation, consistent with consonant, harmonic stimuli being the prototypical acoustic pattern of auditory objects that is optimal for auditory scene analysis. Both the psychophysical findings of Experiment 1 and the neural processing findings of Experiment 2 support that consonance is an important dimension of sound that is processed in a manner that aids

  10. Vestibular evoked myogenic potential (VEMP) in patients with auditory neuropathy: Auditory neuropathy or audiovestibular neuropathy?

    PubMed

    Sazgar, Amir Arvin; Yazdani, Nasrin; Rezazadeh, Nima; Yazdi, Alireza Karimi

    2010-10-01

    Our results suggest that isolated auditory or vestibular involvement is unlikely and in fact audiovestibular neuropathy can better explain auditory neuropathy. The purpose of this study was to investigate saccule and related neural pathways in auditory neuropathy patients. Three males and five females diagnosed with auditory neuropathy were included in this prospective study. Patients' ages ranged from 21 to 45 years with a mean age of 28.6 ± 8.1 years and the history of disease was between 4 and 19 years. A group of 30 normal subjects served as the control group. The main outcome measures were the mean peak latency (in ms) of the two early waves (p13 and n23) of the vestibular evoked myogenic potential (VEMP) test in patients and controls. Of the 8 patients (16 ears), normal response was detected in 3 ears (1 in right and 2 in left ears). There were unrepeatable waves in four ears and absent VEMPs in nine ears.

  11. Blocking c-Fos Expression Reveals the Role of Auditory Cortex Plasticity in Sound Frequency Discrimination Learning.

    PubMed

    de Hoz, Livia; Gierej, Dorota; Lioudyno, Victoria; Jaworski, Jacek; Blazejczyk, Magda; Cruces-Solís, Hugo; Beroun, Anna; Lebitko, Tomasz; Nikolaev, Tomasz; Knapska, Ewelina; Nelken, Israel; Kaczmarek, Leszek

    2018-05-01

    The behavioral changes that comprise operant learning are associated with plasticity in early sensory cortices as well as with modulation of gene expression, but the connection between the behavioral, electrophysiological, and molecular changes is only partially understood. We specifically manipulated c-Fos expression, a hallmark of learning-induced synaptic plasticity, in auditory cortex of adult mice using a novel approach based on RNA interference. Locally blocking c-Fos expression caused a specific behavioral deficit in a sound discrimination task, in parallel with decreased cortical experience-dependent plasticity, without affecting baseline excitability or basic auditory processing. Thus, c-Fos-dependent experience-dependent cortical plasticity is necessary for frequency discrimination in an operant behavioral task. Our results connect behavioral, molecular and physiological changes and demonstrate a role of c-Fos in experience-dependent plasticity and learning.

  12. [Expression of NR2A in rat auditory cortex after sound insulation and auditory plasticity].

    PubMed

    Xia, Yin; Long, Haishan; Han, Demin; Gong, Shusheng; Lei, Li; Shi, Jinfeng; Fan, Erzhong; Li, Ying; Zhao, Qing

    2009-06-01

    To study the changes of N-methyl-D-aspartate (NMDA) receptor subunit 2A (NR2A) expression at local synapses in auditory cortices after early postnatal sound insulation and tone exposure. We prepared highly purified synaptosomes from primary auditory cortex by Optiprep flotation gradient centrifugations, and compared the differences of NR2A expression in sound insulation PND14, PND28, PND42 and Tone exposure after sound insulation for 7 days by Western blotting. The results showed that the NR2A protein expression of PND14 and PND28 decreased significantly (P<0.05). Tone exposure after sound insulation for 7 days, mSIe NR2A protein level increased significantly (P<0.05). It showed bidirectional regulation of NR2A protein. No significant effects of sound insulation and lone exposure were found on the relative expression level of NR2A of PND42 (P>0.05). The results indicate that sound insulation and experience can modify the protein expression level of NR2A during the critical period of rat postnatal development. These findings provide important data for the study on the mechanisms of the developmental plasticity of sensory functions.

  13. Integration of auditory and vibrotactile stimuli: Effects of frequency

    PubMed Central

    Wilson, E. Courtenay; Reed, Charlotte M.; Braida, Louis D.

    2010-01-01

    Perceptual integration of vibrotactile and auditory sinusoidal tone pulses was studied in detection experiments as a function of stimulation frequency. Vibrotactile stimuli were delivered through a single channel vibrator to the left middle fingertip. Auditory stimuli were presented diotically through headphones in a background of 50 dB sound pressure level broadband noise. Detection performance for combined auditory-tactile presentations was measured using stimulus levels that yielded 63% to 77% correct unimodal performance. In Experiment 1, the vibrotactile stimulus was 250 Hz and the auditory stimulus varied between 125 and 2000 Hz. In Experiment 2, the auditory stimulus was 250 Hz and the tactile stimulus varied between 50 and 400 Hz. In Experiment 3, the auditory and tactile stimuli were always equal in frequency and ranged from 50 to 400 Hz. The highest rates of detection for the combined-modality stimulus were obtained when stimulating frequencies in the two modalities were equal or closely spaced (and within the Pacinian range). Combined-modality detection for closely spaced frequencies was generally consistent with an algebraic sum model of perceptual integration; wider-frequency spacings were generally better fit by a Pythagorean sum model. Thus, perceptual integration of auditory and tactile stimuli at near-threshold levels appears to depend both on absolute frequency and relative frequency of stimulation within each modality. PMID:21117754

  14. Auditory cortical processing in real-world listening: the auditory system going real.

    PubMed

    Nelken, Israel; Bizley, Jennifer; Shamma, Shihab A; Wang, Xiaoqin

    2014-11-12

    The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well. Copyright © 2014 the authors 0270-6474/14/3415135-04$15.00/0.

  15. Auditory and visual spatial impression: Recent studies of three auditoria

    NASA Astrophysics Data System (ADS)

    Nguyen, Andy; Cabrera, Densil

    2004-10-01

    Auditory spatial impression is widely studied for its contribution to auditorium acoustical quality. By contrast, visual spatial impression in auditoria has received relatively little attention in formal studies. This paper reports results from a series of experiments investigating the auditory and visual spatial impression of concert auditoria. For auditory stimuli, a fragment of an anechoic recording of orchestral music was convolved with calibrated binaural impulse responses, which had been made with the dummy head microphone at a wide range of positions in three auditoria and the sound source on the stage. For visual stimuli, greyscale photographs were used, taken at the same positions in the three auditoria, with a visual target on the stage. Subjective experiments were conducted with auditory stimuli alone, visual stimuli alone, and visual and auditory stimuli combined. In these experiments, subjects rated apparent source width, listener envelopment, intimacy and source distance (auditory stimuli), and spaciousness, envelopment, stage dominance, intimacy and target distance (visual stimuli). Results show target distance to be of primary importance in auditory and visual spatial impression-thereby providing a basis for covariance between some attributes of auditory and visual spatial impression. Nevertheless, some attributes of spatial impression diverge between the senses.

  16. The many facets of auditory display

    NASA Technical Reports Server (NTRS)

    Blattner, Meera M.

    1995-01-01

    In this presentation we will examine some of the ways sound can be used in a virtual world. We make the case that many different types of audio experience are available to us. A full range of audio experiences include: music, speech, real-world sounds, auditory displays, and auditory cues or messages. The technology of recreating real-world sounds through physical modeling has advanced in the past few years allowing better simulation of virtual worlds. Three-dimensional audio has further enriched our sensory experiences.

  17. Loudspeaker equalization for auditory research.

    PubMed

    MacDonald, Justin A; Tran, Phuong K

    2007-02-01

    The equalization of loudspeaker frequency response is necessary to conduct many types of well-controlled auditory experiments. This article introduces a program that includes functions to measure a loudspeaker's frequency response, design equalization filters, and apply the filters to a set of stimuli to be used in an auditory experiment. The filters can compensate for both magnitude and phase distortions introduced by the loudspeaker. A MATLAB script is included in the Appendix to illustrate the details of the equalization algorithm used in the program.

  18. The effect of noise exposure during the developmental period on the function of the auditory system.

    PubMed

    Bureš, Zbyněk; Popelář, Jiří; Syka, Josef

    2017-09-01

    Recently, there has been growing evidence that development and maturation of the auditory system depends substantially on the afferent activity supplying inputs to the developing centers. In cases when this activity is altered during early ontogeny as a consequence of, e.g., an unnatural acoustic environment or acoustic trauma, the structure and function of the auditory system may be severely affected. Pathological alterations may be found in populations of ribbon synapses of the inner hair cells, in the structure and function of neuronal circuits, or in auditory driven behavioral and psychophysical performance. Three characteristics of the developmental impairment are of key importance: first, they often persist to adulthood, permanently influencing the quality of life of the subject; second, their manifestations are different and sometimes even contradictory to the impairments induced by noise trauma in adulthood; third, they may be 'hidden' and difficult to diagnose by standard audiometric procedures used in clinical practice. This paper reviews the effects of early interventions to the auditory system, in particular, of sound exposure during ontogeny. We summarize the results of recent morphological, electrophysiological, and behavioral experiments, discuss the putative mechanisms and hypotheses, and draw possible consequences for human neonatal medicine and noise health. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Perceptual Plasticity for Auditory Object Recognition

    PubMed Central

    Heald, Shannon L. M.; Van Hedger, Stephen C.; Nusbaum, Howard C.

    2017-01-01

    In our auditory environment, we rarely experience the exact acoustic waveform twice. This is especially true for communicative signals that have meaning for listeners. In speech and music, the acoustic signal changes as a function of the talker (or instrument), speaking (or playing) rate, and room acoustics, to name a few factors. Yet, despite this acoustic variability, we are able to recognize a sentence or melody as the same across various kinds of acoustic inputs and determine meaning based on listening goals, expectations, context, and experience. The recognition process relates acoustic signals to prior experience despite variability in signal-relevant and signal-irrelevant acoustic properties, some of which could be considered as “noise” in service of a recognition goal. However, some acoustic variability, if systematic, is lawful and can be exploited by listeners to aid in recognition. Perceivable changes in systematic variability can herald a need for listeners to reorganize perception and reorient their attention to more immediately signal-relevant cues. This view is not incorporated currently in many extant theories of auditory perception, which traditionally reduce psychological or neural representations of perceptual objects and the processes that act on them to static entities. While this reduction is likely done for the sake of empirical tractability, such a reduction may seriously distort the perceptual process to be modeled. We argue that perceptual representations, as well as the processes underlying perception, are dynamically determined by an interaction between the uncertainty of the auditory signal and constraints of context. This suggests that the process of auditory recognition is highly context-dependent in that the identity of a given auditory object may be intrinsically tied to its preceding context. To argue for the flexible neural and psychological updating of sound-to-meaning mappings across speech and music, we draw upon examples

  20. Estradiol-dependent Modulation of Serotonergic Markers in Auditory Areas of a Seasonally Breeding Songbird

    PubMed Central

    Matragrano, Lisa L.; Sanford, Sara E.; Salvante, Katrina G.; Beaulieu, Michaël; Sockman, Keith W.; Maney, Donna L.

    2011-01-01

    Because no organism lives in an unchanging environment, sensory processes must remain plastic so that in any context, they emphasize the most relevant signals. As the behavioral relevance of sociosexual signals changes along with reproductive state, the perception of those signals is altered by reproductive hormones such as estradiol (E2). We showed previously that in white-throated sparrows, immediate early gene responses in the auditory pathway of females are selective for conspecific male song only when plasma E2 is elevated to breeding-typical levels. In this study, we looked for evidence that E2-dependent modulation of auditory responses is mediated by serotonergic systems. In female nonbreeding white-throated sparrows treated with E2, the density of fibers immunoreactive for serotonin transporter innervating the auditory midbrain and rostral auditory forebrain increased compared with controls. E2 treatment also increased the concentration of the serotonin metabolite 5-HIAA in the caudomedial mesopallium of the auditory forebrain. In a second experiment, females exposed to 30 min of conspecific male song had higher levels of 5-HIAA in the caudomedial nidopallium of the auditory forebrain than birds not exposed to song. Overall, we show that in this seasonal breeder, (1) serotonergic fibers innervate auditory areas; (2) the density of those fibers is higher in females with breeding-typical levels of E2 than in nonbreeding, untreated females; and (3) serotonin is released in the auditory forebrain within minutes in response to conspecific vocalizations. Our results are consistent with the hypothesis that E2 acts via serotonin systems to alter auditory processing. PMID:21942431

  1. Interconnected growing self-organizing maps for auditory and semantic acquisition modeling.

    PubMed

    Cao, Mengxue; Li, Aijun; Fang, Qiang; Kaufmann, Emily; Kröger, Bernd J

    2014-01-01

    Based on the incremental nature of knowledge acquisition, in this study we propose a growing self-organizing neural network approach for modeling the acquisition of auditory and semantic categories. We introduce an Interconnected Growing Self-Organizing Maps (I-GSOM) algorithm, which takes associations between auditory information and semantic information into consideration, in this paper. Direct phonetic-semantic association is simulated in order to model the language acquisition in early phases, such as the babbling and imitation stages, in which no phonological representations exist. Based on the I-GSOM algorithm, we conducted experiments using paired acoustic and semantic training data. We use a cyclical reinforcing and reviewing training procedure to model the teaching and learning process between children and their communication partners. A reinforcing-by-link training procedure and a link-forgetting procedure are introduced to model the acquisition of associative relations between auditory and semantic information. Experimental results indicate that (1) I-GSOM has good ability to learn auditory and semantic categories presented within the training data; (2) clear auditory and semantic boundaries can be found in the network representation; (3) cyclical reinforcing and reviewing training leads to a detailed categorization as well as to a detailed clustering, while keeping the clusters that have already been learned and the network structure that has already been developed stable; and (4) reinforcing-by-link training leads to well-perceived auditory-semantic associations. Our I-GSOM model suggests that it is important to associate auditory information with semantic information during language acquisition. Despite its high level of abstraction, our I-GSOM approach can be interpreted as a biologically-inspired neurocomputational model.

  2. EGR-1 Expression in Catecholamine-synthesizing Neurons Reflects Auditory Learning and Correlates with Responses in Auditory Processing Areas.

    PubMed

    Dai, Jennifer B; Chen, Yining; Sakata, Jon T

    2018-05-21

    Distinguishing between familiar and unfamiliar individuals is an important task that shapes the expression of social behavior. As such, identifying the neural populations involved in processing and learning the sensory attributes of individuals is important for understanding mechanisms of behavior. Catecholamine-synthesizing neurons have been implicated in sensory processing, but relatively little is known about their contribution to auditory learning and processing across various vertebrate taxa. Here we investigated the extent to which immediate early gene expression in catecholaminergic circuitry reflects information about the familiarity of social signals and predicts immediate early gene expression in sensory processing areas in songbirds. We found that male zebra finches readily learned to differentiate between familiar and unfamiliar acoustic signals ('songs') and that playback of familiar songs led to fewer catecholaminergic neurons in the locus coeruleus (but not in the ventral tegmental area, substantia nigra, or periaqueductal gray) expressing the immediate early gene, EGR-1, than playback of unfamiliar songs. The pattern of EGR-1 expression in the locus coeruleus was similar to that observed in two auditory processing areas implicated in auditory learning and memory, namely the caudomedial nidopallium (NCM) and the caudal medial mesopallium (CMM), suggesting a contribution of catecholamines to sensory processing. Consistent with this, the pattern of catecholaminergic innervation onto auditory neurons co-varied with the degree to which song playback affected the relative intensity of EGR-1 expression. Together, our data support the contention that catecholamines like norepinephrine contribute to social recognition and the processing of social information. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Effects of Visual Speech on Early Auditory Evoked Fields - From the Viewpoint of Individual Variance.

    PubMed

    Yahata, Izumi; Kawase, Tetsuaki; Kanno, Akitake; Hidaka, Hiroshi; Sakamoto, Shuichi; Nakasato, Nobukazu; Kawashima, Ryuta; Katori, Yukio

    2017-01-01

    The effects of visual speech (the moving image of the speaker's face uttering speech sound) on early auditory evoked fields (AEFs) were examined using a helmet-shaped magnetoencephalography system in 12 healthy volunteers (9 males, mean age 35.5 years). AEFs (N100m) in response to the monosyllabic sound /be/ were recorded and analyzed under three different visual stimulus conditions, the moving image of the same speaker's face uttering /be/ (congruent visual stimuli) or uttering /ge/ (incongruent visual stimuli), and visual noise (still image processed from speaker's face using a strong Gaussian filter: control condition). On average, latency of N100m was significantly shortened in the bilateral hemispheres for both congruent and incongruent auditory/visual (A/V) stimuli, compared to the control A/V condition. However, the degree of N100m shortening was not significantly different between the congruent and incongruent A/V conditions, despite the significant differences in psychophysical responses between these two A/V conditions. Moreover, analysis of the magnitudes of these visual effects on AEFs in individuals showed that the lip-reading effects on AEFs tended to be well correlated between the two different audio-visual conditions (congruent vs. incongruent visual stimuli) in the bilateral hemispheres but were not significantly correlated between right and left hemisphere. On the other hand, no significant correlation was observed between the magnitudes of visual speech effects and psychophysical responses. These results may indicate that the auditory-visual interaction observed on the N100m is a fundamental process which does not depend on the congruency of the visual information.

  4. The Ecological Transition to Auditory-Verbal Therapy: Experiences of Parents Whose Children Use Cochlear Implants

    ERIC Educational Resources Information Center

    Neuss, Deirdre

    2006-01-01

    This Canadian study reports on the experiences of parents whose children use cochlear implants and on their perspectives prior to and following the transition to Auditory-Verbal therapy. A qualitative case study design, framed in social-ecological theory, guided this research. Data collection procedures included a family information questionnaire,…

  5. Modeling Deficits From Early Auditory Information Processing to Psychosocial Functioning in Schizophrenia.

    PubMed

    Thomas, Michael L; Green, Michael F; Hellemann, Gerhard; Sugar, Catherine A; Tarasenko, Melissa; Calkins, Monica E; Greenwood, Tiffany A; Gur, Raquel E; Gur, Ruben C; Lazzeroni, Laura C; Nuechterlein, Keith H; Radant, Allen D; Seidman, Larry J; Shiluk, Alexandra L; Siever, Larry J; Silverman, Jeremy M; Sprock, Joyce; Stone, William S; Swerdlow, Neal R; Tsuang, Debby W; Tsuang, Ming T; Turetsky, Bruce I; Braff, David L; Light, Gregory A

    2017-01-01

    Neurophysiologic measures of early auditory information processing (EAP) are used as endophenotypes in genomic studies and biomarkers in clinical intervention studies. Research in schizophrenia has established correlations among measures of EAP, cognition, clinical symptoms, and functional outcome. Clarifying these associations by determining the pathways through which deficits in EAP affect functioning would suggest when and where to therapeutically intervene. To characterize the pathways from EAP to outcome and to estimate the extent to which enhancement of basic information processing might improve cognition and psychosocial functioning in schizophrenia. Cross-sectional data were analyzed using structural equation modeling to examine the associations among EAP, cognition, negative symptoms, and functional outcome. Participants were recruited from the community at 5 geographically distributed laboratories as part of the Consortium on the Genetics of Schizophrenia 2 from July 1, 2010, through January 31, 2014. This well-characterized cohort of 1415 patients with schizophrenia underwent EAP, cognitive, and thorough clinical and functional assessment. Mismatch negativity, P3a, and reorienting negativity were used to measure EAP. Cognition was measured by the Letter Number Span test and scales from the California Verbal Learning Test-Second Edition, the Wechsler Memory Scale-Third Edition, and the Penn Computerized Neurocognitive Battery. Negative symptoms were measured by the Scale for the Assessment of Negative Symptoms. Functional outcome was measured by the Role Functioning Scale. Participants included 1415 unrelated outpatients diagnosed with schizophrenia or schizoaffective disorder (mean [SD] age, 46 [11] years; 979 males [69.2%] and 619 white [43.7%]). Early auditory information processing had a direct effect on cognition (β = 0.37, P < .001), cognition had a direct effect on negative symptoms (β = -0.16, P < .001), and both cognition (

  6. Auditory system dysfunction in Alzheimer disease and its prodromal states: A review.

    PubMed

    Swords, Gabriel M; Nguyen, Lydia T; Mudar, Raksha A; Llano, Daniel A

    2018-07-01

    Recent findings suggest that both peripheral and central auditory system dysfunction occur in the prodromal stages of Alzheimer Disease (AD), and therefore may represent early indicators of the disease. In addition, loss of auditory function itself leads to communication difficulties, social isolation and poor quality of life for both patients with AD and their caregivers. Developing a greater understanding of auditory dysfunction in early AD may shed light on the mechanisms of disease progression and carry diagnostic and therapeutic importance. Herein, we review the literature on hearing abilities in AD and its prodromal stages investigated through methods such as pure-tone audiometry, dichotic listening tasks, and evoked response potentials. We propose that screening for peripheral and central auditory dysfunction in at-risk populations is a low-cost and effective means to identify early AD pathology and provides an entry point for therapeutic interventions that enhance the quality of life of AD patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Auditory brainstem activity and development evoked by apical versus basal cochlear implant electrode stimulation in children.

    PubMed

    Gordon, K A; Papsin, B C; Harrison, R V

    2007-08-01

    The role of apical versus basal cochlear implant electrode stimulation on central auditory development was examined. We hypothesized that, in children with early onset deafness, auditory development evoked by basal electrode stimulation would differ from that evoked more apically. Responses of the auditory nerve and brainstem, evoked by an apical and a basal implant electrode, were measured over the first year of cochlear implant use in 50 children with early onset severe to profound deafness who used hearing aids prior to implantation. Responses at initial stimulation were of larger amplitude and shorter latency when evoked by the apical electrode. No significant effects of residual hearing or age were found on initial response amplitudes or latencies. With implant use, responses evoked by both electrodes showed decreases in wave and interwave latencies reflecting decreased neural conduction time through the brainstem. Apical versus basal differences persisted with implant experience with one exception; eIII-eV interlatency differences decreased with implant use. Acute stimulation shows prolongation of basally versus apically evoked auditory nerve and brainstem responses in children with severe to profound deafness. Interwave latencies reflecting neural conduction along the caudal and rostral portions of the brainstem decreased over the first year of implant use. Differences in neural conduction times evoked by apical versus basal electrode stimulation persisted in the caudal but not rostral brainstem. Activity-dependent changes of the auditory brainstem occur in response to both apical and basal cochlear implant electrode stimulation.

  8. Auditory Proprioceptive Integration: Effects of Real-Time Kinematic Auditory Feedback on Knee Proprioception

    PubMed Central

    Ghai, Shashank; Schmitz, Gerd; Hwang, Tong-Hun; Effenberg, Alfred O.

    2018-01-01

    The purpose of the study was to assess the influence of real-time auditory feedback on knee proprioception. Thirty healthy participants were randomly allocated to control (n = 15), and experimental group I (15). The participants performed an active knee-repositioning task using their dominant leg, with/without additional real-time auditory feedback where the frequency was mapped in a convergent manner to two different target angles (40 and 75°). Statistical analysis revealed significant enhancement in knee re-positioning accuracy for the constant and absolute error with real-time auditory feedback, within and across the groups. Besides this convergent condition, we established a second divergent condition. Here, a step-wise transposition of frequency was performed to explore whether a systematic tuning between auditory-proprioceptive repositioning exists. No significant effects were identified in this divergent auditory feedback condition. An additional experimental group II (n = 20) was further included. Here, we investigated the influence of a larger magnitude and directional change of step-wise transposition of the frequency. In a first step, results confirm the findings of experiment I. Moreover, significant effects on knee auditory-proprioception repositioning were evident when divergent auditory feedback was applied. During the step-wise transposition participants showed systematic modulation of knee movements in the opposite direction of transposition. We confirm that knee re-positioning accuracy can be enhanced with concurrent application of real-time auditory feedback and that knee re-positioning can modulated in a goal-directed manner with step-wise transposition of frequency. Clinical implications are discussed with respect to joint position sense in rehabilitation settings. PMID:29568259

  9. Infant discrimination of rapid auditory cues predicts later language impairment.

    PubMed

    Benasich, April A; Tallal, Paula

    2002-10-17

    The etiology and mechanisms of specific language impairment (SLI) in children are unknown. Differences in basic auditory processing abilities have been suggested to underlie their language deficits. Studies suggest that the neuropathology, such as atypical patterns of cerebral lateralization and cortical cellular anomalies, implicated in such impairments likely occur early in life. Such anomalies may play a part in the rapid processing deficits seen in this disorder. However, prospective, longitudinal studies in infant populations that are critical to examining these hypotheses have not been done. In the study described, performance on brief, rapidly-presented, successive auditory processing and perceptual-cognitive tasks were assessed in two groups of infants: normal control infants with no family history of language disorders and infants from families with a positive family history for language impairment. Initial assessments were obtained when infants were 6-9 months of age (M=7.5 months) and the sample was then followed through age 36 months. At the first visit, infants' processing of rapid auditory cues as well as global processing speed and memory were assessed. Significant differences in mean thresholds were seen in infants born into families with a history of SLI as compared with controls. Examination of relations between infant processing abilities and emerging language through 24 months-of-age revealed that threshold for rapid auditory processing at 7.5 months was the single best predictor of language outcome. At age 3, rapid auditory processing threshold and being male, together predicted 39-41% of the variance in language outcome. Thus, early deficits in rapid auditory processing abilities both precede and predict subsequent language delays. These findings support an essential role for basic nonlinguistic, central auditory processes, particularly rapid spectrotemporal processing, in early language development. Further, these findings provide a temporal

  10. Functional Mapping of the Human Auditory Cortex: fMRI Investigation of a Patient with Auditory Agnosia from Trauma to the Inferior Colliculus.

    PubMed

    Poliva, Oren; Bestelmeyer, Patricia E G; Hall, Michelle; Bultitude, Janet H; Koller, Kristin; Rafal, Robert D

    2015-09-01

    To use functional magnetic resonance imaging to map the auditory cortical fields that are activated, or nonreactive, to sounds in patient M.L., who has auditory agnosia caused by trauma to the inferior colliculi. The patient cannot recognize speech or environmental sounds. Her discrimination is greatly facilitated by context and visibility of the speaker's facial movements, and under forced-choice testing. Her auditory temporal resolution is severely compromised. Her discrimination is more impaired for words differing in voice onset time than place of articulation. Words presented to her right ear are extinguished with dichotic presentation; auditory stimuli in the right hemifield are mislocalized to the left. We used functional magnetic resonance imaging to examine cortical activations to different categories of meaningful sounds embedded in a block design. Sounds activated the caudal sub-area of M.L.'s primary auditory cortex (hA1) bilaterally and her right posterior superior temporal gyrus (auditory dorsal stream), but not the rostral sub-area (hR) of her primary auditory cortex or the anterior superior temporal gyrus in either hemisphere (auditory ventral stream). Auditory agnosia reflects dysfunction of the auditory ventral stream. The ventral and dorsal auditory streams are already segregated as early as the primary auditory cortex, with the ventral stream projecting from hR and the dorsal stream from hA1. M.L.'s leftward localization bias, preserved audiovisual integration, and phoneme perception are explained by preserved processing in her right auditory dorsal stream.

  11. Attention, Awareness, and the Perception of Auditory Scenes

    PubMed Central

    Snyder, Joel S.; Gregg, Melissa K.; Weintraub, David M.; Alain, Claude

    2011-01-01

    Auditory perception and cognition entails both low-level and high-level processes, which are likely to interact with each other to create our rich conscious experience of soundscapes. Recent research that we review has revealed numerous influences of high-level factors, such as attention, intention, and prior experience, on conscious auditory perception. And recently, studies have shown that auditory scene analysis tasks can exhibit multistability in a manner very similar to ambiguous visual stimuli, presenting a unique opportunity to study neural correlates of auditory awareness and the extent to which mechanisms of perception are shared across sensory modalities. Research has also led to a growing number of techniques through which auditory perception can be manipulated and even completely suppressed. Such findings have important consequences for our understanding of the mechanisms of perception and also should allow scientists to precisely distinguish the influences of different higher-level influences. PMID:22347201

  12. Entrainment to an auditory signal: Is attention involved?

    PubMed

    Kunert, Richard; Jongman, Suzanne R

    2017-01-01

    Many natural auditory signals, including music and language, change periodically. The effect of such auditory rhythms on the brain is unclear however. One widely held view, dynamic attending theory, proposes that the attentional system entrains to the rhythm and increases attention at moments of rhythmic salience. In support, 2 experiments reported here show reduced response times to visual letter strings shown at auditory rhythm peaks, compared with rhythm troughs. However, we argue that an account invoking the entrainment of general attention should further predict rhythm entrainment to also influence memory for visual stimuli. In 2 pseudoword memory experiments we find evidence against this prediction. Whether a pseudoword is shown during an auditory rhythm peak or not is irrelevant for its later recognition memory in silence. Other attention manipulations, dividing attention and focusing attention, did result in a memory effect. This raises doubts about the suggested attentional nature of rhythm entrainment. We interpret our findings as support for auditory rhythm perception being based on auditory-motor entrainment, not general attention entrainment. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Jumpstarting auditory learning in children with cochlear implants through music experiences.

    PubMed

    Barton, Christine; Robbins, Amy McConkey

    2015-09-01

    Musical experiences are a valuable part of the lives of children with cochlear implants (CIs). In addition to the pleasure, relationships and emotional outlet provided by music, it serves to enhance or 'jumpstart' other auditory and cognitive skills that are critical for development and learning throughout the lifespan. Musicians have been shown to be 'better listeners' than non-musicians with regard to how they perceive and process sound. A heuristic model of music therapy is reviewed, including six modulating factors that may account for the auditory advantages demonstrated by those who participate in music therapy. The integral approach to music therapy is described along with the hybrid approach to pediatric language intervention. These approaches share the characteristics of placing high value on ecologically valid therapy experiences, i.e., engaging in 'real' music and 'real' communication. Music and language intervention techniques used by the authors are presented. It has been documented that children with CIs consistently have lower music perception scores than do their peers with normal hearing (NH). On the one hand, this finding matters a great deal because it provides parameters for setting reasonable expectations and highlights the work still required to improve signal processing with the devices so that they more accurately transmit music to CI listeners. On the other hand, the finding might not matter much if we assume that music, even in its less-than-optimal state, functions for CI children, as for NH children, as a developmental jumpstarter, a language-learning tool, a cognitive enricher, a motivator, and an attention enhancer.

  14. Developmental Experience Alters Information Coding in Auditory Midbrain and Forebrain Neurons

    PubMed Central

    Woolley, Sarah M. N.; Hauber, Mark E.; Theunissen, Frederic E.

    2010-01-01

    In songbirds, species identity and developmental experience shape vocal behavior and behavioral responses to vocalizations. The interaction of species identity and developmental experience may also shape the coding properties of sensory neurons. We tested whether responses of auditory midbrain and forebrain neurons to songs differed between species and between groups of conspecific birds with different developmental exposure to song. We also compared responses of individual neurons to conspecific and heterospecific songs. Zebra and Bengalese finches that were raised and tutored by conspecific birds, and zebra finches that were cross-tutored by Bengalese finches were studied. Single-unit responses to zebra and Bengalese finch songs were recorded and analyzed by calculating mutual information, response reliability, mean spike rate, fluctuations in time-varying spike rate, distributions of time-varying spike rates, and neural discrimination of individual songs. Mutual information quantifies a response’s capacity to encode information about a stimulus. In midbrain and forebrain neurons, mutual information was significantly higher in normal zebra finch neurons than in Bengalese finch and cross-tutored zebra finch neurons, but not between Bengalese finch and cross-tutored zebra finch neurons. Information rate differences were largely due to spike rate differences. Mutual information did not differ between responses to conspecific and heterospecific songs. Therefore, neurons from normal zebra finches encoded more information about songs than did neurons from other birds, but conspecific and heterospecific songs were encoded equally. Neural discrimination of songs and mutual information were highly correlated. Results demonstrate that developmental exposure to vocalizations shapes the information coding properties of songbird auditory neurons. PMID:20039264

  15. How Auditory Experience Differentially Influences the Function of Left and Right Superior Temporal Cortices.

    PubMed

    Twomey, Tae; Waters, Dafydd; Price, Cathy J; Evans, Samuel; MacSweeney, Mairéad

    2017-09-27

    To investigate how hearing status, sign language experience, and task demands influence functional responses in the human superior temporal cortices (STC) we collected fMRI data from deaf and hearing participants (male and female), who either acquired sign language early or late in life. Our stimuli in all tasks were pictures of objects. We varied the linguistic and visuospatial processing demands in three different tasks that involved decisions about (1) the sublexical (phonological) structure of the British Sign Language (BSL) signs for the objects, (2) the semantic category of the objects, and (3) the physical features of the objects.Neuroimaging data revealed that in participants who were deaf from birth, STC showed increased activation during visual processing tasks. Importantly, this differed across hemispheres. Right STC was consistently activated regardless of the task whereas left STC was sensitive to task demands. Significant activation was detected in the left STC only for the BSL phonological task. This task, we argue, placed greater demands on visuospatial processing than the other two tasks. In hearing signers, enhanced activation was absent in both left and right STC during all three tasks. Lateralization analyses demonstrated that the effect of deafness was more task-dependent in the left than the right STC whereas it was more task-independent in the right than the left STC. These findings indicate how the absence of auditory input from birth leads to dissociable and altered functions of left and right STC in deaf participants. SIGNIFICANCE STATEMENT Those born deaf can offer unique insights into neuroplasticity, in particular in regions of superior temporal cortex (STC) that primarily respond to auditory input in hearing people. Here we demonstrate that in those deaf from birth the left and the right STC have altered and dissociable functions. The right STC was activated regardless of demands on visual processing. In contrast, the left STC was

  16. Integrating Information from Different Senses in the Auditory Cortex

    PubMed Central

    King, Andrew J.; Walker, Kerry M.M.

    2015-01-01

    Multisensory integration was once thought to be the domain of brain areas high in the cortical hierarchy, with early sensory cortical fields devoted to unisensory processing of inputs from their given set of sensory receptors. More recently, a wealth of evidence documenting visual and somatosensory responses in auditory cortex, even as early as the primary fields, has changed this view of cortical processing. These multisensory inputs may serve to enhance responses to sounds that are accompanied by other sensory cues, effectively making them easier to hear, but may also act more selectively to shape the receptive field properties of auditory cortical neurons to the location or identity of these events. We discuss the new, converging evidence that multiplexing of neural signals may play a key role in informatively encoding and integrating signals in auditory cortex across multiple sensory modalities. We highlight some of the many open research questions that exist about the neural mechanisms that give rise to multisensory integration in auditory cortex, which should be addressed in future experimental and theoretical studies. PMID:22798035

  17. Establishing the Response of Low Frequency Auditory Filters

    NASA Technical Reports Server (NTRS)

    Rafaelof, Menachem; Christian, Andrew; Shepherd, Kevin; Rizzi, Stephen; Stephenson, James

    2017-01-01

    The response of auditory filters is central to frequency selectivity of sound by the human auditory system. This is true especially for realistic complex sounds that are often encountered in many applications such as modeling the audibility of sound, voice recognition, noise cancelation, and the development of advanced hearing aid devices. The purpose of this study was to establish the response of low frequency (below 100Hz) auditory filters. Two experiments were designed and executed; the first was to measure subject's hearing threshold for pure tones (at 25, 31.5, 40, 50, 63 and 80 Hz), and the second was to measure the Psychophysical Tuning Curves (PTCs) at two signal frequencies (Fs= 40 and 63Hz). Experiment 1 involved 36 subjects while experiment 2 used 20 subjects selected from experiment 1. Both experiments were based on a 3-down 1-up 3AFC adaptive staircase test procedure using either a variable level narrow-band noise masker or a tone. A summary of the results includes masked threshold data in form of PTCs, the response of auditory filters, their distribution, and comparison with similar recently published data.

  18. Expression of Immediate-Early Genes in the Inferior Colliculus and Auditory Cortex in Salicylate-Induced Tinnitus in Rat

    PubMed Central

    Hu, S.S.; Mei, L.; Chen, J.Y.; Huang, Z.W.; Wu, H.

    2014-01-01

    Tinnitus could be associated with neuronal hyperactivity in the auditory center. As a neuronal activity marker, immediate-early gene (IEG) expression is considered part of a general neuronal response to natural stimuli. Some IEGs, especially the activity-dependent cytoskeletal protein (Arc) and the early growth response gene-1 (Egr-1), appear to be highly correlated with sensory-evoked neuronal activity. We hypothesize, therefore, an increase of Arc and Egr-1 will be observed in a tinnitus model. In our study, we used the gap prepulse inhibition of acoustic startle (GPIAS) paradigm to confirm that salicylate induces tinnitus-like behavior in rats. However, expression of the Arc gene and Egr-1 gene were decreased in the inferior colliculus (IC) and auditory cortex (AC), in contradiction of our hypothesis. Expression of N-methyl D-aspartate receptor subunit 2B (NR2B) was increased and all of these changes returned to normal 14 days after treatment with salicylate ceased. These data revealed long-time administration of salicylate induced tinnitus markedly but reversibly and caused neural plasticity changes in the IC and the AC. Decreased expression of Arc and Egr-1 might be involved with instability of synaptic plasticity in tinnitus. PMID:24704997

  19. Speech Evoked Auditory Brainstem Response in Stuttering

    PubMed Central

    Tahaei, Ali Akbar; Ashayeri, Hassan; Pourbakht, Akram; Kamali, Mohammad

    2014-01-01

    Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS) at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency. PMID:25215262

  20. Subcortical functional reorganization due to early blindness

    PubMed Central

    Jiang, Fang; Fine, Ione; Watkins, Kate E.; Bridge, Holly

    2015-01-01

    Lack of visual input early in life results in occipital cortical responses to auditory and tactile stimuli. However, it remains unclear whether cross-modal plasticity also occurs in subcortical pathways. With the use of functional magnetic resonance imaging, auditory responses were compared across individuals with congenital anophthalmia (absence of eyes), those with early onset (in the first few years of life) blindness, and normally sighted individuals. We find that the superior colliculus, a “visual” subcortical structure, is recruited by the auditory system in congenital and early onset blindness. Additionally, auditory subcortical responses to monaural stimuli were altered as a result of blindness. Specifically, responses in the auditory thalamus were equally strong to contralateral and ipsilateral stimulation in both groups of blind subjects, whereas sighted controls showed stronger responses to contralateral stimulation. These findings suggest that early blindness results in substantial reorganization of subcortical auditory responses. PMID:25673746

  1. Communication outcomes for groups of children using cochlear implants enrolled in auditory-verbal, aural-oral, and bilingual-bicultural early intervention programs.

    PubMed

    Dettman, Shani; Wall, Elizabeth; Constantinescu, Gabriella; Dowell, Richard

    2013-04-01

    The relative impact of early intervention approach on speech perception and language skills was examined in these 3 well-matched groups of children using cochlear implants. Eight children from an auditory verbal intervention program were identified. From a pediatric database, researchers blind to the outcome data, identified 23 children from auditory oral programs and 8 children from bilingual-bicultural programs with the same inclusion criteria and equivalent demographic factors. All child participants were male, had congenital profound hearing loss (pure tone average >80 dBHL), no additional disabilities, were within the normal IQ range, were monolingual English speakers, had no unusual findings on computed tomography/magnetic resonance imaging, and received hearing aids and cochlear implants at a similar age and before 4 years of age. Open-set speech perception (consonant-nucleus-consonant [CNC] words and Bamford-Kowal-Bench [BKB] sentences) and the Peabody Picture Vocabulary Test (PPVT) were administered. The mean age at cochlear implant was 1.7 years (range, 0.8-3.9; SD, 0.7), mean test age was 5.4 years (range, 2.5-10.1; SD, 1.7), and mean device experience was 3.7 years (range, 0.7-7.9; SD, 1.8). Results indicate mean CNC scores of 60%, 43%, and 24% and BKB scores of 77%, 77%, and 56% for the auditory-verbal (AV), aural-oral (AO), and bilingual-bicultural (BB) groups, respectively. The mean PPVT delay was 13, 19, and 26 months for AV, AO, and BB groups, respectively. Despite equivalent child demographic characteristics at the outset of this study, by 3 years postimplant, there were significant differences in AV, AO, and BB groups. Results support consistent emphasis on oral/aural input to achieve optimum spoken communication outcomes for children using cochlear implants.

  2. How auditory discontinuities and linguistic experience affect the perception of speech and non-speech in English- and Spanish-speaking listeners

    NASA Astrophysics Data System (ADS)

    Hay, Jessica F.; Holt, Lori L.; Lotto, Andrew J.; Diehl, Randy L.

    2005-04-01

    The present study was designed to investigate the effects of long-term linguistic experience on the perception of non-speech sounds in English and Spanish speakers. Research using tone-onset-time (TOT) stimuli, a type of non-speech analogue of voice-onset-time (VOT) stimuli, has suggested that there is an underlying auditory basis for the perception of stop consonants based on a threshold for detecting onset asynchronies in the vicinity of +20 ms. For English listeners, stop consonant labeling boundaries are congruent with the positive auditory discontinuity, while Spanish speakers place their VOT labeling boundaries and discrimination peaks in the vicinity of 0 ms VOT. The present study addresses the question of whether long-term linguistic experience with different VOT categories affects the perception of non-speech stimuli that are analogous in their acoustic timing characteristics. A series of synthetic VOT stimuli and TOT stimuli were created for this study. Using language appropriate labeling and ABX discrimination tasks, labeling boundaries (VOT) and discrimination peaks (VOT and TOT) are assessed for 24 monolingual English speakers and 24 monolingual Spanish speakers. The interplay between language experience and auditory biases are discussed. [Work supported by NIDCD.

  3. Auditory Perception, Suprasegmental Speech Processing, and Vocabulary Development in Chinese Preschoolers.

    PubMed

    Wang, Hsiao-Lan S; Chen, I-Chen; Chiang, Chun-Han; Lai, Ying-Hui; Tsao, Yu

    2016-10-01

    The current study examined the associations between basic auditory perception, speech prosodic processing, and vocabulary development in Chinese kindergartners, specifically, whether early basic auditory perception may be related to linguistic prosodic processing in Chinese Mandarin vocabulary acquisition. A series of language, auditory, and linguistic prosodic tests were given to 100 preschool children who had not yet learned how to read Chinese characters. The results suggested that lexical tone sensitivity and intonation production were significantly correlated with children's general vocabulary abilities. In particular, tone awareness was associated with comprehensive language development, whereas intonation production was associated with both comprehensive and expressive language development. Regression analyses revealed that tone sensitivity accounted for 36% of the unique variance in vocabulary development, whereas intonation production accounted for 6% of the variance in vocabulary development. Moreover, auditory frequency discrimination was significantly correlated with lexical tone sensitivity, syllable duration discrimination, and intonation production in Mandarin Chinese. Also it provided significant contributions to tone sensitivity and intonation production. Auditory frequency discrimination may indirectly affect early vocabulary development through Chinese speech prosody. © The Author(s) 2016.

  4. Effects of Visual Speech on Early Auditory Evoked Fields - From the Viewpoint of Individual Variance

    PubMed Central

    Yahata, Izumi; Kanno, Akitake; Hidaka, Hiroshi; Sakamoto, Shuichi; Nakasato, Nobukazu; Kawashima, Ryuta; Katori, Yukio

    2017-01-01

    The effects of visual speech (the moving image of the speaker’s face uttering speech sound) on early auditory evoked fields (AEFs) were examined using a helmet-shaped magnetoencephalography system in 12 healthy volunteers (9 males, mean age 35.5 years). AEFs (N100m) in response to the monosyllabic sound /be/ were recorded and analyzed under three different visual stimulus conditions, the moving image of the same speaker’s face uttering /be/ (congruent visual stimuli) or uttering /ge/ (incongruent visual stimuli), and visual noise (still image processed from speaker’s face using a strong Gaussian filter: control condition). On average, latency of N100m was significantly shortened in the bilateral hemispheres for both congruent and incongruent auditory/visual (A/V) stimuli, compared to the control A/V condition. However, the degree of N100m shortening was not significantly different between the congruent and incongruent A/V conditions, despite the significant differences in psychophysical responses between these two A/V conditions. Moreover, analysis of the magnitudes of these visual effects on AEFs in individuals showed that the lip-reading effects on AEFs tended to be well correlated between the two different audio-visual conditions (congruent vs. incongruent visual stimuli) in the bilateral hemispheres but were not significantly correlated between right and left hemisphere. On the other hand, no significant correlation was observed between the magnitudes of visual speech effects and psychophysical responses. These results may indicate that the auditory-visual interaction observed on the N100m is a fundamental process which does not depend on the congruency of the visual information. PMID:28141836

  5. Subcortical functional reorganization due to early blindness.

    PubMed

    Coullon, Gaelle S L; Jiang, Fang; Fine, Ione; Watkins, Kate E; Bridge, Holly

    2015-04-01

    Lack of visual input early in life results in occipital cortical responses to auditory and tactile stimuli. However, it remains unclear whether cross-modal plasticity also occurs in subcortical pathways. With the use of functional magnetic resonance imaging, auditory responses were compared across individuals with congenital anophthalmia (absence of eyes), those with early onset (in the first few years of life) blindness, and normally sighted individuals. We find that the superior colliculus, a "visual" subcortical structure, is recruited by the auditory system in congenital and early onset blindness. Additionally, auditory subcortical responses to monaural stimuli were altered as a result of blindness. Specifically, responses in the auditory thalamus were equally strong to contralateral and ipsilateral stimulation in both groups of blind subjects, whereas sighted controls showed stronger responses to contralateral stimulation. These findings suggest that early blindness results in substantial reorganization of subcortical auditory responses. Copyright © 2015 the American Physiological Society.

  6. Auditory evoked potential measurements in elasmobranchs

    NASA Astrophysics Data System (ADS)

    Casper, Brandon; Mann, David

    2005-04-01

    Auditory evoked potentials (AEP) were first used to examine hearing in elasmobranchs by Corwin and Bullock in the late 1970s and early 1980s, marking the first time AEPs had been measured in fishes. Results of these experiments identified the regions of the ear and brain in which sound is processed, though no actual hearing thresholds were measured. Those initial experiments provided the ground work for future AEP experiments to measure fish hearing abilities in a manner that is much faster and more convenient than classical conditioning. Data will be presented on recent experiments in which AEPs were used to measure the hearing thresholds of two species of elasmobranchs: the nurse shark, Ginglymostoma cirratum, and the yellow stingray, Urobatis jamaicencis. Audiograms were analyzed and compared to previously published audiograms obtained using classical conditioning with results indicating that hearing thresholds were similar for the two methods. These data suggest that AEP testing is a viable option when measuring hearing in elasmobranchs and can increase the speed in which future hearing measurements can be obtained.

  7. Musical Experience and the Aging Auditory System: Implications for Cognitive Abilities and Hearing Speech in Noise

    PubMed Central

    Parbery-Clark, Alexandra; Strait, Dana L.; Anderson, Samira; Hittner, Emily; Kraus, Nina

    2011-01-01

    Much of our daily communication occurs in the presence of background noise, compromising our ability to hear. While understanding speech in noise is a challenge for everyone, it becomes increasingly difficult as we age. Although aging is generally accompanied by hearing loss, this perceptual decline cannot fully account for the difficulties experienced by older adults for hearing in noise. Decreased cognitive skills concurrent with reduced perceptual acuity are thought to contribute to the difficulty older adults experience understanding speech in noise. Given that musical experience positively impacts speech perception in noise in young adults (ages 18–30), we asked whether musical experience benefits an older cohort of musicians (ages 45–65), potentially offsetting the age-related decline in speech-in-noise perceptual abilities and associated cognitive function (i.e., working memory). Consistent with performance in young adults, older musicians demonstrated enhanced speech-in-noise perception relative to nonmusicians along with greater auditory, but not visual, working memory capacity. By demonstrating that speech-in-noise perception and related cognitive function are enhanced in older musicians, our results imply that musical training may reduce the impact of age-related auditory decline. PMID:21589653

  8. Musical experience and the aging auditory system: implications for cognitive abilities and hearing speech in noise.

    PubMed

    Parbery-Clark, Alexandra; Strait, Dana L; Anderson, Samira; Hittner, Emily; Kraus, Nina

    2011-05-11

    Much of our daily communication occurs in the presence of background noise, compromising our ability to hear. While understanding speech in noise is a challenge for everyone, it becomes increasingly difficult as we age. Although aging is generally accompanied by hearing loss, this perceptual decline cannot fully account for the difficulties experienced by older adults for hearing in noise. Decreased cognitive skills concurrent with reduced perceptual acuity are thought to contribute to the difficulty older adults experience understanding speech in noise. Given that musical experience positively impacts speech perception in noise in young adults (ages 18-30), we asked whether musical experience benefits an older cohort of musicians (ages 45-65), potentially offsetting the age-related decline in speech-in-noise perceptual abilities and associated cognitive function (i.e., working memory). Consistent with performance in young adults, older musicians demonstrated enhanced speech-in-noise perception relative to nonmusicians along with greater auditory, but not visual, working memory capacity. By demonstrating that speech-in-noise perception and related cognitive function are enhanced in older musicians, our results imply that musical training may reduce the impact of age-related auditory decline.

  9. Auditory Processing Learning Disability, Suicidal Ideation, and Transformational Faith

    ERIC Educational Resources Information Center

    Bailey, Frank S.; Yocum, Russell G.

    2015-01-01

    The purpose of this personal experience as a narrative investigation is to describe how an auditory processing learning disability exacerbated--and how spirituality and religiosity relieved--suicidal ideation, through the lived experiences of an individual born and raised in the United States. The study addresses: (a) how an auditory processing…

  10. Interconnected growing self-organizing maps for auditory and semantic acquisition modeling

    PubMed Central

    Cao, Mengxue; Li, Aijun; Fang, Qiang; Kaufmann, Emily; Kröger, Bernd J.

    2014-01-01

    Based on the incremental nature of knowledge acquisition, in this study we propose a growing self-organizing neural network approach for modeling the acquisition of auditory and semantic categories. We introduce an Interconnected Growing Self-Organizing Maps (I-GSOM) algorithm, which takes associations between auditory information and semantic information into consideration, in this paper. Direct phonetic–semantic association is simulated in order to model the language acquisition in early phases, such as the babbling and imitation stages, in which no phonological representations exist. Based on the I-GSOM algorithm, we conducted experiments using paired acoustic and semantic training data. We use a cyclical reinforcing and reviewing training procedure to model the teaching and learning process between children and their communication partners. A reinforcing-by-link training procedure and a link-forgetting procedure are introduced to model the acquisition of associative relations between auditory and semantic information. Experimental results indicate that (1) I-GSOM has good ability to learn auditory and semantic categories presented within the training data; (2) clear auditory and semantic boundaries can be found in the network representation; (3) cyclical reinforcing and reviewing training leads to a detailed categorization as well as to a detailed clustering, while keeping the clusters that have already been learned and the network structure that has already been developed stable; and (4) reinforcing-by-link training leads to well-perceived auditory–semantic associations. Our I-GSOM model suggests that it is important to associate auditory information with semantic information during language acquisition. Despite its high level of abstraction, our I-GSOM approach can be interpreted as a biologically-inspired neurocomputational model. PMID:24688478

  11. The role of the primary auditory cortex in the neural mechanism of auditory verbal hallucinations

    PubMed Central

    Kompus, Kristiina; Falkenberg, Liv E.; Bless, Josef J.; Johnsen, Erik; Kroken, Rune A.; Kråkvik, Bodil; Larøi, Frank; Løberg, Else-Marie; Vedul-Kjelsås, Einar; Westerhausen, René; Hugdahl, Kenneth

    2013-01-01

    Auditory verbal hallucinations (AVHs) are a subjective experience of “hearing voices” in the absence of corresponding physical stimulation in the environment. The most remarkable feature of AVHs is their perceptual quality, that is, the experience is subjectively often as vivid as hearing an actual voice, as opposed to mental imagery or auditory memories. This has lead to propositions that dysregulation of the primary auditory cortex (PAC) is a crucial component of the neural mechanism of AVHs. One possible mechanism by which the PAC could give rise to the experience of hallucinations is aberrant patterns of neuronal activity whereby the PAC is overly sensitive to activation arising from internal processing, while being less responsive to external stimulation. In this paper, we review recent research relevant to the role of the PAC in the generation of AVHs. We present new data from a functional magnetic resonance imaging (fMRI) study, examining the responsivity of the left and right PAC to parametrical modulation of the intensity of auditory verbal stimulation, and corresponding attentional top-down control in non-clinical participants with AVHs, and non-clinical participants with no AVHs. Non-clinical hallucinators showed reduced activation to speech sounds but intact attentional modulation in the right PAC. Additionally, we present data from a group of schizophrenia patients with AVHs, who do not show attentional modulation of left or right PAC. The context-appropriate modulation of the PAC may be a protective factor in non-clinical hallucinations. PMID:23630479

  12. Courtship song preferences in female zebra finches are shaped by developmental auditory experience.

    PubMed

    Chen, Yining; Clark, Oliver; Woolley, Sarah C

    2017-05-31

    The performance of courtship signals provides information about the behavioural state and quality of the signaller, and females can use such information for social decision-making (e.g. mate choice). However, relatively little is known about the degree to which the perception of and preference for differences in motor performance are shaped by developmental experiences. Furthermore, the neural substrates that development could act upon to influence the processing of performance features remains largely unknown. In songbirds, females use song to identify males and select mates. Moreover, female songbirds are often sensitive to variation in male song performance. Consequently, we investigated how developmental exposure to adult male song affected behavioural and neural responses to song in a small, gregarious songbird, the zebra finch. Zebra finch males modulate their song performance when courting females, and previous work has shown that females prefer the high-performance, female-directed courtship song. However, unlike females allowed to hear and interact with an adult male during development, females reared without developmental song exposure did not demonstrate behavioural preferences for high-performance courtship songs. Additionally, auditory responses to courtship and non-courtship song were altered in adult females raised without developmental song exposure. These data highlight the critical role of developmental auditory experience in shaping the perception and processing of song performance. © 2017 The Author(s).

  13. Human auditory evoked potentials. I - Evaluation of components

    NASA Technical Reports Server (NTRS)

    Picton, T. W.; Hillyard, S. A.; Krausz, H. I.; Galambos, R.

    1974-01-01

    Fifteen distinct components can be identified in the scalp recorded average evoked potential to an abrupt auditory stimulus. The early components occurring in the first 8 msec after a stimulus represent the activation of the cochlea and the auditory nuclei of the brainstem. The middle latency components occurring between 8 and 50 msec after the stimulus probably represent activation of both auditory thalamus and cortex but can be seriously contaminated by concurrent scalp muscle reflex potentials. The longer latency components occurring between 50 and 300 msec after the stimulus are maximally recorded over fronto-central scalp regions and seem to represent widespread activation of frontal cortex.

  14. Brachytherapy in early prostate cancer--early experience.

    PubMed

    Jose, B O; Bailen, J L; Albrink, F H; Steinbock, G S; Cornett, M S; Benson, D C; Schmied, W K; Medley, R N; Spanos, W J; Paris, K J; Koerner, P D; Gatenby, R A; Wilson, D L; Meyer, R

    1999-01-01

    Use of brachytherapy with radioactive seeds in the management of early prostate cancer is commonly used in the United States. The early experience has been reported from the prostate treatment centers in Seattle for the last 10 years. In this manuscript we are reporting our early experience of 150 radioactive seed implantations in early stage prostate cancer using either Iodine 125 or Palladium 103 seeds. The average age of the patient is 66 years and the median Gleason score is 5.4 with a median PSA of 6. A brief description of the evolution of the treatment of prostate cancer as well as the preparation for the seed implantation using the volume study with ultrasound of the prostate, pubic arch study using CT scan of the pelvis and the complete planning using the treatment planning computers are discussed. We also have described the current technique which is used in our experience based on the Seattle guidelines. We plan a follow-up report with the results of the studies with longer follow-up.

  15. How challenges in auditory fMRI led to general advancements for the field.

    PubMed

    Talavage, Thomas M; Hall, Deborah A

    2012-08-15

    In the early years of fMRI research, the auditory neuroscience community sought to expand its knowledge of the underlying physiology of hearing, while also seeking to come to grips with the inherent acoustic disadvantages of working in the fMRI environment. Early collaborative efforts between prominent auditory research laboratories and prominent fMRI centers led to development of a number of key technical advances that have subsequently been widely used to elucidate principles of auditory neurophysiology. Perhaps the key imaging advance was the simultaneous and parallel development of strategies to use pulse sequences in which the volume acquisitions were "clustered," providing gaps in which stimuli could be presented without direct masking. Such sequences have become widespread in fMRI studies using auditory stimuli and also in a range of translational research domains. This review presents the parallel stories of the people and the auditory neurophysiology research that led to these sequences. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. An analysis of nonlinear dynamics underlying neural activity related to auditory induction in the rat auditory cortex.

    PubMed

    Noto, M; Nishikawa, J; Tateno, T

    2016-03-24

    A sound interrupted by silence is perceived as discontinuous. However, when high-intensity noise is inserted during the silence, the missing sound may be perceptually restored and be heard as uninterrupted. This illusory phenomenon is called auditory induction. Recent electrophysiological studies have revealed that auditory induction is associated with the primary auditory cortex (A1). Although experimental evidence has been accumulating, the neural mechanisms underlying auditory induction in A1 neurons are poorly understood. To elucidate this, we used both experimental and computational approaches. First, using an optical imaging method, we characterized population responses across auditory cortical fields to sound and identified five subfields in rats. Next, we examined neural population activity related to auditory induction with high temporal and spatial resolution in the rat auditory cortex (AC), including the A1 and several other AC subfields. Our imaging results showed that tone-burst stimuli interrupted by a silent gap elicited early phasic responses to the first tone and similar or smaller responses to the second tone following the gap. In contrast, tone stimuli interrupted by broadband noise (BN), considered to cause auditory induction, considerably suppressed or eliminated responses to the tone following the noise. Additionally, tone-burst stimuli that were interrupted by notched noise centered at the tone frequency, which is considered to decrease the strength of auditory induction, partially restored the second responses from the suppression caused by BN. To phenomenologically mimic the neural population activity in the A1 and thus investigate the mechanisms underlying auditory induction, we constructed a computational model from the periphery through the AC, including a nonlinear dynamical system. The computational model successively reproduced some of the above-mentioned experimental results. Therefore, our results suggest that a nonlinear, self

  17. Auditory priming improves neural synchronization in auditory-motor entrainment.

    PubMed

    Crasta, Jewel E; Thaut, Michael H; Anderson, Charles W; Davies, Patricia L; Gavin, William J

    2018-05-22

    Neurophysiological research has shown that auditory and motor systems interact during movement to rhythmic auditory stimuli through a process called entrainment. This study explores the neural oscillations underlying auditory-motor entrainment using electroencephalography. Forty young adults were randomly assigned to one of two control conditions, an auditory-only condition or a motor-only condition, prior to a rhythmic auditory-motor synchronization condition (referred to as combined condition). Participants assigned to the auditory-only condition auditory-first group) listened to 400 trials of auditory stimuli presented every 800 ms, while those in the motor-only condition (motor-first group) were asked to tap rhythmically every 800 ms without any external stimuli. Following their control condition, all participants completed an auditory-motor combined condition that required tapping along with auditory stimuli every 800 ms. As expected, the neural processes for the combined condition for each group were different compared to their respective control condition. Time-frequency analysis of total power at an electrode site on the left central scalp (C3) indicated that the neural oscillations elicited by auditory stimuli, especially in the beta and gamma range, drove the auditory-motor entrainment. For the combined condition, the auditory-first group had significantly lower evoked power for a region of interest representing sensorimotor processing (4-20 Hz) and less total power in a region associated with anticipation and predictive timing (13-16 Hz) than the motor-first group. Thus, the auditory-only condition served as a priming facilitator of the neural processes in the combined condition, more so than the motor-only condition. Results suggest that even brief periods of rhythmic training of the auditory system leads to neural efficiency facilitating the motor system during the process of entrainment. These findings have implications for interventions

  18. A Case of Generalized Auditory Agnosia with Unilateral Subcortical Brain Lesion

    PubMed Central

    Suh, Hyee; Kim, Soo Yeon; Kim, Sook Hee; Chang, Jae Hyeok; Shin, Yong Beom; Ko, Hyun-Yoon

    2012-01-01

    The mechanisms and functional anatomy underlying the early stages of speech perception are still not well understood. Auditory agnosia is a deficit of auditory object processing defined as a disability to recognize spoken languages and/or nonverbal environmental sounds and music despite adequate hearing while spontaneous speech, reading and writing are preserved. Usually, either the bilateral or unilateral temporal lobe, especially the transverse gyral lesions, are responsible for auditory agnosia. Subcortical lesions without cortical damage rarely causes auditory agnosia. We present a 73-year-old right-handed male with generalized auditory agnosia caused by a unilateral subcortical lesion. He was not able to repeat or dictate but to perform fluent and comprehensible speech. He could understand and read written words and phrases. His auditory brainstem evoked potential and audiometry were intact. This case suggested that the subcortical lesion involving unilateral acoustic radiation could cause generalized auditory agnosia. PMID:23342322

  19. A Circuit for Motor Cortical Modulation of Auditory Cortical Activity

    PubMed Central

    Nelson, Anders; Schneider, David M.; Takatoh, Jun; Sakurai, Katsuyasu; Wang, Fan

    2013-01-01

    Normal hearing depends on the ability to distinguish self-generated sounds from other sounds, and this ability is thought to involve neural circuits that convey copies of motor command signals to various levels of the auditory system. Although such interactions at the cortical level are believed to facilitate auditory comprehension during movements and drive auditory hallucinations in pathological states, the synaptic organization and function of circuitry linking the motor and auditory cortices remain unclear. Here we describe experiments in the mouse that characterize circuitry well suited to transmit motor-related signals to the auditory cortex. Using retrograde viral tracing, we established that neurons in superficial and deep layers of the medial agranular motor cortex (M2) project directly to the auditory cortex and that the axons of some of these deep-layer cells also target brainstem motor regions. Using in vitro whole-cell physiology, optogenetics, and pharmacology, we determined that M2 axons make excitatory synapses in the auditory cortex but exert a primarily suppressive effect on auditory cortical neuron activity mediated in part by feedforward inhibition involving parvalbumin-positive interneurons. Using in vivo intracellular physiology, optogenetics, and sound playback, we also found that directly activating M2 axon terminals in the auditory cortex suppresses spontaneous and stimulus-evoked synaptic activity in auditory cortical neurons and that this effect depends on the relative timing of motor cortical activity and auditory stimulation. These experiments delineate the structural and functional properties of a corticocortical circuit that could enable movement-related suppression of auditory cortical activity. PMID:24005287

  20. Using Neuroplasticity-Based Auditory Training to Improve Verbal Memory in Schizophrenia

    PubMed Central

    Fisher, Melissa; Holland, Christine; Merzenich, Michael M.; Vinogradov, Sophia

    2009-01-01

    Objective Impaired verbal memory in schizophrenia is a key rate-limiting factor for functional outcome, does not respond to currently available medications, and shows only modest improvement after conventional behavioral remediation. The authors investigated an innovative approach to the remediation of verbal memory in schizophrenia, based on principles derived from the basic neuroscience of learning-induced neuroplasticity. The authors report interim findings in this ongoing study. Method Fifty-five clinically stable schizophrenia subjects were randomly assigned to either 50 hours of computerized auditory training or a control condition using computer games. Those receiving auditory training engaged in daily computerized exercises that placed implicit, increasing demands on auditory perception through progressively more difficult auditory-verbal working memory and verbal learning tasks. Results Relative to the control group, subjects who received active training showed significant gains in global cognition, verbal working memory, and verbal learning and memory. They also showed reliable and significant improvement in auditory psychophysical performance; this improvement was significantly correlated with gains in verbal working memory and global cognition. Conclusions Intensive training in early auditory processes and auditory-verbal learning results in substantial gains in verbal cognitive processes relevant to psychosocial functioning in schizophrenia. These gains may be due to a training method that addresses the early perceptual impairments in the illness, that exploits intact mechanisms of repetitive practice in schizophrenia, and that uses an intensive, adaptive training approach. PMID:19448187

  1. Directional Effects between Rapid Auditory Processing and Phonological Awareness in Children

    ERIC Educational Resources Information Center

    Johnson, Erin Phinney; Pennington, Bruce F.; Lee, Nancy Raitano; Boada, Richard

    2009-01-01

    Background: Deficient rapid auditory processing (RAP) has been associated with early language impairment and dyslexia. Using an auditory masking paradigm, children with language disabilities perform selectively worse than controls at detecting a tone in a backward masking (BM) condition (tone followed by white noise) compared to a forward masking…

  2. Hemispheric lateralization for early auditory processing of lexical tones: dependence on pitch level and pitch contour.

    PubMed

    Wang, Xiao-Dong; Wang, Ming; Chen, Lin

    2013-09-01

    In Mandarin Chinese, a tonal language, pitch level and pitch contour are two dimensions of lexical tones according to their acoustic features (i.e., pitch patterns). A change in pitch level features a step change whereas that in pitch contour features a continuous variation in voice pitch. Currently, relatively little is known about the hemispheric lateralization for the processing of each dimension. To address this issue, we made whole-head electrical recordings of mismatch negativity in native Chinese speakers in response to the contrast of Chinese lexical tones in each dimension. We found that pre-attentive auditory processing of pitch level was obviously lateralized to the right hemisphere whereas there is a tendency for that of pitch contour to be lateralized to the left. We also found that the brain responded faster to pitch level than to pitch contour at a pre-attentive stage. These results indicate that the hemispheric lateralization for early auditory processing of lexical tones depends on the pitch level and pitch contour, and suggest an underlying inter-hemispheric interactive mechanism for the processing. © 2013 Elsevier Ltd. All rights reserved.

  3. Weak Responses to Auditory Feedback Perturbation during Articulation in Persons Who Stutter: Evidence for Abnormal Auditory-Motor Transformation

    PubMed Central

    Cai, Shanqing; Beal, Deryk S.; Ghosh, Satrajit S.; Tiede, Mark K.; Guenther, Frank H.; Perkell, Joseph S.

    2012-01-01

    Previous empirical observations have led researchers to propose that auditory feedback (the auditory perception of self-produced sounds when speaking) functions abnormally in the speech motor systems of persons who stutter (PWS). Researchers have theorized that an important neural basis of stuttering is the aberrant integration of auditory information into incipient speech motor commands. Because of the circumstantial support for these hypotheses and the differences and contradictions between them, there is a need for carefully designed experiments that directly examine auditory-motor integration during speech production in PWS. In the current study, we used real-time manipulation of auditory feedback to directly investigate whether the speech motor system of PWS utilizes auditory feedback abnormally during articulation and to characterize potential deficits of this auditory-motor integration. Twenty-one PWS and 18 fluent control participants were recruited. Using a short-latency formant-perturbation system, we examined participants’ compensatory responses to unanticipated perturbation of auditory feedback of the first formant frequency during the production of the monophthong [ε]. The PWS showed compensatory responses that were qualitatively similar to the controls’ and had close-to-normal latencies (∼150 ms), but the magnitudes of their responses were substantially and significantly smaller than those of the control participants (by 47% on average, p<0.05). Measurements of auditory acuity indicate that the weaker-than-normal compensatory responses in PWS were not attributable to a deficit in low-level auditory processing. These findings are consistent with the hypothesis that stuttering is associated with functional defects in the inverse models responsible for the transformation from the domain of auditory targets and auditory error information into the domain of speech motor commands. PMID:22911857

  4. Auditory short-term memory activation during score reading.

    PubMed

    Simoens, Veerle L; Tervaniemi, Mari

    2013-01-01

    Performing music on the basis of reading a score requires reading ahead of what is being played in order to anticipate the necessary actions to produce the notes. Score reading thus not only involves the decoding of a visual score and the comparison to the auditory feedback, but also short-term storage of the musical information due to the delay of the auditory feedback during reading ahead. This study investigates the mechanisms of encoding of musical information in short-term memory during such a complicated procedure. There were three parts in this study. First, professional musicians participated in an electroencephalographic (EEG) experiment to study the slow wave potentials during a time interval of short-term memory storage in a situation that requires cross-modal translation and short-term storage of visual material to be compared with delayed auditory material, as it is the case in music score reading. This delayed visual-to-auditory matching task was compared with delayed visual-visual and auditory-auditory matching tasks in terms of EEG topography and voltage amplitudes. Second, an additional behavioural experiment was performed to determine which type of distractor would be the most interfering with the score reading-like task. Third, the self-reported strategies of the participants were also analyzed. All three parts of this study point towards the same conclusion according to which during music score reading, the musician most likely first translates the visual score into an auditory cue, probably starting around 700 or 1300 ms, ready for storage and delayed comparison with the auditory feedback.

  5. Auditory Short-Term Memory Activation during Score Reading

    PubMed Central

    Simoens, Veerle L.; Tervaniemi, Mari

    2013-01-01

    Performing music on the basis of reading a score requires reading ahead of what is being played in order to anticipate the necessary actions to produce the notes. Score reading thus not only involves the decoding of a visual score and the comparison to the auditory feedback, but also short-term storage of the musical information due to the delay of the auditory feedback during reading ahead. This study investigates the mechanisms of encoding of musical information in short-term memory during such a complicated procedure. There were three parts in this study. First, professional musicians participated in an electroencephalographic (EEG) experiment to study the slow wave potentials during a time interval of short-term memory storage in a situation that requires cross-modal translation and short-term storage of visual material to be compared with delayed auditory material, as it is the case in music score reading. This delayed visual-to-auditory matching task was compared with delayed visual-visual and auditory-auditory matching tasks in terms of EEG topography and voltage amplitudes. Second, an additional behavioural experiment was performed to determine which type of distractor would be the most interfering with the score reading-like task. Third, the self-reported strategies of the participants were also analyzed. All three parts of this study point towards the same conclusion according to which during music score reading, the musician most likely first translates the visual score into an auditory cue, probably starting around 700 or 1300 ms, ready for storage and delayed comparison with the auditory feedback. PMID:23326487

  6. Effects of twenty-minute 3G mobile phone irradiation on event related potential components and early gamma synchronization in auditory oddball paradigm.

    PubMed

    Stefanics, G; Thuróczy, G; Kellényi, L; Hernádi, I

    2008-11-19

    We investigated the potential effects of 20 min irradiation from a new generation Universal Mobile Telecommunication System (UMTS) 3G mobile phone on human event related potentials (ERPs) in an auditory oddball paradigm. In a double-blind task design, subjects were exposed to either genuine or sham irradiation in two separate sessions. Before and after irradiation subjects were presented with a random series of 50 ms tone burst (frequent standards: 1 kHz, P=0.8, rare deviants: 1.5 kHz, P=0.2) at a mean repetition rate of 1500 ms while electroencephalogram (EEG) was recorded. The subjects' task was to silently count the appearance of targets. The amplitude and latency of the N100, N200, P200 and P300 components for targets and standards were analyzed in 29 subjects. We found no significant effects of electromagnetic field (EMF) irradiation on the amplitude and latency of the above ERP components. In order to study possible effects of EMF on attentional processes, we applied a wavelet-based time-frequency method to analyze the early gamma component of brain responses to auditory stimuli. We found that the early evoked gamma activity was insensitive to UMTS RF exposition. Our results support the notion, that a single 20 min irradiation from new generation 3G mobile phones does not induce measurable changes in latency or amplitude of ERP components or in oscillatory gamma-band activity in an auditory oddball paradigm.

  7. Perceptual Learning and Auditory Training in Cochlear Implant Recipients

    PubMed Central

    Fu, Qian-Jie; Galvin, John J.

    2007-01-01

    Learning electrically stimulated speech patterns can be a new and difficult experience for cochlear implant (CI) recipients. Recent studies have shown that most implant recipients at least partially adapt to these new patterns via passive, daily-listening experiences. Gradually introducing a speech processor parameter (eg, the degree of spectral mismatch) may provide for more complete and less stressful adaptation. Although the implant device restores hearing sensation and the continued use of the implant provides some degree of adaptation, active auditory rehabilitation may be necessary to maximize the benefit of implantation for CI recipients. Currently, there are scant resources for auditory rehabilitation for adult, postlingually deafened CI recipients. We recently developed a computer-assisted speech-training program to provide the means to conduct auditory rehabilitation at home. The training software targets important acoustic contrasts among speech stimuli, provides auditory and visual feedback, and incorporates progressive training techniques, thereby maintaining recipients’ interest during the auditory training exercises. Our recent studies demonstrate the effectiveness of targeted auditory training in improving CI recipients’ speech and music perception. Provided with an inexpensive and effective auditory training program, CI recipients may find the motivation and momentum to get the most from the implant device. PMID:17709574

  8. Effects of Visual Game Experience on Auditory Processing Speed.

    PubMed

    Shin, Kyung Soon; Yim, Yoon Kyoung; Kim, Yuwon; Park, Soowon; Lee, Jun-Young

    2017-03-01

    Games are one of the fastest growing and most exciting forms of entertainment. Whether casual mobile game playing has a cognitive, physiological, or behavioral effect on players whose game use is not pathological is unknown. Here we explored whether preattentive auditory processing is linked to the behavioral inhibition system (BIS) in frequent and infrequent game players. A total of 74 subjects who were enrolled in our study were divided into two groups, 40 subjects were frequent gamers and 34 subjects were age-, gender-, IQ-, and education-matched infrequent gamers. All participants underwent a passive auditory oddball paradigm and completed the behavioral inhibition/behavioral activation system scales. The mismatch negativity (MMN) latency was shorter for the frequent gamers relative to the infrequent gamers, whereas no difference in MMN amplitude was found between groups. MMN amplitude was negatively associated with the degree of behavioral inhibition in the frequent and infrequent gaming group. We also found that those who frequently play games show an enhanced processing speed, which could be an effect of game practice. Greater behavioral inhibition induces increased vigilance, and this may have enhanced the MMN amplitude in the infrequent gamers. This differential pattern of correlations suggests that differences in the BIS could lead to different approaches to auditory information processing.

  9. Restoring auditory cortex plasticity in adult mice by restricting thalamic adenosine signaling

    DOE PAGES

    Blundon, Jay A.; Roy, Noah C.; Teubner, Brett J. W.; ...

    2017-06-30

    Circuits in the auditory cortex are highly susceptible to acoustic influences during an early postnatal critical period. The auditory cortex selectively expands neural representations of enriched acoustic stimuli, a process important for human language acquisition. Adults lack this plasticity. We show in the murine auditory cortex that juvenile plasticity can be reestablished in adulthood if acoustic stimuli are paired with disruption of ecto-5'-nucleotidase–dependent adenosine production or A1–adenosine receptor signaling in the auditory thalamus. This plasticity occurs at the level of cortical maps and individual neurons in the auditory cortex of awake adult mice and is associated with long-term improvement ofmore » tone-discrimination abilities. We determined that, in adult mice, disrupting adenosine signaling in the thalamus rejuvenates plasticity in the auditory cortex and improves auditory perception.« less

  10. Restoring auditory cortex plasticity in adult mice by restricting thalamic adenosine signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blundon, Jay A.; Roy, Noah C.; Teubner, Brett J. W.

    Circuits in the auditory cortex are highly susceptible to acoustic influences during an early postnatal critical period. The auditory cortex selectively expands neural representations of enriched acoustic stimuli, a process important for human language acquisition. Adults lack this plasticity. We show in the murine auditory cortex that juvenile plasticity can be reestablished in adulthood if acoustic stimuli are paired with disruption of ecto-5'-nucleotidase–dependent adenosine production or A1–adenosine receptor signaling in the auditory thalamus. This plasticity occurs at the level of cortical maps and individual neurons in the auditory cortex of awake adult mice and is associated with long-term improvement ofmore » tone-discrimination abilities. We determined that, in adult mice, disrupting adenosine signaling in the thalamus rejuvenates plasticity in the auditory cortex and improves auditory perception.« less

  11. Evaluation of an imputed pitch velocity model of the auditory tau effect.

    PubMed

    Henry, Molly J; McAuley, J Devin; Zaleha, Marta

    2009-08-01

    This article extends an imputed pitch velocity model of the auditory kappa effect proposed by Henry and McAuley (2009a) to the auditory tau effect. Two experiments were conducted using an AXB design in which listeners judged the relative pitch of a middle target tone (X) in ascending and descending three-tone sequences. In Experiment 1, sequences were isochronous, establishing constant fast, medium, and slow velocity conditions. No systematic distortions in perceived target pitch were observed, and thresholds were similar across velocity conditions. Experiment 2 introduced to-be-ignored variations in target timing. Variations in target timing that deviated from constant velocity conditions introduced systematic distortions in perceived target pitch, indicative of a robust auditory tau effect. Consistent with an auditory motion hypothesis, the magnitude of the tau effect was larger at faster velocities. In addition, the tau effect was generally stronger for descending sequences than for ascending sequences. Combined with previous work on the auditory kappa effect, the imputed velocity model and associated auditory motion hypothesis provide a unified quantitative account of both auditory tau and kappa effects. In broader terms, these findings add support to the view that pitch and time relations in auditory patterns are fundamentally interdependent.

  12. Early continuous white noise exposure alters l-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunit glutamate receptor 2 and gamma-aminobutyric acid type a receptor subunit beta3 protein expression in rat auditory cortex.

    PubMed

    Xu, Jinghong; Yu, Liping; Zhang, Jiping; Cai, Rui; Sun, Xinde

    2010-02-15

    Auditory experience during the postnatal critical period is essential for the normal maturation of auditory function. Previous studies have shown that rearing infant rat pups under conditions of continuous moderate-level noise delayed the emergence of adult-like topographic representational order and the refinement of response selectivity in the primary auditory cortex (A1) beyond normal developmental benchmarks and indefinitely blocked the closure of a brief, critical-period window. To gain insight into the molecular mechanisms of these physiological changes after noise rearing, we studied expression of the AMPA receptor subunit GluR2 and GABA(A) receptor subunit beta3 in the auditory cortex after noise rearing. Our results show that continuous moderate-level noise rearing during the early stages of development decreases the expression levels of GluR2 and GABA(A)beta3. Furthermore, noise rearing also induced a significant decrease in the level of GABA(A) receptors relative to AMPA receptors. However, in adult rats, noise rearing did not have significant effects on GluR2 and GABA(A)beta3 expression or the ratio between the two units. These changes could have a role in the cellular mechanisms involved in the delayed maturation of auditory receptive field structure and topographic organization of A1 after noise rearing. Copyright 2009 Wiley-Liss, Inc.

  13. Effects of linguistic experience on early levels of perceptual tone processing

    NASA Astrophysics Data System (ADS)

    Huang, Tsan; Johnson, Keith

    2005-04-01

    This study investigated the phenomenon of language-specificity in Mandarin Chinese tone perception. The main question was whether linguistic experience affects the earliest levels of perceptual processing of tones. Chinese and American English listeners participated in four perception experiments, which involved short inter-stimulus intervals (300 ms or 100 ms) and an AX discrimination or AX degree-of-difference rating task. Three experiments used natural speech monosyllabic tone stimuli and one experiment used time-varying sinusoidal simulations of Mandarin tones. AE listeners showed psychoacoustic listening in all experiments, paying much attention to onset and offset pitch. Chinese listeners showed language-specific patterns in all experiments to various degrees, where tonal neutralization rules reduced perceptual distance between two otherwise contrastive tones for Chinese listeners. Since these experiments employed procedures hypothesized to tap the auditory trace mode (Pisoni, Percept. Psychophys. 13, 253-260 (1973)], language-specificity found in this study seems to support the proposal of an auditory cortical map [Guenther et al., J. Acoust. Soc. Am. 23, 213-221 (1999)]. But the model needs refining to account for different degrees of language-specificity, which are better handled by Johnsons (2004, TLS03:26-41) lexical distance model, although the latter model is too rigid in assuming that linguistic experience does not affect low-level perceptual tasks such as AX discrimination with short ISIs.

  14. Auditory perception in the aging brain: the role of inhibition and facilitation in early processing.

    PubMed

    Stothart, George; Kazanina, Nina

    2016-11-01

    Aging affects the interplay between peripheral and cortical auditory processing. Previous studies have demonstrated that older adults are less able to regulate afferent sensory information and are more sensitive to distracting information. Using auditory event-related potentials we investigated the role of cortical inhibition on auditory and audiovisual processing in younger and older adults. Across puretone, auditory and audiovisual speech paradigms older adults showed a consistent pattern of inhibitory deficits, manifested as increased P50 and/or N1 amplitudes and an absent or significantly reduced N2. Older adults were still able to use congruent visual articulatory information to aid auditory processing but appeared to require greater neural effort to resolve conflicts generated by incongruent visual information. In combination, the results provide support for the Inhibitory Deficit Hypothesis of aging. They extend previous findings into the audiovisual domain and highlight older adults' ability to benefit from congruent visual information during speech processing. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Auditory agnosia.

    PubMed

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  16. A Brief Period of Postnatal Visual Deprivation Alters the Balance between Auditory and Visual Attention.

    PubMed

    de Heering, Adélaïde; Dormal, Giulia; Pelland, Maxime; Lewis, Terri; Maurer, Daphne; Collignon, Olivier

    2016-11-21

    Is a short and transient period of visual deprivation early in life sufficient to induce lifelong changes in how we attend to, and integrate, simple visual and auditory information [1, 2]? This question is of crucial importance given the recent demonstration in both animals and humans that a period of blindness early in life permanently affects the brain networks dedicated to visual, auditory, and multisensory processing [1-16]. To address this issue, we compared a group of adults who had been treated for congenital bilateral cataracts during early infancy with a group of normally sighted controls on a task requiring simple detection of lateralized visual and auditory targets, presented alone or in combination. Redundancy gains obtained from the audiovisual conditions were similar between groups and surpassed the reaction time distribution predicted by Miller's race model. However, in comparison to controls, cataract-reversal patients were faster at processing simple auditory targets and showed differences in how they shifted attention across modalities. Specifically, they were faster at switching attention from visual to auditory inputs than in the reverse situation, while an opposite pattern was observed for controls. Overall, these results reveal that the absence of visual input during the first months of life does not prevent the development of audiovisual integration but enhances the salience of simple auditory inputs, leading to a different crossmodal distribution of attentional resources between auditory and visual stimuli. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Representation of Sound Categories in Auditory Cortical Maps

    ERIC Educational Resources Information Center

    Guenther, Frank H.; Nieto-Castanon, Alfonso; Ghosh, Satrajit S.; Tourville, Jason A.

    2004-01-01

    Functional magnetic resonance imaging (fMRI) was used to investigate the representation of sound categories in human auditory cortex. Experiment 1 investigated the representation of prototypical (good) and nonprototypical (bad) examples of a vowel sound. Listening to prototypical examples of a vowel resulted in less auditory cortical activation…

  18. Visual and auditory accessory stimulus offset and the Simon effect.

    PubMed

    Nishimura, Akio; Yokosawa, Kazuhiko

    2010-10-01

    We investigated the effect on the right and left responses of the disappearance of a task-irrelevant stimulus located on the right or left side. Participants pressed a right or left response key on the basis of the color of a centrally located visual target. Visual (Experiment 1) or auditory (Experiment 2) task-irrelevant accessory stimuli appeared or disappeared at locations to the right or left of the central target. In Experiment 1, responses were faster when onset or offset of the visual accessory stimulus was spatially congruent with the response. In Experiment 2, responses were again faster when onset of the auditory accessory stimulus and the response were on the same side. However, responses were slightly slower when offset of the auditory accessory stimulus and the response were on the same side than when they were on opposite sides. These findings indicate that transient change information is crucial for a visual Simon effect, whereas sustained stimulation from an ongoing stimulus also contributes to an auditory Simon effect.

  19. Decoding auditory spatial and emotional information encoding using multivariate versus univariate techniques.

    PubMed

    Kryklywy, James H; Macpherson, Ewan A; Mitchell, Derek G V

    2018-04-01

    Emotion can have diverse effects on behaviour and perception, modulating function in some circumstances, and sometimes having little effect. Recently, it was identified that part of the heterogeneity of emotional effects could be due to a dissociable representation of emotion in dual pathway models of sensory processing. Our previous fMRI experiment using traditional univariate analyses showed that emotion modulated processing in the auditory 'what' but not 'where' processing pathway. The current study aims to further investigate this dissociation using a more recently emerging multi-voxel pattern analysis searchlight approach. While undergoing fMRI, participants localized sounds of varying emotional content. A searchlight multi-voxel pattern analysis was conducted to identify activity patterns predictive of sound location and/or emotion. Relative to the prior univariate analysis, MVPA indicated larger overlapping spatial and emotional representations of sound within early secondary regions associated with auditory localization. However, consistent with the univariate analysis, these two dimensions were increasingly segregated in late secondary and tertiary regions of the auditory processing streams. These results, while complimentary to our original univariate analyses, highlight the utility of multiple analytic approaches for neuroimaging, particularly for neural processes with known representations dependent on population coding.

  20. Selective impairment of auditory selective attention under concurrent cognitive load.

    PubMed

    Dittrich, Kerstin; Stahl, Christoph

    2012-06-01

    Load theory predicts that concurrent cognitive load impairs selective attention. For visual stimuli, it has been shown that this impairment can be selective: Distraction was specifically increased when the stimulus material used in the cognitive load task matches that of the selective attention task. Here, we report four experiments that demonstrate such selective load effects for auditory selective attention. The effect of two different cognitive load tasks on two different auditory Stroop tasks was examined, and selective load effects were observed: Interference in a nonverbal-auditory Stroop task was increased under concurrent nonverbal-auditory cognitive load (compared with a no-load condition), but not under concurrent verbal-auditory cognitive load. By contrast, interference in a verbal-auditory Stroop task was increased under concurrent verbal-auditory cognitive load but not under nonverbal-auditory cognitive load. This double-dissociation pattern suggests the existence of different and separable verbal and nonverbal processing resources in the auditory domain.

  1. Hearing after congenital deafness: central auditory plasticity and sensory deprivation.

    PubMed

    Kral, A; Hartmann, R; Tillein, J; Heid, S; Klinke, R

    2002-08-01

    The congenitally deaf cat suffers from a degeneration of the inner ear. The organ of Corti bears no hair cells, yet the auditory afferents are preserved. Since these animals have no auditory experience, they were used as a model for congenital deafness. Kittens were equipped with a cochlear implant at different ages and electro-stimulated over a period of 2.0-5.5 months using a monopolar single-channel compressed analogue stimulation strategy (VIENNA-type signal processor). Following a period of auditory experience, we investigated cortical field potentials in response to electrical biphasic pulses applied by means of the cochlear implant. In comparison to naive unstimulated deaf cats and normal hearing cats, the chronically stimulated animals showed larger cortical regions producing middle-latency responses at or above 300 microV amplitude at the contralateral as well as the ipsilateral auditory cortex. The cortex ipsilateral to the chronically stimulated ear did not show any signs of reduced responsiveness when stimulating the 'untrained' ear through a second cochlear implant inserted in the final experiment. With comparable duration of auditory training, the activated cortical area was substantially smaller if implantation had been performed at an older age of 5-6 months. The data emphasize that young sensory systems in cats have a higher capacity for plasticity than older ones and that there is a sensitive period for the cat's auditory system.

  2. Auditory Spatial Attention Representations in the Human Cerebral Cortex

    PubMed Central

    Kong, Lingqiang; Michalka, Samantha W.; Rosen, Maya L.; Sheremata, Summer L.; Swisher, Jascha D.; Shinn-Cunningham, Barbara G.; Somers, David C.

    2014-01-01

    Auditory spatial attention serves important functions in auditory source separation and selection. Although auditory spatial attention mechanisms have been generally investigated, the neural substrates encoding spatial information acted on by attention have not been identified in the human neocortex. We performed functional magnetic resonance imaging experiments to identify cortical regions that support auditory spatial attention and to test 2 hypotheses regarding the coding of auditory spatial attention: 1) auditory spatial attention might recruit the visuospatial maps of the intraparietal sulcus (IPS) to create multimodal spatial attention maps; 2) auditory spatial information might be encoded without explicit cortical maps. We mapped visuotopic IPS regions in individual subjects and measured auditory spatial attention effects within these regions of interest. Contrary to the multimodal map hypothesis, we observed that auditory spatial attentional modulations spared the visuotopic maps of IPS; the parietal regions activated by auditory attention lacked map structure. However, multivoxel pattern analysis revealed that the superior temporal gyrus and the supramarginal gyrus contained significant information about the direction of spatial attention. These findings support the hypothesis that auditory spatial information is coded without a cortical map representation. Our findings suggest that audiospatial and visuospatial attention utilize distinctly different spatial coding schemes. PMID:23180753

  3. Social interaction with a tutor modulates responsiveness of specific auditory neurons in juvenile zebra finches.

    PubMed

    Yanagihara, Shin; Yazaki-Sugiyama, Yoko

    2018-04-12

    Behavioral states of animals, such as observing the behavior of a conspecific, modify signal perception and/or sensations that influence state-dependent higher cognitive behavior, such as learning. Recent studies have shown that neuronal responsiveness to sensory signals is modified when animals are engaged in social interactions with others or in locomotor activities. However, how these changes produce state-dependent differences in higher cognitive function is still largely unknown. Zebra finches, which have served as the premier songbird model, learn to sing from early auditory experiences with tutors. They also learn from playback of recorded songs however, learning can be greatly improved when song models are provided through social communication with tutors (Eales, 1989; Chen et al., 2016). Recently we found a subset of neurons in the higher-level auditory cortex of juvenile zebra finches that exhibit highly selective auditory responses to the tutor song after song learning, suggesting an auditory memory trace of the tutor song (Yanagihara and Yazaki-Sugiyama, 2016). Here we show that auditory responses of these selective neurons became greater when juveniles were paired with their tutors, while responses of non-selective neurons did not change. These results suggest that social interaction modulates cortical activity and might function in state-dependent song learning. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. A Brain for Speech. Evolutionary Continuity in Primate and Human Auditory-Vocal Processing

    PubMed Central

    Aboitiz, Francisco

    2018-01-01

    In this review article, I propose a continuous evolution from the auditory-vocal apparatus and its mechanisms of neural control in non-human primates, to the peripheral organs and the neural control of human speech. Although there is an overall conservatism both in peripheral systems and in central neural circuits, a few changes were critical for the expansion of vocal plasticity and the elaboration of proto-speech in early humans. Two of the most relevant changes were the acquisition of direct cortical control of the vocal fold musculature and the consolidation of an auditory-vocal articulatory circuit, encompassing auditory areas in the temporoparietal junction and prefrontal and motor areas in the frontal cortex. This articulatory loop, also referred to as the phonological loop, enhanced vocal working memory capacity, enabling early humans to learn increasingly complex utterances. The auditory-vocal circuit became progressively coupled to multimodal systems conveying information about objects and events, which gradually led to the acquisition of modern speech. Gestural communication accompanies the development of vocal communication since very early in human evolution, and although both systems co-evolved tightly in the beginning, at some point speech became the main channel of communication. PMID:29636657

  5. Intensity-invariant coding in the auditory system.

    PubMed

    Barbour, Dennis L

    2011-11-01

    The auditory system faithfully represents sufficient details from sound sources such that downstream cognitive processes are capable of acting upon this information effectively even in the face of signal uncertainty, degradation or interference. This robust sound source representation leads to an invariance in perception vital for animals to interact effectively with their environment. Due to unique nonlinearities in the cochlea, sound representations early in the auditory system exhibit a large amount of variability as a function of stimulus intensity. In other words, changes in stimulus intensity, such as for sound sources at differing distances, create a unique challenge for the auditory system to encode sounds invariantly across the intensity dimension. This challenge and some strategies available to sensory systems to eliminate intensity as an encoding variable are discussed, with a special emphasis upon sound encoding. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Affective Priming with Auditory Speech Stimuli

    ERIC Educational Resources Information Center

    Degner, Juliane

    2011-01-01

    Four experiments explored the applicability of auditory stimulus presentation in affective priming tasks. In Experiment 1, it was found that standard affective priming effects occur when prime and target words are presented simultaneously via headphones similar to a dichotic listening procedure. In Experiment 2, stimulus onset asynchrony (SOA) was…

  7. Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study.

    PubMed

    Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale

    2017-04-01

    There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Auditory hallucinations and PTSD in ex-POWS.

    PubMed

    Crompton, Laura; Lahav, Yael; Solomon, Zahava

    2017-01-01

    Literature has suggested that auditory hallucinations might be prevalent in the general population and could be linked to the experience of trauma. This prospective study examines the prevalence of auditory hallucinations in trauma survivors and its association with posttraumatic stress disorder (PTSD) symptoms, over time. Former prisoners of war (ex-POWs) from the 1973 Yom Kippur War (n = 99) with and without PTSD and comparable veterans (n = 103) were assessed twice, in 1991 (T1) and 2003 (T2) in regard to auditory hallucinations and PTSD symptoms. Findings indicated that ex-POWs who suffered from PTSD reported higher levels of auditory hallucinations at T2 as well as increased hallucinations over time, compared to ex-POWs without PTSD and combatants who did not endure captivity. The relation between PTSD and auditory hallucinations was unidirectional, so that the PTSD overall score at T1 predicted an increase in auditory hallucinations between T1 and T2, but not vice versa. Assessing the role of PTSD clusters in predicting hallucinations revealed that intrusion symptoms had a unique contribution, compared to avoidance and hyperarousal symptoms. The findings suggest that auditory hallucinations might be a consequence of the posttraumatic reaction among veterans.

  9. Learning-dependent plasticity in human auditory cortex during appetitive operant conditioning.

    PubMed

    Puschmann, Sebastian; Brechmann, André; Thiel, Christiane M

    2013-11-01

    Animal experiments provide evidence that learning to associate an auditory stimulus with a reward causes representational changes in auditory cortex. However, most studies did not investigate the temporal formation of learning-dependent plasticity during the task but rather compared auditory cortex receptive fields before and after conditioning. We here present a functional magnetic resonance imaging study on learning-related plasticity in the human auditory cortex during operant appetitive conditioning. Participants had to learn to associate a specific category of frequency-modulated tones with a reward. Only participants who learned this association developed learning-dependent plasticity in left auditory cortex over the course of the experiment. No differential responses to reward predicting and nonreward predicting tones were found in auditory cortex in nonlearners. In addition, learners showed similar learning-induced differential responses to reward-predicting and nonreward-predicting tones in the ventral tegmental area and the nucleus accumbens, two core regions of the dopaminergic neurotransmitter system. This may indicate a dopaminergic influence on the formation of learning-dependent plasticity in auditory cortex, as it has been suggested by previous animal studies. Copyright © 2012 Wiley Periodicals, Inc.

  10. Eye-movements intervening between two successive sounds disrupt comparisons of auditory location

    PubMed Central

    Pavani, Francesco; Husain, Masud; Driver, Jon

    2008-01-01

    Summary Many studies have investigated how saccades may affect the internal representation of visual locations across eye-movements. Here we studied instead whether eye-movements can affect auditory spatial cognition. In two experiments, participants judged the relative azimuth (same/different) of two successive sounds presented from a horizontal array of loudspeakers, separated by a 2.5 secs delay. Eye-position was either held constant throughout the trial (being directed in a fixed manner to the far left or right of the loudspeaker array), or had to be shifted to the opposite side of the array during the retention delay between the two sounds, after the first sound but before the second. Loudspeakers were either visible (Experiment1) or occluded from sight (Experiment 2). In both cases, shifting eye-position during the silent delay-period affected auditory performance in the successive auditory comparison task, even though the auditory inputs to be judged were equivalent. Sensitivity (d′) for the auditory discrimination was disrupted, specifically when the second sound shifted in the opposite direction to the intervening eye-movement with respect to the first sound. These results indicate that eye-movements affect internal representation of auditory location. PMID:18566808

  11. Eye-movements intervening between two successive sounds disrupt comparisons of auditory location.

    PubMed

    Pavani, Francesco; Husain, Masud; Driver, Jon

    2008-08-01

    Many studies have investigated how saccades may affect the internal representation of visual locations across eye-movements. Here, we studied, instead, whether eye-movements can affect auditory spatial cognition. In two experiments, participants judged the relative azimuth (same/different) of two successive sounds presented from a horizontal array of loudspeakers, separated by a 2.5-s delay. Eye-position was either held constant throughout the trial (being directed in a fixed manner to the far left or right of the loudspeaker array) or had to be shifted to the opposite side of the array during the retention delay between the two sounds, after the first sound but before the second. Loudspeakers were either visible (Experiment 1) or occluded from sight (Experiment 2). In both cases, shifting eye-position during the silent delay-period affected auditory performance in thn the successive auditory comparison task, even though the auditory inputs to be judged were equivalent. Sensitivity (d') for the auditory discrimination was disrupted, specifically when the second sound shifted in the opposite direction to the intervening eye-movement with respect to the first sound. These results indicate that eye-movements affect internal representation of auditory location.

  12. Infant auditory short-term memory for non-linguistic sounds.

    PubMed

    Ross-Sheehy, Shannon; Newman, Rochelle S

    2015-04-01

    This research explores auditory short-term memory (STM) capacity for non-linguistic sounds in 10-month-old infants. Infants were presented with auditory streams composed of repeating sequences of either 2 or 4 unique instruments (e.g., flute, piano, cello; 350 or 700 ms in duration) followed by a 500-ms retention interval. These instrument sequences either stayed the same for every repetition (Constant) or changed by 1 instrument per sequence (Varying). Using the head-turn preference procedure, infant listening durations were recorded for each stream type (2- or 4-instrument sequences composed of 350- or 700-ms notes). Preference for the Varying stream was taken as evidence of auditory STM because detection of the novel instrument required memory for all of the instruments in a given sequence. Results demonstrate that infants listened longer to Varying streams for 2-instrument sequences, but not 4-instrument sequences, composed of 350-ms notes (Experiment 1), although this effect did not hold when note durations were increased to 700 ms (Experiment 2). Experiment 3 replicates and extends results from Experiments 1 and 2 and provides support for a duration account of capacity limits in infant auditory STM. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Auditory memory can be object based.

    PubMed

    Dyson, Benjamin J; Ishfaq, Feraz

    2008-04-01

    Identifying how memories are organized remains a fundamental issue in psychology. Previous work has shown that visual short-term memory is organized according to the object of origin, with participants being better at retrieving multiple pieces of information from the same object than from different objects. However, it is not yet clear whether similar memory structures are employed for other modalities, such as audition. Under analogous conditions in the auditory domain, we found that short-term memories for sound can also be organized according to object, with a same-object advantage being demonstrated for the retrieval of information in an auditory scene defined by two complex sounds overlapping in both space and time. Our results provide support for the notion of an auditory object, in addition to the continued identification of similar processing constraints across visual and auditory domains. The identification of modality-independent organizational principles of memory, such as object-based coding, suggests possible mechanisms by which the human processing system remembers multimodal experiences.

  14. Auditory perceptual simulation: Simulating speech rates or accents?

    PubMed

    Zhou, Peiyun; Christianson, Kiel

    2016-07-01

    When readers engage in Auditory Perceptual Simulation (APS) during silent reading, they mentally simulate characteristics of voices attributed to a particular speaker or a character depicted in the text. Previous research found that auditory perceptual simulation of a faster native English speaker during silent reading led to shorter reading times that auditory perceptual simulation of a slower non-native English speaker. Yet, it was uncertain whether this difference was triggered by the different speech rates of the speakers, or by the difficulty of simulating an unfamiliar accent. The current study investigates this question by comparing faster Indian-English speech and slower American-English speech in the auditory perceptual simulation paradigm. Analyses of reading times of individual words and the full sentence reveal that the auditory perceptual simulation effect again modulated reading rate, and auditory perceptual simulation of the faster Indian-English speech led to faster reading rates compared to auditory perceptual simulation of the slower American-English speech. The comparison between this experiment and the data from Zhou and Christianson (2016) demonstrate further that the "speakers'" speech rates, rather than the difficulty of simulating a non-native accent, is the primary mechanism underlying auditory perceptual simulation effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Selective entrainment of brain oscillations drives auditory perceptual organization.

    PubMed

    Costa-Faidella, Jordi; Sussman, Elyse S; Escera, Carles

    2017-10-01

    Perceptual sound organization supports our ability to make sense of the complex acoustic environment, to understand speech and to enjoy music. However, the neuronal mechanisms underlying the subjective experience of perceiving univocal auditory patterns that can be listened to, despite hearing all sounds in a scene, are poorly understood. We hereby investigated the manner in which competing sound organizations are simultaneously represented by specific brain activity patterns and the way attention and task demands prime the internal model generating the current percept. Using a selective attention task on ambiguous auditory stimulation coupled with EEG recordings, we found that the phase of low-frequency oscillatory activity dynamically tracks multiple sound organizations concurrently. However, whereas the representation of ignored sound patterns is circumscribed to auditory regions, large-scale oscillatory entrainment in auditory, sensory-motor and executive-control network areas reflects the active perceptual organization, thereby giving rise to the subjective experience of a unitary percept. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Retrosplenial cortex is required for the retrieval of remote memory for auditory cues.

    PubMed

    Todd, Travis P; Mehlman, Max L; Keene, Christopher S; DeAngeli, Nicole E; Bucci, David J

    2016-06-01

    The restrosplenial cortex (RSC) has a well-established role in contextual and spatial learning and memory, consistent with its known connectivity with visuo-spatial association areas. In contrast, RSC appears to have little involvement with delay fear conditioning to an auditory cue. However, all previous studies have examined the contribution of the RSC to recently acquired auditory fear memories. Since neocortical regions have been implicated in the permanent storage of remote memories, we examined the contribution of the RSC to remotely acquired auditory fear memories. In Experiment 1, retrieval of a remotely acquired auditory fear memory was impaired when permanent lesions (either electrolytic or neurotoxic) were made several weeks after initial conditioning. In Experiment 2, using a chemogenetic approach, we observed impairments in the retrieval of remote memory for an auditory cue when the RSC was temporarily inactivated during testing. In Experiment 3, after injection of a retrograde tracer into the RSC, we observed labeled cells in primary and secondary auditory cortices, as well as the claustrum, indicating that the RSC receives direct projections from auditory regions. Overall our results indicate the RSC has a critical role in the retrieval of remotely acquired auditory fear memories, and we suggest this is related to the quality of the memory, with less precise memories being RSC dependent. © 2016 Todd et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Auditory maturation in premature infants: a potential pitfall for early cochlear implantation.

    PubMed

    Hof, Janny R; Stokroos, Robert J; Wix, Eduard; Chenault, Mickey; Gelders, Els; Brokx, Jan

    2013-08-01

    To describe spontaneous hearing improvement in the first years of life of a number of preterm neonates relative to cochlear implant candidacy. Retrospective case study. Hearing levels of 14 preterm neonates (mean gestational age at birth = 29 weeks) referred after newborn hearing screening were evaluated. Initial hearing thresholds ranged from 40 to 105 dBHL (mean = 85 dBHL). Hearing level improved to normal levels for four neonates and to moderate levels for five, whereas for five neonates, no improvement in hearing thresholds was observed and cochlear implantation was recommended. Three of the four neonates in whom the hearing improved to normal levels were born prior to 28 weeks gestational age. Hearing improvement was mainly observed prior to a gestational age of 80 weeks. Delayed maturation of an immature auditory pathway might be an important reason for referral after newborn hearing screening in premature infants. Caution is advised regarding early cochlear implantation in preterm born infants. Audiological follow-ups until at least 80 weeks gestational age are therefore recommended. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  18. Spatial processing in the auditory cortex of the macaque monkey

    NASA Astrophysics Data System (ADS)

    Recanzone, Gregg H.

    2000-10-01

    The patterns of cortico-cortical and cortico-thalamic connections of auditory cortical areas in the rhesus monkey have led to the hypothesis that acoustic information is processed in series and in parallel in the primate auditory cortex. Recent physiological experiments in the behaving monkey indicate that the response properties of neurons in different cortical areas are both functionally distinct from each other, which is indicative of parallel processing, and functionally similar to each other, which is indicative of serial processing. Thus, auditory cortical processing may be similar to the serial and parallel "what" and "where" processing by the primate visual cortex. If "where" information is serially processed in the primate auditory cortex, neurons in cortical areas along this pathway should have progressively better spatial tuning properties. This prediction is supported by recent experiments that have shown that neurons in the caudomedial field have better spatial tuning properties than neurons in the primary auditory cortex. Neurons in the caudomedial field are also better than primary auditory cortex neurons at predicting the sound localization ability across different stimulus frequencies and bandwidths in both azimuth and elevation. These data support the hypothesis that the primate auditory cortex processes acoustic information in a serial and parallel manner and suggest that this may be a general cortical mechanism for sensory perception.

  19. Electrophysiological correlates of predictive coding of auditory location in the perception of natural audiovisual events.

    PubMed

    Stekelenburg, Jeroen J; Vroomen, Jean

    2012-01-01

    In many natural audiovisual events (e.g., a clap of the two hands), the visual signal precedes the sound and thus allows observers to predict when, where, and which sound will occur. Previous studies have reported that there are distinct neural correlates of temporal (when) versus phonetic/semantic (which) content on audiovisual integration. Here we examined the effect of visual prediction of auditory location (where) in audiovisual biological motion stimuli by varying the spatial congruency between the auditory and visual parts. Visual stimuli were presented centrally, whereas auditory stimuli were presented either centrally or at 90° azimuth. Typical sub-additive amplitude reductions (AV - V < A) were found for the auditory N1 and P2 for spatially congruent and incongruent conditions. The new finding is that this N1 suppression was greater for the spatially congruent stimuli. A very early audiovisual interaction was also found at 40-60 ms (P50) in the spatially congruent condition, while no effect of congruency was found on the suppression of the P2. This indicates that visual prediction of auditory location can be coded very early in auditory processing.

  20. Auditory temporal processing skills in musicians with dyslexia.

    PubMed

    Bishop-Liebler, Paula; Welch, Graham; Huss, Martina; Thomson, Jennifer M; Goswami, Usha

    2014-08-01

    The core cognitive difficulty in developmental dyslexia involves phonological processing, but adults and children with dyslexia also have sensory impairments. Impairments in basic auditory processing show particular links with phonological impairments, and recent studies with dyslexic children across languages reveal a relationship between auditory temporal processing and sensitivity to rhythmic timing and speech rhythm. As rhythm is explicit in music, musical training might have a beneficial effect on the auditory perception of acoustic cues to rhythm in dyslexia. Here we took advantage of the presence of musicians with and without dyslexia in musical conservatoires, comparing their auditory temporal processing abilities with those of dyslexic non-musicians matched for cognitive ability. Musicians with dyslexia showed equivalent auditory sensitivity to musicians without dyslexia and also showed equivalent rhythm perception. The data support the view that extensive rhythmic experience initiated during childhood (here in the form of music training) can affect basic auditory processing skills which are found to be deficient in individuals with dyslexia. Copyright © 2014 John Wiley & Sons, Ltd.

  1. On the balance of envelope and temporal fine structure in the encoding of speech in the early auditory system.

    PubMed

    Shamma, Shihab; Lorenzi, Christian

    2013-05-01

    There is much debate on how the spectrotemporal modulations of speech (or its spectrogram) are encoded in the responses of the auditory nerve, and whether speech intelligibility is best conveyed via the "envelope" (E) or "temporal fine-structure" (TFS) of the neural responses. Wide use of vocoders to resolve this question has commonly assumed that manipulating the amplitude-modulation and frequency-modulation components of the vocoded signal alters the relative importance of E or TFS encoding on the nerve, thus facilitating assessment of their relative importance to intelligibility. Here we argue that this assumption is incorrect, and that the vocoder approach is ineffective in differentially altering the neural E and TFS. In fact, we demonstrate using a simplified model of early auditory processing that both neural E and TFS encode the speech spectrogram with constant and comparable relative effectiveness regardless of the vocoder manipulations. However, we also show that neural TFS cues are less vulnerable than their E counterparts under severe noisy conditions, and hence should play a more prominent role in cochlear stimulation strategies.

  2. Evidence for auditory-visual processing specific to biological motion.

    PubMed

    Wuerger, Sophie M; Crocker-Buque, Alexander; Meyer, Georg F

    2012-01-01

    Biological motion is usually associated with highly correlated sensory signals from more than one modality: an approaching human walker will not only have a visual representation, namely an increase in the retinal size of the walker's image, but also a synchronous auditory signal since the walker's footsteps will grow louder. We investigated whether the multisensorial processing of biological motion is subject to different constraints than ecologically invalid motion. Observers were presented with a visual point-light walker and/or synchronised auditory footsteps; the walker was either approaching the observer (looming motion) or walking away (receding motion). A scrambled point-light walker served as a control. Observers were asked to detect the walker's motion as quickly and as accurately as possible. In Experiment 1 we tested whether the reaction time advantage due to redundant information in the auditory and visual modality is specific for biological motion. We found no evidence for such an effect: the reaction time reduction was accounted for by statistical facilitation for both biological and scrambled motion. In Experiment 2, we dissociated the auditory and visual information and tested whether inconsistent motion directions across the auditory and visual modality yield longer reaction times in comparison to consistent motion directions. Here we find an effect specific to biological motion: motion incongruency leads to longer reaction times only when the visual walker is intact and recognisable as a human figure. If the figure of the walker is abolished by scrambling, motion incongruency has no effect on the speed of the observers' judgments. In conjunction with Experiment 1 this suggests that conflicting auditory-visual motion information of an intact human walker leads to interference and thereby delaying the response.

  3. Auditory neuroimaging with fMRI and PET.

    PubMed

    Talavage, Thomas M; Gonzalez-Castillo, Javier; Scott, Sophie K

    2014-01-01

    For much of the past 30 years, investigations of auditory perception and language have been enhanced or even driven by the use of functional neuroimaging techniques that specialize in localization of central responses. Beginning with investigations using positron emission tomography (PET) and gradually shifting primarily to usage of functional magnetic resonance imaging (fMRI), auditory neuroimaging has greatly advanced our understanding of the organization and response properties of brain regions critical to the perception of and communication with the acoustic world in which we live. As the complexity of the questions being addressed has increased, the techniques, experiments and analyses applied have also become more nuanced and specialized. A brief review of the history of these investigations sets the stage for an overview and analysis of how these neuroimaging modalities are becoming ever more effective tools for understanding the auditory brain. We conclude with a brief discussion of open methodological issues as well as potential clinical applications for auditory neuroimaging. This article is part of a Special Issue entitled Human Auditory Neuroimaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Speech processing: from peripheral to hemispheric asymmetry of the auditory system.

    PubMed

    Lazard, Diane S; Collette, Jean-Louis; Perrot, Xavier

    2012-01-01

    Language processing from the cochlea to auditory association cortices shows side-dependent specificities with an apparent left hemispheric dominance. The aim of this article was to propose to nonspeech specialists a didactic review of two complementary theories about hemispheric asymmetry in speech processing. Starting from anatomico-physiological and clinical observations of auditory asymmetry and interhemispheric connections, this review then exposes behavioral (dichotic listening paradigm) as well as functional (functional magnetic resonance imaging and positron emission tomography) experiments that assessed hemispheric specialization for speech processing. Even though speech at an early phonological level is regarded as being processed bilaterally, a left-hemispheric dominance exists for higher-level processing. This asymmetry may arise from a segregation of the speech signal, broken apart within nonprimary auditory areas in two distinct temporal integration windows--a fast one on the left and a slower one on the right--modeled through the asymmetric sampling in time theory or a spectro-temporal trade-off, with a higher temporal resolution in the left hemisphere and a higher spectral resolution in the right hemisphere, modeled through the spectral/temporal resolution trade-off theory. Both theories deal with the concept that lower-order tuning principles for acoustic signal might drive higher-order organization for speech processing. However, the precise nature, mechanisms, and origin of speech processing asymmetry are still being debated. Finally, an example of hemispheric asymmetry alteration, which has direct clinical implications, is given through the case of auditory aging that mixes peripheral disorder and modifications of central processing. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  5. Intertrial auditory neural stability supports beat synchronization in preschoolers

    PubMed Central

    Carr, Kali Woodruff; Tierney, Adam; White-Schwoch, Travis; Kraus, Nina

    2016-01-01

    The ability to synchronize motor movements along with an auditory beat places stringent demands on the temporal processing and sensorimotor integration capabilities of the nervous system. Links between millisecond-level precision of auditory processing and the consistency of sensorimotor beat synchronization implicate fine auditory neural timing as a mechanism for forming stable internal representations of, and behavioral reactions to, sound. Here, for the first time, we demonstrate a systematic relationship between consistency of beat synchronization and trial-by-trial stability of subcortical speech processing in preschoolers (ages 3 and 4 years old). We conclude that beat synchronization might provide a useful window into millisecond-level neural precision for encoding sound in early childhood, when speech processing is especially important for language acquisition and development. PMID:26760457

  6. The Central Auditory Processing Kit[TM]. Book 1: Auditory Memory [and] Book 2: Auditory Discrimination, Auditory Closure, and Auditory Synthesis [and] Book 3: Auditory Figure-Ground, Auditory Cohesion, Auditory Binaural Integration, and Compensatory Strategies.

    ERIC Educational Resources Information Center

    Mokhemar, Mary Ann

    This kit for assessing central auditory processing disorders (CAPD), in children in grades 1 through 8 includes 3 books, 14 full-color cards with picture scenes, and a card depicting a phone key pad, all contained in a sturdy carrying case. The units in each of the three books correspond with auditory skill areas most commonly addressed in…

  7. Sonic morphology: Aesthetic dimensional auditory spatial awareness

    NASA Astrophysics Data System (ADS)

    Whitehouse, Martha M.

    The sound and ceramic sculpture installation, " Skirting the Edge: Experiences in Sound & Form," is an integration of art and science demonstrating the concept of sonic morphology. "Sonic morphology" is herein defined as aesthetic three-dimensional auditory spatial awareness. The exhibition explicates my empirical phenomenal observations that sound has a three-dimensional form. Composed of ceramic sculptures that allude to different social and physical situations, coupled with sound compositions that enhance and create a three-dimensional auditory and visual aesthetic experience (see accompanying DVD), the exhibition supports the research question, "What is the relationship between sound and form?" Precisely how people aurally experience three-dimensional space involves an integration of spatial properties, auditory perception, individual history, and cultural mores. People also utilize environmental sound events as a guide in social situations and in remembering their personal history, as well as a guide in moving through space. Aesthetically, sound affects the fascination, meaning, and attention one has within a particular space. Sonic morphology brings art forms such as a movie, video, sound composition, and musical performance into the cognitive scope by generating meaning from the link between the visual and auditory senses. This research examined sonic morphology as an extension of musique concrete, sound as object, originating in Pierre Schaeffer's work in the 1940s. Pointing, as John Cage did, to the corporeal three-dimensional experience of "all sound," I composed works that took their total form only through the perceiver-participant's participation in the exhibition. While contemporary artist Alvin Lucier creates artworks that draw attention to making sound visible, "Skirting the Edge" engages the perceiver-participant visually and aurally, leading to recognition of sonic morphology.

  8. Compression of auditory space during forward self-motion.

    PubMed

    Teramoto, Wataru; Sakamoto, Shuichi; Furune, Fumimasa; Gyoba, Jiro; Suzuki, Yôiti

    2012-01-01

    Spatial inputs from the auditory periphery can be changed with movements of the head or whole body relative to the sound source. Nevertheless, humans can perceive a stable auditory environment and appropriately react to a sound source. This suggests that the inputs are reinterpreted in the brain, while being integrated with information on the movements. Little is known, however, about how these movements modulate auditory perceptual processing. Here, we investigate the effect of the linear acceleration on auditory space representation. Participants were passively transported forward/backward at constant accelerations using a robotic wheelchair. An array of loudspeakers was aligned parallel to the motion direction along a wall to the right of the listener. A short noise burst was presented during the self-motion from one of the loudspeakers when the listener's physical coronal plane reached the location of one of the speakers (null point). In Experiments 1 and 2, the participants indicated which direction the sound was presented, forward or backward relative to their subjective coronal plane. The results showed that the sound position aligned with the subjective coronal plane was displaced ahead of the null point only during forward self-motion and that the magnitude of the displacement increased with increasing the acceleration. Experiment 3 investigated the structure of the auditory space in the traveling direction during forward self-motion. The sounds were presented at various distances from the null point. The participants indicated the perceived sound location by pointing a rod. All the sounds that were actually located in the traveling direction were perceived as being biased towards the null point. These results suggest a distortion of the auditory space in the direction of movement during forward self-motion. The underlying mechanism might involve anticipatory spatial shifts in the auditory receptive field locations driven by afferent signals from

  9. Developmental Trends in Auditory Processing Can Provide Early Predictions of Language Acquisition in Young Infants

    ERIC Educational Resources Information Center

    Chonchaiya, Weerasak; Tardif, Twila; Mai, Xiaoqin; Xu, Lin; Li, Mingyan; Kaciroti, Niko; Kileny, Paul R.; Shao, Jie; Lozoff, Betsy

    2013-01-01

    Auditory processing capabilities at the subcortical level have been hypothesized to impact an individual's development of both language and reading abilities. The present study examined whether auditory processing capabilities relate to language development in healthy 9-month-old infants. Participants were 71 infants (31 boys and 40 girls) with…

  10. Value of intracochlear electrically evoked auditory brainstem response after cochlear implantation in patients with narrow internal auditory canal.

    PubMed

    Song, Mee Hyun; Bae, Mi Ran; Kim, Hee Nam; Lee, Won-Sang; Yang, Won Sun; Choi, Jae Young

    2010-08-01

    Cochlear implantation in patients with narrow internal auditory canal (IAC) can result in variable outcomes; however, preoperative evaluations have limitations in accurately predicting outcomes. In this study, we analyzed the outcomes of cochlear implantation in patients with narrow IAC and correlated the intracochlear electrically evoked auditory brainstem response (EABR) findings to postoperative performance to determine the prognostic significance of intracochlear EABR. Retrospective case series at a tertiary hospital. Thirteen profoundly deaf patients with narrow IAC who received cochlear implantation from 2002 to 2008 were included in this study. Postoperative performance was evaluated after at least 12 months of follow-up, and postoperative intracochlear EABR was measured to determine its correlation with outcome. The clinical significance of electrically evoked compound action potential (ECAP) was also analyzed. Patients with narrow IAC showed postoperative auditory performances ranging from CAP 0 to 4 after cochlear implantation. Intracochlear EABR measured postoperatively demonstrated prognostic value in the prediction of long-term outcomes, whereas ECAP measurements failed to show a significant correlation with outcome. Consistent with the advantages of intracochlear EABR over extracochlear EABR, this study demonstrates that intracochlear EABR has prognostic significance in predicting long-term outcomes in patients with narrow IAC. Intracochlear EABR measured either intraoperatively or in the early postoperative period may play an important role in deciding whether to continue with auditory rehabilitation using a cochlear implant or to switch to an auditory brainstem implant so as not to miss the optimal timing for language development.

  11. Sensory Coding and Sensitivity to Local Estrogens Shift during Critical Period Milestones in the Auditory Cortex of Male Songbirds

    PubMed Central

    2017-01-01

    Abstract Vocal learning occurs during an experience-dependent, age-limited critical period early in development. In songbirds, vocal learning begins when presinging birds acquire an auditory memory of their tutor’s song (sensory phase) followed by the onset of vocal production and refinement (sensorimotor phase). Hearing is necessary throughout the vocal learning critical period. One key brain area for songbird auditory processing is the caudomedial nidopallium (NCM), a telencephalic region analogous to mammalian auditory cortex. Despite NCM’s established role in auditory processing, it is unclear how the response properties of NCM neurons may shift across development. Moreover, communication processing in NCM is rapidly enhanced by local 17β-estradiol (E2) administration in adult songbirds; however, the function of dynamically fluctuating E2 in NCM during development is unknown. We collected bilateral extracellular recordings in NCM coupled with reverse microdialysis delivery in juvenile male zebra finches (Taeniopygia guttata) across the vocal learning critical period. We found that auditory-evoked activity and coding accuracy were substantially higher in the NCM of sensory-aged animals compared to sensorimotor-aged animals. Further, we observed both age-dependent and lateralized effects of local E2 administration on sensory processing. In sensory-aged subjects, E2 decreased auditory responsiveness across both hemispheres; however, a similar trend was observed in age-matched control subjects. In sensorimotor-aged subjects, E2 dampened auditory responsiveness in left NCM but enhanced auditory responsiveness in right NCM. Our results reveal an age-dependent physiological shift in auditory processing and lateralized E2 sensitivity that each precisely track a key neural “switch point” from purely sensory (pre-singing) to sensorimotor (singing) in developing songbirds. PMID:29255797

  12. Sensory Coding and Sensitivity to Local Estrogens Shift during Critical Period Milestones in the Auditory Cortex of Male Songbirds.

    PubMed

    Vahaba, Daniel M; Macedo-Lima, Matheus; Remage-Healey, Luke

    2017-01-01

    Vocal learning occurs during an experience-dependent, age-limited critical period early in development. In songbirds, vocal learning begins when presinging birds acquire an auditory memory of their tutor's song (sensory phase) followed by the onset of vocal production and refinement (sensorimotor phase). Hearing is necessary throughout the vocal learning critical period. One key brain area for songbird auditory processing is the caudomedial nidopallium (NCM), a telencephalic region analogous to mammalian auditory cortex. Despite NCM's established role in auditory processing, it is unclear how the response properties of NCM neurons may shift across development. Moreover, communication processing in NCM is rapidly enhanced by local 17β-estradiol (E2) administration in adult songbirds; however, the function of dynamically fluctuating E 2 in NCM during development is unknown. We collected bilateral extracellular recordings in NCM coupled with reverse microdialysis delivery in juvenile male zebra finches ( Taeniopygia guttata ) across the vocal learning critical period. We found that auditory-evoked activity and coding accuracy were substantially higher in the NCM of sensory-aged animals compared to sensorimotor-aged animals. Further, we observed both age-dependent and lateralized effects of local E 2 administration on sensory processing. In sensory-aged subjects, E 2 decreased auditory responsiveness across both hemispheres; however, a similar trend was observed in age-matched control subjects. In sensorimotor-aged subjects, E 2 dampened auditory responsiveness in left NCM but enhanced auditory responsiveness in right NCM. Our results reveal an age-dependent physiological shift in auditory processing and lateralized E 2 sensitivity that each precisely track a key neural "switch point" from purely sensory (pre-singing) to sensorimotor (singing) in developing songbirds.

  13. Threatening auditory hallucinations and Cotard syndrome in Parkinson disease.

    PubMed

    Factor, Stewart A; Molho, Eric S

    2004-01-01

    Psychotic symptoms are commonly reported in patients with Parkinson disease (PD). In particular, patients experience nonthreatening visual hallucinations that can occur with insight (so called hallucinosis) or without. Auditory hallucinations are uncommon, and schizophrenialike symptoms such as pejorative and threatening auditory hallucinations and delusions that are persecutory, referential, somatic, religious, or grandiose have rarely been reported. The authors present 2 PD patients who experienced threatening auditory hallucinations, without visual hallucinations, and schizophrenialike delusions with detailed description of the clinical phenomenology including 1 patient with Cotard syndrome.

  14. Visual form predictions facilitate auditory processing at the N1.

    PubMed

    Paris, Tim; Kim, Jeesun; Davis, Chris

    2017-02-20

    Auditory-visual (AV) events often involve a leading visual cue (e.g. auditory-visual speech) that allows the perceiver to generate predictions about the upcoming auditory event. Electrophysiological evidence suggests that when an auditory event is predicted, processing is sped up, i.e., the N1 component of the ERP occurs earlier (N1 facilitation). However, it is not clear (1) whether N1 facilitation is based specifically on predictive rather than multisensory integration and (2) which particular properties of the visual cue it is based on. The current experiment used artificial AV stimuli in which visual cues predicted but did not co-occur with auditory cues. Visual form cues (high and low salience) and the auditory-visual pairing were manipulated so that auditory predictions could be based on form and timing or on timing only. The results showed that N1 facilitation occurred only for combined form and temporal predictions. These results suggest that faster auditory processing (as indicated by N1 facilitation) is based on predictive processing generated by a visual cue that clearly predicts both what and when the auditory stimulus will occur. Copyright © 2016. Published by Elsevier Ltd.

  15. Abnormal auditory forward masking pattern in the brainstem response of individuals with Asperger syndrome

    PubMed Central

    Källstrand, Johan; Olsson, Olle; Nehlstedt, Sara Fristedt; Sköld, Mia Ling; Nielzén, Sören

    2010-01-01

    Abnormal auditory information processing has been reported in individuals with autism spectrum disorders (ASD). In the present study auditory processing was investigated by recording auditory brainstem responses (ABRs) elicited by forward masking in adults diagnosed with Asperger syndrome (AS). Sixteen AS subjects were included in the forward masking experiment and compared to three control groups consisting of healthy individuals (n = 16), schizophrenic patients (n = 16) and attention deficit hyperactivity disorder patients (n = 16), respectively, of matching age and gender. The results showed that the AS subjects exhibited abnormally low activity in the early part of their ABRs that distinctly separated them from the three control groups. Specifically, wave III amplitudes were significantly lower in the AS group than for all the control groups in the forward masking condition (P < 0.005), which was not the case in the baseline condition. Thus, electrophysiological measurements of ABRs to complex sound stimuli (eg, forward masking) may lead to a better understanding of the underlying neurophysiology of AS. Future studies may further point to specific ABR characteristics in AS individuals that separate them from individuals diagnosed with other neurodevelopmental diseases. PMID:20628629

  16. The Role of the Auditory Brainstem in Processing Musically Relevant Pitch

    PubMed Central

    Bidelman, Gavin M.

    2013-01-01

    Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority) are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners’ perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain. PMID:23717294

  17. Habituation deficit of auditory N100m in patients with fibromyalgia.

    PubMed

    Choi, W; Lim, M; Kim, J S; Chung, C K

    2016-11-01

    Habituation refers to the brain's inhibitory mechanism against sensory overload and its brain correlate has been investigated in the form of a well-defined event-related potential, N100 (N1). Fibromyalgia is an extensively described chronic pain syndrome with concurrent manifestations of reduced tolerance and enhanced sensation of painful and non-painful stimulation, suggesting an association with central amplification of all sensory domains. Among diverse sensory modalities, we utilized repetitive auditory stimulation to explore the anomalous sensory information processing in fibromyalgia as evidenced by N1 habituation. Auditory N1 was assessed in 19 fibromyalgia patients and age-, education- and gender-matched 21 healthy control subjects under the duration-deviant passive oddball paradigm and magnetoencephalography recording. The brain signal of the first standard stimulus (following each deviant) and last standard stimulus (preceding each deviant) were analysed to identify N1 responses. N1 amplitude difference and adjusted amplitude ratio were computed as habituation indices. Fibromyalgia patients showed lower N1 amplitude difference (left hemisphere: p = 0.004; right hemisphere: p = 0.034) and adjusted N1 amplitude ratio (left hemisphere: p = 0.001; right hemisphere: p = 0.052) than healthy control subjects, indicating deficient auditory habituation. Further, augmented N1 amplitude pattern (p = 0.029) during the stimulus repetition was observed in fibromyalgia patients. Fibromyalgia patients failed to demonstrate auditory N1 habituation to repetitively presenting stimuli, which indicates their compromised early auditory information processing. Our findings provide neurophysiological evidence of inhibitory failure and cortical augmentation in fibromyalgia. WHAT'S ALREADY KNOWN ABOUT THIS TOPIC?: Fibromyalgia has been associated with altered filtering of irrelevant somatosensory input. However, whether this abnormality can extend to the auditory sensory

  18. Theoretical Limitations on Functional Imaging Resolution in Auditory Cortex

    PubMed Central

    Chen, Thomas L.; Watkins, Paul V.; Barbour, Dennis L.

    2010-01-01

    Functional imaging can reveal detailed organizational structure in cerebral cortical areas, but neuronal response features and local neural interconnectivity can influence the resulting images, possibly limiting the inferences that can be drawn about neural function. Discerning the fundamental principles of organizational structure in the auditory cortex of multiple species has been somewhat challenging historically both with functional imaging and with electrophysiology. A possible limitation affecting any methodology using pooled neuronal measures may be the relative distribution of response selectivity throughout the population of auditory cortex neurons. One neuronal response type inherited from the cochlea, for example, exhibits a receptive field that increases in size (i.e., decreases in selectivity) at higher stimulus intensities. Even though these neurons appear to represent a minority of auditory cortex neurons, they are likely to contribute disproportionately to the activity detected in functional images, especially if intense sounds are used for stimulation. To evaluate the potential influence of neuronal subpopulations upon functional images of primary auditory cortex, a model array representing cortical neurons was probed with virtual imaging experiments under various assumptions about the local circuit organization. As expected, different neuronal subpopulations were activated preferentially under different stimulus conditions. In fact, stimulus protocols that can preferentially excite selective neurons, resulting in a relatively sparse activation map, have the potential to improve the effective resolution of functional auditory cortical images. These experimental results also make predictions about auditory cortex organization that can be tested with refined functional imaging experiments. PMID:20079343

  19. You can't stop the music: reduced auditory alpha power and coupling between auditory and memory regions facilitate the illusory perception of music during noise.

    PubMed

    Müller, Nadia; Keil, Julian; Obleser, Jonas; Schulz, Hannah; Grunwald, Thomas; Bernays, René-Ludwig; Huppertz, Hans-Jürgen; Weisz, Nathan

    2013-10-01

    Our brain has the capacity of providing an experience of hearing even in the absence of auditory stimulation. This can be seen as illusory conscious perception. While increasing evidence postulates that conscious perception requires specific brain states that systematically relate to specific patterns of oscillatory activity, the relationship between auditory illusions and oscillatory activity remains mostly unexplained. To investigate this we recorded brain activity with magnetoencephalography and collected intracranial data from epilepsy patients while participants listened to familiar as well as unknown music that was partly replaced by sections of pink noise. We hypothesized that participants have a stronger experience of hearing music throughout noise when the noise sections are embedded in familiar compared to unfamiliar music. This was supported by the behavioral results showing that participants rated the perception of music during noise as stronger when noise was presented in a familiar context. Time-frequency data show that the illusory perception of music is associated with a decrease in auditory alpha power pointing to increased auditory cortex excitability. Furthermore, the right auditory cortex is concurrently synchronized with the medial temporal lobe, putatively mediating memory aspects associated with the music illusion. We thus assume that neuronal activity in the highly excitable auditory cortex is shaped through extensive communication between the auditory cortex and the medial temporal lobe, thereby generating the illusion of hearing music during noise. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Effect of neonatal asphyxia on the impairment of the auditory pathway by recording auditory brainstem responses in newborn piglets: a new experimentation model to study the perinatal hypoxic-ischemic damage on the auditory system.

    PubMed

    Alvarez, Francisco Jose; Revuelta, Miren; Santaolalla, Francisco; Alvarez, Antonia; Lafuente, Hector; Arteaga, Olatz; Alonso-Alconada, Daniel; Sanchez-del-Rey, Ana; Hilario, Enrique; Martinez-Ibargüen, Agustin

    2015-01-01

    Hypoxia-ischemia (HI) is a major perinatal problem that results in severe damage to the brain impairing the normal development of the auditory system. The purpose of the present study is to study the effect of perinatal asphyxia on the auditory pathway by recording auditory brain responses in a novel animal experimentation model in newborn piglets. Hypoxia-ischemia was induced to 1.3 day-old piglets by clamping 30 minutes both carotid arteries by vascular occluders and lowering the fraction of inspired oxygen. We compared the Auditory Brain Responses (ABRs) of newborn piglets exposed to acute hypoxia/ischemia (n = 6) and a control group with no such exposure (n = 10). ABRs were recorded for both ears before the start of the experiment (baseline), after 30 minutes of HI injury, and every 30 minutes during 6 h after the HI injury. Auditory brain responses were altered during the hypoxic-ischemic insult but recovered 30-60 minutes later. Hypoxia/ischemia seemed to induce auditory functional damage by increasing I-V latencies and decreasing wave I, III and V amplitudes, although differences were not significant. The described experimental model of hypoxia-ischemia in newborn piglets may be useful for studying the effect of perinatal asphyxia on the impairment of the auditory pathway.

  1. Early Intervention.

    ERIC Educational Resources Information Center

    Nathanson, Jeanne H., Ed.

    1992-01-01

    This theme issue focuses on early intervention. The four articles presented on this theme are: (1) "Deaf Infants, Hearing Mothers: A Research Report" (Kathryn P. Meadow-Orlans, and others), reporting findings on effects of auditory loss on early development; (2) "Maintaining Involvement of Inner City Families in Early Intervention Programs through…

  2. Maternal Drinking Problems and Children's Auditory, Intellectual, and Linguistic Functioning.

    ERIC Educational Resources Information Center

    Czarnecki, Donna M.; And Others

    This study tested the hypothesis that maternal drinking early in pregnancy affects the development of the child's central auditory processing. A follow-up study of 167 children took place 6 years after their mothers participated in a survey concerning health and drinking practices during the early stages of pregnancy. Indications of problem…

  3. Auditory environmental context affects visual distance perception.

    PubMed

    Etchemendy, Pablo E; Abregú, Ezequiel; Calcagno, Esteban R; Eguia, Manuel C; Vechiatti, Nilda; Iasi, Federico; Vergara, Ramiro O

    2017-08-03

    In this article, we show that visual distance perception (VDP) is influenced by the auditory environmental context through reverberation-related cues. We performed two VDP experiments in two dark rooms with extremely different reverberation times: an anechoic chamber and a reverberant room. Subjects assigned to the reverberant room perceived the targets farther than subjects assigned to the anechoic chamber. Also, we found a positive correlation between the maximum perceived distance and the auditorily perceived room size. We next performed a second experiment in which the same subjects of Experiment 1 were interchanged between rooms. We found that subjects preserved the responses from the previous experiment provided they were compatible with the present perception of the environment; if not, perceived distance was biased towards the auditorily perceived boundaries of the room. Results of both experiments show that the auditory environment can influence VDP, presumably through reverberation cues related to the perception of room size.

  4. Is auditory perceptual timing a core deficit of developmental coordination disorder?

    PubMed

    Trainor, Laurel J; Chang, Andrew; Cairney, John; Li, Yao-Chuen

    2018-05-09

    Time is an essential dimension for perceiving and processing auditory events, and for planning and producing motor behaviors. Developmental coordination disorder (DCD) is a neurodevelopmental disorder affecting 5-6% of children that is characterized by deficits in motor skills. Studies show that children with DCD have motor timing and sensorimotor timing deficits. We suggest that auditory perceptual timing deficits may also be core characteristics of DCD. This idea is consistent with evidence from several domains, (1) motor-related brain regions are often involved in auditory timing process; (2) DCD has high comorbidity with dyslexia and attention deficit hyperactivity, which are known to be associated with auditory timing deficits; (3) a few studies report deficits in auditory-motor timing among children with DCD; and (4) our preliminary behavioral and neuroimaging results show that children with DCD at age 6 and 7 have deficits in auditory time discrimination compared to typically developing children. We propose directions for investigating auditory perceptual timing processing in DCD that use various behavioral and neuroimaging approaches. From a clinical perspective, research findings can potentially benefit our understanding of the etiology of DCD, identify early biomarkers of DCD, and can be used to develop evidence-based interventions for DCD involving auditory-motor training. © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of The New York Academy of Sciences.

  5. Auditory perception of a human walker.

    PubMed

    Cottrell, David; Campbell, Megan E J

    2014-01-01

    When one hears footsteps in the hall, one is able to instantly recognise it as a person: this is an everyday example of auditory biological motion perception. Despite the familiarity of this experience, research into this phenomenon is in its infancy compared with visual biological motion perception. Here, two experiments explored sensitivity to, and recognition of, auditory stimuli of biological and nonbiological origin. We hypothesised that the cadence of a walker gives rise to a temporal pattern of impact sounds that facilitates the recognition of human motion from auditory stimuli alone. First a series of detection tasks compared sensitivity with three carefully matched impact sounds: footsteps, a ball bouncing, and drumbeats. Unexpectedly, participants were no more sensitive to footsteps than to impact sounds of nonbiological origin. In the second experiment participants made discriminations between pairs of the same stimuli, in a series of recognition tasks in which the temporal pattern of impact sounds was manipulated to be either that of a walker or the pattern more typical of the source event (a ball bouncing or a drumbeat). Under these conditions, there was evidence that both temporal and nontemporal cues were important in recognising theses stimuli. It is proposed that the interval between footsteps, which reflects a walker's cadence, is a cue for the recognition of the sounds of a human walking.

  6. Egocentric and allocentric representations in auditory cortex

    PubMed Central

    Brimijoin, W. Owen; Bizley, Jennifer K.

    2017-01-01

    A key function of the brain is to provide a stable representation of an object’s location in the world. In hearing, sound azimuth and elevation are encoded by neurons throughout the auditory system, and auditory cortex is necessary for sound localization. However, the coordinate frame in which neurons represent sound space remains undefined: classical spatial receptive fields in head-fixed subjects can be explained either by sensitivity to sound source location relative to the head (egocentric) or relative to the world (allocentric encoding). This coordinate frame ambiguity can be resolved by studying freely moving subjects; here we recorded spatial receptive fields in the auditory cortex of freely moving ferrets. We found that most spatially tuned neurons represented sound source location relative to the head across changes in head position and direction. In addition, we also recorded a small number of neurons in which sound location was represented in a world-centered coordinate frame. We used measurements of spatial tuning across changes in head position and direction to explore the influence of sound source distance and speed of head movement on auditory cortical activity and spatial tuning. Modulation depth of spatial tuning increased with distance for egocentric but not allocentric units, whereas, for both populations, modulation was stronger at faster movement speeds. Our findings suggest that early auditory cortex primarily represents sound source location relative to ourselves but that a minority of cells can represent sound location in the world independent of our own position. PMID:28617796

  7. EXEL; Experience for Children in Learning. Parent-Directed Activities to Develop: Oral Expression, Visual Discrimination, Auditory Discrimination, Motor Coordination.

    ERIC Educational Resources Information Center

    Behrmann, Polly; Millman, Joan

    The activities collected in this handbook are planned for parents to use with their children in a learning experience. They can also be used in the classroom. Sections contain games designed to develop visual discrimination, auditory discrimination, motor coordination and oral expression. An objective is given for each game, and directions for…

  8. Auditory Neuroimaging with fMRI and PET

    PubMed Central

    Talavage, Thomas M.; Gonzalez-Castillo, Javier; Scott, Sophie K.

    2013-01-01

    For much of the past 30 years, investigations of auditory perception and language have been enhanced or even driven by the use of functional neuroimaging techniques that specialize in localization of central responses. Beginning with investigations using positron emission tomography (PET) and gradually shifting primarily to usage of functional magnetic resonance imaging (fMRI), auditory neuroimaging has greatly advanced our understanding of the organization and response properties of brain regions critical to the perception of and communication with the acoustic world in which we live. As the complexity of the questions being addressed has increased, the techniques, experiments and analyses applied have also become more nuanced and specialized. A brief review of the history of these investigations sets the stage for an overview and analysis of how these neuroimaging modalities are becoming ever more effective tools for understanding the auditory brain. We conclude with a brief discussion of open methodological issues as well as potential clinical applications for auditory neuroimaging. PMID:24076424

  9. Seeing the Song: Left Auditory Structures May Track Auditory-Visual Dynamic Alignment

    PubMed Central

    Mossbridge, Julia A.; Grabowecky, Marcia; Suzuki, Satoru

    2013-01-01

    Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements), it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization) across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR) was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment. PMID:24194873

  10. Auditory Brainstem Implantation in Chinese Patients With Neurofibromatosis Type II: The Hong Kong Experience.

    PubMed

    Thong, Jiun Fong; Sung, John K K; Wong, Terence K C; Tong, Michael C F

    2016-08-01

    To describe our experience and outcomes of auditory brainstem implantation (ABI) in Chinese patients with Neurofibromatosis Type II (NF2). Retrospective case review. Tertiary referral center. Patients with NF2 who received ABIs. Between 1997 and 2014, eight patients with NF2 received 9 ABIs after translabyrinthine removal of their vestibular schwannomas. One patient did not have auditory response using the ABI after activation. Environmental sounds could be differentiated by six (75%) patients after 6 months of ABI use (mean score 46% [range 28-60%]), and by five (63%) patients after 1 year (mean score 57% [range 36-76%]) and 2 years of ABI use (mean score 48% [range 24-76%]). Closed-set word identification was possible in four (50%) patients after 6 months (mean score 39% [range 12-72%]), 1 year (mean score 68% [range 48-92%]), and 2 years of ABI use (mean score 62% [range 28-100%]). No patient demonstrated open-set sentence recognition in quiet in the ABI-only condition. However, the use of ABI together with lip-reading conferred an improvement over lip-reading alone in open-set sentence recognition scores in two (25%) patients after 6 months of ABI use (mean improvement 46%), and five (63%) patients after 1 year (mean improvement 25%) and 2 years of ABI use (mean improvement 28%). At 2 years postoperatively, three (38%) patients remained ABI users. This is the only published study to date examining ABI outcomes in Cantonese-speaking Chinese NF2 patients and the data seems to show poorer outcomes compared with English-speaking and other nontonal language-speaking NF2 patients. Environmental sound awareness and lip-reading enhancement are the main benefits observed in our patients. More work is needed to improve auditory implant speech-processing strategies for tonal languages and these advancements may yield better speech perception outcomes in the future.

  11. Control of Biosonar Behavior by the Auditory Cortex

    DTIC Science & Technology

    1988-11-28

    TITLE (include Security Classification) Control of Biosonar Behavior by the Auditory Cortex 12. PERSONAL AUTHOR(S) Nobuo Suga and Stephen Gaioni 13a...NOTATION 17. COSATI CODES IS SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP1 SUB-GROUP - biosonar ; echolocation...SLesion experiments were conducted to examine whether the functional organization of the mustached bat’s auditory cortex is related to biosonar

  12. Evaluation of an imputed pitch velocity model of the auditory kappa effect.

    PubMed

    Henry, Molly J; McAuley, J Devin

    2009-04-01

    Three experiments evaluated an imputed pitch velocity model of the auditory kappa effect. Listeners heard 3-tone sequences and judged the timing of the middle (target) tone relative to the timing of the 1st and 3rd (bounding) tones. Experiment 1 held pitch constant but varied the time (T) interval between bounding tones (T = 728, 1,000, or 1,600 ms) in order to establish baseline performance levels for the 3 values of T. Experiments 2 and 3 combined the values of T tested in Experiment 1 with a pitch manipulation in order to create fast (8 semitones/728 ms), medium (8 semitones/1,000 ms), and slow (8 semitones/1,600 ms) velocity conditions. Consistent with an auditory motion hypothesis, distortions in perceived timing were larger for fast than for slow velocity conditions for both ascending sequences (Experiment 2) and descending sequences (Experiment 3). Overall, results supported the proposed imputed pitch velocity model of the auditory kappa effect. (c) 2009 APA, all rights reserved.

  13. The harmonic organization of auditory cortex

    PubMed Central

    Wang, Xiaoqin

    2013-01-01

    A fundamental structure of sounds encountered in the natural environment is the harmonicity. Harmonicity is an essential component of music found in all cultures. It is also a unique feature of vocal communication sounds such as human speech and animal vocalizations. Harmonics in sounds are produced by a variety of acoustic generators and reflectors in the natural environment, including vocal apparatuses of humans and animal species as well as music instruments of many types. We live in an acoustic world full of harmonicity. Given the widespread existence of the harmonicity in many aspects of the hearing environment, it is natural to expect that it be reflected in the evolution and development of the auditory systems of both humans and animals, in particular the auditory cortex. Recent neuroimaging and neurophysiology experiments have identified regions of non-primary auditory cortex in humans and non-human primates that have selective responses to harmonic pitches. Accumulating evidence has also shown that neurons in many regions of the auditory cortex exhibit characteristic responses to harmonically related frequencies beyond the range of pitch. Together, these findings suggest that a fundamental organizational principle of auditory cortex is based on the harmonicity. Such an organization likely plays an important role in music processing by the brain. It may also form the basis of the preference for particular classes of music and voice sounds. PMID:24381544

  14. The harmonic organization of auditory cortex.

    PubMed

    Wang, Xiaoqin

    2013-12-17

    A fundamental structure of sounds encountered in the natural environment is the harmonicity. Harmonicity is an essential component of music found in all cultures. It is also a unique feature of vocal communication sounds such as human speech and animal vocalizations. Harmonics in sounds are produced by a variety of acoustic generators and reflectors in the natural environment, including vocal apparatuses of humans and animal species as well as music instruments of many types. We live in an acoustic world full of harmonicity. Given the widespread existence of the harmonicity in many aspects of the hearing environment, it is natural to expect that it be reflected in the evolution and development of the auditory systems of both humans and animals, in particular the auditory cortex. Recent neuroimaging and neurophysiology experiments have identified regions of non-primary auditory cortex in humans and non-human primates that have selective responses to harmonic pitches. Accumulating evidence has also shown that neurons in many regions of the auditory cortex exhibit characteristic responses to harmonically related frequencies beyond the range of pitch. Together, these findings suggest that a fundamental organizational principle of auditory cortex is based on the harmonicity. Such an organization likely plays an important role in music processing by the brain. It may also form the basis of the preference for particular classes of music and voice sounds.

  15. The Complex Pre-Execution Stage of Auditory Cognitive Control: ERPs Evidence from Stroop Tasks

    PubMed Central

    Yu, Bo; Wang, Xunda; Ma, Lin; Li, Liang; Li, Haifeng

    2015-01-01

    Cognitive control has been extensively studied from Event-Related Potential (ERP) point of view in visual modality using Stroop paradigms. Little work has been done in auditory Stroop paradigms, and inconsistent conclusions have been reported, especially on the conflict detection stage of cognitive control. This study investigated the early ERP components in an auditory Stroop paradigm, during which participants were asked to identify the volume of spoken words and ignore the word meanings. A series of significant ERP components were revealed that distinguished incongruent and congruent trials: two declined negative polarity waves (the N1 and the N2) and three declined positive polarity wave (the P1, the P2 and the P3) over the fronto-central area for the incongruent trials. These early ERP components imply that both a perceptual stage and an identification stage exist in the auditory Stroop effect. A 3-stage cognitive control model was thus proposed for a more detailed description of the human cognitive control mechanism in the auditory Stroop tasks. PMID:26368570

  16. [Early auditory training of children with auditory deficiencies].

    PubMed

    Herman, N

    1988-01-01

    The author insists on the importance of an early diagnosis and hearing training of the young deaf child. She shows some aspects of the new possibilities of technology in the approach of the deaf child by hearing- and speech training.

  17. An association between auditory-visual synchrony processing and reading comprehension: Behavioral and electrophysiological evidence

    PubMed Central

    Mossbridge, Julia; Zweig, Jacob; Grabowecky, Marcia; Suzuki, Satoru

    2016-01-01

    The perceptual system integrates synchronized auditory-visual signals in part to promote individuation of objects in cluttered environments. The processing of auditory-visual synchrony may more generally contribute to cognition by synchronizing internally generated multimodal signals. Reading is a prime example because the ability to synchronize internal phonological and/or lexical processing with visual orthographic processing may facilitate encoding of words and meanings. Consistent with this possibility, developmental and clinical research has suggested a link between reading performance and the ability to compare visual spatial/temporal patterns with auditory temporal patterns. Here, we provide converging behavioral and electrophysiological evidence suggesting that greater behavioral ability to judge auditory-visual synchrony (Experiment 1) and greater sensitivity of an electrophysiological marker of auditory-visual synchrony processing (Experiment 2) both predict superior reading comprehension performance, accounting for 16% and 25% of the variance, respectively. These results support the idea that the mechanisms that detect auditory-visual synchrony contribute to reading comprehension. PMID:28129060

  18. An Association between Auditory-Visual Synchrony Processing and Reading Comprehension: Behavioral and Electrophysiological Evidence.

    PubMed

    Mossbridge, Julia; Zweig, Jacob; Grabowecky, Marcia; Suzuki, Satoru

    2017-03-01

    The perceptual system integrates synchronized auditory-visual signals in part to promote individuation of objects in cluttered environments. The processing of auditory-visual synchrony may more generally contribute to cognition by synchronizing internally generated multimodal signals. Reading is a prime example because the ability to synchronize internal phonological and/or lexical processing with visual orthographic processing may facilitate encoding of words and meanings. Consistent with this possibility, developmental and clinical research has suggested a link between reading performance and the ability to compare visual spatial/temporal patterns with auditory temporal patterns. Here, we provide converging behavioral and electrophysiological evidence suggesting that greater behavioral ability to judge auditory-visual synchrony (Experiment 1) and greater sensitivity of an electrophysiological marker of auditory-visual synchrony processing (Experiment 2) both predict superior reading comprehension performance, accounting for 16% and 25% of the variance, respectively. These results support the idea that the mechanisms that detect auditory-visual synchrony contribute to reading comprehension.

  19. Brain bases for auditory stimulus-driven figure-ground segregation.

    PubMed

    Teki, Sundeep; Chait, Maria; Kumar, Sukhbinder; von Kriegstein, Katharina; Griffiths, Timothy D

    2011-01-05

    Auditory figure-ground segregation, listeners' ability to selectively hear out a sound of interest from a background of competing sounds, is a fundamental aspect of scene analysis. In contrast to the disordered acoustic environment we experience during everyday listening, most studies of auditory segregation have used relatively simple, temporally regular signals. We developed a new figure-ground stimulus that incorporates stochastic variation of the figure and background that captures the rich spectrotemporal complexity of natural acoustic scenes. Figure and background signals overlap in spectrotemporal space, but vary in the statistics of fluctuation, such that the only way to extract the figure is by integrating the patterns over time and frequency. Our behavioral results demonstrate that human listeners are remarkably sensitive to the appearance of such figures. In a functional magnetic resonance imaging experiment, aimed at investigating preattentive, stimulus-driven, auditory segregation mechanisms, naive subjects listened to these stimuli while performing an irrelevant task. Results demonstrate significant activations in the intraparietal sulcus (IPS) and the superior temporal sulcus related to bottom-up, stimulus-driven figure-ground decomposition. We did not observe any significant activation in the primary auditory cortex. Our results support a role for automatic, bottom-up mechanisms in the IPS in mediating stimulus-driven, auditory figure-ground segregation, which is consistent with accumulating evidence implicating the IPS in structuring sensory input and perceptual organization.

  20. The function of BDNF in the adult auditory system.

    PubMed

    Singer, Wibke; Panford-Walsh, Rama; Knipper, Marlies

    2014-01-01

    The inner ear of vertebrates is specialized to perceive sound, gravity and movements. Each of the specialized sensory organs within the cochlea (sound) and vestibular system (gravity, head movements) transmits information to specific areas of the brain. During development, brain-derived neurotrophic factor (BDNF) orchestrates the survival and outgrowth of afferent fibers connecting the vestibular organ and those regions in the cochlea that map information for low frequency sound to central auditory nuclei and higher-auditory centers. The role of BDNF in the mature inner ear is less understood. This is mainly due to the fact that constitutive BDNF mutant mice are postnatally lethal. Only in the last few years has the improved technology of performing conditional cell specific deletion of BDNF in vivo allowed the study of the function of BDNF in the mature developed organ. This review provides an overview of the current knowledge of the expression pattern and function of BDNF in the peripheral and central auditory system from just prior to the first auditory experience onwards. A special focus will be put on the differential mechanisms in which BDNF drives refinement of auditory circuitries during the onset of sensory experience and in the adult brain. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Auditory-Cortex Short-Term Plasticity Induced by Selective Attention

    PubMed Central

    Jääskeläinen, Iiro P.; Ahveninen, Jyrki

    2014-01-01

    The ability to concentrate on relevant sounds in the acoustic environment is crucial for everyday function and communication. Converging lines of evidence suggests that transient functional changes in auditory-cortex neurons, “short-term plasticity”, might explain this fundamental function. Under conditions of strongly focused attention, enhanced processing of attended sounds can take place at very early latencies (~50 ms from sound onset) in primary auditory cortex and possibly even at earlier latencies in subcortical structures. More robust selective-attention short-term plasticity is manifested as modulation of responses peaking at ~100 ms from sound onset in functionally specialized nonprimary auditory-cortical areas by way of stimulus-specific reshaping of neuronal receptive fields that supports filtering of selectively attended sound features from task-irrelevant ones. Such effects have been shown to take effect in ~seconds following shifting of attentional focus. There are findings suggesting that the reshaping of neuronal receptive fields is even stronger at longer auditory-cortex response latencies (~300 ms from sound onset). These longer-latency short-term plasticity effects seem to build up more gradually, within tens of seconds after shifting the focus of attention. Importantly, some of the auditory-cortical short-term plasticity effects observed during selective attention predict enhancements in behaviorally measured sound discrimination performance. PMID:24551458

  2. Auditory agnosia due to long-term severe hydrocephalus caused by spina bifida - specific auditory pathway versus nonspecific auditory pathway.

    PubMed

    Zhang, Qing; Kaga, Kimitaka; Hayashi, Akimasa

    2011-07-01

    A 27-year-old female showed auditory agnosia after long-term severe hydrocephalus due to congenital spina bifida. After years of hydrocephalus, she gradually suffered from hearing loss in her right ear at 19 years of age, followed by her left ear. During the time when she retained some ability to hear, she experienced severe difficulty in distinguishing verbal, environmental, and musical instrumental sounds. However, her auditory brainstem response and distortion product otoacoustic emissions were largely intact in the left ear. Her bilateral auditory cortices were preserved, as shown by neuroimaging, whereas her auditory radiations were severely damaged owing to progressive hydrocephalus. Although she had a complete bilateral hearing loss, she felt great pleasure when exposed to music. After years of self-training to read lips, she regained fluent ability to communicate. Clinical manifestations of this patient indicate that auditory agnosia can occur after long-term hydrocephalus due to spina bifida; the secondary auditory pathway may play a role in both auditory perception and hearing rehabilitation.

  3. Auditory Spatial Perception: Auditory Localization

    DTIC Science & Technology

    2012-05-01

    cochlear nucleus, TB – trapezoid body, SOC – superior olivary complex, LL – lateral lemniscus, IC – inferior colliculus. Adapted from Aharonson and...Figure 5. Auditory pathways in the central nervous system. LE – left ear, RE – right ear, AN – auditory nerve, CN – cochlear nucleus, TB...fibers leaving the left and right inner ear connect directly to the synaptic inputs of the cochlear nucleus (CN) on the same (ipsilateral) side of

  4. Auditory short-term memory in the primate auditory cortex.

    PubMed

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  5. Optimal resource allocation for novelty detection in a human auditory memory.

    PubMed

    Sinkkonen, J; Kaski, S; Huotilainen, M; Ilmoniemi, R J; Näätänen, R; Kaila, K

    1996-11-04

    A theory of resource allocation for neuronal low-level filtering is presented, based on an analysis of optimal resource allocation in simple environments. A quantitative prediction of the theory was verified in measurements of the magnetic mismatch response (MMR), an auditory event-related magnetic response of the human brain. The amplitude of the MMR was found to be directly proportional to the information conveyed by the stimulus. To the extent that the amplitude of the MMR can be used to measure resource usage by the auditory cortex, this finding supports our theory that, at least for early auditory processing, energy resources are used in proportion to the information content of incoming stimulus flow.

  6. Auditory and Linguistic Processes in the Perception of Intonation Contours.

    ERIC Educational Resources Information Center

    Studdert-Kennedy, Michael; Hadding, Kerstin

    By examining the relations among sections of the fundamental frequency contour used in judging an utterance as a question or statement, the experiment described in this report seeks a more detailed understanding of auditory-linguistic interaction in the perception of intonation contours. The perceptual process may be divided into stages (auditory,…

  7. Infant Auditory Sensitivity to Pure Tones and Frequency-Modulated Tones

    ERIC Educational Resources Information Center

    Leibold, Lori J.; Werner, Lynne A.

    2007-01-01

    It has been suggested that infants respond preferentially to infant-directed speech because their auditory sensitivity to sounds with extensive frequency modulation (FM) is better than their sensitivity to less modulated sounds. In this experiment, auditory thresholds for FM tones and for unmodulated, or pure, tones in a background of noise were…

  8. Interaction of language, auditory and memory brain networks in auditory verbal hallucinations.

    PubMed

    Ćurčić-Blake, Branislava; Ford, Judith M; Hubl, Daniela; Orlov, Natasza D; Sommer, Iris E; Waters, Flavie; Allen, Paul; Jardri, Renaud; Woodruff, Peter W; David, Olivier; Mulert, Christoph; Woodward, Todd S; Aleman, André

    2017-01-01

    Auditory verbal hallucinations (AVH) occur in psychotic disorders, but also as a symptom of other conditions and even in healthy people. Several current theories on the origin of AVH converge, with neuroimaging studies suggesting that the language, auditory and memory/limbic networks are of particular relevance. However, reconciliation of these theories with experimental evidence is missing. We review 50 studies investigating functional (EEG and fMRI) and anatomic (diffusion tensor imaging) connectivity in these networks, and explore the evidence supporting abnormal connectivity in these networks associated with AVH. We distinguish between functional connectivity during an actual hallucination experience (symptom capture) and functional connectivity during either the resting state or a task comparing individuals who hallucinate with those who do not (symptom association studies). Symptom capture studies clearly reveal a pattern of increased coupling among the auditory, language and striatal regions. Anatomical and symptom association functional studies suggest that the interhemispheric connectivity between posterior auditory regions may depend on the phase of illness, with increases in non-psychotic individuals and first episode patients and decreases in chronic patients. Leading hypotheses involving concepts as unstable memories, source monitoring, top-down attention, and hybrid models of hallucinations are supported in part by the published connectivity data, although several caveats and inconsistencies remain. Specifically, possible changes in fronto-temporal connectivity are still under debate. Precise hypotheses concerning the directionality of connections deduced from current theoretical approaches should be tested using experimental approaches that allow for discrimination of competing hypotheses. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Making and monitoring errors based on altered auditory feedback

    PubMed Central

    Pfordresher, Peter Q.; Beasley, Robertson T. E.

    2014-01-01

    Previous research has demonstrated that altered auditory feedback (AAF) disrupts music performance and causes disruptions in both action planning and the perception of feedback events. It has been proposed that this disruption occurs because of interference within a shared representation for perception and action (Pfordresher, 2006). Studies reported here address this claim from the standpoint of error monitoring. In Experiment 1 participants performed short melodies on a keyboard while hearing no auditory feedback, normal auditory feedback, or alterations to feedback pitch on some subset of events. Participants overestimated error frequency when AAF was present but not for normal feedback. Experiment 2 introduced a concurrent load task to determine whether error monitoring requires executive resources. Although the concurrent task enhanced the effect of AAF, it did not alter participants’ tendency to overestimate errors when AAF was present. A third correlational study addressed whether effects of AAF are reduced for a subset of the population who may lack the kind of perception/action associations that lead to AAF disruption: poor-pitch singers. Effects of manipulations similar to those presented in Experiments 1 and 2 were reduced for these individuals. We propose that these results are consistent with the notion that AAF interference is based on associations between perception and action within a forward internal model of auditory-motor relationships. PMID:25191294

  10. Tuning in to the Voices: A Multisite fMRI Study of Auditory Hallucinations

    PubMed Central

    Ford, Judith M.; Roach, Brian J.; Jorgensen, Kasper W.; Turner, Jessica A.; Brown, Gregory G.; Notestine, Randy; Bischoff-Grethe, Amanda; Greve, Douglas; Wible, Cynthia; Lauriello, John; Belger, Aysenil; Mueller, Bryon A.; Calhoun, Vincent; Preda, Adrian; Keator, David; O'Leary, Daniel S.; Lim, Kelvin O.; Glover, Gary; Potkin, Steven G.; Mathalon, Daniel H.

    2009-01-01

    Introduction: Auditory hallucinations or voices are experienced by 75% of people diagnosed with schizophrenia. We presumed that auditory cortex of schizophrenia patients who experience hallucinations is tonically “tuned” to internal auditory channels, at the cost of processing external sounds, both speech and nonspeech. Accordingly, we predicted that patients who hallucinate would show less auditory cortical activation to external acoustic stimuli than patients who did not. Methods: At 9 Functional Imaging Biomedical Informatics Research Network (FBIRN) sites, whole-brain images from 106 patients and 111 healthy comparison subjects were collected while subjects performed an auditory target detection task. Data were processed with the FBIRN processing stream. A region of interest analysis extracted activation values from primary (BA41) and secondary auditory cortex (BA42), auditory association cortex (BA22), and middle temporal gyrus (BA21). Patients were sorted into hallucinators (n = 66) and nonhallucinators (n = 40) based on symptom ratings done during the previous week. Results: Hallucinators had less activation to probe tones in left primary auditory cortex (BA41) than nonhallucinators. This effect was not seen on the right. Discussion: Although “voices” are the anticipated sensory experience, it appears that even primary auditory cortex is “turned on” and “tuned in” to process internal acoustic information at the cost of processing external sounds. Although this study was not designed to probe cortical competition for auditory resources, we were able to take advantage of the data and find significant effects, perhaps because of the power afforded by such a large sample. PMID:18987102

  11. The representation of conceptual knowledge: visual, auditory, and olfactory imagery compared with semantic processing.

    PubMed

    Palmiero, Massimiliano; Di Matteo, Rosalia; Belardinelli, Marta Olivetti

    2014-05-01

    Two experiments comparing imaginative processing in different modalities and semantic processing were carried out to investigate the issue of whether conceptual knowledge can be represented in different format. Participants were asked to judge the similarity between visual images, auditory images, and olfactory images in the imaginative block, if two items belonged to the same category in the semantic block. Items were verbally cued in both experiments. The degree of similarity between the imaginative and semantic items was changed across experiments. Experiment 1 showed that the semantic processing was faster than the visual and the auditory imaginative processing, whereas no differentiation was possible between the semantic processing and the olfactory imaginative processing. Experiment 2 revealed that only the visual imaginative processing could be differentiated from the semantic processing in terms of accuracy. These results showed that the visual and auditory imaginative processing can be differentiated from the semantic processing, although both visual and auditory images strongly rely on semantic representations. On the contrary, no differentiation is possible within the olfactory domain. Results are discussed in the frame of the imagery debate.

  12. Objective Fidelity Evaluation in Multisensory Virtual Environments: Auditory Cue Fidelity in Flight Simulation

    PubMed Central

    Meyer, Georg F.; Wong, Li Ting; Timson, Emma; Perfect, Philip; White, Mark D.

    2012-01-01

    We argue that objective fidelity evaluation of virtual environments, such as flight simulation, should be human-performance-centred and task-specific rather than measure the match between simulation and physical reality. We show how principled experimental paradigms and behavioural models to quantify human performance in simulated environments that have emerged from research in multisensory perception provide a framework for the objective evaluation of the contribution of individual cues to human performance measures of fidelity. We present three examples in a flight simulation environment as a case study: Experiment 1: Detection and categorisation of auditory and kinematic motion cues; Experiment 2: Performance evaluation in a target-tracking task; Experiment 3: Transferrable learning of auditory motion cues. We show how the contribution of individual cues to human performance can be robustly evaluated for each task and that the contribution is highly task dependent. The same auditory cues that can be discriminated and are optimally integrated in experiment 1, do not contribute to target-tracking performance in an in-flight refuelling simulation without training, experiment 2. In experiment 3, however, we demonstrate that the auditory cue leads to significant, transferrable, performance improvements with training. We conclude that objective fidelity evaluation requires a task-specific analysis of the contribution of individual cues. PMID:22957068

  13. Crossmodal attention switching: auditory dominance in temporal discrimination tasks.

    PubMed

    Lukas, Sarah; Philipp, Andrea M; Koch, Iring

    2014-11-01

    Visual stimuli are often processed more efficiently than accompanying stimuli in another modality. In line with this "visual dominance", earlier studies on attentional switching showed a clear benefit for visual stimuli in a bimodal visual-auditory modality-switch paradigm that required spatial stimulus localization in the relevant modality. The present study aimed to examine the generality of this visual dominance effect. The modality appropriateness hypothesis proposes that stimuli in different modalities are differentially effectively processed depending on the task dimension, so that processing of visual stimuli is favored in the dimension of space, whereas processing auditory stimuli is favored in the dimension of time. In the present study, we examined this proposition by using a temporal duration judgment in a bimodal visual-auditory switching paradigm. Two experiments demonstrated that crossmodal interference (i.e., temporal stimulus congruence) was larger for visual stimuli than for auditory stimuli, suggesting auditory dominance when performing temporal judgment tasks. However, attention switch costs were larger for the auditory modality than for visual modality, indicating a dissociation of the mechanisms underlying crossmodal competition in stimulus processing and modality-specific biasing of attentional set. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Evolutionary conservation and neuronal mechanisms of auditory perceptual restoration.

    PubMed

    Petkov, Christopher I; Sutter, Mitchell L

    2011-01-01

    Auditory perceptual 'restoration' occurs when the auditory system restores an occluded or masked sound of interest. Behavioral work on auditory restoration in humans began over 50 years ago using it to model a noisy environmental scene with competing sounds. It has become clear that not only humans experience auditory restoration: restoration has been broadly conserved in many species. Behavioral studies in humans and animals provide a necessary foundation to link the insights being obtained from human EEG and fMRI to those from animal neurophysiology. The aggregate of data resulting from multiple approaches across species has begun to clarify the neuronal bases of auditory restoration. Different types of neural responses supporting restoration have been found, supportive of multiple mechanisms working within a species. Yet a general principle has emerged that responses correlated with restoration mimic the response that would have been given to the uninterrupted sound of interest. Using the same technology to study different species will help us to better harness animal models of 'auditory scene analysis' to clarify the conserved neural mechanisms shaping the perceptual organization of sound and to advance strategies to improve hearing in natural environmental settings. © 2010 Elsevier B.V. All rights reserved.

  15. Effect of delayed auditory feedback on stuttering with and without central auditory processing disorders.

    PubMed

    Picoloto, Luana Altran; Cardoso, Ana Cláudia Vieira; Cerqueira, Amanda Venuti; Oliveira, Cristiane Moço Canhetti de

    2017-12-07

    To verify the effect of delayed auditory feedback on speech fluency of individuals who stutter with and without central auditory processing disorders. The participants were twenty individuals with stuttering from 7 to 17 years old and were divided into two groups: Stuttering Group with Auditory Processing Disorders (SGAPD): 10 individuals with central auditory processing disorders, and Stuttering Group (SG): 10 individuals without central auditory processing disorders. Procedures were: fluency assessment with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF), assessment of the stuttering severity and central auditory processing (CAP). Phono Tools software was used to cause a delay of 100 milliseconds in the auditory feedback. The "Wilcoxon Signal Post" test was used in the intragroup analysis and "Mann-Whitney" test in the intergroup analysis. The DAF caused a statistically significant reduction in SG: in the frequency score of stuttering-like disfluencies in the analysis of the Stuttering Severity Instrument, in the amount of blocks and repetitions of monosyllabic words, and in the frequency of stuttering-like disfluencies of duration. Delayed auditory feedback did not cause statistically significant effects on SGAPD fluency, individuals with stuttering with auditory processing disorders. The effect of delayed auditory feedback in speech fluency of individuals who stutter was different in individuals of both groups, because there was an improvement in fluency only in individuals without auditory processing disorder.

  16. Learning to Encode Timing: Mechanisms of Plasticity in the Auditory Brainstem

    PubMed Central

    Tzounopoulos, Thanos; Kraus, Nina

    2009-01-01

    Mechanisms of plasticity have traditionally been ascribed to higher-order sensory processing areas such as the cortex, whereas early sensory processing centers have been considered largely hard-wired. In agreement with this view, the auditory brainstem has been viewed as a nonplastic site, important for preserving temporal information and minimizing transmission delays. However, recent groundbreaking results from animal models and human studies have revealed remarkable evidence for cellular and behavioral mechanisms for learning and memory in the auditory brainstem. PMID:19477149

  17. Audiovisual plasticity following early abnormal visual experience: Reduced McGurk effect in people with one eye.

    PubMed

    Moro, Stefania S; Steeves, Jennifer K E

    2018-04-13

    Previously, we have shown that people who have had one eye surgically removed early in life during visual development have enhanced sound localization [1] and lack visual dominance, commonly observed in binocular and monocular (eye-patched) viewing controls [2]. Despite these changes, people with one eye integrate auditory and visual components of multisensory events optimally [3]. The current study investigates how people with one eye perceive the McGurk effect, an audiovisual illusion where a new syllable is perceived when visual lip movements do not match the corresponding sound [4]. We compared individuals with one eye to binocular and monocular viewing controls and found that they have a significantly smaller McGurk effect compared to binocular controls. Additionally, monocular controls tended to perceive the McGurk effect less often than binocular controls suggesting a small transient modulation of the McGurk effect. These results suggest altered weighting of the auditory and visual modalities with both short and long-term monocular viewing. These results indicate the presence of permanent adaptive perceptual accommodations in people who have lost one eye early in life that may serve to mitigate the loss of binocularity during early brain development. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  18. Premotor cortex is sensitive to auditory-visual congruence for biological motion.

    PubMed

    Wuerger, Sophie M; Parkes, Laura; Lewis, Penelope A; Crocker-Buque, Alex; Rutschmann, Roland; Meyer, Georg F

    2012-03-01

    The auditory and visual perception systems have developed special processing strategies for ecologically valid motion stimuli, utilizing some of the statistical properties of the real world. A well-known example is the perception of biological motion, for example, the perception of a human walker. The aim of the current study was to identify the cortical network involved in the integration of auditory and visual biological motion signals. We first determined the cortical regions of auditory and visual coactivation (Experiment 1); a conjunction analysis based on unimodal brain activations identified four regions: middle temporal area, inferior parietal lobule, ventral premotor cortex, and cerebellum. The brain activations arising from bimodal motion stimuli (Experiment 2) were then analyzed within these regions of coactivation. Auditory footsteps were presented concurrently with either an intact visual point-light walker (biological motion) or a scrambled point-light walker; auditory and visual motion in depth (walking direction) could either be congruent or incongruent. Our main finding is that motion incongruency (across modalities) increases the activity in the ventral premotor cortex, but only if the visual point-light walker is intact. Our results extend our current knowledge by providing new evidence consistent with the idea that the premotor area assimilates information across the auditory and visual modalities by comparing the incoming sensory input with an internal representation.

  19. Early Practicum Experiences: Preservice Early Childhood Students' Perceptions and Sense of Efficacy

    ERIC Educational Resources Information Center

    Van Schagen Johnson, Amy; La Paro, Karen M.; Crosby, Danielle A.

    2017-01-01

    The current study explored early practicum experiences (those occurring before student teaching) in an early childhood birth to kindergarten teacher education program. Undergraduates enrolled in practicum courses completed questionnaires about their overall practicum experience including: socio-emotional components (their perceived fit with their…

  20. Delays in auditory processing identified in preschool children with FASD

    PubMed Central

    Stephen, Julia M.; Kodituwakku, Piyadasa W.; Kodituwakku, Elizabeth L.; Romero, Lucinda; Peters, Amanda M.; Sharadamma, Nirupama Muniswamy; Caprihan, Arvind; Coffman, Brian A.

    2012-01-01

    Background Both sensory and cognitive deficits have been associated with prenatal exposure to alcohol; however, very few studies have focused on sensory deficits in preschool aged children. Since sensory skills develop early, characterization of sensory deficits using novel imaging methods may reveal important neural markers of prenatal alcohol exposure. Materials and Methods Participants in this study were 10 children with a fetal alcohol spectrum disorder (FASD) and 15 healthy control children aged 3-6 years. All participants had normal hearing as determined by clinical screens. We measured their neurophysiological responses to auditory stimuli (1000 Hz, 72 dB tone) using magnetoencephalography (MEG). We used a multi-dipole spatio-temporal modeling technique (CSST – Ranken et al. 2002) to identify the location and timecourse of cortical activity in response to the auditory tones. The timing and amplitude of the left and right superior temporal gyrus sources associated with activation of left and right primary/secondary auditory cortices were compared across groups. Results There was a significant delay in M100 and M200 latencies for the FASD children relative to the HC children (p = 0.01), when including age as a covariate. The within-subjects effect of hemisphere was not significant. A comparable delay in M100 and M200 latencies was observed in children across the FASD subtypes. Discussion Auditory delay revealed by MEG in children with FASD may prove to be a useful neural marker of information processing difficulties in young children with prenatal alcohol exposure. The fact that delayed auditory responses were observed across the FASD spectrum suggests that it may be a sensitive measure of alcohol-induced brain damage. Therefore, this measure in conjunction with other clinical tools may prove useful for early identification of alcohol affected children, particularly those without dysmorphia. PMID:22458372

  1. Delays in auditory processing identified in preschool children with FASD.

    PubMed

    Stephen, Julia M; Kodituwakku, Piyadasa W; Kodituwakku, Elizabeth L; Romero, Lucinda; Peters, Amanda M; Sharadamma, Nirupama M; Caprihan, Arvind; Coffman, Brian A

    2012-10-01

    Both sensory and cognitive deficits have been associated with prenatal exposure to alcohol; however, very few studies have focused on sensory deficits in preschool-aged children. As sensory skills develop early, characterization of sensory deficits using novel imaging methods may reveal important neural markers of prenatal alcohol exposure. Participants in this study were 10 children with a fetal alcohol spectrum disorder (FASD) and 15 healthy control (HC) children aged 3 to 6 years. All participants had normal hearing as determined by clinical screens. We measured their neurophysiological responses to auditory stimuli (1,000 Hz, 72 dB tone) using magnetoencephalography (MEG). We used a multidipole spatio-temporal modeling technique to identify the location and timecourse of cortical activity in response to the auditory tones. The timing and amplitude of the left and right superior temporal gyrus sources associated with activation of left and right primary/secondary auditory cortices were compared across groups. There was a significant delay in M100 and M200 latencies for the FASD children relative to the HC children (p = 0.01), when including age as a covariate. The within-subjects effect of hemisphere was not significant. A comparable delay in M100 and M200 latencies was observed in children across the FASD subtypes. Auditory delay revealed by MEG in children with FASDs may prove to be a useful neural marker of information processing difficulties in young children with prenatal alcohol exposure. The fact that delayed auditory responses were observed across the FASD spectrum suggests that it may be a sensitive measure of alcohol-induced brain damage. Therefore, this measure in conjunction with other clinical tools may prove useful for early identification of alcohol affected children, particularly those without dysmorphia. Copyright © 2012 by the Research Society on Alcoholism.

  2. Segregating the neural correlates of physical and perceived change in auditory input using the change deafness effect.

    PubMed

    Puschmann, Sebastian; Weerda, Riklef; Klump, Georg; Thiel, Christiane M

    2013-05-01

    Psychophysical experiments show that auditory change detection can be disturbed in situations in which listeners have to monitor complex auditory input. We made use of this change deafness effect to segregate the neural correlates of physical change in auditory input from brain responses related to conscious change perception in an fMRI experiment. Participants listened to two successively presented complex auditory scenes, which consisted of six auditory streams, and had to decide whether scenes were identical or whether the frequency of one stream was changed between presentations. Our results show that physical changes in auditory input, independent of successful change detection, are represented at the level of auditory cortex. Activations related to conscious change perception, independent of physical change, were found in the insula and the ACC. Moreover, our data provide evidence for significant effective connectivity between auditory cortex and the insula in the case of correctly detected auditory changes, but not for missed changes. This underlines the importance of the insula/anterior cingulate network for conscious change detection.

  3. Differential responses of primary auditory cortex in autistic spectrum disorder with auditory hypersensitivity.

    PubMed

    Matsuzaki, Junko; Kagitani-Shimono, Kuriko; Goto, Tetsu; Sanefuji, Wakako; Yamamoto, Tomoka; Sakai, Saeko; Uchida, Hiroyuki; Hirata, Masayuki; Mohri, Ikuko; Yorifuji, Shiro; Taniike, Masako

    2012-01-25

    The aim of this study was to investigate the differential responses of the primary auditory cortex to auditory stimuli in autistic spectrum disorder with or without auditory hypersensitivity. Auditory-evoked field values were obtained from 18 boys (nine with and nine without auditory hypersensitivity) with autistic spectrum disorder and 12 age-matched controls. Autistic disorder with hypersensitivity showed significantly more delayed M50/M100 peak latencies than autistic disorder without hypersensitivity or the control. M50 dipole moments in the hypersensitivity group were larger than those in the other two groups [corrected]. M50/M100 peak latencies were correlated with the severity of auditory hypersensitivity; furthermore, severe hypersensitivity induced more behavioral problems. This study indicates auditory hypersensitivity in autistic spectrum disorder as a characteristic response of the primary auditory cortex, possibly resulting from neurological immaturity or functional abnormalities in it. © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

  4. Auditory short-term memory in the primate auditory cortex

    PubMed Central

    Scott, Brian H.; Mishkin, Mortimer

    2015-01-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ‘working memory’ bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ‘match’ stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. PMID:26541581

  5. Auditory, visual and auditory-visual memory and sequencing performance in typically developing children.

    PubMed

    Pillai, Roshni; Yathiraj, Asha

    2017-09-01

    The study evaluated whether there exists a difference/relation in the way four different memory skills (memory score, sequencing score, memory span, & sequencing span) are processed through the auditory modality, visual modality and combined modalities. Four memory skills were evaluated on 30 typically developing children aged 7 years and 8 years across three modality conditions (auditory, visual, & auditory-visual). Analogous auditory and visual stimuli were presented to evaluate the three modality conditions across the two age groups. The children obtained significantly higher memory scores through the auditory modality compared to the visual modality. Likewise, their memory scores were significantly higher through the auditory-visual modality condition than through the visual modality. However, no effect of modality was observed on the sequencing scores as well as for the memory and the sequencing span. A good agreement was seen between the different modality conditions that were studied (auditory, visual, & auditory-visual) for the different memory skills measures (memory scores, sequencing scores, memory span, & sequencing span). A relatively lower agreement was noted only between the auditory and visual modalities as well as between the visual and auditory-visual modality conditions for the memory scores, measured using Bland-Altman plots. The study highlights the efficacy of using analogous stimuli to assess the auditory, visual as well as combined modalities. The study supports the view that the performance of children on different memory skills was better through the auditory modality compared to the visual modality. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Complex Auditory Signals

    DTIC Science & Technology

    1988-09-01

    ability to detect a change in spectral shape. This question also beats on that of how the auditory system codes intensity. There are, at laast, two...This prior experience with the diotic presentations. disparity leads us to speculate that the tasks of detecting an We also considered how binaural ...quite complex. One Colburn and Durlach, 1978), one prerequisite for binaural may not be able to simply extrapolate from one to the other. interaction

  7. Enhanced attention-dependent activity in the auditory cortex of older musicians.

    PubMed

    Zendel, Benjamin Rich; Alain, Claude

    2014-01-01

    Musical training improves auditory processing abilities, which correlates with neuro-plastic changes in exogenous (input-driven) and endogenous (attention-dependent) components of auditory event-related potentials (ERPs). Evidence suggests that musicians, compared to non-musicians, experience less age-related decline in auditory processing abilities. Here, we investigated whether lifelong musicianship mitigates exogenous or endogenous processing by measuring auditory ERPs in younger and older musicians and non-musicians while they either attended to auditory stimuli or watched a muted subtitled movie of their choice. Both age and musical training-related differences were observed in the exogenous components; however, the differences between musicians and non-musicians were similar across the lifespan. These results suggest that exogenous auditory ERPs are enhanced in musicians, but decline with age at the same rate. On the other hand, attention-related activity, modeled in the right auditory cortex using a discrete spatiotemporal source analysis, was selectively enhanced in older musicians. This suggests that older musicians use a compensatory strategy to overcome age-related decline in peripheral and exogenous processing of acoustic information. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Plasticity in the Developing Auditory Cortex: Evidence from Children with Sensorineural Hearing Loss and Auditory Neuropathy Spectrum Disorder

    PubMed Central

    Cardon, Garrett; Campbell, Julia; Sharma, Anu

    2013-01-01

    The developing auditory cortex is highly plastic. As such, the cortex is both primed to mature normally and at risk for re-organizing abnormally, depending upon numerous factors that determine central maturation. From a clinical perspective, at least two major components of development can be manipulated: 1) input to the cortex and 2) the timing of cortical input. Children with sensorineural hearing loss (SNHL) and auditory neuropathy spectrum disorder (ANSD) have provided a model of early deprivation of sensory input to the cortex, and demonstrated the resulting plasticity and development that can occur upon introduction of stimulation. In this article, we review several fundamental principles of cortical development and plasticity and discuss the clinical applications in children with SNHL and ANSD who receive intervention with hearing aids and/or cochlear implants. PMID:22668761

  9. Modulation of isochronous movements in a flexible environment: links between motion and auditory experience.

    PubMed

    Bravi, Riccardo; Del Tongo, Claudia; Cohen, Erez James; Dalle Mura, Gabriele; Tognetti, Alessandro; Minciacchi, Diego

    2014-06-01

    The ability to perform isochronous movements while listening to a rhythmic auditory stimulus requires a flexible process that integrates timing information with movement. Here, we explored how non-temporal and temporal characteristics of an auditory stimulus (presence, interval occupancy, and tempo) affect motor performance. These characteristics were chosen on the basis of their ability to modulate the precision and accuracy of synchronized movements. Subjects have participated in sessions in which they performed sets of repeated isochronous wrist's flexion-extensions under various conditions. The conditions were chosen on the basis of the defined characteristics. Kinematic parameters were evaluated during each session, and temporal parameters were analyzed. In order to study the effects of the auditory stimulus, we have minimized all other sensory information that could interfere with its perception or affect the performance of repeated isochronous movements. The present study shows that the distinct characteristics of an auditory stimulus significantly influence isochronous movements by altering their duration. Results provide evidence for an adaptable control of timing in the audio-motor coupling for isochronous movements. This flexibility would make plausible the use of different encoding strategies to adapt audio-motor coupling for specific tasks.

  10. Synchronization to auditory and visual rhythms in hearing and deaf individuals

    PubMed Central

    Iversen, John R.; Patel, Aniruddh D.; Nicodemus, Brenda; Emmorey, Karen

    2014-01-01

    A striking asymmetry in human sensorimotor processing is that humans synchronize movements to rhythmic sound with far greater precision than to temporally equivalent visual stimuli (e.g., to an auditory vs. a flashing visual metronome). Traditionally, this finding is thought to reflect a fundamental difference in auditory vs. visual processing, i.e., superior temporal processing by the auditory system and/or privileged coupling between the auditory and motor systems. It is unclear whether this asymmetry is an inevitable consequence of brain organization or whether it can be modified (or even eliminated) by stimulus characteristics or by experience. With respect to stimulus characteristics, we found that a moving, colliding visual stimulus (a silent image of a bouncing ball with a distinct collision point on the floor) was able to drive synchronization nearly as accurately as sound in hearing participants. To study the role of experience, we compared synchronization to flashing metronomes in hearing and profoundly deaf individuals. Deaf individuals performed better than hearing individuals when synchronizing with visual flashes, suggesting that cross-modal plasticity enhances the ability to synchronize with temporally discrete visual stimuli. Furthermore, when deaf (but not hearing) individuals synchronized with the bouncing ball, their tapping patterns suggest that visual timing may access higher-order beat perception mechanisms for deaf individuals. These results indicate that the auditory advantage in rhythmic synchronization is more experience- and stimulus-dependent than has been previously reported. PMID:25460395

  11. AUX: a scripting language for auditory signal processing and software packages for psychoacoustic experiments and education.

    PubMed

    Kwon, Bomjun J

    2012-06-01

    This article introduces AUX (AUditory syntaX), a scripting syntax specifically designed to describe auditory signals and processing, to the members of the behavioral research community. The syntax is based on descriptive function names and intuitive operators suitable for researchers and students without substantial training in programming, who wish to generate and examine sound signals using a written script. In this article, the essence of AUX is discussed and practical examples of AUX scripts specifying various signals are illustrated. Additionally, two accompanying Windows-based programs and development libraries are described. AUX Viewer is a program that generates, visualizes, and plays sounds specified in AUX. AUX Viewer can also be used for class demonstrations or presentations. Another program, Psycon, allows a wide range of sound signals to be used as stimuli in common psychophysical testing paradigms, such as the adaptive procedure, the method of constant stimuli, and the method of adjustment. AUX Library is also provided, so that researchers can develop their own programs utilizing AUX. The philosophical basis of AUX is to separate signal generation from the user interface needed for experiments. AUX scripts are portable and reusable; they can be shared by other researchers, regardless of differences in actual AUX-based programs, and reused for future experiments. In short, the use of AUX can be potentially beneficial to all members of the research community-both those with programming backgrounds and those without.

  12. Neurons and Objects: The Case of Auditory Cortex

    PubMed Central

    Nelken, Israel; Bar-Yosef, Omer

    2008-01-01

    Sounds are encoded into electrical activity in the inner ear, where they are represented (roughly) as patterns of energy in narrow frequency bands. However, sounds are perceived in terms of their high-order properties. It is generally believed that this transformation is performed along the auditory hierarchy, with low-level physical cues computed at early stages of the auditory system and high-level abstract qualities at high-order cortical areas. The functional position of primary auditory cortex (A1) in this scheme is unclear – is it ‘early’, encoding physical cues, or is it ‘late’, already encoding abstract qualities? Here we argue that neurons in cat A1 show sensitivity to high-level features of sounds. In particular, these neurons may already show sensitivity to ‘auditory objects’. The evidence for this claim comes from studies in which individual sounds are presented singly and in mixtures. Many neurons in cat A1 respond to mixtures in the same way they respond to one of the individual components of the mixture, and in many cases neurons may respond to a low-level component of the mixture rather than to the acoustically dominant one, even though the same neurons respond to the acoustically-dominant component when presented alone. PMID:18982113

  13. Persistent fluctuations in stride intervals under fractal auditory stimulation.

    PubMed

    Marmelat, Vivien; Torre, Kjerstin; Beek, Peter J; Daffertshofer, Andreas

    2014-01-01

    Stride sequences of healthy gait are characterized by persistent long-range correlations, which become anti-persistent in the presence of an isochronous metronome. The latter phenomenon is of particular interest because auditory cueing is generally considered to reduce stride variability and may hence be beneficial for stabilizing gait. Complex systems tend to match their correlation structure when synchronizing. In gait training, can one capitalize on this tendency by using a fractal metronome rather than an isochronous one? We examined whether auditory cues with fractal variations in inter-beat intervals yield similar fractal inter-stride interval variability as isochronous auditory cueing in two complementary experiments. In Experiment 1, participants walked on a treadmill while being paced by either an isochronous or a fractal metronome with different variation strengths between beats in order to test whether participants managed to synchronize with a fractal metronome and to determine the necessary amount of variability for participants to switch from anti-persistent to persistent inter-stride intervals. Participants did synchronize with the metronome despite its fractal randomness. The corresponding coefficient of variation of inter-beat intervals was fixed in Experiment 2, in which participants walked on a treadmill while being paced by non-isochronous metronomes with different scaling exponents. As expected, inter-stride intervals showed persistent correlations similar to self-paced walking only when cueing contained persistent correlations. Our results open up a new window to optimize rhythmic auditory cueing for gait stabilization by integrating fractal fluctuations in the inter-beat intervals.

  14. Social regulation of serotonin in the auditory midbrain

    PubMed Central

    Hall, Ian C.; Sell, Gabrielle L.; Hurley, Laura M .

    2011-01-01

    The neuromodulator serotonin regulates auditory processing and can increase within minutes in response to stimuli like broadband noise as well as non-auditory stressors. Little is known about the serotonergic response in the auditory system to more natural stimuli such as social interactions, however. Using carbon-fiber voltammetry, we measured extracellular serotonin in the auditory midbrain of resident male mice during encounters with a male intruder. Serotonin increased in the inferior colliculus (IC) over the course of a 15 minute interaction, but not when mice were separated with a perforated barrier. Several behaviors, including the amount of immobility and anogenital investigation performed by the resident, were correlated with the serotonergic response. Multiple intrinsic factors associated with individual mice also correlated with the serotonergic response. One of these was age: older mice had smaller serotonergic responses to the social interaction. In a second interaction, individual identity predicted serotonergic responses that were highly consistent with those in the first interaction, even when mice were paired with different intruders. Serotonin was also significantly elevated in the second social interaction relative to the first, suggesting a role for social experience. These findings show that during social interaction, serotonin in the IC is influenced by extrinsic factors such as the directness of social interaction and intrinsic factors including age, individual identity, and experience. PMID:21787041

  15. Context-dependent fluctuation of serotonin in the auditory midbrain: the influence of sex, reproductive state and experience

    PubMed Central

    Hanson, Jessica L.; Hurley, Laura M.

    2014-01-01

    In the face of changing behavioral situations, plasticity of sensory systems can be a valuable mechanism to facilitate appropriate behavioral responses. In the auditory system, the neurotransmitter serotonin is an important messenger for context-dependent regulation because it is sensitive to both external events and internal state, and it modulates neural activity. In male mice, serotonin increases in the auditory midbrain region, the inferior colliculus (IC), in response to changes in behavioral context such as restriction stress and social contact. Female mice have not been measured in similar contexts, although the serotonergic system is sexually dimorphic in many ways. In the present study, we investigated the effects of sex, experience and estrous state on the fluctuation of serotonin in the IC across contexts, as well as potential relationships between behavior and serotonin. Contrary to our expectation, there were no sex differences in increases of serotonin in response to a restriction stimulus. Both sexes had larger increases in second exposures, suggesting experience plays a role in serotonergic release in the IC. In females, serotonin increased during both restriction and interactions with males; however, the increase was more rapid during restriction. There was no effect of female estrous phase on the serotonergic change for either context, but serotonin was related to behavioral activity in females interacting with males. These results show that changes in behavioral context induce increases in serotonin in the IC by a mechanism that appears to be uninfluenced by sex or estrous state, but may depend on experience and behavioral activity. PMID:24198252

  16. Developmental Profiling of Spiral Ganglion Neurons Reveals Insights into Auditory Circuit Assembly

    PubMed Central

    Lu, Cindy C.; Appler, Jessica M.; Houseman, E. Andres; Goodrich, Lisa V.

    2011-01-01

    The sense of hearing depends on the faithful transmission of sound information from the ear to the brain by spiral ganglion (SG) neurons. However, how SG neurons develop the connections and properties that underlie auditory processing is largely unknown. We catalogued gene expression in mouse SG neurons from embryonic day 12 (E12), when SG neurons first extend projections, up until postnatal day 15 (P15), after the onset of hearing. For comparison, we also analyzed the closely-related vestibular ganglion (VG). Gene ontology analysis confirmed enriched expression of genes associated with gene regulation and neurite outgrowth at early stages, with the SG and VG often expressing different members of the same gene family. At later stages, the neurons transcribe more genes related to mature function, and exhibit a dramatic increase in immune gene expression. Comparisons of the two populations revealed enhanced expression of TGFβ pathway components in SG neurons and established new markers that consistently distinguish auditory and vestibular neurons. Unexpectedly, we found that Gata3, a transcription factor commonly associated with auditory development, is also expressed in VG neurons at early stages. We therefore defined new cohorts of transcription factors and axon guidance molecules that are uniquely expressed in SG neurons and may drive auditory-specific aspects of their differentiation and wiring. We show that one of these molecules, the receptor guanylyl cyclase Npr2, is required for bifurcation of the SG central axon. Hence, our data set provides a useful resource for uncovering the molecular basis of specific auditory circuit assembly events. PMID:21795542

  17. The role of spatiotemporal and spectral cues in segregating short sound events: evidence from auditory Ternus display.

    PubMed

    Wang, Qingcui; Bao, Ming; Chen, Lihan

    2014-01-01

    Previous studies using auditory sequences with rapid repetition of tones revealed that spatiotemporal cues and spectral cues are important cues used to fuse or segregate sound streams. However, the perceptual grouping was partially driven by the cognitive processing of the periodicity cues of the long sequence. Here, we investigate whether perceptual groupings (spatiotemporal grouping vs. frequency grouping) could also be applicable to short auditory sequences, where auditory perceptual organization is mainly subserved by lower levels of perceptual processing. To find the answer to that question, we conducted two experiments using an auditory Ternus display. The display was composed of three speakers (A, B and C), with each speaker consecutively emitting one sound consisting of two frames (AB and BC). Experiment 1 manipulated both spatial and temporal factors. We implemented three 'within-frame intervals' (WFIs, or intervals between A and B, and between B and C), seven 'inter-frame intervals' (IFIs, or intervals between AB and BC) and two different speaker layouts (inter-distance of speakers: near or far). Experiment 2 manipulated the differentiations of frequencies between two auditory frames, in addition to the spatiotemporal cues as in Experiment 1. Listeners were required to make two alternative forced choices (2AFC) to report the perception of a given Ternus display: element motion (auditory apparent motion from sound A to B to C) or group motion (auditory apparent motion from sound 'AB' to 'BC'). The results indicate that the perceptual grouping of short auditory sequences (materialized by the perceptual decisions of the auditory Ternus display) was modulated by temporal and spectral cues, with the latter contributing more to segregating auditory events. Spatial layout plays a less role in perceptual organization. These results could be accounted for by the 'peripheral channeling' theory.

  18. Sensory Intelligence for Extraction of an Abstract Auditory Rule: A Cross-Linguistic Study.

    PubMed

    Guo, Xiao-Tao; Wang, Xiao-Dong; Liang, Xiu-Yuan; Wang, Ming; Chen, Lin

    2018-02-21

    In a complex linguistic environment, while speech sounds can greatly vary, some shared features are often invariant. These invariant features constitute so-called abstract auditory rules. Our previous study has shown that with auditory sensory intelligence, the human brain can automatically extract the abstract auditory rules in the speech sound stream, presumably serving as the neural basis for speech comprehension. However, whether the sensory intelligence for extraction of abstract auditory rules in speech is inherent or experience-dependent remains unclear. To address this issue, we constructed a complex speech sound stream using auditory materials in Mandarin Chinese, in which syllables had a flat lexical tone but differed in other acoustic features to form an abstract auditory rule. This rule was occasionally and randomly violated by the syllables with the rising, dipping or falling tone. We found that both Chinese and foreign speakers detected the violations of the abstract auditory rule in the speech sound stream at a pre-attentive stage, as revealed by the whole-head recordings of mismatch negativity (MMN) in a passive paradigm. However, MMNs peaked earlier in Chinese speakers than in foreign speakers. Furthermore, Chinese speakers showed different MMN peak latencies for the three deviant types, which paralleled recognition points. These findings indicate that the sensory intelligence for extraction of abstract auditory rules in speech sounds is innate but shaped by language experience. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Forebrain pathway for auditory space processing in the barn owl.

    PubMed

    Cohen, Y E; Miller, G L; Knudsen, E I

    1998-02-01

    The forebrain plays an important role in many aspects of sound localization behavior. Yet, the forebrain pathway that processes auditory spatial information is not known for any species. Using standard anatomic labeling techniques, we used a "top-down" approach to trace the flow of auditory spatial information from an output area of the forebrain sound localization pathway (the auditory archistriatum, AAr), back through the forebrain, and into the auditory midbrain. Previous work has demonstrated that AAr units are specialized for auditory space processing. The results presented here show that the AAr receives afferent input from Field L both directly and indirectly via the caudolateral neostriatum. Afferent input to Field L originates mainly in the auditory thalamus, nucleus ovoidalis, which, in turn, receives input from the central nucleus of the inferior colliculus. In addition, we confirmed previously reported projections of the AAr to the basal ganglia, the external nucleus of the inferior colliculus (ICX), the deep layers of the optic tectum, and various brain stem nuclei. A series of inactivation experiments demonstrated that the sharp tuning of AAr sites for binaural spatial cues depends on Field L input but not on input from the auditory space map in the midbrain ICX: pharmacological inactivation of Field L eliminated completely auditory responses in the AAr, whereas bilateral ablation of the midbrain ICX had no appreciable effect on AAr responses. We conclude, therefore, that the forebrain sound localization pathway can process auditory spatial information independently of the midbrain localization pathway.

  20. Auditory Evoked Responses in Neonates by MEG

    NASA Astrophysics Data System (ADS)

    Hernandez-Pavon, J. C.; Sosa, M.; Lutter, W. J.; Maier, M.; Wakai, R. T.

    2008-08-01

    Magnetoencephalography is a biomagnetic technique with outstanding potential for neurodevelopmental studies. In this work, we have used MEG to determinate if newborns can discriminate between different stimuli during the first few months of life. Five neonates were stimulated during several minutes with auditory stimulation. The results suggest that the newborns are able to discriminate between different stimuli despite their early age.

  1. Auditory Evoked Responses in Neonates by MEG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Pavon, J. C.; Department of Medical Physics, University of Wisconsin Madison, Wisconsin; Sosa, M.

    2008-08-11

    Magnetoencephalography is a biomagnetic technique with outstanding potential for neurodevelopmental studies. In this work, we have used MEG to determinate if newborns can discriminate between different stimuli during the first few months of life. Five neonates were stimulated during several minutes with auditory stimulation. The results suggest that the newborns are able to discriminate between different stimuli despite their early age.

  2. Thinking about touch facilitates tactile but not auditory processing.

    PubMed

    Anema, Helen A; de Haan, Alyanne M; Gebuis, Titia; Dijkerman, H Chris

    2012-05-01

    Mental imagery is considered to be important for normal conscious experience. It is most frequently investigated in the visual, auditory and motor domain (imagination of movement), while the studies on tactile imagery (imagination of touch) are scarce. The current study investigated the effect of tactile and auditory imagery on the left/right discriminations of tactile and auditory stimuli. In line with our hypothesis, we observed that after tactile imagery, tactile stimuli were responded to faster as compared to auditory stimuli and vice versa. On average, tactile stimuli were responded to faster as compared to auditory stimuli, and stimuli in the imagery condition were on average responded to slower as compared to baseline performance (left/right discrimination without imagery assignment). The former is probably due to the spatial and somatotopic proximity of the fingers receiving the taps and the thumbs performing the response (button press), the latter to a dual task cost. Together, these results provide the first evidence of a behavioural effect of a tactile imagery assignment on the perception of real tactile stimuli.

  3. Multimodal lexical processing in auditory cortex is literacy skill dependent.

    PubMed

    McNorgan, Chris; Awati, Neha; Desroches, Amy S; Booth, James R

    2014-09-01

    Literacy is a uniquely human cross-modal cognitive process wherein visual orthographic representations become associated with auditory phonological representations through experience. Developmental studies provide insight into how experience-dependent changes in brain organization influence phonological processing as a function of literacy. Previous investigations show a synchrony-dependent influence of letter presentation on individual phoneme processing in superior temporal sulcus; others demonstrate recruitment of primary and associative auditory cortex during cross-modal processing. We sought to determine whether brain regions supporting phonological processing of larger lexical units (monosyllabic words) over larger time windows is sensitive to cross-modal information, and whether such effects are literacy dependent. Twenty-two children (age 8-14 years) made rhyming judgments for sequentially presented word and pseudoword pairs presented either unimodally (auditory- or visual-only) or cross-modally (audiovisual). Regression analyses examined the relationship between literacy and congruency effects (overlapping orthography and phonology vs. overlapping phonology-only). We extend previous findings by showing that higher literacy is correlated with greater congruency effects in auditory cortex (i.e., planum temporale) only for cross-modal processing. These skill effects were specific to known words and occurred over a large time window, suggesting that multimodal integration in posterior auditory cortex is critical for fluent reading. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Auditory evoked potentials in children and adolescents with Down syndrome.

    PubMed

    Gregory, Letícia; Rosa, Rafael F M; Zen, Paulo R G; Sleifer, Pricila

    2018-01-01

    Down syndrome, or trisomy 21, is the most common genetic alteration in humans. The syndrome presents with several features, including hearing loss and changes in the central nervous system, which may affect language development in children and lead to school difficulties. The present study aimed to investigate group differences in the central auditory system by long-latency auditory evoked potentials and cognitive potential. An assessment of 23 children and adolescents with Down syndrome was performed, and a control group composed of 43 children and adolescents without genetic and/or neurological changes was used for comparison. All children underwent evaluation with pure tone and vocal audiometry, acoustic immitance measures, long-latency auditory evoked potentials, and cognitive potential. Longer latencies of the waves were found in the Down syndrome group than the control group, without significant differences in amplitude, suggesting that individuals with Down syndrome have difficulty in discrimination and auditory memory. It is, therefore, important to stimulate and monitor these children in order to enable adequate development and improve their life quality. We also emphasize the importance of the application of auditory evoked potentials in clinical practice, in order to contribute to the early diagnosis of hearing alterations and the development of more research in this area. © 2017 Wiley Periodicals, Inc.

  5. Effects of Background Music on Objective and Subjective Performance Measures in an Auditory BCI.

    PubMed

    Zhou, Sijie; Allison, Brendan Z; Kübler, Andrea; Cichocki, Andrzej; Wang, Xingyu; Jin, Jing

    2016-01-01

    Several studies have explored brain computer interface (BCI) systems based on auditory stimuli, which could help patients with visual impairments. Usability and user satisfaction are important considerations in any BCI. Although background music can influence emotion and performance in other task environments, and many users may wish to listen to music while using a BCI, auditory, and other BCIs are typically studied without background music. Some work has explored the possibility of using polyphonic music in auditory BCI systems. However, this approach requires users with good musical skills, and has not been explored in online experiments. Our hypothesis was that an auditory BCI with background music would be preferred by subjects over a similar BCI without background music, without any difference in BCI performance. We introduce a simple paradigm (which does not require musical skill) using percussion instrument sound stimuli and background music, and evaluated it in both offline and online experiments. The result showed that subjects preferred the auditory BCI with background music. Different performance measures did not reveal any significant performance effect when comparing background music vs. no background. Since the addition of background music does not impair BCI performance but is preferred by users, auditory (and perhaps other) BCIs should consider including it. Our study also indicates that auditory BCIs can be effective even if the auditory channel is simultaneously otherwise engaged.

  6. Estradiol-dependent modulation of auditory processing and selectivity in songbirds

    PubMed Central

    Maney, Donna; Pinaud, Raphael

    2011-01-01

    The steroid hormone estradiol plays an important role in reproductive development and behavior and modulates a wide array of physiological and cognitive processes. Recently, reports from several research groups have converged to show that estradiol also powerfully modulates sensory processing, specifically, the physiology of central auditory circuits in songbirds. These investigators have discovered that (1) behaviorally-relevant auditory experience rapidly increases estradiol levels in the auditory forebrain; (2) estradiol instantaneously enhances the responsiveness and coding efficiency of auditory neurons; (3) these changes are mediated by a non-genomic effect of brain-generated estradiol on the strength of inhibitory neurotransmission; and (4) estradiol regulates biochemical cascades that induce the expression of genes involved in synaptic plasticity. Together, these findings have established estradiol as a central regulator of auditory function and intensified the need to consider brain-based mechanisms, in addition to peripheral organ dysfunction, in hearing pathologies associated with estrogen deficiency. PMID:21146556

  7. Auditory Spatial Layout

    NASA Technical Reports Server (NTRS)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  8. Plastic brain mechanisms for attaining auditory temporal order judgment proficiency.

    PubMed

    Bernasconi, Fosco; Grivel, Jeremy; Murray, Micah M; Spierer, Lucas

    2010-04-15

    Accurate perception of the order of occurrence of sensory information is critical for the building up of coherent representations of the external world from ongoing flows of sensory inputs. While some psychophysical evidence reports that performance on temporal perception can improve, the underlying neural mechanisms remain unresolved. Using electrical neuroimaging analyses of auditory evoked potentials (AEPs), we identified the brain dynamics and mechanism supporting improvements in auditory temporal order judgment (TOJ) during the course of the first vs. latter half of the experiment. Training-induced changes in brain activity were first evident 43-76 ms post stimulus onset and followed from topographic, rather than pure strength, AEP modulations. Improvements in auditory TOJ accuracy thus followed from changes in the configuration of the underlying brain networks during the initial stages of sensory processing. Source estimations revealed an increase in the lateralization of initially bilateral posterior sylvian region (PSR) responses at the beginning of the experiment to left-hemisphere dominance at its end. Further supporting the critical role of left and right PSR in auditory TOJ proficiency, as the experiment progressed, responses in the left and right PSR went from being correlated to un-correlated. These collective findings provide insights on the neurophysiologic mechanism and plasticity of temporal processing of sounds and are consistent with models based on spike timing dependent plasticity. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Correlates of Bulimia Nervosa: Early Family Mealtime Experiences.

    ERIC Educational Resources Information Center

    Miller, Debra A. F.; And Others

    1993-01-01

    Examined relationship of early mealtime experiences to later bulimia in 128 female college students. Found significant group differences among bulimics, nonbulimics, and repeat dieters on early meal experience questionnaire, with bulimic group reporting most negative and unusual experiences. Found significant differences among groups on depression…

  10. Plasticity in neuromagnetic cortical responses suggests enhanced auditory object representation

    PubMed Central

    2013-01-01

    Background Auditory perceptual learning persistently modifies neural networks in the central nervous system. Central auditory processing comprises a hierarchy of sound analysis and integration, which transforms an acoustical signal into a meaningful object for perception. Based on latencies and source locations of auditory evoked responses, we investigated which stage of central processing undergoes neuroplastic changes when gaining auditory experience during passive listening and active perceptual training. Young healthy volunteers participated in a five-day training program to identify two pre-voiced versions of the stop-consonant syllable ‘ba’, which is an unusual speech sound to English listeners. Magnetoencephalographic (MEG) brain responses were recorded during two pre-training and one post-training sessions. Underlying cortical sources were localized, and the temporal dynamics of auditory evoked responses were analyzed. Results After both passive listening and active training, the amplitude of the P2m wave with latency of 200 ms increased considerably. By this latency, the integration of stimulus features into an auditory object for further conscious perception is considered to be complete. Therefore the P2m changes were discussed in the light of auditory object representation. Moreover, P2m sources were localized in anterior auditory association cortex, which is part of the antero-ventral pathway for object identification. The amplitude of the earlier N1m wave, which is related to processing of sensory information, did not change over the time course of the study. Conclusion The P2m amplitude increase and its persistence over time constitute a neuroplastic change. The P2m gain likely reflects enhanced object representation after stimulus experience and training, which enables listeners to improve their ability for scrutinizing fine differences in pre-voicing time. Different trajectories of brain and behaviour changes suggest that the preceding effect

  11. The Legacy of Early Experiences in Development: Formalizing Alternative Models of How Early Experiences Are Carried Forward over Time

    ERIC Educational Resources Information Center

    Fraley, R. Chris; Roisman, Glenn I.; Haltigan, John D.

    2013-01-01

    Psychologists have long debated the role of early experience in social and cognitive development. However, traditional approaches to studying this issue are not well positioned to address this debate. The authors present simulations that indicate that the associations between early experiences and later outcomes should approach different…

  12. The Impact of Early Visual Deprivation on Spatial Hearing: A Comparison between Totally and Partially Visually Deprived Children

    PubMed Central

    Cappagli, Giulia; Finocchietti, Sara; Cocchi, Elena; Gori, Monica

    2017-01-01

    The specific role of early visual deprivation on spatial hearing is still unclear, mainly due to the difficulty of comparing similar spatial skills at different ages and to the difficulty in recruiting young blind children from birth. In this study, the effects of early visual deprivation on the development of auditory spatial localization have been assessed in a group of seven 3–5 years old children with congenital blindness (n = 2; light perception or no perception of light) or low vision (n = 5; visual acuity range 1.1–1.7 LogMAR), with the main aim to understand if visual experience is fundamental to the development of specific spatial skills. Our study led to three main findings: firstly, totally blind children performed overall more poorly compared sighted and low vision children in all the spatial tasks performed; secondly, low vision children performed equally or better than sighted children in the same auditory spatial tasks; thirdly, higher residual levels of visual acuity are positively correlated with better spatial performance in the dynamic condition of the auditory localization task indicating that the more residual vision the better spatial performance. These results suggest that early visual experience has an important role in the development of spatial cognition, even when the visual input during the critical period of visual calibration is partially degraded like in the case of low vision children. Overall these results shed light on the importance of early assessment of spatial impairments in visually impaired children and early intervention to prevent the risk of isolation and social exclusion. PMID:28443040

  13. Auditory white noise reduces age-related fluctuations in balance.

    PubMed

    Ross, J M; Will, O J; McGann, Z; Balasubramaniam, R

    2016-09-06

    Fall prevention technologies have the potential to improve the lives of older adults. Because of the multisensory nature of human balance control, sensory therapies, including some involving tactile and auditory noise, are being explored that might reduce increased balance variability due to typical age-related sensory declines. Auditory white noise has previously been shown to reduce postural sway variability in healthy young adults. In the present experiment, we examined this treatment in young adults and typically aging older adults. We measured postural sway of healthy young adults and adults over the age of 65 years during silence and auditory white noise, with and without vision. Our results show reduced postural sway variability in young and older adults with auditory noise, even in the absence of vision. We show that vision and noise can reduce sway variability for both feedback-based and exploratory balance processes. In addition, we show changes with auditory noise in nonlinear patterns of sway in older adults that reflect what is more typical of young adults, and these changes did not interfere with the typical random walk behavior of sway. Our results suggest that auditory noise might be valuable for therapeutic and rehabilitative purposes in older adults with typical age-related balance variability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Covert Auditory Spatial Orienting: An Evaluation of the Spatial Relevance Hypothesis

    ERIC Educational Resources Information Center

    Roberts, Katherine L.; Summerfield, A. Quentin; Hall, Deborah A.

    2009-01-01

    The spatial relevance hypothesis (J. J. McDonald & L. M. Ward, 1999) proposes that covert auditory spatial orienting can only be beneficial to auditory processing when task stimuli are encoded spatially. We present a series of experiments that evaluate 2 key aspects of the hypothesis: (a) that "reflexive activation of location-sensitive neurons is…

  15. Interhemispheric coupling between the posterior sylvian regions impacts successful auditory temporal order judgment.

    PubMed

    Bernasconi, Fosco; Grivel, Jeremy; Murray, Micah M; Spierer, Lucas

    2010-07-01

    Accurate perception of the temporal order of sensory events is a prerequisite in numerous functions ranging from language comprehension to motor coordination. We investigated the spatio-temporal brain dynamics of auditory temporal order judgment (aTOJ) using electrical neuroimaging analyses of auditory evoked potentials (AEPs) recorded while participants completed a near-threshold task requiring spatial discrimination of left-right and right-left sound sequences. AEPs to sound pairs modulated topographically as a function of aTOJ accuracy over the 39-77ms post-stimulus period, indicating the engagement of distinct configurations of brain networks during early auditory processing stages. Source estimations revealed that accurate and inaccurate performance were linked to bilateral posterior sylvian regions activity (PSR). However, activity within left, but not right, PSR predicted behavioral performance suggesting that left PSR activity during early encoding phases of pairs of auditory spatial stimuli appears critical for the perception of their order of occurrence. Correlation analyses of source estimations further revealed that activity between left and right PSR was significantly correlated in the inaccurate but not accurate condition, indicating that aTOJ accuracy depends on the functional decoupling between homotopic PSR areas. These results support a model of temporal order processing wherein behaviorally relevant temporal information--i.e. a temporal 'stamp'--is extracted within the early stages of cortical processes within left PSR but critically modulated by inputs from right PSR. We discuss our results with regard to current models of temporal of temporal order processing, namely gating and latency mechanisms. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Grey matter connectivity within and between auditory, language and visual systems in prelingually deaf adolescents.

    PubMed

    Li, Wenjing; Li, Jianhong; Wang, Zhenchang; Li, Yong; Liu, Zhaohui; Yan, Fei; Xian, Junfang; He, Huiguang

    2015-01-01

    Previous studies have shown brain reorganizations after early deprivation of auditory sensory. However, changes of grey matter connectivity have not been investigated in prelingually deaf adolescents yet. In the present study, we aimed to investigate changes of grey matter connectivity within and between auditory, language and visual systems in prelingually deaf adolescents. We recruited 16 prelingually deaf adolescents and 16 age-and gender-matched normal controls, and extracted the grey matter volume as the structural characteristic from 14 regions of interest involved in auditory, language or visual processing to investigate the changes of grey matter connectivity within and between auditory, language and visual systems. Sparse inverse covariance estimation (SICE) was utilized to construct grey matter connectivity between these brain regions. The results show that prelingually deaf adolescents present weaker grey matter connectivity within auditory and visual systems, and connectivity between language and visual systems declined. Notably, significantly increased brain connectivity was found between auditory and visual systems in prelingually deaf adolescents. Our results indicate "cross-modal" plasticity after deprivation of the auditory input in prelingually deaf adolescents, especially between auditory and visual systems. Besides, auditory deprivation and visual deficits might affect the connectivity pattern within language and visual systems in prelingually deaf adolescents.

  17. EyeMusic: Introducing a "visual" colorful experience for the blind using auditory sensory substitution.

    PubMed

    Abboud, Sami; Hanassy, Shlomi; Levy-Tzedek, Shelly; Maidenbaum, Shachar; Amedi, Amir

    2014-01-01

    Sensory-substitution devices (SSDs) provide auditory or tactile representations of visual information. These devices often generate unpleasant sensations and mostly lack color information. We present here a novel SSD aimed at addressing these issues. We developed the EyeMusic, a novel visual-to-auditory SSD for the blind, providing both shape and color information. Our design uses musical notes on a pentatonic scale generated by natural instruments to convey the visual information in a pleasant manner. A short behavioral protocol was utilized to train the blind to extract shape and color information, and test their acquired abilities. Finally, we conducted a survey and a comparison task to assess the pleasantness of the generated auditory stimuli. We show that basic shape and color information can be decoded from the generated auditory stimuli. High performance levels were achieved by all participants following as little as 2-3 hours of training. Furthermore, we show that users indeed found the stimuli pleasant and potentially tolerable for prolonged use. The novel EyeMusic algorithm provides an intuitive and relatively pleasant way for the blind to extract shape and color information. We suggest that this might help facilitating visual rehabilitation because of the added functionality and enhanced pleasantness.

  18. Familial auditory neuropathy.

    PubMed

    Wang, Qiuju; Gu, Rui; Han, Dongyi; Yang, Weiyan

    2003-09-01

    Auditory neuropathy is a sensorineural hearing disorder characterized by absent or abnormal auditory brainstem responses and normal cochlear outer hair cell function as measured by otoacoustic emission recordings. Many risk factors are thought to be involved in its etiology and pathophysiology. Four Chinese pedigrees with familial auditory neuropathy were presented to demonstrate involvement of genetic factors in the etiology of auditory neuropathy. Probands of the above-mentioned pedigrees, who had been diagnosed with auditory neuropathy, were evaluated and followed in the Department of Otolaryngology-Head and Neck Surgery, China People Liberation Army General Hospital (Beijing, China). Their family members were studied, and the pedigree maps established. History of illness, physical examination, pure-tone audiometry, acoustic reflex, auditory brainstem responses, and transient evoked and distortion-product otoacoustic emissions were obtained from members of these families. Some subjects received vestibular caloric testing, computed tomography scan of the temporal bone, and electrocardiography to exclude other possible neuropathic disorders. In most affected patients, hearing loss of various degrees and speech discrimination difficulties started at 10 to 16 years of age. Their audiological evaluation showed absence of acoustic reflex and auditory brainstem responses. As expected in auditory neuropathy, these patients exhibited near-normal cochlear outer hair cell function as shown in distortion product otoacoustic emission recordings. Pure-tone audiometry revealed hearing loss ranging from mild to profound in these patients. Different inheritance patterns were observed in the four families. In Pedigree I, 7 male patients were identified among 43 family members, exhibiting an X-linked recessive pattern. Affected brothers were found in Pedigrees II and III, whereas in pedigree IV, two sisters were affected. All the patients were otherwise normal without evidence of

  19. Human Pupillary Dilation Response to Deviant Auditory Stimuli: Effects of Stimulus Properties and Voluntary Attention

    PubMed Central

    Liao, Hsin-I; Yoneya, Makoto; Kidani, Shunsuke; Kashino, Makio; Furukawa, Shigeto

    2016-01-01

    A unique sound that deviates from a repetitive background sound induces signature neural responses, such as mismatch negativity and novelty P3 response in electro-encephalography studies. Here we show that a deviant auditory stimulus induces a human pupillary dilation response (PDR) that is sensitive to the stimulus properties and irrespective whether attention is directed to the sounds or not. In an auditory oddball sequence, we used white noise and 2000-Hz tones as oddballs against repeated 1000-Hz tones. Participants' pupillary responses were recorded while they listened to the auditory oddball sequence. In Experiment 1, they were not involved in any task. Results show that pupils dilated to the noise oddballs for approximately 4 s, but no such PDR was found for the 2000-Hz tone oddballs. In Experiments 2, two types of visual oddballs were presented synchronously with the auditory oddballs. Participants discriminated the auditory or visual oddballs while trying to ignore stimuli from the other modality. The purpose of this manipulation was to direct attention to or away from the auditory sequence. In Experiment 3, the visual oddballs and the auditory oddballs were always presented asynchronously to prevent residuals of attention on to-be-ignored oddballs due to the concurrence with the attended oddballs. Results show that pupils dilated to both the noise and 2000-Hz tone oddballs in all conditions. Most importantly, PDRs to noise were larger than those to the 2000-Hz tone oddballs regardless of the attention condition in both experiments. The overall results suggest that the stimulus-dependent factor of the PDR appears to be independent of attention. PMID:26924959

  20. The storage and recall of auditory memory.

    PubMed

    Nebenzahl, I; Albeck, Y

    1990-01-01

    The architecture of the auditory memory is investigated. The auditory information is assumed to be represented by f-t patterns. With the help of a psycho-physical experiment it is demonstrated that the storage of these patterns is highly folded in the sense that a long signal is broken into many short stretches before being stored in the memory. Recognition takes place by correlating newly heard input in the short term memory to information previously stored in the long term memory. We show that this correlation is performed after the input is accumulated and held statically in the short term memory.

  1. Towards neural correlates of auditory stimulus processing: A simultaneous auditory evoked potentials and functional magnetic resonance study using an odd-ball paradigm

    PubMed Central

    Milner, Rafał; Rusiniak, Mateusz; Lewandowska, Monika; Wolak, Tomasz; Ganc, Małgorzata; Piątkowska-Janko, Ewa; Bogorodzki, Piotr; Skarżyński, Henryk

    2014-01-01

    Background The neural underpinnings of auditory information processing have often been investigated using the odd-ball paradigm, in which infrequent sounds (deviants) are presented within a regular train of frequent stimuli (standards). Traditionally, this paradigm has been applied using either high temporal resolution (EEG) or high spatial resolution (fMRI, PET). However, used separately, these techniques cannot provide information on both the location and time course of particular neural processes. The goal of this study was to investigate the neural correlates of auditory processes with a fine spatio-temporal resolution. A simultaneous auditory evoked potentials (AEP) and functional magnetic resonance imaging (fMRI) technique (AEP-fMRI), together with an odd-ball paradigm, were used. Material/Methods Six healthy volunteers, aged 20–35 years, participated in an odd-ball simultaneous AEP-fMRI experiment. AEP in response to acoustic stimuli were used to model bioelectric intracerebral generators, and electrophysiological results were integrated with fMRI data. Results fMRI activation evoked by standard stimuli was found to occur mainly in the primary auditory cortex. Activity in these regions overlapped with intracerebral bioelectric sources (dipoles) of the N1 component. Dipoles of the N1/P2 complex in response to standard stimuli were also found in the auditory pathway between the thalamus and the auditory cortex. Deviant stimuli induced fMRI activity in the anterior cingulate gyrus, insula, and parietal lobes. Conclusions The present study showed that neural processes evoked by standard stimuli occur predominantly in subcortical and cortical structures of the auditory pathway. Deviants activate areas non-specific for auditory information processing. PMID:24413019

  2. Auditory Processing and Early Literacy Skills in a Preschool and Kindergarten Population

    ERIC Educational Resources Information Center

    Corriveau, Kathleen H.; Goswami, Usha; Thomson, Jennifer M.

    2010-01-01

    Although the relationship between auditory processing and reading-related skills has been investigated in school-age populations and in prospective studies of infants, understanding of the relationship between these variables in the period immediately preceding formal reading instruction is sparse. In this cross-sectional study, auditory…

  3. Older adults benefit from music training early in life: biological evidence for long-term training-driven plasticity.

    PubMed

    White-Schwoch, Travis; Woodruff Carr, Kali; Anderson, Samira; Strait, Dana L; Kraus, Nina

    2013-11-06

    Aging results in pervasive declines in nervous system function. In the auditory system, these declines include neural timing delays in response to fast-changing speech elements; this causes older adults to experience difficulty understanding speech, especially in challenging listening environments. These age-related declines are not inevitable, however: older adults with a lifetime of music training do not exhibit neural timing delays. Yet many people play an instrument for a few years without making a lifelong commitment. Here, we examined neural timing in a group of human older adults who had nominal amounts of music training early in life, but who had not played an instrument for decades. We found that a moderate amount (4-14 years) of music training early in life is associated with faster neural timing in response to speech later in life, long after training stopped (>40 years). We suggest that early music training sets the stage for subsequent interactions with sound. These experiences may interact over time to sustain sharpened neural processing in central auditory nuclei well into older age.

  4. Older Adults Benefit from Music Training Early in Life: Biological Evidence for Long-Term Training-Driven Plasticity

    PubMed Central

    White-Schwoch, Travis; Carr, Kali Woodruff; Anderson, Samira; Strait, Dana L.

    2013-01-01

    Aging results in pervasive declines in nervous system function. In the auditory system, these declines include neural timing delays in response to fast-changing speech elements; this causes older adults to experience difficulty understanding speech, especially in challenging listening environments. These age-related declines are not inevitable, however: older adults with a lifetime of music training do not exhibit neural timing delays. Yet many people play an instrument for a few years without making a lifelong commitment. Here, we examined neural timing in a group of human older adults who had nominal amounts of music training early in life, but who had not played an instrument for decades. We found that a moderate amount (4–14 years) of music training early in life is associated with faster neural timing in response to speech later in life, long after training stopped (>40 years). We suggest that early music training sets the stage for subsequent interactions with sound. These experiences may interact over time to sustain sharpened neural processing in central auditory nuclei well into older age. PMID:24198359

  5. Auditory hallucinations induced by trazodone

    PubMed Central

    Shiotsuki, Ippei; Terao, Takeshi; Ishii, Nobuyoshi; Hatano, Koji

    2014-01-01

    A 26-year-old female outpatient presenting with a depressive state suffered from auditory hallucinations at night. Her auditory hallucinations did not respond to blonanserin or paliperidone, but partially responded to risperidone. In view of the possibility that her auditory hallucinations began after starting trazodone, trazodone was discontinued, leading to a complete resolution of her auditory hallucinations. Furthermore, even after risperidone was decreased and discontinued, her auditory hallucinations did not recur. These findings suggest that trazodone may induce auditory hallucinations in some susceptible patients. PMID:24700048

  6. Using EEG and stimulus context to probe the modelling of auditory-visual speech.

    PubMed

    Paris, Tim; Kim, Jeesun; Davis, Chris

    2016-02-01

    We investigated whether internal models of the relationship between lip movements and corresponding speech sounds [Auditory-Visual (AV) speech] could be updated via experience. AV associations were indexed by early and late event related potentials (ERPs) and by oscillatory power and phase locking. Different AV experience was produced via a context manipulation. Participants were presented with valid (the conventional pairing) and invalid AV speech items in either a 'reliable' context (80% AVvalid items) or an 'unreliable' context (80% AVinvalid items). The results showed that for the reliable context, there was N1 facilitation for AV compared to auditory only speech. This N1 facilitation was not affected by AV validity. Later ERPs showed a difference in amplitude between valid and invalid AV speech and there was significant enhancement of power for valid versus invalid AV speech. These response patterns did not change over the context manipulation, suggesting that the internal models of AV speech were not updated by experience. The results also showed that the facilitation of N1 responses did not vary as a function of the salience of visual speech (as previously reported); in post-hoc analyses, it appeared instead that N1 facilitation varied according to the relative time of the acoustic onset, suggesting for AV events N1 may be more sensitive to the relationship of AV timing than form. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  7. Auditory Inhibition of Rapid Eye Movements and Dream Recall from REM Sleep

    PubMed Central

    Stuart, Katrina; Conduit, Russell

    2009-01-01

    Study Objectives: There is debate in dream research as to whether ponto-geniculo-occipital (PGO) waves or cortical arousal during sleep underlie the biological mechanisms of dreaming. This study comprised 2 experiments. As eye movements (EMs) are currently considered the best noninvasive indicator of PGO burst activity in humans, the aim of the first experiment was to investigate the effect of low-intensity repeated auditory stimulation on EMs (and inferred PGO burst activity) during REM sleep. It was predicted that such auditory stimuli during REM sleep would have a suppressive effect on EMs. The aim of the second experiment was to examine the effects of this auditory stimulation on subsequent dream reporting on awakening. Design: Repeated measures design with counterbalanced order of experimental and control conditions across participants. Setting: Sleep laboratory based polysomnography (PSG) Participants: Experiment 1: 5 males and 10 females aged 18-35 years (M = 20.8, SD = 5.4). Experiment 2: 7 males and 13 females aged 18-35 years (M = 23.3, SD = 5.5). Interventions: Below-waking threshold tone presentations during REM sleep compared to control REM sleep conditions without tone presentations. Measurements and Results: PSG records were manually scored for sleep stages, EEG arousals, and EMs. Auditory stimulation during REM sleep was related to: (a) an increase in EEG arousal, (b) a decrease in the amplitude and frequency of EMs, and (c) a decrease in the frequency of visual imagery reports on awakening. Conclusions: The results of this study provide phenomenological support for PGO-based theories of dream reporting on awakening from sleep in humans. Citation: Stuart K; Conduit R. Auditory inhibition of rapid eye movements and dream recall from REM sleep. SLEEP 2009;32(3):399–408. PMID:19294960

  8. Persistent Fluctuations in Stride Intervals under Fractal Auditory Stimulation

    PubMed Central

    Marmelat, Vivien; Torre, Kjerstin; Beek, Peter J.; Daffertshofer, Andreas

    2014-01-01

    Stride sequences of healthy gait are characterized by persistent long-range correlations, which become anti-persistent in the presence of an isochronous metronome. The latter phenomenon is of particular interest because auditory cueing is generally considered to reduce stride variability and may hence be beneficial for stabilizing gait. Complex systems tend to match their correlation structure when synchronizing. In gait training, can one capitalize on this tendency by using a fractal metronome rather than an isochronous one? We examined whether auditory cues with fractal variations in inter-beat intervals yield similar fractal inter-stride interval variability as isochronous auditory cueing in two complementary experiments. In Experiment 1, participants walked on a treadmill while being paced by either an isochronous or a fractal metronome with different variation strengths between beats in order to test whether participants managed to synchronize with a fractal metronome and to determine the necessary amount of variability for participants to switch from anti-persistent to persistent inter-stride intervals. Participants did synchronize with the metronome despite its fractal randomness. The corresponding coefficient of variation of inter-beat intervals was fixed in Experiment 2, in which participants walked on a treadmill while being paced by non-isochronous metronomes with different scaling exponents. As expected, inter-stride intervals showed persistent correlations similar to self-paced walking only when cueing contained persistent correlations. Our results open up a new window to optimize rhythmic auditory cueing for gait stabilization by integrating fractal fluctuations in the inter-beat intervals. PMID:24651455

  9. BALDEY: A database of auditory lexical decisions.

    PubMed

    Ernestus, Mirjam; Cutler, Anne

    2015-01-01

    In an auditory lexical decision experiment, 5541 spoken content words and pseudowords were presented to 20 native speakers of Dutch. The words vary in phonological make-up and in number of syllables and stress pattern, and are further representative of the native Dutch vocabulary in that most are morphologically complex, comprising two stems or one stem plus derivational and inflectional suffixes, with inflections representing both regular and irregular paradigms; the pseudowords were matched in these respects to the real words. The BALDEY ("biggest auditory lexical decision experiment yet") data file includes response times and accuracy rates, with for each item morphological information plus phonological and acoustic information derived from automatic phonemic segmentation of the stimuli. Two initial analyses illustrate how this data set can be used. First, we discuss several measures of the point at which a word has no further neighbours and compare the degree to which each measure predicts our lexical decision response outcomes. Second, we investigate how well four different measures of frequency of occurrence (from written corpora, spoken corpora, subtitles, and frequency ratings by 75 participants) predict the same outcomes. These analyses motivate general conclusions about the auditory lexical decision task. The (publicly available) BALDEY database lends itself to many further analyses.

  10. Auditory and vestibular dysfunctions in systemic sclerosis: literature review.

    PubMed

    Rabelo, Maysa Bastos; Corona, Ana Paula

    2014-01-01

    To describe the prevalence of auditory and vestibular dysfunction in individuals with systemic sclerosis (SS) and the hypotheses to explain these changes. We performed a systematic review without meta-analysis from PubMed, LILACS, Web of Science, SciELO and SCOPUS databases, using a combination of keywords "systemic sclerosis AND balance OR vestibular" and "systemic sclerosis AND hearing OR auditory." We included articles published in Portuguese, Spanish, or English until December 2011 and reviews, letters, and editorials were excluded. We found 254 articles, out of which 10 were selected. The study design was described, and the characteristics and frequency of the auditory and vestibular dysfunctions in these individuals were listed. Afterwards, we investigated the hypothesis built by the authors to explain the auditory and vestibular dysfunctions in SS. Hearing loss was the most common finding, with prevalence ranging from 20 to 77%, being bilateral sensorineural the most frequent type. It is hypothesized that the hearing impairment in SS is due to vascular changes in the cochlea. The prevalence of vestibular disorders ranged from 11 to 63%, and the most frequent findings were changes in caloric testing, positional nystagmus, impaired oculocephalic response, changes in clinical tests of sensory interaction, and benign paroxysmal positional vertigo. High prevalence of auditory and vestibular dysfunctions in patients with SS was observed. Conducting further research can assist in early identification of these abnormalities, provide resources for professionals who work with these patients, and contribute to improving the quality of life of these individuals.

  11. Attending to auditory memory.

    PubMed

    Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude

    2016-06-01

    Attention to memory describes the process of attending to memory traces when the object is no longer present. It has been studied primarily for representations of visual stimuli with only few studies examining attention to sound object representations in short-term memory. Here, we review the interplay of attention and auditory memory with an emphasis on 1) attending to auditory memory in the absence of related external stimuli (i.e., reflective attention) and 2) effects of existing memory on guiding attention. Attention to auditory memory is discussed in the context of change deafness, and we argue that failures to detect changes in our auditory environments are most likely the result of a faulty comparison system of incoming and stored information. Also, objects are the primary building blocks of auditory attention, but attention can also be directed to individual features (e.g., pitch). We review short-term and long-term memory guided modulation of attention based on characteristic features, location, and/or semantic properties of auditory objects, and propose that auditory attention to memory pathways emerge after sensory memory. A neural model for auditory attention to memory is developed, which comprises two separate pathways in the parietal cortex, one involved in attention to higher-order features and the other involved in attention to sensory information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Electrophysiological Responses to Auditory Novelty in Temperamentally Different 9-Month-Old Infants

    ERIC Educational Resources Information Center

    Marshall, Peter J.; Reeb, Bethany C.; Fox, Nathan A.

    2009-01-01

    Behavioral reactivity to novel stimuli in the first half-year of life has been identified as a key aspect of early temperament and a significant precursor of approach and withdrawal tendencies to novelty in later infancy and early childhood. The current study examines the neural signatures of reactivity to novel auditory stimuli in 9-month-old…

  13. Achilles' ear? Inferior human short-term and recognition memory in the auditory modality.

    PubMed

    Bigelow, James; Poremba, Amy

    2014-01-01

    Studies of the memory capabilities of nonhuman primates have consistently revealed a relative weakness for auditory compared to visual or tactile stimuli: extensive training is required to learn auditory memory tasks, and subjects are only capable of retaining acoustic information for a brief period of time. Whether a parallel deficit exists in human auditory memory remains an outstanding question. In the current study, a short-term memory paradigm was used to test human subjects' retention of simple auditory, visual, and tactile stimuli that were carefully equated in terms of discriminability, stimulus exposure time, and temporal dynamics. Mean accuracy did not differ significantly among sensory modalities at very short retention intervals (1-4 s). However, at longer retention intervals (8-32 s), accuracy for auditory stimuli fell substantially below that observed for visual and tactile stimuli. In the interest of extending the ecological validity of these findings, a second experiment tested recognition memory for complex, naturalistic stimuli that would likely be encountered in everyday life. Subjects were able to identify all stimuli when retention was not required, however, recognition accuracy following a delay period was again inferior for auditory compared to visual and tactile stimuli. Thus, the outcomes of both experiments provide a human parallel to the pattern of results observed in nonhuman primates. The results are interpreted in light of neuropsychological data from nonhuman primates, which suggest a difference in the degree to which auditory, visual, and tactile memory are mediated by the perirhinal and entorhinal cortices.

  14. Towards an understanding of the mechanisms of weak central coherence effects: experiments in visual configural learning and auditory perception.

    PubMed Central

    Plaisted, Kate; Saksida, Lisa; Alcántara, José; Weisblatt, Emma

    2003-01-01

    The weak central coherence hypothesis of Frith is one of the most prominent theories concerning the abnormal performance of individuals with autism on tasks that involve local and global processing. Individuals with autism often outperform matched nonautistic individuals on tasks in which success depends upon processing of local features, and underperform on tasks that require global processing. We review those studies that have been unable to identify the locus of the mechanisms that may be responsible for weak central coherence effects and those that show that local processing is enhanced in autism but not at the expense of global processing. In the light of these studies, we propose that the mechanisms which can give rise to 'weak central coherence' effects may be perceptual. More specifically, we propose that perception operates to enhance the representation of individual perceptual features but that this does not impact adversely on representations that involve integration of features. This proposal was supported in the two experiments we report on configural and feature discrimination learning in high-functioning children with autism. We also examined processes of perception directly, in an auditory filtering task which measured the width of auditory filters in individuals with autism and found that the width of auditory filters in autism were abnormally broad. We consider the implications of these findings for perceptual theories of the mechanisms underpinning weak central coherence effects. PMID:12639334

  15. Towards an understanding of the mechanisms of weak central coherence effects: experiments in visual configural learning and auditory perception.

    PubMed

    Plaisted, Kate; Saksida, Lisa; Alcántara, José; Weisblatt, Emma

    2003-02-28

    The weak central coherence hypothesis of Frith is one of the most prominent theories concerning the abnormal performance of individuals with autism on tasks that involve local and global processing. Individuals with autism often outperform matched nonautistic individuals on tasks in which success depends upon processing of local features, and underperform on tasks that require global processing. We review those studies that have been unable to identify the locus of the mechanisms that may be responsible for weak central coherence effects and those that show that local processing is enhanced in autism but not at the expense of global processing. In the light of these studies, we propose that the mechanisms which can give rise to 'weak central coherence' effects may be perceptual. More specifically, we propose that perception operates to enhance the representation of individual perceptual features but that this does not impact adversely on representations that involve integration of features. This proposal was supported in the two experiments we report on configural and feature discrimination learning in high-functioning children with autism. We also examined processes of perception directly, in an auditory filtering task which measured the width of auditory filters in individuals with autism and found that the width of auditory filters in autism were abnormally broad. We consider the implications of these findings for perceptual theories of the mechanisms underpinning weak central coherence effects.

  16. Prediction in the service of comprehension: modulated early brain responses to omitted speech segments.

    PubMed

    Bendixen, Alexandra; Scharinger, Mathias; Strauß, Antje; Obleser, Jonas

    2014-04-01

    Speech signals are often compromised by disruptions originating from external (e.g., masking noise) or internal (e.g., inaccurate articulation) sources. Speech comprehension thus entails detecting and replacing missing information based on predictive and restorative neural mechanisms. The present study targets predictive mechanisms by investigating the influence of a speech segment's predictability on early, modality-specific electrophysiological responses to this segment's omission. Predictability was manipulated in simple physical terms in a single-word framework (Experiment 1) or in more complex semantic terms in a sentence framework (Experiment 2). In both experiments, final consonants of the German words Lachs ([laks], salmon) or Latz ([lats], bib) were occasionally omitted, resulting in the syllable La ([la], no semantic meaning), while brain responses were measured with multi-channel electroencephalography (EEG). In both experiments, the occasional presentation of the fragment La elicited a larger omission response when the final speech segment had been predictable. The omission response occurred ∼125-165 msec after the expected onset of the final segment and showed characteristics of the omission mismatch negativity (MMN), with generators in auditory cortical areas. Suggestive of a general auditory predictive mechanism at work, this main observation was robust against varying source of predictive information or attentional allocation, differing between the two experiments. Source localization further suggested the omission response enhancement by predictability to emerge from left superior temporal gyrus and left angular gyrus in both experiments, with additional experiment-specific contributions. These results are consistent with the existence of predictive coding mechanisms in the central auditory system, and suggestive of the general predictive properties of the auditory system to support spoken word recognition. Copyright © 2014 Elsevier Ltd. All

  17. Auditory, Visual, and Auditory-Visual Perception of Vowels by Hearing-Impaired Children.

    ERIC Educational Resources Information Center

    Hack, Zarita Caplan; Erber, Norman P.

    1982-01-01

    Vowels were presented through auditory, visual, and auditory-visual modalities to 18 hearing impaired children (12 to 15 years old) having good, intermediate, and poor auditory word recognition skills. All the groups had difficulty with acoustic information and visual information alone. The first two groups had only moderate difficulty identifying…

  18. Biological Perspectives on the Effects of Early Psychosocial Experience

    ERIC Educational Resources Information Center

    Marshall, Peter J.; Kenney, Justin W.

    2009-01-01

    There is much current interest in how adverse experiences early in life might affect certain elements of physiological, behavioral, and psychological functioning across the lifespan. Recent conceptual frameworks for studying the effects of early experience have involved constructs such as experience-expectant, experience-dependent, and…

  19. Multisensory emotion perception in congenitally, early, and late deaf CI users

    PubMed Central

    Nava, Elena; Villwock, Agnes K.; Büchner, Andreas; Lenarz, Thomas; Röder, Brigitte

    2017-01-01

    Emotions are commonly recognized by combining auditory and visual signals (i.e., vocal and facial expressions). Yet it is unknown whether the ability to link emotional signals across modalities depends on early experience with audio-visual stimuli. In the present study, we investigated the role of auditory experience at different stages of development for auditory, visual, and multisensory emotion recognition abilities in three groups of adolescent and adult cochlear implant (CI) users. CI users had a different deafness onset and were compared to three groups of age- and gender-matched hearing control participants. We hypothesized that congenitally deaf (CD) but not early deaf (ED) and late deaf (LD) CI users would show reduced multisensory interactions and a higher visual dominance in emotion perception than their hearing controls. The CD (n = 7), ED (deafness onset: <3 years of age; n = 7), and LD (deafness onset: >3 years; n = 13) CI users and the control participants performed an emotion recognition task with auditory, visual, and audio-visual emotionally congruent and incongruent nonsense speech stimuli. In different blocks, participants judged either the vocal (Voice task) or the facial expressions (Face task). In the Voice task, all three CI groups performed overall less efficiently than their respective controls and experienced higher interference from incongruent facial information. Furthermore, the ED CI users benefitted more than their controls from congruent faces and the CD CI users showed an analogous trend. In the Face task, recognition efficiency of the CI users and controls did not differ. Our results suggest that CI users acquire multisensory interactions to some degree, even after congenital deafness. When judging affective prosody they appear impaired and more strongly biased by concurrent facial information than typically hearing individuals. We speculate that limitations inherent to the CI contribute to these group differences. PMID:29023525

  20. Multisensory emotion perception in congenitally, early, and late deaf CI users.

    PubMed

    Fengler, Ineke; Nava, Elena; Villwock, Agnes K; Büchner, Andreas; Lenarz, Thomas; Röder, Brigitte

    2017-01-01

    Emotions are commonly recognized by combining auditory and visual signals (i.e., vocal and facial expressions). Yet it is unknown whether the ability to link emotional signals across modalities depends on early experience with audio-visual stimuli. In the present study, we investigated the role of auditory experience at different stages of development for auditory, visual, and multisensory emotion recognition abilities in three groups of adolescent and adult cochlear implant (CI) users. CI users had a different deafness onset and were compared to three groups of age- and gender-matched hearing control participants. We hypothesized that congenitally deaf (CD) but not early deaf (ED) and late deaf (LD) CI users would show reduced multisensory interactions and a higher visual dominance in emotion perception than their hearing controls. The CD (n = 7), ED (deafness onset: <3 years of age; n = 7), and LD (deafness onset: >3 years; n = 13) CI users and the control participants performed an emotion recognition task with auditory, visual, and audio-visual emotionally congruent and incongruent nonsense speech stimuli. In different blocks, participants judged either the vocal (Voice task) or the facial expressions (Face task). In the Voice task, all three CI groups performed overall less efficiently than their respective controls and experienced higher interference from incongruent facial information. Furthermore, the ED CI users benefitted more than their controls from congruent faces and the CD CI users showed an analogous trend. In the Face task, recognition efficiency of the CI users and controls did not differ. Our results suggest that CI users acquire multisensory interactions to some degree, even after congenital deafness. When judging affective prosody they appear impaired and more strongly biased by concurrent facial information than typically hearing individuals. We speculate that limitations inherent to the CI contribute to these group differences.

  1. Auditory pathways: anatomy and physiology.

    PubMed

    Pickles, James O

    2015-01-01

    This chapter outlines the anatomy and physiology of the auditory pathways. After a brief analysis of the external, middle ears, and cochlea, the responses of auditory nerve fibers are described. The central nervous system is analyzed in more detail. A scheme is provided to help understand the complex and multiple auditory pathways running through the brainstem. The multiple pathways are based on the need to preserve accurate timing while extracting complex spectral patterns in the auditory input. The auditory nerve fibers branch to give two pathways, a ventral sound-localizing stream, and a dorsal mainly pattern recognition stream, which innervate the different divisions of the cochlear nucleus. The outputs of the two streams, with their two types of analysis, are progressively combined in the inferior colliculus and onwards, to produce the representation of what can be called the "auditory objects" in the external world. The progressive extraction of critical features in the auditory stimulus in the different levels of the central auditory system, from cochlear nucleus to auditory cortex, is described. In addition, the auditory centrifugal system, running from cortex in multiple stages to the organ of Corti of the cochlea, is described. © 2015 Elsevier B.V. All rights reserved.

  2. Development of the auditory system

    PubMed Central

    Litovsky, Ruth

    2015-01-01

    Auditory development involves changes in the peripheral and central nervous system along the auditory pathways, and these occur naturally, and in response to stimulation. Human development occurs along a trajectory that can last decades, and is studied using behavioral psychophysics, as well as physiologic measurements with neural imaging. The auditory system constructs a perceptual space that takes information from objects and groups, segregates sounds, and provides meaning and access to communication tools such as language. Auditory signals are processed in a series of analysis stages, from peripheral to central. Coding of information has been studied for features of sound, including frequency, intensity, loudness, and location, in quiet and in the presence of maskers. In the latter case, the ability of the auditory system to perform an analysis of the scene becomes highly relevant. While some basic abilities are well developed at birth, there is a clear prolonged maturation of auditory development well into the teenage years. Maturation involves auditory pathways. However, non-auditory changes (attention, memory, cognition) play an important role in auditory development. The ability of the auditory system to adapt in response to novel stimuli is a key feature of development throughout the nervous system, known as neural plasticity. PMID:25726262

  3. Assessment of cortical auditory evoked potentials in children with specific language impairment.

    PubMed

    Włodarczyk, Elżbieta; Szkiełkowska, Agata; Pilka, Adam; Skarżyński, Henryk

    2018-02-28

    The proper course of speech development heavily influences the cognitive and personal development of children. It is a condition for achieving preschool and school successes - it facilitates socializing and expressing feelings and needs. Impairment of language and its development in children represents a major diagnostic and therapeutic challenge for physicians and therapists. Early diagnosis of coexisting deficits and starting the therapy influence the therapeutic success. One of the basic diagnostic tests for children suffering from specific language impairment (SLI) is audiometry, thus far referred to as a hearing test. Auditory processing is just as important as a proper hearing threshold. Therefore, diagnosis of central auditory disorder may be a valuable supplementation of diagnosis of language impairment. Early diagnosis and implementation of appropriate treatment may contribute to an effective language therapy.

  4. Elevated correlations in neuronal ensembles of mouse auditory cortex following parturition.

    PubMed

    Rothschild, Gideon; Cohen, Lior; Mizrahi, Adi; Nelken, Israel

    2013-07-31

    The auditory cortex is malleable by experience. Previous studies of auditory plasticity have described experience-dependent changes in response profiles of single neurons or changes in global tonotopic organization. However, experience-dependent changes in the dynamics of local neural populations have remained unexplored. In this study, we examined the influence of a dramatic yet natural experience in the life of female mice, giving birth and becoming a mother on single neurons and neuronal ensembles in the primary auditory cortex (A1). Using in vivo two-photon calcium imaging and electrophysiological recordings from layer 2/3 in A1 of mothers and age-matched virgin mice, we monitored changes in the responses to a set of artificial and natural sounds. Population dynamics underwent large changes as measured by pairwise and higher-order correlations, with noise correlations increasing as much as twofold in lactating mothers. Concomitantly, changes in response properties of single neurons were modest and selective. Remarkably, despite the large changes in correlations, information about stimulus identity remained essentially the same in the two groups. Our results demonstrate changes in the correlation structure of neuronal activity as a result of a natural life event.

  5. Compensating Level-Dependent Frequency Representation in Auditory Cortex by Synaptic Integration of Corticocortical Input

    PubMed Central

    Happel, Max F. K.; Ohl, Frank W.

    2017-01-01

    Robust perception of auditory objects over a large range of sound intensities is a fundamental feature of the auditory system. However, firing characteristics of single neurons across the entire auditory system, like the frequency tuning, can change significantly with stimulus intensity. Physiological correlates of level-constancy of auditory representations hence should be manifested on the level of larger neuronal assemblies or population patterns. In this study we have investigated how information of frequency and sound level is integrated on the circuit-level in the primary auditory cortex (AI) of the Mongolian gerbil. We used a combination of pharmacological silencing of corticocortically relayed activity and laminar current source density (CSD) analysis. Our data demonstrate that with increasing stimulus intensities progressively lower frequencies lead to the maximal impulse response within cortical input layers at a given cortical site inherited from thalamocortical synaptic inputs. We further identified a temporally precise intercolumnar synaptic convergence of early thalamocortical and horizontal corticocortical inputs. Later tone-evoked activity in upper layers showed a preservation of broad tonotopic tuning across sound levels without shifts towards lower frequencies. Synaptic integration within corticocortical circuits may hence contribute to a level-robust representation of auditory information on a neuronal population level in the auditory cortex. PMID:28046062

  6. Exposures to fine particulate matter (PM2.5) and ozone above USA standards are associated with auditory brainstem dysmorphology and abnormal auditory brainstem evoked potentials in healthy young dogs.

    PubMed

    Calderón-Garcidueñas, Lilian; González-González, Luis O; Kulesza, Randy J; Fech, Tatiana M; Pérez-Guillé, Gabriela; Luna, Miguel Angel Jiménez-Bravo; Soriano-Rosales, Rosa Eugenia; Solorio, Edelmira; Miramontes-Higuera, José de Jesús; Gómez-Maqueo Chew, Aline; Bernal-Morúa, Alexia F; Mukherjee, Partha S; Torres-Jardón, Ricardo; Mills, Paul C; Wilson, Wayne J; Pérez-Guillé, Beatriz; D'Angiulli, Amedeo

    2017-10-01

    Delayed central conduction times in the auditory brainstem have been observed in Mexico City (MC) healthy children exposed to fine particulate matter (PM 2.5 ) and ozone (O 3 ) above the current United States Environmental Protection Agency (US-EPA) standards. MC children have α synuclein brainstem accumulation and medial superior olivary complex (MSO) dysmorphology. The present study used a dog model to investigate the potential effects of air pollution on the function and morphology of the auditory brainstem. Twenty-four dogs living in clean air v MC, average age 37.1 ± 26.3 months, underwent brainstem auditory evoked potential (BAEP) measurements. Eight dogs (4 MC, 4 Controls) were analysed for auditory brainstem morphology and histopathology. MC dogs showed ventral cochlear nuclei hypotrophy and MSO dysmorphology with a significant decrease in cell body size, decreased neuronal packing density with regions in the nucleus devoid of neurons and marked gliosis. MC dogs showed significant delayed BAEP absolute wave I, III and V latencies compared to controls. MC dogs show auditory nuclei dysmorphology and BAEPs consistent with an alteration of the generator sites of the auditory brainstem response waveform. This study puts forward the usefulness of BAEPs to study auditory brainstem neurodegenerative changes associated with air pollution in dogs. Recognition of the role of non-invasive BAEPs in urban dogs is warranted to elucidate novel neurodegenerative pathways link to air pollution and a promising early diagnostic strategy for Alzheimer's Disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Intentional preparation of auditory attention-switches: Explicit cueing and sequential switch-predictability.

    PubMed

    Seibold, Julia C; Nolden, Sophie; Oberem, Josefa; Fels, Janina; Koch, Iring

    2018-06-01

    In an auditory attention-switching paradigm, participants heard two simultaneously spoken number-words, each presented to one ear, and decided whether the target number was smaller or larger than 5 by pressing a left or right key. An instructional cue in each trial indicated which feature had to be used to identify the target number (e.g., female voice). Auditory attention-switch costs were found when this feature changed compared to when it repeated in two consecutive trials. Earlier studies employing this paradigm showed mixed results when they examined whether such cued auditory attention-switches can be prepared actively during the cue-stimulus interval. This study systematically assessed which preconditions are necessary for the advance preparation of auditory attention-switches. Three experiments were conducted that controlled for cue-repetition benefits, modality switches between cue and stimuli, as well as for predictability of the switch-sequence. Only in the third experiment, in which predictability for an attention-switch was maximal due to a pre-instructed switch-sequence and predictable stimulus onsets, active switch-specific preparation was found. These results suggest that the cognitive system can prepare auditory attention-switches, and this preparation seems to be triggered primarily by the memorised switching-sequence and valid expectations about the time of target onset.

  8. Visually induced plasticity of auditory spatial perception in macaques.

    PubMed

    Woods, Timothy M; Recanzone, Gregg H

    2004-09-07

    When experiencing spatially disparate visual and auditory stimuli, a common percept is that the sound originates from the location of the visual stimulus, an illusion known as the ventriloquism effect. This illusion can persist for tens of minutes, a phenomenon termed the ventriloquism aftereffect. The underlying neuronal mechanisms of this rapidly induced plasticity remain unclear; indeed, it remains untested whether similar multimodal interactions occur in other species. We therefore tested whether macaque monkeys experience the ventriloquism aftereffect similar to the way humans do. The ability of two monkeys to determine which side of the midline a sound was presented from was tested before and after a period of 20-60 min in which the monkeys experienced either spatially identical or spatially disparate auditory and visual stimuli. In agreement with human studies, the monkeys did experience a shift in their auditory spatial perception in the direction of the spatially disparate visual stimulus, and the aftereffect did not transfer across sounds that differed in frequency by two octaves. These results show that macaque monkeys experience the ventriloquism aftereffect similar to the way humans do in all tested respects, indicating that these multimodal interactions are a basic phenomenon of the central nervous system.

  9. The Encoding of Sound Source Elevation in the Human Auditory Cortex.

    PubMed

    Trapeau, Régis; Schönwiesner, Marc

    2018-03-28

    Spatial hearing is a crucial capacity of the auditory system. While the encoding of horizontal sound direction has been extensively studied, very little is known about the representation of vertical sound direction in the auditory cortex. Using high-resolution fMRI, we measured voxelwise sound elevation tuning curves in human auditory cortex and show that sound elevation is represented by broad tuning functions preferring lower elevations as well as secondary narrow tuning functions preferring individual elevation directions. We changed the ear shape of participants (male and female) with silicone molds for several days. This manipulation reduced or abolished the ability to discriminate sound elevation and flattened cortical tuning curves. Tuning curves recovered their original shape as participants adapted to the modified ears and regained elevation perception over time. These findings suggest that the elevation tuning observed in low-level auditory cortex did not arise from the physical features of the stimuli but is contingent on experience with spectral cues and covaries with the change in perception. One explanation for this observation may be that the tuning in low-level auditory cortex underlies the subjective perception of sound elevation. SIGNIFICANCE STATEMENT This study addresses two fundamental questions about the brain representation of sensory stimuli: how the vertical spatial axis of auditory space is represented in the auditory cortex and whether low-level sensory cortex represents physical stimulus features or subjective perceptual attributes. Using high-resolution fMRI, we show that vertical sound direction is represented by broad tuning functions preferring lower elevations as well as secondary narrow tuning functions preferring individual elevation directions. In addition, we demonstrate that the shape of these tuning functions is contingent on experience with spectral cues and covaries with the change in perception, which may indicate that the

  10. The role of vision in auditory distance perception.

    PubMed

    Calcagno, Esteban R; Abregú, Ezequiel L; Eguía, Manuel C; Vergara, Ramiro

    2012-01-01

    In humans, multisensory interaction is an important strategy for improving the detection of stimuli of different nature and reducing the variability of response. It is known that the presence of visual information affects the auditory perception in the horizontal plane (azimuth), but there are few researches that study the influence of vision in the auditory distance perception. In general, the data obtained from these studies are contradictory and do not completely define the way in which visual cues affect the apparent distance of a sound source. Here psychophysical experiments on auditory distance perception in humans are performed, including and excluding visual cues. The results show that the apparent distance from the source is affected by the presence of visual information and that subjects can store in their memory a representation of the environment that later improves the perception of distance.

  11. Auditory displays as occasion setters.

    PubMed

    Mckeown, Denis; Isherwood, Sarah; Conway, Gareth

    2010-02-01

    The aim of this study was to evaluate whether representational sounds that capture the richness of experience of a collision enhance performance in braking to avoid a collision relative to other forms of warnings in a driving simulator. There is increasing interest in auditory warnings that are informative about their referents. But as well as providing information about some intended object, warnings may be designed to set the occasion for a rich body of information about the outcomes of behavior in a particular context. These richly informative warnings may offer performance advantages, as they may be rapidly processed by users. An auditory occasion setter for a collision (a recording of screeching brakes indicating imminent collision) was compared with two other auditory warnings (an abstract and an "environmental" sound), a speech message, a visual display, and no warning in a fixed-base driving simulator as interfaces to a collision avoidance system. The main measure was braking response times at each of two headways (1.5 s and 3 s) to a lead vehicle. The occasion setter demonstrated statistically significantly faster braking responses at each headway in 8 out of 10 comparisons (with braking responses equally fast to the abstract warning at 1.5 s and the environmental warning at 3 s). Auditory displays that set the occasion for an outcome in a particular setting and for particular behaviors may offer small but critical performance enhancements in time-critical applications. The occasion setter could be applied in settings where speed of response by users is of the essence.

  12. Auditory Imagery: Empirical Findings

    ERIC Educational Resources Information Center

    Hubbard, Timothy L.

    2010-01-01

    The empirical literature on auditory imagery is reviewed. Data on (a) imagery for auditory features (pitch, timbre, loudness), (b) imagery for complex nonverbal auditory stimuli (musical contour, melody, harmony, tempo, notational audiation, environmental sounds), (c) imagery for verbal stimuli (speech, text, in dreams, interior monologue), (d)…

  13. Auditory models for speech analysis

    NASA Astrophysics Data System (ADS)

    Maybury, Mark T.

    This paper reviews the psychophysical basis for auditory models and discusses their application to automatic speech recognition. First an overview of the human auditory system is presented, followed by a review of current knowledge gleaned from neurological and psychoacoustic experimentation. Next, a general framework describes established peripheral auditory models which are based on well-understood properties of the peripheral auditory system. This is followed by a discussion of current enhancements to that models to include nonlinearities and synchrony information as well as other higher auditory functions. Finally, the initial performance of auditory models in the task of speech recognition is examined and additional applications are mentioned.

  14. Sex differences in auditory verbal hallucinations in early, middle and late adolescence: results from a survey of 17 451 Japanese students aged 12-18 years.

    PubMed

    Morokuma, Yoko; Endo, Kaori; Nishida, Atushi; Yamasaki, Syudo; Ando, Shuntaro; Morimoto, Yuko; Nakanishi, Miharu; Okazaki, Yuji; Furukawa, Toshi A; Morinobu, Shigeru; Shimodera, Shinji

    2017-06-01

    Women have higher rates of auditory verbal hallucinations (AVH) than men; however, less is known about sex differences in the prevalence of AVH in early, middle and late adolescence. We sought to elucidate the differences in the prevalence of AVH and to examine the degree to which these differences could be explained by differences in levels of depressive symptoms. We used a cross-sectional design and a self-reported questionnaire. Participants were recruited from public junior and senior high schools in Tsu, Mie Prefecture and Kochi Prefecture, Japan. In total, 19 436 students were contacted and 18 250 participated. Responses from 17 451 students with no missing data were analysed (aged 12-18 years, M age =15.2 years (SD=1.7), 50.6% girls). AVH were assessed through one of four items adopted from the schizophrenia section of the Japanese version of the Diagnostic Interview Schedule for Children. Depressive symptoms were assessed using the 12-item General Health Questionnaire. The prevalence of AVH was 7.0% among early adolescents (aged 12-13 years), 6.2% among middle adolescents (aged 14-15 years) and 4.8% among late adolescents (aged 16-18 years). Being female was significantly associated with a higher prevalence of AVH through adolescence (OR=1.71, 95% CI 1.31 to 2.23 in early adolescence; OR=1.42, 95% CI 1.14 to 1.76 in middle adolescence; OR=1.52, 95% CI 1.23 to 1.87 in late adolescence); however, these differences became non-significant after adjusting for depressive symptoms (OR=1.21, 95% CI 0.92 to 1.60; OR=1.00, 95% CI 0.80 to 1.25; OR=1.16, 95% CI 0.93 to 1.44, respectively). Sex differences in auditory hallucinations are seen in both adult and youth populations. The higher rates of auditory verbal hallucinations seen in girls may be secondary to the differences in the rate of depressive symptoms. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is

  15. The effect of preterm birth on brainstem, middle latency and cortical auditory evoked responses (BMC AERs).

    PubMed

    Pasman, J W; Rotteveel, J J; de Graaf, R; Stegeman, D F; Visco, Y M

    1992-12-01

    Recent studies on the maturation of auditory brainstem evoked responses (ABRs) present conflicting results, whereas only sparse reports exist with respect to the maturation of middle latency auditory evoked responses (MLRs) and auditory cortical evoked responses (ACRs). The present study reports the effect of preterm birth on the maturation of auditory evoked responses in low risk preterm infants (27-34 weeks conceptional age). The ABRs indicate a consistent trend towards longer latencies for all individual ABR components and towards longer interpeak latencies in preterm infants. The MLR shows longer latencies for early component P0 in preterm infants. The ACRs show a remarkable difference between preterm and term infants. At 40 weeks CA the latencies of ACR components Na and P2 are significantly longer in term infants, whereas at 52 weeks CA the latencies of the same ACR components are shorter in term infants. The results support the hypothesis that retarded myelination of the central auditory pathway is partially responsible for differences found between preterm infants and term infants with respect to late ABR components and early MLR component P0. Furthermore, mild conductive hearing loss in preterm infants may also play its role. A more complex mechanism is implicated to account for the findings noted with respect to MLR component Na and ACR components Na and P2.

  16. Case study: a young male with auditory hallucinations in paranoid schizophrenia.

    PubMed

    Kotowski, Abigail

    2012-02-01

    The purpose of this case study is to demonstrate use of the nursing process and the standardized nursing languages of NANDA International (NANDA-I), the Nursing Outcomes Classification (NOC), and the Nursing Interventions Classification (NIC) to assist a young male with paranoid schizophrenia to deal with auditory hallucinations. Data were obtained from the experience and expertise of the author and published literature. This case study demonstrates nurses' clinical decision making in providing care for an adolescent with mental illness. This case study provides the pertinent nursing diagnosis, patient outcomes, and nursing interventions for a young male with auditory hallucinations in paranoid schizophrenia. The use of NANDA-I, NOC, and NIC can provide the necessary framework for enhancing and improving the management of care with patients who experience auditory hallucinations in paranoid schizophrenia. © 2011, The Authors. International Journal of Nursing Terminologies and Classifications © 2011, NANDA International.

  17. Age effects on preattentive and early attentive auditory processing of redundant stimuli: is sensory gating affected by physiological aging?

    PubMed

    Gmehlin, Dennis; Kreisel, Stefan H; Bachmann, Silke; Weisbrod, Matthias; Thomas, Christine

    2011-10-01

    The frontal hypothesis of aging predicts an age-related decline in cognitive functions requiring inhibitory or attentional regulation. In Alzheimer's disease, preattentive gating out of redundant information is impaired. Our study aimed to examine changes associated with physiological aging in both pre- and early attentive inhibition of recurrent acoustic information. Using a passive double-click paradigm, we recorded mid-latency (P30-P50) and late-latency (N100 and P200) evoked potentials in healthy young (26 ± 5 years) and healthy elderly subjects (72 ± 5 years). Physiological aging did not affect auditory gating in amplitude measures. Both age groups exhibited clear inhibition in preattentive P50 and attention-modulated (N100) components, whereas P30 was not attenuated. Irrespective of age, the magnitude of inhibition differed significantly, being most pronounced for N100 gating. Inhibition of redundant information seems to be preserved with physiological aging. Early attentive N100 gating showed the maximum effect. Further studies are warranted to evaluate sensory gating as a suitable biomarker of underlying neurodegenerative disease.

  18. The Role of Age and Executive Function in Auditory Category Learning

    PubMed Central

    Reetzke, Rachel; Maddox, W. Todd; Chandrasekaran, Bharath

    2015-01-01

    Auditory categorization is a natural and adaptive process that allows for the organization of high-dimensional, continuous acoustic information into discrete representations. Studies in the visual domain have identified a rule-based learning system that learns and reasons via a hypothesis-testing process that requires working memory and executive attention. The rule-based learning system in vision shows a protracted development, reflecting the influence of maturing prefrontal function on visual categorization. The aim of the current study is two-fold: (a) to examine the developmental trajectory of rule-based auditory category learning from childhood through adolescence, into early adulthood; and (b) to examine the extent to which individual differences in rule-based category learning relate to individual differences in executive function. Sixty participants with normal hearing, 20 children (age range, 7–12), 21 adolescents (age range, 13–19), and 19 young adults (age range, 20–23), learned to categorize novel dynamic ripple sounds using trial-by-trial feedback. The spectrotemporally modulated ripple sounds are considered the auditory equivalent of the well-studied Gabor patches in the visual domain. Results revealed that auditory categorization accuracy improved with age, with young adults outperforming children and adolescents. Computational modeling analyses indicated that the use of the task-optimal strategy (i.e. a conjunctive rule-based learning strategy) improved with age. Notably, individual differences in executive flexibility significantly predicted auditory category learning success. The current findings demonstrate a protracted development of rule-based auditory categorization. The results further suggest that executive flexibility coupled with perceptual processes play important roles in successful rule-based auditory category learning. PMID:26491987

  19. Capuchin monkeys (Cebus apella) use positive, but not negative, auditory cues to infer food location.

    PubMed

    Heimbauer, Lisa A; Antworth, Rebecca L; Owren, Michael J

    2012-01-01

    Nonhuman primates appear to capitalize more effectively on visual cues than corresponding auditory versions. For example, studies of inferential reasoning have shown that monkeys and apes readily respond to seeing that food is present ("positive" cuing) or absent ("negative" cuing). Performance is markedly less effective with auditory cues, with many subjects failing to use this input. Extending recent work, we tested eight captive tufted capuchins (Cebus apella) in locating food using positive and negative cues in visual and auditory domains. The monkeys chose between two opaque cups to receive food contained in one of them. Cup contents were either shown or shaken, providing location cues from both cups, positive cues only from the baited cup, or negative cues from the empty cup. As in previous work, subjects readily used both positive and negative visual cues to secure reward. However, auditory outcomes were both similar to and different from those of earlier studies. Specifically, all subjects came to exploit positive auditory cues, but none responded to negative versions. The animals were also clearly different in visual versus auditory performance. Results indicate that a significant proportion of capuchins may be able to use positive auditory cues, with experience and learning likely playing a critical role. These findings raise the possibility that experience may be significant in visually based performance in this task as well, and highlight that coming to grips with evident differences between visual versus auditory processing may be important for understanding primate cognition more generally.

  20. Vocal development and auditory perception in CBA/CaJ mice

    NASA Astrophysics Data System (ADS)

    Radziwon, Kelly E.

    Mice are useful laboratory subjects because of their small size, their modest cost, and the fact that researchers have created many different strains to study a variety of disorders. In particular, researchers have found nearly 100 naturally occurring mouse mutations with hearing impairments. For these reasons, mice have become an important model for studies of human deafness. Although much is known about the genetic makeup and physiology of the laboratory mouse, far less is known about mouse auditory behavior. To fully understand the effects of genetic mutations on hearing, it is necessary to determine the hearing abilities of these mice. Two experiments here examined various aspects of mouse auditory perception using CBA/CaJ mice, a commonly used mouse strain. The frequency difference limens experiment tested the mouse's ability to discriminate one tone from another based solely on the frequency of the tone. The mice had similar thresholds as wild mice and gerbils but needed a larger change in frequency than humans and cats. The second psychoacoustic experiment sought to determine which cue, frequency or duration, was more salient when the mice had to identify various tones. In this identification task, the mice overwhelmingly classified the tones based on frequency instead of duration, suggesting that mice are using frequency when differentiating one mouse vocalization from another. The other two experiments were more naturalistic and involved both auditory perception and mouse vocal production. Interest in mouse vocalizations is growing because of the potential for mice to become a model of human speech disorders. These experiments traced mouse vocal development from infant to adult, and they tested the mouse's preference for various vocalizations. This was the first known study to analyze the vocalizations of individual mice across development. Results showed large variation in calling rates among the three cages of adult mice but results were highly

  1. Neural signature of the conscious processing of auditory regularities

    PubMed Central

    Bekinschtein, Tristan A.; Dehaene, Stanislas; Rohaut, Benjamin; Tadel, François; Cohen, Laurent; Naccache, Lionel

    2009-01-01

    Can conscious processing be inferred from neurophysiological measurements? Some models stipulate that the active maintenance of perceptual representations across time requires consciousness. Capitalizing on this assumption, we designed an auditory paradigm that evaluates cerebral responses to violations of temporal regularities that are either local in time or global across several seconds. Local violations led to an early response in auditory cortex, independent of attention or the presence of a concurrent visual task, whereas global violations led to a late and spatially distributed response that was only present when subjects were attentive and aware of the violations. We could detect the global effect in individual subjects using functional MRI and both scalp and intracerebral event-related potentials. Recordings from 8 noncommunicating patients with disorders of consciousness confirmed that only conscious individuals presented a global effect. Taken together these observations suggest that the presence of the global effect is a signature of conscious processing, although it can be absent in conscious subjects who are not aware of the global auditory regularities. This simple electrophysiological marker could thus serve as a useful clinical tool. PMID:19164526

  2. Temporal Organization of Sound Information in Auditory Memory.

    PubMed

    Song, Kun; Luo, Huan

    2017-01-01

    Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed an auditory memory transferring study, by combining a previously developed unsupervised white noise memory paradigm with a reversed sound manipulation method. Specifically, we systematically measured the memory transferring from a random white noise sound to its locally temporal reversed version on various temporal scales in seven experiments. We demonstrate a U-shape memory-transferring pattern with the minimum value around temporal scale of 200 ms. Furthermore, neither auditory perceptual similarity nor physical similarity as a function of the manipulating temporal scale can account for the memory-transferring results. Our results suggest that sounds are not stored with all the fine spectrotemporal details but are organized and structured at discrete temporal chunks in long-term auditory memory representation.

  3. Latency of modality-specific reactivation of auditory and visual information during episodic memory retrieval.

    PubMed

    Ueno, Daisuke; Masumoto, Kouhei; Sutani, Kouichi; Iwaki, Sunao

    2015-04-15

    This study used magnetoencephalography (MEG) to examine the latency of modality-specific reactivation in the visual and auditory cortices during a recognition task to determine the effects of reactivation on episodic memory retrieval. Nine right-handed healthy young adults participated in the experiment. The experiment consisted of a word-encoding phase and two recognition phases. Three encoding conditions were included: encoding words alone (word-only) and encoding words presented with either related pictures (visual) or related sounds (auditory). The recognition task was conducted in the MEG scanner 15 min after the completion of the encoding phase. After the recognition test, a source-recognition task was given, in which participants were required to choose whether each recognition word was not presented or was presented with which information during the encoding phase. Word recognition in the auditory condition was higher than that in the word-only condition. Confidence-of-recognition scores (d') and the source-recognition test showed superior performance in both the visual and the auditory conditions compared with the word-only condition. An equivalent current dipoles analysis of MEG data indicated that higher equivalent current dipole amplitudes in the right fusiform gyrus occurred during the visual condition and in the superior temporal auditory cortices during the auditory condition, both 450-550 ms after onset of the recognition stimuli. Results suggest that reactivation of visual and auditory brain regions during recognition binds language with modality-specific information and that reactivation enhances confidence in one's recognition performance.

  4. The selective processing of emotional visual stimuli while detecting auditory targets: an ERP analysis.

    PubMed

    Schupp, Harald T; Stockburger, Jessica; Bublatzky, Florian; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O

    2008-09-16

    Event-related potential studies revealed an early posterior negativity (EPN) for emotional compared to neutral pictures. Exploring the emotion-attention relationship, a previous study observed that a primary visual discrimination task interfered with the emotional modulation of the EPN component. To specify the locus of interference, the present study assessed the fate of selective visual emotion processing while attention is directed towards the auditory modality. While simply viewing a rapid and continuous stream of pleasant, neutral, and unpleasant pictures in one experimental condition, processing demands of a concurrent auditory target discrimination task were systematically varied in three further experimental conditions. Participants successfully performed the auditory task as revealed by behavioral performance and selected event-related potential components. Replicating previous results, emotional pictures were associated with a larger posterior negativity compared to neutral pictures. Of main interest, increasing demands of the auditory task did not modulate the selective processing of emotional visual stimuli. With regard to the locus of interference, selective emotion processing as indexed by the EPN does not seem to reflect shared processing resources of visual and auditory modality.

  5. Comparison of Pre-Attentive Auditory Discrimination at Gross and Fine Difference between Auditory Stimuli.

    PubMed

    Sanju, Himanshu Kumar; Kumar, Prawin

    2016-10-01

    Introduction  Mismatch Negativity is a negative component of the event-related potential (ERP) elicited by any discriminable changes in auditory stimulation. Objective  The present study aimed to assess pre-attentive auditory discrimination skill with fine and gross difference between auditory stimuli. Method  Seventeen normal hearing individual participated in the study. To assess pre-attentive auditory discrimination skill with fine difference between auditory stimuli, we recorded mismatch negativity (MMN) with pair of stimuli (pure tones), using /1000 Hz/ and /1010 Hz/ with /1000 Hz/ as frequent stimulus and /1010 Hz/ as infrequent stimulus. Similarly, we used /1000 Hz/ and /1100 Hz/ with /1000 Hz/ as frequent stimulus and /1100 Hz/ as infrequent stimulus to assess pre-attentive auditory discrimination skill with gross difference between auditory stimuli. The study included 17 subjects with informed consent. We analyzed MMN for onset latency, offset latency, peak latency, peak amplitude, and area under the curve parameters. Result  Results revealed that MMN was present only in 64% of the individuals in both conditions. Further Multivariate Analysis of Variance (MANOVA) showed no significant difference in all measures of MMN (onset latency, offset latency, peak latency, peak amplitude, and area under the curve) in both conditions. Conclusion  The present study showed similar pre-attentive skills for both conditions: fine (1000 Hz and 1010 Hz) and gross (1000 Hz and 1100 Hz) difference in auditory stimuli at a higher level (endogenous) of the auditory system.

  6. Psychoacoustic and cognitive aspects of auditory roughness: definitions, models, and applications

    NASA Astrophysics Data System (ADS)

    Vassilakis, Pantelis N.; Kendall, Roger A.

    2010-02-01

    The term "auditory roughness" was first introduced in the 19th century to describe the buzzing, rattling auditory sensation accompanying narrow harmonic intervals (i.e. two tones with frequency difference in the range of ~15-150Hz, presented simultaneously). A broader definition and an overview of the psychoacoustic correlates of the auditory roughness sensation, also referred to as sensory dissonance, is followed by an examination of efforts to quantify it over the past one hundred and fifty years and leads to the introduction of a new roughness calculation model and an application that automates spectral and roughness analysis of sound signals. Implementation of spectral and roughness analysis is briefly discussed in the context of two pilot perceptual experiments, designed to assess the relationship among cultural background, music performance practice, and aesthetic attitudes towards the auditory roughness sensation.

  7. Auditory attention in childhood and adolescence: An event-related potential study of spatial selective attention to one of two simultaneous stories.

    PubMed

    Karns, Christina M; Isbell, Elif; Giuliano, Ryan J; Neville, Helen J

    2015-06-01

    Auditory selective attention is a critical skill for goal-directed behavior, especially where noisy distractions may impede focusing attention. To better understand the developmental trajectory of auditory spatial selective attention in an acoustically complex environment, in the current study we measured auditory event-related potentials (ERPs) across five age groups: 3-5 years; 10 years; 13 years; 16 years; and young adults. Using a naturalistic dichotic listening paradigm, we characterized the ERP morphology for nonlinguistic and linguistic auditory probes embedded in attended and unattended stories. We documented robust maturational changes in auditory evoked potentials that were specific to the types of probes. Furthermore, we found a remarkable interplay between age and attention-modulation of auditory evoked potentials in terms of morphology and latency from the early years of childhood through young adulthood. The results are consistent with the view that attention can operate across age groups by modulating the amplitude of maturing auditory early-latency evoked potentials or by invoking later endogenous attention processes. Development of these processes is not uniform for probes with different acoustic properties within our acoustically dense speech-based dichotic listening task. In light of the developmental differences we demonstrate, researchers conducting future attention studies of children and adolescents should be wary of combining analyses across diverse ages. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Auditory attention in childhood and adolescence: An event-related potential study of spatial selective attention to one of two simultaneous stories

    PubMed Central

    Karns, Christina M.; Isbell, Elif; Giuliano, Ryan J.; Neville, Helen J.

    2015-01-01

    Auditory selective attention is a critical skill for goal-directed behavior, especially where noisy distractions may impede focusing attention. To better understand the developmental trajectory of auditory spatial selective attention in an acoustically complex environment, in the current study we measured auditory event-related potentials (ERPs) in human children across five age groups: 3–5 years; 10 years; 13 years; 16 years; and young adults using a naturalistic dichotic listening paradigm, characterizing the ERP morphology for nonlinguistic and linguistic auditory probes embedded in attended and unattended stories. We documented robust maturational changes in auditory evoked potentials that were specific to the types of probes. Furthermore, we found a remarkable interplay between age and attention-modulation of auditory evoked potentials in terms of morphology and latency from the early years of childhood through young adulthood. The results are consistent with the view that attention can operate across age groups by modulating the amplitude of maturing auditory early-latency evoked potentials or by invoking later endogenous attention processes. Development of these processes is not uniform for probes with different acoustic properties within our acoustically dense speech-based dichotic listening task. In light of the developmental differences we demonstrate, researchers conducting future attention studies of children and adolescents should be wary of combining analyses across diverse ages. PMID:26002721

  9. The impact of visual gaze direction on auditory object tracking.

    PubMed

    Pomper, Ulrich; Chait, Maria

    2017-07-05

    Subjective experience suggests that we are able to direct our auditory attention independent of our visual gaze, e.g when shadowing a nearby conversation at a cocktail party. But what are the consequences at the behavioural and neural level? While numerous studies have investigated both auditory attention and visual gaze independently, little is known about their interaction during selective listening. In the present EEG study, we manipulated visual gaze independently of auditory attention while participants detected targets presented from one of three loudspeakers. We observed increased response times when gaze was directed away from the locus of auditory attention. Further, we found an increase in occipital alpha-band power contralateral to the direction of gaze, indicative of a suppression of distracting input. Finally, this condition also led to stronger central theta-band power, which correlated with the observed effect in response times, indicative of differences in top-down processing. Our data suggest that a misalignment between gaze and auditory attention both reduce behavioural performance and modulate underlying neural processes. The involvement of central theta-band and occipital alpha-band effects are in line with compensatory neural mechanisms such as increased cognitive control and the suppression of task irrelevant inputs.

  10. Influence of auditory and audiovisual stimuli on the right-left prevalence effect.

    PubMed

    Vu, Kim-Phuong L; Minakata, Katsumi; Ngo, Mary Kim

    2014-01-01

    When auditory stimuli are used in two-dimensional spatial compatibility tasks, where the stimulus and response configurations vary along the horizontal and vertical dimensions simultaneously, a right-left prevalence effect occurs in which horizontal compatibility dominates over vertical compatibility. The right-left prevalence effects obtained with auditory stimuli are typically larger than that obtained with visual stimuli even though less attention should be demanded from the horizontal dimension in auditory processing. In the present study, we examined whether auditory or visual dominance occurs when the two-dimensional stimuli are audiovisual, as well as whether there will be cross-modal facilitation of response selection for the horizontal and vertical dimensions. We also examined whether there is an additional benefit of adding a pitch dimension to the auditory stimulus to facilitate vertical coding through use of the spatial-musical association of response codes (SMARC) effect, where pitch is coded in terms of height in space. In Experiment 1, we found a larger right-left prevalence effect for unimodal auditory than visual stimuli. Neutral, non-pitch coded, audiovisual stimuli did not result in cross-modal facilitation, but did show evidence of visual dominance. The right-left prevalence effect was eliminated in the presence of SMARC audiovisual stimuli, but the effect influenced horizontal rather than vertical coding. Experiment 2 showed that the influence of the pitch dimension was not in terms of influencing response selection on a trial-to-trial basis, but in terms of altering the salience of the task environment. Taken together, these findings indicate that in the absence of salient vertical cues, auditory and audiovisual stimuli tend to be coded along the horizontal dimension and vision tends to dominate audition in this two-dimensional spatial stimulus-response task.

  11. Task-specific reorganization of the auditory cortex in deaf humans

    PubMed Central

    Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin

    2017-01-01

    The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior–lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain. PMID:28069964

  12. Task-specific reorganization of the auditory cortex in deaf humans.

    PubMed

    Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin

    2017-01-24

    The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior-lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain.

  13. Direct-location versus verbal report methods for measuring auditory distance perception in the far field.

    PubMed

    Etchemendy, Pablo E; Spiousas, Ignacio; Calcagno, Esteban R; Abregú, Ezequiel; Eguia, Manuel C; Vergara, Ramiro O

    2018-06-01

    In this study we evaluated whether a method of direct location is an appropriate response method for measuring auditory distance perception of far-field sound sources. We designed an experimental set-up that allows participants to indicate the distance at which they perceive the sound source by moving a visual marker. We termed this method Cross-Modal Direct Location (CMDL) since the response procedure involves the visual modality while the stimulus is presented through the auditory modality. Three experiments were conducted with sound sources located from 1 to 6 m. The first one compared the perceived distances obtained using either the CMDL device or verbal report (VR), which is the response method more frequently used for reporting auditory distance in the far field, and found differences on response compression and bias. In Experiment 2, participants reported visual distance estimates to the visual marker that were found highly accurate. Then, we asked the same group of participants to report VR estimates of auditory distance and found that the spatial visual information, obtained from the previous task, did not influence their reports. Finally, Experiment 3 compared the same responses that Experiment 1 but interleaving the methods, showing a weak, but complex, mutual influence. However, the estimates obtained with each method remained statistically different. Our results show that the auditory distance psychophysical functions obtained with the CMDL method are less susceptible to previously reported underestimation for distances over 2 m.

  14. Context, Contrast, and Tone of Voice in Auditory Sarcasm Perception

    ERIC Educational Resources Information Center

    Voyer, Daniel; Thibodeau, Sophie-Hélène; Delong, Breanna J.

    2016-01-01

    Four experiments were conducted to investigate the interplay between context and tone of voice in the perception of sarcasm. These experiments emphasized the role of contrast effects in sarcasm perception exclusively by means of auditory stimuli whereas most past research has relied on written material. In all experiments, a positive or negative…

  15. Auditory psychophysics and perception.

    PubMed

    Hirsh, I J; Watson, C S

    1996-01-01

    In this review of auditory psychophysics and perception, we cite some important books, research monographs, and research summaries from the past decade. Within auditory psychophysics, we have singled out some topics of current importance: Cross-Spectral Processing, Timbre and Pitch, and Methodological Developments. Complex sounds and complex listening tasks have been the subject of new studies in auditory perception. We review especially work that concerns auditory pattern perception, with emphasis on temporal aspects of the patterns and on patterns that do not depend on the cognitive structures often involved in the perception of speech and music. Finally, we comment on some aspects of individual difference that are sufficiently important to question the goal of characterizing auditory properties of the typical, average, adult listener. Among the important factors that give rise to these individual differences are those involved in selective processing and attention.

  16. Mismatch negativity (MMN) reveals inefficient auditory ventral stream function in chronic auditory comprehension impairments.

    PubMed

    Robson, Holly; Cloutman, Lauren; Keidel, James L; Sage, Karen; Drakesmith, Mark; Welbourne, Stephen

    2014-10-01

    Auditory discrimination is significantly impaired in Wernicke's aphasia (WA) and thought to be causatively related to the language comprehension impairment which characterises the condition. This study used mismatch negativity (MMN) to investigate the neural responses corresponding to successful and impaired auditory discrimination in WA. Behavioural auditory discrimination thresholds of consonant-vowel-consonant (CVC) syllables and pure tones (PTs) were measured in WA (n = 7) and control (n = 7) participants. Threshold results were used to develop multiple deviant MMN oddball paradigms containing deviants which were either perceptibly or non-perceptibly different from the standard stimuli. MMN analysis investigated differences associated with group, condition and perceptibility as well as the relationship between MMN responses and comprehension (within which behavioural auditory discrimination profiles were examined). MMN waveforms were observable to both perceptible and non-perceptible auditory changes. Perceptibility was only distinguished by MMN amplitude in the PT condition. The WA group could be distinguished from controls by an increase in MMN response latency to CVC stimuli change. Correlation analyses displayed a relationship between behavioural CVC discrimination and MMN amplitude in the control group, where greater amplitude corresponded to better discrimination. The WA group displayed the inverse effect; both discrimination accuracy and auditory comprehension scores were reduced with increased MMN amplitude. In the WA group, a further correlation was observed between the lateralisation of MMN response and CVC discrimination accuracy; the greater the bilateral involvement the better the discrimination accuracy. The results from this study provide further evidence for the nature of auditory comprehension impairment in WA and indicate that the auditory discrimination deficit is grounded in a reduced ability to engage in efficient hierarchical

  17. Auditory-tactile echo-reverberating stuttering speech corrector

    NASA Astrophysics Data System (ADS)

    Kuniszyk-Jozkowiak, Wieslawa; Adamczyk, Bogdan

    1997-02-01

    The work presents the construction of a device, which transforms speech sounds into acoustical and tactile signals of echo and reverberation. Research has been done on the influence of the echo and reverberation, which are transmitted as acoustic and tactile stimuli, on speech fluency. Introducing the echo or reverberation into the auditory feedback circuit results in a reduction of stuttering. A bit less, but still significant corrective effects are observed while using the tactile channel for transmitting the signals. The use of joined auditory and tactile channels increases the effects of their corrective influence on the stutterers' speech. The results of the experiment justify the use of the tactile channel in the stutterers' therapy.

  18. Exposure to suggestion and creation of false auditory memories.

    PubMed

    Vernon, B; Nelson, E

    2000-02-01

    The experiment investigated the possibility of creating false auditory memory through exposure to suggestion. Research by Loftus and others has indicated that, through suggestion, false memories can be created. Participants viewed a short film and were given a 9-item questionnaire. Eight questions were used as filler while one question asked respondents to recall a phrase one character had said. Although the character actually said nothing, 23 of 30 respondents recalled having heard him speak and specifically recalled his words. This statistically significant result shows that auditory memories can also be created.

  19. Cortical modulation of auditory processing in the midbrain

    PubMed Central

    Bajo, Victoria M.; King, Andrew J.

    2013-01-01

    In addition to their ascending pathways that originate at the receptor cells, all sensory systems are characterized by extensive descending projections. Although the size of these connections often outweighs those that carry information in the ascending auditory pathway, we still have a relatively poor understanding of the role they play in sensory processing. In the auditory system one of the main corticofugal projections links layer V pyramidal neurons with the inferior colliculus (IC) in the midbrain. All auditory cortical fields contribute to this projection, with the primary areas providing the largest outputs to the IC. In addition to medium and large pyramidal cells in layer V, a variety of cell types in layer VI make a small contribution to the ipsilateral corticocollicular projection. Cortical neurons innervate the three IC subdivisions bilaterally, although the contralateral projection is relatively small. The dorsal and lateral cortices of the IC are the principal targets of corticocollicular axons, but input to the central nucleus has also been described in some studies and is distinctive in its laminar topographic organization. Focal electrical stimulation and inactivation studies have shown that the auditory cortex can modify almost every aspect of the response properties of IC neurons, including their sensitivity to sound frequency, intensity, and location. Along with other descending pathways in the auditory system, the corticocollicular projection appears to continually modulate the processing of acoustical signals at subcortical levels. In particular, there is growing evidence that these circuits play a critical role in the plasticity of neural processing that underlies the effects of learning and experience on auditory perception by enabling changes in cortical response properties to spread to subcortical nuclei. PMID:23316140

  20. Composing alarms: considering the musical aspects of auditory alarm design.

    PubMed

    Gillard, Jessica; Schutz, Michael

    2016-12-01

    Short melodies are commonly linked to referents in jingles, ringtones, movie themes, and even auditory displays (i.e., sounds used in human-computer interactions). While melody associations can be quite effective, auditory alarms in medical devices are generally poorly learned and highly confused. Here, we draw on approaches and stimuli from both music cognition (melody recognition) and human factors (alarm design) to analyze the patterns of confusions in a paired-associate alarm-learning task involving both a standardized melodic alarm set (Experiment 1) and a set of novel melodies (Experiment 2). Although contour played a role in confusions (consistent with previous research), we observed several cases where melodies with similar contours were rarely confused - melodies holding musically distinctive features. This exploratory work suggests that salient features formed by an alarm's melodic structure (such as repeated notes, distinct contours, and easily recognizable intervals) can increase the likelihood of correct alarm identification. We conclude that the use of musical principles and features may help future efforts to improve the design of auditory alarms.

  1. Footprints of "experiment" in early Arabic optics.

    PubMed

    Kheirandish, Elaheh

    2009-01-01

    This study traces the early developments of the concept of experiment with a view of extending the subject in both content and approach. It extends the content of the subject slightly backward, prior to the methodological breakthroughs of the Optics of Ibn al-Haytham (Alhazen or Alhacen, d. ca. 1040), which are credited as a "significant landmark in the history of experimental science." And it extends the approach to the subject slightly forward, from the premise that early science was "largely carried out in books," to a close examination of the books through which the footprints of'experiment' may be traced. The point of departure is the Optics of Ahmad ibn 'Isă, a revealing text for the early developments of concepts such as 'demonstration' and 'experiment', and one through which some modern discussions are examined and extended with reference to this and other historical sources.

  2. Short-term plasticity in auditory cognition.

    PubMed

    Jääskeläinen, Iiro P; Ahveninen, Jyrki; Belliveau, John W; Raij, Tommi; Sams, Mikko

    2007-12-01

    Converging lines of evidence suggest that auditory system short-term plasticity can enable several perceptual and cognitive functions that have been previously considered as relatively distinct phenomena. Here we review recent findings suggesting that auditory stimulation, auditory selective attention and cross-modal effects of visual stimulation each cause transient excitatory and (surround) inhibitory modulations in the auditory cortex. These modulations might adaptively tune hierarchically organized sound feature maps of the auditory cortex (e.g. tonotopy), thus filtering relevant sounds during rapidly changing environmental and task demands. This could support auditory sensory memory, pre-attentive detection of sound novelty, enhanced perception during selective attention, influence of visual processing on auditory perception and longer-term plastic changes associated with perceptual learning.

  3. Probing the independence of formant control using altered auditory feedback

    PubMed Central

    MacDonald, Ewen N.; Purcell, David W.; Munhall, Kevin G.

    2011-01-01

    Two auditory feedback perturbation experiments were conducted to examine the nature of control of the first two formants in vowels. In the first experiment, talkers heard their auditory feedback with either F1 or F2 shifted in frequency. Talkers altered production of the perturbed formant by changing its frequency in the opposite direction to the perturbation but did not produce a correlated alteration of the unperturbed formant. Thus, the motor control system is capable of fine-grained independent control of F1 and F2. In the second experiment, a large meta-analysis was conducted on data from talkers who received feedback where both F1 and F2 had been perturbed. A moderate correlation was found between individual compensations in F1 and F2 suggesting that the control of F1 and F2 is processed in a common manner at some level. While a wide range of individual compensation magnitudes were observed, no significant correlations were found between individuals’ compensations and vowel space differences. Similarly, no significant correlations were found between individuals’ compensations and variability in normal vowel production. Further, when receiving normal auditory feedback, most of the population exhibited no significant correlation between the natural variation in production of F1 and F2. PMID:21361452

  4. A sound advantage: Increased auditory capacity in autism.

    PubMed

    Remington, Anna; Fairnie, Jake

    2017-09-01

    Autism Spectrum Disorder (ASD) has an intriguing auditory processing profile. Individuals show enhanced pitch discrimination, yet often find seemingly innocuous sounds distressing. This study used two behavioural experiments to examine whether an increased capacity for processing sounds in ASD could underlie both the difficulties and enhanced abilities found in the auditory domain. Autistic and non-autistic young adults performed a set of auditory detection and identification tasks designed to tax processing capacity and establish the extent of perceptual capacity in each population. Tasks were constructed to highlight both the benefits and disadvantages of increased capacity. Autistic people were better at detecting additional unexpected and expected sounds (increased distraction and superior performance respectively). This suggests that they have increased auditory perceptual capacity relative to non-autistic people. This increased capacity may offer an explanation for the auditory superiorities seen in autism (e.g. heightened pitch detection). Somewhat counter-intuitively, this same 'skill' could result in the sensory overload that is often reported - which subsequently can interfere with social communication. Reframing autistic perceptual processing in terms of increased capacity, rather than a filtering deficit or inability to maintain focus, increases our understanding of this complex condition, and has important practical implications that could be used to develop intervention programs to minimise the distress that is often seen in response to sensory stimuli. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Strength of German accent under altered auditory feedback

    PubMed Central

    HOWELL, PETER; DWORZYNSKI, KATHARINA

    2007-01-01

    Borden’s (1979, 1980) hypothesis that speakers with vulnerable speech systems rely more heavily on feedback monitoring than do speakers with less vulnerable systems was investigated. The second language (L2) of a speaker is vulnerable, in comparison with the native language, so alteration to feedback should have a detrimental effect on it, according to this hypothesis. Here, we specifically examined whether altered auditory feedback has an effect on accent strength when speakers speak L2. There were three stages in the experiment. First, 6 German speakers who were fluent in English (their L2) were recorded under six conditions—normal listening, amplified voice level, voice shifted in frequency, delayed auditory feedback, and slowed and accelerated speech rate conditions. Second, judges were trained to rate accent strength. Training was assessed by whether it was successful in separating German speakers speaking English from native English speakers, also speaking English. In the final stage, the judges ranked recordings of each speaker from the first stage as to increasing strength of German accent. The results show that accents were more pronounced under frequency-shifted and delayed auditory feedback conditions than under normal or amplified feedback conditions. Control tests were done to ensure that listeners were judging accent, rather than fluency changes caused by altered auditory feedback. The findings are discussed in terms of Borden’s hypothesis and other accounts about why altered auditory feedback disrupts speech control. PMID:11414137

  6. Transcriptional maturation of the mouse auditory forebrain.

    PubMed

    Hackett, Troy A; Guo, Yan; Clause, Amanda; Hackett, Nicholas J; Garbett, Krassimira; Zhang, Pan; Polley, Daniel B; Mirnics, Karoly

    2015-08-14

    The maturation of the brain involves the coordinated expression of thousands of genes, proteins and regulatory elements over time. In sensory pathways, gene expression profiles are modified by age and sensory experience in a manner that differs between brain regions and cell types. In the auditory system of altricial animals, neuronal activity increases markedly after the opening of the ear canals, initiating events that culminate in the maturation of auditory circuitry in the brain. This window provides a unique opportunity to study how gene expression patterns are modified by the onset of sensory experience through maturity. As a tool for capturing these features, next-generation sequencing of total RNA (RNAseq) has tremendous utility, because the entire transcriptome can be screened to index expression of any gene. To date, whole transcriptome profiles have not been generated for any central auditory structure in any species at any age. In the present study, RNAseq was used to profile two regions of the mouse auditory forebrain (A1, primary auditory cortex; MG, medial geniculate) at key stages of postnatal development (P7, P14, P21, adult) before and after the onset of hearing (~P12). Hierarchical clustering, differential expression, and functional geneset enrichment analyses (GSEA) were used to profile the expression patterns of all genes. Selected genesets related to neurotransmission, developmental plasticity, critical periods and brain structure were highlighted. An accessible repository of the entire dataset was also constructed that permits extraction and screening of all data from the global through single-gene levels. To our knowledge, this is the first whole transcriptome sequencing study of the forebrain of any mammalian sensory system. Although the data are most relevant for the auditory system, they are generally applicable to forebrain structures in the visual and somatosensory systems, as well. The main findings were: (1) Global gene expression

  7. Genetic Landscape of Auditory Dysfunction.

    PubMed

    Bowl, Michael R; Brown, S D M

    2018-05-02

    Over the past 25 years, human and mouse genetics research together has identified several hundred genes essential for mammalian hearing, leading to a greater understanding of the molecular mechanisms underlying auditory function. However, from the number of still as yet uncloned human deafness loci and the findings of large-scale mouse mutant screens, it is clear we are still far from identifying all of the genes critical for auditory function. In particular, while we have made great progress in understanding the genetic bases of congenital and early-onset hearing loss, we have only just begun to elaborate upon the genetic landscape of age-related hearing loss. With an aging population and a growing literature suggesting links between age-related hearing loss and neuropsychiatric conditions, such as dementia and depression, understanding the genetics and subsequently the molecular mechanisms underlying this very prevalent condition is of paramount importance. Increased knowledge of genes and molecular pathways required for hearing will ultimately provide the foundation upon which novel therapeutic approaches can be built. Here we discuss the current status of deafness genetics research and the ongoing efforts being undertaken for discovery of novel genes essential for hearing.

  8. Auditory Discrimination and Auditory Sensory Behaviours in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Jones, Catherine R. G.; Happe, Francesca; Baird, Gillian; Simonoff, Emily; Marsden, Anita J. S.; Tregay, Jenifer; Phillips, Rebecca J.; Goswami, Usha; Thomson, Jennifer M.; Charman, Tony

    2009-01-01

    It has been hypothesised that auditory processing may be enhanced in autism spectrum disorders (ASD). We tested auditory discrimination ability in 72 adolescents with ASD (39 childhood autism; 33 other ASD) and 57 IQ and age-matched controls, assessing their capacity for successful discrimination of the frequency, intensity and duration…

  9. ERP Correlates of Language-Specific Processing of Auditory Pitch Feedback during Self-Vocalization

    ERIC Educational Resources Information Center

    Chen, Zhaocong; Liu, Peng; Wang, Emily Q.; Larson, Charles R.; Huang, Dongfeng; Liu, Hanjun

    2012-01-01

    The present study investigated whether the neural correlates for auditory feedback control of vocal pitch can be shaped by tone language experience. Event-related potentials (P2/N1) were recorded from adult native speakers of Mandarin and Cantonese who heard their voice auditory feedback shifted in pitch by -50, -100, -200, or -500 cents when they…

  10. Auditory-visual fusion in speech perception in children with cochlear implants

    PubMed Central

    Schorr, Efrat A.; Fox, Nathan A.; van Wassenhove, Virginie; Knudsen, Eric I.

    2005-01-01

    Speech, for most of us, is a bimodal percept whenever we both hear the voice and see the lip movements of a speaker. Children who are born deaf never have this bimodal experience. We tested children who had been deaf from birth and who subsequently received cochlear implants for their ability to fuse the auditory information provided by their implants with visual information about lip movements for speech perception. For most of the children with implants (92%), perception was dominated by vision when visual and auditory speech information conflicted. For some, bimodal fusion was strong and consistent, demonstrating a remarkable plasticity in their ability to form auditory-visual associations despite the atypical stimulation provided by implants. The likelihood of consistent auditory-visual fusion declined with age at implant beyond 2.5 years, suggesting a sensitive period for bimodal integration in speech perception. PMID:16339316

  11. ABCs of Early Mathematics Experiences

    ERIC Educational Resources Information Center

    Hensen, Laurie E.

    2005-01-01

    Children begin to develop mathematical thinking before they enter school. Art, baking, playing with blocks, counting numbers, games, puzzles, singing, playing with pretend money, water play all these early mathematical experiences help the children to learn in the elementary school years.

  12. Beneficial auditory and cognitive effects of auditory brainstem implantation in children.

    PubMed

    Colletti, Liliana

    2007-09-01

    This preliminary study demonstrates the development of hearing ability and shows that there is a significant improvement in some cognitive parameters related to selective visual/spatial attention and to fluid or multisensory reasoning, in children fitted with auditory brainstem implantation (ABI). The improvement in cognitive paramenters is due to several factors, among which there is certainly, as demonstrated in the literature on a cochlear implants (CIs), the activation of the auditory sensory canal, which was previously absent. The findings of the present study indicate that children with cochlear or cochlear nerve abnormalities with associated cognitive deficits should not be excluded from ABI implantation. The indications for ABI have been extended over the last 10 years to adults with non-tumoral (NT) cochlear or cochlear nerve abnormalities that cannot benefit from CI. We demonstrated that the ABI with surface electrodes may provide sufficient stimulation of the central auditory system in adults for open set speech recognition. These favourable results motivated us to extend ABI indications to children with profound hearing loss who were not candidates for a CI. This study investigated the performances of young deaf children undergoing ABI, in terms of their auditory perceptual development and their non-verbal cognitive abilities. In our department from 2000 to 2006, 24 children aged 14 months to 16 years received an ABI for different tumour and non-tumour diseases. Two children had NF2 tumours. Eighteen children had bilateral cochlear nerve aplasia. In this group, nine children had associated cochlear malformations, two had unilateral facial nerve agenesia and two had combined microtia, aural atresia and middle ear malformations. Four of these children had previously been fitted elsewhere with a CI with no auditory results. One child had bilateral incomplete cochlear partition (type II); one child, who had previously been fitted unsuccessfully elsewhere

  13. Electrostimulation mapping of comprehension of auditory and visual words.

    PubMed

    Roux, Franck-Emmanuel; Miskin, Krasimir; Durand, Jean-Baptiste; Sacko, Oumar; Réhault, Emilie; Tanova, Rositsa; Démonet, Jean-François

    2015-10-01

    In order to spare functional areas during the removal of brain tumours, electrical stimulation mapping was used in 90 patients (77 in the left hemisphere and 13 in the right; 2754 cortical sites tested). Language functions were studied with a special focus on comprehension of auditory and visual words and the semantic system. In addition to naming, patients were asked to perform pointing tasks from auditory and visual stimuli (using sets of 4 different images controlled for familiarity), and also auditory object (sound recognition) and Token test tasks. Ninety-two auditory comprehension interference sites were observed. We found that the process of auditory comprehension involved a few, fine-grained, sub-centimetre cortical territories. Early stages of speech comprehension seem to relate to two posterior regions in the left superior temporal gyrus. Downstream lexical-semantic speech processing and sound analysis involved 2 pathways, along the anterior part of the left superior temporal gyrus, and posteriorly around the supramarginal and middle temporal gyri. Electrostimulation experimentally dissociated perceptual consciousness attached to speech comprehension. The initial word discrimination process can be considered as an "automatic" stage, the attention feedback not being impaired by stimulation as would be the case at the lexical-semantic stage. Multimodal organization of the superior temporal gyrus was also detected since some neurones could be involved in comprehension of visual material and naming. These findings demonstrate a fine graded, sub-centimetre, cortical representation of speech comprehension processing mainly in the left superior temporal gyrus and are in line with those described in dual stream models of language comprehension processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Auditory Hallucinations as Translational Psychiatry: Evidence from Magnetic Resonance Imaging

    PubMed Central

    Hugdahl, Kenneth

    2017-01-01

    In this invited review article, I present a translational perspective and overview of our research on auditory hallucinations in schizophrenia at the University of Bergen, Norway, with a focus on the neuronal mechanisms underlying the phenomenology of experiencing “hearing voices”. An auditory verbal hallucination (i.e. hearing a voice) is defined as a sensory experience in the absence of a corresponding external sensory source that could explain the phenomenological experience. I suggest a general frame or scheme for the study of auditory verbal hallucinations, called Levels of Explanation. Using a Levels of Explanation approach, mental phenomena can be described and explained at different levels (cultural, clinical, cognitive, brain-imaging, cellular and molecular). Another way of saying this is that, to advance knowledge in a research field, it is not only necessary to replicate findings, but also to show how evidence obtained with one method, and at one level of explanation, converges with evidence obtained with another method at another level. To achieve breakthroughs in our understanding of auditory verbal hallucinations, we have to advance vertically through the various levels, rather than the more common approach of staying at our favourite level and advancing horizontally (e.g., more advanced techniques and data acquisition analyses). The horizontal expansion will, however, not advance a deeper understanding of how an auditory verbal hallucination spontaneously starts and stops. Finally, I present data from the clinical, cognitive, brain-imaging, and cellular levels, where data from one level validate and support data at another level, called converging of evidence. Using a translational approach, the current status of auditory verbal hallucinations is that they implicate speech perception areas in the left temporal lobe, impairing perception of and attention to external sounds. Preliminary results also show that amygdala is implicated in the emotional

  15. Auditory Hallucinations as Translational Psychiatry: Evidence from Magnetic Resonance Imaging.

    PubMed

    Hugdahl, Kenneth

    2017-12-01

    In this invited review article, I present a translational perspective and overview of our research on auditory hallucinations in schizophrenia at the University of Bergen, Norway, with a focus on the neuronal mechanisms underlying the phenomenology of experiencing "hearing voices". An auditory verbal hallucination (i.e. hearing a voice) is defined as a sensory experience in the absence of a corresponding external sensory source that could explain the phenomenological experience. I suggest a general frame or scheme for the study of auditory verbal hallucinations, called Levels of Explanation. Using a Levels of Explanation approach, mental phenomena can be described and explained at different levels (cultural, clinical, cognitive, brain-imaging, cellular and molecular). Another way of saying this is that, to advance knowledge in a research field, it is not only necessary to replicate findings, but also to show how evidence obtained with one method, and at one level of explanation, converges with evidence obtained with another method at another level. To achieve breakthroughs in our understanding of auditory verbal hallucinations, we have to advance vertically through the various levels, rather than the more common approach of staying at our favourite level and advancing horizontally (e.g., more advanced techniques and data acquisition analyses). The horizontal expansion will, however, not advance a deeper understanding of how an auditory verbal hallucination spontaneously starts and stops. Finally, I present data from the clinical, cognitive, brain-imaging, and cellular levels, where data from one level validate and support data at another level, called converging of evidence. Using a translational approach, the current status of auditory verbal hallucinations is that they implicate speech perception areas in the left temporal lobe, impairing perception of and attention to external sounds. Preliminary results also show that amygdala is implicated in the emotional

  16. Decoding Visual Location From Neural Patterns in the Auditory Cortex of the Congenitally Deaf

    PubMed Central

    Almeida, Jorge; He, Dongjun; Chen, Quanjing; Mahon, Bradford Z.; Zhang, Fan; Gonçalves, Óscar F.; Fang, Fang; Bi, Yanchao

    2016-01-01

    Sensory cortices of individuals who are congenitally deprived of a sense can exhibit considerable plasticity and be recruited to process information from the senses that remain intact. Here, we explored whether the auditory cortex of congenitally deaf individuals represents visual field location of a stimulus—a dimension that is represented in early visual areas. We used functional MRI to measure neural activity in auditory and visual cortices of congenitally deaf and hearing humans while they observed stimuli typically used for mapping visual field preferences in visual cortex. We found that the location of a visual stimulus can be successfully decoded from the patterns of neural activity in auditory cortex of congenitally deaf but not hearing individuals. This is particularly true for locations within the horizontal plane and within peripheral vision. These data show that the representations stored within neuroplastically changed auditory cortex can align with dimensions that are typically represented in visual cortex. PMID:26423461

  17. Exceptional Children Conference Papers: Problems of Auditory, Visual and Speech Impairments.

    ERIC Educational Resources Information Center

    Council for Exceptional Children, Arlington, VA.

    The collection of eight conference papers on problems of auditory, visual, and speech handicaps begins with a review of what is known about deaf-blind children and early development. Following papers are devoted to spontaneous vocalization and babbling in aurally handicapped infants, psychological synergism (an approach to consideration of…

  18. Neuropsychopharmacology of auditory hallucinations: insights from pharmacological functional MRI and perspectives for future research.

    PubMed

    Johnsen, Erik; Hugdahl, Kenneth; Fusar-Poli, Paolo; Kroken, Rune A; Kompus, Kristiina

    2013-01-01

    Experiencing auditory verbal hallucinations is a prominent symptom in schizophrenia that also occurs in subjects at enhanced risk for psychosis and in the general population. Drug treatment of auditory hallucinations is challenging, because the current understanding is limited with respect to the neural mechanisms involved, as well as how CNS drugs, such as antipsychotics, influence the subjective experience and neurophysiology of hallucinations. In this article, the authors review studies of the effect of antipsychotic medication on brain activation as measured with functional MRI in patients with auditory verbal hallucinations. First, the authors examine the neural correlates of ongoing auditory hallucinations. Then, the authors critically discuss studies addressing the antipsychotic effect on the neural correlates of complex cognitive tasks. Current evidence suggests that blood oxygen level-dependant effects of antipsychotic drugs reflect specific, regional effects but studies on the neuropharmacology of auditory hallucinations are scarce. Future directions for pharmacological neuroimaging of auditory hallucinations are discussed.

  19. How well do you see what you hear? The acuity of visual-to-auditory sensory substitution

    PubMed Central

    Haigh, Alastair; Brown, David J.; Meijer, Peter; Proulx, Michael J.

    2013-01-01

    Sensory substitution devices (SSDs) aim to compensate for the loss of a sensory modality, typically vision, by converting information from the lost modality into stimuli in a remaining modality. “The vOICe” is a visual-to-auditory SSD which encodes images taken by a camera worn by the user into “soundscapes” such that experienced users can extract information about their surroundings. Here we investigated how much detail was resolvable during the early induction stages by testing the acuity of blindfolded sighted, naïve vOICe users. Initial performance was well above chance. Participants who took the test twice as a form of minimal training showed a marked improvement on the second test. Acuity was slightly but not significantly impaired when participants wore a camera and judged letter orientations “live”. A positive correlation was found between participants' musical training and their acuity. The relationship between auditory expertise via musical training and the lack of a relationship with visual imagery, suggests that early use of a SSD draws primarily on the mechanisms of the sensory modality being used rather than the one being substituted. If vision is lost, audition represents the sensory channel of highest bandwidth of those remaining. The level of acuity found here, and the fact it was achieved with very little experience in sensory substitution by naïve users is promising. PMID:23785345

  20. Auditory temporal processing in healthy aging: a magnetoencephalographic study

    PubMed Central

    Sörös, Peter; Teismann, Inga K; Manemann, Elisabeth; Lütkenhöner, Bernd

    2009-01-01

    Background Impaired speech perception is one of the major sequelae of aging. In addition to peripheral hearing loss, central deficits of auditory processing are supposed to contribute to the deterioration of speech perception in older individuals. To test the hypothesis that auditory temporal processing is compromised in aging, auditory evoked magnetic fields were recorded during stimulation with sequences of 4 rapidly recurring speech sounds in 28 healthy individuals aged 20 – 78 years. Results The decrement of the N1m amplitude during rapid auditory stimulation was not significantly different between older and younger adults. The amplitudes of the middle-latency P1m wave and of the long-latency N1m, however, were significantly larger in older than in younger participants. Conclusion The results of the present study do not provide evidence for the hypothesis that auditory temporal processing, as measured by the decrement (short-term habituation) of the major auditory evoked component, the N1m wave, is impaired in aging. The differences between these magnetoencephalographic findings and previously published behavioral data might be explained by differences in the experimental setting between the present study and previous behavioral studies, in terms of speech rate, attention, and masking noise. Significantly larger amplitudes of the P1m and N1m waves suggest that the cortical processing of individual sounds differs between younger and older individuals. This result adds to the growing evidence that brain functions, such as sensory processing, motor control and cognitive processing, can change during healthy aging, presumably due to experience-dependent neuroplastic mechanisms. PMID:19351410

  1. [Assessment of the efficiency of the auditory training in children with dyslalia and auditory processing disorders].

    PubMed

    Włodarczyk, Elżbieta; Szkiełkowska, Agata; Skarżyński, Henryk; Piłka, Adam

    2011-01-01

    To assess effectiveness of the auditory training in children with dyslalia and central auditory processing disorders. Material consisted of 50 children aged 7-9-years-old. Children with articulation disorders stayed under long-term speech therapy care in the Auditory and Phoniatrics Clinic. All children were examined by a laryngologist and a phoniatrician. Assessment included tonal and impedance audiometry and speech therapists' and psychologist's consultations. Additionally, a set of electrophysiological examinations was performed - registration of N2, P2, N2, P2, P300 waves and psychoacoustic test of central auditory functions: FPT - frequency pattern test. Next children took part in the regular auditory training and attended speech therapy. Speech assessment followed treatment and therapy, again psychoacoustic tests were performed and P300 cortical potentials were recorded. After that statistical analyses were performed. Analyses revealed that application of auditory training in patients with dyslalia and other central auditory disorders is very efficient. Auditory training may be a very efficient therapy supporting speech therapy in children suffering from dyslalia coexisting with articulation and central auditory disorders and in children with educational problems of audiogenic origin. Copyright © 2011 Polish Otolaryngology Society. Published by Elsevier Urban & Partner (Poland). All rights reserved.

  2. A Mixed Methods Investigation of Caregiver Coaching in an Early Intervention Model: Differences in Providers for Children with Hearing Loss

    ERIC Educational Resources Information Center

    King, Alison R.

    2017-01-01

    The purpose of this research is to investigate the relationship between early intervention providers' backgrounds, and their perceptions of caregiver coaching and auditory skill development, to develop professional development programs. An explanatory sequential design was used with participants of varying backgrounds and experience. In the first…

  3. A frontal but not parietal neural correlate of auditory consciousness.

    PubMed

    Brancucci, Alfredo; Lugli, Victor; Perrucci, Mauro Gianni; Del Gratta, Cosimo; Tommasi, Luca

    2016-01-01

    Hemodynamic correlates of consciousness were investigated in humans during the presentation of a dichotic sequence inducing illusory auditory percepts with features analogous to visual multistability. The sequence consisted of a variation of the original stimulation eliciting the Deutsch's octave illusion, created to maintain a stable illusory percept long enough to allow the detection of the underlying hemodynamic activity using functional magnetic resonance imaging (fMRI). Two specular 500 ms dichotic stimuli (400 and 800 Hz) presented in alternation by means of earphones cause an illusory segregation of pitch and ear of origin which can yield up to four different auditory percepts per dichotic stimulus. Such percepts are maintained stable when one of the two dichotic stimuli is presented repeatedly for 6 s, immediately after the alternation. We observed hemodynamic activity specifically accompanying conscious experience of pitch in a bilateral network including the superior frontal gyrus (SFG, BA9 and BA10), medial frontal gyrus (BA6 and BA9), insula (BA13), and posterior lateral nucleus of the thalamus. Conscious experience of side (ear of origin) was instead specifically accompanied by bilateral activity in the MFG (BA6), STG (BA41), parahippocampal gyrus (BA28), and insula (BA13). These results suggest that the neural substrate of auditory consciousness, differently from that of visual consciousness, may rest upon a fronto-temporal rather than upon a fronto-parietal network. Moreover, they indicate that the neural correlates of consciousness depend on the specific features of the stimulus and suggest the SFG-MFG and the insula as important cortical nodes for auditory conscious experience.

  4. Auditory-visual speech integration by prelinguistic infants: perception of an emergent consonant in the McGurk effect.

    PubMed

    Burnham, Denis; Dodd, Barbara

    2004-12-01

    The McGurk effect, in which auditory [ba] dubbed onto [ga] lip movements is perceived as "da" or "tha," was employed in a real-time task to investigate auditory-visual speech perception in prelingual infants. Experiments 1A and 1B established the validity of real-time dubbing for producing the effect. In Experiment 2, 4 1/2-month-olds were tested in a habituation-test paradigm, in which an auditory-visual stimulus was presented contingent upon visual fixation of a live face. The experimental group was habituated to a McGurk stimulus (auditory [ba] visual [ga]), and the control group to matching auditory-visual [ba]. Each group was then presented with three auditory-only test trials, [ba], [da], and [(delta)a] (as in then). Visual-fixation durations in test trials showed that the experimental group treated the emergent percept in the McGurk effect, [da] or [(delta)a], as familiar (even though they had not heard these sounds previously) and [ba] as novel. For control group infants [da] and [(delta)a] were no more familiar than [ba]. These results are consistent with infants' perception of the McGurk effect, and support the conclusion that prelinguistic infants integrate auditory and visual speech information. Copyright 2004 Wiley Periodicals, Inc.

  5. Laterality of basic auditory perception.

    PubMed

    Sininger, Yvonne S; Bhatara, Anjali

    2012-01-01

    Laterality (left-right ear differences) of auditory processing was assessed using basic auditory skills: (1) gap detection, (2) frequency discrimination, and (3) intensity discrimination. Stimuli included tones (500, 1000, and 4000 Hz) and wide-band noise presented monaurally to each ear of typical adult listeners. The hypothesis tested was that processing of tonal stimuli would be enhanced by left ear (LE) stimulation and noise by right ear (RE) presentations. To investigate the limits of laterality by (1) spectral width, a narrow-band noise (NBN) of 450-Hz bandwidth was evaluated using intensity discrimination, and (2) stimulus duration, 200, 500, and 1000 ms duration tones were evaluated using frequency discrimination. A left ear advantage (LEA) was demonstrated with tonal stimuli in all experiments, but an expected REA for noise stimuli was not found. The NBN stimulus demonstrated no LEA and was characterised as a noise. No change in laterality was found with changes in stimulus durations. The LEA for tonal stimuli is felt to be due to more direct connections between the left ear and the right auditory cortex, which has been shown to be primary for spectral analysis and tonal processing. The lack of a REA for noise stimuli is unexplained. Sex differences in laterality for noise stimuli were noted but were not statistically significant. This study did establish a subtle but clear pattern of LEA for processing of tonal stimuli.

  6. Predictive information processing is a fundamental learning mechanism present in early development: evidence from infants.

    PubMed

    Trainor, Laurel J

    2012-02-01

    Evidence is presented that predictive coding is fundamental to brain function and present in early infancy. Indeed, mismatch responses to unexpected auditory stimuli are among the earliest robust cortical event-related potential responses, and have been measured in young infants in response to many types of deviation, including in pitch, timing, and melodic pattern. Furthermore, mismatch responses change quickly with specific experience, suggesting that predictive coding reflects a powerful, early-developing learning mechanism. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. The plastic ear and perceptual relearning in auditory spatial perception

    PubMed Central

    Carlile, Simon

    2014-01-01

    The auditory system of adult listeners has been shown to accommodate to altered spectral cues to sound location which presumably provides the basis for recalibration to changes in the shape of the ear over a life time. Here we review the role of auditory and non-auditory inputs to the perception of sound location and consider a range of recent experiments looking at the role of non-auditory inputs in the process of accommodation to these altered spectral cues. A number of studies have used small ear molds to modify the spectral cues that result in significant degradation in localization performance. Following chronic exposure (10–60 days) performance recovers to some extent and recent work has demonstrated that this occurs for both audio-visual and audio-only regions of space. This begs the questions as to the teacher signal for this remarkable functional plasticity in the adult nervous system. Following a brief review of influence of the motor state in auditory localization, we consider the potential role of auditory-motor learning in the perceptual recalibration of the spectral cues. Several recent studies have considered how multi-modal and sensory-motor feedback might influence accommodation to altered spectral cues produced by ear molds or through virtual auditory space stimulation using non-individualized spectral cues. The work with ear molds demonstrates that a relatively short period of training involving audio-motor feedback (5–10 days) significantly improved both the rate and extent of accommodation to altered spectral cues. This has significant implications not only for the mechanisms by which this complex sensory information is encoded to provide spatial cues but also for adaptive training to altered auditory inputs. The review concludes by considering the implications for rehabilitative training with hearing aids and cochlear prosthesis. PMID:25147497

  8. Interhemispheric transfer time in patients with auditory hallucinations: an auditory event-related potential study.

    PubMed

    Henshall, Katherine R; Sergejew, Alex A; McKay, Colette M; Rance, Gary; Shea, Tracey L; Hayden, Melissa J; Innes-Brown, Hamish; Copolov, David L

    2012-05-01

    Central auditory processing in schizophrenia patients with a history of auditory hallucinations has been reported to be impaired, and abnormalities of interhemispheric transfer have been implicated in these patients. This study examined interhemispheric functional connectivity between auditory cortical regions, using temporal information obtained from latency measures of the auditory N1 evoked potential. Interhemispheric Transfer Times (IHTTs) were compared across 3 subject groups: schizophrenia patients who had experienced auditory hallucinations, schizophrenia patients without a history of auditory hallucinations, and normal controls. Pure tones and single-syllable words were presented monaurally to each ear, while EEG was recorded continuously. IHTT was calculated for each stimulus type by comparing the latencies of the auditory N1 evoked potential recorded contralaterally and ipsilaterally to the ear of stimulation. The IHTTs for pure tones did not differ between groups. For word stimuli, the IHTT was significantly different across the 3 groups: the IHTT was close to zero in normal controls, was highest in the AH group, and was negative (shorter latencies ipsilaterally) in the nonAH group. Differences in IHTTs may be attributed to transcallosal dysfunction in the AH group, but altered or reversed cerebral lateralization in nonAH participants is also possible. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. A Community of One: Social Cognition and Auditory Verbal Hallucinations

    PubMed Central

    Bell, Vaughan

    2013-01-01

    Auditory verbal hallucinations have attracted a great deal of scientific interest, but despite the fact that they are fundamentally a social experience—in essence, a form of hallucinated communication—current theories remain firmly rooted in an individualistic account and have largely avoided engagement with social cognition. Nevertheless, there is mounting evidence for the role of social cognitive and social neurocognitive processes in auditory verbal hallucinations, and, consequently, it is proposed that problems with the internalisation of social models may be key to the experience. PMID:24311984

  10. Huschke's anterior external auditory canal foramen: art before medicine?

    PubMed

    Pirsig, Wolfgang; Mudry, Albert

    2015-03-01

    During the Renaissance, several anatomic details were described with a degree of exactness, which would stand the test of time. One example is the foramen in the anteroinferior wall of the external auditory canal, eponymously named after the German anatomist, Emil Huschke, who described it in 1844. However, the first clearly medical observation of this foramen was published by the French physician Jean Riolan the Younger in 1648. After a short excursion into some paleopathologic findings of this foramen in skulls of the Early Bronze Age and of pre-Columbian Peruvian populations, this article follows the traces of the early medical descriptions and depictions of the foramen up until the 19th century. They are connected with the names of Duverney (1683), Cassebohm (1734), Lincke (1837), Huschke (1844); Humphry (1858), von Troeltsch (1860), and especially Buerkner (1878). Surprisingly, the earliest exact depiction of the foramen in the auditory canal of a skull was found in the oil painting Saint Jerome in his study by the Flemish artist Marinus Claeszon van Reymerswaele. He depicted the foramen in the period between 1521 and 1541, a hundred years before Riolan the Younger.

  11. Modelling the Emergence and Dynamics of Perceptual Organisation in Auditory Streaming

    PubMed Central

    Mill, Robert W.; Bőhm, Tamás M.; Bendixen, Alexandra; Winkler, István; Denham, Susan L.

    2013-01-01

    Many sound sources can only be recognised from the pattern of sounds they emit, and not from the individual sound events that make up their emission sequences. Auditory scene analysis addresses the difficult task of interpreting the sound world in terms of an unknown number of discrete sound sources (causes) with possibly overlapping signals, and therefore of associating each event with the appropriate source. There are potentially many different ways in which incoming events can be assigned to different causes, which means that the auditory system has to choose between them. This problem has been studied for many years using the auditory streaming paradigm, and recently it has become apparent that instead of making one fixed perceptual decision, given sufficient time, auditory perception switches back and forth between the alternatives—a phenomenon known as perceptual bi- or multi-stability. We propose a new model of auditory scene analysis at the core of which is a process that seeks to discover predictable patterns in the ongoing sound sequence. Representations of predictable fragments are created on the fly, and are maintained, strengthened or weakened on the basis of their predictive success, and conflict with other representations. Auditory perceptual organisation emerges spontaneously from the nature of the competition between these representations. We present detailed comparisons between the model simulations and data from an auditory streaming experiment, and show that the model accounts for many important findings, including: the emergence of, and switching between, alternative organisations; the influence of stimulus parameters on perceptual dominance, switching rate and perceptual phase durations; and the build-up of auditory streaming. The principal contribution of the model is to show that a two-stage process of pattern discovery and competition between incompatible patterns can account for both the contents (perceptual organisations) and the

  12. Mind the Gap: Two Dissociable Mechanisms of Temporal Processing in the Auditory System

    PubMed Central

    Anderson, Lucy A.

    2016-01-01

    High temporal acuity of auditory processing underlies perception of speech and other rapidly varying sounds. A common measure of auditory temporal acuity in humans is the threshold for detection of brief gaps in noise. Gap-detection deficits, observed in developmental disorders, are considered evidence for “sluggish” auditory processing. Here we show, in a mouse model of gap-detection deficits, that auditory brain sensitivity to brief gaps in noise can be impaired even without a general loss of central auditory temporal acuity. Extracellular recordings in three different subdivisions of the auditory thalamus in anesthetized mice revealed a stimulus-specific, subdivision-specific deficit in thalamic sensitivity to brief gaps in noise in experimental animals relative to controls. Neural responses to brief gaps in noise were reduced, but responses to other rapidly changing stimuli unaffected, in lemniscal and nonlemniscal (but not polysensory) subdivisions of the medial geniculate body. Through experiments and modeling, we demonstrate that the observed deficits in thalamic sensitivity to brief gaps in noise arise from reduced neural population activity following noise offsets, but not onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive channels underlying auditory temporal processing, and suggest that gap-detection deficits can arise from specific impairment of the sound-offset-sensitive channel. SIGNIFICANCE STATEMENT The experimental and modeling results reported here suggest a new hypothesis regarding the mechanisms of temporal processing in the auditory system. Using a mouse model of auditory temporal processing deficits, we demonstrate the existence of specific abnormalities in auditory thalamic activity following sound offsets, but not sound onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive mechanisms underlying auditory processing of temporally varying sounds. Furthermore, the

  13. AUDITORY ASSOCIATIVE MEMORY AND REPRESENTATIONAL PLASTICITY IN THE PRIMARY AUDITORY CORTEX

    PubMed Central

    Weinberger, Norman M.

    2009-01-01

    Historically, the primary auditory cortex has been largely ignored as a substrate of auditory memory, perhaps because studies of associative learning could not reveal the plasticity of receptive fields (RFs). The use of a unified experimental design, in which RFs are obtained before and after standard training (e.g., classical and instrumental conditioning) revealed associative representational plasticity, characterized by facilitation of responses to tonal conditioned stimuli (CSs) at the expense of other frequencies, producing CS-specific tuning shifts. Associative representational plasticity (ARP) possesses the major attributes of associative memory: it is highly specific, discriminative, rapidly acquired, consolidates over hours and days and can be retained indefinitely. The nucleus basalis cholinergic system is sufficient both for the induction of ARP and for the induction of specific auditory memory, including control of the amount of remembered acoustic details. Extant controversies regarding the form, function and neural substrates of ARP appear largely to reflect different assumptions, which are explicitly discussed. The view that the forms of plasticity are task-dependent is supported by ongoing studies in which auditory learning involves CS-specific decreases in threshold or bandwidth without affecting frequency tuning. Future research needs to focus on the factors that determine ARP and their functions in hearing and in auditory memory. PMID:17344002

  14. Reality of auditory verbal hallucinations.

    PubMed

    Raij, Tuukka T; Valkonen-Korhonen, Minna; Holi, Matti; Therman, Sebastian; Lehtonen, Johannes; Hari, Riitta

    2009-11-01

    Distortion of the sense of reality, actualized in delusions and hallucinations, is the key feature of psychosis but the underlying neuronal correlates remain largely unknown. We studied 11 highly functioning subjects with schizophrenia or schizoaffective disorder while they rated the reality of auditory verbal hallucinations (AVH) during functional magnetic resonance imaging (fMRI). The subjective reality of AVH correlated strongly and specifically with the hallucination-related activation strength of the inferior frontal gyri (IFG), including the Broca's language region. Furthermore, how real the hallucination that subjects experienced was depended on the hallucination-related coupling between the IFG, the ventral striatum, the auditory cortex, the right posterior temporal lobe, and the cingulate cortex. Our findings suggest that the subjective reality of AVH is related to motor mechanisms of speech comprehension, with contributions from sensory and salience-detection-related brain regions as well as circuitries related to self-monitoring and the experience of agency.

  15. Reality of auditory verbal hallucinations

    PubMed Central

    Valkonen-Korhonen, Minna; Holi, Matti; Therman, Sebastian; Lehtonen, Johannes; Hari, Riitta

    2009-01-01

    Distortion of the sense of reality, actualized in delusions and hallucinations, is the key feature of psychosis but the underlying neuronal correlates remain largely unknown. We studied 11 highly functioning subjects with schizophrenia or schizoaffective disorder while they rated the reality of auditory verbal hallucinations (AVH) during functional magnetic resonance imaging (fMRI). The subjective reality of AVH correlated strongly and specifically with the hallucination-related activation strength of the inferior frontal gyri (IFG), including the Broca's language region. Furthermore, how real the hallucination that subjects experienced was depended on the hallucination-related coupling between the IFG, the ventral striatum, the auditory cortex, the right posterior temporal lobe, and the cingulate cortex. Our findings suggest that the subjective reality of AVH is related to motor mechanisms of speech comprehension, with contributions from sensory and salience-detection-related brain regions as well as circuitries related to self-monitoring and the experience of agency. PMID:19620178

  16. Auditory recognition of familiar and unfamiliar subjects with wind turbine noise.

    PubMed

    Maffei, Luigi; Masullo, Massimiliano; Gabriele, Maria Di; Votsi, Nefta-Eleftheria P; Pantis, John D; Senese, Vincenzo Paolo

    2015-04-17

    Considering the wide growth of the wind turbine market over the last decade as well as their increasing power size, more and more potential conflicts have arisen in society due to the noise radiated by these plants. Our goal was to determine whether the annoyance caused by wind farms is related to aspects other than noise. To accomplish this, an auditory experiment on the recognition of wind turbine noise was conducted to people with long experience of wind turbine noise exposure and to people with no previous experience to this type of noise source. Our findings demonstrated that the trend of the auditory recognition is the same for the two examined groups, as far as the increase of the distance and the decrease of the values of sound equivalent levels and loudness are concerned. Significant differences between the two groups were observed as the distance increases. People with wind turbine noise experience showed a higher tendency to report false alarms than people without experience.

  17. Auditory recognition of familiar and unfamiliar subjects with wind turbine noise

    PubMed Central

    Maffei, Luigi; Masullo, Massimiliano; Di Gabriele, Maria; Votsi, Nefta-Eleftheria P.; Pantis, John D.; Senese, Vincenzo Paolo

    2015-01-01

    Considering the wide growth of the wind turbine market over the last decade as well as their increasing power size, more and more potential conflicts have arisen in society due to the noise radiated by these plants. Our goal was to determine whether the annoyance caused by wind farms is related to aspects other than noise. To accomplish this, an auditory experiment on the recognition of wind turbine noise was conducted to people with long experience of wind turbine noise exposure and to people with no previous experience to this type of noise source. Our findings demonstrated that the trend of the auditory recognition is the same for the two examined groups, as far as the increase of the distance and the decrease of the values of sound equivalent levels and loudness are concerned. Significant differences between the two groups were observed as the distance increases. People with wind turbine noise experience showed a higher tendency to report false alarms than people without experience. PMID:25898408

  18. I can see what you are saying: Auditory labels reduce visual search times.

    PubMed

    Cho, Kit W

    2016-10-01

    The present study explored the self-directed-speech effect, the finding that relative to silent reading of a label (e.g., DOG), saying it aloud reduces visual search reaction times (RTs) for locating a target picture among distractors. Experiment 1 examined whether this effect is due to a confound in the differences in the number of cues in self-directed speech (two) vs. silent reading (one) and tested whether self-articulation is required for the effect. The results showed that self-articulation is not required and that merely hearing the auditory label reduces visual search RTs relative to silent reading. This finding also rules out the number of cues confound. Experiment 2 examined whether hearing an auditory label activates more prototypical features of the label's referent and whether the auditory-label benefit is moderated by the target's imagery concordance (the degree to which the target picture matches the mental picture that is activated by a written label for the target). When the target imagery concordance was high, RTs following the presentation of a high prototypicality picture or auditory cue were comparable and shorter than RTs following a visual label or low prototypicality picture cue. However, when the target imagery concordance was low, RTs following an auditory cue were shorter than the comparable RTs following the picture cues and visual-label cue. The results suggest that an auditory label activates both prototypical and atypical features of a concept and can facilitate visual search RTs even when compared to picture primes. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Working memory capacity and visual-verbal cognitive load modulate auditory-sensory gating in the brainstem: toward a unified view of attention.

    PubMed

    Sörqvist, Patrik; Stenfelt, Stefan; Rönnberg, Jerker

    2012-11-01

    Two fundamental research questions have driven attention research in the past: One concerns whether selection of relevant information among competing, irrelevant, information takes place at an early or at a late processing stage; the other concerns whether the capacity of attention is limited by a central, domain-general pool of resources or by independent, modality-specific pools. In this article, we contribute to these debates by showing that the auditory-evoked brainstem response (an early stage of auditory processing) to task-irrelevant sound decreases as a function of central working memory load (manipulated with a visual-verbal version of the n-back task). Furthermore, individual differences in central/domain-general working memory capacity modulated the magnitude of the auditory-evoked brainstem response, but only in the high working memory load condition. The results support a unified view of attention whereby the capacity of a late/central mechanism (working memory) modulates early precortical sensory processing.

  20. Auditory Implant Research at the House Ear Institute 1989–2013

    PubMed Central

    Shannon, Robert V.

    2014-01-01

    The House Ear Institute (HEI) had a long and distinguished history of auditory implant innovation and development. Early clinical innovations include being one of the first cochlear implant (CI) centers, being the first center to implant a child with a cochlear implant in the US, developing the auditory brainstem implant, and developing multiple surgical approaches and tools for Otology. This paper reviews the second stage of auditory implant research at House – in-depth basic research on perceptual capabilities and signal processing for both cochlear implants and auditory brainstem implants. Psychophysical studies characterized the loudness and temporal perceptual properties of electrical stimulation as a function of electrical parameters. Speech studies with the noise-band vocoder showed that only four bands of tonotopically arrayed information were sufficient for speech recognition, and that most implant users were receiving the equivalent of 8–10 bands of information. The noise-band vocoder allowed us to evaluate the effects of the manipulation of the number of bands, the alignment of the bands with the original tonotopic map, and distortions in the tonotopic mapping, including holes in the neural representation. Stimulation pulse rate was shown to have only a small effect on speech recognition. Electric fields were manipulated in position and sharpness, showing the potential benefit of improved tonotopic selectivity. Auditory training shows great promise for improving speech recognition for all patients. And the Auditory Brainstem Implant was developed and improved and its application expanded to new populations. Overall, the last 25 years of research at HEI helped increase the basic scientific understanding of electrical stimulation of hearing and contributed to the improved outcomes for patients with the CI and ABI devices. PMID:25449009

  1. Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss.

    PubMed

    Verhulst, Sarah; Altoè, Alessandro; Vasilkov, Viacheslav

    2018-03-01

    Models of the human auditory periphery range from very basic functional descriptions of auditory filtering to detailed computational models of cochlear mechanics, inner-hair cell (IHC), auditory-nerve (AN) and brainstem signal processing. It is challenging to include detailed physiological descriptions of cellular components into human auditory models because single-cell data stems from invasive animal recordings while human reference data only exists in the form of population responses (e.g., otoacoustic emissions, auditory evoked potentials). To embed physiological models within a comprehensive human auditory periphery framework, it is important to capitalize on the success of basic functional models of hearing and render their descriptions more biophysical where possible. At the same time, comprehensive models should capture a variety of key auditory features, rather than fitting their parameters to a single reference dataset. In this study, we review and improve existing models of the IHC-AN complex by updating their equations and expressing their fitting parameters into biophysical quantities. The quality of the model framework for human auditory processing is evaluated using recorded auditory brainstem response (ABR) and envelope-following response (EFR) reference data from normal and hearing-impaired listeners. We present a model with 12 fitting parameters from the cochlea to the brainstem that can be rendered hearing impaired to simulate how cochlear gain loss and synaptopathy affect human population responses. The model description forms a compromise between capturing well-described single-unit IHC and AN properties and human population response features. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Behavioral semantics of learning and crossmodal processing in auditory cortex: the semantic processor concept.

    PubMed

    Scheich, Henning; Brechmann, André; Brosch, Michael; Budinger, Eike; Ohl, Frank W; Selezneva, Elena; Stark, Holger; Tischmeyer, Wolfgang; Wetzel, Wolfram

    2011-01-01

    Two phenomena of auditory cortex activity have recently attracted attention, namely that the primary field can show different types of learning-related changes of sound representation and that during learning even this early auditory cortex is under strong multimodal influence. Based on neuronal recordings in animal auditory cortex during instrumental tasks, in this review we put forward the hypothesis that these two phenomena serve to derive the task-specific meaning of sounds by associative learning. To understand the implications of this tenet, it is helpful to realize how a behavioral meaning is usually derived for novel environmental sounds. For this purpose, associations with other sensory, e.g. visual, information are mandatory to develop a connection between a sound and its behaviorally relevant cause and/or the context of sound occurrence. This makes it plausible that in instrumental tasks various non-auditory sensory and procedural contingencies of sound generation become co-represented by neuronal firing in auditory cortex. Information related to reward or to avoidance of discomfort during task learning, that is essentially non-auditory, is also co-represented. The reinforcement influence points to the dopaminergic internal reward system, the local role of which for memory consolidation in auditory cortex is well-established. Thus, during a trial of task performance, the neuronal responses to the sounds are embedded in a sequence of representations of such non-auditory information. The embedded auditory responses show task-related modulations of auditory responses falling into types that correspond to three basic logical classifications that may be performed with a perceptual item, i.e. from simple detection to discrimination, and categorization. This hierarchy of classifications determine the semantic "same-different" relationships among sounds. Different cognitive classifications appear to be a consequence of learning task and lead to a recruitment of

  3. Characteristics of Early Work Experiences and Their Association with Future Employment

    ERIC Educational Resources Information Center

    McDonnall, Michele Capella; O'Mally, Jamie

    2012-01-01

    Introduction: Early work experiences are a key predictor of future employment for transition-age youths with visual impairments. We investigated how specific characteristics of early work experiences influence future employment and whether the receipt of Supplemental Security Income (SSI) benefits is associated with early work experiences among…

  4. Amygdala and auditory cortex exhibit distinct sensitivity to relevant acoustic features of auditory emotions.

    PubMed

    Pannese, Alessia; Grandjean, Didier; Frühholz, Sascha

    2016-12-01

    Discriminating between auditory signals of different affective value is critical to successful social interaction. It is commonly held that acoustic decoding of such signals occurs in the auditory system, whereas affective decoding occurs in the amygdala. However, given that the amygdala receives direct subcortical projections that bypass the auditory cortex, it is possible that some acoustic decoding occurs in the amygdala as well, when the acoustic features are relevant for affective discrimination. We tested this hypothesis by combining functional neuroimaging with the neurophysiological phenomena of repetition suppression (RS) and repetition enhancement (RE) in human listeners. Our results show that both amygdala and auditory cortex responded differentially to physical voice features, suggesting that the amygdala and auditory cortex decode the affective quality of the voice not only by processing the emotional content from previously processed acoustic features, but also by processing the acoustic features themselves, when these are relevant to the identification of the voice's affective value. Specifically, we found that the auditory cortex is sensitive to spectral high-frequency voice cues when discriminating vocal anger from vocal fear and joy, whereas the amygdala is sensitive to vocal pitch when discriminating between negative vocal emotions (i.e., anger and fear). Vocal pitch is an instantaneously recognized voice feature, which is potentially transferred to the amygdala by direct subcortical projections. These results together provide evidence that, besides the auditory cortex, the amygdala too processes acoustic information, when this is relevant to the discrimination of auditory emotions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.

    PubMed

    Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M

    1991-06-01

    An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.

  6. Auditory selective attention in adolescents with major depression: An event-related potential study.

    PubMed

    Greimel, E; Trinkl, M; Bartling, J; Bakos, S; Grossheinrich, N; Schulte-Körne, G

    2015-02-01

    Major depression (MD) is associated with deficits in selective attention. Previous studies in adults with MD using event-related potentials (ERPs) reported abnormalities in the neurophysiological correlates of auditory selective attention. However, it is yet unclear whether these findings can be generalized to MD in adolescence. Thus, the aim of the present ERP study was to explore the neural mechanisms of auditory selective attention in adolescents with MD. 24 male and female unmedicated adolescents with MD and 21 control subjects were included in the study. ERPs were collected during an auditory oddball paradigm. Depressive adolescents tended to show a longer N100 latency to target and non-target tones. Moreover, MD subjects showed a prolonged latency of the P200 component to targets. Across groups, longer P200 latency was associated with a decreased tendency of disinhibited behavior as assessed by a behavioral questionnaire. To be able to draw more precise conclusions about differences between the neural bases of selective attention in adolescents vs. adults with MD, future studies should include both age groups and apply the same experimental setting across all subjects. The study provides strong support for abnormalities in the neurophysiolgical bases of selective attention in adolecents with MD at early stages of auditory information processing. Absent group differences in later ERP components reflecting voluntary attentional processes stand in contrast to results reported in adults with MD and may suggest that adolescents with MD possess mechanisms to compensate for abnormalities in the early stages of selective attention. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Auditory and non-auditory effects of noise on health

    PubMed Central

    Basner, Mathias; Babisch, Wolfgang; Davis, Adrian; Brink, Mark; Clark, Charlotte; Janssen, Sabine; Stansfeld, Stephen

    2014-01-01

    Noise is pervasive in everyday life and can cause both auditory and non-auditory health effects. Noise-induced hearing loss remains highly prevalent in occupational settings, and is increasingly caused by social noise exposure (eg, through personal music players). Our understanding of molecular mechanisms involved in noise-induced hair-cell and nerve damage has substantially increased, and preventive and therapeutic drugs will probably become available within 10 years. Evidence of the non-auditory effects of environmental noise exposure on public health is growing. Observational and experimental studies have shown that noise exposure leads to annoyance, disturbs sleep and causes daytime sleepiness, affects patient outcomes and staff performance in hospitals, increases the occurrence of hypertension and cardiovascular disease, and impairs cognitive performance in schoolchildren. In this Review, we stress the importance of adequate noise prevention and mitigation strategies for public health. PMID:24183105

  8. Studying the Effects of Early Experiences on Women's Career Achievement.

    ERIC Educational Resources Information Center

    Lykes, M. Brinton; Stewart, Abigail J.

    Virtually all psychological theories assume that early life experiences have an impact on later life choices. However, increasing doubts have been expressed about the universality and permanence of the relationship between women's work and family lives. To explore how early family experiences and early adult decisions affect women's later career…

  9. Exploring the extent and function of higher-order auditory cortex in rhesus monkeys.

    PubMed

    Poremba, Amy; Mishkin, Mortimer

    2007-07-01

    Just as cortical visual processing continues far beyond the boundaries of early visual areas, so too does cortical auditory processing continue far beyond the limits of early auditory areas. In passively listening rhesus monkeys examined with metabolic mapping techniques, cortical areas reactive to auditory stimulation were found to include the entire length of the superior temporal gyrus (STG) as well as several other regions within the temporal, parietal, and frontal lobes. Comparison of these widespread activations with those from an analogous study in vision supports the notion that audition, like vision, is served by several cortical processing streams, each specialized for analyzing a different aspect of sensory input, such as stimulus quality, location, or motion. Exploration with different classes of acoustic stimuli demonstrated that most portions of STG show greater activation on the right than on the left regardless of stimulus class. However, there is a striking shift to left-hemisphere "dominance" during passive listening to species-specific vocalizations, though this reverse asymmetry is observed only in the region of temporal pole. The mechanism for this left temporal pole "dominance" appears to be suppression of the right temporal pole by the left hemisphere, as demonstrated by a comparison of the results in normal monkeys with those in split-brain monkeys.

  10. Exploring the extent and function of higher-order auditory cortex in rhesus monkeys

    PubMed Central

    Mishkin, Mortimer

    2009-01-01

    Just as cortical visual processing continues far beyond the boundaries of early visual areas, so too does cortical auditory processing continue far beyond the limits of early auditory areas. In passively listening rhesus monkeys examined with metabolic mapping techniques, cortical areas reactive to auditory stimulation were found to include the entire length of the superior temporal gyrus (STG) as well as several other regions within the temporal, parietal, and frontal lobes. Comparison of these widespread activations with those from an analogous study in vision supports the notion that audition, like vision, is served by several cortical processing streams, each specialized for analyzing a different aspect of sensory input, such as stimulus quality, location, or motion. Exploration with different classes of acoustic stimuli demonstrated that most portions of STG show greater activation on the right than on the left regardless of stimulus class. However, there is a striking shift to left hemisphere “dominance” during passive listening to species-specific vocalizations, though this reverse asymmetry is observed only in the region of temporal pole. The mechanism for this left temporal pole “dominance” appears to be suppression of the right temporal pole by the left hemisphere, as demonstrated by a comparison of the results in normal monkeys with those in split-brain monkeys. PMID:17321703

  11. Impact of mild traumatic brain injury on auditory brain stem dysfunction in mouse model.

    PubMed

    Amanipour, Reza M; Frisina, Robert D; Cresoe, Samantha A; Parsons, Teresa J; Xiaoxia Zhu; Borlongan, Cesario V; Walton, Joseph P

    2016-08-01

    The auditory brainstem response (ABR) is an electrophysiological test that examines the functionality of the auditory nerve and brainstem. Traumatic brain injury (TBI) can be detected if prolonged peak latency is observed in ABR measurements, since latency measures the neural conduction time in the brainstem, and an increase in latency can be a sign of pathological lesion at the auditory brainstem level. The ABR is elicited by brief sounds that can be used to measure hearing sensitivity as well as temporal processing. Reduction in peak amplitudes and increases in latency are indicative of dysfunction in the auditory nerve and/or central auditory pathways. In this study we used sixteen young adult mice that were divided into two groups: sham and mild traumatic brain injury (mTBI), with ABR measurements obtained prior to, and at 2, 6, and 14 weeks after injury. Abnormal ABRs were observed for the nine TBI cases as early as two weeks after injury and the deficits lasted for fourteen weeks after injury. Results indicated a significant reduction in the Peak 1 (P1) and Peak 4 (P4) amplitudes to the first noise burst, as well as an increase in latency response for P1 and P4 following mTBI. These results are the first to demonstrate auditory sound processing deficits in a rodent model of mild TBI.

  12. Neural Entrainment to Auditory Imagery of Rhythms.

    PubMed

    Okawa, Haruki; Suefusa, Kaori; Tanaka, Toshihisa

    2017-01-01

    A method of reconstructing perceived or imagined music by analyzing brain activity has not yet been established. As a first step toward developing such a method, we aimed to reconstruct the imagery of rhythm, which is one element of music. It has been reported that a periodic electroencephalogram (EEG) response is elicited while a human imagines a binary or ternary meter on a musical beat. However, it is not clear whether or not brain activity synchronizes with fully imagined beat and meter without auditory stimuli. To investigate neural entrainment to imagined rhythm during auditory imagery of beat and meter, we recorded EEG while nine participants (eight males and one female) imagined three types of rhythm without auditory stimuli but with visual timing, and then we analyzed the amplitude spectra of the EEG. We also recorded EEG while the participants only gazed at the visual timing as a control condition to confirm the visual effect. Furthermore, we derived features of the EEG using canonical correlation analysis (CCA) and conducted an experiment to individually classify the three types of imagined rhythm from the EEG. The results showed that classification accuracies exceeded the chance level in all participants. These results suggest that auditory imagery of meter elicits a periodic EEG response that changes at the imagined beat and meter frequency even in the fully imagined conditions. This study represents the first step toward the realization of a method for reconstructing the imagined music from brain activity.

  13. Effects of Methylphenidate (Ritalin) on Auditory Performance in Children with Attention and Auditory Processing Disorders.

    ERIC Educational Resources Information Center

    Tillery, Kim L.; Katz, Jack; Keller, Warren D.

    2000-01-01

    A double-blind, placebo-controlled study examined effects of methylphenidate (Ritalin) on auditory processing in 32 children with both attention deficit hyperactivity disorder and central auditory processing (CAP) disorder. Analyses revealed that Ritalin did not have a significant effect on any of the central auditory processing measures, although…

  14. Impact of language on development of auditory-visual speech perception.

    PubMed

    Sekiyama, Kaoru; Burnham, Denis

    2008-03-01

    The McGurk effect paradigm was used to examine the developmental onset of inter-language differences between Japanese and English in auditory-visual speech perception. Participants were asked to identify syllables in audiovisual (with congruent or discrepant auditory and visual components), audio-only, and video-only presentations at various signal-to-noise levels. In Experiment 1 with two groups of adults, native speakers of Japanese and native speakers of English, the results on both percent visually influenced responses and reaction time supported previous reports of a weaker visual influence for Japanese participants. In Experiment 2, an additional three age groups (6, 8, and 11 years) in each language group were tested. The results showed that the degree of visual influence was low and equivalent for Japanese and English language 6-year-olds, and increased over age for English language participants, especially between 6 and 8 years, but remained the same for Japanese participants. This may be related to the fact that English language adults and older children processed visual speech information relatively faster than auditory information whereas no such inter-modal differences were found in the Japanese participants' reaction times.

  15. Degraded Auditory Processing in a Rat Model of Autism Limits the Speech Representation in Non-primary Auditory Cortex

    PubMed Central

    Engineer, C.T.; Centanni, T.M.; Im, K.W.; Borland, M.S.; Moreno, N.A.; Carraway, R.S.; Wilson, L.G.; Kilgard, M.P.

    2014-01-01

    Although individuals with autism are known to have significant communication problems, the cellular mechanisms responsible for impaired communication are poorly understood. Valproic acid (VPA) is an anticonvulsant that is a known risk factor for autism in prenatally exposed children. Prenatal VPA exposure in rats causes numerous neural and behavioral abnormalities that mimic autism. We predicted that VPA exposure may lead to auditory processing impairments which may contribute to the deficits in communication observed in individuals with autism. In this study, we document auditory cortex responses in rats prenatally exposed to VPA. We recorded local field potentials and multiunit responses to speech sounds in primary auditory cortex, anterior auditory field, ventral auditory field. and posterior auditory field in VPA exposed and control rats. Prenatal VPA exposure severely degrades the precise spatiotemporal patterns evoked by speech sounds in secondary, but not primary auditory cortex. This result parallels findings in humans and suggests that secondary auditory fields may be more sensitive to environmental disturbances and may provide insight into possible mechanisms related to auditory deficits in individuals with autism. PMID:24639033

  16. Non-Linguistic Auditory Processing and Working Memory Update in Pre-School Children Who Stutter: An Electrophysiological Study

    PubMed Central

    Kaganovich, Natalya; Wray, Amanda Hampton; Weber-Fox, Christine

    2010-01-01

    Non-linguistic auditory processing and working memory update were examined with event-related potentials (ERPs) in 18 children who stutter (CWS) and 18 children who do not stutter (CWNS). Children heard frequent 1kHz tones interspersed with rare 2kHz tones. The two groups did not differ on any measure of the P1 and N1 components, strongly suggesting that early auditory processing of pure tones is unimpaired in CWS. However, as a group, only CWNS exhibited a P3 component to rare tones suggesting that developmental stuttering may be associated with a less efficient attentional allocation and working memory update in response to auditory change. PMID:21038162

  17. The importance of individual frequencies of endogenous brain oscillations for auditory cognition - A short review.

    PubMed

    Baltus, Alina; Herrmann, Christoph Siegfried

    2016-06-01

    Oscillatory EEG activity in the human brain with frequencies in the gamma range (approx. 30-80Hz) is known to be relevant for a large number of cognitive processes. Interestingly, each subject reveals an individual frequency of the auditory gamma-band response (GBR) that coincides with the peak in the auditory steady state response (ASSR). A common resonance frequency of auditory cortex seems to underlie both the individual frequency of the GBR and the peak of the ASSR. This review sheds light on the functional role of oscillatory gamma activity for auditory processing. For successful processing, the auditory system has to track changes in auditory input over time and store information about past events in memory which allows the construction of auditory objects. Recent findings support the idea of gamma oscillations being involved in the partitioning of auditory input into discrete samples to facilitate higher order processing. We review experiments that seem to suggest that inter-individual differences in the resonance frequency are behaviorally relevant for gap detection and speech processing. A possible application of these resonance frequencies for brain computer interfaces is illustrated with regard to optimized individual presentation rates for auditory input to correspond with endogenous oscillatory activity. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The effects of context and musical training on auditory temporal-interval discrimination.

    PubMed

    Banai, Karen; Fisher, Shirley; Ganot, Ron

    2012-02-01

    Non sensory factors such as stimulus context and musical experience are known to influence auditory frequency discrimination, but whether the context effect extends to auditory temporal processing remains unknown. Whether individual experiences such as musical training alter the context effect is also unknown. The goal of the present study was therefore to investigate the effects of stimulus context and musical experience on auditory temporal-interval discrimination. In experiment 1, temporal-interval discrimination was compared between fixed context conditions in which a single base temporal interval was presented repeatedly across all trials and variable context conditions in which one of two base intervals was randomly presented on each trial. Discrimination was significantly better in the fixed than in the variable context conditions. In experiment 2 temporal discrimination thresholds of musicians and non-musicians were compared across 3 conditions: a fixed context condition in which the target interval was presented repeatedly across trials, and two variable context conditions differing in the frequencies used for the tones marking the temporal intervals. Musicians outperformed non-musicians on all 3 conditions, but the effects of context were similar for the two groups. Overall, it appears that, like frequency discrimination, temporal-interval discrimination benefits from having a fixed reference. Musical experience, while improving performance, did not alter the context effect, suggesting that improved discrimination skills among musicians are probably not an outcome of more sensitive contextual facilitation or predictive coding mechanisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Brainstem auditory evoked potentials with the use of acoustic clicks and complex verbal sounds in young adults with learning disabilities.

    PubMed

    Kouni, Sophia N; Giannopoulos, Sotirios; Ziavra, Nausika; Koutsojannis, Constantinos

    2013-01-01

    ). In the subgroup consisting of 10 patients suffering from 'other learning disabilities' and who were characterized as with 'light' dyslexia according to dyslexia tests, no significant delays were found in peak latencies A and C and interpeak latencies A-C in comparison with the control group. Acoustic representation of a speech sound and, in particular, the disyllabic word 'baba' was found to be abnormal, as low as the auditory brainstem. Because ABRs mature in early life, this can help to identify subjects with acoustically based learning problems and apply early intervention, rehabilitation, and treatment. Further studies and more experience with more patients and pathological conditions such as plasticity of the auditory system, cochlear implants, hearing aids, presbycusis, or acoustic neuropathy are necessary until this type of testing is ready for clinical application. © 2013 Elsevier Inc. All rights reserved.

  20. Gravitoinertial force magnitude and direction influence head-centric auditory localization

    NASA Technical Reports Server (NTRS)

    DiZio, P.; Held, R.; Lackner, J. R.; Shinn-Cunningham, B.; Durlach, N.

    2001-01-01

    We measured the influence of gravitoinertial force (GIF) magnitude and direction on head-centric auditory localization to determine whether a true audiogravic illusion exists. In experiment 1, supine subjects adjusted computer-generated dichotic stimuli until they heard a fused sound straight ahead in the midsagittal plane of the head under a variety of GIF conditions generated in a slow-rotation room. The dichotic stimuli were constructed by convolving broadband noise with head-related transfer function pairs that model the acoustic filtering at the listener's ears. These stimuli give rise to the perception of externally localized sounds. When the GIF was increased from 1 to 2 g and rotated 60 degrees rightward relative to the head and body, subjects on average set an acoustic stimulus 7.3 degrees right of their head's median plane to hear it as straight ahead. When the GIF was doubled and rotated 60 degrees leftward, subjects set the sound 6.8 degrees leftward of baseline values to hear it as centered. In experiment 2, increasing the GIF in the median plane of the supine body to 2 g did not influence auditory localization. In experiment 3, tilts up to 75 degrees of the supine body relative to the normal 1 g GIF led to small shifts, 1--2 degrees, of auditory setting toward the up ear to maintain a head-centered sound localization. These results show that head-centric auditory localization is affected by azimuthal rotation and increase in magnitude of the GIF and demonstrate that an audiogravic illusion exists. Sound localization is shifted in the direction opposite GIF rotation by an amount related to the magnitude of the GIF and its angular deviation relative to the median plane.

  1. Rodent Auditory Perception: Critical Band Limitations and Plasticity

    PubMed Central

    King, Julia; Insanally, Michele; Jin, Menghan; Martins, Ana Raquel O.; D'amour, James A.; Froemke, Robert C.

    2015-01-01

    What do animals hear? While it remains challenging to adequately assess sensory perception in animal models, it is important to determine perceptual abilities in model systems to understand how physiological processes and plasticity relate to perception, learning, and cognition. Here we discuss hearing in rodents, reviewing previous and recent behavioral experiments querying acoustic perception in rats and mice, and examining the relation between behavioral data and electrophysiological recordings from the central auditory system. We focus on measurements of critical bands, which are psychoacoustic phenomena that seem to have a neural basis in the functional organization of the cochlea and the inferior colliculus. We then discuss how behavioral training, brain stimulation, and neuropathology impact auditory processing and perception. PMID:25827498

  2. Chronic fluoxetine dissociates contextual from auditory fear memory.

    PubMed

    Sanders, Jeff; Mayford, Mark

    2016-10-06

    Fluoxetine is a medication used to treat Major Depressive Disorder and other psychiatric conditions. These experiments studied the effects of chronic fluoxetine treatment on the contextual versus auditory fear memory of mice. We found that chronic fluoxetine treatment of adult mice impaired their contextual fear memory, but spared auditory fear memory. Hippocampal perineuronal nets, which are involved in contextual fear memory plasticity, were unaltered by fluoxetine treatment. These data point to a selective inability to form contextual fear memory as a result of fluoxetine treatment, and they suggest that a blunting of hippocampal-mediated aversive memory may be a therapeutic action for this medication. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Evolutionary adaptations for the temporal processing of natural sounds by the anuran peripheral auditory system

    PubMed Central

    Schrode, Katrina M.; Bee, Mark A.

    2015-01-01

    ABSTRACT Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male–male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery. PMID:25617467

  4. Early Sign Language Experience Goes Along with an Increased Cross-modal Gain for Affective Prosodic Recognition in Congenitally Deaf CI Users.

    PubMed

    Fengler, Ineke; Delfau, Pia-Céline; Röder, Brigitte

    2018-04-01

    It is yet unclear whether congenitally deaf cochlear implant (CD CI) users' visual and multisensory emotion perception is influenced by their history in sign language acquisition. We hypothesized that early-signing CD CI users, relative to late-signing CD CI users and hearing, non-signing controls, show better facial expression recognition and rely more on the facial cues of audio-visual emotional stimuli. Two groups of young adult CD CI users-early signers (ES CI users; n = 11) and late signers (LS CI users; n = 10)-and a group of hearing, non-signing, age-matched controls (n = 12) performed an emotion recognition task with auditory, visual, and cross-modal emotionally congruent and incongruent speech stimuli. On different trials, participants categorized either the facial or the vocal expressions. The ES CI users more accurately recognized affective prosody than the LS CI users in the presence of congruent facial information. Furthermore, the ES CI users, but not the LS CI users, gained more than the controls from congruent visual stimuli when recognizing affective prosody. Both CI groups performed overall worse than the controls in recognizing affective prosody. These results suggest that early sign language experience affects multisensory emotion perception in CD CI users.

  5. Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude

    PubMed Central

    Halder, Sebastian; Hammer, Eva Maria; Kleih, Sonja Claudia; Bogdan, Martin; Rosenstiel, Wolfgang; Birbaumer, Niels; Kübler, Andrea

    2013-01-01

    Objective Brain-computer interfaces (BCIs) provide a non-muscular communication channel for patients with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)) or otherwise motor impaired people and are also used for motor rehabilitation in chronic stroke. Differences in the ability to use a BCI vary from person to person and from session to session. A reliable predictor of aptitude would allow for the selection of suitable BCI paradigms. For this reason, we investigated whether P300 BCI aptitude could be predicted from a short experiment with a standard auditory oddball. Methods Forty healthy participants performed an electroencephalography (EEG) based visual and auditory P300-BCI spelling task in a single session. In addition, prior to each session an auditory oddball was presented. Features extracted from the auditory oddball were analyzed with respect to predictive power for BCI aptitude. Results Correlation between auditory oddball response and P300 BCI accuracy revealed a strong relationship between accuracy and N2 amplitude and the amplitude of a late ERP component between 400 and 600 ms. Interestingly, the P3 amplitude of the auditory oddball response was not correlated with accuracy. Conclusions Event-related potentials recorded during a standard auditory oddball session moderately predict aptitude in an audiory and highly in a visual P300 BCI. The predictor will allow for faster paradigm selection. Significance Our method will reduce strain on patients because unsuccessful training may be avoided, provided the results can be generalized to the patient population. PMID:23457444

  6. Experience-dependent enhancement of pitch-specific responses in the auditory cortex is limited to acceleration rates in normal voice range

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Suresh, Chandan H.

    2015-01-01

    The aim of this study is to determine how pitch acceleration rates within and outside the normal pitch range may influence latency and amplitude of cortical pitch-specific responses (CPR) as a function of language experience (Chinese, English). Responses were elicited from a set of four pitch stimuli chosen to represent a range of acceleration rates (two each inside and outside the normal voice range) imposed on the high rising Mandarin Tone 2. Pitch-relevant neural activity, as reflected in the latency and amplitude of scalp-recorded CPR components, varied depending on language-experience and pitch acceleration of dynamic, time-varying pitch contours. Peak latencies of CPR components were shorter in the Chinese than the English group across stimuli. Chinese participants showed greater amplitude than English for CPR components at both frontocentral and temporal electrode sites in response to pitch contours with acceleration rates inside the normal voice pitch range as compared to pitch contours with acceleration rates that exceed the normal range. As indexed by CPR amplitude at the temporal sites, a rightward asymmetry was observed for the Chinese group only. Only over the right temporal site was amplitude greater in the Chinese group relative to the English. These findings may suggest that the neural mechanism(s) underlying processing of pitch in the right auditory cortex reflect experience-dependent modulation of sensitivity to acceleration in just those rising pitch contours that fall within the bounds of one’s native language. More broadly, enhancement of native pitch stimuli and stronger rightward asymmetry of CPR components in the Chinese group is consistent with the notion that long-term experience shapes adaptive, distributed hierarchical pitch processing in the auditory cortex, and reflects an interaction with higher-order, extrasensory processes beyond the sensory memory trace. PMID:26166727

  7. Concerns of Teacher Candidates in an Early Field Experience

    ERIC Educational Resources Information Center

    Chang, Sau Hou

    2009-01-01

    The present study examined the concerns of teacher candidates in an early field experience. Thirty-five teacher candidates completed the Teacher Concerns Checklist (TCC, Fuller & Borich, 2000) at the beginning, middle and end of their early field experiences. Results showed that teacher candidates ranked impact as the highest concern, self as…

  8. [Auditory training in workshops: group therapy option].

    PubMed

    Santos, Juliana Nunes; do Couto, Isabel Cristina Plais; Amorim, Raquel Martins da Costa

    2006-01-01

    auditory training in groups. to verify in a group of individuals with mental retardation the efficacy of auditory training in a workshop environment. METHOD a longitudinal prospective study with 13 mentally retarded individuals from the Associação de Pais e Amigos do Excepcional (APAE) of Congonhas divided in two groups: case (n=5) and control (n=8) and who were submitted to ten auditory training sessions after verifying the integrity of the peripheral auditory system through evoked otoacoustic emissions. Participants were evaluated using a specific protocol concerning the auditory abilities (sound localization, auditory identification, memory, sequencing, auditory discrimination and auditory comprehension) at the beginning and at the end of the project. Data (entering, processing and analyses) were analyzed by the Epi Info 6.04 software. the groups did not differ regarding aspects of age (mean = 23.6 years) and gender (40% male). In the first evaluation both groups presented similar performances. In the final evaluation an improvement in the auditory abilities was observed for the individuals in the case group. When comparing the mean number of correct answers obtained by both groups in the first and final evaluations, a statistically significant result was obtained for sound localization (p=0.02), auditory sequencing (p=0.006) and auditory discrimination (p=0.03). group auditory training demonstrated to be effective in individuals with mental retardation, observing an improvement in the auditory abilities. More studies, with a larger number of participants, are necessary in order to confirm the findings of the present research. These results will help public health professionals to reanalyze the theory models used for therapy, so that they can use specific methods according to individual needs, such as auditory training workshops.

  9. Laterality of Basic Auditory Perception

    PubMed Central

    Sininger, Yvonne S.; Bhatara, Anjali

    2010-01-01

    Laterality (left-right ear differences) of auditory processing was assessed using basic auditory skills: 1) gap detection 2) frequency discrimination and 3) intensity discrimination. Stimuli included tones (500, 1000 and 4000 Hz) and wide-band noise presented monaurally to each ear of typical adult listeners. The hypothesis tested was: processing of tonal stimuli would be enhanced by left ear (LE) stimulation and noise by right ear (RE) presentations. To investigate the limits of laterality by 1) spectral width, a narrow band noise (NBN) of 450 Hz bandwidth was evaluated using intensity discrimination and 2) stimulus duration, 200, 500 and 1000 ms duration tones were evaluated using frequency discrimination. Results A left ear advantage (LEA) was demonstrated with tonal stimuli in all experiments but an expected REA for noise stimuli was not found. The NBN stimulus demonstrated no LEA and was characterized as a noise. No change in laterality was found with changes in stimulus durations. The LEA for tonal stimuli is felt to be due to more direct connections between the left ear and the right auditory cortex which has been shown to be primary for spectral analysis and tonal processing. The lack of a REA for noise stimuli is unexplained. Sex differences in laterality for noise stimuli were noted but were not statistically significant. This study did establish a subtle but clear pattern of LEA for processing of tonal stimuli. PMID:22385138

  10. Equivalent mismatch negativity deficits across deviant types in early illness schizophrenia-spectrum patients.

    PubMed

    Hay, Rachel A; Roach, Brian J; Srihari, Vinod H; Woods, Scott W; Ford, Judith M; Mathalon, Daniel H

    2015-02-01

    Neurophysiological abnormalities in auditory deviance processing, as reflected by the mismatch negativity (MMN), have been observed across the course of schizophrenia. Studies in early schizophrenia patients have typically shown varying degrees of MMN amplitude reduction for different deviant types, suggesting that different auditory deviants are uniquely processed and may be differentially affected by duration of illness. To explore this further, we examined the MMN response to 4 auditory deviants (duration, frequency, duration+frequency "double deviant", and intensity) in 24 schizophrenia-spectrum patients early in the illness (ESZ) and 21 healthy controls. ESZ showed significantly reduced MMN relative to healthy controls for all deviant types (p<0.05), with no significant interaction with deviant type. No correlations with clinical symptoms were present (all ps>0.05). These findings support the conclusion that neurophysiological mechanisms underlying processing of auditory deviants are compromised early in illness, and these deficiencies are not specific to the type of deviant presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Call sign intelligibility improvement using a spatial auditory display

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.

    1994-01-01

    A spatial auditory display was designed for separating the multiple communication channels usually heard over one ear to different virtual auditory positions. The single 19 foot rack mount device utilizes digital filtering algorithms to separate up to four communication channels. The filters use four different binaural transfer functions, synthesized from actual outer ear measurements, to impose localization cues on the incoming sound. Hardware design features include 'fail-safe' operation in the case of power loss, and microphone/headset interfaces to the mobile launch communication system in use at KSC. An experiment designed to verify the intelligibility advantage of the display used 130 different call signs taken from the communications protocol used at NASA KSC. A 6 to 7 dB intelligibility advantage was found when multiple channels were spatially displayed, compared to monaural listening. The findings suggest that the use of a spatial auditory display could enhance both occupational and operational safety and efficiency of NASA operations.

  12. Modeling Deficits from Early Auditory Information Processing to Psychosocial Functioning in Schizophrenia

    PubMed Central

    Thomas, Michael L.; Green, Michael F.; Hellemann, Gerhard; Sugar, Catherine A.; Tarasenko, Melissa; Calkins, Monica E.; Greenwood, Tiffany A.; Gur, Raquel E.; Gur, Ruben C.; Lazzeroni, Laura C.; Nuechterlein, Keith H.; Radant, Allen D.; Seidman, Larry J.; Shiluk, Alexandra L.; Siever, Larry J.; Silverman, Jeremy M.; Sprock, Joyce; Stone, William S.; Swerdlow, Neal R.; Tsuang, Debby W.; Tsuang, Ming T.; Turetsky, Bruce I.; Braff, David L.; Light, Gregory A.

    2017-01-01

    Importance Neurophysiological measures of early auditory information processing (EAP) are used as endophenotypes in genomic studies and biomarkers in clinical intervention studies. Research in schizophrenia has established correlations among measures of EAP, cognition, clinical symptoms, and functional outcome. Clarifying these relationships by determining the pathways through which deficits in EAP affect functioning would suggest when and where to therapeutically intervene. Objective We sought to characterize the pathways from EAP to outcome and to estimate the extent to which enhancement of basic information processing might improve both cognition and psychosocial functioning in schizophrenia. Design Cross-sectional data were analyzed using structural equation modeling to examine the associations between EAP, cognition, negative symptoms, and functional outcome. Setting Participants were recruited from the community at five geographically distributed laboratories as part of the Consortium on the Genetics of Schizophrenia-2 (COGS-2). Participants This well-characterized cohort of schizophrenia patients (N = 1,415) underwent EAP and cognitive testing as well as thorough clinical and functional assessment. Main Outcome and Measures EAP was measured by mismatch negativity, P3a, and reorienting negativity. Cognition was measured by the Letter Number Span test and scales from the California Verbal Learning Test - Second Edition, the Wechsler Memory Scale Third Edition, and the Penn Computerized Neurocognitive Battery. Negative symptoms were measured by the Scale for the Assessment of Negative Symptoms. Functional outcome was measured by the Role Functioning Scale. Results EAP had a direct effect on cognition (β = 0.37, p < .001), cognition had a direct effect on negative symptoms (β = −0.16, p < .001), and both cognition (β = 0.26, p < .001) and experiential negative symptoms (β = −0.75, p < .001) had direct effects on functional outcome. Overall, EAP had a

  13. Electrophysiological evidence for altered visual, but not auditory, selective attention in adolescent cochlear implant users.

    PubMed

    Harris, Jill; Kamke, Marc R

    2014-11-01

    Selective attention fundamentally alters sensory perception, but little is known about the functioning of attention in individuals who use a cochlear implant. This study aimed to investigate visual and auditory attention in adolescent cochlear implant users. Event related potentials were used to investigate the influence of attention on visual and auditory evoked potentials in six cochlear implant users and age-matched normally-hearing children. Participants were presented with streams of alternating visual and auditory stimuli in an oddball paradigm: each modality contained frequently presented 'standard' and infrequent 'deviant' stimuli. Across different blocks attention was directed to either the visual or auditory modality. For the visual stimuli attention boosted the early N1 potential, but this effect was larger for cochlear implant users. Attention was also associated with a later P3 component for the visual deviant stimulus, but there was no difference between groups in the later attention effects. For the auditory stimuli, attention was associated with a decrease in N1 latency as well as a robust P3 for the deviant tone. Importantly, there was no difference between groups in these auditory attention effects. The results suggest that basic mechanisms of auditory attention are largely normal in children who are proficient cochlear implant users, but that visual attention may be altered. Ultimately, a better understanding of how selective attention influences sensory perception in cochlear implant users will be important for optimising habilitation strategies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Familiarity with a vocal category biases the compartmental expression of Arc/Arg3.1 in core auditory cortex.

    PubMed

    Ivanova, Tamara N; Gross, Christina; Mappus, Rudolph C; Kwon, Yong Jun; Bassell, Gary J; Liu, Robert C

    2017-12-01

    Learning to recognize a stimulus category requires experience with its many natural variations. However, the mechanisms that allow a category's sensorineural representation to be updated after experiencing new exemplars are not well understood, particularly at the molecular level. Here we investigate how a natural vocal category induces expression in the auditory system of a key synaptic plasticity effector immediate early gene, Arc/Arg3.1 , which is required for memory consolidation. We use the ultrasonic communication system between mouse pups and adult females to study whether prior familiarity with pup vocalizations alters how Arc is engaged in the core auditory cortex after playback of novel exemplars from the pup vocal category. A computerized, 3D surface-assisted cellular compartmental analysis, validated against manual cell counts, demonstrates significant changes in the recruitment of neurons expressing Arc in pup-experienced animals (mothers and virgin females "cocaring" for pups) compared with pup-inexperienced animals (pup-naïve virgins), especially when listening to more familiar, natural calls compared to less familiar but similarly recognized tonal model calls. Our data support the hypothesis that the kinetics of Arc induction to refine cortical representations of sensory categories is sensitive to the familiarity of the sensory experience. © 2017 Ivanova et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Auditory spatial processing in Alzheimer’s disease

    PubMed Central

    Golden, Hannah L.; Nicholas, Jennifer M.; Yong, Keir X. X.; Downey, Laura E.; Schott, Jonathan M.; Mummery, Catherine J.; Crutch, Sebastian J.

    2015-01-01

    The location and motion of sounds in space are important cues for encoding the auditory world. Spatial processing is a core component of auditory scene analysis, a cognitively demanding function that is vulnerable in Alzheimer’s disease. Here we designed a novel neuropsychological battery based on a virtual space paradigm to assess auditory spatial processing in patient cohorts with clinically typical Alzheimer’s disease (n = 20) and its major variant syndrome, posterior cortical atrophy (n = 12) in relation to healthy older controls (n = 26). We assessed three dimensions of auditory spatial function: externalized versus non-externalized sound discrimination, moving versus stationary sound discrimination and stationary auditory spatial position discrimination, together with non-spatial auditory and visual spatial control tasks. Neuroanatomical correlates of auditory spatial processing were assessed using voxel-based morphometry. Relative to healthy older controls, both patient groups exhibited impairments in detection of auditory motion, and stationary sound position discrimination. The posterior cortical atrophy group showed greater impairment for auditory motion processing and the processing of a non-spatial control complex auditory property (timbre) than the typical Alzheimer’s disease group. Voxel-based morphometry in the patient cohort revealed grey matter correlates of auditory motion detection and spatial position discrimination in right inferior parietal cortex and precuneus, respectively. These findings delineate auditory spatial processing deficits in typical and posterior Alzheimer’s disease phenotypes that are related to posterior cortical regions involved in both syndromic variants and modulated by the syndromic profile of brain degeneration. Auditory spatial deficits contribute to impaired spatial awareness in Alzheimer’s disease and may constitute a novel perceptual model for probing brain network disintegration across the Alzheimer

  16. Cortical auditory evoked potentials in the assessment of auditory neuropathy: two case studies.

    PubMed

    Pearce, Wendy; Golding, Maryanne; Dillon, Harvey

    2007-05-01

    Infants with auditory neuropathy and possible hearing impairment are being identified at very young ages through the implementation of hearing screening programs. The diagnosis is commonly based on evidence of normal cochlear function but abnormal brainstem function. This lack of normal brainstem function is highly problematic when prescribing amplification in young infants because prescriptive formulae require the input of hearing thresholds that are normally estimated from auditory brainstem responses to tonal stimuli. Without this information, there is great uncertainty surrounding the final fitting. Cortical auditory evoked potentials may, however, still be evident and reliably recorded to speech stimuli presented at conversational levels. The case studies of two infants are presented that demonstrate how these higher order electrophysiological responses may be utilized in the audiological management of some infants with auditory neuropathy.

  17. Rapid tuning shifts in human auditory cortex enhance speech intelligibility

    PubMed Central

    Holdgraf, Christopher R.; de Heer, Wendy; Pasley, Brian; Rieger, Jochem; Crone, Nathan; Lin, Jack J.; Knight, Robert T.; Theunissen, Frédéric E.

    2016-01-01

    Experience shapes our perception of the world on a moment-to-moment basis. This robust perceptual effect of experience parallels a change in the neural representation of stimulus features, though the nature of this representation and its plasticity are not well-understood. Spectrotemporal receptive field (STRF) mapping describes the neural response to acoustic features, and has been used to study contextual effects on auditory receptive fields in animal models. We performed a STRF plasticity analysis on electrophysiological data from recordings obtained directly from the human auditory cortex. Here, we report rapid, automatic plasticity of the spectrotemporal response of recorded neural ensembles, driven by previous experience with acoustic and linguistic information, and with a neurophysiological effect in the sub-second range. This plasticity reflects increased sensitivity to spectrotemporal features, enhancing the extraction of more speech-like features from a degraded stimulus and providing the physiological basis for the observed ‘perceptual enhancement' in understanding speech. PMID:27996965

  18. The modality effect of ego depletion: Auditory task modality reduces ego depletion.

    PubMed

    Li, Qiong; Wang, Zhenhong

    2016-08-01

    An initial act of self-control that impairs subsequent acts of self-control is called ego depletion. The ego depletion phenomenon has been observed consistently. The modality effect refers to the effect of the presentation modality on the processing of stimuli. The modality effect was also robustly found in a large body of research. However, no study to date has examined the modality effects of ego depletion. This issue was addressed in the current study. In Experiment 1, after all participants completed a handgrip task, one group's participants completed a visual attention regulation task and the other group's participants completed an auditory attention regulation task, and then all participants again completed a handgrip task. The ego depletion phenomenon was observed in both the visual and the auditory attention regulation task. Moreover, participants who completed the visual task performed worse on the handgrip task than participants who completed the auditory task, which indicated that there was high ego depletion in the visual task condition. In Experiment 2, participants completed an initial task that either did or did not deplete self-control resources, and then they completed a second visual or auditory attention control task. The results indicated that depleted participants performed better on the auditory attention control task than the visual attention control task. These findings suggest that altering task modality may reduce ego depletion. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  19. Head-Up Auditory Displays for Traffic Collision Avoidance System Advisories: A Preliminary Investigation

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.

    1993-01-01

    The advantage of a head-up auditory display was evaluated in a preliminary experiment designed to measure and compare the acquisition time for capturing visual targets under two auditory conditions: standard one-earpiece presentation and two-earpiece three-dimensional (3D) audio presentation. Twelve commercial airline crews were tested under full mission simulation conditions at the NASA-Ames Man-Vehicle Systems Research Facility advanced concepts flight simulator. Scenario software generated visual targets corresponding to aircraft that would activate a traffic collision avoidance system (TCAS) aural advisory; the spatial auditory position was linked to the visual position with 3D audio presentation. Results showed that crew members using a 3D auditory display acquired targets approximately 2.2 s faster than did crew members who used one-earpiece head- sets, but there was no significant difference in the number of targets acquired.

  20. Procedures for central auditory processing screening in schoolchildren.

    PubMed

    Carvalho, Nádia Giulian de; Ubiali, Thalita; Amaral, Maria Isabel Ramos do; Santos, Maria Francisca Colella

    2018-03-22

    Central auditory processing screening in schoolchildren has led to debates in literature, both regarding the protocol to be used and the importance of actions aimed at prevention and promotion of auditory health. Defining effective screening procedures for central auditory processing is a challenge in Audiology. This study aimed to analyze the scientific research on central auditory processing screening and discuss the effectiveness of the procedures utilized. A search was performed in the SciELO and PUBMed databases by two researchers. The descriptors used in Portuguese and English were: auditory processing, screening, hearing, auditory perception, children, auditory tests and their respective terms in Portuguese. original articles involving schoolchildren, auditory screening of central auditory skills and articles in Portuguese or English. studies with adult and/or neonatal populations, peripheral auditory screening only, and duplicate articles. After applying the described criteria, 11 articles were included. At the international level, central auditory processing screening methods used were: screening test for auditory processing disorder and its revised version, screening test for auditory processing, scale of auditory behaviors, children's auditory performance scale and Feather Squadron. In the Brazilian scenario, the procedures used were the simplified auditory processing assessment and Zaidan's battery of tests. At the international level, the screening test for auditory processing and Feather Squadron batteries stand out as the most comprehensive evaluation of hearing skills. At the national level, there is a paucity of studies that use methods evaluating more than four skills, and are normalized by age group. The use of simplified auditory processing assessment and questionnaires can be complementary in the search for an easy access and low-cost alternative in the auditory screening of Brazilian schoolchildren. Interactive tools should be proposed, that

  1. [Incidence of hypoacusia secondary to hyperbilirubinaemia in a universal neonatal auditory screening programme based on otoacoustic emissions and evoked auditory potentials].

    PubMed

    Núñez-Batalla, Faustino; Carro-Fernández, Pilar; Antuña-León, María Eva; González-Trelles, Teresa

    2008-03-01

    Hyperbilirubinaemia is a neonatal risk factor that has been proved to be associated with sensorineural hearing loss. A high concentration of unconjugated bilirubin place newborn children at risk of suffering toxic effects, including hypoacusia. Review of the newborn screening results with a diagnosis of pathological hyperbilirubinaemia as part of a hearing-loss early detection protocol in the general population based on otoemissions and evoked potentials. Retrospective study of 21 590 newborn children screened between 2002 and 2006. The selection criteria for defining pathological hyperbilirubinaemia were bilirubin concentrations in excess of 14 mg/dL in pre-term infants and 20 mg/dL in full-term babies. The Universal Neonatal Hearing Screening Programme is a two-phase protocol in which all children are initially subjected to a transient otoacoustic emissions test (TOAE). Children presenting risk factors associated with auditory neuropathy were always given brainstem auditory evoked potentials (BAEP). The patients identified as having severe hyperbilirubinaemia in the neonatal period numbered 109 (0.5 %) and 96 of these (88.07 %) passed the otoacoustic emissions test at the first attempt and 13 (11.93 %) did not; 11 of the 13 children in whom the otoacoustic emissions test was repeated passed it successfully. The 2 children who failed to pass the otoacoustic emissions test has normal BAEP results; 3 (2.75 %) of the newborn infants who passed the TOAE test did not pass the BAEP. Hyperbilirubinaemia values previously considered safe may harm the hearing system and give rise to isolated problems in auditory processing without being associated with other signs of classical kernicterus. Our results show that hyperbilirubinaemia-related auditory neuropathy reveals changes over time in the audiometric outcomes.

  2. Development of kinesthetic-motor and auditory-motor representations in school-aged children.

    PubMed

    Kagerer, Florian A; Clark, Jane E

    2015-07-01

    In two experiments using a center-out task, we investigated kinesthetic-motor and auditory-motor integrations in 5- to 12-year-old children and young adults. In experiment 1, participants moved a pen on a digitizing tablet from a starting position to one of three targets (visuo-motor condition), and then to one of four targets without visual feedback of the movement. In both conditions, we found that with increasing age, the children moved faster and straighter, and became less variable in their feedforward control. Higher control demands for movements toward the contralateral side were reflected in longer movement times and decreased spatial accuracy across all age groups. When feedforward control relies predominantly on kinesthesia, 7- to 10-year-old children were more variable, indicating difficulties in switching between feedforward and feedback control efficiently during that age. An inverse age progression was found for directional endpoint error; larger errors increasing with age likely reflect stronger functional lateralization for the dominant hand. In experiment 2, the same visuo-motor condition was followed by an auditory-motor condition in which participants had to move to acoustic targets (either white band or one-third octave noise). Since in the latter directional cues come exclusively from transcallosally mediated interaural time differences, we hypothesized that auditory-motor representations would show age effects. The results did not show a clear age effect, suggesting that corpus callosum functionality is sufficient in children to allow them to form accurate auditory-motor maps already at a young age.

  3. Development of kinesthetic-motor and auditory-motor representations in school-aged children

    PubMed Central

    Clark, Jane E.

    2015-01-01

    In two experiments using a center-out task, we investigated kinesthetic-motor and auditory-motor integrations in 5- to 12-year-old children and young adults. In experiment 1, participants moved a pen on a digitizing tablet from a starting position to one of three targets (visuo-motor condition), and then to one of four targets without visual feedback of the movement. In both conditions, we found that with increasing age, the children moved faster and straighter, and became less variable in their feedforward control. Higher control demands for movements toward the contralateral side were reflected in longer movement times and decreased spatial accuracy across all age groups. When feedforward control relies predominantly on kinesthesia, 7- to 10-year-old children were more variable, indicating difficulties in switching between feedforward and feedback control efficiently during that age. An inverse age progression was found for directional endpoint error; larger errors increasing with age likely reflect stronger functional lateralization for the dominant hand. In experiment 2, the same visuo-motor condition was followed by an auditory-motor condition in which participants had to move to acoustic targets (either white band or one-third octave noise). Since in the latter directional cues come exclusively from transcallosally mediated interaural time differences, we hypothesized that auditory-motor representations would show age effects. The results did not show a clear age effect, suggesting that corpus callosum functionality is sufficient in children to allow them to form accurate auditory-motor maps already at a young age. PMID:25912609

  4. Spatial Cues Provided by Sound Improve Postural Stabilization: Evidence of a Spatial Auditory Map?

    PubMed Central

    Gandemer, Lennie; Parseihian, Gaetan; Kronland-Martinet, Richard; Bourdin, Christophe

    2017-01-01

    It has long been suggested that sound plays a role in the postural control process. Few studies however have explored sound and posture interactions. The present paper focuses on the specific impact of audition on posture, seeking to determine the attributes of sound that may be useful for postural purposes. We investigated the postural sway of young, healthy blindfolded subjects in two experiments involving different static auditory environments. In the first experiment, we compared effect on sway in a simple environment built from three static sound sources in two different rooms: a normal vs. an anechoic room. In the second experiment, the same auditory environment was enriched in various ways, including the ambisonics synthesis of a immersive environment, and subjects stood on two different surfaces: a foam vs. a normal surface. The results of both experiments suggest that the spatial cues provided by sound can be used to improve postural stability. The richer the auditory environment, the better this stabilization. We interpret these results by invoking the “spatial hearing map” theory: listeners build their own mental representation of their surrounding environment, which provides them with spatial landmarks that help them to better stabilize. PMID:28694770

  5. Neural coding strategies in auditory cortex.

    PubMed

    Wang, Xiaoqin

    2007-07-01

    In contrast to the visual system, the auditory system has longer subcortical pathways and more spiking synapses between the peripheral receptors and the cortex. This unique organization reflects the needs of the auditory system to extract behaviorally relevant information from a complex acoustic environment using strategies different from those used by other sensory systems. The neural representations of acoustic information in auditory cortex can be characterized by three types: (1) isomorphic (faithful) representations of acoustic structures; (2) non-isomorphic transformations of acoustic features and (3) transformations from acoustical to perceptual dimensions. The challenge facing auditory neurophysiologists is to understand the nature of the latter two transformations. In this article, I will review recent studies from our laboratory regarding temporal discharge patterns in auditory cortex of awake marmosets and cortical representations of time-varying signals. Findings from these studies show that (1) firing patterns of neurons in auditory cortex are dependent on stimulus optimality and context and (2) the auditory cortex forms internal representations of sounds that are no longer faithful replicas of their acoustic structures.

  6. Precedents of perceived social support: personality and early life experiences.

    PubMed

    Kitamura, T; Kijima, N; Watanabe, K; Takezaki, Y; Tanaka, E

    1999-12-01

    In order to examine the effects of personality and early life experiences on perceived social support, a total of 97 young Japanese women were investigated. Current interpersonal relationships were measured by an interview modified from Henderson et al.'s Interview Schedule for Social Interaction (ISSI). Personality was measured by Cloninger et al.'s Temperament and Character Inventory. Early life experiences at home and outside of home were also identified in the interview. The number of sources of perceived support was correlated with self-directness, while satisfaction with perceived support was correlated with novelty seeking and with low harm avoidance. No early life experiences--early loss of a parent, perceived parenting, childhood abuse experiences, experiences of being bullied and/or other life events--showed significant correlations with the number or satisfaction of supportive people. The quantity and quality of perception of social support differ in their link to personality, and perceived social support may, to some extent, be explainable in terms of personality.

  7. Reading Spoken Words: Orthographic Effects in Auditory Priming

    ERIC Educational Resources Information Center

    Chereau, Celine; Gaskell, M. Gareth; Dumay, Nicolas

    2007-01-01

    Three experiments examined the involvement of orthography in spoken word processing using a task--unimodal auditory priming with offset overlap--taken to reflect activation of prelexical representations. Two types of prime-target relationship were compared; both involved phonological overlap, but only one had a strong orthographic overlap (e.g.,…

  8. Cultural sensitivity or professional acculturation in early clinical experience?

    PubMed

    Whitford, David L; Hubail, Amal Redha

    2014-11-01

    This study aimed to explore the early clinical experience of medical students following the adaptation of an Early Patient Contact curriculum from a European culture in Ireland to an Arab culture in Bahrain. Medical students in Bahrain took part in an Early Patient Contact module modelled on a similar module from a partner medical school in Ireland. We used a qualitative approach employing thematic analysis of 54 student reflective logbooks. Particular attention was placed on reflections of cultural influences of experience in the course. Medical students undergoing this module received reported documented benefits of early clinical experience. However, students in Bahrain were exposed to cultural norms of the local Arab society including gender values, visiting the homes of strangers, language barriers and generous hospitality that led to additional challenges and learning for the medical students in acculturating to norms of the medical profession. Modules intended for curriculum adaptation between two cultures would be best served by a group of "core" learning outcomes with "secondary" outcomes culturally appropriate to each site. Within the context of the Arab culture, early clinical experience has the added benefit of allowing students to learn about both local and professional cultural norms, thereby facilitating integration of these two cultures.

  9. Modeling Auditory-Haptic Interface Cues from an Analog Multi-line Telephone

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Anderson, Mark R.; Bittner, Rachael M.

    2012-01-01

    The Western Electric Company produced a multi-line telephone during the 1940s-1970s using a six-button interface design that provided robust tactile, haptic and auditory cues regarding the "state" of the communication system. This multi-line telephone was used as a model for a trade study comparison of two interfaces: a touchscreen interface (iPad)) versus a pressure-sensitive strain gauge button interface (Phidget USB interface controllers). The experiment and its results are detailed in the authors' AES 133rd convention paper " Multimodal Information Management: Evaluation of Auditory and Haptic Cues for NextGen Communication Dispays". This Engineering Brief describes how the interface logic, visual indications, and auditory cues of the original telephone were synthesized using MAX/MSP, including the logic for line selection, line hold, and priority line activation.

  10. Background sounds contribute to spectrotemporal plasticity in primary auditory cortex.

    PubMed

    Moucha, Raluca; Pandya, Pritesh K; Engineer, Navzer D; Rathbun, Daniel L; Kilgard, Michael P

    2005-05-01

    The mammalian auditory system evolved to extract meaningful information from complex acoustic environments. Spectrotemporal selectivity of auditory neurons provides a potential mechanism to represent natural sounds. Experience-dependent plasticity mechanisms can remodel the spectrotemporal selectivity of neurons in primary auditory cortex (A1). Electrical stimulation of the cholinergic nucleus basalis (NB) enables plasticity in A1 that parallels natural learning and is specific to acoustic features associated with NB activity. In this study, we used NB stimulation to explore how cortical networks reorganize after experience with frequency-modulated (FM) sweeps, and how background stimuli contribute to spectrotemporal plasticity in rat auditory cortex. Pairing an 8-4 kHz FM sweep with NB stimulation 300 times per day for 20 days decreased tone thresholds, frequency selectivity, and response latency of A1 neurons in the region of the tonotopic map activated by the sound. In an attempt to modify neuronal response properties across all of A1 the same NB activation was paired in a second group of rats with five downward FM sweeps, each spanning a different octave. No changes in FM selectivity or receptive field (RF) structure were observed when the neural activation was distributed across the cortical surface. However, the addition of unpaired background sweeps of different rates or direction was sufficient to alter RF characteristics across the tonotopic map in a third group of rats. These results extend earlier observations that cortical neurons can develop stimulus specific plasticity and indicate that background conditions can strongly influence cortical plasticity.

  11. Background sounds contribute to spectrotemporal plasticity in primary auditory cortex

    PubMed Central

    Moucha, Raluca; Pandya, Pritesh K.; Engineer, Navzer D.; Rathbun, Daniel L.

    2010-01-01

    The mammalian auditory system evolved to extract meaningful information from complex acoustic environments. Spectrotemporal selectivity of auditory neurons provides a potential mechanism to represent natural sounds. Experience-dependent plasticity mechanisms can remodel the spectrotemporal selectivity of neurons in primary auditory cortex (A1). Electrical stimulation of the cholinergic nucleus basalis (NB) enables plasticity in A1 that parallels natural learning and is specific to acoustic features associated with NB activity. In this study, we used NB stimulation to explore how cortical networks reorganize after experience with frequency-modulated (FM) sweeps, and how background stimuli contribute to spectrotemporal plasticity in rat auditory cortex. Pairing an 8–4 kHz FM sweep with NB stimulation 300 times per day for 20 days decreased tone thresholds, frequency selectivity, and response latency of A1 neurons in the region of the tonotopic map activated by the sound. In an attempt to modify neuronal response properties across all of A1 the same NB activation was paired in a second group of rats with five downward FM sweeps, each spanning a different octave. No changes in FM selectivity or receptive field (RF) structure were observed when the neural activation was distributed across the cortical surface. However, the addition of unpaired background sweeps of different rates or direction was sufficient to alter RF characteristics across the tonotopic map in a third group of rats. These results extend earlier observations that cortical neurons can develop stimulus specific plasticity and indicate that background conditions can strongly influence cortical plasticity PMID:15616812

  12. Auditory verbal memory and psychosocial symptoms are related in children with idiopathic epilepsy.

    PubMed

    Schaffer, Yael; Ben Zeev, Bruria; Cohen, Roni; Shuper, Avinoam; Geva, Ronny

    2015-07-01

    Idiopathic epilepsies are considered to have relatively good prognoses and normal or near normal developmental outcomes. Nevertheless, accumulating studies demonstrate memory and psychosocial deficits in this population, and the prevalence, severity and relationships between these domains are still not well defined. We aimed to assess memory, psychosocial function, and the relationships between these two domains among children with idiopathic epilepsy syndromes using an extended neuropsychological battery and psychosocial questionnaires. Cognitive abilities, neuropsychological performance, and socioemotional behavior of 33 early adolescent children, diagnosed with idiopathic epilepsy, ages 9-14years, were assessed and compared with 27 age- and education-matched healthy controls. Compared to controls, patients with stabilized idiopathic epilepsy exhibited higher risks for short-term memory deficits (auditory verbal and visual) (p<0.0001), working memory deficits (p<0.003), auditory verbal long-term memory deficits (p<0.0021), and more frequent psychosocial symptoms (p<0.0001). The severity of auditory verbal memory deficits was related to severity of psychosocial symptoms among the children with epilepsy but not in the healthy controls. Results suggest that deficient auditory verbal memory may be compromising psychosocial functioning in children with idiopathic epilepsy, possibly underscoring that cognitive variables, such as auditory verbal memory, should be assessed and treated in this population to prevent secondary symptoms. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Neural preservation underlies speech improvement from auditory deprivation in young cochlear implant recipients.

    PubMed

    Feng, Gangyi; Ingvalson, Erin M; Grieco-Calub, Tina M; Roberts, Megan Y; Ryan, Maura E; Birmingham, Patrick; Burrowes, Delilah; Young, Nancy M; Wong, Patrick C M

    2018-01-30

    Although cochlear implantation enables some children to attain age-appropriate speech and language development, communicative delays persist in others, and outcomes are quite variable and difficult to predict, even for children implanted early in life. To understand the neurobiological basis of this variability, we used presurgical neural morphological data obtained from MRI of individual pediatric cochlear implant (CI) candidates implanted younger than 3.5 years to predict variability of their speech-perception improvement after surgery. We first compared neuroanatomical density and spatial pattern similarity of CI candidates to that of age-matched children with normal hearing, which allowed us to detail neuroanatomical networks that were either affected or unaffected by auditory deprivation. This information enables us to build machine-learning models to predict the individual children's speech development following CI. We found that regions of the brain that were unaffected by auditory deprivation, in particular the auditory association and cognitive brain regions, produced the highest accuracy, specificity, and sensitivity in patient classification and the most precise prediction results. These findings suggest that brain areas unaffected by auditory deprivation are critical to developing closer to typical speech outcomes. Moreover, the findings suggest that determination of the type of neural reorganization caused by auditory deprivation before implantation is valuable for predicting post-CI language outcomes for young children.

  14. Longitudinal auditory learning facilitates auditory cognition as revealed by microstate analysis.

    PubMed

    Giroud, Nathalie; Lemke, Ulrike; Reich, Philip; Matthes, Katarina L; Meyer, Martin

    2017-02-01

    The current study investigates cognitive processes as reflected in late auditory-evoked potentials as a function of longitudinal auditory learning. A normal hearing adult sample (n=15) performed an active oddball task at three consecutive time points (TPs) arranged at two week intervals, and during which EEG was recorded. The stimuli comprised of syllables consisting of a natural fricative (/sh/,/s/,/f/) embedded between two /a/ sounds, as well as morphed transitions of the two syllables that served as deviants. Perceptual and cognitive modulations as reflected in the onset and the mean global field power (GFP) of N2b- and P3b-related microstates across four weeks were investigated. We found that the onset of P3b-like microstates, but not N2b-like microstates decreased across TPs, more strongly for difficult deviants leading to similar onsets for difficult and easy stimuli after repeated exposure. The mean GFP of all N2b-like and P3b-like microstates increased more in spectrally strong deviants compared to weak deviants, leading to a distinctive activation for each stimulus after learning. Our results indicate that longitudinal training of auditory-related cognitive mechanisms such as stimulus categorization, attention and memory updating processes are an indispensable part of successful auditory learning. This suggests that future studies should focus on the potential benefits of cognitive processes in auditory training. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Auditory salience using natural soundscapes.

    PubMed

    Huang, Nicholas; Elhilali, Mounya

    2017-03-01

    Salience describes the phenomenon by which an object stands out from a scene. While its underlying processes are extensively studied in vision, mechanisms of auditory salience remain largely unknown. Previous studies have used well-controlled auditory scenes to shed light on some of the acoustic attributes that drive the salience of sound events. Unfortunately, the use of constrained stimuli in addition to a lack of well-established benchmarks of salience judgments hampers the development of comprehensive theories of sensory-driven auditory attention. The present study explores auditory salience in a set of dynamic natural scenes. A behavioral measure of salience is collected by having human volunteers listen to two concurrent scenes and indicate continuously which one attracts their attention. By using natural scenes, the study takes a data-driven rather than experimenter-driven approach to exploring the parameters of auditory salience. The findings indicate that the space of auditory salience is multidimensional (spanning loudness, pitch, spectral shape, as well as other acoustic attributes), nonlinear and highly context-dependent. Importantly, the results indicate that contextual information about the entire scene over both short and long scales needs to be considered in order to properly account for perceptual judgments of salience.

  16. Auditory hallucinations: nomenclature and classification.

    PubMed

    Blom, Jan Dirk; Sommer, Iris E C

    2010-03-01

    The literature on the possible neurobiologic correlates of auditory hallucinations is expanding rapidly. For an adequate understanding and linking of this emerging knowledge, a clear and uniform nomenclature is a prerequisite. The primary purpose of the present article is to provide an overview of the nomenclature and classification of auditory hallucinations. Relevant data were obtained from books, PubMed, Embase, and the Cochrane Library. The results are presented in the form of several classificatory arrangements of auditory hallucinations, governed by the principles of content, perceived source, perceived vivacity, relation to the sleep-wake cycle, and association with suspected neurobiologic correlates. This overview underscores the necessity to reappraise the concepts of auditory hallucinations developed during the era of classic psychiatry, to incorporate them into our current nomenclature and classification of auditory hallucinations, and to test them empirically with the aid of the structural and functional imaging techniques currently available.

  17. Binaural beats increase interhemispheric alpha-band coherence between auditory cortices.

    PubMed

    Solcà, Marco; Mottaz, Anaïs; Guggisberg, Adrian G

    2016-02-01

    Binaural beats (BBs) are an auditory illusion occurring when two tones of slightly different frequency are presented separately to each ear. BBs have been suggested to alter physiological and cognitive processes through synchronization of the brain hemispheres. To test this, we recorded electroencephalograms (EEG) at rest and while participants listened to BBs or a monaural control condition during which both tones were presented to both ears. We calculated for each condition the interhemispheric coherence, which expressed the synchrony between neural oscillations of both hemispheres. Compared to monaural beats and resting state, BBs enhanced interhemispheric coherence between the auditory cortices. Beat frequencies in the alpha (10 Hz) and theta (4 Hz) frequency range both increased interhemispheric coherence selectively at alpha frequencies. In a second experiment, we evaluated whether this coherence increase has a behavioral aftereffect on binaural listening. No effects were observed in a dichotic digit task performed immediately after BBs presentation. Our results suggest that BBs enhance alpha-band oscillation synchrony between the auditory cortices during auditory stimulation. This effect seems to reflect binaural integration rather than entrainment. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Direct Recordings of Pitch Responses from Human Auditory Cortex

    PubMed Central

    Griffiths, Timothy D.; Kumar, Sukhbinder; Sedley, William; Nourski, Kirill V.; Kawasaki, Hiroto; Oya, Hiroyuki; Patterson, Roy D.; Brugge, John F.; Howard, Matthew A.

    2010-01-01

    Summary Pitch is a fundamental percept with a complex relationship to the associated sound structure [1]. Pitch perception requires brain representation of both the structure of the stimulus and the pitch that is perceived. We describe direct recordings of local field potentials from human auditory cortex made while subjects perceived the transition between noise and a noise with a regular repetitive structure in the time domain at the millisecond level called regular-interval noise (RIN) [2]. RIN is perceived to have a pitch when the rate is above the lower limit of pitch [3], at approximately 30 Hz. Sustained time-locked responses are observed to be related to the temporal regularity of the stimulus, commonly emphasized as a relevant stimulus feature in models of pitch perception (e.g., [1]). Sustained oscillatory responses are also demonstrated in the high gamma range (80–120 Hz). The regularity responses occur irrespective of whether the response is associated with pitch perception. In contrast, the oscillatory responses only occur for pitch. Both responses occur in primary auditory cortex and adjacent nonprimary areas. The research suggests that two types of pitch-related activity occur in humans in early auditory cortex: time-locked neural correlates of stimulus regularity and an oscillatory response related to the pitch percept. PMID:20605456

  19. Auditory perception and the control of spatially coordinated action of deaf and hearing children.

    PubMed

    Savelsbergh, G J; Netelenbos, J B; Whiting, H T

    1991-03-01

    From birth onwards, auditory stimulation directs and intensifies visual orientation behaviour. In deaf children, by definition, auditory perception cannot take place and cannot, therefore, make a contribution to visual orientation to objects approaching from outside the initial field of view. In experiment 1, a difference in catching ability is demonstrated between deaf and hearing children (10-13 years of age) when the ball approached from the periphery or from outside the field of view. No differences in catching ability between the two groups occurred when the ball approached from within the field of view. A second experiment was conducted in order to determine if differences in catching ability between deaf and hearing children could be attributed to execution of slow orientating movements and/or slow reaction time as a result of the auditory loss. The deaf children showed slower reaction times. No differences were found in movement times between deaf and hearing children. Overall, the findings suggest that a lack of auditory stimulation during development can lead to deficiencies in the coordination of actions such as catching which are both spatially and temporally constrained.

  20. Stimulus-specific suppression preserves information in auditory short-term memory.

    PubMed

    Linke, Annika C; Vicente-Grabovetsky, Alejandro; Cusack, Rhodri

    2011-08-02

    Philosophers and scientists have puzzled for millennia over how perceptual information is stored in short-term memory. Some have suggested that early sensory representations are involved, but their precise role has remained unclear. The current study asks whether auditory cortex shows sustained frequency-specific activation while sounds are maintained in short-term memory using high-resolution functional MRI (fMRI). Investigating short-term memory representations within regions of human auditory cortex with fMRI has been difficult because of their small size and high anatomical variability between subjects. However, we overcame these constraints by using multivoxel pattern analysis. It clearly revealed frequency-specific activity during the encoding phase of a change detection task, and the degree of this frequency-specific activation was positively related to performance in the task. Although the sounds had to be maintained in memory, activity in auditory cortex was significantly suppressed. Strikingly, patterns of activity in this maintenance period correlated negatively with the patterns evoked by the same frequencies during encoding. Furthermore, individuals who used a rehearsal strategy to remember the sounds showed reduced frequency-specific suppression during the maintenance period. Although negative activations are often disregarded in fMRI research, our findings imply that decreases in blood oxygenation level-dependent response carry important stimulus-specific information and can be related to cognitive processes. We hypothesize that, during auditory change detection, frequency-specific suppression protects short-term memory representations from being overwritten by inhibiting the encoding of interfering sounds.