Science.gov

Sample records for early biofilm development

  1. Early microbial succession in re-developing dental biofilms in periodontal health and disease

    PubMed Central

    TELES, F.R.; TELES, R.P.; UZEL, N.G.; SONG, X.Q.; TORRESYAP, G.; SOCRANSKY, S.S.; HAFFAJEE, A.D.

    2011-01-01

    Objective To determine the order of bacterial species succession in re-developing supra and subgingival biofilms. Methods Supra and subgingival plaque samples were taken separately from 28 teeth in 38 healthy and 17 periodontitis subjects immediately after professional cleaning. Samples were taken again from 7 teeth in randomly selected quadrants after 1, 2, 4 and 7 days of no oral hygiene and analyzed using checkerboard DNA-DNA hybridization. % DNA probe counts were averaged within subjects at each time point. Ecological succession was determined using a modified moving window analysis. Results Succession in supragingival biofilms from periodontitis and health was similar. At 1 day, Streptococcus mitis and Neisseria mucosa showed increased proportions, followed by Capnocytophaga gingivalis, Eikenella corrodens, Veillonella parvula and Streptococcus oralis at 1–4 days. At 4–7 days, Campylobacter rectus, Campylobacter showae, Prevotella melaninogenica and Prevotella nigrescens became elevated. Subgingival plaque redevelopment was slower and very different from supragingival. Increased proportions were first observed for S. mitis, followed by V. parvula and C. gingivalis and, at 7 days by Capnocytophaga sputigena and P. nigrescens. No significant increase in proportions of periodontal pathogens was observed in any of the clinical groups or locations. Conclusions There is a defined order in bacterial species succession in early supra and subgingival biofilm re-development after professional cleaning. PMID:21895662

  2. Interkingdom cooperation between Candida albicans, Streptococcus oralis and Actinomyces oris modulates early biofilm development on denture material.

    PubMed

    Cavalcanti, Indira M G; Nobbs, Angela H; Ricomini-Filho, Antônio Pedro; Jenkinson, Howard F; Del Bel Cury, Altair A

    2016-04-01

    Candida-associated stomatitis affects up to 60% of denture wearers, and Candida albicans remains the most commonly isolated fungal species. The oral bacteria Actinomyces oris and Streptococcus oralis are abundant in early dental plaque. The aims of this study were to determine the effects of S. oralis and A. oris on the development of C. albicans biofilms on denture material. Resin discs were coated with saliva and at early (1.5 h) or later (24 h) stages of biofilm development, cell numbers of each species were determined. Spatial distribution of microorganisms was visualized by confocal scanning laser microscopy of biofilms labelled by differential fluorescence or by fluorescence in situ hybridization. Interkingdom interactions underpinning biofilm development were also evaluated planktonically utilizing fluorescence microscopy. Synergistic interactions between all three species occurred within biofilms and planktonically. Bacterial cells coaggregated with each other and adhered singly or in coaggregates to C. albicans hyphal filaments. Streptococcus oralis appeared to enhance hyphal filament production and C. albicans biovolume was increased 2-fold. Concomitantly, cell numbers of S. oralis and A. oris were enhanced by C. albicans. Thus, cooperative physical and metabolic processes occurring between these three microbial species intensify pathogenic plaque communities on denture surfaces. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. A Sensor To Detect the Early Stages in the Development of Crystalline Proteus mirabilis Biofilm on Indwelling Bladder Catheters

    PubMed Central

    Stickler, D. J.; Jones, S. M.; Adusei, G. O.; Waters, M. G.

    2006-01-01

    A simple sensor has been developed to detect the early stages of urinary catheter encrustation and avoid the clinical crises induced by catheter blockage. In laboratory models of colonization by Proteus mirabilis, the sensor signaled encrustation at an average time of 43 h before catheters were blocked with crystalline biofilm. PMID:16597888

  4. Inhibition of the early stage of Salmonella enterica serovar Enteritidis biofilm development on stainless steel by cell-free supernatant of a Hafnia alvei culture.

    PubMed

    Chorianopoulos, Nikos G; Giaouris, Efstathios D; Kourkoutas, Yiannis; Nychas, George-John E

    2010-03-01

    Compounds present in Hafnia alvei cell-free culture supernatant cumulatively negatively influence the early stage of biofilm development by Salmonella enterica serovar Enteritidis on stainless steel while they also reduce the overall metabolic activity of S. Enteritidis planktonic cells. Although acylhomoserine lactones (AHLs) were detected among these compounds, the use of several synthetic AHLs was not able to affect the initial stage of biofilm formation by this pathogen.

  5. Species-dependent hydrodynamics of flagellum-tethered bacteria in early biofilm development.

    PubMed

    Bennett, Rachel R; Lee, Calvin K; De Anda, Jaime; Nealson, Kenneth H; Yildiz, Fitnat H; O'Toole, George A; Wong, Gerard C L; Golestanian, Ramin

    2016-02-01

    Monotrichous bacteria on surfaces exhibit complex spinning movements. Such spinning motility is often a part of the surface detachment launch sequence of these cells. To understand the impact of spinning motility on bacterial surface interactions, we develop a hydrodynamic model of a surface-bound bacterium, which reproduces behaviours that we observe in Pseudomonas aeruginosa, Shewanella oneidensis and Vibrio cholerae, and provides a detailed dictionary for connecting observed spinning behaviour to bacteria-surface interactions. Our findings indicate that the fraction of the flagellar filament adhered to the surface, the rotation torque of this appendage, the flexibility of the flagellar hook and the shape of the bacterial cell dictate the likelihood that a microbe will detach and the optimum orientation that it should have during detachment. These findings are important for understanding species-specific reversible attachment, the key transition event between the planktonic and biofilm lifestyle for motile, rod-shaped organisms. © 2016 The Author(s).

  6. Early detection of Candida albicans biofilms at porous electrodes.

    PubMed

    Congdon, Robert B; Feldberg, Alexander S; Ben-Yakar, Natalie; McGee, Dennis; Ober, Christopher; Sammakia, Bahgat; Sadik, Omowunmi A

    2013-02-15

    We describe the development of an electrochemical sensor for early detection of biofilm using Candida albicans. The electrochemical sensor used the ability of biofilms to accept electrons from redox mediators relative to the number of metabolically active cells present. Cyclic voltammetry and differential pulse voltammetry techniques were used to monitor the redox reaction of K(3)Fe(CN)(6) at porous reticulated vitreous carbon (RVC) (238.7 cm(2)) working electrodes versus Ag/AgCl reference. A shift in the peak potential occurred after 12 h of film growth, which is attributed to the presence of C. albicans. Moreover, the intensity of the ferricyanide reduction peak first increased as C. albicans deposited onto the porous electrodes at various growth times. The peak current subsequently decreased at extended periods of growth of 48 h. The reduction in peak current was attributed to the biofilm reaching its maximum growth thickness, which correlated with the maximum number of metabolically active cells. The observed diffusion coefficients for the bare RVC and biofilm-coated electrodes were 2.2 × 10(-3) and 7.0 × 10(-6) cm(2)/s, respectively. The increase in diffusivity from the bare electrode to the biofilm-coated electrode indicated some enhancement of electron transfer mediated by the biofilm to the porous electrode. Verification of the growth of biofilm was achieved using scanning electron microcopy and laser scanning confocal imaging microscopy. Validation with conventional plating techniques confirmed that the correlation (R(2) = 0.9392) could be achieved between the electrochemical sensors data and colony-forming units. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Candida Biofilms: Development, Architecture, and Resistance

    PubMed Central

    CHANDRA, JYOTSNA; MUKHERJEE, PRANAB K.

    2015-01-01

    Intravascular device–related infections are often associated with biofilms (microbial communities encased within a polysaccharide-rich extracellular matrix) formed by pathogens on the surfaces of these devices. Candida species are the most common fungi isolated from catheter-, denture-, and voice prosthesis–associated infections and also are commonly isolated from contact lens–related infections (e.g., fungal keratitis). These biofilms exhibit decreased susceptibility to most antimicrobial agents, which contributes to the persistence of infection. Recent technological advances have facilitated the development of novel approaches to investigate the formation of biofilms and identify specific markers for biofilms. These studies have provided extensive knowledge of the effect of different variables, including growth time, nutrients, and physiological conditions, on biofilm formation, morphology, and architecture. In this article, we will focus on fungal biofilms (mainly Candida biofilms) and provide an update on the development, architecture, and resistance mechanisms of biofilms. PMID:26350306

  8. pH landscapes in a novel five-species model of early dental biofilm.

    PubMed

    Schlafer, Sebastian; Raarup, Merete K; Meyer, Rikke L; Sutherland, Duncan S; Dige, Irene; Nyengaard, Jens R; Nyvad, Bente

    2011-01-01

    Despite continued preventive efforts, dental caries remains the most common disease of man. Organic acids produced by microorganisms in dental plaque play a crucial role for the development of carious lesions. During early stages of the pathogenetic process, repeated pH drops induce changes in microbial composition and favour the establishment of an increasingly acidogenic and aciduric microflora. The complex structure of dental biofilms, allowing for a multitude of different ecological environments in close proximity, remains largely unexplored. In this study, we designed a laboratory biofilm model that mimics the bacterial community present during early acidogenic stages of the caries process. We then performed a time-resolved microscopic analysis of the extracellular pH landscape at the interface between bacterial biofilm and underlying substrate. Strains of Streptococcus oralis, Streptococcus sanguinis, Streptococcus mitis, Streptococcus downei and Actinomyces naeslundii were employed in the model. Biofilms were grown in flow channels that allowed for direct microscopic analysis of the biofilms in situ. The architecture and composition of the biofilms were analysed using fluorescence in situ hybridization and confocal laser scanning microscopy. Both biofilm structure and composition were highly reproducible and showed similarity to in-vivo-grown dental plaque. We employed the pH-sensitive ratiometric probe C-SNARF-4 to perform real-time microscopic analyses of the biofilm pH in response to salivary solutions containing glucose. Anaerobic glycolysis in the model biofilms created a mildly acidic environment. Decrease in pH in different areas of the biofilms varied, and distinct extracellular pH-microenvironments were conserved over several hours. The designed biofilm model represents a promising tool to determine the effect of potential therapeutic agents on biofilm growth, composition and extracellular pH. Ratiometric pH analysis using C-SNARF-4 gives detailed

  9. CD101, a Novel Echinocandin, Possesses Potent Antibiofilm Activity against Early and Mature Candida albicans Biofilms.

    PubMed

    Chandra, Jyotsna; Ghannoum, Mahmoud A

    2018-02-01

    Currently available echinocandins are generally effective against Candida biofilms, but the recent emergence of resistance has underscored the importance of developing new antifungal agents that are effective against biofilms. CD101 is a long-acting novel echinocandin with distinctive pharmacokinetic properties and improved stability and safety relative to other drugs in the same class. CD101 is currently being evaluated as a once-weekly intravenous (i.v.) infusion for the treatment of candidemia and invasive candidiasis. In this study, we determined (i) the effect of CD101 against early and mature phase biofilms formed by C. albicans in vitro and (ii) the temporal effect of CD101 on the formation of biofilms using time-lapse microscopy (TLM). Early- or mature-phase biofilms were formed on silicone elastomer discs and were exposed to the test compounds for 24 h and quantified by measuring their metabolic activity. Separate batches were observed under a confocal microscope or used to capture TLM images from 0 to 16 h. Measurements of their metabolic activity showed that CD101 (0.25 or 1 μg/ml) significantly prevented adhesion-phase cells from developing into mature biofilms ( P = 0.0062 or 0.0064, respectively) and eradicated preformed mature biofilms ( P = 0.04 or 0.01, respectively) compared to those of untreated controls. Confocal microscopy showed significant reductions in biofilm thicknesses for both early and mature phases ( P < 0.05). TLM showed that CD101 stopped the growth of adhesion- and early-phase biofilms within minutes. CD101-treated hyphae failed to grow into mature biofilms. These results suggest that CD101 may be effective in the prevention and treatment of biofilm-associated nosocomial infections. Copyright © 2018 Chandra and Ghannoum.

  10. Early microbial biofilm formation on marine plastic debris.

    PubMed

    Lobelle, Delphine; Cunliffe, Michael

    2011-01-01

    An important aspect of the global problem of plastic debris pollution is plastic buoyancy. There is some evidence that buoyancy is influenced by attached biofilms but as yet this is poorly understood. We submerged polyethylene plastic in seawater and sampled weekly for 3 weeks in order to study early stage processes. Microbial biofilms developed rapidly on the plastic and coincided with significant changes in the physicochemical properties of the plastic. Submerged plastic became less hydrophobic and more neutrally buoyant during the experiment. Bacteria readily colonised the plastic but there was no indication that plastic-degrading microorganisms were present. This study contributes to improved understanding of the fate of plastic debris in the marine environment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Breastfeeding, Dental Biofilm Acidogenicity, and Early Childhood Caries.

    PubMed

    Neves, Pierre A M; Ribeiro, Cecília Claudia Costa; Tenuta, Livia Maria Andaló; Leitão, Tarcísio J; Monteiro-Neto, Valério; Nunes, Ana Margarida M; Cury, Jaime Aparecido

    2016-01-01

    This study evaluated the acidogenicity of human milk by the dental biofilms of children with and without early childhood caries (ECC). Biofilms of 16 children (7 with ECC; 9 caries free) were exposed to human milk or 10% sucrose solution in the crossover design, and the biofilm pH was determined. Breastfeeding did not provoke a decrease in biofilm pH, irrespective of the children's caries status, whereas sucrose decreased the pH for both groups. In addition, higher x0394;pH5min (pH variation occurring at 5 min) was observed in the biofilms of ECC children (p < 0.05). The results suggest that breastfeeding may not contribute to ECC. © 2016 S. Karger AG, Basel.

  12. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm.

    PubMed

    Lee, Kai Wei Kelvin; Periasamy, Saravanan; Mukherjee, Manisha; Xie, Chao; Kjelleberg, Staffan; Rice, Scott A

    2014-04-01

    Most studies of biofilm biology have taken a reductionist approach, where single-species biofilms have been extensively investigated. However, biofilms in nature mostly comprise multiple species, where interspecies interactions can shape the development, structure and function of these communities differently from biofilm populations. Hence, a reproducible mixed-species biofilm comprising Pseudomonas aeruginosa, Pseudomonas protegens and Klebsiella pneumoniae was adapted to study how interspecies interactions affect biofilm development, structure and stress responses. Each species was fluorescently tagged to determine its abundance and spatial localization within the biofilm. The mixed-species biofilm exhibited distinct structures that were not observed in comparable single-species biofilms. In addition, development of the mixed-species biofilm was delayed 1-2 days compared with the single-species biofilms. Composition and spatial organization of the mixed-species biofilm also changed along the flow cell channel, where nutrient conditions and growth rate of each species could have a part in community assembly. Intriguingly, the mixed-species biofilm was more resistant to the antimicrobials sodium dodecyl sulfate and tobramycin than the single-species biofilms. Crucially, such community level resilience was found to be a protection offered by the resistant species to the whole community rather than selection for the resistant species. In contrast, community-level resilience was not observed for mixed-species planktonic cultures. These findings suggest that community-level interactions, such as sharing of public goods, are unique to the structured biofilm community, where the members are closely associated with each other.

  13. Mycobacterium avium biofilm attenuates mononuclear phagocyte function by triggering hyperstimulation and apoptosis during early infection.

    PubMed

    Rose, Sasha J; Bermudez, Luiz E

    2014-01-01

    Mycobacterium avium subsp. hominissuis is an opportunistic human pathogen that has been shown to form biofilm in vitro and in vivo. Biofilm formation in vivo appears to be associated with infections in the respiratory tract of the host. The reasoning behind how M. avium subsp. hominissuis biofilm is allowed to establish and persist without being cleared by the innate immune system is currently unknown. To identify the mechanism responsible for this, we developed an in vitro model using THP-1 human mononuclear phagocytes cocultured with established M. avium subsp. hominissuis biofilm and surveyed various aspects of the interaction, including phagocyte stimulation and response, bacterial killing, and apoptosis. M. avium subsp. hominissuis biofilm triggered robust tumor necrosis factor alpha (TNF-α) release from THP-1 cells as well as superoxide and nitric oxide production. Surprisingly, the hyperstimulated phagocytes did not effectively eliminate the cells of the biofilm, even when prestimulated with gamma interferon (IFN-γ) or TNF-α or cocultured with natural killer cells (which have been shown to induce anti-M. avium subsp. hominissuis activity when added to THP-1 cells infected with planktonic M. avium subsp. hominissuis). Time-lapse microscopy and the TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) assay determined that contact with the M. avium subsp. hominissuis biofilm led to early, widespread onset of apoptosis, which is not seen until much later in planktonic M. avium subsp. hominissuis infection. Blocking TNF-α or TNF-R1 during interaction with the biofilm significantly reduced THP-1 apoptosis but did not lead to elimination of M. avium subsp. hominissuis. Our data collectively indicate that M. avium subsp. hominissuis biofilm induces TNF-α-driven hyperstimulation and apoptosis of surveilling phagocytes, which prevents clearance of the biofilm by cells of the innate immune system and allows the biofilm

  14. Bacterial interactions in dental biofilm development.

    PubMed

    Hojo, K; Nagaoka, S; Ohshima, T; Maeda, N

    2009-11-01

    Recent analyses with ribosomal RNA-based technologies have revealed the diversity of bacterial populations within dental biofilms, and have highlighted their important contributions to oral health and disease. Dental biofilms are exceedingly complex and multispecies ecosystems, where oral bacteria interact cooperatively or competitively with other members. Bacterial interactions that influence dental biofilm communities include various different mechanisms. During the early stage of biofilm formation, it is known that planktonic bacterial cells directly attach to surfaces of the oral cavity or indirectly bind to other bacterial cells that have already colonized. Adherence through co-aggregation may be critical for the temporary retention of bacteria on dental surfaces, and may facilitate eventual bacterial colonization. It is likely that metabolic communication, genetic exchange, production of inhibitory factors (e.g., bacteriocins, hydrogen peroxide, etc.), and quorum-sensing are pivotal regulatory factors that determine the bacterial composition and/or metabolism. Since each bacterium can easily access a neighboring bacterial cell and its metabolites, genetic exchanges and metabolic communication may occur frequently in dental biofilms. Quorum-sensing is defined as gene regulation in response to cell density, which influences various functions, e.g., virulence and bacteriocin production. In this review, we discuss these important interactions among oral bacteria within the dental biofilm communities.

  15. Mycobacterium biofilms: factors involved in development, dispersal, and therapeutic strategies against biofilm-relevant pathogens.

    PubMed

    Xiang, Xiaohong; Deng, Wanyan; Liu, Minqiang; Xie, Jianping

    2014-01-01

    Many bacteria can develop biofilm (BF), a multicellular structure largely combining bacteria and their extracellular polymeric substances (EPS). The formation of biofilm results in an alternative existence in which microbes ensure their survival in adverse environments. Biofilm-relevant infections are more persistent, resistant to most antibiotics, and more recalcitrant to host immunity. Mycobacterium tuberculosis, the causative agent of tuberculosis, can develop biofilm, though whether M. tuberculosis can form biofilm within tuberculosis patients has yet to be determined. Here, we summarize the factors involved in the development and dispersal of mycobacterial biofilms, as well as underlying regulatory factors and inhibitors against biofilm to deepen our understanding of their development and to elucidate potential novel modes of action for future antibiotics. Key factors in biofilm formation identified as drug targets represent a novel and promising avenue for developing better antibiotics.

  16. Microbial indicators in natural biofilms developed in the riverbed.

    PubMed

    Hirotani, Hiroshi; Yoshino, Miyuki

    2010-01-01

    Microbial indicators such as heterotrophic bacteria, total coliforms, and Escherichia coli in naturally developed riverbed biofilms were investigated. Pebbles covered with natural biofilm were sampled directly from the riverbed at sampling stations ranging from the upstream region within a quasi-national park to the midstream in the urban district. Heterotrophic bacteria densities in biofilm positively correlated with stream discharge. E. coli densities in biofilm positively correlated with temperature, which suggests the growth in the biofilm. It was considered that the attachment of planktonic bacteria to biofilm was negligible. The biofilm may serve as an internal source of false positive indication of fecal contamination in the water column.

  17. How Staphylococcus aureus biofilms develop their characteristic structure

    PubMed Central

    Periasamy, Saravanan; Joo, Hwang-Soo; Duong, Anthony C.; Bach, Thanh-Huy L.; Tan, Vee Y.; Chatterjee, Som S.; Cheung, Gordon Y. C.; Otto, Michael

    2012-01-01

    Biofilms cause significant problems in the environment and during the treatment of infections. However, the molecular mechanisms underlying biofilm formation are poorly understood. There is a particular lack of knowledge about biofilm maturation processes, such as biofilm structuring and detachment, which are deemed crucial for the maintenance of biofilm viability and the dissemination of cells from a biofilm. Here, we identify the phenol-soluble modulin (PSM) surfactant peptides as key biofilm structuring factors in the premier biofilm-forming pathogen Staphylococcus aureus. We provide evidence that all known PSM classes participate in structuring and detachment processes. Specifically, absence of PSMs in isogenic S. aureus psm deletion mutants led to strongly impaired formation of biofilm channels, abolishment of the characteristic waves of biofilm detachment and regrowth, and loss of control of biofilm expansion. In contrast, induced expression of psm loci in preformed biofilms promoted those processes. Furthermore, PSMs facilitated dissemination from an infected catheter in a mouse model of biofilm-associated infection. Moreover, formation of the biofilm structure was linked to strongly variable, quorum sensing-controlled PSM expression in biofilm microenvironments, whereas overall PSM production remained constant to ascertain biofilm homeostasis. Our study describes a mechanism of biofilm structuring in molecular detail, and the general principle (i.e., quorum-sensing controlled expression of surfactants) seems to be conserved in several bacteria, despite the divergence of the respective biofilm-structuring surfactants. These findings provide a deeper understanding of biofilm development processes, which represents an important basis for strategies to interfere with biofilm formation in the environment and human disease. PMID:22232686

  18. The composition and compression of biofilms developed on ultrafiltration membranes determine hydraulic biofilm resistance.

    PubMed

    Derlon, Nicolas; Grütter, Alexander; Brandenberger, Fabienne; Sutter, Anja; Kuhlicke, Ute; Neu, Thomas R; Morgenroth, Eberhard

    2016-10-01

    This study aimed at identifying how to improve the level of permeate flux stabilisation during gravity-driven membrane filtration without control of biofilm formation. The focus was therefore on understanding (i) how the different fractions of the biofilms (inorganics particles, bacterial cells, EPS matrix) influence its hydraulic resistance and (ii) how the compression of biofilms impacts its hydraulic resistance, i.e., can water head be increased to increase the level of permeate flux stabilisation. Biofilms were developed on ultrafiltration membranes at 88 and 284 cm water heads with dead-end filtration for around 50 days. A larger water head resulted in a smaller biofilm permeability (150 and 50 L m(-2) h(-1) bar(-1) for biofilms grown at 88 cm and 284 cm water head, respectively). Biofilms were mainly composed of EPS (>90% in volume). The comparison of the hydraulic resistances of biofilms to model fouling layers indicated that most of the hydraulic resistance is due to the EPS matrix. The compressibility of the biofilm was also evaluated by subjecting the biofilms to short-term (few minutes) and long-term variations of transmembrane pressures (TMP). A sudden change of TMP resulted in an instantaneous and reversible change of biofilm hydraulic resistance. A long-term change of TMP induced a slow change in the biofilm hydraulic resistance. Our results demonstrate that the response of biofilms to a TMP change has two components: an immediate variation of resistance (due to compression/relaxation) and a long-term response (linked to biofilm adaptation/growth). Our results provide relevant information about the relationship between the operating conditions in terms of TMP, the biofilm structure and composition and the resulting biofilm hydraulic resistance. These findings have practical implications for a broad range of membrane systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Staphylococcus aureus biofilms: recent developments in biofilm dispersal.

    PubMed

    Lister, Jessica L; Horswill, Alexander R

    2014-01-01

    Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and represents a significant burden on the healthcare system. S. aureus attachment to medical implants and host tissue, and the establishment of a mature biofilm, play an important role in the persistence of chronic infections. The formation of a biofilm, and encasement of cells in a polymer-based matrix, decreases the susceptibility to antimicrobials and immune defenses, making these infections difficult to eradicate. During infection, dispersal of cells from the biofilm can result in spread to secondary sites and worsening of the infection. In this review, we discuss the current understanding of the pathways behind biofilm dispersal in S. aureus, with a focus on enzymatic and newly described broad-spectrum dispersal mechanisms. Additionally, we explore potential applications of dispersal in the treatment of biofilm-mediated infections.

  20. Thin coatings based on ZnO@C18-usnic acid nanoparticles prepared by MAPLE inhibit the development of Salmonella enterica early biofilm growth

    NASA Astrophysics Data System (ADS)

    Stan, Miruna Silvia; Constanda, Sabrina; Grumezescu, Valentina; Andronescu, Ecaterina; Ene, Ana Maria; Holban, Alina Maria; Vasile, Bogdan Stefan; Mogoantă, Laurenţiu; Bălşeanu, Tudor-Adrian; Mogoşanu, George Dan; Socol, Gabriel; Grumezescu, Alexandru Mihai; Dinischiotu, Anca; Lazar, Veronica; Chifiriuc, Mariana Carmen

    2016-06-01

    The aim of this study was to develop a nanostructured bioactive surface based on zinc oxide, sodium stearate (C18) and usnic acid (UA) exhibiting harmless effects with respect to the human cells, but with a significant antimicrobial effect, limiting the attachment and biofilm formation of food pathogens. ZnO nanoparticles were synthesized by sol-gel method and functionalized with C18 and UA. The coatings were fabricated by matrix assisted pulsed laser evaporation technique (MAPLE) and further characterized by TEM, SEM, SAED, XRD and IRM. The biological characterization of the prepared coatings consisted in cytotoxicity and antimicrobial assays. The cytotoxicity of ZnO@C18 and ZnO@C18-UA films was evaluated with respect to the human skin fibroblasts (CCD 1070SK cell line) by phase contrast microscopy, MTT assay and nitric oxide (NO) release. The covered surfaces exhibited a decreased cell attachment, effect which was more pronounced in the presence of UA as shown by purple formazan staining of adhered cells. The unattached fibroblasts remained viable after 24 h in the culture media as it was revealed by their morphology analysis and NO level which were similar to uncovered slides. The quantitative microbiological assays results have demonstrated that the bioactive coatings have significantly inhibited the adherence and biofilm formation of Salmonella enterica. The obtained results recommend these materials as efficient approaches in developing anti-adherent coatings for various industrial, medical and food processing applications.

  1. Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies.

    PubMed

    Taylor, Patrick K; Yeung, Amy T Y; Hancock, Robert E W

    2014-12-10

    The growth of bacteria as structured aggregates termed biofilms leads to their protection from harsh environmental conditions such as physical and chemical stresses, shearing forces, and limited nutrient availability. Because of this highly adapted ability to survive adverse environmental conditions, bacterial biofilms are recalcitrant to antibiotic therapies and immune clearance. This is particularly problematic in hospital settings where biofilms are a frequent cause of chronic and device-related infections and constitute a significant burden on the health-care system. The major therapeutic strategy against infections is the use of antibiotics, which, due to adaptive resistance, are often insufficient to clear biofilm infections. Thus, novel biofilm-specific therapies are required. Specific features of biofilm development, such as surface adherence, extracellular matrix formation, quorum sensing, and highly regulated biofilm maturation and dispersal are currently being studied as targets to be exploited in the development of novel biofilm-specific treatments. Using Pseudomonas aeruginosa for illustrative purposes, this review highlights the antibiotic resistance mechanisms of biofilms, and discusses current research into novel biofilm-specific therapies. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Candida albicans biofilms: development, regulation, and molecular mechanisms

    PubMed Central

    Gulati, Megha; Nobile, Clarissa J.

    2016-01-01

    A major virulence attribute of Candida albicans is its ability to form biofilms, densely packed communities of cells adhered to a surface. These biofilms are intrinsically resistant to conventional antifungal therapeutics, the host immune system, and other environmental factors, making biofilm-associated infections a significant clinical challenge. Here, we review current knowledge on the development, regulation, and molecular mechanisms of C. albicans biofilms. PMID:26806384

  3. Biofilm development in fixed bed biofilm reactors: experiments and simple models for engineering design purposes.

    PubMed

    Szilágyi, N; Kovács, R; Kenyeres, I; Csikor, Zs

    2013-01-01

    Biofilm development in a fixed bed biofilm reactor system performing municipal wastewater treatment was monitored aiming at accumulating colonization and maximum biofilm mass data usable in engineering practice for process design purposes. Initially a 6 month experimental period was selected for investigations where the biofilm formation and the performance of the reactors were monitored. The results were analyzed by two methods: for simple, steady-state process design purposes the maximum biofilm mass on carriers versus influent load and a time constant of the biofilm growth were determined, whereas for design approaches using dynamic models a simple biofilm mass prediction model including attachment and detachment mechanisms was selected and fitted to the experimental data. According to a detailed statistical analysis, the collected data have not allowed us to determine both the time constant of biofilm growth and the maximum biofilm mass on carriers at the same time. The observed maximum biofilm mass could be determined with a reasonable error and ranged between 438 gTS/m(2) carrier surface and 843 gTS/m(2), depending on influent load, and hydrodynamic conditions. The parallel analysis of the attachment-detachment model showed that the experimental data set allowed us to determine the attachment rate coefficient which was in the range of 0.05-0.4 m d(-1) depending on influent load and hydrodynamic conditions.

  4. Biofilm formation - What we can learn from recent developments.

    PubMed

    Bjarnsholt, Thomas; Buhlin, Kåre; Dufrêne, Yves F; Gomelsky, Mark; Moroni, Anna; Ramstedt, Madeleine; Rumbaugh, Kendra P; Schulte, Tim; Sun, Lei; Åkerlund, Börje; Römling, Ute

    2018-06-01

    Although biofilms have been observed early in the history of microbial research, their impact has only recently been fully recognized. Biofilm infections, which contribute to up to 80% of human microbial infections, are associated with common human disorders, such as diabetes mellitus and poor dental hygiene, but also with medical implants. The associated chronic infections such as wound infections, dental caries and periodontitis significantly enhance morbidity, affect quality of life and can result in contraction of follow-up diseases such as cancer. Biofilm infections remain challenging to treat and antibiotic monotherapy is often insufficient, although some rediscovered traditional compounds have shown surprising efficiency. Innovative anti-biofilm strategies include application of anti-biofilm small molecules, intrinsic or external stimulation of production of reactive molecules, utilization of materials with antimicrobial properties and dispersion of biofilms by digestion of the extracellular matrix, also in combination with physical biofilm breakdown. Although basic principles of biofilm formation have been deciphered, the molecular understanding of the formation and structural organization of various types of biofilms has just begun to emerge. Basic studies of biofilm physiology have also resulted in an unexpected discovery of cyclic dinucleotide second messengers that are involved in interkingdom crosstalk via specific mammalian receptors. These findings even open up new venues for exploring novel anti-biofilm strategies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Successional development of biofilms in moving bed biofilm reactor (MBBR) systems treating municipal wastewater.

    PubMed

    Biswas, Kristi; Taylor, Michael W; Turner, Susan J

    2014-02-01

    Biofilm-based technologies, such as moving bed biofilm reactor (MBBR) systems, are widely used to treat wastewater. Biofilm development is important for MBBR systems as much of the microbial biomass is retained within reactors as biofilm on suspended carriers. Little is known about this process of biofilm development and the microorganisms upon which MBBRs rely. We documented successional changes in microbial communities as biofilms established in two full-scale MBBR systems treating municipal wastewater over two seasons. 16S rRNA gene-targeted pyrosequencing and clone libraries were used to describe microbial communities. These data indicate a successional process that commences with the establishment of an aerobic community dominated by Gammaproteobacteria (up to 52 % of sequences). Over time, this community shifts towards dominance by putatively anaerobic organisms including Deltaproteobacteria and Clostridiales. Significant differences were observed between the two wastewater treatment plants (WWTPs), mostly due to a large number of sequences (up to 55 %) representing Epsilonproteobacteria (mostly Arcobacter) at one site. Archaea in young biofilms included several lineages of Euryarchaeota and Crenarchaeota. In contrast, the mature biofilm consisted entirely of Methanosarcinaceae (Euryarchaeota). This study provides new insights into the community structure of developing biofilms at full-scale WWTPs and provides the basis for optimizing MBBR start-up and operational parameters.

  6. Biofilms.

    PubMed

    López, Daniel; Vlamakis, Hera; Kolter, Roberto

    2010-07-01

    The ability to form biofilms is a universal attribute of bacteria. Biofilms are multicellular communities held together by a self-produced extracellular matrix. The mechanisms that different bacteria employ to form biofilms vary, frequently depending on environmental conditions and specific strain attributes. In this review, we emphasize four well-studied model systems to give an overview of how several organisms form biofilms: Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. Using these bacteria as examples, we discuss the key features of biofilms as well as mechanisms by which extracellular signals trigger biofilm formation.

  7. Antimicrobial Tolerance of Pseudomonas aeruginosa Biofilms Is Activated during an Early Developmental Stage and Requires the Two-Component Hybrid SagS

    PubMed Central

    Gupta, Kajal; Marques, Cláudia N. H.; Petrova, Olga E.

    2013-01-01

    A hallmark characteristic of biofilms is their extraordinary tolerance to antimicrobial agents. While multiple factors are thought to contribute to the high level of antimicrobial tolerance of biofilms, little is known about the timing of induction of biofilm tolerance. Here, we asked when over the course of their development do biofilms gain their tolerance to antimicrobial agents? We demonstrate that in Pseudomonas aeruginosa, biofilm tolerance is linked to biofilm development, with transition to the irreversible attachment stage regulated by the two-component hybrid SagS, marking the timing when biofilms switch to the high-level tolerance phenotype. Inactivation of sagS rendered biofilms but not planktonic cells more susceptible to tobramycin, norfloxacin, and hydrogen peroxide. Moreover, inactivation of sagS also eliminated the recalcitrance of biofilms to killing by bactericidal antimicrobial agents, a phenotype comparable to that observed upon inactivation of brlR, which encodes a MerR-like transcriptional regulator required for biofilm tolerance. Multicopy expression of brlR in a ΔsagS mutant restored biofilm resistance and recalcitrance to killing by bactericidal antibiotics to wild-type levels. In contrast, expression of sagS did not restore the susceptibility phenotype of ΔbrlR mutant biofilms to wild-type levels, indicating that BrlR functions downstream of SagS. Inactivation of sagS correlated with reduced BrlR levels in biofilms, with the produced BrlR being impaired in binding to the previously described BrlR-activated promoters of the two multidrug efflux pump operons mexAB-oprM and mexEF-oprN. Our findings demonstrate that biofilm tolerance is linked to early biofilm development and SagS, with SagS contributing indirectly to BrlR activation. PMID:23995639

  8. Quorum Sensing Influences Burkholderia thailandensis Biofilm Development and Matrix Production.

    PubMed

    Tseng, Boo Shan; Majerczyk, Charlotte D; Passos da Silva, Daniel; Chandler, Josephine R; Greenberg, E Peter; Parsek, Matthew R

    2016-10-01

    Members of the genus Burkholderia are known to be adept at biofilm formation, which presumably assists in the survival of these organisms in the environment and the host. Biofilm formation has been linked to quorum sensing (QS) in several bacterial species. In this study, we characterized Burkholderia thailandensis biofilm development under flow conditions and sought to determine whether QS contributes to this process. B. thailandensis biofilm formation exhibited an unusual pattern: the cells formed small aggregates and then proceeded to produce mature biofilms characterized by "dome" structures filled with biofilm matrix material. We showed that this process was dependent on QS. B. thailandensis has three acyl-homoserine lactone (AHL) QS systems (QS-1, QS-2, and QS-3). An AHL-negative strain produced biofilms consisting of cell aggregates but lacking the matrix-filled dome structures. This phenotype was rescued via exogenous addition of the three AHL signals. Of the three B. thailandensis QS systems, we show that QS-1 is required for proper biofilm development, since a btaR1 mutant, which is defective in QS-1 regulation, forms biofilms without these dome structures. Furthermore, our data show that the wild-type biofilm biomass, as well as the material inside the domes, stains with a fucose-binding lectin. The btaR1 mutant biofilms, however, are negative for fucose staining. This suggests that the QS-1 system regulates the production of a fucose-containing exopolysaccharide in wild-type biofilms. Finally, we present data showing that QS ability during biofilm development produces a biofilm that is resistant to dispersion under stress conditions. The saprophyte Burkholderia thailandensis is a close relative of the pathogenic bacterium Burkholderia pseudomallei, the causative agent of melioidosis, which is contracted from its environmental reservoir. Since most bacteria in the environment reside in biofilms, B. thailandensis is an ideal model organism for

  9. Role of polysaccharides in Pseudomonas aeruginosa biofilm development

    PubMed Central

    Ryder, Cynthia; Byrd, Matthew; Wozniak, Daniel J.

    2008-01-01

    During the past decade, there has been a renewed interest in using P. aeruginosa as a model system for biofilm development and pathogenesis. Since the biofilm matrix represents a critical interface between the bacterium and the host or its environment, considerable effort has been expended to acquire a more complete understanding of the matrix composition. Here, we focus on recent developments regarding the roles of alginate, Psl, and Pel polysaccharides in the biofilm matrix. PMID:17981495

  10. Relationships between the antibacterial activity of sodium hypochlorite and treatment time and biofilm age in early Enterococcus faecalis biofilms.

    PubMed

    Chau, N P T; Chung, N H; Jeon, J G

    2015-08-01

    To determine the relationships between the antibacterial activity of NaOCl and treatment time and biofilm age in early Enterococcus faecalis biofilms using a linear fitting procedure. Enterococcus faecalis biofilms were formed on hydroxyapatite discs. To investigate the relationship between the antibacterial activity of NaOCl and biofilm age, 22-, 46-, 70- and 94-h-old biofilms were exposed to NaOCl (0-3%) for 5 min. To investigate the relationship between the antibacterial activity of NaOCl and treatment time, 70-h-old biofilms were exposed to NaOCl (0-3%) for 1, 3, 5 and 7 min. After treatment, colony-forming units (CFUs) were counted. To determine the relationships between these variables, linear fitting was performed. The change in the minimum biofilm eradication concentration (MBEC) of NaOCl followed a linear pattern of biofilm age (R = 0.941, R(2)  = 0.886) or treatment time dependence (R = -0.948, R(2)  = 0.898). Below the MBEC, the fitting lines for bacterial CFU count versus NaOCl concentration (R ≤ -0.973, R(2)  ≥ 0.948) in the 22-, 46-, 70- and 94-h-old biofilms implied that the antibacterial activity of NaOCl decreased as the biofilm age increased. The fitting lines for bacterial CFU count versus NaOCl concentration (R ≤ -0.970, R(2)  ≥ 0.942) in the 1-, 3-, 5- and 7-min treatments implied that the antibacterial activity of NaOCl increased with treatment time. These results suggest that the antibacterial activity of NaOCl against early E. faecalis biofilms in root canals may follow a linear pattern depending on biofilm age or treatment time. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  11. Development of a high-throughput Candida albicans biofilm chip.

    PubMed

    Srinivasan, Anand; Uppuluri, Priya; Lopez-Ribot, Jose; Ramasubramanian, Anand K

    2011-04-22

    We have developed a high-density microarray platform consisting of nano-biofilms of Candida albicans. A robotic microarrayer was used to print yeast cells of C. albicans encapsulated in a collagen matrix at a volume as low as 50 nL onto surface-modified microscope slides. Upon incubation, the cells grow into fully formed "nano-biofilms". The morphological and architectural complexity of these biofilms were evaluated by scanning electron and confocal scanning laser microscopy. The extent of biofilm formation was determined using a microarray scanner from changes in fluorescence intensities due to FUN 1 metabolic processing. This staining technique was also adapted for antifungal susceptibility testing, which demonstrated that, similar to regular biofilms, cells within the on-chip biofilms displayed elevated levels of resistance against antifungal agents (fluconazole and amphotericin B). Thus, results from structural analyses and antifungal susceptibility testing indicated that despite miniaturization, these biofilms display the typical phenotypic properties associated with the biofilm mode of growth. In its final format, the C. albicans biofilm chip (CaBChip) is composed of 768 equivalent and spatially distinct nano-biofilms on a single slide; multiple chips can be printed and processed simultaneously. Compared to current methods for the formation of microbial biofilms, namely the 96-well microtiter plate model, this fungal biofilm chip has advantages in terms of miniaturization and automation, which combine to cut reagent use and analysis time, minimize labor intensive steps, and dramatically reduce assay costs. Such a chip should accelerate the antifungal drug discovery process by enabling rapid, convenient and inexpensive screening of hundreds-to-thousands of compounds simultaneously.

  12. Development of an aptamer-ampicillin conjugate for treating biofilms

    SciTech Connect

    Lijuan, Cheng; Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan, 410208; Xing, Yan

    Biofilm formation involves the development of extracellular matrix and initially depends on adherence and tropism by flagellar movement. With the widespread development of antibiotic resistance and tolerance of biofilms, there is a growing need for novel anti-infective strategies. No currently approved medications specifically target biofilms. Aptamers are single-stranded nucleic acid molecules that may bind to their targets with high affinity and affect the target functions. We developed a bifunctional conjugate by linking an aptamer targeting bacterial flagella with ampicillin. We investigated its influence on biofilm prevention and dissolution by ultraviolet–visible spectrophotometry, inverted microscopy, and atomic force microscopy. This conjugate hadmore » distinctive antibacterial activity. Notably, the conjugate was more active than either component, and thus had a synergistic effect against biofilms.« less

  13. Biofilm Forming Lactobacillus: New Challenges for the Development of Probiotics

    PubMed Central

    Salas-Jara, María José; Ilabaca, Alejandra; Vega, Marco; García, Apolinaria

    2016-01-01

    Probiotics are live bacteria, generally administered in food, conferring beneficial effects to the host because they help to prevent or treat diseases, the majority of which are gastrointestinal. Numerous investigations have verified the beneficial effect of probiotic strains in biofilm form, including increased resistance to temperature, gastric pH and mechanical forces to that of their planktonic counterparts. In addition, the development of new encapsulation technologies, which have exploited the properties of biofilms in the creation of double coated capsules, has given origin to fourth generation probiotics. Up to now, reviews have focused on the detrimental effects of biofilms associated with pathogenic bacteria. Therefore, this work aims to amalgamate information describing the biofilms of Lactobacillus strains which are used as probiotics, particularly L. rhamnosus, L. plantarum, L. reuteri, and L. fermentum. Additionally, we have reviewed the development of probiotics using technology inspired by biofilms. PMID:27681929

  14. α-Mangostin Disrupts the Development of Streptococcus mutans Biofilms and Facilitates Its Mechanical Removal

    PubMed Central

    Nguyen, Phuong Thi Mai; Falsetta, Megan L.; Hwang, Geelsu; Gonzalez-Begne, Mireya; Koo, Hyun

    2014-01-01

    α-Mangostin (αMG) has been reported to be an effective antimicrobial agent against planktonic cells of Streptococcus mutans, a biofilm-forming and acid-producing cariogenic organism. However, its anti-biofilm activity remains to be determined. We examined whether αMG, a xanthone purified from Garcinia mangostana L grown in Vietnam, disrupts the development, acidogenicity, and/or the mechanical stability of S. mutans biofilms. Treatment regimens simulating those experienced clinically (twice-daily, 60 s exposure each) were used to assess the bioactivity of αMG using a saliva-coated hydroxyapatite (sHA) biofilm model. Topical applications of early-formed biofilms with αMG (150 µM) effectively reduced further biomass accumulation and disrupted the 3D architecture of S. mutans biofilms. Biofilms treated with αMG had lower amounts of extracellular insoluble and intracellular iodophilic polysaccharides (30–45%) than those treated with vehicle control (P<0.05), while the number of viable bacterial counts was unaffected. Furthermore, αMG treatments significantly compromised the mechanical stability of the biofilm, facilitating its removal from the sHA surface when subjected to a constant shear stress of 0.809 N/m2 (>3-fold biofilm detachment from sHA vs. vehicle-treated biofilms; P<0.05). Moreover, acid production by S. mutans biofilms was disrupted following αMG treatments (vs. vehicle-control, P<0.05). The activity of enzymes associated with glucan synthesis, acid production, and acid tolerance (glucosyltransferases B and C, phosphotransferase-PTS system, and F1F0-ATPase) were significantly inhibited by αMG. The expression of manL, encoding a key component of the mannose PTS, and gtfB were slightly repressed by αMG treatment (P<0.05), while the expression of atpD (encoding F-ATPase) and gtfC genes was unaffected. Hence, this study reveals that brief exposures to αMG can disrupt the development and structural integrity of S. mutans biofilms, at least in part

  15. Interactions between Streptococcus oralis, Actinomyces oris, and Candida albicans in the development of multispecies oral microbial biofilms on salivary pellicle.

    PubMed

    Cavalcanti, I M G; Del Bel Cury, A A; Jenkinson, H F; Nobbs, A H

    2017-02-01

    The fungus Candida albicans is carried orally and causes a range of superficial infections that may become systemic. Oral bacteria Actinomyces oris and Streptococcus oralis are abundant in early dental plaque and on oral mucosa. The aims of this study were to determine the mechanisms by which S. oralis and A. oris interact with each other and with C. albicans in biofilm development. Spatial distribution of microorganisms was visualized by confocal laser scanning microscopy of biofilms labeled by differential fluorescence or by fluorescence in situ hybridization (FISH). Actinomyces oris and S. oralis formed robust dual-species biofilms, or three-species biofilms with C. albicans. The bacterial components tended to dominate the lower levels of the biofilms while C. albicans occupied the upper levels. Non-fimbriated A. oris was compromised in biofilm formation in the absence or presence of streptococci, but was incorporated into upper biofilm layers through binding to C. albicans. Biofilm growth and hyphal filament production by C. albicans was enhanced by S. oralis. It is suggested that the interkingdom biofilms are metabolically coordinated to house all three components, and this study demonstrates that adhesive interactions between them determine spatial distribution and biofilm architecture. The physical and chemical communication processes occurring in these communities potentially augment C. albicans persistence at multiple oral cavity sites. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Assembly and development of the Pseudomonas aeruginosa biofilm matrix.

    PubMed

    Ma, Luyan; Conover, Matthew; Lu, Haiping; Parsek, Matthew R; Bayles, Kenneth; Wozniak, Daniel J

    2009-03-01

    Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organism for the study of biofilms. The extracellular polymeric substance of P. aeruginosa biofilms is an ill-defined mix of polysaccharides, nucleic acids, and proteins. Here, we directly visualize the product of the polysaccharide synthesis locus (Psl exopolysaccharide) at different stages of biofilm development. During attachment, Psl is anchored on the cell surface in a helical pattern. This promotes cell-cell interactions and assembly of a matrix, which holds bacteria in the biofilm and on the surface. Chemical dissociation of Psl from the bacterial surface disrupted the Psl matrix as well as the biofilm structure. During biofilm maturation, Psl accumulates on the periphery of 3-D-structured microcolonies, resulting in a Psl matrix-free cavity in the microcolony center. At the dispersion stage, swimming cells appear in this matrix cavity. Dead cells and extracellular DNA (eDNA) are also concentrated in the Psl matrix-free area. Deletion of genes that control cell death and autolysis affects the formation of the matrix cavity and microcolony dispersion. These data provide a mechanism for how P. aeruginosa builds a matrix and subsequently a cavity to free a portion of cells for seeding dispersal. Direct visualization reveals that Psl is a key scaffolding matrix component and opens up avenues for therapeutics of biofilm-related complications.

  17. Assembly and Development of the Pseudomonas aeruginosa Biofilm Matrix

    PubMed Central

    Ma, Luyan; Conover, Matthew; Lu, Haiping; Parsek, Matthew R.; Bayles, Kenneth; Wozniak, Daniel J.

    2009-01-01

    Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organism for the study of biofilms. The extracellular polymeric substance of P. aeruginosa biofilms is an ill-defined mix of polysaccharides, nucleic acids, and proteins. Here, we directly visualize the product of the polysaccharide synthesis locus (Psl exopolysaccharide) at different stages of biofilm development. During attachment, Psl is anchored on the cell surface in a helical pattern. This promotes cell–cell interactions and assembly of a matrix, which holds bacteria in the biofilm and on the surface. Chemical dissociation of Psl from the bacterial surface disrupted the Psl matrix as well as the biofilm structure. During biofilm maturation, Psl accumulates on the periphery of 3-D-structured microcolonies, resulting in a Psl matrix-free cavity in the microcolony center. At the dispersion stage, swimming cells appear in this matrix cavity. Dead cells and extracellular DNA (eDNA) are also concentrated in the Psl matrix-free area. Deletion of genes that control cell death and autolysis affects the formation of the matrix cavity and microcolony dispersion. These data provide a mechanism for how P. aeruginosa builds a matrix and subsequently a cavity to free a portion of cells for seeding dispersal. Direct visualization reveals that Psl is a key scaffolding matrix component and opens up avenues for therapeutics of biofilm-related complications. PMID:19325879

  18. The Development of Nitroxide Based Coatings for Biofilm Remediation- 154020

    DTIC Science & Technology

    2017-06-05

    AFRL-AFOSR-JP-TR-2017-0048 The Development of Nitroxide Based Coatings for Biofilm Remediation Kathryn Fairfull-Smith QUEENSLAND UNIVERSITY OF...for Biofilm Remediation - 154020 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-15-1-4087 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Kathryn...llisapi.dll Annual Report for AOARD Grant 15IOA087-154020 “The Development of Nitroxide Based Coatings for Biofilm Remediation ” 7th June 2017 PI and Co

  19. Early microbial succession in redeveloping dental biofilms in periodontal health and disease.

    PubMed

    Teles, F R; Teles, R P; Uzel, N G; Song, X Q; Torresyap, G; Socransky, S S; Haffajee, A D

    2012-02-01

    The development of dental biofilms after professional plaque removal is very rapid. However, it is not clear whether most bacterial species return at similar rates in periodontally healthy and periodontitis subjects or if there are differences in bacterial recolonization between supragingival and subgingival biofilms in periodontal health and disease. Supragingival and subgingival plaque samples were taken separately from 28 teeth in 38 healthy and 17 periodontitis subjects immediately after professional cleaning. Samples were taken again from seven teeth in randomly selected quadrants after 1, 2, 4 and 7 d of no oral hygiene and analyzed using checkerboard DNA-DNA hybridization. The percentage of DNA probe counts were averaged within subjects at each time-point. Ecological succession was determined using a modified moving-window analysis. Succession in supragingival biofilms from subjects with periodontitis and from healthy individuals was similar. At 1 d, Streptococcus mitis and Neisseria mucosa showed increased proportions, followed by Capnocytophaga gingivalis, Eikenella corrodens, Veillonella parvula and Streptococcus oralis at 1-4 d. At 4-7 d, Campylobacter rectus, Campylobacter showae, Prevotella melaninogenica and Prevotella nigrescens became elevated. Subgingival plaque redevelopment was slower and very different from supragingival plaque redevelopment. Increased proportions were first observed for S. mitis, followed by V. parvula and C. gingivalis and, at 7 d, by Capnocytophaga sputigena and P. nigrescens. No significant increase in the proportions of periodontal pathogens was observed in any of the clinical groups or locations. There is a defined order in bacterial species succession in early supragingival and subgingival biofilm redevelopment after professional cleaning. © 2011 John Wiley & Sons A/S.

  20. Calcium transcriptionally regulates the biofilm machinery of Xylella fastidiosa to promote continued biofilm development in batch cultures.

    PubMed

    Parker, Jennifer K; Chen, Hongyu; McCarty, Sara E; Liu, Lawrence Y; De La Fuente, Leonardo

    2016-05-01

    The functions of calcium (Ca) in bacteria are less characterized than in eukaryotes, where its role has been studied extensively. The plant-pathogenic bacterium Xylella fastidiosa has several virulence features that are enhanced by increased Ca concentrations, including biofilm formation. However, the specific mechanisms driving modulation of this feature are unclear. Characterization of biofilm formation over time showed that 4 mM Ca supplementation produced denser biofilms that were still developing at 96 h, while biofilm in non-supplemented media had reached the dispersal stage by 72 h. To identify changes in global gene expression in X. fastidiosa grown in supplemental Ca, RNA-Seq of batch culture biofilm cells was conducted at three 24-h time intervals. Results indicate that a variety of genes are differentially expressed in response to Ca, including genes related to attachment, motility, exopolysaccharide synthesis, biofilm formation, peptidoglycan synthesis, regulatory functions, iron homeostasis, and phages. Collectively, results demonstrate that Ca supplementation induces a transcriptional response that promotes continued biofilm development, while biofilm cells in nonsupplemented media are driven towards dispersion of cells from the biofilm structure. These results have important implications for disease progression in planta, where xylem sap is the source of Ca and other nutrients for X. fastidiosa. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Biofilm development of an opportunistic model bacterium analysed at high spatiotemporal resolution in the framework of a precise flow cell

    PubMed Central

    Lim, Chun Ping; Mai, Phuong Nguyen Quoc; Roizman Sade, Dan; Lam, Yee Cheong; Cohen, Yehuda

    2016-01-01

    Life of bacteria is governed by the physical dimensions of life in microscales, which is dominated by fast diffusion and flow at low Reynolds numbers. Microbial biofilms are structurally and functionally heterogeneous and their development is suggested to be interactively related to their microenvironments. In this study, we were guided by the challenging requirements of precise tools and engineered procedures to achieve reproducible experiments at high spatial and temporal resolutions. Here, we developed a robust precise engineering approach allowing for the quantification of real-time, high-content imaging of biofilm behaviour under well-controlled flow conditions. Through the merging of engineering and microbial ecology, we present a rigorous methodology to quantify biofilm development at resolutions of single micrometre and single minute, using a newly developed flow cell. We designed and fabricated a high-precision flow cell to create defined and reproducible flow conditions. We applied high-content confocal laser scanning microscopy and developed image quantification using a model biofilm of a defined opportunistic strain, Pseudomonas putida OUS82. We observed complex patterns in the early events of biofilm formation, which were followed by total dispersal. These patterns were closely related to the flow conditions. These biofilm behavioural phenomena were found to be highly reproducible, despite the heterogeneous nature of biofilm. PMID:28721252

  2. Biofilm development by blastospores and hyphae of Candida albicans on abraded denture acrylic resin surfaces.

    PubMed

    Jackson, Sarah; Coulthwaite, Lisa; Loewy, Zvi; Scallan, Anthony; Verran, Joanna

    2014-10-01

    Candida albicans is a known etiologic agent of denture stomatitis. Candida hyphae exhibit the ability to respond directionally to environmental stimuli. This characteristic is thought to be important in the penetration of substrata such as resilient denture liners and host epithelium. It has been suggested that hyphal production also enhances adhesion and survival of Candida on host and denture surfaces. Surface roughness, in addition, can enhance adhesion where stronger interactions occur between cells and surface features of similar dimensions. The purpose of this study was to assess the development of hyphal and blastospore biofilms on abraded denture acrylic resin specimens and measure the ease of removal of these biofilms. Biofilms were grown for 48 hours on abraded 1-cm² denture acrylic resin specimens from adhered hyphal phase C albicans or from adhered blastospores. Subsequently, all specimens were stained with Calcofluor White and examined with confocal scanning laser microscopy. Biofilms were removed by vortex mixing in sterile phosphate buffered saline solution. Removed cells were filtered (0.2-μm pore size). Filters were dried at 37°C for 24 hours for dry weight measurements. Any cells that remained on the acrylic resin specimens were stained with 0.03% acridine orange and examined with epifluorescence microscopy. Biofilms grown from both cell types contained all morphologic forms of C albicans. Although the underlying surface topography did not affect the amount of biofilm produced, biofilms grown from hyphal phase Candida were visibly thicker and had greater biomass (P<.05). These biofilms were less easily removed from the denture acrylic resin, especially in the case of rougher surfaces, evidenced by the higher numbers of retained cells (P≤.05). The presence of hyphae in early Candida biofilms increased biofilm mass and resistance to removal. Increased surface roughness enhances retention of hyphae and yeast cells, and, therefore, will

  3. Acoustic Wave Monitoring of Biofilm Development in Porous Media

    EPA Science Inventory

    Biofilm development in porous media can result in significant changes to the hydrogeological properties of subsurface systems with implications for fluid flow and contaminant transport. As such, a number of numerical models and simulations have been developed in an attempt to qua...

  4. Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms

    PubMed Central

    Liu, Sze-Wei; Myroforidis, Helen; Zalizniak, Ilya; Palamara, Joseph E. A.; Huq, N. Laila; Reynolds, Eric C.

    2016-01-01

    Glass ionomer cements (GIC) are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm) formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge. PMID:27589264

  5. Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms.

    PubMed

    Dashper, Stuart G; Catmull, Deanne V; Liu, Sze-Wei; Myroforidis, Helen; Zalizniak, Ilya; Palamara, Joseph E A; Huq, N Laila; Reynolds, Eric C

    2016-01-01

    Glass ionomer cements (GIC) are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm) formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge.

  6. Characteristics of microbial community involved in early biofilms formation under the influence of wastewater treatment plant effluent.

    PubMed

    Peng, Yuke; Li, Jie; Lu, Junling; Xiao, Lin; Yang, Liuyan

    2018-04-01

    Effluents from wastewater treatment plants (WWTPs) containing microorganisms and residual nutrients can influence the biofilm formation. Although the process and mechanism of bacterial biofilm formation have been well characterized, little is known about the characteristics and interaction of bacteria, archaea and eukaryotes in the early colonization, especially under the influence of WWTP effluent. The aim of this study was to characterize the important bacterial, archaeal and eukaryotic species in the early stage of biofilm formation downstream of the WWTP outlet. Water and biofilm samples were collected 24 and 48hr after the deposition of bio-cords in the stream. Illumina Miseq sequencing of the 16S and 18S rDNA showed that, among the three domains, the bacterial biofilm community had the largest alpha and beta diversity. The early bacterial colonizers appeared to be "biofilm-specific", with only a few dominant operational taxonomic units (OTUs) shared between the biofilm and the ambient water environment. Alpha-proteobacteria and Ciliophora tended to dominate the bacterial and eukaryotic communities, respectively, of the early biofilm already at 24hr, whereas archaea played only a minor role during the early stage of colonization. The network analysis showed that the three domains of microbial community connected highly during the early colonization and it might be a characteristic of the microbial communities in the biofilm formation process where co-occurrence relationships could drive coexistence and diversity maintenance within the microbial communities. Copyright © 2017. Published by Elsevier B.V.

  7. Application of two component biodegradable carriers in a particle-fixed biofilm airlift suspension reactor: development and structure of biofilms.

    PubMed

    Hille, Andrea; He, Mei; Ochmann, Clemens; Neu, Thomas R; Horn, Harald

    2009-01-01

    Two component biodegradable carriers for biofilm airlift suspension (BAS) reactors were investigated with respect to development of biofilm structure and oxygen transport inside the biofilm. The carriers were composed of PHB (polyhydroxybutyrate), which is easily degradable and PCL (caprolactone), which is less easily degradable by heterotrophic microorganisms. Cryosectioning combined with classical light microscopy and CLSM was used to identify the surface structure of the carrier material over a period of 250 days of biofilm cultivation in an airlift reactor. Pores of 50 to several hundred micrometers depth are formed due to the preferred degradation of PHB. Furthermore, microelectrode studies show the transport mechanism for different types of biofilm structures, which were generated under different substrate conditions. At high loading rates, the growth of a rather loosely structured biofilm with high penetration depths of oxygen was found. Strong changes of substrate concentration during fed-batch mode operation of the reactor enhance the growth of filamentous biofilms on the carriers. Mass transport in the outer regions of such biofilms was mainly driven by advection.

  8. Disturbance Frequency Determines Morphology and Community Development in Multi-Species Biofilm at the Landscape Scale

    PubMed Central

    Milferstedt, Kim; Santa-Catalina, Gaëlle; Godon, Jean-Jacques; Escudié, Renaud; Bernet, Nicolas

    2013-01-01

    Many natural and engineered biofilm systems periodically face disturbances. Here we present how the recovery time of a biofilm between disturbances (expressed as disturbance frequency) shapes the development of morphology and community structure in a multi-species biofilm at the landscape scale. It was hypothesized that a high disturbance frequency favors the development of a stable adapted biofilm system while a low disturbance frequency promotes a dynamic biofilm response. Biofilms were grown in laboratory-scale reactors over a period of 55-70 days and exposed to the biocide monochloramine at two frequencies: daily or weekly pulse injections. One untreated reactor served as control. Biofilm morphology and community structure were followed on comparably large biofilm areas at the landscape scale using automated image analysis (spatial gray level dependence matrices) and community fingerprinting (single-strand conformation polymorphisms). We demonstrated that a weekly disturbed biofilm developed a resilient morphology and community structure. Immediately after the disturbance, the biofilm simplified but recovered its initial complex morphology and community structure between two biocide pulses. In the daily treated reactor, one organism largely dominated a morphologically simple and stable biofilm. Disturbances primarily affected the abundance distribution of already present bacterial taxa but did not promote growth of previously undetected organisms. Our work indicates that disturbances can be used as lever to engineer biofilms by maintaining a biofilm between two developmental states. PMID:24303024

  9. The ``Swiss cheese'' instability of bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Jang, Hongchul; Rusconi, Roberto; Stocker, Roman

    2012-11-01

    Bacteria often adhere to surfaces, where they develop polymer-encased communities (biofilms) that display dramatic resistance to antibiotic treatment. A better understanding of cell detachment from biofilms may lead to novel strategies for biofilm disruption. Here we describe a new detachment mode, whereby a biofilm develops a nearly regular array of ~50-100 μm holes. Using surface-treated microfluidic devices, we create biofilms of controlled shape and size. After the passage of an air plug, the break-up of the residual thin liquid film scrapes and rearranges bacteria on the surface, such that a ``Swiss cheese'' pattern is left in the residual biofilm. Fluorescent staining of the polymeric matrix (EPS) reveals that resistance to cell dislodgement correlates with local biofilm age, early settlers having had more time to hunker down. Because few survivors suffice to regrow a biofilm, these results point at the importance of considering microscale heterogeneity in assessing the effectiveness of biofilm removal strategies.

  10. Observations on the development of the crystalline bacterial biofilms that encrust and block Foley catheters.

    PubMed

    Stickler, D J; Morgan, S D

    2008-08-01

    The care of many patients undergoing long-term bladder catheterisation is complicated when the flow of urine through the catheter is blocked by encrustation. The problem results from infection by urease-producing bacteria, especially Proteus mirabilis, and the subsequent formation of crystalline biofilms on the catheter. The aim of this study was to discover how P. mirabilis initiates the development of these crystalline biofilms. The early stages in the formation of the biofilms were observed on a range of Foley catheters in a laboratory model of the catheterised bladder. Scanning electron micrographs revealed that when all-silicone, silicone-coated latex, hydrogel-coated latex, hydrogel/silver-coated latex and nitrofurazone silicone catheters were inserted into bladder models containing P. mirabilis and alkaline urine, their surfaces were rapidly coated with a microcrystalline foundation layer. X-ray microanalysis showed that this material was composed of calcium phosphate. Bacterial colonisation of the foundation layer followed and by 18h the catheters were encrusted by densely populated crystalline P. mirabilis biofilms. These observations have important implications for the development of encrustation-resistant catheters. In the case of silver catheters for example, bacterial cells can attach to the crystalline foundation layer and continue to grow, protected from contact with the underlying silver. If antimicrobials are to be incorporated into catheters to prevent encrustation, it is important that they diffuse into the urine and prevent the rise in pH that triggers crystal formation.

  11. Bacterial community dynamics during the early stages of biofilm formation in a chlorinated experimental drinking water distribution system: implications for drinking water discolouration.

    PubMed

    Douterelo, I; Sharpe, R; Boxall, J

    2014-07-01

    To characterize bacterial communities during the early stages of biofilm formation and their role in water discolouration in a fully representative, chlorinated, experimental drinking water distribution systems (DWDS). Biofilm development was monitored in an experimental DWDS over 28 days; subsequently the system was disturbed by raising hydraulic conditions to simulate pipe burst, cleaning or other system conditions. Biofilm cell cover was monitored by fluorescent microscopy and a fingerprinting technique used to assess changes in bacterial community. Selected samples were analysed by cloning and sequencing of the 16S rRNA gene. Fingerprinting analysis revealed significant changes in the bacterial community structure over time (P < 0·05). Cell coverage increased over time accompanied by an increase in bacterial richness and diversity. Shifts in the bacterial community structure were observed along with an increase in cell coverage, bacterial richness and diversity. Species related to Pseudomonas spp. and Janthinobacterium spp. dominated the process of initial attachment. Based on fingerprinting results, the hydraulic regimes did not affect the bacteriological composition of biofilms, but they did influence their mechanical stability. This study gives a better insight into the early stages of biofilm formation in DWDS and will contribute to the improvement of management strategies to control the formation of biofilms and the risk of discolouration. © 2014 The Authors. published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  12. Bacterial community dynamics during the early stages of biofilm formation in a chlorinated experimental drinking water distribution system: implications for drinking water discolouration

    PubMed Central

    Douterelo, I; Sharpe, R; Boxall, J

    2014-01-01

    Aims To characterize bacterial communities during the early stages of biofilm formation and their role in water discolouration in a fully representative, chlorinated, experimental drinking water distribution systems (DWDS). Methods and Results Biofilm development was monitored in an experimental DWDS over 28 days; subsequently the system was disturbed by raising hydraulic conditions to simulate pipe burst, cleaning or other system conditions. Biofilm cell cover was monitored by fluorescent microscopy and a fingerprinting technique used to assess changes in bacterial community. Selected samples were analysed by cloning and sequencing of the 16S rRNA gene. Fingerprinting analysis revealed significant changes in the bacterial community structure over time (P < 0·05). Cell coverage increased over time accompanied by an increase in bacterial richness and diversity. Conclusions Shifts in the bacterial community structure were observed along with an increase in cell coverage, bacterial richness and diversity. Species related to Pseudomonas spp. and Janthinobacterium spp. dominated the process of initial attachment. Based on fingerprinting results, the hydraulic regimes did not affect the bacteriological composition of biofilms, but they did influence their mechanical stability. Significance and Importance of the Study This study gives a better insight into the early stages of biofilm formation in DWDS and will contribute to the improvement of management strategies to control the formation of biofilms and the risk of discolouration. PMID:24712449

  13. Cannibalism enhances biofilm development in Bacillus subtilis.

    PubMed

    López, Daniel; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2009-11-01

    Cannibalism is a mechanism to delay sporulation in Bacillus subtilis. Cannibal cells express the skf and sdp toxin systems to lyse a fraction of their sensitive siblings. The lysed cells release nutrients that serve to feed the community, effectively delaying spore formation. Here we provide evidence that the subpopulation of cells that differentiates into cannibals is the same subpopulation that produces the extracellular matrix that holds cells together in biofilms. Cannibalism and matrix formation are both triggered in response to the signalling molecule surfactin. Nutrients released by the cannibalized cells are preferentially used by matrix-producing cells, as they are the only cells expressing resistance to the Skf and Sdp toxins. As a result this subpopulation increases in number and matrix production is enhanced when cannibalism toxins are produced. The cannibal/matrix-producing subpopulation is also generated in response to antimicrobials produced by other microorganisms and may thus constitute a defense mechanism to protect B. subtilis from the action of antibiotics in natural settings.

  14. Rapid Succession within the Veillonella Population of a Developing Human Oral Biofilm In Situ

    PubMed Central

    Palmer, Robert J.; Diaz, Patricia I.; Kolenbrander, Paul E.

    2006-01-01

    Streptococci are the primary component of the multispecies oral biofilm known as supragingival dental plaque; they grow by fermentation of sugars to organic acids, e.g., lactic acid. Veillonellae, a ubiquitous component of early plaque, are unable to use sugars; they ferment organic acids, such as lactate, to a mixture of shorter-chain-length acids, CO2, and hydrogen. Certain veillonellae bind to (coaggregate with) streptococci in vitro. We show that, between 4 and 8 hours into plaque development, the dominant strains of Veillonella change in their phenotypic characteristics (coaggregation and antibody reactivity) as well as in their genotypic characteristics (16S RNA gene sequences as well as strain level fingerprint patterns). This succession is coordinated with the development of mixed-species bacterial colonies. Changes in community structure can occur very rapidly in natural biofilm development, and we suggest that this process may influence evolution within this ecosystem. PMID:16707703

  15. Gene Transfer Efficiency in Gonococcal Biofilms: Role of Biofilm Age, Architecture, and Pilin Antigenic Variation.

    PubMed

    Kouzel, Nadzeya; Oldewurtel, Enno R; Maier, Berenike

    2015-07-01

    Extracellular DNA is an important structural component of many bacterial biofilms. It is unknown, however, to which extent external DNA is used to transfer genes by means of transformation. Here, we quantified the acquisition of multidrug resistance and visualized its spread under selective and nonselective conditions in biofilms formed by Neisseria gonorrhoeae. The density and architecture of the biofilms were controlled by microstructuring the substratum for bacterial adhesion. Horizontal transfer of antibiotic resistance genes between cocultured strains, each carrying a single resistance, occurred efficiently in early biofilms. The efficiency of gene transfer was higher in early biofilms than between planktonic cells. It was strongly reduced after 24 h and independent of biofilm density. Pilin antigenic variation caused a high fraction of nonpiliated bacteria but was not responsible for the reduced gene transfer at later stages. When selective pressure was applied to dense biofilms using antibiotics at their MIC, the double-resistant bacteria did not show a significant growth advantage. In loosely connected biofilms, the spreading of double-resistant clones was prominent. We conclude that multidrug resistance readily develops in early gonococcal biofilms through horizontal gene transfer. However, selection and spreading of the multiresistant clones are heavily suppressed in dense biofilms. Biofilms are considered ideal reaction chambers for horizontal gene transfer and development of multidrug resistances. The rate at which genes are exchanged within biofilms is unknown. Here, we quantified the acquisition of double-drug resistance by gene transfer between gonococci with single resistances. At early biofilm stages, the transfer efficiency was higher than for planktonic cells but then decreased with biofilm age. The surface topography affected the architecture of the biofilm. While the efficiency of gene transfer was independent of the architecture, spreading of

  16. On the role of extracellular polymeric substances during early stages of Xylella fastidiosa biofilm formation.

    PubMed

    Lorite, Gabriela S; de Souza, Alessandra A; Neubauer, Daniel; Mizaikoff, Boris; Kranz, Christine; Cotta, Mônica A

    2013-02-01

    The structural integrity and protection of bacterial biofilms are intrinsically associated with a matrix of extracellular polymeric substances (EPS) produced by the bacteria cells. However, the role of these substances during biofilm adhesion to a surface remains largely unclear. In this study, the influence of EPS on Xylella fastidiosa biofilm formation was investigated. This bacterium is associated with economically important plant diseases; it presents a slow growth rate and thus allows us to pinpoint more precisely the early stages of cell-surface adhesion. Scanning electron microscopy and atomic force microscopy show evidence of EPS production in such early stages and around individual bacteria cells attached to the substrate surface even a few hours after inoculation. In addition, EPS formation was investigated via attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FTIR). To this end, X. fastidiosa cells were inoculated within an ATR liquid cell assembly. IR-ATR spectra clearly reveal EPS formation already during the early stages of X. fastidiosa biofilm formation, thereby providing supporting evidence for the hypothesis of the relevance of the EPS contribution to the adhesion process. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Aloe-emodin inhibits Staphylococcus aureus biofilms and extracellular protein production at the initial adhesion stage of biofilm development.

    PubMed

    Xiang, Hua; Cao, Fengjiao; Ming, Di; Zheng, Yanyang; Dong, Xiaoyun; Zhong, Xiaobo; Mu, Dan; Li, Bangbang; Zhong, Ling; Cao, Junjie; Wang, Lin; Ma, Hongxia; Wang, Tiedong; Wang, Dacheng

    2017-09-01

    Staphylococcus aureus (S. aureus) biofilms are clinically serious and play a critical role in the persistence of chronic infections due to their ability to resist antibiotics. The inhibition of biofilm formation is viewed as a new strategy for the prevention of S. aureus infections. Here, we demonstrated that minimum inhibitory concentrations (MICs) of aloe-emodin exhibited no bactericidal activity against S. aureus but affected S. aureus biofilm development in a dose-dependent manner. Further studies indicated that aloe-emodin specifically inhibits the initial adhesion and proliferation stages of S. aureus biofilm development. Scanning electron microscopy (SEM) indicated that the S. aureus ATCC29213 biofilm extracellular matrix is mainly composed of protein. Laser scanning confocal microscope assays revealed that aloe-emodin treatment primarily inhibited extracellular protein production. Moreover, the Congo red assay showed that aloe-emodin also reduced the accumulation of polysaccharide intercellular adhesin (PIA) on the cell surface. These findings will provide new insights into the mode of action of aloe-emodin in the treatment of infections by S. aureus biofilms.

  18. Multigenerational memory and adaptive adhesion in early bacterial biofilm communities.

    PubMed

    Lee, Calvin K; de Anda, Jaime; Baker, Amy E; Bennett, Rachel R; Luo, Yun; Lee, Ernest Y; Keefe, Joshua A; Helali, Joshua S; Ma, Jie; Zhao, Kun; Golestanian, Ramin; O'Toole, George A; Wong, Gerard C L

    2018-04-24

    Using multigenerational, single-cell tracking we explore the earliest events of biofilm formation by Pseudomonas aeruginosa During initial stages of surface engagement (≤20 h), the surface cell population of this microbe comprises overwhelmingly cells that attach poorly (∼95% stay <30 s, well below the ∼1-h division time) with little increase in surface population. If we harvest cells previously exposed to a surface and direct them to a virgin surface, we find that these surface-exposed cells and their descendants attach strongly and then rapidly increase the surface cell population. This "adaptive," time-delayed adhesion requires determinants we showed previously are critical for surface sensing: type IV pili (TFP) and cAMP signaling via the Pil-Chp-TFP system. We show that these surface-adapted cells exhibit damped, coupled out-of-phase oscillations of intracellular cAMP levels and associated TFP activity that persist for multiple generations, whereas surface-naïve cells show uncorrelated cAMP and TFP activity. These correlated cAMP-TFP oscillations, which effectively impart intergenerational memory to cells in a lineage, can be understood in terms of a Turing stochastic model based on the Pil-Chp-TFP framework. Importantly, these cAMP-TFP oscillations create a state characterized by a suppression of TFP motility coordinated across entire lineages and lead to a drastic increase in the number of surface-associated cells with near-zero translational motion. The appearance of this surface-adapted state, which can serve to define the historical classification of "irreversibly attached" cells, correlates with family tree architectures that facilitate exponential increases in surface cell populations necessary for biofilm formation.

  19. Application of flowcell technology for monitoring biofilm development and cellulose degradation in leachate and rumen systems.

    PubMed

    O'Sullivan, C; Burrell, P C; Pasmore, M; Clarke, W P; Blackall, L L

    2009-01-01

    In this study, a flat plate flowcell was modified to provide a reactor system that could maintain anaerobic, cellulolytic biofilms while providing the data needed to carry out a chemical oxygen demand mass balance to determine the cellulose digestion rates. The results showed that biofilms could be observed to grow and develop on cellulose particle surfaces from both anaerobic digester leachate and rumen fluid inocula. The observations suggest that the architecture of rumen and leachate derived biofilms may be significantly different with rumen derived organisms forming stable, dense biofilms while the leachate derived organisms formed less tenacious surface attachments. This experiment has indicated the utility of flowcells in the study of anaerobic biofilms.

  20. Phenazine-1-Carboxylic Acid Promotes Bacterial Biofilm Development via Ferrous Iron Acquisition▿†

    PubMed Central

    Wang, Yun; Wilks, Jessica C.; Danhorn, Thomas; Ramos, Itzel; Croal, Laura; Newman, Dianne K.

    2011-01-01

    The opportunistic pathogen Pseudomonas aeruginosa forms biofilms, which render it more resistant to antimicrobial agents. Levels of iron in excess of what is required for planktonic growth have been shown to promote biofilm formation, and therapies that interfere with ferric iron [Fe(III)] uptake combined with antibiotics may help treat P. aeruginosa infections. However, use of these therapies presumes that iron is in the Fe(III) state in the context of infection. Here we report the ability of phenazine-1-carboxylic acid (PCA), a common phenazine made by all phenazine-producing pseudomonads, to help P. aeruginosa alleviate Fe(III) limitation by reducing Fe(III) to ferrous iron [Fe(II)]. In the presence of PCA, a P. aeruginosa mutant lacking the ability to produce the siderophores pyoverdine and pyochelin can still develop into a biofilm. As has been previously reported (P. K. Singh, M. R. Parsek, E. P. Greenberg, and M. J. Welsh, Nature 417:552-555, 2002), biofilm formation by the wild type is blocked by subinhibitory concentrations of the Fe(III)-binding innate-immunity protein conalbumin, but here we show that this blockage can be rescued by PCA. FeoB, an Fe(II) uptake protein, is required for PCA to enable this rescue. Unlike PCA, the phenazine pyocyanin (PYO) can facilitate biofilm formation via an iron-independent pathway. While siderophore-mediated Fe(III) uptake is undoubtedly important at early stages of infection, these results suggest that at later stages of infection, PCA present in infected tissues may shift the redox equilibrium between Fe(III) and Fe(II), thereby making iron more bioavailable. PMID:21602354

  1. (Super)hydrophobic coating of orthodontic dental devices and reduction of early oral biofilm retention.

    PubMed

    Oliveira, Adauê S; Kaizer, Marina R; Azevedo, Marina S; Ogliari, Fabrício A; Cenci, Maximiliano S; Moraes, Rafael R

    2015-11-03

    This study was designed to apply (super)hydrophobic crosslinked coatings by means of a sol-gel process on the surface of orthodontic devices and investigate the potential effect of these coatings in reducing the early retention of oral biofilm. Two organosilane-based hydrophobic solutions (HSs) were prepared containing hexadecyltrimethoxysilane diluted in ethanol (HS1) or 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane diluted in dimethyl sulfoxide (HS2). Stainless steel plates and ceramic discs were coated with HS1 or HS2 and heated at 150 °C for 2 h for condensation of a crosslinked SiO x network. Organosilane coatings were applied after previous, or no, surface sandblasting. Commercial stainless steel and ceramic brackets were used to evaluate oral biofilm retention after 12 h or 24 h of biofilm growth, using a microcosm model with human saliva as the inoculum. Surface roughness analysis (Ra, μm) indicated that sandblasting associated with organosilane coatings increased roughness for stainless steel brackets only. Analysis of the water contact angle showed that the stainless steel surface treated with HS1 was hydrophobic (~123°), while the ceramic surface treated with HS2 was superhydrophobic (~155°). Biofilm retention after 24 h was significantly lower in groups treated with hydrophobic coatings. An exponential reduction in biofilm accumulation was associated with increased water contact angle for both stainless steel and ceramic at 24 h. Application of (super)hydrophobic coatings on the surface of stainless steel and ceramic orthodontic devices might reduce the retention of oral biofilm.

  2. In vivo Candida glabrata biofilm development on foreign bodies in a rat subcutaneous model.

    PubMed

    Kucharíková, Soňa; Neirinck, Bram; Sharma, Nidhi; Vleugels, Jef; Lagrou, Katrien; Van Dijck, Patrick

    2015-03-01

    Biofilm studies have been mostly dedicated to the major human fungal pathogen Candida albicans, whereas much less is known about this virulence factor in Candida glabrata, certainly under in vivo conditions. This study provides a deeper understanding of the biofilm development of C. glabrata, its architecture and susceptibility profile to fluconazole and echinocandins. In vitro and in vivo C. glabrata biofilms were developed inside serum-coated triple-lumen catheters placed in 24-well polystyrene plates or implanted subcutaneously in the back of a rat, respectively. Scanning electron microscopy and confocal scanning laser microscopy were used to visualize the biofilm architecture. Quantitative real-time PCR was used to demonstrate the expression profile of EPA1, EPA3, EPA6 and AWP1-AWP7 during in vivo biofilm formation. Mature biofilms were observed within the first 48 h and the amount of biofilm reached its maximum by 6 days. Architecturally, mature C. glabrata biofilms consisted of a thick network of yeast cells embedded in an extracellular matrix. Moreover, in vivo biofilms were susceptible to echinocandin drugs, whereas fluconazole remained ineffective. Gene expression profiling revealed that EPA3, EPA6, AWP2, AWP3 and AWP5 were up-regulated in in vivo biofilms compared with in vitro biofilms. C. glabrata is a unique microorganism, which, despite the lack of transition to the hyphal form, formed thick biofilms inside foreign bodies in vivo. To our knowledge, this is the first study that has described in vivo C. glabrata biofilm development and its architectural changes in detail and provides an insight into the susceptibility profile, as well as the gene expression machinery, of biofilm-associated infections. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Visualizing the Effects of Sputum on Biofilm Development Using a Chambered Coverglass Model.

    PubMed

    Beaudoin, Trevor; Kennedy, Sarah; Yau, Yvonne; Waters, Valerie

    2016-12-14

    Biofilms consist of groups of bacteria encased in a self-secreted matrix. They play an important role in industrial contamination as well as in the development and persistence of many health related infections. One of the most well described and studied biofilms in human disease occurs in chronic pulmonary infection of cystic fibrosis patients. When studying biofilms in the context of the host, many factors can impact biofilm formation and development. In order to identify how host factors may affect biofilm formation and development, we used a static chambered coverglass method to grow biofilms in the presence of host-derived factors in the form of sputum supernatants. Bacteria are seeded into chambers and exposed to sputum filtrates. Following 48 hr of growth, biofilms are stained with a commercial biofilm viability kit prior to confocal microscopy and analysis. Following image acquisition, biofilm properties can be assessed using different software platforms. This method allows us to visualize key properties of biofilm growth in presence of different substances including antibiotics.

  4. Adhesion forces of biofilms developed in vitro from clinical strains of skin wounds.

    PubMed

    Alvarado-Gomez, Elizabeth; Perez-Diaz, Mario; Valdez-Perez, Donato; Ruiz-Garcia, Jaime; Magaña-Aquino, Martin; Martinez-Castañon, Gabriel; Martinez-Gutierrez, Fidel

    2018-01-01

    A biofilm is a very complex consortium formed by a mix of different microorganisms, which have become an important health problem, because its formation is a resistance mechanism used by bacteria against antibiotics or the immune system. In this work, we show differences between some physicochemical properties of biofilms in mono- and multi-species, formed by bacteria from clinical samples of infected chronic wounds. Of the most prevalent bacteria in wounds, two mono- and one multi-species biofilms were developed in vitro by Drip Flow Reactor: one biofilm was developed by S. aureus, other by P. aeruginosa, and a third one by the mix of both strains. With these biofilms, we determined microbial growth by plate counting, and their physicochemical characterization by Atomic Force Microscopy, Raman Micro-Spectroscopy and Scanning Electron Microscopy. We found that the viability of S. aureus was less than P. aeruginosa in multi-species biofilm. However, the adhesion force of S. aureus is much higher than that of P. aeruginosa, but it decreased while that of P. aeruginosa increased in the multi-species biofilm. In addition, we found free pyrimidines functional groups in the P. aeruginosa biofilm and its mix with S. aureus. Surprisingly, each bacterium alone formed single layer biofilms, while the mix bacteria formed a multilayer biofilm at the same observation time. Our results show the necessity to evaluate biofilms from clinically isolated strains and have a better understanding of the adhesion forces of bacteria in biofilm multispecies, which could be of prime importance in developing more effective treatments against biofilm formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Extracellular matrix-associated proteins form an integral and dynamic system during Pseudomonas aeruginosa biofilm development.

    PubMed

    Zhang, Weipeng; Sun, Jin; Ding, Wei; Lin, Jinshui; Tian, Renmao; Lu, Liang; Liu, Xiaofen; Shen, Xihui; Qian, Pei-Yuan

    2015-01-01

    Though the essential role of extracellular matrix in biofilm development has been extensively documented, the function of matrix-associated proteins is elusive. Determining the dynamics of matrix-associated proteins would be a useful way to reveal their functions in biofilm development. Therefore, we applied iTRAQ-based quantitative proteomics to evaluate matrix-associated proteins isolated from different phases of Pseudomonas aeruginosa ATCC27853 biofilms. Among the identified 389 proteins, 54 changed their abundance significantly. The increased abundance of stress resistance and nutrient metabolism-related proteins over the period of biofilm development was consistent with the hypothesis that biofilm matrix forms micro-environments in which cells are optimally organized to resist stress and use available nutrients. Secreted proteins, including novel putative effectors of the type III secretion system were identified, suggesting that the dynamics of pathogenesis-related proteins in the matrix are associated with biofilm development. Interestingly, there was a good correlation between the abundance changes of matrix-associated proteins and their expression. Further analysis revealed complex interactions among these modulated proteins, and the mutation of selected proteins attenuated biofilm development. Collectively, this work presents the first dynamic picture of matrix-associated proteins during biofilm development, and provides evidences that the matrix-associated proteins may form an integral and well regulated system that contributes to stress resistance, nutrient acquisition, pathogenesis and the stability of the biofilm.

  6. Emerging interactions between matrix components during biofilm development.

    PubMed

    Payne, David E; Boles, Blaise R

    2016-02-01

    Bacterial cells are most often found in the form of multicellular aggregates commonly referred to as biofilms. Biofilms offer their member cells several benefits, such as resistance to killing by antimicrobials and predation. During biofilm formation there is a production of extracellular substances that, upon assembly, constitute an extracellular matrix. The ability to generate a matrix encasing the microbial cells is a common feature of biofilms, but there is diversity in matrix composition and in interaction between matrix components. The different components of bacterial biofilm extracellular matrixes, known as matrix interactions, and resulting implications are discussed in this review.

  7. Bacterial community of biofilms developed under different water supply conditions in a distribution system.

    PubMed

    Sun, Huifang; Shi, Baoyou; Bai, Yaohui; Wang, Dongsheng

    2014-02-15

    In order to understand the bacterial community characteristics of biofilms developed under different finished water supply histories in drinking water distribution systems (DWDS), biofilm samples on different type of iron corrosion scales in a real DWDS were collected and systematically investigated using 454 pyrosequencing of 16S rRNA gene. The richness and diversity estimators showed that biofilms formed in DWDS transporting finished groundwater (GW) had the lowest level of bacterial diversity. From phylum to genus level, the dominant bacterial groups found in the biofilms under finished surface water (SW) and GW conditions were distinct. Proteobacteria was the dominant group in all biofilm samples (in the range of 40%-97%), but was relatively higher in biofilms with GW. The relative abundance of Firmicutes in biofilms with SW (28%-35%) was significantly higher (p<0.01) than that in biofilms with GW (0.5%-2.88%). Statistical analysis (Spearman's rank) revealed that alkalinity and chemical oxygen demand (CODMn) positively correlated with the relative abundance of Proteobacteria and Firmicutes, respectively. The abundance of sequences affiliated to iron-reducing bacteria (mainly Bacillus) and iron-oxidizing bacteria (mainly Acidovorax) were relatively higher in biofilms with SW, which might contribute to the formation of much thicker or tubercle-formed corrosion scales under SW supply condition. Several potential opportunistic pathogens, such as Burkholderia fungorum, Mycobacterium neoaurum, Mycobacterium frederiksbergense were detected in the biofilms. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Understanding the fundamental mechanisms of biofilms development and dispersal: BIAM (Biofilm Intensity and Architecture Measurement), a new tool for studying biofilms as a function of their architecture and fluorescence intensity.

    PubMed

    Baudin, Marine; Cinquin, Bertrand; Sclavi, Bianca; Pareau, Dominique; Lopes, Filipa

    2017-09-01

    Confocal laser scanning microscopy (CLSM) is one of the most relevant technologies for studying biofilms in situ. Several tools have been developed to investigate and quantify the architecture of biofilms. However, an approach to quantify correctly the evolution of intensity of a fluorescent signal as a function of the structural parameters of a biofilm is still lacking. Here we present a tool developed in the ImageJ open source software that can be used to extract both structural and fluorescence intensity from CLSM data: BIAM (Biofilm Intensity and Architecture Measurement). This is of utmost significance when studying the fundamental mechanisms of biofilm growth, differentiation and development or when aiming to understand the effect of external molecules on biofilm phenotypes. In order to provide an example of the potential of such a tool in this study we focused on biofilm dispersion. cis-2-Decenoic acid (CDA) is a molecule known to induce biofilm dispersion of multiple bacterial species. The mechanisms by which CDA induces dispersion are still poorly understood. To investigate the effects of CDA on biofilms, we used a reporter strain of Escherichia coli (E. coli) that expresses the GFPmut2 protein under control of the rrnBP1 promoter. Experiments were done in flow cells and image acquisition was made with CLSM. Analysis carried out using the new tool, BIAM, indicates that CDA affects the fluorescence intensity of the biofilm structures as well as biofilm architectures. Indeed, our results demonstrate that CDA removes more than 35% of biofilm biovolume and suggest that it results in an increase of the biofilm's mean fluorescence intensity (MFI) by more than 26% compared to the control biofilm in the absence of CDA. Copyright © 2017. Published by Elsevier B.V.

  9. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo.

    PubMed

    Hwang, Geelsu; Liu, Yuan; Kim, Dongyeop; Li, Yong; Krysan, Damian J; Koo, Hyun

    2017-06-01

    Candida albicans is frequently detected with heavy infection by Streptococcus mutans in plaque-biofilms from children with early-childhood caries (ECC). This cross-kingdom biofilm contains an extensive matrix of extracellular α-glucans that is produced by an exoenzyme (GtfB) secreted by S. mutans. Here, we report that mannans located on the outer surface of C. albicans cell-wall mediates GtfB binding, enhancing glucan-matrix production and modulating bacterial-fungal association within biofilms formed in vivo. Using single-molecule atomic force microscopy, we determined that GtfB binds with remarkable affinity to mannans and to the C. albicans surface, forming a highly stable and strong bond (1-2 nN). However, GtfB binding properties to C. albicans was compromised in strains defective in O-mannan (pmt4ΔΔ) or N-mannan outer chain (och1ΔΔ). In particular, the binding strength of GtfB on och1ΔΔ strain was severely disrupted (>3-fold reduction vs. parental strain). In turn, the GtfB amount on the fungal surface was significantly reduced, and the ability of C. albicans mutant strains to develop mixed-species biofilms with S. mutans was impaired. This phenotype was independent of hyphae or established fungal-biofilm regulators (EFG1, BCR1). Notably, the mechanical stability of the defective biofilms was weakened, resulting in near complete biomass removal by shear forces. In addition, these in vitro findings were confirmed in vivo using a rodent biofilm model. Specifically, we observed that C. albicans och1ΔΔ was unable to form cross-kingdom biofilms on the tooth surface of rats co-infected with S. mutans. Likewise, co-infection with S. mutans defective in GtfB was also incapable of forming mixed-species biofilms. Taken together, the data support a mechanism whereby S. mutans-secreted GtfB binds to the mannan layer of C. albicans to promote extracellular matrix formation and their co-existence within biofilms. Enhanced understanding of GtfB-Candida interactions

  10. Development and pyrosequencing analysis of an in-vitro oral biofilm model.

    PubMed

    Kistler, James O; Pesaro, Manuel; Wade, William G

    2015-02-10

    Dental caries and periodontal disease are the commonest bacterial diseases of man and can result in tooth loss. The principal method of prevention is the mechanical removal of dental plaque augmented by active agents incorporated into toothpastes and mouthrinses. In-vitro assays that include complex oral bacterial biofilms are required to accurately predict the efficacy of novel active agents in vivo. The aim of this study was to develop an oral biofilm model using the Calgary biofilm device (CBD) seeded with a natural saliva inoculum and analysed by next generation sequencing. The specific objectives were to determine the reproducibility and stability of the model by comparing the composition of the biofilms over time derived from (i) the same volunteers at different time points, and (ii) different panels of volunteers. Pyrosequencing yielded 280,093 sequences with a mean length of 432 bases after filtering. A mean of 320 and 250 OTUs were detected in pooled saliva and biofilm samples, respectively. Principal coordinates analysis (PCoA) plots based on community membership and structure showed that replicate biofilm samples were highly similar and clustered together. In addition, there were no significant differences between biofilms derived from the same panel at different times using analysis of molecular variance (AMOVA). There were significant differences between biofilms from different panels (AMOVA, P < 0.002). PCoA revealed that there was a shift in biofilm composition between seven and 14 days (AMOVA, P < 0.001). Veillonella parvula, Veillonella atypica/dispar/parvula and Peptostreptococcus stomatis were the predominant OTUs detected in seven-day biofilms, whilst Prevotella oralis, V. parvula and Streptococcus constellatus were predominant in 14-day biofilms. Diverse oral biofilms were successfully grown and maintained using the CBD. Biofilms derived from the same panel of volunteers were highly reproducible. This model could be used to screen both

  11. From Biology to Drug Development: New Approaches to Combat the Threat of Fungal Biofilms

    PubMed Central

    Pierce, Christopher G.; Srinivasan, Anand; Ramasubramanian, Anand K.; López-Ribot, José L.

    2015-01-01

    Fungal infections constitute a major threat to an escalating number of critically ill patients. Fungi are eukaryotic organisms and, as such, there is a limited armamentarium of antifungal drugs, leading to high mortality rates. Moreover, fungal infections are often associated with the formation of biofilms, which contribute to virulence and further complicate treatment due to the high level of antifungal drug resistance displayed by sessile cells within these microbial communities. Thus, the treatment of fungal infections associated with a biofilm aetiology represents a formidable and unmet clinical challenge. The increasing importance and awareness of fungal biofilms is reflected by the fact that this is now an area of very active research. Studies in the last decade have provided important insights into fungal biofilm biology, physiology and pathology, as well as into the molecular basis of biofilm resistance. Here we discuss how this accumulated knowledge may inform the development of new anti-biofilm strategies and therapeutics that are urgently needed. PMID:26185082

  12. Continuum and discrete approach in modeling biofilm development and structure: a review.

    PubMed

    Mattei, M R; Frunzo, L; D'Acunto, B; Pechaud, Y; Pirozzi, F; Esposito, G

    2018-03-01

    The scientific community has recognized that almost 99% of the microbial life on earth is represented by biofilms. Considering the impacts of their sessile lifestyle on both natural and human activities, extensive experimental activity has been carried out to understand how biofilms grow and interact with the environment. Many mathematical models have also been developed to simulate and elucidate the main processes characterizing the biofilm growth. Two main mathematical approaches for biomass representation can be distinguished: continuum and discrete. This review is aimed at exploring the main characteristics of each approach. Continuum models can simulate the biofilm processes in a quantitative and deterministic way. However, they require a multidimensional formulation to take into account the biofilm spatial heterogeneity, which makes the models quite complicated, requiring significant computational effort. Discrete models are more recent and can represent the typical multidimensional structural heterogeneity of biofilm reflecting the experimental expectations, but they generate computational results including elements of randomness and introduce stochastic effects into the solutions.

  13. Microbial Surface Colonization and Biofilm Development in Marine Environments

    PubMed Central

    2015-01-01

    SUMMARY Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration. PMID:26700108

  14. Microbial Surface Colonization and Biofilm Development in Marine Environments.

    PubMed

    Dang, Hongyue; Lovell, Charles R

    2016-03-01

    Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. APPLICATIONS OF BIOTECHNOLOGY IN DEVELOPMENT OF BIOMATERIALS: NANOTECHNOLOGY AND BIOFILMS

    SciTech Connect

    Brigmon, R.; Berry, T.; Narayan, R.

    2010-11-29

    Biotechnology is the application of biological techniques to develop new tools and products for medicine and industry. Due to various properties including chemical stability, biocompatibility, and specific activity, e.g. antimicrobial properties, many new and novel materials are being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. Many of these materials are less than 100 nanometers in size. Nanotechnology is the engineering discipline encompassing designing, producing, testing, and using structures and devices less than 100 nanometers. One of the challenges associated with biomaterials is microbial contamination that can lead to infections. In recent work we have examinedmore » the functionalization of nanoporous biomaterials and antimicrobial activities of nanocrystalline diamond materials. In vitro testing has revealed little antimicrobial activity against Pseudomonas fluorescens bacteria and associated biofilm formation that enhances recalcitrance to antimicrobial agents including disinfectants and antibiotics. Laser scanning confocal microscopy studies further demonstrated properties and characteristics of the material with regard to biofilm formation.« less

  16. Development of bacterial biofilms in dairy processing lines.

    PubMed

    Austin, J W; Bergeron, G

    1995-08-01

    Adherence of bacteria to various milk contact sites was examined by scanning electron microscopy and transmission electron microscopy. New gaskets, endcaps, vacuum breaker plugs and pipeline inserts were installed in different areas in lines carrying either raw or pasteurized milk, and a routine schedule of cleaning-in-place and sanitizing was followed. Removed cleaned and sanitized gaskets were processed for scanning or transmission electron microscopy. Adherent bacteria were observed on the sides of gaskets removed from both pasteurized and raw milk lines. Some areas of Buna-n gaskets were colonized with a confluent layer of bacterial cells surrounded by an extensive amorphous matrix, while other areas of Buna-n gaskets showed a diffuse adherence over large areas of the surface. Most of the bacteria attached to polytetrafluoroethylene (PTFE or Teflon) gaskets were found in crevices created by insertion of the gasket into the pipeline. Examination of stainless steel endcaps, pipeline inserts, and PTFE vacuum breaker plugs did not reveal the presence of adherent bacteria. The results of this study indicate that biofilms developed on the sides of gaskets in spite of cleaning-in-place procedures. These biofilms may be a source of post-pasteurization contamination.

  17. Kinetic development of biofilm on NF membranes at the Méry-sur-Oise plant, France.

    PubMed

    Houari, Ahmed; Seyer, Damien; Kecili, Karima; Heim, Véronique; Martino, Patrick Di

    2013-01-01

    The kinetic formation of biofilms developing on nanofiltration (NF) membranes was studied for 2 years in the water production unit of Méry-sur-Oise, France. New membranes were set up in a pilot train integrated to the plant and autopsied after operation for 7, 80, 475 and 717 days. The biofouling layer was studied by confocal laser scanning microscope after 4',6-diamidino-2-phenyindole dihydrochloride and lectin staining, and by attenuated total reflectance-Fourier transform infrared spectroscopy and rheology experiments. Three stages of biofilm growth were discriminated: (1) the presence of sessile microcolonies embedded in an exopolymeric matrix (after filtration for seven days); (2) membrane coverage expansion through microcolony development and biofilm growth in three dimensions (up to 80 days filtration); and (3) biofilm maturation by densification (after filtration for 80-717 days). Biofilm maturation resulted in total coverage of the membrane surface and matrix residue diversification, development of the polysaccharide network, and the strengthening of matrix cohesion through viscosity and elasticity increases. The wettability and permeability of the fouled NF membranes decreased quickly and continuously throughout the biofilm development process. The longitudinal pressure drop (LPD) increased only after the biofilm reached a quantitative threshold. The decline in membrane permeability may be the result of contributions from many fouling mechanisms but the LPD was more substantially influenced by biofilm development.

  18. Development of an in vitro Assay, Based on the BioFilm Ring Test®, for Rapid Profiling of Biofilm-Growing Bacteria

    PubMed Central

    Di Domenico, Enea G.; Toma, Luigi; Provot, Christian; Ascenzioni, Fiorentina; Sperduti, Isabella; Prignano, Grazia; Gallo, Maria T.; Pimpinelli, Fulvia; Bordignon, Valentina; Bernardi, Thierry; Ensoli, Fabrizio

    2016-01-01

    Microbial biofilm represents a major virulence factor associated with chronic and recurrent infections. Pathogenic bacteria embedded in biofilms are highly resistant to environmental and chemical agents, including antibiotics and therefore difficult to eradicate. Thus, reliable tests to assess biofilm formation by bacterial strains as well as the impact of chemicals or antibiotics on biofilm formation represent desirable tools for a most effective therapeutic management and microbiological risk control. Current methods to evaluate biofilm formation are usually time-consuming, costly, and hardly applicable in the clinical setting. The aim of the present study was to develop and assess a simple and reliable in vitro procedure for the characterization of biofilm-producing bacterial strains for future clinical applications based on the BioFilm Ring Test® (BRT) technology. The procedure developed for clinical testing (cBRT) can provide an accurate and timely (5 h) measurement of biofilm formation for the most common pathogenic bacteria seen in clinical practice. The results gathered by the cBRT assay were in agreement with the traditional crystal violet (CV) staining test, according to the κ coefficient test (κ = 0.623). However, the cBRT assay showed higher levels of specificity (92.2%) and accuracy (88.1%) as compared to CV. The results indicate that this procedure offers an easy, rapid and robust assay to test microbial biofilm and a promising tool for clinical microbiology. PMID:27708625

  19. Antibacterial effect of dental adhesive containing dimethylaminododecyl methacrylate on the development of Streptococcus mutans biofilm.

    PubMed

    Wang, Suping; Zhang, Keke; Zhou, Xuedong; Xu, Ning; Xu, Hockin H K; Weir, Michael D; Ge, Yang; Wang, Shida; Li, Mingyun; Li, Yuqing; Xu, Xin; Cheng, Lei

    2014-07-18

    Antibacterial bonding agents and composites containing dimethylaminododecyl methacrylate (DMADDM) have been recently developed. The objectives of this study were to investigate the antibacterial effect of novel adhesives containing different mass fractions of DMADDM on Streptococcus mutans (S. mutans) biofilm at different developmental stages. Different mass fractions of DMADDM were incorporated into adhesives and S. mutans biofilm at different developmetal stages were analyzed by MTT assays, lactic acid measurement, confocal laser scanning microscopy and scanning electron microscopy observations. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm extracellular matrix. Dentin microtensile strengths were also measured. Cured adhesives containing DMADDM could greatly reduce metabolic activity and lactic acid production during the development of S. mutans biofilms (p < 0.05). In earlier stages of biofilm development, there were no significant differences of inhibitory effects between the 2.5% DMADDM and 5% DMADDM group. However, after 72 h, the anti-biofilm effects of adhesives containing 5% DMADDM were significantly stronger than any other group. Incorporation of DMADDM into adhesive did not adversely affect dentin bond strength. In conclusion, adhesives containing DMADDM inhibited the growth, lactic acid production and EPS metabolism of S. mutans biofilm at different stages, with no adverse effect on its dentin adhesive bond strength. The bonding agents have the potential to control dental biofilms and combat tooth decay, and DMADDM is promising for use in a wide range of dental adhesive systems and restoratives.

  20. Type 4 pili are dispensable for biofilm development in the cyanobacterium Synechococcus elongatus.

    PubMed

    Nagar, Elad; Zilberman, Shaul; Sendersky, Eleonora; Simkovsky, Ryan; Shimoni, Eyal; Gershtein, Diana; Herzberg, Moshe; Golden, Susan S; Schwarz, Rakefet

    2017-07-01

    The hair-like cell appendages denoted as type IV pili are crucial for biofilm formation in diverse eubacteria. The protein complex responsible for type IV pilus assembly is homologous with the type II protein secretion complex. In the cyanobacterium Synechococcus elongatus PCC 7942, the gene Synpcc7942_2071 encodes an ATPase homologue of type II/type IV systems. Here, we report that inactivation of Synpcc7942_2071 strongly affected the suite of proteins present in the extracellular milieu (exo-proteome) and eliminated pili observable by electron microscopy. These results support a role for this gene product in protein secretion as well as in pili formation. As we previously reported, inactivation of Synpcc7942_2071 enables biofilm formation and suppresses the planktonic growth of S. elongatus. Thus, pili are dispensable for biofilm development in this cyanobacterium, in contrast to their biofilm-promoting function in type IV pili-producing heterotrophic bacteria. Nevertheless, pili removal is not required for biofilm formation as evident by a piliated mutant of S. elongatus that develops biofilms. We show that adhesion and timing of biofilm development differ between the piliated and non-piliated strains. The study demonstrates key differences in the process of biofilm formation between cyanobacteria and well-studied type IV pili-producing heterotrophic bacteria. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Effect of nanoporous TiO2 coating and anodized Ca2+ modification of titanium surfaces on early microbial biofilm formation

    PubMed Central

    2011-01-01

    Background The soft tissue around dental implants forms a barrier between the oral environment and the peri-implant bone and a crucial factor for long-term success of therapy is development of a good abutment/soft-tissue seal. Sol-gel derived nanoporous TiO2 coatings have been shown to enhance soft-tissue attachment but their effect on adhesion and biofilm formation by oral bacteria is unknown. Methods We have investigated how the properties of surfaces that may be used on abutments: turned titanium, sol-gel nanoporous TiO2 coated surfaces and anodized Ca2+ modified surfaces, affect biofilm formation by two early colonizers of the oral cavity: Streptococcus sanguinis and Actinomyces naeslundii. The bacteria were detected using 16S rRNA fluorescence in situ hybridization together with confocal laser scanning microscopy. Results Interferometry and atomic force microscopy revealed all the surfaces to be smooth (Sa ≤ 0.22 μm). Incubation with a consortium of S. sanguinis and A. naeslundii showed no differences in adhesion between the surfaces over 2 hours. After 14 hours, the level of biofilm growth was low and again, no differences between the surfaces were seen. The presence of saliva increased the biofilm biovolume of S. sanguinis and A. naeslundii ten-fold compared to when saliva was absent and this was due to increased adhesion rather than biofilm growth. Conclusions Nano-topographical modification of smooth titanium surfaces had no effect on adhesion or early biofilm formation by S. sanguinis and A. naeslundii as compared to turned surfaces or those treated with anodic oxidation in the presence of Ca2+. The presence of saliva led to a significantly greater biofilm biovolume but no significant differences were seen between the test surfaces. These data thus suggest that modification with sol-gel derived nanoporous TiO2, which has been shown to improve osseointegration and soft-tissue healing in vivo, does not cause greater biofilm formation by the two oral

  2. Early Developments, 1998.

    ERIC Educational Resources Information Center

    Little, Loyd, Ed.

    1998-01-01

    This document consists of the two 1998 issues of a journal reporting new research in early child development conducted by the Frank Porter Graham Child Development Center at the University of North Carolina at Chapel Hill. In the Spring 1998 issue, articles highlight the Center's diverse cross-cultural projects and global research, training and…

  3. High-Throughput Genetic Screen Reveals that Early Attachment and Biofilm Formation Are Necessary for Full Pyoverdine Production by Pseudomonas aeruginosa

    PubMed Central

    Kang, Donghoon; Kirienko, Natalia V.

    2017-01-01

    Pseudomonas aeruginosa is a re-emerging, multidrug-resistant, opportunistic pathogen that threatens the lives of immunocompromised patients, patients with cystic fibrosis, and those in critical care units. One of the most important virulence factors in this pathogen is the siderophore pyoverdine. Pyoverdine serves several critical roles during infection. Due to its extremely high affinity for ferric iron, pyoverdine gives the pathogen a significant advantage over the host in their competition for iron. In addition, pyoverdine can regulate the production of multiple bacterial virulence factors and perturb host mitochondrial homeostasis. Inhibition of pyoverdine biosynthesis decreases P. aeruginosa pathogenicity in multiple host models. To better understand the regulation of pyoverdine production, we developed a high-throughput genetic screen that uses the innate fluorescence of pyoverdine to identify genes necessary for its biosynthesis. A substantial number of hits showing severe impairment of pyoverdine production were in genes responsible for early attachment and biofilm formation. In addition to genetic disruption of biofilm, both physical and chemical perturbations also attenuated pyoverdine production. This regulatory relationship between pyoverdine and biofilm is particularly significant in the context of P. aeruginosa multidrug resistance, where the formation of biofilm is a key mechanism preventing access to antimicrobials and the immune system. Furthermore, we demonstrate that the biofilm inhibitor 2-amino-5,6-dimethylbenzimidazole effectively attenuates pyoverdine production and rescues Caenorhabditis elegans from P. aeruginosa-mediated pathogenesis. Our findings suggest that targeting biofilm formation in P. aeruginosa infections may have multiple therapeutic benefits and that employing an unbiased, systems biology-based approach may be useful for understanding the regulation of specific virulence factors and identifying novel anti-virulence therapeutics

  4. 5-Episinuleptolide Decreases the Expression of the Extracellular Matrix in Early Biofilm Formation of Multi-Drug Resistant Acinetobacter baumannii.

    PubMed

    Tseng, Sung-Pin; Hung, Wei-Chun; Huang, Chiung-Yao; Lin, Yin-Shiou; Chan, Min-Yu; Lu, Po-Liang; Lin, Lin; Sheu, Jyh-Horng

    2016-07-29

    Nosocomial infections and increasing multi-drug resistance caused by Acinetobacter baumannii have been recognized as emerging problems worldwide. Moreover, A. baumannii is able to colonize various abiotic materials and medical devices, making it difficult to eradicate and leading to ventilator-associated pneumonia, and bacteremia. Development of novel molecules that inhibit bacterial biofilm formation may be an alternative prophylactic option for the treatment of biofilm-associated A. baumannii infections. Marine environments, which are unlike their terrestrial counterparts, harbor an abundant biodiversity of marine organisms that produce novel bioactive natural products with pharmaceutical potential. In this study, we identified 5-episinuleptolide, which was isolated from Sinularia leptoclados, as an inhibitor of biofilm formation in ATCC 19606 and three multi-drug resistant A. baumannii strains. In addition, the anti-biofilm activities of 5-episinuleptolide were observed for Gram-negative bacteria but not for Gram-positive bacteria, indicating that the inhibition mechanism of 5-episinuleptolide is effective against only Gram-negative bacteria. The mechanism of biofilm inhibition was demonstrated to correlate to decreased gene expression from the pgaABCD locus, which encodes the extracellular polysaccharide poly-β-(1,6)-N-acetylglucosamine (PNAG). Scanning electron microscopy (SEM) indicated that extracellular matrix of the biofilm was dramatically decreased by treatment with 5-episinuleptolide. Our study showed potentially synergistic activity of combination therapy with 5-episinuleptolide and levofloxacin against biofilm formation and biofilm cells. These data indicate that inhibition of biofilm formation via 5-episinuleptolide may represent another prophylactic option for solving the persistent problem of biofilm-associated A. baumannii infections.

  5. Effect of Twice-Daily Blue Light Treatment on Matrix-Rich Biofilm Development.

    PubMed

    de Sousa, Denise Lins; Lima, Ramille Araújo; Zanin, Iriana Carla; Klein, Marlise I; Janal, Malvin N; Duarte, Simone

    2015-01-01

    The use of blue light has been proposed as a direct means of affecting local bacterial infections, however the use of blue light without a photosensitizer to prevent the biofilm development has not yet been explored. The aim of this study was to determine how the twice-daily treatment with blue light affects the development and composition of a matrix-rich biofilm. Biofilms of Streptococcus mutans UA159 were formed on saliva-coated hydroxyapatite discs for 5 days. The biofilms were exposed twice-daily to non-coherent blue light (LumaCare; 420 nm) without a photosensitizer. The distance between the light and the sample was 1.0 cm; energy density of 72 J cm-2; and exposure time of 12 min 56 s. Positive and negative controls were twice-daily 0.12% chlorhexidine (CHX) and 0.89% NaCl, respectively. Biofilms were analyzed for bacterial viability, dry-weight, and extra (EPS-insoluble and soluble) and intracellular (IPS) polysaccharides. Variable pressure scanning electron microscopy and confocal scanning laser microscopy were used to check biofilm morphology and bacterial viability, respectively. When biofilms were exposed to twice-daily blue light, EPS-insoluble was reduced significantly more than in either control group (CHX and 0.89% NaCl). Bacterial viability and dry weight were also reduced relative to the negative control (0.89% NaCl) when the biofilms were treated with twice-daily blue light. Different morphology was also visible when the biofilms were treated with blue light. Twice-daily treatment with blue light without a photosensitizer is a promising mechanism for the inhibition of matrix-rich biofilm development.

  6. D-Phenylalanine inhibits biofilm development of a marine microbe, Pseudoalteromonas sp. SC2014.

    PubMed

    Li, Ee; Wu, Jiajia; Wang, Peng; Zhang, Dun

    2016-09-01

    D-Amino acids have been reported to be able to inhibit biofilm formation or disperse existing biofilms of many microbes; in some cases this is due to growth inhibition as an unspecific effect. In this work, six different D-amino acids were tested for their inhibitory effects on biofilm development and bacterial growth of Pseudoalteromonas sp. SC2014, a marine microbe involved in microbiologically influenced corrosion (MIC). Experimental results indicated that D-phenylalanine (D-Phe) inhibited biofilm formation effectively at concentrations that did not affect cell growth, whereas the other D-amino acids either showed little effect or inhibited biofilm formation while inhibiting bacterial growth. Further studies found that D-Phe could inhibit bacterial accumulation on the surface of 316L stainless steel, and prevent bacteria from forming a multilayer biofilm. It was also suggested that D-Phe could promote the disassembly of an established multilayer biofilm but have little effect on the remaining monolayer adherent cells. For the first time, it was found that a D-amino acid could effectively inhibit biofilm formation of an MIC-involved microbe. This might supply a new insight into how MIC could be mitigated. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Development and regulation of single- and multi-species Candida albicans biofilms

    PubMed Central

    Lohse, Matthew B.; Gulati, Megha; Johnson, Alexander D.; Nobile, Clarissa J.

    2017-01-01

    Candida albicans is among the most prevalent fungal species of the human microbiota and asymptomatically colonizes healthy individuals. However, it is also an opportunistic pathogen that can cause severe, and often fatal, bloodstream infections. The medical impact of C. albicans typically depends on its ability to form biofilms, which are closely packed communities of cells that attach to surfaces, such as tissues and implanted medical devices. In this Review, we provide an overview of the processes involved in the formation of C. albicans biofilms and discuss the core transcriptional network that regulates biofilm development. We also consider some of the advantages that biofilms provide to C. albicans in comparison with planktonic growth and explore polymicrobial biofilms that are formed by C. albicans and certain bacterial species. PMID:29062072

  8. Early Childhood Development.

    ERIC Educational Resources Information Center

    Koh, Edgar, Ed.

    1989-01-01

    Focused on early childhood development, this "UNICEF Intercom" asserts that developmental programs should aim to give children a fair chance at growth beyond survival. First presented are moral, scientific, social equity, economic, population, and programatic arguments for looking beyond the fundamental objective of saving young lives.…

  9. Early Program Development

    NASA Image and Video Library

    1971-01-01

    This 1971 artist's concept shows a Nuclear Shuttle and an early Space Shuttle docked with an Orbital Propellant Depot. As envisioned by Marshall Space Flight Center Program Development persornel, an orbital modular propellant storage depot, supplied periodically by the Space Shuttle or Earth-to-orbit fuel tankers, would be critical in making available large amounts of fuel to various orbital vehicles and spacecraft.

  10. Early Program Development

    NASA Image and Video Library

    1970-01-01

    This artist's concept from 1970 shows a Nuclear Shuttle docked to an Orbital Propellant Depot and an early Space Shuttle. As envisioned by Marshall Space Flight Center Program Development plarners, the Nuclear Shuttle, in either manned or unmanned mode, would deliver payloads to lunar orbit or other destinations then return to Earth orbit for refueling and additonal missions.

  11. The cabABC Operon Essential for Biofilm and Rugose Colony Development in Vibrio vulnificus

    PubMed Central

    Park, Jin Hwan; Jo, Youmi; Jang, Song Yee; Kwon, Haenaem; Irie, Yasuhiko; Parsek, Matthew R.; Kim, Myung Hee; Choi, Sang Ho

    2015-01-01

    A transcriptome analysis identified Vibrio vulnificus cabABC genes which were preferentially expressed in biofilms. The cabABC genes were transcribed as a single operon. The cabA gene was induced by elevated 3′,5′-cyclic diguanylic acid (c-di-GMP) and encoded a calcium-binding protein CabA. Comparison of the biofilms produced by the cabA mutant and its parent strain JN111 in microtiter plates using crystal-violet staining demonstrated that CabA contributed to biofilm formation in a calcium-dependent manner under elevated c-di-GMP conditions. Genetic and biochemical analyses revealed that CabA was secreted to the cell exterior through functional CabB and CabC, distributed throughout the biofilm matrix, and produced as the biofilm matured. These results, together with the observation that CabA also contributes to the development of rugose colony morphology, indicated that CabA is a matrix-associated protein required for maturation, rather than adhesion involved in the initial attachment, of biofilms. Microscopic comparison of the structure of biofilms produced by JN111 and the cabA mutant demonstrated that CabA is an extracellular matrix component essential for the development of the mature biofilm structures in flow cells and on oyster shells. Exogenously providing purified CabA restored the biofilm- and rugose colony-forming abilities of the cabA mutant when calcium was available. Circular dichroism and size exclusion analyses revealed that calcium binding induces CabA conformational changes which may lead to multimerization. Extracellular complementation experiments revealed that CabA can assemble a functional matrix only when exopolysaccharides coexist. Consequently, the combined results suggested that CabA is a structural protein of the extracellular matrix and multimerizes to a conformation functional in building robust biofilms, which may render V. vulnificus to survive in hostile environments and reach a concentrated infective dose. PMID:26406498

  12. Biofilms in 3D porous media: Delineating the influence of the pore network geometry, flow and mass transfer on biofilm development.

    PubMed

    Carrel, Maxence; Morales, Verónica L; Beltran, Mario A; Derlon, Nicolas; Kaufmann, Rolf; Morgenroth, Eberhard; Holzner, Markus

    2018-05-01

    This study investigates the functional correspondence between porescale hydrodynamics, mass transfer, pore structure and biofilm morphology during progressive biofilm colonization of a porous medium. Hydrodynamics and the structure of both the porous medium and the biofilm are experimentally measured with 3D particle tracking velocimetry and micro X-ray Computed Tomography, respectively. The analysis focuses on data obtained in a clean porous medium after 36 h of biofilm growth. Registration of the particle tracking and X-ray data sets allows to delineate the interplay between porous medium geometry, hydrodynamic and mass transfer processes on the morphology of the developing biofilm. A local analysis revealed wide distributions of wall shear stresses and concentration boundary layer thicknesses. The spatial distribution of the biofilm patches uncovered that the wall shear stresses controlled the biofilm development. Neither external nor internal mass transfer limitations were noticeable in the considered system, consistent with the excess supply of nutrient and electron acceptors. The wall shear stress remained constant in the vicinity of the biofilm but increased substantially elsewhere. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Antifungal activity of amphotericin B and voriconazole against the biofilms and biofilm-dispersed cells of Candida albicans employing a newly developed in vitro pharmacokinetic model.

    PubMed

    El-Azizi, Mohamed; Farag, Noha; Khardori, Nancy

    2015-04-03

    Candida albicans is a common cause of a variety of superficial and invasive disseminated infections the majority of which are associated with biofilm growth on implanted devices. The aim of the study is to evaluate the activity of amphotericin B and voriconazole against the biofilm and the biofilm-dispersed cells of Candida albicans using a newly developed in vitro pharmacokinetic model which simulates the clinical situation when the antifungal agents are administered intermittently. RPMI medium containing 1-5 X 10(6) CFU/ml of C. albicans was continuously delivered to the device at 30 ml/h for 2 hours. The planktonic cells were removed and biofilms on the catheter were kept under continuous flow of RPMI medium at 10 ml/h. Five doses of amphotericin B or voriconazole were delivered to 2, 5 and 10 day-old biofilms at initial concentrations (2 and 3 μg/ml respectively) that were exponentially diluted. Dispersed cells in effluents from the device were counted and the adherent cells on the catheter were evaluated after 48 h of the last dose. The minimum inhibitory concentration of voriconazole and amphotericin B against the tested isolate was 0.0325 and 0.25 μg/ml respectively. Amphotericin B significantly reduced the dispersion of C. albicans cells from the biofilm. The log10 reduction in the dispersed cells was 2.54-3.54, 2.30-3.55, and 1.94-2.50 following addition of 5 doses of amphotericin B to 2-, 5- and 10-day old biofilms respectively. The number of the viable cells within the biofilm was reduced by 18 (±7.63), 5 and 4% following addition of the 5 doses of amphotericin B to the biofilms respectively. Voriconazole showed no significant effect on the viability of C. albicans within the biofilm. Both antifungal agents failed to eradicate C. albicans biofilm or stop cell dispersion from them and the resistance progressed with maturation of the biofilm. These findings go along with the need for removal of devices in spite of antifungal therapy in patients

  14. Development of Enterobacter aerogenes fuel cells: from in situ biohydrogen oxidization to direct electroactive biofilm.

    PubMed

    Zhuang, Li; Zhou, Shungui; Yuan, Yong; Liu, Tinglin; Wu, Zhifeng; Cheng, Jiong

    2011-01-01

    This study described an Enterobacter aerogenes-catalyzed microbial fuel cell (MFC) with a carbon-based anode that exhibited a maximum power density of 2.51 W/m(3) in the absence of artificial electron mediators. The MFC was started up rapidly, within hours, and the current generation in the early stage was demonstrated to result from in situ oxidation of biohydrogen produced by E. aerogenes during glucose fermentation. Over periodic replacement of substrate, both planktonic biomass in the culture liquid and hydrogen productivity decreased, while increased power density and coulombic efficiency and decreased internal resistance were unexpectedly observed. Using scanning electron microscopy and cyclic voltammetry, it was found that the enhanced MFC performance was associated with the development of electroactive biofilm on the anodic surface, proposed to involve an acclimation and selection process of E. aerogenes cells under electrochemical tension. The significant advantage of rapid start-up and the ability to develop an electroactive biofilm identifies E. aerogenes as a suitable biocatalyst for MFC applications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Impact of Chloramination on the Development of Laboratory-Grown Biofilms Fed with Filter-Pretreated Groundwater

    PubMed Central

    Ling, Fangqiong; Liu, Wen-Tso

    2013-01-01

    This study evaluated the continuous impact of monochloramine disinfection on laboratory-grown biofilms through the characterization of biofilm architecture and microbial community structure. Biofilm development and disinfection were achieved using CDC (Centers for Disease Control and Prevention) biofilm reactor systems with polyvinyl chloride (PVC) coupons as the substratum and sand filter-pretreated groundwater as the source of microbial seeding and growth nutrient. After 2 weeks of growth, the biofilms were subjected to chloramination for 8 more weeks at concentrations of 7.5±1.4 to 9.1±0.4 mg Cl2 L−1. Control reactors received no disinfection during the development of biofilms. Confocal laser scanning microscopy and image analysis indicated that chloramination could lead to 81.4–83.5% and 86.3–95.6% reduction in biofilm biomass and thickness, respectively, but could not eliminate biofilm growth. 16S rRNA gene terminal restriction fragment length polymorphism analysis indicated that microbial community structures between chloraminated and non-chloraminated biofilms exhibited different successional trends. 16S rRNA gene pyrosequencing analysis further revealed that chloramination could select members of Actinobacteria and Acidobacteria as the dominant populations, whereas natural development leads to the selection of members of Nitrospira and Bacteroidetes as dominant biofilm populations. Overall, chloramination treatment could alter the growth of multi-species biofilms on the PVC surface, shape the biofilm architecture, and select a certain microbial community that can survive or proliferate under chloramination. PMID:23124766

  16. Establishing bacterial communities by 'word of mouth': LuxS and autoinducer 2 in biofilm development.

    PubMed

    Hardie, Kim Rachael; Heurlier, Karin

    2008-08-01

    Multicellular bacterial communities (biofilms) abound in nature, and their successful formation and survival is likely to require cell-cell communication--including quorum sensing--to co-ordinate appropriate gene expression. The only mode of quorum sensing that is shared by both Gram-positive and Gram-negative bacteria involves the production of the signalling molecule autoinducer 2 by LuxS. A survey of the current literature reveals that luxS contributes to biofilm development in some bacteria. However, inconsistencies prevent biofilm development being attributed to the production of AI2 in all cases.

  17. A modular reactor to simulate biofilm development in orthopedic materials.

    PubMed

    Barros, Joana; Grenho, Liliana; Manuel, Cândida M; Ferreira, Carla; Melo, Luís F; Nunes, Olga C; Monteiro, Fernando J; Ferraz, Maria P

    2013-09-01

    Surfaces of medical implants are generally designed to encourage soft- and/or hard-tissue adherence, eventually leading to tissue- or osseo-integration. Unfortunately, this feature may also encourage bacterial adhesion and biofilm formation. To understand the mechanisms of bone tissue infection associated with contaminated biomaterials, a detailed understanding of bacterial adhesion and subsequent biofilm formation on biomaterial surfaces is needed. In this study, a continuous-flow modular reactor composed of several modular units placed in parallel was designed to evaluate the activity of circulating bacterial suspensions and thus their predilection for biofilm formation during 72 h of incubation. Hydroxyapatite discs were placed in each modular unit and then removed at fixed times to quantify biofilm accumulation. Biofilm formation on each replicate of material, unchanged in structure, morphology, or cell density, was reproducibly observed. The modular reactor therefore proved to be a useful tool for following mature biofilm formation on different surfaces and under conditions similar to those prevailing near human-bone implants.

  18. Anthranilate deteriorates the structure of Pseudomonas aeruginosa biofilms and antagonizes the biofilm-enhancing indole effect.

    PubMed

    Kim, Soo-Kyoung; Park, Ha-Young; Lee, Joon-Hee

    2015-04-01

    Anthranilate and indole are alternative degradation products of tryptophan, depending on the bacterial species. While indole enhances the biofilm formation of Pseudomonas aeruginosa, we found that anthranilate, the tryptophan degradation product of P. aeruginosa, had an opposite effect on P. aeruginosa biofilm formation, in which anthranilate deteriorated the mushroom structure of biofilm. The anthranilate effect on biofilm formation was differentially exerted depending on the developmental stage and the presence of shear force. Anthranilate slightly accelerated the initial attachment of P. aeruginosa at the early stage of biofilm development and appeared to build more biofilm without shear force. But anthranilate weakened the biofilm structure in the late stage, deteriorating the mushroom structure of biofilms with shear force to make a flat biofilm. To investigate the interplay of anthranilate with indole in biofilm formation, biofilms were cotreated with anthranilate and indole, and the results showed that anthranilate antagonized the biofilm-enhancing effect of indole. Anthranilate was able to deteriorate the preformed biofilm. The effect of anthranilate and indole on biofilm formation was quorum sensing independent. AntR, a regulator of anthranilate-degrading metabolism was synergistically activated by cotreatment with anthranilate and indole, suggesting that indole might enhance biofilm formation by facilitating the degradation of anthranilate. Anthranilate slightly but significantly affected the cyclic diguaniylate (c-di-GMP) level and transcription of major extracellular polysaccharide (Psl, Pel, and alginate) operons. These results suggest that anthranilate may be a promising antibiofilm agent and antagonize the effect of indole on P. aeruginosa biofilm formation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. A new approach for development of kinetics of wastewater treatment in aerobic biofilm reactor

    NASA Astrophysics Data System (ADS)

    Goswami, S.; Sarkar, S.; Mazumder, D.

    2017-09-01

    Biofilm process is widely used for the treatment of a variety of wastewater especially containing slowly biodegradable substances. It provides resistance against toxic environment and is capable of retaining biomass under continuous operation. Development of kinetics is very much pertinent for rational design of a biofilm process for the treatment of wastewater with or without inhibitory substances. A simple approach for development of such kinetics for an aerobic biofilm reactor has been presented using a novel biofilm model. The said biofilm model is formulated from the correlations between substrate concentrations in the influent/effluent and at biofilm liquid interface along with substrate flux and biofilm thickness complying Monod's growth kinetics. The methodology for determining the kinetic coefficients for substrate removal and biomass growth has been demonstrated stepwise along with graphical representations. Kinetic coefficients like K, k, Y, b t, b s, and b d are determined either from the intercepts of X- and Y-axis or from the slope of the graphical plots.

  20. Culture media profoundly affect Candida albicans and Candida tropicalis growth, adhesion and biofilm development.

    PubMed

    Weerasekera, Manjula M; Wijesinghe, Gayan K; Jayarathna, Thilini A; Gunasekara, Chinthika P; Fernando, Neluka; Kottegoda, Nilwala; Samaranayake, Lakshman P

    2016-11-01

    As there are sparse data on the impact of growth media on the phenomenon of biofilm development for Candida we evaluated the efficacy of three culture media on growth, adhesion and biofilm formation of two pathogenic yeasts, Candida albicans and Candida tropicalis. The planktonic phase yeast growth, either as monocultures or mixed cultures, in sabouraud dextrose broth (SDB), yeast nitrogen base (YNB), and RPMI 1640 was compared, and adhesion as well as biofilm formation were monitored using MTT and crystal violet (CV) assays and scanning electron microscopy. Planktonic cells of C. albicans, C. tropicalis and their 1:1 co-culture showed maximal growth in SDB. C. albicans/C. tropicalis adhesion was significantly facilitated in RPMI 1640 although the YNB elicited the maximum growth for C. tropicalis. Similarly, the biofilm growth was uniformly higher for both species in RPMI 1640, and C. tropicalis was the slower biofilm former in all three media. Scanning electron microscopy images tended to confirm the results of MTT and CV assay. Taken together, our data indicate that researchers should pay heed to the choice of laboratory culture media when comparing relative planktonic/biofilm growth of Candida. There is also a need for standardisation of biofilm development media so as to facilitate cross comparisons between laboratories.

  1. Induced Polarization Signature of Biofilms in Porous Media: From Laboratory Experiments to Theoretical Developments and Validation

    SciTech Connect

    Atekwana, Estella; Patrauchan, Marianna; Revil, Andre

    2016-10-04

    Bioremediation strategies for mitigating the transport of heavy metals and radionuclides in subsurface sediments have largely targeted the use of dissimilatory metal and sulfate-reducing bacteria. Growth and metabolic activities from these organisms can significantly influence biogeochemical processes, including mineral dissolution/precipitation, fluctuating pH and redox potential (Eh) values, development of biofilms, and decreasing hydraulic conductivity. The Spectral Induced Polarization (SIP) technique has emerged as the technique most sensitive to the presence of microbial cells and biofilms in porous media; yet it is often difficult to unambiguously distinguish the impact of multiple and often competing processes that occur during in-situ biostimulation activitiesmore » on the SIP signatures. The main goal of our project is to quantitatively characterize major components within bacterial biofilms (cells, DNA, metals, metabolites etc.) contributing to detectable SIP signatures. We specifically: (i) evaluated the contribution of biofilm components to SIP signatures, (ii) determined the contribution of biogenic minerals commonly found in biofilms to SIP signatures, (iii) determined if the SIP signatures can be used to quantify the rates of biofilm formation, (iv) developed models and a fundamental understanding of potential underlying polarization mechanisms at low frequencies (<40 kHz) resulting from the presence of microbial cells and biofilms« less

  2. Non-Tuberculous Mycobacteria multispecies biofilms in cystic fibrosis: development of an in vitro Mycobacterium abscessus and Pseudomonas aeruginosa dual species biofilm model.

    PubMed

    Rodríguez-Sevilla, Graciela; García-Coca, Marta; Romera-García, David; Aguilera-Correa, John Jairo; Mahíllo-Fernández, Ignacio; Esteban, Jaime; Pérez-Jorge, Concepción

    2018-04-01

    Lung disease in cystic fibrosis (CF) is characterized by the progressive colonization of the respiratory tract by different bacteria, which develop polymicrobial biofilms. In the past decades, there has been an increase in the number of CF patients infected with Non-Tuberculous Mycobacteria (NTM). Although Mycobacterium abscessus is the main NTM isolated globally, little is known about M. abscessus multispecies biofilm formation. In the present study we developed an in vitro model to study the phenotypic characteristics of biofilms formed by M. abscessus and Pseudomonas aeruginosa, a major pathogen in CF. For that purpose, dual species biofilms were grown on polycarbonate membranes with a fixed concentration of P. aeruginosa and different inoculums of M. abscessus. The biofilms were sampled at 24, 48, and 72 h and bacteria were quantified in specific media. The results revealed that the increasing initial concentration of M. abscessus in dual species biofilms had an effect on its population only at 24 and 48 h, whereas P. aeruginosa was not affected by the different concentrations used of M. abscessus. Time elapsed increased biofilm formation of both species, specially between 24 and 48 h. According to the results, the conditions to produce a mature dual species biofilm in which the relative species distribution remained stable were 72 h growth of the mixed microbial culture at a 1:1 ratio. A significant decrease in mycobacterial population in dual compared to single species biofilms was found, suggesting that P. aeruginosa has a negative influence on M. abscessus. Finally, in a proof of concept experiment, young and mature dual species biofilms were exposed to clarithromycin. Copyright © 2018 Elsevier GmbH. All rights reserved.

  3. Streptococcus mutans Protein Synthesis during Mixed-Species Biofilm Development by High-Throughput Quantitative Proteomics

    PubMed Central

    Klein, Marlise I.; Xiao, Jin; Lu, Bingwen; Delahunty, Claire M.; Yates, John R.; Koo, Hyun

    2012-01-01

    Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (P<0.05). Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the

  4. Mycoalgae biofilm: development of a novel platform technology using algae and fungal cultures.

    PubMed

    Rajendran, Aravindan; Hu, Bo

    2016-01-01

    Microalgae is considered a promising source for biofuel and bioenergy production, bio-remediation and production of high-value bioactive compounds, but harvesting microalgae is a major bottleneck in the algae based processes. The objective of this research is to mimic the growth of natural lichen and develop a novel biofilm platform technology using filamentous fungi and microalgae to form a lichen type of biofilm "mycoalgae" in a supporting polymer matrix. The possibility of co-existence of Chlorella vulgaris with various fungal cultures was tested to identify the best strain combination for high algae harvest efficiency. The effect of different matrices for cell attachment and biofilm formation, cell surface characterization of mycoalgae biofilm, kinetics of the process with respect to the algae-fungi cell distribution and total biomass production was studied. Mycoalgae biofilm with algae attachment efficiency of 99.0 % and above was achieved in a polymer-cotton composite matrix with glucose concentration of 2 g/L in the growth medium and agitation intensity of 150 rpm at 27 °C. The total biomass in the co-culture with the selected strain combination (Mucor sp. and Chlorella sp.) was higher than the axenic cultures of fungi and algae at the conditions tested. The results show that algae can be grown with complete attachment to a bio-augmenting fungal surface and can be harvested readily as a biofilm for product extraction from biomass. Even though, interaction between heterotrophic fungi and phototrophic algae was investigated in solid media after prolonged contact in a report, this research is the first of its kind in developing an artificial lichen type biofilm called "mycoalgae" biofilm completely attached on a matrix in liquid cultures. The mycoalgae biofilm based processes, propounds the scope for exploring new avenues in the bio-production industry and bioremediation.

  5. Development of a flow system for studying biofilm formation on medical devices with microcalorimetry.

    PubMed

    Said, Jawal; Walker, Michael; Parsons, David; Stapleton, Paul; Beezer, Anthony E; Gaisford, Simon

    2015-04-01

    Isothermal microcalorimetry (IMC) is particularly suited to the study of microbiological samples in complex or heterogeneous environments because it does not require optical clarity of the sample and can detect metabolic activity from as few as 10(4) CFU/mL cells. While the use of IMC for studying planktonic cultures is well established, in the clinical environment bacteria are most likely to be present as biofilms. Biofilm prevention and eradication present a number of challenges to designers and users of medical devices and implants, since bacteria in biofilm colonies are usually more resistant to antimicrobial agents. Analytical tools that facilitate investigation of biofilm formation are therefore extremely useful. While it is possible to study pre-prepared biofilms in closed ampoules, better correlation with in vivo behaviour can be achieved using a system in which the bacterial suspension is flowing. Here, we discuss the potential of flow microcalorimetry for studying biofilms and report the development of a simple flow system that can be housed in a microcalorimeter. The use of the flow system is demonstrated with biofilms of Staphylococcus aureus. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The role of biofilms in persistent infections and factors involved in ica-independent biofilm development and gene regulation in Staphylococcus aureus.

    PubMed

    Figueiredo, Agnes Marie Sá; Ferreira, Fabienne Antunes; Beltrame, Cristiana Ossaille; Côrtes, Marina Farrel

    2017-09-01

    Staphylococcus aureus biofilms represent a unique micro-environment that directly contribute to the bacterial fitness within hospital settings. The accumulation of this structure on implanted medical devices has frequently caused the development of persistent and chronic S. aureus-associated infections, which represent an important social and economic burden worldwide. ica-independent biofilms are composed of an assortment of bacterial products and modulated by a multifaceted and overlapping regulatory network; therefore, biofilm composition can vary among S. aureus strains. In the microniches formed by biofilms-produced by a number of bacterial species and composed by different structural components-drug refractory cell subpopulations with distinct physiological characteristics can emerge and result in therapeutic failures in patients with recalcitrant bacterial infections. In this review, we highlight the importance of biofilms in the development of persistence and chronicity in some S. aureus diseases, the main molecules associated with ica-independent biofilm development and the regulatory mechanisms that modulate ica-independent biofilm production, accumulation, and dispersion.

  7. Dynamics of Streptococcus mutans Transcriptome in Response to Starch and Sucrose during Biofilm Development

    PubMed Central

    Klein, Marlise I.; DeBaz, Lena; Agidi, Senyo; Lee, Herbert; Xie, Gary; Lin, Amy H.-M.; Hamaker, Bruce R.; Lemos, José A.; Koo, Hyun

    2010-01-01

    The combination of sucrose and starch in the presence of surface-adsorbed salivary α-amylase and bacterial glucosyltransferases increase the formation of a structurally and metabolically distinctive biofilm by Streptococcus mutans. This host-pathogen-diet interaction may modulate the formation of pathogenic biofilms related to dental caries disease. We conducted a comprehensive study to further investigate the influence of the dietary carbohydrates on S. mutans-transcriptome at distinct stages of biofilm development using whole genomic profiling with a new computational tool (MDV) for data mining. S. mutans UA159 biofilms were formed on amylase-active saliva coated hydroxyapatite discs in the presence of various concentrations of sucrose alone (ranging from 0.25 to 5% w/v) or in combination with starch (0.5 to 1% w/v). Overall, the presence of sucrose and starch (suc+st) influenced the dynamics of S. mutans transcriptome (vs. sucrose alone), which may be associated with gradual digestion of starch by surface-adsorbed amylase. At 21 h of biofilm formation, most of the differentially expressed genes were related to sugar metabolism, such as upregulation of genes involved in maltose/maltotriose uptake and glycogen synthesis. In addition, the groEL/groES chaperones were induced in the suc+st-biofilm, indicating that presence of starch hydrolysates may cause environmental stress. In contrast, at 30 h of biofilm development, multiple genes associated with sugar uptake/transport (e.g. maltose), two-component systems, fermentation/glycolysis and iron transport were differentially expressed in suc+st-biofilms (vs. sucrose-biofilms). Interestingly, lytT (bacteria autolysis) was upregulated, which was correlated with presence of extracellular DNA in the matrix of suc+st-biofilms. Specific genes related to carbohydrate uptake and glycogen metabolism were detected in suc+st-biofilms in more than one time point, indicating an association between presence of starch hydrolysates

  8. [Development of an Enterococcus faecalis periapical biofilm model for in vitro morphological study].

    PubMed

    Cao, Ridan; Hou, Benxiang

    2014-08-01

    This study aims to develop and observe a model system of the periapical biofilm structure of Enterococcus faecalis (E. faecalis). A total of 24 intact human single-rooted premolars extracted for orthodontic reasons were collected and randomly divided into eight groups (n = 3). The specimens were subjected to ultraviolet disinfection, inoculated with E. faecalis (ATCC 29212) suspension adjusted to 1 x 10(8) CFU x mL(-1), and incubated at 37 degrees C for 1, 2, and 7 d. Specimen groups were prepared for scanning electron microscope to examine the biofilm formation. The specimens in the confocal laser scanning microscope (CLSM) groups were stained with propidium iodide (PI) and ConA-fluorescein isothiocyanate (ConA-FITC) to examine the biofilm formation. The images were randomized, and biofilm coverage (%) was assessed using Photoshop CS5. The biofilm coverage (%) on the cementum increased with increasing incubation period. The biofilm coverage of the 7 d group was significantly higher than those of the 1 and 2 d groups (P < 0.05). The values of the latter two groups were not significantly different (P > 0.05). Dense aggregations composed of E. faecalis and the amorphous matrix were observed on the root cementum surfaces of the specimens in the 7 d group. The bacteria were stained red by PI, and the matrix was stained green by ConA-FITC under CLSM observation. The biofilm coverage (%) on the samples in the 7 d group was 17.23% +/- 1.52%, showing multi-level space structure and water channels. E. faecalis forms bacterial biofilms on the root cementum surface in 7 d. The biofilms were composed of E. faecalis and the amorphous matrix.

  9. Towards the identification of the common features of bacterial biofilm development.

    PubMed

    Lasa, Iñigo

    2006-03-01

    Microorganisms can live and proliferate as individual cells swimming freely in the environment, or they can grow as highly organized, multicellular communities encased in a self-produced polymeric matrix in close association with surfaces and interfaces. This microbial lifestyle is referred to as biofilms. The intense search over the last few years for factors involved in biofilm development has revealed that distantly related bacterial species recurrently make use of the same elements to produce biofilms. These common elements include a group of proteins containing GGDEF/EAL domains, surface proteins homologous to Bap of Staphylococcus aureus, and some types of exopolysaccharides, such as cellulose and the poly-beta-1,6-N-acetylglucosamine. This review summarizes current knowledge about these three common elements and their role in biofilm development.

  10. Development of a System to Assess Biofilm Formation in the International Space Station

    NASA Technical Reports Server (NTRS)

    Martin Charles, E.; Summers, Silvia M.; Roman, Monserrate C.

    1998-01-01

    The design requirements for the water treatment systems aboard the International Space Station (ISS) include and require recycling as much water as possible and to treat the water for intentional contamination (hygiene, urine distillate, condensate, etc.) and unintentional contamination in the form of biofilm and microorganisms. As part of an effort to address the latter issue, a biofilm system was developed by Marshall Space Flight Center (MSFC) to simulate the conditions aboard ISS with respect to materials, flow rates, water conditions, water content, and handling. The tubing, connectors, sensors, and fabricated parts included in the system were chosen for specific attributes as applicable to emulate an orbital water treatment system. This paper addresses the design and development process of the system, as well as the configuration, operation, and system procedures for maintenance to assure that the simulation is valid for the representative data as it applies to water degradation and biofilm/microbial growth. Preliminary biofilm/microbial results are also presented.

  11. Effect of alcohols on filamentation, growth, viability and biofilm development in Candida albicans

    PubMed Central

    Chauhan, Nitin M; Shinde, Ravikumar B; Karuppayil, S. Mohan

    2013-01-01

    In this study we report the potential of alcohols as morphogenetic regulators in Candida albicans. All the alcohols tested influenced various modes of growth like planktonic as well as biofilm forms. Viability was affected at high concentrations. Among the alcohols, the response of C. albicans to amyl alcohol (pentanol) was noteworthy. Amyl alcohol at a concentration 0.5% which was not inhibitory to growth and viability specifically inhibited morphogenetic switching from yeast to hyphal forms. It also inhibited normal biofilm development favoring yeast dominated biofilms. Based on this study we hypothesize that alcohols produced under anaerobic conditions may not favor biofilm development and support dissemination of yeast cells. Since anaerobic conditions are not found to favor production of quorum sensing molecules like farnesol, the alcohols may play a role in morphogenetic regulation. PMID:24688528

  12. Effect of alcohols on filamentation, growth, viability and biofilm development in Candida albicans.

    PubMed

    Chauhan, Nitin M; Shinde, Ravikumar B; Karuppayil, S Mohan

    2013-12-01

    In this study we report the potential of alcohols as morphogenetic regulators in Candida albicans. All the alcohols tested influenced various modes of growth like planktonic as well as biofilm forms. Viability was affected at high concentrations. Among the alcohols, the response of C. albicans to amyl alcohol (pentanol) was noteworthy. Amyl alcohol at a concentration 0.5% which was not inhibitory to growth and viability specifically inhibited morphogenetic switching from yeast to hyphal forms. It also inhibited normal biofilm development favoring yeast dominated biofilms. Based on this study we hypothesize that alcohols produced under anaerobic conditions may not favor biofilm development and support dissemination of yeast cells. Since anaerobic conditions are not found to favor production of quorum sensing molecules like farnesol, the alcohols may play a role in morphogenetic regulation.

  13. Dental calculus: the calcified biofilm and its role in disease development.

    PubMed

    Akcalı, Aliye; Lang, Niklaus P

    2018-02-01

    Dental calculus represents the first fossilized record of bacterial communities as a testimony of evolutionary biology. The development of dental calculus is a dynamic process that starts with a nonmineralized biofilm which eventually calcifies. Nonmineralized dental biofilm entraps particles from the oral cavity, including large amounts of oral bacteria, human proteins, viruses and food remnants, and preserves their DNA. The process of mineralization involves metabolic activities of the bacterial colonies and strengthens the attachment of nonmineralized biofilms to the tooth surface. From a clinical point of view, dental calculus always harbors a living, nonmineralized biofilm, jeopardizing the integrity of the dento-gingival or implanto-mucosal unit. This narrative review presents a brief historical overview of dental calculus formation and its clinical relevance in modern periodontal practice. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Bacillus subtilis biofilm development in the presence of soil clay minerals and iron oxides.

    PubMed

    Ma, Wenting; Peng, Donghai; Walker, Sharon L; Cao, Bin; Gao, Chun-Hui; Huang, Qiaoyun; Cai, Peng

    2017-01-01

    Clay minerals and metal oxides, as important parts of the soil matrix, play crucial roles in the development of microbial communities. However, the mechanism underlying such a process, particularly on the formation of soil biofilm, remains poorly understood. Here, we investigated the effects of montmorillonite, kaolinite, and goethite on the biofilm formation of the representative soil bacteria Bacillus subtilis . The bacterial biofilm formation in goethite was found to be impaired in the initial 24 h but burst at 48 h in the liquid-air interface. Confocal laser scanning microscopy showed that the biofilm biomass in goethite was 3-16 times that of the control, montmorillonite, and kaolinite at 48 h. Live/Dead staining showed that cells had the highest death rate of 60% after 4 h of contact with goethite, followed by kaolinite and montmorillonite. Atomic force microscopy showed that the interaction between goethite and bacteria may injure bacterial cells by puncturing cell wall, leading to the swarming of bacteria toward the liquid-air interface. Additionally, the expressions of abrB and sinR , key players in regulating the biofilm formation, were upregulated at 24 h and downregulated at 48 h in goethite, indicating the initial adaptation of the cells to minerals. A model was proposed to describe the effects of goethite on the biofilm formation. Our findings may facilitate a better understanding of the roles of soil clays in biofilm development and the manipulation of bacterial compositions through controlling the biofilm in soils.

  15. Role of sediment size and biostratinomy on the development of biofilms in recent avian vertebrate remains

    NASA Astrophysics Data System (ADS)

    Peterson, Joseph E.; Lenczewski, Melissa E.; Clawson, Steven R.; Warnock, Jonathan P.

    2017-04-01

    Microscopic soft tissues have been identified in fossil vertebrate remains collected from various lithologies. However, the diagenetic mechanisms to preserve such tissues have remained elusive. While previous studies have described infiltration of biofilms in Haversian and Volkmann’s canals, biostratinomic alteration (e.g., trampling), and iron derived from hemoglobin as playing roles in the preservation processes, the influence of sediment texture has not previously been investigated. This study uses a Kolmogorov Smirnov Goodness-of-Fit test to explore the influence of biostratinomic variability and burial media against the infiltration of biofilms in bone samples. Controlled columns of sediment with bone samples were used to simulate burial and subsequent groundwater flow. Sediments used in this study include clay-, silt-, and sand-sized particles modeled after various fluvial facies commonly associated with fossil vertebrates. Extant limb bone samples obtained from Gallus gallus domesticus (Domestic Chicken) buried in clay-rich sediment exhibit heavy biofilm infiltration, while bones buried in sands and silts exhibit moderate levels. Crushed bones exhibit significantly lower biofilm infiltration than whole bone samples. Strong interactions between biostratinomic alteration and sediment size are also identified with respect to biofilm development. Sediments modeling crevasse splay deposits exhibit considerable variability; whole-bone crevasse splay samples exhibit higher frequencies of high-level biofilm infiltration, and crushed-bone samples in modeled crevasse splay deposits display relatively high frequencies of low-level biofilm infiltration. These results suggest that sediment size, depositional setting, and biostratinomic condition play key roles in biofilm infiltration in vertebrate remains, and may influence soft tissue preservation in fossil vertebrates.

  16. Development of an in vitro periodontal biofilm model for assessing antimicrobial and host modulatory effects of bioactive molecules.

    PubMed

    Millhouse, Emma; Jose, Anto; Sherry, Leighann; Lappin, David F; Patel, Nisha; Middleton, Andrew M; Pratten, Jonathan; Culshaw, Shauna; Ramage, Gordon

    2014-06-28

    Inflammation within the oral cavity occurs due to dysregulation between microbial biofilms and the host response. Understanding how different oral hygiene products influence inflammatory properties is important for the development of new products. Therefore, creation of a robust host-pathogen biofilm platform capable of evaluating novel oral healthcare compounds is an attractive option. We therefore devised a multi-species biofilm co-culture model to evaluate the naturally derived polyphenol resveratrol (RSV) and gold standard chlorhexidine (CHX) with respect to anti-biofilm and anti-inflammatory properties. An in vitro multi-species biofilm containing S. mitis, F. nucleatum, P. gingivalis and A. actinomycetemcomitans was created to represent a disease-associated biofilm and the oral epithelial cell in OKF6-TERT2. Cytotoxicity studies were performed using RSV and CHX. Multi-species biofilms were either treated with either molecule, or alternatively epithelial cells were treated with these prior to biofilm co-culture. Biofilm composition was evaluated and inflammatory responses quantified at a transcriptional and protein level. CHX was toxic to epithelial cells and multi-species biofilms at concentrations ranging from 0.01-0.2%. RSV did not effect multi-species biofilm composition, but was toxic to epithelial cells at concentrations greater than 0.01%. In co-culture, CHX-treated biofilms resulted in down regulation of the inflammatory chemokine IL-8 at both mRNA and protein level. RSV-treated epithelial cells in co-culture were down-regulated in the release of IL-8 protein, but not mRNA. CHX possesses potent bactericidal properties, which may impact downstream inflammatory mediators. RSV does not appear to have bactericidal properties against multi-species biofilms, however it did appear to supress epithelial cells from releasing inflammatory mediators. This study demonstrates the potential to understand the mechanisms by which different oral hygiene products may

  17. The effect of inoculum source and fluid shear force on the development of in vitro oral multispecies biofilms.

    PubMed

    Fernández, C E; Aspiras, M B; Dodds, M W; González-Cabezas, C; Rickard, A H

    2017-03-01

    Saliva has been previously used as an inoculum for in vitro oral biofilm studies. However, the microbial community profile of saliva is markedly different from hard- and soft-tissue-associated oral biofilms. Here, we investigated the changes in the biofilm architecture and microbial diversity of in vitro oral biofilms developed from saliva, tongue or plaque-derived inocula under different salivary shear forces. Four inoculum types (saliva, bacteria harvested from the tongue, toothbrush and curette-harvested plaque) were collected and pooled. Biofilms (n ≥ 15) were grown for 20 h in cell-free human saliva flowing at three different shear forces. Stained biofilms were imaged using a confocal laser scanning microscope. Biomass, thickness and roughness were determined by image analysis and bacterial community composition analysed using Ion Torrent. All developed biofilms showed a significant reduction in observed diversity compared with their respective original inoculum. Shear force altered biofilm architecture of saliva and curette-collected plaque and community composition of saliva, tongue and curette-harvested plaque. Different intraoral inocula served as precursors of in vitro oral polymicrobial biofilms which can be influenced by shear. Inoculum selection and shear force are key factors to consider when developing multispecies biofilms within in vitro models. © 2016 The Society for Applied Microbiology.

  18. Salmonella Biofilm Development Depends on the Phosphorylation Status of RcsB

    PubMed Central

    Latasa, Cristina; García, Begoña; Echeverz, Maite; Toledo-Arana, Alejandro; Valle, Jaione; Campoy, Susana; García-del Portillo, Francisco; Solano, Cristina

    2012-01-01

    The Rcs phosphorelay pathway is a complex signaling pathway involved in the regulation of many cell surface structures in enteric bacteria. In response to environmental stimuli, the sensor histidine kinase (RcsC) autophosphorylates and then transfers the phosphate through intermediary steps to the response regulator (RcsB), which, once phosphorylated, regulates gene expression. Here, we show that Salmonella biofilm development depends on the phosphorylation status of RcsB. Thus, unphosphorylated RcsB, hitherto assumed to be inactive, is essential to activate the expression of the biofilm matrix compounds. The prevention of RcsB phosphorylation either by the disruption of the phosphorelay at the RcsC or RcsD level or by the production of a nonphosphorylatable RcsB allele induces biofilm development. On the contrary, the phosphorylation of RcsB by the constitutive activation of the Rcs pathway inhibits biofilm development, an effect that can be counteracted by the introduction of a nonphosphorylatable RcsB allele. The inhibition of biofilm development by phosphorylated RcsB is due to the repression of CsgD expression, through a mechanism dependent on the accumulation of the small noncoding RNA RprA. Our results indicate that unphosphorylated RcsB plays an active role for integrating environmental signals and, more broadly, that RcsB phosphorylation acts as a key switch between planktonic and sessile life-styles in Salmonella enterica serovar Typhimurium. PMID:22582278

  19. To be or not to be planktonic? Self-inhibition of biofilm development.

    PubMed

    Nagar, Elad; Schwarz, Rakefet

    2015-05-01

    The transition between planktonic growth and biofilm formation represents a tightly regulated developmental shift that has substantial impact on cell fate. Here, we highlight different mechanisms through which bacteria limit their own biofilm development. The mechanisms involved in these self-inhibition processes include: (i) regulation by secreted small molecules, which govern intricate signalling cascades that eventually decrease biofilm development, (ii) extracellular polysaccharides capable of modifying the physicochemical properties of the substratum and (iii) extracellular DNA that masks an adhesive structure. These mechanisms, which rely on substances produced by the bacterium and released into the extracellular milieu, suggest regulation at the communal level. In addition, we provide specific examples of environmental cues (e.g. blue light or glucose level) that trigger a cellular response reducing biofilm development. All together, we describe a diverse array of mechanisms underlying self-inhibition of biofilm development in different bacteria and discuss possible advantages of these processes. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Biofilm Formation Characteristics of Pseudomonas lundensis Isolated from Meat.

    PubMed

    Liu, Yong-Ji; Xie, Jing; Zhao, Li-Jun; Qian, Yun-Fang; Zhao, Yong; Liu, Xiao

    2015-12-01

    Biofilms formations of spoilage and pathogenic bacteria on food or food contact surfaces have attracted increasing attention. These events may lead to a higher risk of food spoilage and foodborne disease transmission. While Pseudomonas lundensis is one of the most important bacteria that cause spoilage in chilled meat, its capability for biofilm formation has been seldom reported. Here, we investigated biofilm formation characteristics of P. lundensis mainly by using crystal violet staining, and confocal laser scanning microscopy (CLSM). The swarming and swimming motility, biofilm formation in different temperatures (30, 10, and 4 °C) and the protease activity of the target strain were also assessed. The results showed that P. lundensis showed a typical surface-associated motility and was quite capable of forming biofilms in different temperatures (30, 10, and 4 °C). The strain began to adhere to the contact surfaces and form biofilms early in the 4 to 6 h. The biofilms began to be formed in massive amounts after 12 h at 30 °C, and the extracellular polysaccharides increased as the biofilm structure developed. Compared with at 30 °C, more biofilms were formed at 4 and 10 °C even by a low bacterial density. The protease activity in the biofilm was significantly correlated with the biofilm formation. Moreover, the protease activity in biofilm was significantly higher than that of the corresponding planktonic cultures after cultured 12 h at 30 °C. © 2015 Institute of Food Technologists®

  1. Development of molecularly imprinted polymers to block quorum sensing and inhibit bacterial biofilm formation.

    PubMed

    Ma, Luyao; Feng, Shaolong; de la Fuente-Nunez, Cesar; Hancock, Robert E W; Lu, Xiaonan

    2018-05-16

    Bacterial biofilms are responsible for most clinical infections and show increased antimicrobial resistance. In this study, molecularly imprinted polymers (MIPs) were developed to specifically capture prototypical quorum sensing autoinducers [i.e., N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12AHL)], interrupt quorum sensing, and subsequently inhibit biofilm formation of Pseudomonas aeruginosa, an important human nosocomial pathogen. The synthesis of MIPs was optimized by considering the amount and type of the functional monomers itaconic acid (IA) and 2-hydroxyethyl methacrylate (HEMA). IA-based MIPs showed high adsorption affinity towards 3-oxo-C12AHL with an imprinting factor of 1.68. Compared to IA-based MIPs, the adsorption capacity of HEMA-based MIPs was improved 5-fold. HEMA-based MIPs significantly reduced biofilm formation (by ~65%), while biofilm suppression by IA-based MIPs was neutralized due to increased bacterial attachment. The developed MIPs represent promising alternative biofilm intervention agents that can be applied to surfaces relevant to clinical settings and food processing equipment.

  2. Evaluating the use of Spectral Induced Conductivity to Detect Biofilm Development within Porous Media

    NASA Astrophysics Data System (ADS)

    Rosier, C. L.; Atekwana, E. A.; Price, A.; Sharma, S.; Patrauchan, M.

    2015-12-01

    Microbial biomass accumulation in subsurface sediments dynamically alters porosity/permeability; factors critical to contaminant transport and management of bioremediation efforts. Current methodologies (i.e. plate counts, tracer/slug tests) offer some understanding of biofilm effect on subsurface hydrology, yet do not provide real-time information regarding biofilm development. Due to these limitations there is interest in assessing the near surface geophysical technique Spectral Induced Polarization (SIP), to measure biofilm formation. Our study assesses the influence of cell density and biofilm production on SIP response. Laboratory experiments monitored changes in SIP, measured colony forming units (CFU), and cellular protein levels on sand packed columns inoculated with either Pseudomonas aeruginosa PAO1 (non-mucoid strain) or Pseudomonas aeruginosa FRD1 (biofilm-overproducing mucoid strain) cells over one month. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were used to confirm the presence of biofilm. Our results indicate that phase and imaginary conductivity remained stable in PAO1 treatments as cell densities and cellular protein levels remained low (1.7x105 CFUml-1; 111 μg ml-1). However, we observed a significant decrease in both phase (0.5 to -0.20 mrad) and imaginary conductivity (0.0 to -3.0x10-5 S m-1) when both cell densities and cellular protein levels increased. In FRD1 treatments we observed an immediate decrease in phase (0.1 mrad) and imaginary conductivity (-2.0x10-6 S m-1) as cell densities were an order of magnitude greater then PAO1 treatments and cellular protein levels surpassed 500 μg ml-1. CLSM and SEM analysis confirmed the presence of biofilm and cells within both PAO1 and FRD1 treatments. Our findings suggest that the ratio of cells to cellular protein production is an important factor influencing both phase and imaginary conductivity response. However, our results are not in agreement with

  3. Influence of type-I fimbriae and fluid shear stress on bacterial behavior and multicellular architecture of early Escherichia coli biofilms at single-cell resolution.

    PubMed

    Wang, Liyun; Keatch, Robert; Zhao, Qi; Wright, John A; Bryant, Clare E; Redmann, Anna L; Terentjev, Eugene M

    2018-01-12

    Biofilm formation on abiotic surfaces in food and medical industry can cause severe contamination and infection, yet how biological and physical factors determine cellular architecture of early biofilms and bacterial behavior of the constituent cells remains largely unknown. In this study we examine the specific role of type-I fimbriae in nascent stages of biofilm formation and the response of micro-colonies to environmental flow shear at single-cell resolution. The results show that type-I fimbriae are not required for reversible adhesion from plankton, but critical for irreversible adhesion of Escherichia coli ( E.coli ) MG1655 forming biofilms on polyethylene terephthalate (PET) surfaces. Besides establishing a firm cell-surface contact, the irreversible adhesion seems necessary to initiate the proliferation of E.coli on the surface. After application of shear stress, bacterial retention is dominated by the 3D architecture of colonies independent of the population and the multi-layered structure could protect the embedded cells from being insulted by fluid shear, while cell membrane permeability mainly depends on the biofilm population and the duration time of the shear stress. Importance Bacterial biofilms could lead to severe contamination problems in medical devices and food processing equipment. However, biofilms are usually studied at a rough macroscopic level, thus little is known about how individual bacterial behavior within biofilms and multicellular architecture are influenced by bacterial appendages (e.g. pili/fimbriae) and environmental factors during early biofilm formation. We apply Confocal Laser Scanning Microscopy (CLSM) to visualize E.coli micro-colonies at single-cell resolution. Our findings suggest that type-I fimbriae are vital to the initiation of bacterial proliferation on surfaces and that the responses of biofilm architecture and cell membrane permeability of constituent bacteria to fluid shear stress are different, which are

  4. An Essential Role for Coagulase in Staphylococcus aureus Biofilm Development Reveals New Therapeutic Possibilities for Device-Related Infections.

    PubMed

    Zapotoczna, Marta; McCarthy, Hannah; Rudkin, Justine K; O'Gara, James P; O'Neill, Eoghan

    2015-12-15

    High-level resistance to antimicrobial drugs is a major factor in the pathogenesis of chronic Staphylococcus aureus biofilm-associated, medical device-related infections. Antimicrobial susceptibility analysis revealed that biofilms grown for ≤ 24 hours on biomaterials conditioned with human plasma under venous shear in iron-free cell culture medium were significantly more susceptible to antistaphylococcal antibiotics. Biofilms formed under these physiologically relevant conditions were regulated by SaeRS and dependent on coagulase-catalyzed conversion of fibrinogen into fibrin. In contrast, SarA-regulated biofilms formed on uncoated polystyrene in nutrient-rich bacteriological medium were mediated by the previously characterized biofilm factors poly-N-acetyl glucosamine, fibronectin-binding proteins, or autolytic activity and were antibiotic resistant. Coagulase-mediated biofilms exhibited increased antimicrobial resistance over time (>48 hours) but were always susceptible to dispersal by the fibrinolytic enzymes plasmin or nattokinase. Biofilms recovered from infected central venous catheters in a rat model of device-related infection were dispersed by nattokinase, supporting the important role of the biofilm phenotype and identifying a potentially new therapeutic approach with antimicrobials and fibrinolytic drugs, particularly during the early stages of device-related infection. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Early Adolescent Ego Development.

    ERIC Educational Resources Information Center

    James, Michael A.

    1980-01-01

    Presented are the theoretical characteristics of social identity in early adolescence (ages 10 to 15). It is suggested that no longer is identity thought to begin with adolescence, but may have its beginnings in the preteen years. The article draws heavily on Eriksonian concepts. (Editor/KC)

  6. Early Program Development

    NASA Image and Video Library

    1969-01-01

    As part of the Space Task Group's recommendations for more commonality and integration in America's space program, Marshall Space Flight Center engineers proposed an orbiting propellant storage facility to augment Space Shuttle missions. In this artist's concept from 1969 an early version of the Space Shuttle is shown refueling at the facility.

  7. The role of spatial dynamics in modulating metabolic interactions in biofilm development

    NASA Astrophysics Data System (ADS)

    Bocci, Federico; Lu, Mingyang; Suzuki, Yoko; Onuchic, Jose

    Cell phenotypic expression is substantially affected by the presence of environmental stresses and cell-cell communication mechanisms. We study the metabolic interactions of the glutamate synthesis pathway to explain the oscillation of growth rate observed in a B. Subtilis colony. Previous modelling schemes had failed in fully reproducing quantitative experimental observations as they did not explicitly address neither the diffusion of small metabolites nor the spatial distribution of phenotypically distinct bacteria inside the colony. We introduce a continuous space-temporal framework to explain how biofilm development dynamics is influenced by the metabolic interplay between two bacterial phenotypes composing the interior and the peripheral layer of the biofilm. Growth oscillations endorse the preservation of a high level of nutrients in the interior through diffusion and colony expansion in the periphery altogether. Our findings point out that perturbations of environmental conditions can result in the interruption of the interplay between cell populations and advocate alternative approaches to biofilm control strategies.

  8. Steps in the development of a Vibrio cholerae El Tor biofilm

    PubMed Central

    Watnick, Paula I.; Kolter, Roberto

    2010-01-01

    Summary We report that, in a simple, static culture system, wild-type Vibrio cholerae El Tor forms a three-dimensional biofilm with characteristic water channels and pillars of bacteria. Furthermore, we have isolated and characterized transposon insertion mutants of V. cholerae that are defective in biofilm development. The transposons were localized to genes involved in (i) the biosynthesis and secretion of the mannose-sensitive haemagglutinin type IV pilus (MSHA); (ii) the synthesis of exopolysaccharide; and (iii) flagellar motility. The phenotypes of these three groups suggest that the type IV pilus and flagellum accelerate attachment to the abiotic surface, the flagellum mediates spread along the abiotic surface, and exopolysaccharide is involved in the formation of three-dimensional biofilm architecture. PMID:10564499

  9. Biofilm development during the start-up period of anaerobic biofilm reactors: the biofilm Archaea community is highly dependent on the support material

    PubMed Central

    Habouzit, Frédéric; Hamelin, Jérôme; Santa-Catalina, Gaëlle; Steyer, Jean-P; Bernet, Nicolas

    2014-01-01

    To evaluate the impact of the nature of the support material on its colonization by a methanogenic consortium, four substrata made of different materials: polyvinyl chloride, 2 polyethylene and polypropylene were tested during the start-up of lab-scale fixed-film reactors. The reactor performances were evaluated and compared together with the analysis of the biofilms. Biofilm growth was quantified and the structure of bacterial and archaeal communities were characterized by molecular fingerprinting profiles (capillary electrophoresis-single strand conformation polymorphism). The composition of the inoculum was shown to have a major impact on the bacterial composition of the biofilm, whatever the nature of the support material or the organic loading rate applied to the reactors during the start-up period. In contrast, the biofilm archaeal populations were independent of the inoculum used but highly dependent on the support material. Supports favouring Archaea colonization, the limiting factor in the overall process, should be preferred. PMID:24612643

  10. Exopolysaccharide matrix of developed Candida albicans biofilms after exposure to antifungal agents.

    PubMed

    da Silva, Wander José; Gonçalves, Letícia Machado; Seneviratne, Jayampath; Parahitiyawa, Nipuna; Samaranayake, Lakshman Perera; Del Bel Cury, Altair Antoninha

    2012-01-01

    This study aimed to evaluate the effects of fluconazole or nystatin exposure on developed Candida albicans biofilms regarding their exopolysaccharide matrix. The minimal inhibitory concentration (MIC) against fluconazole or nystatin was determined for C. albicans reference strain (ATCC 90028). Poly(methlymethacrylate) resin (PMMA) specimens were fabricated according to the manufacturer's instructions and had their surface roughness measured. Biofilms were developed on specimens surfaces for 48 h and after that were exposed during 24 h to fluconazole or nystatin prepared in a medium at MIC, 10 x MIC or 100 x MIC. Metabolic activity was evaluated using an XTT assay. Production of soluble and insoluble exopolysaccharide and intracellular polysaccharides was evaluated by the phenol-sulfuric method. Confocal laser scanning microscope was used to evaluate biofilm architecture and percentage of dead/live cells. Data were analyzed statistically by ANOVA and Tukey's test at 5% significance level. The presence of fluconazole or nystatin at concentrations higher than MIC results in a great reduction of metabolic activity (p<0.001). At MIC or 10 x MIC, fluconazole showed high amounts of intracellular polysaccharides (p<0.05), but did not affect the exopolysaccharide matrix (p>0.05). The exposure to nystatin also did not alter the exopolysaccharide matrix at all the tested concentrations (p>0.05). Biofilm architecture was not affected by either of the antifungal agents (p>0.05). Nystatin promoted higher proportion of dead cells (p<0.05). It may be concluded that fluconazole and nystatin above the MIC concentration reduced the metabolic activity of C. albicans biofilms; however, they were not able to alter the exopolysaccharide matrix and biofilm architecture.

  11. Phenazine-1-carboxylic acid influences biofilm development and turnover of rhizobacterial biomass in a soil moisture-dependent manner

    USDA-ARS?s Scientific Manuscript database

    Rhizobacterial biofilm development influences terrestrial carbon and nitrogen cycles with ramifications for crop and soil health. Phenazine-1-carboxylic acid (PCA) is a redox-active metabolite produced by rhizobacteria in dryland wheat fields of Washington and Oregon, USA. PCA promotes biofilm dev...

  12. Early Program Development

    NASA Image and Video Library

    1969-01-01

    This 1969 artist's concept illustrates the use of three major elements of NASA's Integrated program, as proposed by President Nixon's Space Task Group. In Phases I and II, a Space Tug with a manipulator-equipped crew module removes a cargo module from an early Space Shuttle Orbiter and docks with it. In Phases III and IV, the Space Tug with attached cargo module flys toward a Nuclear Shuttle. As a result of the Space Task Group's recommendations for more commonality and integration in the American space program, Marshall Space Flight Center engineers studied many of the spacecraft depicted here.

  13. Impact of ZnO embedded feed spacer on biofilm development in membrane systems.

    PubMed

    Ronen, Avner; Semiat, Raphael; Dosoretz, Carlos G

    2013-11-01

    The concept of suppressing biofouling formation using an antibacterial feed spacer was investigated in a bench scale-cross flow system mimicking a spiral wound membrane configuration. An antibacterial composite spacer containing zinc oxide-nanoparticles was constructed by modification of a commercial polypropylene feed spacer using sonochemical deposition. The ability of the modified spacers to repress biofilm development on membranes was evaluated in flow-through cells simulating the flow conditions in commercial spiral wound modules. The experiments were performed at laminar flow (Re = 300) with a 200 kDa molecular weight cut off polysulfone ultrafiltration membrane using Pseudomonas putida S-12 as model biofilm bacteria. The modified spacers reduced permeate flux decrease at least by 50% compared to the unmodified spacers (control). The physical properties of the modified spacer and biofilm development were evaluated using high resolution/energy dispersive spectrometry-scanning electron microscopy, atomic force microscopy and confocal laser scanning microscopy imaging (HRSEM, EDS, AFM and CLSM). HRSEM images depicted significantly less bacteria attached to the membranes exposed to the modified spacer, mainly scattered and in a sporadic monolayer structure. AFM analysis indicated the influence of the modification on the spacer surface including a phase change on the upper surface. Dead-live staining assay by CLSM indicated that most of the bacterial cells attached on the membranes exposed to the modified spacer were dead in contrast to a developed biofilm which was predominant in the control samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Influence of an oyster reef on development of the microbial heterotrophic community of an estuarine biofilm.

    PubMed

    Nocker, Andreas; Lepo, Joe E; Snyder, Richard A

    2004-11-01

    We characterized microbial biofilm communities developed over two very closely located but distinct benthic habitats in the Pensacola Bay estuary using two complementary cultivation-independent molecular techniques. Biofilms were grown for 7 days on glass slides held in racks 10 to 15 cm over an oyster reef and an adjacent muddy sand bottom. Total biomass and optical densities of dried biofilms showed dramatic differences for oyster reef versus non-oyster reef biofilms. This study assessed whether the observed spatial variation was reflected in the heterotrophic prokaryotic species composition. Genomic biofilm DNA from both locations was isolated and served as a template to amplify 16S rRNA genes with universal eubacterial primers. Fluorescently labeled PCR products were analyzed by terminal restriction fragment length polymorphism, creating a genetic fingerprint of the composition of the microbial communities. Unlabeled PCR products were cloned in order to construct a clone library of 16S rRNA genes. Amplified ribosomal DNA restriction analysis was used to screen and define ribotypes. Partial sequences from unique ribotypes were compared with existing database entries to identify species and to construct phylogenetic trees representative of community structures. A pronounced difference in species richness and evenness was observed at the two sites. The biofilm community structure from the oyster reef setting had greater evenness and species richness than the one from the muddy sand bottom. The vast majority of the bacteria in the oyster reef biofilm were related to members of the gamma- and delta-subdivisions of Proteobacteria, the Cytophaga-Flavobacterium -Bacteroides cluster, and the phyla Planctomyces and Holophaga-Acidobacterium. The same groups were also present in the biofilm harvested at the muddy sand bottom, with the difference that nearly half of the community consisted of representatives of the Planctomyces phylum. Total species richness was estimated

  15. Adenovirus, MS2 and PhiX174 interactions with drinking water biofilms developed on PVC, cement and cast iron.

    PubMed

    Helmi, K; Menard-Szczebara, F; Lénès, D; Jacob, P; Jossent, J; Barbot, C; Delabre, K; Arnal, C

    2010-01-01

    Biofilms colonizing pipe surfaces of drinking water distribution systems could provide habitat and shelter for pathogenic viruses present in the water phase. This study aims (i) to develop a method to detect viral particles present in a drinking water biofilm and (ii) to study viral interactions with drinking water biofilms. A pilot scale system was used to develop drinking water biofilms on 3 materials (7 cm(2) discs): PVC, cast iron and cement. Biofilms were inoculated with viral model including MS2, PhiX174 or adenovirus. Five techniques were tested to recover virus from biofilms. The most efficient uses beef extract and glycine at pH = 9. After sonication and centrifugation, the pH of the supernatant is neutralized prior to viral analysis. The calculated recovery rates varied from 29.3 to 74.6% depending on the virus (MS2 or PhiX174) and the material. Applying this protocol, the interactions of virus models (MS2 and adenovirus) with drinking water biofilms were compared. Our results show that adsorption of viruses to biofilms depends on their isoelectric points, the disc material and the hydrodynamic conditions. Applying hydrodynamic conditions similar to those existing in drinking water networks resulted in a viral adsorption corresponding to less than 1% of the initial viral load.

  16. Early Program Development

    NASA Image and Video Library

    1970-01-01

    In 1970, NASA initiated Phase A contracts to study alternate Space Shuttle designs in addition to the two-stage fully-reusable Space Shuttle system already under development. A number of alternate systems were developed to ensure the development of the optimum earth-to-orbit system, including the Stage-and-a-half Chemical Interorbital Shuttle, shown here. The concept would utilize a reusable marned spacecraft with an onboard propulsion system attached to an expendable fuel tank to provide supplementary propellants.

  17. Development in Early Childhood.

    ERIC Educational Resources Information Center

    Elkind, David

    1991-01-01

    Reviews some of the major cognitive, social, and emotional achievements of young children and discusses some of their limitations. Divides description of development into intellectual, language, social, and emotional development. Notes that this division represents adult categories of thought and does not represent young children's actual modes of…

  18. Involvement of Shewanella oneidensis MR-1 LuxS in Biofilm Development and Sulfur Metabolism

    SciTech Connect

    Learman, Deric R.; Yi, Haakrho; Brown, Steven D.

    2009-01-05

    The role of LuxS in Shewanella oneidensis MR-1 has been examined by transcriptomic profiling, biochemical, and physiological experiments. The results indicate that a mutation in luxS alters biofilm development, not by altering quorum-sensing abilities but by disrupting the activated methyl cycle (AMC). The S. oneidensis wild type can produce a luminescence response in the AI-2 reporter strain Vibrio harveyi MM32. This luminescence response is abolished upon the deletion of luxS. The deletion of luxS also alters biofilm formations in static and flowthrough conditions. Genetic complementation restores the mutant biofilm defect, but the addition of synthetic AI-2 has no effect. Thesemore » results suggest that AI-2 is not used as a quorum-sensing signal to regulate biofilm development in S. oneidensis. Growth on various sulfur sources was examined because of the involvement of LuxS in the AMC. A mutation in luxS produced a reduced ability to grow with methionine as the sole sulfur source. Methionine is a key metabolite used in the AMC to produce a methyl source in the cell and to recycle homocysteine. These data suggest that LuxS is important to metabolizing methionine and the AMC in S. oneidensis.« less

  19. Inhibition of Staphylococcus epidermidis Biofilm by Trimethylsilane Plasma Coating

    PubMed Central

    Ma, Yibao; Jones, John E.; Ritts, Andrew C.; Yu, Qingsong

    2012-01-01

    Biofilm formation on implantable medical devices is a major impediment to the treatment of nosocomial infections and promotes local progressive tissue destruction. Staphylococcus epidermidis infections are the leading cause of biofilm formation on indwelling devices. Bacteria in biofilms are highly resistant to antibiotic treatment, which in combination with the increasing prevalence of antibiotic resistance among human pathogens further complicates treatment of biofilm-related device infections. We have developed a novel plasma coating technology. Trimethylsilane (TMS) was used as a monomer to coat the surfaces of 316L stainless steel and grade 5 titanium alloy, which are widely used in implantable medical devices. The results of biofilm assays demonstrated that this TMS coating markedly decreased S. epidermidis biofilm formation by inhibiting the attachment of bacterial cells to the TMS-coated surfaces during the early phase of biofilm development. We also discovered that bacterial cells on the TMS-coated surfaces were more susceptible to antibiotic treatment than their counterparts in biofilms on uncoated surfaces. These findings suggested that TMS coating could result in a surface that is resistant to biofilm development and also in a bacterial community that is more sensitive to antibiotic therapy than typical biofilms. PMID:22964248

  20. Formation of Biofilms by Foodborne Pathogens and Development of Laboratory In Vitro Model for the Study of Campylobacter Genus Bacteria Based on These Biofilms.

    PubMed

    Efimochkina, N R; Bykova, I B; Markova, Yu M; Korotkevich, Yu V; Stetsenko, V V; Minaeva, L P; Sheveleva, S A

    2017-02-01

    We analyzed the formation of biofilms by 7 strains of Campylobacter genus bacteria and 18 strains of Enterobacteriaceae genus bacteria that were isolated from plant and animal raw materials, from finished products, and swabs from the equipment of the food industry. Biofilm formation on glass plates, slides and coverslips, microtubes made of polymeric materials and Petri dishes, and polystyrene plates of different profiles were analyzed. When studying the process of films formation, different effects on bacterial populations were simulated, including variation of growth factor composition of culture media, technique of creating of anaerobiosis, and biocide treatment (active chlorine solutions in a concentration of 100 mg/dm 3 ). The formation of biofilms by the studied cultures was assessed by the formation of extracellular matrix stained with aniline dyes on glass and polystyrene surfaces after incubation; 0.1% crystal violet solution was used as the dye. The presence and density of biomatrix were assessed by staining intensity of the surfaces of contact with broth cultures or by optical density of the stained inoculum on a spectrophotometer. Biofilms were formed by 57% Campylobacter strains and 44% Enterobacteriaceae strains. The intensity of the film formation depended on culturing conditions and protocols, species and genus of studied isolates, and largely on adhesion properties of abiotic surfaces. In 30% of Enterobacteriaceae strains, the biofilm formation capacity tended to increase under the influence of chlorine-containing biocide solutions. Thus, we developed and tested under laboratory conditions a plate version of in vitro chromogenic model for evaluation of biofilm formation capacity of C. jejuni strains and studied stress responses to negative environmental factors.

  1. Inhibitory efficacy of geraniol on biofilm formation and development of adaptive resistance in Staphylococcus epidermidis RP62A.

    PubMed

    Kannappan, Arunachalam; Sivaranjani, Murugesan; Srinivasan, Ramanathan; Rathna, Janarthanam; Pandian, Shunmugiah Karutha; Ravi, Arumugam Veera

    2017-10-01

    The current study has been designed to delineate the efficacy of geraniol (GE) on biofilm formation in Staphylococcus epidermidis as well as the effect of subinhibitory concentrations of GE on the development of adaptive resistance. Biofilm biomass quantification assay was performed to evaluate the antibiofilm activity of GE against S. epidermidis. Microscopic observation of biofilms and extracellular polymeric substance (EPS), slime and cell surface hydrophobicity (CSH) production were also studied to support the antibiofilm potential of GE. In addition, S. epidermidis was examined for its adaptive resistance development upon continuous exposure of GE at its subinhibitory concentrations.Results/Key findings. The MIC of GE against S. epidermidis was 512 µg ml -1 . Without hampering the growth of the pathogen, GE at its sub-MICs (50, 100, 150 and 200 µg ml -1 ) exhibited a dose-dependent increase in antibiofilm activity. The minimal biofilm inhibitory concentration (MBIC) of GE was found to be 200 µg ml -1 with a maximum biofilm inhibition of 85 %. Disintegrated biofilm architecture, reduced EPS, slime and CSH production validated the antibiofilm efficacy of GE. Although the action of GE on preformed biofilm is limited, a 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay and live/dead cell staining method revealed reduction in the viability (47 %) of biofilm inhabitants at 2×MIC concentration. Sequential exposure of S. epidermidis to the sub-MICs of GE resulted in poor development of adaptive resistance with diminished biofilm formation. The present study highlights the potential of GE as a suitable candidate for the control of biofilm-mediated S. epidermidis infections.

  2. Satellite remote sensing reveals a positive impact of living oyster reefs on microalgal biofilm development

    NASA Astrophysics Data System (ADS)

    Echappé, Caroline; Gernez, Pierre; Méléder, Vona; Jesus, Bruno; Cognie, Bruno; Decottignies, Priscilla; Sabbe, Koen; Barillé, Laurent

    2018-02-01

    Satellite remote sensing (RS) is routinely used for the large-scale monitoring of microphytobenthos (MPB) biomass in intertidal mudflats and has greatly improved our knowledge of MPB spatio-temporal variability and its potential drivers. Processes operating on smaller scales however, such as the impact of benthic macrofauna on MPB development, to date remain underinvestigated. In this study, we analysed the influence of wild Crassostrea gigas oyster reefs on MPB biofilm development using multispectral RS. A 30-year time series (1985-2015) combining high-resolution (30 m) Landsat and SPOT data was built in order to explore the relationship between C. gigas reefs and MPB spatial distribution and seasonal dynamics, using the normalized difference vegetation index (NDVI). Emphasis was placed on the analysis of a before-after control-impact (BACI) experiment designed to assess the effect of oyster killing on the surrounding MPB biofilms. Our RS data reveal that the presence of oyster reefs positively affects MPB biofilm development. Analysis of the historical time series first showed the presence of persistent, highly concentrated MPB patches around oyster reefs. This observation was supported by the BACI experiment which showed that killing the oysters (while leaving the physical reef structure, i.e. oyster shells, intact) negatively affected both MPB biofilm biomass and spatial stability around the reef. As such, our results are consistent with the hypothesis of nutrient input as an explanation for the MPB growth-promoting effect of oysters, whereby organic and inorganic matter released through oyster excretion and biodeposition stimulates MPB biomass accumulation. MPB also showed marked seasonal variations in biomass and patch shape, size and degree of aggregation around the oyster reefs. Seasonal variations in biomass, with higher NDVI during spring and autumn, were consistent with those observed on broader scales in other European mudflats. Our study provides the

  3. Multispecies Biofilm Development on Space Station Heat Exhanger Core Material

    NASA Technical Reports Server (NTRS)

    Pyle, B. H.; Roth, S. R.; Vega, L. M.; Pickering, K. D.; Alvarez, Pedro J. J.; Roman, M. C.

    2007-01-01

    Investigations of microbial contamination of the cooling system aboard the International Space Station (ISS) suggested that there may be a relationship between heat exchanger (HX) materials and the degree of microbial colonization and biofilm formation. Experiments were undertaken to test the hypothesis that biofilm formation is influenced by the type and previous exposure of HX surfaces. Acidovorax delafieldii, Comamonas acidovorans, Hydrogenophaga pseudoflava, Pseudomonas stutzeri, Sphingomonas paucimobilis, and Stenotrophomonas maltophilia, originally isolated from ISS cooling system fluid, were cultured on R2A agar and suspended separately in fresh filter-sterilized ISS cooling fluid, pH 8.3. Initial numbers in each suspension ranged from 10(exp 6)-10(exp 7) CFU/ml, and a mixture contained greater than 10(exp 7) CFU/ml. Coupons of ISS HX material, previously used on orbit (HXOO) or unused (HXUU), polycarbonate (PC) and 316L polished stainless steel (SS) were autoclaved, covered with multispecies suspension in sterile tubes and incubated in the dark at ambient (22-25 C). Original HX material contained greater than 90% Ni, 4.5% Si, and 3.2% B, with a borate buffer. For approximately 10 weeks, samples of fluid were plated on R2A agar, and surface colonization assessed by SYBR green or BacLight staining and microscopy. Suspension counts for the PC and SC samples remained steady at around 10(exp 7) CFU/ml. HXUU counts declined about 1 log in 21 d then remained steady, and HXOO counts declined 2 logs in 28 d, fluctuated and stabilized about 10(exp 3) CFU/ml from 47-54 d. Predominantly yellow S. paucimobilis predominated on plates from HXOO samples up to 26 d, then white or translucent colonies of other species appeared. All colony types were seen on plates from other samples throughout the trial. Epifluorescence microscopy indicated microbial growth on all surfaces by 21 d, followed by variable colonization. After 54 d, all but the HXOO samples had well

  4. Monitoring bacterial biofilms with a microfluidic flow chip designed for imaging with white-light interferometry

    SciTech Connect

    Brann, Michelle; Suter, Jonathan D.; Addleman, R. Shane

    There is a need for imaging and sensing instrumentation that can monitor transitions in biofilm structure in order to better understand biofilm development and emergent properties such as anti-microbial resistance. Herein, we expanded on our previously reported technique for measuring and monitoring the thickness and topology of live biofilms using white-light interferometry (WLI). A flow cell designed for WLI enabled the use of this non-disruptive imaging method for the capture of high resolution three-dimensional profile images of biofilm growth over time. The fine axial resolution (3 nm) and wide field of view (>1 mm by 1 mm) enabled detection ofmore » biofilm formation as early as three hours after inoculation of the flow cell with a live bacterial culture (Pseudomonas fluorescens). WLI imaging facilitated monitoring the early stages of biofilm development and subtle variations in the structure of mature biofilms. Minimally-invasive imaging enabled monitoring of biofilm structure with surface metrology metrics (e.g., surface roughness). The system was used to observe a transition in biofilm structure that occurred in response to expsoure to a common antiseptic. In the future, WLI and the biofilm imaging cell described herein may be used to test the effectiveness of biofilm-specific therapies to combat common diseases associated with biofilm formation such as cystic fibrosis and periodontitis.« less

  5. Detection and quantification of bacterial biofilms combining high-frequency acoustic microscopy and targeted lipid microparticles.

    PubMed

    Anastasiadis, Pavlos; Mojica, Kristina D A; Allen, John S; Matter, Michelle L

    2014-07-06

    Immuno-compromised patients such as those undergoing cancer chemotherapy are susceptible to bacterial infections leading to biofilm matrix formation. This surrounding biofilm matrix acts as a diffusion barrier that binds up antibiotics and antibodies, promoting resistance to treatment. Developing non-invasive imaging methods that detect biofilm matrix in the clinic are needed. The use of ultrasound in conjunction with targeted ultrasound contrast agents (UCAs) may provide detection of early stage biofilm matrix formation and facilitate optimal treatment. Ligand-targeted UCAs were investigated as a novel method for pre-clinical non-invasive molecular imaging of early and late stage biofilms. These agents were used to target, image and detect Staphylococcus aureus biofilm matrix in vitro. Binding efficacy was assessed on biofilm matrices with respect to their increasing biomass ranging from 3.126 × 103 ± 427 UCAs per mm(2) of biofilm surface area within 12 h to 21.985 × 103 ± 855 per mm(2) of biofilm matrix surface area at 96 h. High-frequency acoustic microscopy was used to ultrasonically detect targeted UCAs bound to a biofilm matrix and to assess biofilm matrix mechanoelastic physical properties. Acoustic impedance data demonstrated that biofilm matrices exhibit impedance values (1.9 MRayl) close to human tissue (1.35 - 1.85 MRayl for soft tissues). Moreover, the acoustic signature of mature biofilm matrices were evaluated in terms of integrated backscatter (0.0278 - 0.0848 mm(-1) × sr(-1)) and acoustic attenuation (3.9 Np/mm for bound UCAs; 6.58 Np/mm for biofilm alone). Early diagnosis of biofilm matrix formation is a challenge in treating cancer patients with infection-associated biofilms. We report for the first time a combined optical and acoustic evaluation of infectious biofilm matrices. We demonstrate that acoustic impedance of biofilms is similar to the impedance of human tissues, making in vivo imaging and detection of biofilm matrices difficult

  6. Detection and quantification of bacterial biofilms combining high-frequency acoustic microscopy and targeted lipid microparticles

    PubMed Central

    2014-01-01

    Background Immuno-compromised patients such as those undergoing cancer chemotherapy are susceptible to bacterial infections leading to biofilm matrix formation. This surrounding biofilm matrix acts as a diffusion barrier that binds up antibiotics and antibodies, promoting resistance to treatment. Developing non-invasive imaging methods that detect biofilm matrix in the clinic are needed. The use of ultrasound in conjunction with targeted ultrasound contrast agents (UCAs) may provide detection of early stage biofilm matrix formation and facilitate optimal treatment. Results Ligand-targeted UCAs were investigated as a novel method for pre-clinical non-invasive molecular imaging of early and late stage biofilms. These agents were used to target, image and detect Staphylococcus aureus biofilm matrix in vitro. Binding efficacy was assessed on biofilm matrices with respect to their increasing biomass ranging from 3.126 × 103 ± 427 UCAs per mm2 of biofilm surface area within 12 h to 21.985 × 103 ± 855 per mm2 of biofilm matrix surface area at 96 h. High-frequency acoustic microscopy was used to ultrasonically detect targeted UCAs bound to a biofilm matrix and to assess biofilm matrix mechanoelastic physical properties. Acoustic impedance data demonstrated that biofilm matrices exhibit impedance values (1.9 MRayl) close to human tissue (1.35 - 1.85 MRayl for soft tissues). Moreover, the acoustic signature of mature biofilm matrices were evaluated in terms of integrated backscatter (0.0278 - 0.0848 mm-1 × sr-1) and acoustic attenuation (3.9 Np/mm for bound UCAs; 6.58 Np/mm for biofilm alone). Conclusions Early diagnosis of biofilm matrix formation is a challenge in treating cancer patients with infection-associated biofilms. We report for the first time a combined optical and acoustic evaluation of infectious biofilm matrices. We demonstrate that acoustic impedance of biofilms is similar to the impedance of human tissues, making in vivo imaging and detection of biofilm

  7. Effect of Antibiotics and Antibiofilm Agents in the Ultrastructure and Development of Biofilms Developed by Nonpigmented Rapidly Growing Mycobacteria.

    PubMed

    Muñoz-Egea, María-Carmen; García-Pedrazuela, María; Mahillo-Fernandez, Ignacio; Esteban, Jaime

    2016-01-01

    We analyze the effect of amikacin, ciprofloxacin, and clarithromycin, alone and associated with N-acetylcysteine (NAC) and Tween 80, at different times and concentrations in nonpigmented rapidly growing mycobacteria (NPRGM) biofilms. For this purpose, confocal laser scanning microscopy and image analysis were used to study the development and behavior of intrinsic autofluorescence, covered area, thickness, and cell viability in NPRGM biofilms after adding antibiotics alone and associated with antibiofilm agents. In this study, ciprofloxacin is the most active antibiotic against this type of biofilm and thickness is the most affected parameter. NAC and Tween 80 combined with antibiotics exert a synergistic effect in increasing the percentage of dead bacteria and also reducing the percentage of covered surface and thickness of NPRGM biofilms. Tween 80 seems to be an antibiofilm agent more effective than NAC due to its higher reduction in the percentage of cover surface and thickness. In conclusion, the results obtained in this work show that phenotypic parameters (thickness, percentage of covered surface, autofluorescence, percentage of live/dead bacteria) are affected by combining antibiotics and antibiofilm agents, ciprofloxacin and Tween 80 being the most active agents against NPRGM biofilms.

  8. Early Program Development

    NASA Image and Video Library

    1970-01-01

    This artist's concept from 1970 shows a Nuclear Shuttle taking on fuel from an orbiting Liquid Hydrogen Depot. As envisioned by Marshall Space Flight Center Program Development persornel, the Nuclear Shuttle would deliver payloads to lunar orbit or other destinations then return to Earth orbit for refueling and additional missions.

  9. Early Program Development

    NASA Image and Video Library

    1970-01-01

    This 1970 artist's concept shows a Nuclear Shuttle in flight. As envisioned by Marshall Space Flight Center Program Development engineers, the Nuclear Shuttle would deliver payloads to lunar orbit or other destinations then return to Earth orbit for refueling and additional missions.

  10. Early Program Development

    NASA Image and Video Library

    1971-01-01

    In this 1971 artist's concept, the Nuclear Shuttle is shown in various space-based applications. As envisioned by Marshall Space Flight Center Program Development persornel, the Nuclear Shuttle would deliver payloads to geosychronous Earth orbits or lunar orbits then return to low Earth orbit for refueling. A cluster of Nuclear Shuttle units could form the basis for planetary missions.

  11. Early Program Development

    NASA Image and Video Library

    1971-01-01

    This 1971 artist's concept shows the Nuclear Shuttle in both its lunar logistics configuraton and geosynchronous station configuration. As envisioned by Marshall Space Flight Center Program Development persornel, the Nuclear Shuttle would deliver payloads to lunar orbits or other destinations then return to Earth orbit for refueling and additional missions.

  12. Early Program Development

    NASA Image and Video Library

    1963-01-01

    This artist's concept from 1963 shows a proposed NERVA (Nuclear Engine for Rocket Vehicle Application) incorporating the NRX-A1, the first NERVA-type cold flow reactor. The NERVA engine, based on Kiwi nuclear reactor technology, was intended to power a RIFT (Reactor-In-Flight-Test) nuclear stage, for which Marshall Space Flight Center had development responsibility.

  13. A closed-form expression for the effect in breakthrough curves of biofilm development: enhanced dispersion

    NASA Astrophysics Data System (ADS)

    Sanchez-Vila, X.; Rodriguez-Escales, P.

    2017-12-01

    It has been widely reported that biofilm growth changes the hydraulic parameters in porous media. While the impact upon reduction of hydraulic conductivity has been widely explained and modeled, this has not been the case for the reported order(s) of magnitude increase in dispersion coefficient even when a minute percentage of biofilm is formed, and despite the effect of biofilm growth is to reduce specific discharge, producing a somewhat counterintuitive result. We develop here a simple yet practical expression for the evaluation of an effective dispersion coefficient caused by biomass colonization, based on the modification of the breakthrough curves (in terms of temporal moments) with respect to the biofilm-free porous media. The advantage of the expression is that it is written in terms of observables that are relatively easy to measure in the lab or the field, contrarily to existing expressions that relate the effect to channelization resulting in tortuosity being the driving term of effective dispersion. We have tested our simplified expression in a number of reported sites, where enhanced dispersion of 1-2 orders of magnitude has been reported, indirectly showing the relative importance of the terms included in the expression.

  14. Development and Application of a Polymicrobial in vitro Wound Biofilm Model

    PubMed Central

    Woods, Jeremy; Boegli, Laura; Kirker, Kelly R.; Agostinho, Alessandra M.; Durch, Amanda M.; Pulcini, Elinor deLancey; Stewart, Philip S.; James, Garth A.

    2012-01-01

    Aims The goal of this investigation was to develop an in vitro, polymicrobial, wound biofilm capable of supporting the growth of bacteria with variable oxygen requirements. Methods and Results The strict anaerobe Clostridium perfringens was isolated by cultivating wound homogenates using the drip-flow reactor, and a three-species biofilm model was established using methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and C. perfringens in the colony-drip-flow reactor model. Plate counts revealed that MRSA, P. aeruginosa, and C. perfringens grew to 7.39±0.45, 10.22±0.22, and 7.13±0.77 log CFU per membrane, respectively. The three-species model was employed to evaluate the efficacy of two antimicrobial dressings, Curity™ AMD and Acticoat™, compared to sterile gauze controls. Microbial growth on Curity™ AMD and gauze were not significantly different, for any species, whereas Acticoat™ was found to significantly reduce growth for all three species. Conclusions Using the Colony-DFR, a three-species biofilm was successfully grown, and the biofilms displayed a unique structure consisting of distinct layers that appeared to be inhabited exclusively or predominantly by a single species. Significance and Impact of Study The primary accomplishment of this study was the isolation and growth of an obligate anaerobe in an in vitro model without establishing an artificially anaerobic environment. PMID:22353049

  15. Early Program Development

    NASA Image and Video Library

    2004-04-15

    This artist's concept illustrates the NERVA (Nuclear Engine for Rocket Vehicle Application) engine's hot bleed cycle in which a small amount of hydrogen gas is diverted from the thrust nozzle, thus eliminating the need for a separate system to drive the turbine. The NERVA engine, based on KIWI nuclear reactor technology, would power a RIFT (Reactor-In-Flight-Test) nuclear stage, for which the Marshall Space Flight Center had development responsibility.

  16. Early Program Development

    NASA Image and Video Library

    1970-01-01

    In this 1970 artist's concept, the Nuclear Shuttle is shown in its lunar and geosynchronous orbit configuration and in its planetary mission configuration. As envisioned by Marshall Space Flight Center Program Development plarners, the Nuclear Shuttle would deliver payloads to lunar orbit or other destinations then return to Earth orbit for refueling. A cluster of Nuclear Shuttle units could form the basis for planetary missions.

  17. Early Program Development

    NASA Image and Video Library

    1996-06-20

    Engineers at one of MSFC's vacuum chambers begin testing a microthruster model. The purpose of these tests are to collect sufficient data that will enabe NASA to develop microthrusters that will move the Space Shuttle, a future space station, or any other space related vehicle with the least amount of expended energy. When something is sent into outer space, the forces that try to pull it back to Earth (gravity) are very small so that it only requires a very small force to move very large objects. In space, a force equal to a paperclip can move an object as large as a car. Microthrusters are used to produce these small forces.

  18. Biomechanics of Early Cardiac Development

    PubMed Central

    Goenezen, Sevan; Rennie, Monique Y.

    2012-01-01

    Biomechanics affect early cardiac development, from looping to the development of chambers and valves. Hemodynamic forces are essential for proper cardiac development, and their disruption leads to congenital heart defects. A wealth of information already exists on early cardiac adaptations to hemodynamic loading, and new technologies, including high resolution imaging modalities and computational modeling, are enabling a more thorough understanding of relationships between hemodynamics and cardiac development. Imaging and modeling approaches, used in combination with biological data on cell behavior and adaptation, are paving the road for new discoveries on links between biomechanics and biology and their effect on cardiac development and fetal programming. PMID:22760547

  19. Impact of orthophosphate addition on biofilm development in drinking water distribution systems.

    PubMed

    Gouider, Mbarka; Bouzid, Jalel; Sayadi, Sami; Montiel, Antoine

    2009-08-15

    The contamination of the water distribution network results from fixed bacteria multiplication (biofilm) on the water pipe walls, followed by their detachment and their transport in the circulating liquid. The presence of biofilms in distribution networks can result in numerous unwanted problems for the user such as microbial contamination of the distributed water and deterioration of the network (bio-corrosion). For old networks, lead-containing plumbings can be a serious cause of worry for the consumer owing to the release of lead ions in the circulating water. Among the solutions considered to reduce the presence of lead in drinking water, the addition of orthophosphates constitutes an interesting alternative. However, the added orthophosphate may cause--even at low doses--additional microbial growth. The main objective of this study was to evaluate the impact of the orthophosphate treatment on the biofilm development in the water supplied by the Joinville-le-Pont water treatment plant (Eau de Paris, France). For this purpose, a laboratory pilot plant was devised and connected to the considered water network. Two quantification methods for monitoring the biofilm formation were used: the enumeration on R2A agar and the determination of proteins. For the biofilm detachment operation, an optimization of the rinsing step was firstly conducted in order to distinguish between free and fixed biomass. The data obtained showed that there was a linear relation between both quantification methods. They also showed that, for the tested water, the bacterial densities were not affected by orthophosphate addition at a treatment rate of 1mg PO(4)(3-)/L.

  20. Establishment and Early Succession of Bacterial Communities in Monochloramine-Treated Drinking Water Biofilms

    EPA Science Inventory

    Monochloramine is increasingly used as a drinking water disinfectant because it forms lower levels of regulated disinfection by-products. While its use has been shown to increase nitrifying bacteria, little is known about the bacterial succession within biofilms in monochloramin...

  1. Establishment and Early Succession of Bacterial Communities in Monochloramine-treated Drinking Water Biofilms

    EPA Science Inventory

    The use of monochloramine as drinking water disinfectant is increasing because it forms lower levels of traditional disinfection by-products compared to free-chlorine. However, little is known about the bacterial succession within biofilms in monochloramine-treated systems. The d...

  2. Development of static system procedures to study aquatic biofilms and their responses to disinfection and invading species

    NASA Technical Reports Server (NTRS)

    Smithers, G. A.

    1992-01-01

    The microbial ecology facility in the Analytical and Physical Chemistry Branch at Marshall Space Flight Center is tasked with anticipation of potential microbial problems (and opportunities to exploit microorganisms) which may occur in partially closed systems such as space station/vehicles habitats and in water reclamation systems therein, with particular emphasis on the degradation of materials. Within this context, procedures for microbial biofilm research are being developed. Reported here is the development of static system procedures to study aquatic biofilms and their responses to disinfection and invading species. Preliminary investigations have been completed. As procedures are refined, it will be possible to focus more closely on the elucidation of biofilm phenomena.

  3. Surface physicochemical properties at the micro and nano length scales: role on bacterial adhesion and Xylella fastidiosa biofilm development.

    PubMed

    Lorite, Gabriela S; Janissen, Richard; Clerici, João H; Rodrigues, Carolina M; Tomaz, Juarez P; Mizaikoff, Boris; Kranz, Christine; de Souza, Alessandra A; Cotta, Mônica A

    2013-01-01

    The phytopathogen Xylella fastidiosa grows as a biofilm causing vascular occlusion and consequently nutrient and water stress in different plant hosts by adhesion on xylem vessel surfaces composed of cellulose, hemicellulose, pectin and proteins. Understanding the factors which influence bacterial adhesion and biofilm development is a key issue in identifying mechanisms for preventing biofilm formation in infected plants. In this study, we show that X. fastidiosa biofilm development and architecture correlate well with physicochemical surface properties after interaction with the culture medium. Different biotic and abiotic substrates such as silicon (Si) and derivatized cellulose films were studied. Both biofilms and substrates were characterized at the micro- and nanoscale, which corresponds to the actual bacterial cell and membrane/ protein length scales, respectively. Our experimental results clearly indicate that the presence of surfaces with different chemical composition affect X. fastidiosa behavior from the point of view of gene expression and adhesion functionality. Bacterial adhesion is facilitated on more hydrophilic surfaces with higher surface potentials; XadA1 adhesin reveals different strengths of interaction on these surfaces. Nonetheless, despite different architectural biofilm geometries and rates of development, the colonization process occurs on all investigated surfaces. Our results univocally support the hypothesis that different adhesion mechanisms are active along the biofilm life cycle representing an adaptation mechanism for variations on the specific xylem vessel composition, which the bacterium encounters within the infected plant.

  4. Surface Physicochemical Properties at the Micro and Nano Length Scales: Role on Bacterial Adhesion and Xylella fastidiosa Biofilm Development

    PubMed Central

    Lorite, Gabriela S.; Janissen, Richard; Clerici, João H.; Rodrigues, Carolina M.; Tomaz, Juarez P.; Mizaikoff, Boris; Kranz, Christine; de Souza, Alessandra A.; Cotta, Mônica A.

    2013-01-01

    The phytopathogen Xylella fastidiosa grows as a biofilm causing vascular occlusion and consequently nutrient and water stress in different plant hosts by adhesion on xylem vessel surfaces composed of cellulose, hemicellulose, pectin and proteins. Understanding the factors which influence bacterial adhesion and biofilm development is a key issue in identifying mechanisms for preventing biofilm formation in infected plants. In this study, we show that X. fastidiosa biofilm development and architecture correlate well with physicochemical surface properties after interaction with the culture medium. Different biotic and abiotic substrates such as silicon (Si) and derivatized cellulose films were studied. Both biofilms and substrates were characterized at the micro- and nanoscale, which corresponds to the actual bacterial cell and membrane/ protein length scales, respectively. Our experimental results clearly indicate that the presence of surfaces with different chemical composition affect X. fastidiosa behavior from the point of view of gene expression and adhesion functionality. Bacterial adhesion is facilitated on more hydrophilic surfaces with higher surface potentials; XadA1 adhesin reveals different strengths of interaction on these surfaces. Nonetheless, despite different architectural biofilm geometries and rates of development, the colonization process occurs on all investigated surfaces. Our results univocally support the hypothesis that different adhesion mechanisms are active along the biofilm life cycle representing an adaptation mechanism for variations on the specific xylem vessel composition, which the bacterium encounters within the infected plant. PMID:24073256

  5. Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomonas fluorescens SBW25 biofilms

    PubMed Central

    Bygvraa Svenningsen, Nanna; Rybtke, Morten; de Bruijn, Irene; Raaijmakers, Jos M.; Tolker-Nielsen, Tim; Nybroe, Ole

    2015-01-01

    Pseudomonads produce several lipopeptide biosurfactants that have antimicrobial properties but that also facilitate surface motility and influence biofilm formation. Detailed studies addressing the significance of lipopeptides for biofilm formation and architecture are rare. Hence, the present study sets out to determine the specific role of the lipopeptide viscosin in Pseudomonas fluorescens SBW25 biofilm formation, architecture and dispersal, and to relate viscA gene expression to viscosin production and effect. Initially, we compared biofilm formation of SBW25 and the viscosin-deficient mutant strain SBW25ΔviscA in static microtitre assays. These experiments demonstrated that viscosin had little influence on the amount of biofilm formed by SBW25 during the early stages of biofilm development. Later, however, SBW25 formed significantly less biofilm than SBW25ΔviscA. The indication that viscosin is involved in biofilm dispersal was confirmed by chemical complementation of the mutant biofilm. Furthermore, a fluorescent bioreporter showed that viscA expression was induced in biofilms 4 h prior to dispersal. Subsequent detailed studies of biofilms formed in flow cells for up to 5 days revealed that SBW25 and SBW25ΔviscA developed comparable biofilms dominated by well-defined, mushroom-shaped structures. Carbon starvation was required to obtain biofilm dispersal in this system. Dispersal of SBW25 biofilms was significantly greater than of SBW25ΔviscA biofilms after 3 h and, importantly, carbon starvation strongly induced viscA expression, in particular for cells that were apparently leaving the biofilm. Thus, the present study points to a role for viscosin-facilitated motility in dispersal of SBW25 biofilms. PMID:26419730

  6. Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomonas fluorescens SBW25 biofilms.

    PubMed

    Bonnichsen, Lise; Bygvraa Svenningsen, Nanna; Rybtke, Morten; de Bruijn, Irene; Raaijmakers, Jos M; Tolker-Nielsen, Tim; Nybroe, Ole

    2015-12-01

    Pseudomonads produce several lipopeptide biosurfactants that have antimicrobial properties but that also facilitate surface motility and influence biofilm formation. Detailed studies addressing the significance of lipopeptides for biofilm formation and architecture are rare. Hence, the present study sets out to determine the specific role of the lipopeptide viscosin in Pseudomonas fluorescens SBW25 biofilm formation, architecture and dispersal, and to relate viscA gene expression to viscosin production and effect. Initially, we compared biofilm formation of SBW25 and the viscosin-deficient mutant strain SBW25ΔviscA in static microtitre assays. These experiments demonstrated that viscosin had little influence on the amount of biofilm formed by SBW25 during the early stages of biofilm development. Later, however, SBW25 formed significantly less biofilm than SBW25ΔviscA. The indication that viscosin is involved in biofilm dispersal was confirmed by chemical complementation of the mutant biofilm. Furthermore, a fluorescent bioreporter showed that viscA expression was induced in biofilms 4 h prior to dispersal. Subsequent detailed studies of biofilms formed in flow cells for up to 5 days revealed that SBW25 and SBW25ΔviscA developed comparable biofilms dominated by well-defined, mushroom-shaped structures. Carbon starvation was required to obtain biofilm dispersal in this system. Dispersal of SBW25 biofilms was significantly greater than of SBW25ΔviscA biofilms after 3 h and, importantly, carbon starvation strongly induced viscA expression, in particular for cells that were apparently leaving the biofilm. Thus, the present study points to a role for viscosin-facilitated motility in dispersal of SBW25 biofilms.

  7. Extracellular polymeric substances govern the development of biofilm and mass transfer of polycyclic aromatic hydrocarbons for improved biodegradation.

    PubMed

    Zhang, Yinping; Wang, Fang; Zhu, Xiaoshu; Zeng, Jun; Zhao, Qiguo; Jiang, Xin

    2015-10-01

    The hypothesis that extracellular polymeric substances (EPS) affect the formation of biofilms for subsequent enhanced biodegradation of polycyclic aromatic hydrocarbons was tested. Controlled formation of biofilms on humin particles and biodegradation of phenanthrene and pyrene were performed with bacteria and EPS-extracted bacteria of Micrococcus sp. PHE9 and Mycobacterium sp. NJS-P. Bacteria without EPS extraction developed biofilms on humin, in contrast the EPS-extracted bacteria could not attach to humin particles. In the subsequent biodegradation of phenanthrene and pyrene, the biodegradation rates by biofilms were significantly higher than those of EPS-extracted bacteria. Although, both the biofilms and EPS-extracted bacteria showed increases in EPS contents, only the EPS contents in biofilms displayed significant correlations with the biodegradation efficiencies of phenanthrene and pyrene. It is proposed that the bacterial-produced EPS was a key factor to mediate bacterial attachment to other surfaces and develop biofilms, thereby increasing the bioavailability of poorly soluble PAH for enhanced biodegradation. Copyright © 2015. Published by Elsevier Ltd.

  8. Synchronized dynamics of bacterial niche-specific functions during biofilm development in a cold seep brine pool.

    PubMed

    Zhang, Weipeng; Wang, Yong; Bougouffa, Salim; Tian, Renmao; Cao, Huiluo; Li, Yongxin; Cai, Lin; Wong, Yue Him; Zhang, Gen; Zhou, Guowei; Zhang, Xixiang; Bajic, Vladimir B; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2015-10-01

    The biology of biofilm in deep-sea environments is barely being explored. Here, biofilms were developed at the brine pool (characterized by limited carbon sources) and the normal bottom water adjacent to Thuwal cold seeps. Comparative metagenomics based on 50 Gb datasets identified polysaccharide degradation, nitrate reduction and proteolysis as enriched functional categories for brine biofilms. The genomes of two dominant species: a novel Deltaproteobacterium and a novel Epsilonproteobacterium in the brine biofilms were reconstructed. Despite rather small genome sizes, the Deltaproteobacterium possessed enhanced polysaccharide fermentation pathways, whereas the Epsilonproteobacterium was a versatile nitrogen reactor possessing nar, nap and nif gene clusters. These metabolic functions, together with specific regulatory and hypersaline-tolerant genes, made the two bacteria unique compared with their close relatives, including those from hydrothermal vents. Moreover, these functions were regulated by biofilm development, as both the abundance and the expression level of key functional genes were higher in later stage biofilms, and co-occurrences between the two dominant bacteria were demonstrated. Collectively, unique mechanisms were revealed: (i) polysaccharides fermentation, proteolysis interacted with nitrogen cycling to form a complex chain for energy generation, and (ii) remarkably exploiting and organizing niche-specific functions would be an important strategy for biofilm-dependent adaptation to the extreme conditions. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Wastewater treatment with submerged fixed bed biofilm reactor systems--design rules, operating experiences and ongoing developments.

    PubMed

    Schlegel, S; Koeser, H

    2007-01-01

    Wastewater treatment systems using bio-films that grow attached to a support media are an alternative to the widely used suspended growth activated sludge process. Different fixed growth biofilm reactors are commercially used for the treatment of municipal as well as industrial wastewater. In this paper a fairly new fixed growth biofilm system, the submerged fixed bed biofilm reactor (SFBBR), is discussed. SFBBRs are based on aerated submerged fixed open structured plastic media for the support of the biofilm. They are generally operated without sludge recirculation in order to avoid clogging of the support media and problems with the control of the biofilm. Reactor and process design considerations for these reactors are reviewed. Measures to ensure the development and maintenance of an active biofilm are examined. SFBBRs have been applied successfully to small wastewater treatment plants where complete nitrification but no high degree of denitrification is necessary. For the pre-treatment of industrial wastewater the use of SFBBRs is advantageous, especially in cases of wastewater with high organic loading or high content of compounds with low biodegradability. Performance data from exemplary commercial plants are given. Ongoing research and development efforts aim at achieving a high simultaneous total nitrogen (TN) removal of aerated SFBBRs and at improving the efficiency of TN removal in anoxic SFBBRs.

  10. Spatial Periodicity of Escherichia coli K-12 Biofilm Microstructure Initiates during a Reversible, Polar Attachment Phase of Development and Requires the Polysaccharide Adhesin PGA

    PubMed Central

    Agladze, Konstantin; Wang, Xin; Romeo, Tony

    2005-01-01

    Using fast Fourier transform (FFT) analysis, we previously observed that cells within Escherichia coli biofilm are organized in nonrandom or periodic spatial patterns (K. Agladze et al., J. Bacteriol. 185:5632-5638, 2003). Here, we developed a gravity displacement assay for examining cell adherence and used it to quantitatively monitor the formation of two distinct forms of cell attachment, temporary and permanent, during early biofilm development. Temporarily attached cells were mainly surface associated by a cell pole; permanent attachments were via the lateral cell surface. While temporary attachment precedes permanent attachment, both forms can coexist in a population. Exposure of attached cells to gravity liberated an unattached population capable of rapidly reassembling a new monolayer, composed of temporarily attached cells, and possessing periodicity. A csrA mutant, which forms biofilm more vigorously than its wild-type parent, exhibited an increased proportion of permanently attached cells and a form of attachment that was not apparent in the parent strain, permanent polar attachment. Nevertheless, it formed periodic attachment patterns. In contrast, biofilm mutants with altered lipopolysaccharide synthesis (waaG) exhibited increased cell-cell interactions, bypassed the polar attachment step, and produced FFT spectra characteristic of aperiodic cell distribution. Mutants lacking the polysaccharide adhesin β-1,6-N-acetyl-d-glucosamine (ΔpgaC) also exhibited aperiodic cell distribution, but without apparent cell-cell interactions, and were defective in forming permanent attachments. Thus, spatial periodicity of biofilm microstructure is genetically determined and evident during the formation of temporary cell surface attachments. PMID:16321928

  11. Live and heat-killed Lactobacillus spp. interfere with Streptococcus mutans and Streptococcus oralis during biofilm development on titanium surface.

    PubMed

    Ciandrini, E; Campana, R; Baffone, W

    2017-06-01

    This research investigates the ability of live and heat-killed (HK) Lactic Acid Bacteria (LAB) to interfere with Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 during biofilm formation. Eight Lactobacillus spp. and two oral colonizers, pathogenic Streptococcus mutans and resident Streptococcus oralis, were characterized for their aggregation abilities, cell surface properties and biofilm formation ability on titanium surface. Then, the interference activity of selected live and HK Lactobacillus spp. during S. mutans and S. oralis biofilm development were performed. The cell-free culture supernatants (CFCS) anti-biofilm activity was also determined. LAB possess good abilities of auto-aggregation (from 14.19 to 28.97%) and of co-aggregation with S. oralis. The cell-surfaces characteristics were most pronounced in S. mutans and S. oralis, while the highest affinities to xylene and chloroform were observed in Lactobacillus rhamnosus ATCC 53103 (56.37%) and Lactobacillus paracasei B21060 (43.83%). S. mutans and S. oralis developed a biofilm on titanium surface, while LAB showed a limited or no ability to create biofilm. Live and HK L. rhamnosus ATCC 53103 and L. paracasei B21060 inhibited streptococci biofilm formation by competition and displacement mechanisms with no substantial differences. The CFCSs of both LAB strains, particularly the undiluted one of L. paracasei B21060, decreased S. mutans and S. oralis biofilm formation. This study evidenced the association of LAB aggregation abilities and cell-surface properties with the LAB-mediated inhibition of S. mutans and S. oralis biofilm formation. Lactobacilli showed different mechanisms of action and peculiar strain-specific characteristics, maintained also in the heat-killed LAB. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Mycobacterium tuberculosis toxin Rv2872 is an RNase involved in vancomycin stress response and biofilm development.

    PubMed

    Wang, Xiaoyu; Zhao, Xiaokang; Wang, Hao; Huang, Xue; Duan, Xiangke; Gu, Yinzhong; Lambert, Nzungize; Zhang, Ke; Kou, Zhenhao; Xie, Jianping

    2018-06-11

    Bacterial toxin-antitoxin (TA) systems are emerging important regulators of multiple cellular physiological events and candidates for novel antibiotic targets. To explore the role of Mycobacterium tuberculosis function, unknown toxin gene Rv2872 was heterologously expressed in Mycobacterium smegmatis (MS_Rv2872). Upon induction, MS_Rv2872 phenotype differed significantly from the control, such as increased vancomycin resistance, retarded growth, cell wall, and biofilm structure. This phenotype change might result from the RNase activity of Rv2872 as purified Rv2872 toxin protein can cleave the products of several key genes involved in abovementioned phenotypes. In summary, toxin Rv2872 was firstly reported to be a endonuclease involved in antibiotic stress responses, cell wall structure, and biofilm development.

  13. Redox metabolites signal polymicrobial biofilm development via the NapA oxidative stress cascade in Aspergillus

    PubMed Central

    Zheng, He; Kim, Jaekuk; Liew, Mathew; Yan, John K.; Herrera, Oscar; Bok, JinWoo; Kelleher, Neil L.; Keller, Nancy P.; Wang, Yun

    2014-01-01

    Summary Background Filamentous fungi and bacteria form mixed-species biofilms in nature and diverse clinical contexts. They secrete a wealth of redox-active small molecule secondary metabolites, which are traditionally viewed as toxins that inhibit growth of competing microbes. Results Here we report that these “toxins” can act as interspecies signals, affecting filamentous fungal development via oxidative stress regulation. Specifically, in co-culture biofilms, Pseudomonas aeruginosa phenazine-derived metabolites differentially modulated Aspergillus fumigatus development, shifting from weak vegetative growth to induced asexual sporulation (conidiation) along a decreasing phenazine gradient. The A. fumigatus morphological shift correlated with the production of phenazine radicals and concomitant reactive oxygen species (ROS) production generated by phenazine redox cycling. Phenazine conidiation signaling was conserved in the genetic model A. nidulans, and mediated by NapA, a homolog of AP-1-like bZIP transcription factor, which is essential for the response to oxidative stress in humans, yeast, and filamentous fungi. Expression profiling showed phenazine treatment induced a NapA-dependent response of the global oxidative stress metabolome including the thioredoxin, glutathione and NADPH-oxidase systems. Conidiation induction in A. nidulans by another microbial redox-active secondary metabolite, gliotoxin, also required NapA. Conclusions This work highlights that microbial redox metabolites are key signals for sporulation in filamentous fungi, which are communicated through an evolutionarily conserved eukaryotic stress response pathway. It provides a foundation for interspecies signaling in environmental and clinical biofilms involving bacteria and filamentous fungi. PMID:25532893

  14. Fungal Biofilms: Targets for the Development of Novel Strategies in Plant Disease Management.

    PubMed

    Villa, Federica; Cappitelli, Francesca; Cortesi, Paolo; Kunova, Andrea

    2017-01-01

    The global food supply has been facing increasing challenges during the first decades of the 21 st century. Disease in plants is an important constraint to worldwide crop production, accounting for 20-40% of its annual harvest loss. Although the use of resistant varieties, good water management and agronomic practices are valid management tools in counteracting plant diseases, there are still many pathosystems where fungicides are widely used for disease management. However, restrictive regulations and increasing concern regarding the risk to human health and the environment, along with the incidence of fungicide resistance, have discouraged their use and have prompted for a search for new efficient, ecologically friendly and sustainable disease management strategies. The recent evidence of biofilm formation by fungal phytopathogens provides the scientific framework for designing and adapting methods and concepts developed by biofilm research that could be integrated in IPM practices. In this perspective paper, we provide evidence to support the view that the biofilm lifestyle plays a critical role in the pathogenesis of plant diseases. We describe the main factors limiting the durability of single-site fungicides, and we assemble the current knowledge on pesticide resistance in the specific context of the biofilm lifestyle. Finally, we illustrate the potential of antibiofilm compounds at sub-lethal concentrations for the development of an innovative, eco-sustainable strategy to counteract phytopathogenic fungi. Such fungicide-free solutions will be instrumental in reducing disease severity, and will permit more prudent use of fungicides decreasing thus the selection of resistant forms and safeguarding the environment.

  15. Biofilm Matrix Proteins.

    PubMed

    Fong, Jiunn N C; Yildiz, Fitnat H

    2015-04-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins, and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this article, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation.

  16. Biofilm and Diatom Succession on Polyethylene (PE) and Biodegradable Plastic Bags in Two Marine Habitats: Early Signs of Degradation in the Pelagic and Benthic Zone?

    PubMed Central

    Laforsch, Christian; Weber, Miriam

    2015-01-01

    The production of biodegradable plastic is increasing. Given the augmented littering of these products an increasing input into the sea is expected. Previous laboratory experiments have shown that degradation of plastic starts within days to weeks. Little is known about the early composition and activity of biofilms found on biodegradable and conventional plastic debris and its correlation to degradation in the marine environment. In this study we investigated the early formation of biofilms on plastic shopper bags and its consequences for the degradation of plastic. Samples of polyethylene and biodegradable plastic were tested in the Mediterranean Sea for 15 and 33 days. The samples were distributed equally to a shallow benthic (sedimentary seafloor at 6 m water depth) and a pelagic habitat (3 m water depth) to compare the impact of these different environments on fouling and degradation. The amount of biofilm increased on both plastic types and in both habitats. The diatom abundance and diversity differed significantly between the habitats and the plastic types. Diatoms were more abundant on samples from the pelagic zone. We anticipate that specific surface properties of the polymer types induced different biofilm communities on both plastic types. Additionally, different environmental conditions between the benthic and pelagic experimental site such as light intensity and shear forces may have influenced unequal colonisation between these habitats. The oxygen production rate was negative for all samples, indicating that the initial biofilm on marine plastic litter consumes oxygen, regardless of the plastic type or if exposed in the pelagic or the benthic zone. Mechanical tests did not reveal degradation within one month of exposure. However, scanning electron microscopy (SEM) analysis displayed potential signs of degradation on the plastic surface, which differed between both plastic types. This study indicates that the early biofilm formation and composition

  17. Biofilm and Diatom Succession on Polyethylene (PE) and Biodegradable Plastic Bags in Two Marine Habitats: Early Signs of Degradation in the Pelagic and Benthic Zone?

    PubMed

    Eich, Andreas; Mildenberger, Tobias; Laforsch, Christian; Weber, Miriam

    2015-01-01

    The production of biodegradable plastic is increasing. Given the augmented littering of these products an increasing input into the sea is expected. Previous laboratory experiments have shown that degradation of plastic starts within days to weeks. Little is known about the early composition and activity of biofilms found on biodegradable and conventional plastic debris and its correlation to degradation in the marine environment. In this study we investigated the early formation of biofilms on plastic shopper bags and its consequences for the degradation of plastic. Samples of polyethylene and biodegradable plastic were tested in the Mediterranean Sea for 15 and 33 days. The samples were distributed equally to a shallow benthic (sedimentary seafloor at 6 m water depth) and a pelagic habitat (3 m water depth) to compare the impact of these different environments on fouling and degradation. The amount of biofilm increased on both plastic types and in both habitats. The diatom abundance and diversity differed significantly between the habitats and the plastic types. Diatoms were more abundant on samples from the pelagic zone. We anticipate that specific surface properties of the polymer types induced different biofilm communities on both plastic types. Additionally, different environmental conditions between the benthic and pelagic experimental site such as light intensity and shear forces may have influenced unequal colonisation between these habitats. The oxygen production rate was negative for all samples, indicating that the initial biofilm on marine plastic litter consumes oxygen, regardless of the plastic type or if exposed in the pelagic or the benthic zone. Mechanical tests did not reveal degradation within one month of exposure. However, scanning electron microscopy (SEM) analysis displayed potential signs of degradation on the plastic surface, which differed between both plastic types. This study indicates that the early biofilm formation and composition

  18. Influence of sucrose and xylitol on an early Streptococcus mutans biofilm in a dental simulator.

    PubMed

    Salli, K M; Forssten, S D; Lahtinen, S J; Ouwehand, A C

    2016-10-01

    In vitro methods to study dental biofilms are useful in finding ways to support a healthy microbial balance in the oral cavity. The effects of sucrose, xylitol, and their combination on three strains of Streptococcus mutans and one strain of Streptococcus sobrinus were studied using a dental simulator. A simulator was used to mimic the oral cavity environment. It provided a continuous-flow system using artificial saliva (AS), constant temperature, mixing, and hydroxyapatite (HA) surface in which the influence of xylitol was studied. The quantities of planktonic and adhered bacteria were measured by real-time qPCR. Compared against the untreated AS, adding 1% sucrose increased the bacterial colonization of HA (p<0.0001) whereas 2% xylitol decreased it (p<0.05), with the exception of clinical S. mutans isolate 117. The combination of xylitol and sucrose decreased the bacterial quantities within the AS and the colonization on the HA by clinical S. mutans isolate 2366 was reduced (p<0.05). Increasing the concentration (2%-5%) of xylitol caused a reduction in bacterial counts even in the presence of sucrose. The continuous-culture biofilm model showed that within a young biofilm, sucrose significantly promotes whereas xylitol reduces bacterial colonization and proliferation. The results indicate that xylitol affects the ability of certain S. mutans strains to adhere to the HA. Clinical studies have also shown that xylitol consumption decreases caries incidence and reduces the amount of plaque. This study contributes to the understanding of the mechanism behind these clinical observations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Development of an intracanal mature Enterococcus faecalis biofilm and its susceptibility to some antimicrobial intracanal medications; an in vitro study

    PubMed Central

    Saber, Shehab El-Din Mohamed; El-Hady, Soha A.

    2012-01-01

    Objectives: To develop a mature biofilm of Enterococcus faecalis inside the root canal system and to test its susceptibility to some antimicrobial medications in vitro. Methods: Single rooted premolars were mechanically enlarged, sterilized, and then infected with a clinical isolate of E. faecalis. Biofilm formation and maturation was monitored using SEM. Biofilm bacteria were exposed to Amoxicillin+clavulanate, Ciprofloxacin, Clindamycin, Doxycycline, and calcium hydroxide as intracanal medications for 1 week. Finally bacterial samples were collected, and colony-forming units were enumerated. Results: SEM examination confirmed the formation of a mature biofilm at the end of the incubation period. All the chemotherapeutic agents used were significantly better than Calcium hydroxide in elimination of biofilm bacteria. The antimicrobial effect of Amoxicillin + clavulanate, Ciprofloxacin and Clindamycin was significantly better than Doxycycline (P=.05). However the difference in the antimicrobial effectiveness among them was statistically non-significant (P=.05). Conclusions: The method used for bacterial biofilm development and maturation is reliable and can be used to assess the anti bacterial potential of endodontic materials. Also, the local application of antibacterial agents can be beneficial in resistant cases of apical periodontitis but only after careful culture and sensitivity testing to choose the appropriate agent for the existing flora. PMID:22229006

  20. Telomere lengthening early in development.

    PubMed

    Liu, Lin; Bailey, Susan M; Okuka, Maja; Muñoz, Purificación; Li, Chao; Zhou, Lingjun; Wu, Chao; Czerwiec, Eva; Sandler, Laurel; Seyfang, Andreas; Blasco, Maria A; Keefe, David L

    2007-12-01

    Stem cells and cancer cells maintain telomere length mostly through telomerase. Telomerase activity is high in male germ line and stem cells, but is low or absent in mature oocytes and cleavage stage embryos, and then high again in blastocysts. How early embryos reset telomere length remains poorly understood. Here, we show that oocytes actually have shorter telomeres than somatic cells, but their telomeres lengthen remarkably during early cleavage development. Moreover, parthenogenetically activated oocytes also lengthen their telomeres, thus the capacity to elongate telomeres must reside within oocytes themselves. Notably, telomeres also elongate in the early cleavage embryos of telomerase-null mice, demonstrating that telomerase is unlikely to be responsible for the abrupt lengthening of telomeres in these cells. Coincident with telomere lengthening, extensive telomere sister-chromatid exchange (T-SCE) and colocalization of the DNA recombination proteins Rad50 and TRF1 were observed in early cleavage embryos. Both T-SCE and DNA recombination proteins decrease in blastocyst stage embryos, whereas telomerase activity increases and telomeres elongate only slowly. We suggest that telomeres lengthen during the early cleavage cycles following fertilization through a recombination-based mechanism, and that from the blastocyst stage onwards, telomerase only maintains the telomere length established by this alternative mechanism.

  1. Staphylococcus aureus Develops an Alternative, ica-Independent Biofilm in the Absence of the arlRS Two-Component System†

    PubMed Central

    Toledo-Arana, Alejandro; Merino, Nekane; Vergara-Irigaray, Marta; Débarbouillé, Michel; Penadés, José R.; Lasa, Iñigo

    2005-01-01

    The biofilm formation capacity of Staphylococcus aureus clinical isolates is considered an important virulence factor for the establishment of chronic infections. Environmental conditions affect the biofilm formation capacity of S. aureus, indicating the existence of positive and negative regulators of the process. The majority of the screening procedures for identifying genes involved in biofilm development have been focused on genes whose presence is essential for the process. In this report, we have used random transposon mutagenesis and systematic disruption of all S. aureus two-component systems to identify negative regulators of S. aureus biofilm development in a chemically defined medium (Hussain-Hastings-White modified medium [HHWm]). The results of both approaches coincided in that they identified arlRS as a repressor of biofilm development under both steady-state and flow conditions. The arlRS mutant exhibited an increased initial attachment as well as increased accumulation of poly-N-acetylglucosamine (PNAG). However, the biofilm formation of the arlRS mutant was not affected when the icaADBC operon was deleted, indicating that PNAG is not an essential compound of the biofilm matrix produced in HHWm. Disruption of the major autolysin gene, atl, did not produce any effect on the biofilm phenotype of an arlRS mutant. Epistatic experiments with global regulators involved in staphylococcal-biofilm formation indicated that sarA deletion abolished, whereas agr deletion reinforced, the biofilm development promoted by the arlRS mutation. PMID:16030226

  2. The Actinomyces oris Type 2 Fimbrial Shaft FimA Mediates Coaggregation with Oral Streptococci, Adherence to RBC and Biofilm Development

    PubMed Central

    Mishra, Arunima; Wu, Chenggang; Yang, Jinghua; Cisar, John O.; Das, Asis; Ton-That, Hung

    2010-01-01

    Interbacterial interactions between oral streptococci and actinomyces and their adherence to tooth surface and the associated host cells are key early events that promote development of the complex oral biofilm referred to as dental plaque. These interactions depend largely on a lectin-like activity associated with the Actinomyces oris type 2 fimbria, a surface structure assembled by sortase (SrtC2)-dependent polymerization of the shaft and tip fimbrillins, FimA and FimB, respectively. To dissect the function of specific fimbrillins in various adherence processes, we have developed a convenient new technology for generating unmarked deletion mutants of A. oris. Here, we show that the fimB mutant, which produced type 2 fimbriae composed only of FimA, like the wild type coaggregated strongly with receptor-bearing streptococci, agglutinated with sialidase-treated RBC, and formed monospecies biofilm. In contrast, the fimA and srtC2 mutants lacked type 2 fimbriae and were non-adherent in each of these assays. Plasmidbased expression of the deleted gene in respective mutants restored adherence to wild-type levels. These findings uncover the importance of the lectin-like activity of the polymeric FimA shaft rather than the tip. The multivalent adhesive function of FimA makes it an ideal molecule for exploring novel intervention strategies to control plaque biofilm formation. PMID:20545853

  3. Insights into Clostridium phytofermentans biofilm formation: aggregation, microcolony development and the role of extracellular DNA.

    PubMed

    Zuroff, Trevor R; Gu, Weimin; Fore, Rachel L; Leschine, Susan B; Curtis, Wayne R

    2014-06-01

    Biofilm formation is a critical component to the lifestyle of many naturally occurring cellulose-degrading microbes. In this work, cellular aggregation and biofilm formation of Clostridium phytofermentans, a cellulolytic anaerobic bacterium, was investigated using a combination of microscopy and analytical techniques. Aggregates included thread-like linkages and a DNA/protein-rich extracellular matrix when grown on soluble cellobiose. Similar dense biofilms formed on the surface of the model cellulosic substrate Whatman no. 1 filter paper. Following initially dispersed attachment, microcolonies of ~500 µm diameter formed on the filter paper after 6 days. Enzymic treatment of both the biofilm and cellular aggregates with DNase and proteinase resulted in significant loss of rigidity, pointing to the key role of extracellular DNA and proteins in the biofilm structure. A high-throughput biofilm assay was adapted for studying potential regulators of biofilm formation. Various media manipulations were shown to greatly impact biofilm formation, including repression in the presence of glucose but not the β(1→4)-linked disaccharide cellobiose, implicating a balance of hydrolytic activity and assimilation to maintain biofilm integrity. Using the microtitre plate biofilm assay, DNase and proteinase dispersed ~60 and 30 % of mature biofilms, respectively, whilst RNase had no impact. This work suggests that Clostridium phytofermentans has evolved a DNA/protein-rich biofilm matrix complementing its cellulolytic nature. These insights add to our current understanding of natural ecosystems as well as strategies for efficient bioprocess design. © 2014 The Authors.

  4. The extracellular matrix Component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms.

    PubMed

    Billings, Nicole; Millan, MariaRamirez; Caldara, Marina; Rusconi, Roberto; Tarasova, Yekaterina; Stocker, Roman; Ribbeck, Katharina

    2013-01-01

    Bacteria within biofilms secrete and surround themselves with an extracellular matrix, which serves as a first line of defense against antibiotic attack. Polysaccharides constitute major elements of the biofilm matrix and are implied in surface adhesion and biofilm organization, but their contributions to the resistance properties of biofilms remain largely elusive. Using a combination of static and continuous-flow biofilm experiments we show that Psl, one major polysaccharide in the Pseudomonas aeruginosa biofilm matrix, provides a generic first line of defense toward antibiotics with diverse biochemical properties during the initial stages of biofilm development. Furthermore, we show with mixed-strain experiments that antibiotic-sensitive "non-producing" cells lacking Psl can gain tolerance by integrating into Psl-containing biofilms. However, non-producers dilute the protective capacity of the matrix and hence, excessive incorporation can result in the collapse of resistance of the entire community. Our data also reveal that Psl mediated protection is extendible to E. coli and S. aureus in co-culture biofilms. Together, our study shows that Psl represents a critical first bottleneck to the antibiotic attack of a biofilm community early in biofilm development.

  5. Phenazine-1-carboxylic acid and soil moisture influence biofilm development and turnover of rhizobacterial biomass on wheat root surfaces.

    PubMed

    LeTourneau, Melissa K; Marshall, Matthew J; Cliff, John B; Bonsall, Robert F; Dohnalkova, Alice C; Mavrodi, Dmitri V; Devi, S Indira; Mavrodi, Olga V; Harsh, James B; Weller, David M; Thomashow, Linda S

    2018-04-24

    Phenazine-1-carboxylic acid (PCA) is produced by rhizobacteria in dryland but not in irrigated wheat fields of the Pacific Northwest, USA. PCA promotes biofilm development in bacterial cultures and bacterial colonization of wheat rhizospheres. However, its impact upon biofilm development has not been demonstrated in the rhizosphere, where biofilms influence terrestrial carbon and nitrogen cycles with ramifications for crop and soil health. Furthermore, the relationships between soil moisture and the rates of PCA biosynthesis and degradation have not been established. In this study, expression of PCA biosynthesis genes was up-regulated relative to background transcription, and persistence of PCA was slightly decreased in dryland relative to irrigated wheat rhizospheres. Biofilms in dryland rhizospheres inoculated with the PCA-producing (PCA + ) strain Pseudomonas synxantha 2-79RN 10 were more robust than those in rhizospheres inoculated with an isogenic PCA-deficient (PCA - ) mutant strain. This trend was reversed in irrigated rhizospheres. In dryland PCA + rhizospheres, the turnover of 15 N-labelled rhizobacterial biomass was slower than in the PCA - and irrigated PCA + treatments, and incorporation of bacterial 15 N into root cell walls was observed in multiple treatments. These results indicate that PCA promotes biofilm development in dryland rhizospheres, and likely influences crop nutrition and soil health in dryland wheat fields. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Role of Multicellular Aggregates in Biofilm Formation

    PubMed Central

    Kragh, Kasper N.; Hutchison, Jaime B.; Melaugh, Gavin; Rodesney, Chris; Roberts, Aled E. L.; Irie, Yasuhiko; Jensen, Peter Ø.; Diggle, Stephen P.; Allen, Rosalind J.

    2016-01-01

    ABSTRACT In traditional models of in vitro biofilm development, individual bacterial cells seed a surface, multiply, and mature into multicellular, three-dimensional structures. Much research has been devoted to elucidating the mechanisms governing the initial attachment of single cells to surfaces. However, in natural environments and during infection, bacterial cells tend to clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process. This makes it likely that biofilms are often seeded by aggregates and single cells, yet how these aggregates impact biofilm initiation and development is not known. Here we use a combination of experimental and computational approaches to determine the relative fitness of single cells and preformed aggregates during early development of Pseudomonas aeruginosa biofilms. We find that the relative fitness of aggregates depends markedly on the density of surrounding single cells, i.e., the level of competition for growth resources. When competition between aggregates and single cells is low, an aggregate has a growth disadvantage because the aggregate interior has poor access to growth resources. However, if competition is high, aggregates exhibit higher fitness, because extending vertically above the surface gives cells at the top of aggregates better access to growth resources. Other advantages of seeding by aggregates, such as earlier switching to a biofilm-like phenotype and enhanced resilience toward antibiotics and immune response, may add to this ecological benefit. Our findings suggest that current models of biofilm formation should be reconsidered to incorporate the role of aggregates in biofilm initiation. PMID:27006463

  7. [Activity of amphotericin B and anidulafungin, alone and combined, against Candida tropicalis biofilms developed on Teflon® and titanium].

    PubMed

    Fernández-Rivero, Marcelo Ernesto; Del Pozo, José L; Valentín, Amparo; Fornes, Victoria; Molina de Diego, Araceli; Pemán, Javier; Cantón, Emilia

    Current therapeutic strategies have a limited efficacy against Candida biofilms that form on the surfaces of biomedical devices. Few studies have evaluated the activity of antifungal agents against Candida tropicalis biofilms. To evaluate the activity of amphotericin B (AMB) and anidulafungin (AND), alone and in combination, against C. tropicalis biofilms developed on polytetrafluoroethylene (teflon -PTFE) and titanium surfaces using time-kill assays. Assays were performed using the CDC Biofilm Reactor equipped with PTFE and titanium disks with C. tropicalis biofilms after 24h of maturation. The concentrations assayed were 40mg/l for AMB and 8mg/l for AND, both alone and combined. After 24, 48 and 72h of exposure to the antifungals, the cfu/cm 2 was determined by a vortexing-sonication procedure. AMB reduced biofilm viable cells attached to PTFE and titanium by ≥99% and AND by 89.3% on PTFE and 96.8% on titanium. The AMB+AND combination was less active than AMB alone, both on PTFE (decrease of cfu/cm 2 3.09 Log 10 vs. 1.08 when combined) and titanium (4.51 vs. 1.53 when combined), being the interaction irrelevant on both surfaces. AMB is more active than AND against C. tropicalis biofilms. Yeast killing rates are higher on titanium than on PTFE surfaces. The combination of AMB plus AND is less effective than AMB alone on both surfaces. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. [The significance of biofilm for the treatment of infections in orthopedic surgery : 2017 Update].

    PubMed

    Scheuermann-Poley, C; Wagner, C; Hoffmann, J; Moter, A; Willy, C

    2017-06-01

    The increase in endoprosthetic and osteosynthetic surgical treatment is associated with a simultaneous increase in implant-associated infections (surgical site infections, SSI). Biofilms appear to play a significant role in the diagnosis and treatment of these infections and heavily contaminated wounds. This article aims to provide a current overview of biofilm and its relevance in orthopedic surgery. A computer-assisted literature search of MedLine (PubMed) was performed using key word combinations with "biofilm" (as of March 2017). Biofilm, a polymicrobial organization and life form surrounded by a polysaccharide matrix, refers to an adaptation strategy of bacteria in unfavorable living conditions (e. g. under antibiotic therapy). Biofilms can develop after 6 h in highly contaminated wounds. In acute and chronic infections, biofilms can occur in 30-80 % of the cases. Only planktonic bacteria (high metabolic activity, cultivable) can be detected in standard microbiological cultures, biofilms, however, cannot. Molecular microscopic methods, such as fluorescence in situ hybridization (FISH), enable the detection of bacteria in biofilms. The core concepts of anti-biofilm therapy include the prevention of biofilm and early surgical debridement, followed by the local and/or systemic administration of antibiotics as well as the local application of antiseptics. The development of biofilm should be anticipated in strongly contaminated wounds as well as in acute and chronic infection sites. The best strategy to combat biofilms is to prevent their development. Standard microbiological culture methods do not enable the detection of biofilm. Therefore, the implementation of molecular biological detection methods (z. B. FISH) is important. Further anti-biofilm strategies are being investigated experimentally, but there are no real options for clinical use as of yet.

  9. Cognitive Development in Early Readers.

    ERIC Educational Resources Information Center

    Briggs, Chari; Elkind, David

    Some studies of early readers are discussed. It is pointed out that study of early readers has relevance for practical and theoretical issues in psychology and education. Of interest in this document are the following questions: (1) Are there any special talents or traits distinguishing early from non-early readers? (2) Do children who read early…

  10. [Early childhood growth and development].

    PubMed

    Arce, Melitón

    2015-01-01

    This article describes and discusses issues related to the process of childhood growth and development, with emphasis on the early years, a period in which this process reaches critical speed on major structures and functions of the human economy. We reaffirm that this can contribute to the social availability of a generation of increasingly better adults, which in turn will be able to contribute to building a better world and within it a society that enjoys greater prosperity. In the first chapter, we discuss the general considerations on the favorable evolution of human society based on quality of future adults, meaning the accomplishments that today’s children will gain. A second chapter mentions the basics of growth and development in the different fields and the various phenomena that occur in it. In the third we refer to lost opportunities and negative factors that can affect delaying the process and thereby result in not obtaining the expected accomplishments. In the fourth, conclusions and recommendations are presented confirming the initial conception that good early child care serves to build a better society and some recommendations are formulated to make it a good practice.

  11. Role of tyrosol on Candida albicans, Candida glabrata and Streptococcus mutans biofilms developed on different surfaces.

    PubMed

    Monteiro, Douglas Roberto; Arias, Laís Salomão; Fernandes, Renan Aparecido; Straioto, Fabiana Gouveia; Barros Barbosa, Débora; Pessan, Juliano Pelim; Delbem, Alberto Carlos Botazzo

    2017-02-01

    To assess the effect of tyrosol on the production of hydrolytic enzymes (by Candida biofilm cells) and acid (by Streptococcus mutans biofilms), as well as to quantify single and mixed biofilms of these species formed on acrylic resin (AR) and hydroxyapatite (HA). Candida and S. mutans biofilms were formed on AR and HA in the presence of tyrosol during 48 hours. Next, acid proteinase, phospholipase and hemolytic activities of Candida biofilm cells were determined, while acid production by S. mutans biofilms was assessed by pH determination. The effect of tyrosol on mature biofilms (96 hours) was evaluated through quantification of total biomass, metabolic activity, number of colony-forming units and composition of biofilms' extracellular matrix. Data were analyzed by one- and two-way ANOVA, followed by Tukey's and Holm-Sidak's tests (α = 0.05). Treatments with tyrosol were not able to significantly reduce hydrolytic enzymes and acid production by Candida and S. mutans. Tyrosol only significantly reduced the metabolic activity of single biofilms of Candida species. Tyrosol on its own had a limited efficacy against single and mixed-species oral biofilms. Its use as an alternative antimicrobial for topical therapies still demands more investigation.

  12. Rapid depletion of dissolved oxygen in 96-well microtiter plate Staphylococcus epidermidis biofilm assays promotes biofilm development and is influenced by inoculum cell concentration.

    PubMed

    Cotter, John J; O'Gara, James P; Casey, Eoin

    2009-08-01

    Biofilm-related research using 96-well microtiter plates involves static incubation of plates indiscriminate of environmental conditions, making oxygen availability an important variable which has not been considered to date. By directly measuring dissolved oxygen concentration over time we report here that dissolved oxygen is rapidly consumed in Staphylococcus epidermidis biofilm cultures grown in 96-well plates irrespective of the oxygen concentration in the gaseous environment in which the plates are incubated. These data indicate that depletion of dissolved oxygen during growth of bacterial biofilm cultures in 96-well plates may significantly influence biofilm production. Furthermore higher inoculum cell concentrations are associated with more rapid consumption of dissolved oxygen and higher levels of S. epidermidis biofilm production. Our data reveal that oxygen depletion during bacterial growth in 96-well plates may significantly influence biofilm production and should be considered in the interpretation of experimental data using this biofilm model.

  13. Structure, viability and bacterial kinetics of an in vitro biofilm model using six bacteria from the subgingival microbiota.

    PubMed

    Sánchez, M C; Llama-Palacios, A; Blanc, V; León, R; Herrera, D; Sanz, M

    2011-04-01

    There are few in vitro models available in the scientific literature for study of the structure, formation and development of the subgingival biofilm. The purpose of this study was to develop and validate an in vitro biofilm model, using representative selected bacteria from the subgingival microbiota. Six standard reference strains were used to develop biofilms over sterile ceramic calcium hydroxyapatite discs coated with saliva within the wells of presterilized polystyrene tissue culture plates. The selected species represent initial (Streptococcus oralis and Actinomyces naeslundii), early (Veillonella parvula), secondary (Fusobacterium nucleatum) and late colonizers (Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans). The structure of the biofilm obtained was studied using a vital fluorescence technique in conjunction with confocal laser scanning microscopy. The biofilm bacterial kinetics were studied by terminal restriction fragment length polymorphism analysis. After 12 h, initial and early colonizers were the first microorganisms detected adhering to the calcium hydroxyapatite discs. The intermediate colonizer F. nucleatum was not detected in the model until 24 h of incubation. Late colonizers A. actinomycetemcomitans and P. gingivalis could be measured inside the biofilm after 48 h. The biofilm reached its steady state between 72 and 96 h after inoculation, with bacterial vitality increasing from the hydroxyapatite surface to the central part of the biofilm. An in vitro biofilm model was developed and validated, demonstrating a pattern of bacterial colonization and maturation similar to the in vivo development of the subgingival biofilm. © 2011 John Wiley & Sons A/S.

  14. Development of X-ray micro-focus computed tomography to image and quantify biofilms in central venous catheter models in vitro.

    PubMed

    Niehaus, Wilmari L; Howlin, Robert P; Johnston, David A; Bull, Daniel J; Jones, Gareth L; Calton, Elizabeth; Mavrogordato, Mark N; Clarke, Stuart C; Thurner, Philipp J; Faust, Saul N; Stoodley, Paul

    2016-09-01

    Bacterial infections of central venous catheters (CVCs) cause much morbidity and mortality, and are usually diagnosed by concordant culture of blood and catheter tip. However, studies suggest that culture often fails to detect biofilm bacteria. This study optimizes X-ray micro-focus computed tomography (X-ray µCT) for the quantification and determination of distribution and heterogeneity of biofilms in in vitro CVC model systems.Bacterial culture and scanning electron microscopy (SEM) were used to detect Staphylococcus epidermidis ATCC 35984 biofilms grown on catheters in vitro in both flow and static biofilm models. Alongside this, X-ray µCT techniques were developed in order to detect biofilms inside CVCs. Various contrast agent stains were evaluated using energy-dispersive X-ray spectroscopy (EDS) to further optimize these methods. Catheter material and biofilm were segmented using a semi-automated matlab script and quantified using the Avizo Fire software package. X-ray µCT was capable of distinguishing between the degree of biofilm formation across different segments of a CVC flow model. EDS screening of single- and dual-compound contrast stains identified 10 nm gold and silver nitrate as the optimum contrast agent for X-ray µCT. This optimized method was then demonstrated to be capable of quantifying biofilms in an in vitro static biofilm formation model, with a strong correlation between biofilm detection via SEM and culture. X-ray µCT has good potential as a direct, non-invasive, non-destructive technology to image biofilms in CVCs, as well as other in vivo medical components in which biofilms accumulate in concealed areas.

  15. Polyphasic analysis of an Azoarcus-Leptothrix-dominated bacterial biofilm developed on stainless steel surface in a gasoline-contaminated hypoxic groundwater.

    PubMed

    Benedek, Tibor; Táncsics, András; Szabó, István; Farkas, Milán; Szoboszlay, Sándor; Fábián, Krisztina; Maróti, Gergely; Kriszt, Balázs

    2016-05-01

    Pump and treat systems are widely used for hydrocarbon-contaminated groundwater remediation. Although biofouling (formation of clogging biofilms on pump surfaces) is a common problem in these systems, scarce information is available regarding the phylogenetic and functional complexity of such biofilms. Extensive information about the taxa and species as well as metabolic potential of a bacterial biofilm developed on the stainless steel surface of a pump submerged in a gasoline-contaminated hypoxic groundwater is presented. Results shed light on a complex network of interconnected hydrocarbon-degrading chemoorganotrophic and chemolitotrophic bacteria. It was found that besides the well-known hydrocarbon-degrading aerobic/facultative anaerobic biofilm-forming organisms (e.g., Azoarcus, Leptothrix, Acidovorax, Thauera, Pseudomonas, etc.), representatives of Fe(2+)-and Mn(2+)-oxidizing (Thiobacillus, Sideroxydans, Gallionella, Rhodopseudomonas, etc.) as well as of Fe(3+)- and Mn(4+)-respiring (Rhodoferax, Geobacter, Magnetospirillum, Sulfurimonas, etc.) bacteria were present in the biofilm. The predominance of β-Proteobacteria within the biofilm bacterial community in phylogenetic and functional point of view was revealed. Investigation of meta-cleavage dioxygenase and benzylsuccinate synthase (bssA) genes indicated that within the biofilm, Azoarcus, Leptothrix, Zoogloea, and Thauera species are most probably involved in intrinsic biodegradation of aromatic hydrocarbons. Polyphasic analysis of the biofilm shed light on the fact that subsurface microbial accretions might be reservoirs of novel putatively hydrocarbon-degrading bacterial species. Moreover, clogging biofilms besides their detrimental effects might supplement the efficiency of pump and treat systems.

  16. A network model for biofilm development in Escherichia coli K-12.

    PubMed

    Shalá, Andrew A; Restrepo, Silvia; González Barrios, Andrés F

    2011-09-22

    In nature, bacteria often exist as biofilms. Biofilms are communities of microorganisms attached to a surface. It is clear that biofilm-grown cells harbor properties remarkably distinct from planktonic cells. Biofilms frequently complicate treatments of infections by protecting bacteria from the immune system, decreasing antibiotic efficacy and dispersing planktonic cells to distant body sites. In this work, we employed enhanced Boolean algebra to model biofilm formation. The network obtained describes biofilm formation successfully, assuming - in accordance with the literature - that when the negative regulators (RscCD and EnvZ/OmpR) are off, the positive regulator (FlhDC) is on. The network was modeled under three different conditions through time with satisfactory outcomes. Each cluster was constructed using the K-means/medians Clustering Support algorithm on the basis of published Affymetrix microarray gene expression data from biofilm-forming bacteria and the planktonic state over four time points for Escherichia coli K-12. The different phenotypes obtained demonstrate that the network model of biofilm formation can simulate the formation or repression of biofilm efficiently in E. coli K-12.

  17. Natural isothiocyanates express antimicrobial activity against developing and mature biofilms of Pseudomonas aeruginosa.

    PubMed

    Kaiser, Stefan J; Mutters, Nico T; Blessing, Brigitte; Günther, Frank

    2017-06-01

    The antimicrobial properties of natural isothiocyanates (ITCs) found in plants such as nasturtium (Tropaeolum majus) and horseradish (Armoracia rusticana), and the need of new chemotherapeutic options for treatment of infections caused by multidrug-resistant and biofilm-forming Gram-negative bacteria such as Pseudomonas aeruginosa (Pa), led us to evaluate the effects of three major ITCs, allylisothiocyanate (AITC), benzylisothiocyanate (BITC), and phenylethyl-isothiocyanate (PEITC), and a mixture (ITCM) adapted to the ITC composition after release of active components out of natural sources. Out of 105Pa isolates 27 isolates with increased biofilm formation were selected for testing. The effects of ITCs on Pa were evaluated regarding (1) planktonic bacterial proliferation, (2) biofilm formation, (3) metabolic activity in mature biofilms, and (4) synergism of ITCs and antibiotics. (1) Each ITC had anti-Pa activity. Mean minimum inhibitory concentrations (MICs) were (μg/ml, mean±standard deviation): AITC 103±6.9; BITC, 2145±249; PEITC 29,423±1652; and ITCM, 140±5. (2) Treating bacteria with PEITC and ITCM in concentrations below the MIC significantly inhibited biofilm formation. Particularly, ITCM reduced biofilm mass and bacterial proliferation. (3) ITCs significantly inhibited metabolic activity in mature biofilms. (4) Combining ITCs with meropenem synergistically increased antimicrobial efficacy on Pa biofilms. ITCs represent a promising group of natural anti-infective compounds with activity against Pa biofilms. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. [Confocal laser scanning electron microscopy for assessment of vaginal Lactobacillus crispatus biofilm].

    PubMed

    Wu, Li-jie; Wang, Ben; Liao, Qin-ping; Zhang, Rui

    2015-12-18

    To investigate the female vaginal Lactobacillus crispatus biofilm by using confocal laser scanning microscopy (CLSM),thus revealing the formation of biofilm. The cover slide biofilm culture approach in vitro was employed for induction of the vaginal Lactobacillus crispatus biofilm formation. Following the culture for 2, 4, 8, 12, 16, 20, 24, 48, 72, 96 and 120 hours, the cover slide was removed for subsequent staining with the fluoresce in isothiocyanate-conjugated concanavalin A(FITC-ConA) and propidium (PI).This was followed by determination of the formation and characteristics of the vaginal Lactobacillus crispatus biofilm by using CLSM. The CLSM images of biofilm formation at different time points were captured, suggesting that the vaginal Lactobacillus crispatus adhesion occurred at h 4, which was in reversible attachment, then more and more Lactobacillus crispatus aggregated at h 8 to h 20, which was in irreversible attachment.Lactobacillus crispatus clustered at h 20, with early development of biofilm architecture.Then the biofilm with extracellular matrix around the bacteria was set up at h 24,with gradual matureation at h 24 to h 48.The biofilm dispersed at h 72. The biofilm density of cultivating for 20 hours was 42.7 × 10⁻³ ± 6.8 × 10⁻³ ,and for 24 hours increased to 102.5 × 10⁻³ ± 23.1 × 10⁻³, suggesting a significant difference, P<0.05. This meant that mature biofilm was formed at h 24. The vaginal Lactobacillus crispatus is able to form typical biofilm with distinct developmental phases and architecture characteristics.Mature biofilm is formed at h 24 to h 48, then the biofilm begins to disperse.

  19. Characterization and comparison of biofilm development by pathogenic and commensal isolates of Histophilus somni.

    PubMed

    Sandal, Indra; Hong, Wenzhou; Swords, W Edward; Inzana, Thomas J

    2007-11-01

    Histophilus somni (Haemophilus somnus) is an obligate inhabitant of the mucosal surfaces of bovines and sheep and an opportunistic pathogen responsible for respiratory disease, meningoencephalitis, myocarditis, arthritis, and other systemic infections. The identification of an exopolysaccharide produced by H. somni prompted us to evaluate whether the bacterium was capable of forming a biofilm. After growth in polyvinyl chloride wells a biofilm was formed by all strains examined, although most isolates from systemic sites produced more biofilm than commensal isolates from the prepuce. Biofilms of pneumonia isolate strain 2336 and commensal isolate strain 129Pt were grown in flow cells, followed by analysis by confocal laser scanning microscopy and scanning electron microscopy. Both strains formed biofilms that went through stages of attachment, growth, maturation, and detachment. However, strain 2336 produced a mature biofilm that consisted of thick, homogenous mound-shaped microcolonies encased in an amorphous extracellular matrix with profound water channels. In contrast, strain 129Pt formed a biofilm of cell clusters that were tower-shaped or distinct filamentous structures intertwined with each other by strands of extracellular matrix. The biofilm of strain 2336 had a mass and thickness that was 5- to 10-fold greater than that of strain 129Pt and covered 75 to 82% of the surface area, whereas the biofilm of strain 129Pt covered 35 to 40% of the surface area. Since H. somni is an obligate inhabitant of the bovine and ovine host, the formation of a biofilm may be crucial to its persistence in vivo, and our in vitro evidence suggests that formation of a more robust biofilm may provide a selective advantage for strains that cause systemic disease.

  20. Characterization and Comparison of Biofilm Development by Pathogenic and Commensal Isolates of Histophilus somni▿

    PubMed Central

    Sandal, Indra; Hong, Wenzhou; Swords, W. Edward; Inzana, Thomas J.

    2007-01-01

    Histophilus somni (Haemophilus somnus) is an obligate inhabitant of the mucosal surfaces of bovines and sheep and an opportunistic pathogen responsible for respiratory disease, meningoencephalitis, myocarditis, arthritis, and other systemic infections. The identification of an exopolysaccharide produced by H. somni prompted us to evaluate whether the bacterium was capable of forming a biofilm. After growth in polyvinyl chloride wells a biofilm was formed by all strains examined, although most isolates from systemic sites produced more biofilm than commensal isolates from the prepuce. Biofilms of pneumonia isolate strain 2336 and commensal isolate strain 129Pt were grown in flow cells, followed by analysis by confocal laser scanning microscopy and scanning electron microscopy. Both strains formed biofilms that went through stages of attachment, growth, maturation, and detachment. However, strain 2336 produced a mature biofilm that consisted of thick, homogenous mound-shaped microcolonies encased in an amorphous extracellular matrix with profound water channels. In contrast, strain 129Pt formed a biofilm of cell clusters that were tower-shaped or distinct filamentous structures intertwined with each other by strands of extracellular matrix. The biofilm of strain 2336 had a mass and thickness that was 5- to 10-fold greater than that of strain 129Pt and covered 75 to 82% of the surface area, whereas the biofilm of strain 129Pt covered 35 to 40% of the surface area. Since H. somni is an obligate inhabitant of the bovine and ovine host, the formation of a biofilm may be crucial to its persistence in vivo, and our in vitro evidence suggests that formation of a more robust biofilm may provide a selective advantage for strains that cause systemic disease. PMID:17644581

  1. Phosphorylcholine decreases early inflammation and promotes the establishment of stable biofilm communities of nontypeable Haemophilus influenzae strain 86-028NP in a chinchilla model of otitis media.

    PubMed

    Hong, Wenzhou; Mason, Kevin; Jurcisek, Joseph; Novotny, Laura; Bakaletz, Lauren O; Swords, W Edward

    2007-02-01

    Nontypeable Haemophilus influenzae (NTHi) is a leading causative agent of otitis media. Much of the inflammation occurring during NTHi disease is initiated by lipooligosaccharides (LOS) on the bacterial surface. Phosphorylcholine (PCho) is added to some LOS forms in a phase-variable manner, and these PCho(+) variants predominate in vivo. Thus, we asked whether this modification confers some advantage during infection. Virulence of an otitis media isolate (NTHi strain 86-028NP) was compared with that of an isogenic PCho transferase (licD) mutant using a chinchilla (Chinchilla lanigera) model of otitis media. Animals infected with NTHi 86-028NP licD demonstrated increased early inflammation and a delayed increase in bacterial counts compared to animals infected with NTHi 86-028NP. LOS purified from chinchilla-passed NTHi 86-028NP had increased PCho content compared to LOS purified from the inoculum. Both strains were recovered from middle ear fluids as long as 14 days postinfection. Biofilms were macroscopically visible in the middle ears of euthanized animals infected with NTHi 86-028NP 7 days and 14 days postchallenge. Conversely, less dense biofilms were observed in animals infected with NTHi 86-028NP licD 7 days postinfection, and none of the animals infected with NTHi 86-028NP licD had a visible biofilm by 14 days. Fluorescent antibody staining revealed PCho(+) variants within biofilms, similar to our prior results with tissue culture cells in vitro (S. L. West-Barnette, A. Rockel, and W. E. Swords, Infect. Immun. 74:1828-1836, 2006). Animals coinfected with equal proportions of both strains had equal persistence of each strain and somewhat greater severity of disease. We thus conclude that PCho promotes NTHi infection and persistence by reducing the host inflammatory response and by promoting formation of stable biofilm communities.

  2. Actinomyces naeslundii GroEL-dependent initial attachment and biofilm formation in a flow cell system.

    PubMed

    Arai, Toshiaki; Ochiai, Kuniyasu; Senpuku, Hidenobu

    2015-02-01

    Actinomyces naeslundii is an early colonizer with important roles in the development of the oral biofilm. The effects of butyric acid, one of short chain fatty acids in A. naeslundii biofilm formation was observed using a flow cell system with Tryptic soy broth without dextrose and with 0.25% sucrose (TSB sucrose). Significant biofilms were established involving live and dead cells in TSB sucrose with 60mM butyric acid but not in concentrations of 6, 30, 40, and 50mM. Biofilm formation failed in 60mM sodium butyrate but biofilm level in 60mM sodium butyrate (pH4.7) adjusted with hydrochloric acid as 60mM butyric media (pH4.7) was similar to biofilm levels in 60mM butyric acid. Therefore, butyric acid and low pH are required for significant biofilm formation in the flow cell. To determine the mechanism of biofilm formation, we investigated initial A. naeslundii colonization in various conditions and effects of anti-GroEL antibody. The initial colonization was observed in the 60mM butyric acid condition and anti-GroEL antibody inhibited the initial colonization. In conclusion, we established a new biofilm formation model in which butyric acid induces GroEL-dependent initial colonization of A. naeslundii resulting in significant biofilm formation in a flow system. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Taiwanese Early Childhood Educators' Professional Development

    ERIC Educational Resources Information Center

    Hsu, Ching-Yun

    2008-01-01

    This study was designed based on a qualitative paradigm to explore the professional development of Taiwanese early childhood educators. The method of phenomenology was employed. The main research question addressed was "How do early childhood educators construe their professional development experience?" Seven Taiwanese early childhood…

  4. Early Childhood Diplomacy: Policy Planning for Early Childhood Development

    ERIC Educational Resources Information Center

    Vargas-Barón, Emily; Diehl, Kristel

    2018-01-01

    Children who are well nurtured, appropriately cared for, and provided with positive learning opportunities in their early years have a better chance of becoming healthy and productive citizens of nations and of the world. This article reviews the art and science of policy planning for early childhood development (ECD) from a diplomacy perspective.…

  5. Development and characterisation of a novel three-dimensional inter-kingdom wound biofilm model.

    PubMed

    Townsend, Eleanor M; Sherry, Leighann; Rajendran, Ranjith; Hansom, Donald; Butcher, John; Mackay, William G; Williams, Craig; Ramage, Gordon

    2016-11-01

    Chronic diabetic foot ulcers are frequently colonised and infected by polymicrobial biofilms that ultimately prevent healing. This study aimed to create a novel in vitro inter-kingdom wound biofilm model on complex hydrogel-based cellulose substrata to test commonly used topical wound treatments. Inter-kingdom triadic biofilms composed of Candida albicans, Pseudomonas aeruginosa, and Staphylococcus aureus were shown to be quantitatively greater in this model compared to a simple substratum when assessed by conventional culture, metabolic dye and live dead qPCR. These biofilms were both structurally complex and compositionally dynamic in response to topical therapy, so when treated with either chlorhexidine or povidone iodine, principal component analysis revealed that the 3-D cellulose model was minimally impacted compared to the simple substratum model. This study highlights the importance of biofilm substratum and inclusion of relevant polymicrobial and inter-kingdom components, as these impact penetration and efficacy of topical antiseptics.

  6. Biofilm monitoring using complex permittivity.

    SciTech Connect

    Altman, Susan Jeanne; McGrath, Lucas K.; Dolan, Patricia L.

    2008-10-01

    There is strong interest in the detection and monitoring of bio-fouling. Bio-fouling problems are common in numerous water treatments systems, medical and dental apparatus and food processing equipment. Current bio-fouling control protocols are time consuming and costly. New early detection techniques to monitor bio-forming contaminates are means to enhanced efficiency. Understanding the unique dielectric properties of biofilm development, colony forming bacteria and nutrient background will provide a basis to the effectiveness of controlling or preventing biofilm growth. Dielectric spectroscopy measurements provide values of complex permittivity, {var_epsilon}*, of biofilm formation by applying a weak alternating electric field at various frequencies. Themore » dielectric characteristic of the biofilm, {var_epsilon}{prime}, is the real component of {var_epsilon}* and measures the biofilm's unique ability to store energy. Graphically observed dependencies of {var_epsilon}{prime} to frequency indicate dielectric relaxation or dielectric dispersion behaviors that mark the particular stage of progression during the development of biofilms. In contrast, any frequency dependency of the imaginary component, {var_epsilon}{double_prime} the loss factor, is expressed as dielectric losses from the biofilm due to dipole relaxation. The tangent angle of these two component vectors is the ratio of the imaginary component to the real component, {var_epsilon}{double_prime}/{var_epsilon}{prime} and is referred to as the loss angle tangent (tan {delta}) or dielectric loss. Changes in tan {delta} are characteristic of changes in dielectric losses during various developmental stages of the films. Permittivity scans in the above figure are of biofilm growth from P. Fluorescens (10e7 CFU's at the start). Three trends are apparent from these scans, the first being a small drop in the imaginary permittivity over a 7 hours period, best seen in the Cole-Cole plot (a). The second trend is

  7. Permeabilizing biofilms

    DOEpatents

    Soukos, Nikolaos S [Revere, MA; Lee, Shun [Arlington, VA; Doukas, Apostolos G [Belmont, MA

    2008-02-19

    Methods for permeabilizing biofilms using stress waves are described. The methods involve applying one or more stress waves to a biofilm, e.g., on a surface of a device or food item, or on a tissue surface in a patient, and then inducing stress waves to create transient increases in the permeability of the biofilm. The increased permeability facilitates delivery of compounds, such as antimicrobial or therapeutic agents into and through the biofilm.

  8. The Composition and Structure of Biofilms Developed by Propionibacterium acnes Isolated from Cardiac Pacemaker Devices.

    PubMed

    Okuda, Ken-Ichi; Nagahori, Ryuichi; Yamada, Satomi; Sugimoto, Shinya; Sato, Chikara; Sato, Mari; Iwase, Tadayuki; Hashimoto, Kazuhiro; Mizunoe, Yoshimitsu

    2018-01-01

    The present study aimed to understand the biofilm formation mechanism of Propionibacterium acnes by analyzing the components and structure of the biofilms. P. acnes strains were isolated from the surface of explanted cardiac pacemaker devices that exhibited no clinical signs of infection. Culture tests using a simple stamp culture method (pressing pacemakers against the surface of agar plates) revealed frequent P. acnes colonization on the surface of cardiac pacemaker devices. P . acnes was isolated from 7/31 devices, and the isolates were categorized by multilocus sequence typing into five different sequence types (STs): ST4 (JK18.2), ST53 (JK17.1), ST69 (JK12.2 and JK13.1), ST124 (JK5.3), ST125 (JK6.2), and unknown ST (JK19.3). An in vitro biofilm formation assay using microtiter plates demonstrated that 5/7 isolates formed biofilms. Inhibitory effects of DNase I and proteinase K on biofilm formation varied among isolates. In contrast, dispersin B showed no inhibitory activity against all isolates. Three-dimensional live/dead imaging of P. acnes biofilms with different biochemical properties using confocal laser microscopy demonstrated different distributions and proportions of living and dead cells. Additionally, it was suggested that extracellular DNA (eDNA) plays a role in the formation of biofilms containing living cells. Ultrastructural analysis of P. acnes biofilms using a transmission electron microscope and atmospheric scanning electron microscope revealed leakage of cytoplasmic components along with cell lysis and fibrous structures of eDNA connecting cells. In conclusion, the biochemical properties and structures of the biofilms differed among P. acnes isolates. These findings may provide clues for establishing countermeasures against biofilm-associated infection by P. acnes .

  9. The Composition and Structure of Biofilms Developed by Propionibacterium acnes Isolated from Cardiac Pacemaker Devices

    PubMed Central

    Okuda, Ken-ichi; Nagahori, Ryuichi; Yamada, Satomi; Sugimoto, Shinya; Sato, Chikara; Sato, Mari; Iwase, Tadayuki; Hashimoto, Kazuhiro; Mizunoe, Yoshimitsu

    2018-01-01

    The present study aimed to understand the biofilm formation mechanism of Propionibacterium acnes by analyzing the components and structure of the biofilms. P. acnes strains were isolated from the surface of explanted cardiac pacemaker devices that exhibited no clinical signs of infection. Culture tests using a simple stamp culture method (pressing pacemakers against the surface of agar plates) revealed frequent P. acnes colonization on the surface of cardiac pacemaker devices. P. acnes was isolated from 7/31 devices, and the isolates were categorized by multilocus sequence typing into five different sequence types (STs): ST4 (JK18.2), ST53 (JK17.1), ST69 (JK12.2 and JK13.1), ST124 (JK5.3), ST125 (JK6.2), and unknown ST (JK19.3). An in vitro biofilm formation assay using microtiter plates demonstrated that 5/7 isolates formed biofilms. Inhibitory effects of DNase I and proteinase K on biofilm formation varied among isolates. In contrast, dispersin B showed no inhibitory activity against all isolates. Three-dimensional live/dead imaging of P. acnes biofilms with different biochemical properties using confocal laser microscopy demonstrated different distributions and proportions of living and dead cells. Additionally, it was suggested that extracellular DNA (eDNA) plays a role in the formation of biofilms containing living cells. Ultrastructural analysis of P. acnes biofilms using a transmission electron microscope and atmospheric scanning electron microscope revealed leakage of cytoplasmic components along with cell lysis and fibrous structures of eDNA connecting cells. In conclusion, the biochemical properties and structures of the biofilms differed among P. acnes isolates. These findings may provide clues for establishing countermeasures against biofilm-associated infection by P. acnes. PMID:29491850

  10. Bacterial GtfB Augments Candida albicans Accumulation in Cross-Kingdom Biofilms.

    PubMed

    Ellepola, K; Liu, Y; Cao, T; Koo, H; Seneviratne, C J

    2017-09-01

    Streptococcus mutans is a biofilm-forming oral pathogen commonly associated with dental caries. Clinical studies have shown that S. mutans is often detected with Candida albicans in early childhood caries. Although the C. albicans presence has been shown to enhance bacterial accumulation in biofilms, the influence of S. mutans on fungal biology in this mixed-species relationship remains largely uncharacterized. Therefore, we aimed to investigate how the presence of S. mutans influences C. albicans biofilm development and coexistence. Using a newly established haploid biofilm model of C. albicans, we found that S. mutans augmented haploid C. albicans accumulation in mixed-species biofilms. Similarly, diploid C. albicans also showed enhanced biofilm formation in the presence of S. mutans. Surprisingly, the presence of S. mutans restored the biofilm-forming ability of C. albicans bcr1Δ mutant and bcr1Δ/Δ mutant, which is known to be severely defective in biofilm formation when grown as single species. Moreover, C. albicans hyphal growth factor HWP1 as well as ALS1 and ALS3, which are also involved in fungal biofilm formation, were upregulated in the presence of S. mutans. Subsequently, we found that S. mutans-derived glucosyltransferase B (GtfB) itself can promote C. albicans biofilm development. Interestingly, GtfB was able to increase the expression of HWP1, ALS1, and ALS3 genes in the C. albicans diploid wild-type SC5314 and bcr1Δ/Δ, leading to enhanced fungal biofilms. Hence, the present study demonstrates that a bacterial exoenzyme (GtfB) augments the C. albicans counterpart in mixed-species biofilms through a BCR1-independent mechanism. This novel finding may explain the mutualistic role of S. mutans and C. albicans in cariogenic biofilms.

  11. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system.

    PubMed

    Satoh, Hisashi; Odagiri, Mitsunori; Ito, Tsukasa; Okabe, Satoshi

    2009-10-01

    Microbially induced concrete corrosion (MICC) caused by sulfuric acid attack in sewer systems has been a serious problem for a long time. A better understanding of microbial community structures of sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) and their in situ activities is essential for the efficient control of MICC. In this study, the microbial community structures and the in situ hydrogen sulfide production and consumption rates within biofilms and corroded materials developed on mortar specimens placed in a corroded manhole was investigated by culture-independent 16S rRNA gene-based molecular techniques and microsensors for hydrogen sulfide, oxygen, pH and the oxidation-reduction potential. The dark-gray gel-like biofilm was developed in the bottom (from the bottom to 4 cm) and the middle (4-20 cm from the bottom of the manhole) parts of the mortar specimens. White filamentous biofilms covered the gel-like biofilm in the middle part. The mortar specimens placed in the upper part (30 cm above the bottom of the manhole) were corroded. The 16S rRNA gene-cloning analysis revealed that one clone retrieved from the bottom biofilm sample was related to an SRB, 12 clones and 6 clones retrieved from the middle biofilm and the corroded material samples, respectively, were related to SOB. In situ hybridization results showed that the SRB were detected throughout the bottom biofilm and filamentous SOB cells were mainly detected in the upper oxic layer of the middle biofilm. Microsensor measurements demonstrated that hydrogen sulfide was produced in and diffused out of the bottom biofilms. In contrast, in the middle biofilm the hydrogen sulfide produced in the deeper parts of the biofilm was oxidized in the upper filamentous biofilm. pH was around 3 in the corroded materials developed in the upper part of the mortar specimens. Therefore, it can be concluded that hydrogen sulfide provided from the bottom biofilms and the sludge settling tank was

  12. Pilus hijacking by a bacterial coaggregation factor critical for oral biofilm development.

    PubMed

    Reardon-Robinson, Melissa E; Wu, Chenggang; Mishra, Arunima; Chang, Chungyu; Bier, Naomi; Das, Asis; Ton-That, Hung

    2014-03-11

    The formation of dental plaque, a highly complex biofilm that causes gingivitis and periodontitis, requires specific adherence among many oral microbes, including the coaggregation of Actinomyces oris with Streptococcus oralis that helps to seed biofilm development. Here, we report the discovery of a key coaggregation factor for this process. This protein, which we named coaggregation factor A (CafA), is one of 14 cell surface proteins with the LPXTG motif predicted in A. oris MG1, whose function was hitherto unknown. By systematic mutagenesis of each of these genes and phenotypic characterization, we found that the Actinomyces/Streptococcus coaggregation is only abolished by deletion of cafA. Subsequent biochemical and cytological experiments revealed that CafA constitutes the tip of a unique form of the type 2 fimbria long known for its role in coaggregation. The direct and predominant role of CafA in adherence is evident from the fact that CafA or an antibody against CafA inhibits coaggregation, whereas the shaft protein FimA or a polyclonal antibody against FimA has no effect. Remarkably, FimA polymerization was blocked by deletion of genes for both CafA and FimB, the previously described tip protein of the type 2 fimbria. Together, these results indicate that some surface proteins not linked to a pilus gene cluster in Gram-positive bacteria may hijack the pilus. These unique tip proteins displayed on a common pilus shaft may serve distinct physiological functions. Furthermore, the pilus shaft assembly in Gram-positive bacteria may require a tip, as is true for certain Gram-negative bacterial pili.

  13. Flagellar motility is critical for Listeria monocytogenes biofilm formation.

    PubMed

    Lemon, Katherine P; Higgins, Darren E; Kolter, Roberto

    2007-06-01

    The food-borne pathogen Listeria monocytogenes attaches to environmental surfaces and forms biofilms that can be a source of food contamination, yet little is known about the molecular mechanisms of its biofilm development. We observed that nonmotile mutants were defective in biofilm formation. To investigate how flagella might function during biofilm formation, we compared the wild type with flagellum-minus and paralyzed-flagellum mutants. Both nonmotile mutants were defective in biofilm development, presumably at an early stage, as they were also defective in attachment to glass during the first few hours of surface exposure. This attachment defect could be significantly overcome by providing exogenous movement toward the surface via centrifugation. However, this centrifugation did not restore mature biofilm formation. Our results indicate that it is flagellum-mediated motility that is critical for both initial surface attachment and subsequent biofilm formation. Also, any role for L. monocytogenes flagella as adhesins on abiotic surfaces appears to be either minimal or motility dependent under the conditions we examined.

  14. The Fluid Dynamics of Nascent Biofilms

    NASA Astrophysics Data System (ADS)

    Farthing, Nicola; Snow, Ben; Wilson, Laurence; Bees, Martin

    2017-11-01

    Many anti-biofilm approaches target mature biofilms with biochemical or physio-chemical interventions. We investigate the mechanics of interventions at an early stage that aim to inhibit biofilm maturation, focusing on hydrodynamics as cells transition from planktonic to surface-attached. Surface-attached cells generate flow fields that are relatively long-range compared with cells that are freely-swimming. We look at the effect of these flows on the biofilm formation. In particular, we use digital inline holographic microscopy to determine the three-dimensional flow due to a surface-attached cell and the effect this flow has on both tracers and other cells in the fluid. We compare experimental data with two models of cells on boundaries. The first approach utilizes slender body theory and captures many of the features of the experimental field. The second model develops a simple description in terms of singularity solutions of Stokes' flow, which produces qualitatively similar dynamics to both the experiments and more complex model but with significant computational savings. The range of validity of multiple cell arrangements is investigated. These two descriptions can be used to investigate the efficacy of actives developed by Unilever on nascent biofilms.

  15. Mechanosensing of shear by Pseudomonas aeruginosa leads to increased levels of the cyclic-di-GMP signal initiating biofilm development

    PubMed Central

    Rodesney, Christopher A.; Roman, Brian; Dhamani, Numa; Cooley, Benjamin J.; Katira, Parag; Touhami, Ahmed; Gordon, Vernita D.

    2017-01-01

    Biofilms are communities of sessile microbes that are phenotypically distinct from their genetically identical, free-swimming counterparts. Biofilms initiate when bacteria attach to a solid surface. Attachment triggers intracellular signaling to change gene expression from the planktonic to the biofilm phenotype. For Pseudomonas aeruginosa, it has long been known that intracellular levels of the signal cyclic-di-GMP increase upon surface adhesion and that this is required to begin biofilm development. However, what cue is sensed to notify bacteria that they are attached to the surface has not been known. Here, we show that mechanical shear acts as a cue for surface adhesion and activates cyclic-di-GMP signaling. The magnitude of the shear force, and thereby the corresponding activation of cyclic-di-GMP signaling, can be adjusted both by varying the strength of the adhesion that binds bacteria to the surface and by varying the rate of fluid flow over surface-bound bacteria. We show that the envelope protein PilY1 and functional type IV pili are required mechanosensory elements. An analytic model that accounts for the feedback between mechanosensors, cyclic-di-GMP signaling, and production of adhesive polysaccharides describes our data well. PMID:28533383

  16. Effect of calcium on Staphylococcus aureus biofilm architecture: a confocal laser scanning microscopic study.

    PubMed

    Shukla, Sudhir K; Rao, T Subba

    2013-03-01

    Bacterial adhesion is a threshold event in the formation of biofilms. Several studies on molecular and biochemical aspects have highlighted that the protein matrix of the biofilm is of interest in developing strategies to combat biofouling. The prevalent role of biofilm associated protein (Bap) of Staphylococcus aureus in early adhesion and the putative presence of Ca(2+) binding EF hand motif in Bap was the motivation for this study. Biofilm assays (S. aureus strains V329 and M556) were done in micro-titer plates and confocal laser scanning microscopy (CLSM) was used to study the biofilm architecture. The results showed that Ca(2+) did not influence planktonic growth of the cultures; however, it modulated the biofilm architecture of S. aureus V329 in a dose dependent manner. Strain M556 was found to be a weak biofilm former and showed no significant change in the presence of Ca(2+). When tested with increasing NaCl concentration, there was no reversal of the Bap-dependent Ca(2+) inhibition of S. aureus V329 biofilm. This indicates that the interaction of Bap and Ca(2+) is not mere electrostatic. CLSM images of V329 biofilm showed reduction in biofilm thickness as well as altered biofilm topography with varying Ca(2+) concentrations. The inhibition effect of Ca(2+) on strain V329 biofilm disappeared in the presence of chelating agent EDTA at a non-inhibiting concentration (0.15 mM). The paper elaborates the role of Ca(2+) in biofilm architecture of S. aureus. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Next Science Wound Gel Technology, a Novel Agent That Inhibits Biofilm Development by Gram-Positive and Gram-Negative Wound Pathogens

    PubMed Central

    Miller, Kyle G.; Tran, Phat L.; Haley, Cecily L.; Kruzek, Cassandra; Colmer-Hamood, Jane A.; Myntti, Matt

    2014-01-01

    Loss of the skin barrier facilitates the colonization of underlying tissues with various bacteria, where they form biofilms that protect them from antibiotics and host responses. Such wounds then become chronically infected. Topical antimicrobials are a major component of chronic wound therapy, yet currently available topical antimicrobials vary in their effectiveness on biofilm-forming pathogens. In this study, we evaluated the efficacy of Next Science wound gel technology (NxtSc), a novel topical agent designed to kill planktonic bacteria, penetrate biofilms, and kill the bacteria within. In vitro quantitative analysis, using strains isolated from wounds, showed that NxtSc inhibited biofilm development by Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae by inhibiting bacterial growth. The gel formulation NxtSc-G5, when applied to biofilms preformed by these pathogens, reduced the numbers of bacteria present by 7 to 8 log10 CFU/disc or CFU/g. In vivo, NxtSc-G5 prevented biofilm formation for 72 h when applied at the time of wounding and infection and eliminated biofilm infection when applied 24 h after wounding and infection. Storage of NxtSc-G5 at room temperature for 9 months did not diminish its efficacy. These results establish that NxtSc is efficacious in vitro and in vivo in preventing infection and biofilm development by different wound pathogens when applied immediately and in eliminating biofilm infection already established by these pathogens. This novel antimicrobial agent, which is nontoxic and has a usefully long shelf life, shows promise as an effective agent for the prevention and treatment of biofilm-related infections. PMID:24637684

  18. Successional Development of Sulfate-Reducing Bacterial Populations and Their Activities in a Wastewater Biofilm Growing under Microaerophilic Conditions

    PubMed Central

    Ito, Tsukasa; Okabe, Satoshi; Satoh, Hisashi; Watanabe, Yoshimasa

    2002-01-01

    A combination of fluorescence in situ hybridization, microprofiles, denaturing gradient gel electrophoresis of PCR-amplified 16S ribosomal DNA fragments, and 16S rRNA gene cloning analysis was applied to investigate successional development of sulfate-reducing bacteria (SRB) community structure and in situ sulfide production activity within a biofilm growing under microaerophilic conditions (dissolved oxygen concentration in the bulk liquid was in the range of 0 to 100 μM) and in the presence of nitrate. Microelectrode measurements showed that oxygen penetrated 200 μm from the surface during all stages of biofilm development. The first sulfide production of 0.32 μmol of H2S m−2 s−1 was detected below ca. 500 μm in the 3rd week and then gradually increased to 0.70 μmol H2S m−2 s−1 in the 8th week. The most active sulfide production zone moved upward to the oxic-anoxic interface and intensified with time. This result coincided with an increase in SRB populations in the surface layer of the biofilm. The numbers of the probe SRB385- and 660-hybridized SRB populations significantly increased to 7.9 × 109 cells cm−3 and 3.6 × 109 cells cm−3, respectively, in the surface 400 μm during an 8-week cultivation, while those populations were relatively unchanged in the deeper part of the biofilm, probably due to substrate transport limitation. Based on 16S rRNA gene cloning analysis data, clone sequences that related to Desulfomicrobium hypogeium (99% sequence similarity) and Desulfobulbus elongatus (95% sequence similarity) were most frequently found. Different molecular analyses confirmed that Desulfobulbus, Desulfovibrio, and Desulfomicrobium were found to be the numerically important members of SRB in this wastewater biofilm. PMID:11872492

  19. Garcinia xanthochymus Benzophenones Promote Hyphal Apoptosis and Potentiate Activity of Fluconazole against Candida albicans Biofilms

    PubMed Central

    Jackson, Desmond N.; Yang, Lin; Wu, ShiBiao; Kennelly, Edward J.

    2015-01-01

    Xanthochymol and garcinol, isoprenylated benzophenones purified from Garcinia xanthochymus fruits, showed multiple activities against Candida albicans biofilms. Both compounds effectively prevented emergence of fungal germ tubes and were also cytostatic, with MICs of 1 to 3 μM. The compounds therefore inhibited development of hyphae and subsequent biofilm maturation. Xanthochymol treatment of developing and mature biofilms induced cell death. In early biofilm development, killing had the characteristics of apoptosis, including externalization of phosphatidyl serine and DNA fragmentation, as evidenced by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) fluorescence. These activities resulted in failure of biofilm maturation and hyphal death in mature biofilms. In mature biofilms, xanthochymol and garcinol caused the death of biofilm hyphae, with 50% effective concentrations (EC50s) of 30 to 50 μM. Additionally, xanthochymol-mediated killing was complementary with fluconazole against mature biofilms, reducing the fluconazole EC50 from >1,024 μg/ml to 13 μg/ml. Therefore, xanthochymol has potential as an adjuvant for antifungal treatments as well as in studies of fungal apoptosis. PMID:26195512

  20. Environmental factors that shape biofilm formation.

    PubMed

    Toyofuku, Masanori; Inaba, Tomohiro; Kiyokawa, Tatsunori; Obana, Nozomu; Yawata, Yutaka; Nomura, Nobuhiko

    2016-01-01

    Cells respond to the environment and alter gene expression. Recent studies have revealed the social aspects of bacterial life, such as biofilm formation. Biofilm formation is largely affected by the environment, and the mechanisms by which the gene expression of individual cells affects biofilm development have attracted interest. Environmental factors determine the cell's decision to form or leave a biofilm. In addition, the biofilm structure largely depends on the environment, implying that biofilms are shaped to adapt to local conditions. Second messengers such as cAMP and c-di-GMP are key factors that link environmental factors with gene regulation. Cell-to-cell communication is also an important factor in shaping the biofilm. In this short review, we will introduce the basics of biofilm formation and further discuss environmental factors that shape biofilm formation. Finally, the state-of-the-art tools that allow us investigate biofilms under various conditions are discussed.

  1. Kentucky's Statewide Early Childhood Professional Development System

    ERIC Educational Resources Information Center

    Rous, Beth; Grove, Jaime; Townley, Kim

    2007-01-01

    Public school systems have recently become major players in providing services for children in their early years. In addition, a number of other services are available to young children including child care, Head Start, and Early Head Start programs. The link between program quality and professional development of early care and education…

  2. Novel role for the Streptococcus pneumoniae toxin pneumolysin in the assembly of biofilms.

    PubMed

    Shak, Joshua R; Ludewick, Herbert P; Howery, Kristen E; Sakai, Fuminori; Yi, Hong; Harvey, Richard M; Paton, James C; Klugman, Keith P; Vidal, Jorge E

    2013-09-10

    Streptococcus pneumoniae is an important commensal and pathogen responsible for almost a million deaths annually in children under five. The formation of biofilms by S. pneumoniae is important in nasopharyngeal colonization, pneumonia, and otitis media. Pneumolysin (Ply) is a toxin that contributes significantly to the virulence of S. pneumoniae and is an important candidate as a serotype-independent vaccine target. Having previously demonstrated that a luxS knockout mutant was unable to form early biofilms and expressed less ply mRNA than the wild type, we conducted a study to investigate the role of Ply in biofilm formation. We found that Ply was expressed in early phases of biofilm development and localized to cellular aggregates as early as 4 h postinoculation. S. pneumoniae ply knockout mutants in D39 and TIGR4 backgrounds produced significantly less biofilm biomass than wild-type strains at early time points, both on polystyrene and on human respiratory epithelial cells, cultured under static or continuous-flow conditions. Ply's role in biofilm formation appears to be independent of its hemolytic activity, as S. pneumoniae serotype 1 strains, which produce a nonhemolytic variant of Ply, were still able to form biofilms. Transmission electron microscopy of biofilms grown on A549 lung cells using immunogold demonstrated that Ply was located both on the surfaces of pneumococcal cells and in the extracellular biofilm matrix. Altogether, our studies demonstrate a novel role for pneumolysin in the assembly of S. pneumoniae biofilms that is likely important during both carriage and disease and therefore significant for pneumolysin-targeting vaccines under development. The bacterium Streptococcus pneumoniae (commonly known as the pneumococcus) is commonly carried in the human nasopharynx and can spread to other body sites to cause disease. In the nasopharynx, middle ear, and lungs, the pneumococcus forms multicellular surface-associated structures called biofilms

  3. Microbial Biofilms and Chronic Wounds

    PubMed Central

    Omar, Amin; Wright, J. Barry; Schultz, Gregory; Burrell, Robert; Nadworny, Patricia

    2017-01-01

    Background is provided on biofilms, including their formation, tolerance mechanisms, structure, and morphology within the context of chronic wounds. The features of biofilms in chronic wounds are discussed in detail, as is the impact of biofilm on wound chronicity. Difficulties associated with the use of standard susceptibility tests (minimum inhibitory concentrations or MICs) to determine appropriate treatment regimens for, or develop new treatments for use in, chronic wounds are discussed, with alternate test methods specific to biofilms being recommended. Animal models appropriate for evaluating biofilm treatments are also described. Current and potential future therapies for treatment of biofilm-containing chronic wounds, including probiotic therapy, virulence attenuation, biofilm phenotype expression attenuation, immune response suppression, and aggressive debridement combined with antimicrobial dressings, are described. PMID:28272369

  4. Development and (evidence for) destruction of biofilm with Pseudomonas aeruginosa as architect

    NASA Technical Reports Server (NTRS)

    Uzcategui, Valerie N.; Donadeo, John J.; Lombardi, Daniel R.; Costello, Michael J.; Sauer, Richard L.

    1991-01-01

    Disinfection and maintenance of an acceptable level of asepsis in spacecraft potable water delivery systems is a formidable task. The major area of research for this project has been to monitor the formation and growth of biofilm, and biofilm attached microorganisms, on stainless steel surfaces (specifically coupons), and the use of ozone for the elimination of these species in a closed loop system. A number of different techniques have been utilized during the course of a typical run. Scraping and sonication of coupon surfaces with subsequent plating as well as epifluorescence microscopy have been utilized to enumerate biofilm protected Pseudomonas aeruginosa. In addition, scanning electron microscopy is the method of choice to examine the integrity of the biofilm. For ozone determinations, the indigo decolorization spectrophotometric method seems most reliable. Both high- and low-nutrient cultured P. aeruginosa organisms were the target species for the ozone disinfection experiments.

  5. Current and future trends for biofilm reactors for fermentation processes.

    PubMed

    Ercan, Duygu; Demirci, Ali

    2015-03-01

    Biofilms in the environment can both cause detrimental and beneficial effects. However, their use in bioreactors provides many advantages including lesser tendencies to develop membrane fouling and lower required capital costs, their higher biomass density and operation stability, contribution to resistance of microorganisms, etc. Biofilm formation occurs naturally by the attachment of microbial cells to the support without use of any chemicals agent in biofilm reactors. Biofilm reactors have been studied and commercially used for waste water treatment and bench and pilot-scale production of value-added products in the past decades. It is important to understand the fundamentals of biofilm formation, physical and chemical properties of a biofilm matrix to run the biofilm reactor at optimum conditions. This review includes the principles of biofilm formation; properties of a biofilm matrix and their roles in the biofilm formation; factors that improve the biofilm formation, such as support materials; advantages and disadvantages of biofilm reactors; and industrial applications of biofilm reactors.

  6. An in vitro biofilm model associated to dental implants: structural and quantitative analysis of in vitro biofilm formation on different dental implant surfaces.

    PubMed

    Sánchez, M C; Llama-Palacios, A; Fernández, E; Figuero, E; Marín, M J; León, R; Blanc, V; Herrera, D; Sanz, M

    2014-10-01

    The impact of implant surfaces in dental biofilm development is presently unknown. The aim of this investigation was to assess in vitro the development of a complex biofilm model on titanium and zirconium implant surfaces, and to compare it with the same biofilm formed on hydroxyapatite surface. Six standard reference strains were used to develop an in vitro biofilm over sterile titanium, zirconium and hydroxyapatite discs, coated with saliva within the wells of pre-sterilized polystyrene tissue culture plates. The selected species used represent initial (Streptococcus oralis and Actinomyces naeslundii), early (Veillonella parvula), secondary (Fusobacterium nucleatum) and late colonizers (Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans). The developed biofilms (growth time 1 to 120h) were studied with confocal laser scanning microscopy using a vital fluorescence technique and with low-temperature scanning electron microscopy. The number (colony forming units/biofilm) and kinetics of the bacteria within the biofilm were studied with quantitative PCR (qPCR). As outcome variables, the biofilm thickness, the percentage of cell vitality and the number of bacteria were compared using the analysis of variance. The bacteria adhered and matured within the biofilm over the three surfaces with similar dynamics. Different surfaces, however, demonstrated differences both in the thickness, deposition of the extracellular polysaccharide matrix as well as in the organization of the bacterial cells. While the formation and dynamics of an in vitro biofilm model was similar irrespective of the surface of inoculation (hydroxyapatite, titanium or zirconium), there were significant differences in regards to the biofilm thickness and three-dimensional structure. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Novel Role for the Streptococcus pneumoniae Toxin Pneumolysin in the Assembly of Biofilms

    PubMed Central

    Shak, Joshua R.; Ludewick, Herbert P.; Howery, Kristen E.; Sakai, Fuminori; Yi, Hong; Harvey, Richard M.; Paton, James C.; Klugman, Keith P.; Vidal, Jorge E.

    2013-01-01

    ABSTRACT Streptococcus pneumoniae is an important commensal and pathogen responsible for almost a million deaths annually in children under five. The formation of biofilms by S. pneumoniae is important in nasopharyngeal colonization, pneumonia, and otitis media. Pneumolysin (Ply) is a toxin that contributes significantly to the virulence of S. pneumoniae and is an important candidate as a serotype-independent vaccine target. Having previously demonstrated that a luxS knockout mutant was unable to form early biofilms and expressed less ply mRNA than the wild type, we conducted a study to investigate the role of Ply in biofilm formation. We found that Ply was expressed in early phases of biofilm development and localized to cellular aggregates as early as 4 h postinoculation. S. pneumoniae ply knockout mutants in D39 and TIGR4 backgrounds produced significantly less biofilm biomass than wild-type strains at early time points, both on polystyrene and on human respiratory epithelial cells, cultured under static or continuous-flow conditions. Ply’s role in biofilm formation appears to be independent of its hemolytic activity, as S. pneumoniae serotype 1 strains, which produce a nonhemolytic variant of Ply, were still able to form biofilms. Transmission electron microscopy of biofilms grown on A549 lung cells using immunogold demonstrated that Ply was located both on the surfaces of pneumococcal cells and in the extracellular biofilm matrix. Altogether, our studies demonstrate a novel role for pneumolysin in the assembly of S. pneumoniae biofilms that is likely important during both carriage and disease and therefore significant for pneumolysin-targeting vaccines under development. PMID:24023386

  8. Early prosthetic hip joint infection treated with debridement, prosthesis retention and biofilm-active antibiotics: functional outcomes, quality of life and complications.

    PubMed

    Aboltins, C; Dowsey, M M; Peel, T; Lim, W K; Parikh, S; Stanley, P; Choong, P F

    2013-07-01

    Patients treated for early prosthetic joint infection (PJI) with surgical debridement, prosthesis retention and biofilm-active antibiotics, such as rifampicin or fluoroquinolones have a rate of successful infection eradication that is similar to patients treated with the traditional approach of prosthesis exchange. It is therefore important to consider other outcomes after PJI treatment that may influence management decisions, such as function, quality of life (QOL) and treatment-associated complications. To describe rates of successful treatment for patients with PJI undergoing surgical debridement, prosthesis retention and biofilm-active antibiotics and compare their functional outcomes, QOL and complication rates to patients without PJI. Nineteen patients treated for PJI after hip arthroplasty with debridement, prosthesis retention and biofilm-active antibiotics were matched to 76 controls who underwent hip arthroplasty with no infection. Cumulative survival free from treatment failure at 2 years was 88% (95% confidence interval, 59-97%). PJI cases had significant improvement from pre-arthroplasty to 12-months post-arthroplasty in function according to Harris Hip Score and QOL according to the 12-item Short Form Health Survey Physical Component Summary. There was no significant difference in the improvement between controls and cases. PJI was not a risk factor for poor function or QOL. Medical complications occurred more frequently in cases (6/19 (32%)) than controls (9/76 (12%); P = 0.04), with this difference being accounted for by drug reactions. Surgical complications were the same in the two groups. Treatment of PJI with debridement, prosthesis retention and biofilm-active antibiotics is successful, well tolerated and results in significant improvements in function and QOL, which are similar to patients without PJI. © 2013 The Authors; Internal Medicine Journal © 2013 Royal Australasian College of Physicians.

  9. Characterization of competence and biofilm development of a Streptocccus sanguinis endocarditis isolate

    PubMed Central

    Zhu, Lin; Zhang, Yongshu; Fan, Jingyuan; Herzberg, Mark C.; Kreth, Jens

    2010-01-01

    Streptococcus sanguinis is an oral commensal bacterium and endogenous pathogen in the blood, which generally is naturally competent to take up extracellular DNA. Regarded as a stress response, competence development enables S. sanguinis to acquire new genetic material. The sequenced reference strain SK36 encodes and expresses the genes required for competence (com) and uptake of DNA. Isolated from blood cultures of a confirmed case of infective endocarditis, strain 133–79 encodes all necessary com genes but is not transformable under conditions permissive for competence development in SK36. Using synthetic competence-stimulating peptides (sCSP) based on sequences of SK36 and 133–79 comC, both strains developed competence at similar frequencies in cross-transformation experiments. Furthermore, downstream response pathways are similar in strains SK36 and 133–79 since platelet aggregation and biofilm formation appeared unaffected by CSP. Collectively, the data indicate that strains SK36 and 133–79 respond to CSP similarly, strongly suggesting that endogenous production or release of CSP from 133–79 is impaired. PMID:21375702

  10. Characterization of competence and biofilm development of a Streptococcus sanguinis endocarditis isolate.

    PubMed

    Zhu, L; Zhang, Y; Fan, J; Herzberg, M C; Kreth, J

    2011-04-01

    Streptococcus sanguinis is an oral commensal bacterium and endogenous pathogen in the blood, which is generally naturally competent to take up extracellular DNA. Regarded as a stress response, competence development enables S. sanguinis to acquire new genetic material. The sequenced reference strain SK36 encodes and expresses the genes required for competence (com) and uptake of DNA. Isolated from blood cultures of a confirmed case of infective endocarditis, strain 133-79 encodes all necessary com genes but is not transformable under conditions permissive for competence development in SK36. Using synthetic competence-stimulating peptides (sCSP) based on sequences of SK36 and 133-79 comC, both strains developed competence at similar frequencies in cross-transformation experiments. Furthermore, downstream response pathways are similar in strains SK36 and 133-79 because platelet aggregation and biofilm formation appeared unaffected by CSP. Collectively, the data indicate that strains SK36 and 133-79 respond to CSP similarly, strongly suggesting that endogenous production or release of CSP from 133-79 is impaired. © 2011 John Wiley & Sons A/S.

  11. Role of interspecies interactions in dual-species biofilms developed in vitro by uropathogens isolated from polymicrobial urinary catheter-associated bacteriuria.

    PubMed

    Galván, E M; Mateyca, C; Ielpi, L

    2016-10-01

    Most catheter-associated urinary tract infections are polymicrobial. Here, uropathogen interactions in dual-species biofilms were studied. The dual-species associations selected based on their prevalence in clinical settings were Klebsiella pneumoniae-Escherichia coli, E. coli-Enterococcus faecalis, K. pneumoniae-E. faecalis, and K. pneumoniae-Proteus mirabilis. All species developed single-species biofilms in artificial urine. The ability of K. pneumoniae to form biofilms was not affected by E. coli or E. faecalis co-inoculation, but was impaired by P. mirabilis. Conversely, P. mirabilis established a biofilm when co-inoculated with K. pneumoniae. Additionally, E. coli persistence in biofilms was hampered by K. pneumoniae but not by E. faecalis. Interestingly, E. coli, but not K. pneumoniae, partially inhibited E. faecalis attachment to the surface and retarded biofilm development. The findings reveal bacterial interactions between uropathogens in dual-species biofilms ranged from affecting initial adhesion to outcompeting one bacterial species, depending on the identity of the partners involved.

  12. The Development of STAR Early Literacy. Report.

    ERIC Educational Resources Information Center

    School Renaissance Inst., Inc., Madison, WI.

    This report describes the development and testing of a computerized early literacy diagnostic assessment for students in prekindergarten to grade 3 that can measure skills across a variety of preliteracy and reading domains. The STAR Early Literacy assessment was developed by a team of more than 50 people, including literacy experts,…

  13. Critical Issues in Early Childhood Professional Development

    ERIC Educational Resources Information Center

    Zaslow, Martha, Ed.; Martinez-Beck, Ivelisse, Ed.

    2005-01-01

    Effective teaching leads to positive student outcomes, and professional development for early childhood teachers is key to improving both. But what exactly is meant by "professional development"? What effect does it have on school readiness? Which models and approaches really work? This is the book the early childhood field needs to take the…

  14. Development of Denitrifying and Nitrifying Bacteria and Their Co-occurrence in Newly Created Biofilms in Urban Streams

    NASA Astrophysics Data System (ADS)

    Vaessen, T. N.; Martí Roca, E.; Pinay, G.; Merbt, S. N.

    2015-12-01

    Biofilms play a pivotal role on nutrient cycling in streams, which ultimately dictates the export of nutrients to downstream ecosystems. The extent to which biofilms influence the concentration of dissolved nutrients, oxygen and pH in the water column may be determined by the composition of the microbial assemblages and their activity. Evidence of biological interactions among bacteria and algae are well documented. However, the development, succession and co-occurence of nitrifying and denitrifying bacteria remain poorly understood. These bacteria play a relevant role on the biogeochemical process associated to N cycling, and their relative abundance can dictate the fate of dissolved inorganic nitrogen in streams. In particular, previous studies indicated that nitrifiers are enhanced in streams receiving inputs from wastewater treatment plant (WWTP) effluents due to both increases in ammonium concentration and inputs of nitrifiers. However, less is known about the development of denitrifiers in receiving streams, although environmental conditions seem to favor it. We conducted an in situ colonization experiment in a stream receiving effluent from a WWTP to examine how this input influences the development and co-occurrence of nitrifying and denitrifying bacteria. We placed artificial substrata at different locations relative to the effluent and sampled them over time to characterize the developed biofilm in terms of bulk measurements (organic matter content and algae) as well as in terms of abundance of nitrifiers and denitrifiers (using qPCR). The results of this study contribute to a better understanding of the temporal dynamics of denitrifiers and nitrifiers in relation to the developed organic matter, dissolved oxygen and pH and the biomass accrual in stream biofilms under the influence of nutrients inputs from WWTP effluent. Ultimately, the results provide insights on the potential role of nitrifiers and denitrifiers on N cycling in WWTP effluent receiving

  15. Presence of Extracellular DNA during Biofilm Formation by Xanthomonas citri subsp. citri Strains with Different Host Range.

    PubMed

    Sena-Vélez, Marta; Redondo, Cristina; Graham, James H; Cubero, Jaime

    2016-01-01

    Xanthomonas citri subsp. citri (Xcc) A strain causes citrus bacterial canker, a serious leaf, fruit and stem spotting disease of several Citrus species. X. alfalfae subsp. citrumelonis (Xac) is the cause of citrus bacterial spot, a minor disease of citrus nursery plants and X. campestris pv. campestris (Xc) is a systemic pathogen that causes black rot of cabbage. Xanthomonas spp. form biofilms in planta that facilitate the host infection process. Herein, the role of extracellular DNA (eDNA) was evaluated in the formation and stabilization of the biofilm matrix at different stages of biofilm development. Fluorescence and light microscopy, as well as DNAse treatments, were used to determine the presence of eDNA in biofilms and bacterial cultures. DNAse treatments of Xcc strains and Xac reduced biofilm formation at the initial stage of development, as well as disrupted preformed biofilm. By comparison, no significant effect of the DNAse was detected for biofilm formation by Xc. DNAse effects on biofilm formation or disruption varied among Xcc strains and Xanthomonas species which suggest different roles for eDNA. Variation in the structure of fibers containing eDNA in biofilms, bacterial cultures, and in twitching motility was also visualized by microscopy. The proposed roles for eDNA are as an adhesin in the early stages of biofilm formation, as an structural component of mature bacterial aggregates, and twitching motility structures.

  16. The impact of culture medium on the development and physiology of biofilms of Pseudomonas fluorescens formed on polyurethane paint.

    PubMed

    Crookes-Goodson, Wendy J; Bojanowski, Caitlin L; Kay, Michelle L; Lloyd, Pamela F; Blankemeier, Andrew; Hurtubise, Jennifer M; Singh, Kristi M; Barlow, Daniel E; Ladouceur, Harold D; Matt Eby, D; Johnson, Glenn R; Mirau, Peter A; Pehrsson, Pehr E; Fraser, Hamish L; Russell, John N

    2013-01-01

    Microbial biofilms cause the deterioration of polymeric coatings such as polyurethanes (PUs). In many cases, microbes have been shown to use the PU as a nutrient source. The interaction between biofilms and nutritive substrata is complex, since both the medium and the substratum can provide nutrients that affect biofilm formation and biodeterioration. Historically, studies of PU biodeterioration have monitored the planktonic cells in the medium surrounding the material, not the biofilm. This study monitored planktonic and biofilm cell counts, and biofilm morphology, in long-term growth experiments conducted with Pseudomonas fluorescens under different nutrient conditions. Nutrients affected planktonic and biofilm cell numbers differently, and neither was representative of the system as a whole. Microscopic examination of the biofilm revealed the presence of intracellular storage granules in biofilms grown in M9 but not yeast extract salts medium. These granules are indicative of nutrient limitation and/or entry into stationary phase, which may impact the biodegradative capability of the biofilm.

  17. Novel model for multispecies biofilms that uses rigid gas-permeable lenses.

    PubMed

    Peyyala, Rebecca; Kirakodu, Sreenatha S; Ebersole, Jeffrey L; Novak, Karen F

    2011-05-01

    Oral biofilms comprise complex multispecies consortia aided by specific inter- and intraspecies interactions occurring among commensals and pathogenic bacterial species. Oral biofilms are primary initiating factors of periodontal disease, although complex multifactorial biological influences, including host cell responses, contribute to the individual outcome of the disease. To provide a system to study initial stages of interaction between oral biofilms and the host cells that contribute to the disease process, we developed a novel in vitro model system to grow biofilms on rigid gas-permeable contact lenses (RGPLs), which enable oxygen to permeate through the lens material. Bacterial species belonging to early- and late-colonizing groups were successfully established as single- or three-species biofilms, with each group comprising Streptococcus gordonii, Streptococcus oralis, and Streptococcus sanguinis; S. gordonii, Actinomyces naeslundii, and Fusobacterium nucleatum; or S. gordonii, F. nucleatum, and Porphyromonas gingivalis. Quantification of biofilm numbers by quantitative PCR (qPCR) revealed substantial differences in the magnitude of bacterial numbers in single-species and multispecies biofilms. We evaluated cell-permeable conventional nucleic acid stains acridine orange, hexidium iodide, and Hoechst 33258 and novel SYTO red, blue, and green fluorochromes for their effect on bacterial viability and fluorescence yield to allow visualization of the aggregates of individual bacterial species by confocal laser scanning microscopy (CLSM). Substantial differences in the quantity and distribution of the species in the multispecies biofilms were identified. The specific features of these biofilms may help us better understand the role of various bacteria in local challenge of oral tissues.

  18. Control of early seed development.

    PubMed

    Chaudhury, A M; Koltunow, A; Payne, T; Luo, M; Tucker, M R; Dennis, E S; Peacock, W J

    2001-01-01

    Seed development requires coordinated expression of embryo and endosperm and has contributions from both sporophytic and male and female gametophytic genes. Genetic and molecular analyses in recent years have started to illuminate how products of these multiple genes interact to initiate seed development. Imprinting or differential expression of paternal and maternal genes seems to be involved in controlling seed development, presumably by controlling gene expression in developing endosperm. Epigenetic processes such as chromatin remodeling and DNA methylation affect imprinting of key seed-specific genes; however, the identity of many of these genes remains unknown. The discovery of FIS genes has illuminated control of autonomous endosperm development, a component of apomixis, which is an important developmental and agronomic trait. FIS genes are targets of imprinting, and the genes they control in developing endosperm are also regulated by DNA methylation and chromatin remodeling genes. These results define some exciting future areas of research in seed development.

  19. Biofilms in shower hoses.

    PubMed

    Proctor, Caitlin R; Reimann, Mauro; Vriens, Bas; Hammes, Frederik

    2017-12-14

    Shower hoses offer an excellent bacterial growth environment in close proximity to a critical end-user exposure route within building drinking water plumbing. However, the health risks associated with and processes underlying the development of biofilms in shower hoses are poorly studied. In a global survey, biofilms from 78 shower hoses from 11 countries were characterized in terms of cell concentration (4.1 × 10 4 -5.8 × 10 8  cells/cm 2 ), metal accumulation (including iron, lead, and copper), and microbiome composition (including presence of potential opportunistic pathogens). In countries using disinfectant, biofilms had on average lower cell concentrations and diversity. Metal accumulation (up to 5 μg-Fe/cm 2 , 75 ng-Pb/cm 2 , and 460 ng-Cu/cm 2 ) seemed to be partially responsible for discoloration in biofilms, and likely originated from other pipes upstream in the building. While some genera that may contain potential opportunistic pathogens (Legionella, detected in 21/78 shower hoses) were positively correlated with biofilm cell concentration, others (Mycobacterium, Pseudomonas) had surprisingly non-existent or negative correlations with biofilm cell concentrations. In a controlled study, 15 identical shower hoses were installed for the same time period in the same country, and both stagnant and flowing water samples were collected. Ecological theory of dispersal and selection helped to explain microbiome composition and diversity of different sample types. Shower hose age was related to metal accumulation but not biofilm cell concentration, while frequency of use appeared to influence biofilm cell concentration. This study shows that shower hose biofilms are clearly a critical element of building drinking water plumbing, and a potential target for building drinking water plumbing monitoring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Evolution and Adaptation in Pseudomonas aeruginosa Biofilms Driven by Mismatch Repair System-Deficient Mutators

    PubMed Central

    Yang, Liang; Molin, Søren; Oliver, Antonio; Smania, Andrea M.

    2011-01-01

    Pseudomonas aeruginosa is an important opportunistic pathogen causing chronic airway infections, especially in cystic fibrosis (CF) patients. The majority of the CF patients acquire P. aeruginosa during early childhood, and most of them develop chronic infections resulting in severe lung disease, which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS)], play important roles in P. aeruginosa chronic infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition experiments we demonstrate for the first time that P. aeruginosa MRS-deficient mutators had enhanced adaptability over wild-type strains when grown in structured biofilms but not as planktonic cells. This advantage was associated with enhanced micro-colony development and increased rates of phenotypic diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution in the biofilm mode of growth. This work helps to understand the basis for the specific high proportion and role of mutators in chronic infections, where P. aeruginosa develops in biofilm communities. PMID:22114708

  1. Evolution and adaptation in Pseudomonas aeruginosa biofilms driven by mismatch repair system-deficient mutators.

    PubMed

    Luján, Adela M; Maciá, María D; Yang, Liang; Molin, Søren; Oliver, Antonio; Smania, Andrea M

    2011-01-01

    Pseudomonas aeruginosa is an important opportunistic pathogen causing chronic airway infections, especially in cystic fibrosis (CF) patients. The majority of the CF patients acquire P. aeruginosa during early childhood, and most of them develop chronic infections resulting in severe lung disease, which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS)], play important roles in P. aeruginosa chronic infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition experiments we demonstrate for the first time that P. aeruginosa MRS-deficient mutators had enhanced adaptability over wild-type strains when grown in structured biofilms but not as planktonic cells. This advantage was associated with enhanced micro-colony development and increased rates of phenotypic diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution in the biofilm mode of growth. This work helps to understand the basis for the specific high proportion and role of mutators in chronic infections, where P. aeruginosa develops in biofilm communities.

  2. Pseudomonas aeruginosa Biofilm, a Programmed Bacterial Life for Fitness.

    PubMed

    Lee, Keehoon; Yoon, Sang Sun

    2017-06-28

    A biofilm is a community of microbes that typically inhabit on surfaces and are encased in an extracellular matrix. Biofilms display very dissimilar characteristics to their planktonic counterparts. Biofilms are ubiquitous in the environment and influence our lives tremendously in both positive and negative ways. Pseudomonas aeruginosa is a bacterium known to produce robust biofilms. P. aeruginosa biofilms cause severe problems in immunocompromised patients, including those with cystic fibrosis or wound infection. Moreover, the unique biofilm properties further complicate the eradication of the biofilm infection, leading to the development of chronic infections. In this review, we discuss the history of biofilm research and general characteristics of bacterial biofilms. Then, distinct features pertaining to each stage of P. aeruginosa biofilm development are highlighted. Furthermore, infections caused by biofilms on their own or in association with other bacterial species ( i.e. , multispecies biofilms) are discussed in detail.

  3. Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii.

    PubMed

    Koutsoudis, Maria D; Tsaltas, Dimitrios; Minogue, Timothy D; von Bodman, Susanne B

    2006-04-11

    The phytopathogenic bacterium Pantoea stewartii subsp. stewartii synthesizes stewartan exo/capsular polysaccharide (EPS) in a cell density-dependent manner governed by the EsaI/EsaR quorum-sensing (QS) system. This study analyzes biofilm development and host colonization of the WT and QS regulatory mutant strains of P. stewartii. First, we show that the cell density-dependent synthesis of stewartan EPS, governed by the EsaI/EsaR QS system, is required for proper bacterial adhesion and development of spatially defined, 3D biofilms. Second, a nonvirulent mutant lacking the esaI gene adheres strongly to surfaces and develops densely packed, less structurally defined biofilms in vitro. This strain appears to be arrested in a low cell density developmental mode. Exposure of this strain to exogenous N-acyl-homoserine lactone counteracts this adhesion phenotype. Third, QS mutants lacking the EsaR repressor attach poorly to surfaces and form amorphous biofilms heavily enmeshed in excess EPS. Fourth, the WT strain disseminates efficiently within the xylem, primarily in a basipetal direction. In contrast, the two QS mutant strains remain largely localized at the site of infection. Fifth, and most significantly, epifluorescence microscopic imaging of infected leaf tissue and excised xylem vessels reveals that the bacteria colonize the xylem with unexpected specificity, particularly toward the annular rings and spiral secondary wall thickenings of protoxylem, as opposed to indiscriminate growth to fill the xylem lumen. These observations are significant to bacterial plant pathogenesis in general and may reveal targets for disease control.

  4. Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii

    PubMed Central

    Koutsoudis, Maria D.; Tsaltas, Dimitrios; Minogue, Timothy D.; von Bodman, Susanne B.

    2006-01-01

    The phytopathogenic bacterium Pantoea stewartii subsp. stewartii synthesizes stewartan exo/capsular polysaccharide (EPS) in a cell density-dependent manner governed by the EsaI/EsaR quorum-sensing (QS) system. This study analyzes biofilm development and host colonization of the WT and QS regulatory mutant strains of P. stewartii. First, we show that the cell density-dependent synthesis of stewartan EPS, governed by the EsaI/EsaR QS system, is required for proper bacterial adhesion and development of spatially defined, 3D biofilms. Second, a nonvirulent mutant lacking the esaI gene adheres strongly to surfaces and develops densely packed, less structurally defined biofilms in vitro. This strain appears to be arrested in a low cell density developmental mode. Exposure of this strain to exogenous N-acyl-homoserine lactone counteracts this adhesion phenotype. Third, QS mutants lacking the EsaR repressor attach poorly to surfaces and form amorphous biofilms heavily enmeshed in excess EPS. Fourth, the WT strain disseminates efficiently within the xylem, primarily in a basipetal direction. In contrast, the two QS mutant strains remain largely localized at the site of infection. Fifth, and most significantly, epifluorescence microscopic imaging of infected leaf tissue and excised xylem vessels reveals that the bacteria colonize the xylem with unexpected specificity, particularly toward the annular rings and spiral secondary wall thickenings of protoxylem, as opposed to indiscriminate growth to fill the xylem lumen. These observations are significant to bacterial plant pathogenesis in general and may reveal targets for disease control. PMID:16585516

  5. Inhibition of early biofilm formation by glass-ionomer incorporated with chlorhexidine in vivo: a pilot study.

    PubMed

    Du, X; Huang, X; Huang, C; Frencken, J E; Yang, T

    2012-03-01

    This pilot study investigated the antibiofilm effects of glass-ionomer cements (GICs) and resin-modified glass-ionomer cements (RMGICs) incorporated with chlorhexidine (CHX) in vivo. Experimental GICs and RMGICs containing 2% CHX were obtained by mixing CHX with the powder of GICs (CHXGIC) and RMGICs (CHXRMGIC). Four groups of specimens were prepared in a standardized size. After polishing and sterilization, they were bonded to the buccal surface of the molars in the first and second quadrant of volunteers and left untouched for 4 hours and 24 hours, respectively. The bacterial vitality of plaque was then analysed by confocal laser scanning microscopy (CLSM). The bacterial morphology and biofilm accumulation were determined by scanning electron microscopy (SEM). The pH value of biofilm was assessed by Plaque Indicator Kits. CLSM analysis revealed that bacterial vitality of the biofilm on CHXGIC and CHXRMGIC was significantly lower than that on GIC and RMGIC. SEM analysis indicated that the morphology of bacteria on CHXGIC and CHXRMGIC was irregular. The pH value of biofilm on the experimental materials presented no statistically significant difference. Twenty-four hour bacterial vitality on GICs and RMGICs with CHX are lower in micro-organisms than on conventional GICs and RMGICs. © 2012 Australian Dental Association.

  6. A new rabbit model of implant-related biofilm infection: development and evaluation

    NASA Astrophysics Data System (ADS)

    Chu, Cheng-Bing; Zeng, Hong; Shen, Ding-Xia; Wang, Hui; Wang, Ji-Fang; Cui, Fu-Zhai

    2016-03-01

    This study is to establish a rabbit model for human prosthetic joint infection and biofilm formation. Thirty-two healthy adult rabbits were randomly divided into four groups and implanted with stainless steel screws and ultra-high molecular weight polyethylene (UHMWPE) washers in the non-articular surface of the femoral lateral condyle of the right hind knees. The rabbit knee joints were inoculated with 1 mL saline containing 0, 102, 103, 104 CFU of Staphylococcus epidermidis ( S. epidermidis) isolated from the patient with total knee arthroplasty (TKA) infection, respectively. On the 14th postoperative day, the UHMWPE washers from the optimal 103 CFU group were further examined. The SEM examination showed a typical biofilm construction that circular S. epidermidis were embedded in a mucous-like matrix. In addition, the LCSM examination showed that the biofilm consisted of the polysaccharide stained bright green fluorescence and S. epidermidis radiating red fluorescence. Thus, we successfully create a rabbit model for prosthetic joint infection and biofilm formation, which should be valuable for biofilm studies.

  7. Novel Method for Quantitative Estimation of Biofilms.

    PubMed

    Syal, Kirtimaan

    2017-10-01

    Biofilm protects bacteria from stress and hostile environment. Crystal violet (CV) assay is the most popular method for biofilm determination adopted by different laboratories so far. However, biofilm layer formed at the liquid-air interphase known as pellicle is extremely sensitive to its washing and staining steps. Early phase biofilms are also prone to damage by the latter steps. In bacteria like mycobacteria, biofilm formation occurs largely at the liquid-air interphase which is susceptible to loss. In the proposed protocol, loss of such biofilm layer was prevented. In place of inverting and discarding the media which can lead to the loss of the aerobic biofilm layer in CV assay, media was removed from the formed biofilm with the help of a syringe and biofilm layer was allowed to dry. The staining and washing steps were avoided, and an organic solvent-tetrahydrofuran (THF) was deployed to dissolve the biofilm, and the absorbance was recorded at 595 nm. The protocol was tested for biofilm estimation of E. coli, B. subtilis and M. smegmatis, and compared with the traditional CV assays. Isoniazid drug molecule, a known inhibitor of M. smegmatis biofilm, was tested and its inhibitory effects were quantified by the proposed protocol. For ease in referring, this method has been described as the Syal method for biofilm quantification. This new method was found to be useful for the estimation of early phase biofilm and aerobic biofilm layer formed at the liquid-air interphase. The biofilms formed by all three tested bacteria-B. subtilis, E. coli and M. smegmatis, were precisely quantified.

  8. Effect of multilayer substrate configuration in horizontal subsurface flow constructed wetlands: assessment of treatment performance, biofilm development, and solids accumulation.

    PubMed

    Ding, Yanli; Lyu, Tao; Bai, Shaoyuan; Li, Zhenling; Ding, Haijing; You, Shaohong; Xie, Qinglin

    2018-01-01

    This study investigates the influence of multilayer substrate configuration in horizontal subsurface flow constructed wetlands (HSCWs) on their treatment performance, biofilm development, and solids accumulation. Three pilot-scale HSCWs were built to treat campus sewage and have been operational for 3 years. The HSCWs included monolayer (CW1), three-layer (CW3), and six-layer (CW6) substrate configurations with hydraulic conductivity of the substrate increasing from the surface to bottom in the multilayer CWs. It was demonstrated the pollutant removal performance after a 3-year operation improved in the multilayer HSCWs (49-80%) compared to the monolayer HSCW (29-41%). Simultaneously, the multilayer HSCWs exhibited significant features that prevented clogging compared to the monolayer configuration. The amount of accumulated solids was notably higher in the monolayer CW compared to multilayer CWs. Further, multilayer HSCWs could delay clogging by providing higher biofilm development for organics removal and consequently, lesser solids accumulations. Principal component analysis strongly supported the visualization of the performance patterns in the present study and showed that multilayer substrate configuration, season, and sampling locations significantly influenced biofilm growth and solids accumulation. Finally, the present study provided important information to support the improved multilayer configured HSCW implication in the future.

  9. Metabolism links bacterial biofilms and colon carcinogenesis

    PubMed Central

    Johnson, Caroline H.; Dejea, Christine M.; Edler, David; Hoang, Linh T.; Santidrian, Antonio F.; Felding, Brunhilde H.; Cho, Kevin; Wick, Elizabeth C.; Hechenbleikner, Elizabeth M.; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A.; Pardoll, Drew M.; White, James R.; Patti, Gary J.; Sears, Cynthia L.; Siuzdak, Gary

    2015-01-01

    SUMMARY Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N1, N12-diacetylspermine in both biofilm positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N1, N12-diacetylspermine levels to those seen in biofilm negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome, to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression. PMID:25959674

  10. Metabolism links bacterial biofilms and colon carcinogenesis.

    PubMed

    Johnson, Caroline H; Dejea, Christine M; Edler, David; Hoang, Linh T; Santidrian, Antonio F; Felding, Brunhilde H; Ivanisevic, Julijana; Cho, Kevin; Wick, Elizabeth C; Hechenbleikner, Elizabeth M; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A; Pardoll, Drew M; White, James R; Patti, Gary J; Sears, Cynthia L; Siuzdak, Gary

    2015-06-02

    Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N(1), N(12)-diacetylspermine in both biofilm-positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N(1), N(12)-diacetylspermine levels to those seen in biofilm-negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms.

    PubMed

    Martins, Margarida; Uppuluri, Priya; Thomas, Derek P; Cleary, Ian A; Henriques, Mariana; Lopez-Ribot, José L; Oliveira, Rosário

    2010-05-01

    DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans, there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C. albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm development. We were able to detect the accumulation of eDNA in biofilm ECM extracted from C. albicans biofilms formed under conditions of flow, although the quantity of eDNA detected differed according to growth conditions, in particular with regards to the medium used to grow the biofilms. Experiments with C. albicans biofilms formed statically using a microtiter plate model indicated that the addition of exogenous DNA (>160 ng/ml) increases biofilm biomass and, conversely, DNase treatment (>0.03 mg/ml) decreases biofilm biomass at later time points of biofilm development. We present evidence for the role of eDNA in C. albicans biofilm structure and formation, consistent with eDNA being a key element of the ECM in mature C. albicans biofilms and playing a predominant role in biofilm structural integrity and maintenance.

  12. Characterising biofilm development on granular activated carbon used for drinking water production.

    PubMed

    Gibert, Oriol; Lefèvre, Benoît; Fernández, Marc; Bernat, Xavier; Paraira, Miquel; Calderer, Montse; Martínez-Lladó, Xavier

    2013-03-01

    Under normal operation conditions, granular activated carbon (GAC) employed in drinking water treatment plants (DWTPs) for natural organic matter (NOM) removal can be colonised by microorganisms which can eventually establish active biofilms. The formation of such biofilms can contribute to NOM removal by biodegradation, but also in clogging phenomena that can make necessary more frequent backwashes. Biofilm occurrence and evolution under full-scale-like conditions (i.e. including periodic backwashing) are still uncertain, and GAC filtration is usually operated with a strong empirical component. The aim of the present study was to assess the formation and growth, if any, of biofilm in a periodically backwashed GAC filter. For this purpose, an on-site pilot plant was assembled and operated to closely mimic the GAC filters installed in the DWTP in Sant Joan Despí (Barcelona, Spain). The study comprised a monitoring of both water and GAC cores withdrawn at various depths and times throughout 1 year operation. The biomass parameters assessed were total cell count by confocal laser scanning microscopy (CLSM), DNA and adenosine triphosphate (ATP). Visual examination of GAC particles was also conducted by high-resolution field emission scanning electron microscopy (FESEM). Additionally, water quality and GAC surface properties were monitored. Results provided insight into the extent and spatial distribution of biofilm within the GAC bed. To sum up, it was found that backwashing could physically detach bacteria from the biofilm, which could however build back up to its pre-backwashing concentration before next backwashing cycle. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Response of estuarine biofilm microbial community development to changes in dissolved oxygen and nutrient concentrations.

    PubMed

    Nocker, Andreas; Lepo, Joe Eugene; Martin, Linda Lin; Snyder, Richard Allan

    2007-10-01

    The information content and responsiveness of microbial biofilm community structure, as an integrative indicator of water quality, was assessed against short-term changes in oxygen and nutrient loading in an open-water estuarine setting. Biofilms were grown for 7-day periods on artificial substrates in the Pensacola Bay estuary, Florida, in the vicinity of a wastewater treatment plant (WWTP) outfall and a nearby reference site. Substrates were deployed floating at the surface and near the benthos in 5.4 m of water. Three sampling events covered a 1-month period coincident with declining seasonal WWTP flow and increasing dissolved oxygen (DO) levels in the bottom waters. Biomass accumulation in benthic biofilms appeared to be controlled by oxygen rather than nutrients. The overriding effect of DO was also seen in DNA fingerprints of community structure by terminal restriction fragment length polymorphism (T-RFLP) of amplified 16S rRNA genes. Ribotype diversity in benthic biofilms at both sites dramatically increased during the transition from hypoxic to normoxic. Terminal restriction fragment length polymorphism patterns showed pronounced differences between benthic and surface biofilm communities from the same site in terms of signal type, strength, and diversity, but minor differences between sites. Sequencing of 16S rRNA gene clone libraries from benthic biofilms at the WWTP site suggested that low DO levels favored sulfate-reducing prokaryotes (SRP), which decreased with rising oxygen levels and increasing overall diversity. A 91-bp ribotype in the CfoI-restricted 16S rRNA gene T-RFLP profiles, indicative of SRP, tracked the decrease in relative SRP abundance over time.

  14. Modified wound dressing with phyto-nanostructured coating to prevent staphylococcal and pseudomonal biofilm development

    NASA Astrophysics Data System (ADS)

    Anghel, Ion; Holban, Alina Maria; Grumezescu, Alexandru Mihai; Andronescu, Ecaterina; Ficai, Anton; Anghel, Alina Georgiana; Maganu, Maria; Lazǎr, Veronica; Chifiriuc, Mariana Carmen

    2012-12-01

    This paper reports a newly fabricated nanophyto-modified wound dressing with microbicidal and anti-adherence properties. Nanofluid-based magnetite doped with eugenol or limonene was used to fabricate modified wound dressings. Nanostructure coated materials were characterized by TEM, XRD, and FT-IR. For the quantitative measurement of biofilm-embedded microbial cells, a culture-based method for viable cell count was used. The optimized textile dressing samples proved to be more resistant to staphylococcal and pseudomonal colonization and biofilm formation compared to the uncoated controls. The functionalized surfaces for wound dressing seems to be a very useful tool for the prevention of wound microbial contamination on viable tissues.

  15. Modified wound dressing with phyto-nanostructured coating to prevent staphylococcal and pseudomonal biofilm development.

    PubMed

    Anghel, Ion; Holban, Alina Maria; Grumezescu, Alexandru Mihai; Andronescu, Ecaterina; Ficai, Anton; Anghel, Alina Georgiana; Maganu, Maria; Laz R, Veronica; Chifiriuc, Mariana Carmen

    2012-12-31

    This paper reports a newly fabricated nanophyto-modified wound dressing with microbicidal and anti-adherence properties. Nanofluid-based magnetite doped with eugenol or limonene was used to fabricate modified wound dressings. Nanostructure coated materials were characterized by TEM, XRD, and FT-IR. For the quantitative measurement of biofilm-embedded microbial cells, a culture-based method for viable cell count was used. The optimized textile dressing samples proved to be more resistant to staphylococcal and pseudomonal colonization and biofilm formation compared to the uncoated controls. The functionalized surfaces for wound dressing seems to be a very useful tool for the prevention of wound microbial contamination on viable tissues.

  16. Kinetic Theories for Biofilms (Preprint)

    DTIC Science & Technology

    2011-01-01

    2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Kinetic Theories for Biofilms 5a. CONTRACT NUMBER 5b...binary complex fluids to develop a set of hydrodynamic models for the two-phase mixture of biofilms and solvent (water). It is aimed to model...kinetics along with the intrinsic molecular elasticity of the EPS network strand modeled as an elastic dumbbell. This theory is valid in both the biofilm

  17. Effects of short-chain fatty acids on Actinomyces naeslundii biofilm formation.

    PubMed

    Yoneda, S; Kawarai, T; Narisawa, N; Tuna, E B; Sato, N; Tsugane, T; Saeki, Y; Ochiai, K; Senpuku, H

    2013-10-01

    Actinomyces naeslundii is an early colonizer and has important roles in the development of the oral biofilm. Short-chain fatty acids (SCFA) are secreted extracellularly as a product of metabolism by gram-negative anaerobes, e.g. Porphyromonas gingivalis and Fusobacterium nucleatum; and the SCFA may affect biofilm development with interaction between A. naeslundii and gram-negative bacteria. Our aim was to investigate the effects of SCFA on biofilm formation by A. naeslundii and to determine the mechanism. We used the biofilm formation assay in 96-well microtiter plates in tryptic soy broth without dextrose and with 0.25% sucrose using safranin stain of the biofilm monitoring 492 nm absorbance. To determine the mechanism by SCFA, the production of chaperones and stress-response proteins (GrpE and GroEL) in biofilm formation was examined using Western blot fluorescence activity with GrpE and GroEL antibodies. Adding butyric acid (6.25 mm) 0, 6 and 10 h after beginning culture significantly increased biofilm formation by A. naeslundii, and upregulation was observed at 16 h. Upregulation was also observed using appropriate concentrations of other SCFA. In the upregulated biofilm, production of GrpE and GroEL was higher where membrane-damaged or dead cells were also observed. The upregulated biofilm was significantly reduced by addition of anti-GroEL antibody. The data suggest biofilm formation by A. naeslundii was upregulated dependent on the production of stress proteins, and addition of SCFA increased membrane-damaged or dead cells. Production of GroEL may physically play an important role in biofilm development. 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

  18. Competitive Interactions between C. albicans, C. glabrata and C. krusei during Biofilm Formation and Development of Experimental Candidiasis.

    PubMed

    Rossoni, Rodnei Dennis; Barbosa, Júnia Oliveira; Vilela, Simone Furgeri Godinho; dos Santos, Jéssica Diane; de Barros, Patrícia Pimentel; Prata, Márcia Cristina de Azevedo; Anbinder, Ana Lia; Fuchs, Beth Burgwyn; Jorge, Antonio Olavo Cardoso; Mylonakis, Eleftherios; Junqueira, Juliana Campos

    2015-01-01

    In this study, we evaluated the interactions between Candida albicans, Candida krusei and Candida glabrata in mixed infections. Initially, these interactions were studied in biofilms formed in vitro. CFU/mL values of C. albicans were lower in mixed biofilms when compared to the single biofilms, verifying 77% and 89% of C. albicans reduction when this species was associated with C. glabrata and C. krusei, respectively. After that, we expanded this study for in vivo host models of experimental candidiasis. G. mellonella larvae were inoculated with monotypic and heterotypic Candida suspensions for analysis of survival rate and quantification of fungal cells in the haemolymph. In the groups with single infections, 100% of the larvae died within 18 h after infection with C. albicans. However, interaction groups achieved 100% mortality after 72 h of infection by C. albicans-C. glabrata and 96 h of infection by C. albicans-C. krusei. C. albicans CFU/mL values from larvae hemolymph were lower in the interacting groups compared with the monoespecies group after 12 h of infection. In addition, immunosuppressed mice were also inoculated with monotypic and heterotypic microbial suspensions to induce oral candidiasis. C. albicans CFU/mL values recovered from oral cavity of mice were higher in the group with single infection by C. albicans than the groups with mixed infections by C. albicans-C. glabrata and C. albicans-C. krusei. Moreover, the group with single infection by C. albicans had a higher degree of hyphae and epithelial changes in the tongue dorsum than the groups with mixed infections. We concluded that single infections by C. albicans were more harmful for animal models than mixed infections with non-albicans species, suggesting that C. albicans establish competitive interactions with C. krusei and C. glabrata during biofilm formation and development of experimental candidiasis.

  19. Development of a pilot-scale 1 for Legionella elimination in biofilm in hot water network: heat shock treatment evaluation.

    PubMed

    Farhat, M; Trouilhé, M-C; Briand, E; Moletta-Denat, M; Robine, E; Frère, J

    2010-03-01

    (i) To develop an analytical tool in order to evaluate the effectiveness of anti-Legionella treatment in biofilm and (ii) study the fate of Legionella populations in water and biofilm after applying a heat shock treatment. A pilot-scale unit simulating a hot water system was built and designed by the Scientific and Technical Building Centre (CSTB, France). At the end of the contamination period, a stable cultivable Legionella spp. concentration of 5x10(5) CFU l(-1) was obtained. Two heat shock treatments (70 degrees C for 30 min) were applied. The results showed that the first treatment had a transitional effect on the abatement of Legionella concentrations, while the second treatment had no detectable effect on Legionella populations in water and biofilm. The DAPI (4',6'-diamidino-2-phenylindole), Legionella PCR and GVPC (glycocolle vancomycin pyrophosphate cycloheximide) counts measured in the dead leg water of the Test Loop were 1, 2 and 2 log units higher than results found in the Test Loop water. Moreover, Legionella spp. count in tap water was about 10(4) GU l(-1). These analyses revealed that they are responsible for the rapid recolonization as well as the uncomplete destroyed biofilm. In addition, a resistance test was conducted and showed that Legionella in the second heat shock treatment was not thermo-resistant but thermo-acclimated. Thermal disinfection does not seem to be efficient enough to eliminate Legionella when it is used as a curative treatment. This work could help water managers for a better management of water network and for a better control of Legionella.

  20. Arginine-Ornithine Antiporter ArcD Controls Arginine Metabolism and Interspecies Biofilm Development of Streptococcus gordonii*♦

    PubMed Central

    Sakanaka, Akito; Kuboniwa, Masae; Takeuchi, Hiroki; Hashino, Ei; Amano, Atsuo

    2015-01-01

    Arginine is utilized by the oral inhabitant Streptococcus gordonii as a substrate of the arginine deiminase system (ADS), eventually producing ATP and NH3, the latter of which is responsible for microbial resistance to pH stress. S. gordonii expresses a putative arginine-ornithine antiporter (ArcD) whose function has not been investigated despite relevance to the ADS and potential influence on inter-bacterial communication with periodontal pathogens that utilize amino acids as a main energy source. Here, we generated an S. gordonii ΔarcD mutant to explore the role of ArcD in physiological homeostasis and bacterial cross-feeding. First, we confirmed that S. gordonii ArcD plays crucial roles for mediating arginine uptake and promoting bacterial growth, particularly under arginine-limited conditions. Next, metabolomic profiling and transcriptional analysis of the ΔarcD mutant revealed that deletion of this gene caused intracellular accumulation of ornithine leading to malfunction of the ADS and suppression of de novo arginine biosynthesis. The mutant strain also showed increased susceptibility to low pH stress due to reduced production of ammonia. Finally, accumulation of Fusobacterium nucleatum was found to be significantly decreased in biofilm formed by the ΔarcD mutant as compared with the wild-type strain, although ornithine supplementation restored fusobacterium biovolume in dual-species biofilms with the ΔarcD mutant and also enhanced single species biofilm development by F. nucleatum. Our results are the first direct evidence showing that S. gordonii ArcD modulates not only alkali and energy production but also interspecies interaction with F. nucleatum, thus initiating a middle stage of periodontopathic biofilm formation, by metabolic cross-feeding. PMID:26085091

  1. Competitive Interactions between C. albicans, C. glabrata and C. krusei during Biofilm Formation and Development of Experimental Candidiasis

    PubMed Central

    Rossoni, Rodnei Dennis; Barbosa, Júnia Oliveira; Vilela, Simone Furgeri Godinho; dos Santos, Jéssica Diane; de Barros, Patrícia Pimentel; Prata, Márcia Cristina de Azevedo; Anbinder, Ana Lia; Fuchs, Beth Burgwyn; Jorge, Antonio Olavo Cardoso; Mylonakis, Eleftherios; Junqueira, Juliana Campos

    2015-01-01

    In this study, we evaluated the interactions between Candida albicans, Candida krusei and Candida glabrata in mixed infections. Initially, these interactions were studied in biofilms formed in vitro. CFU/mL values of C. albicans were lower in mixed biofilms when compared to the single biofilms, verifying 77% and 89% of C. albicans reduction when this species was associated with C. glabrata and C. krusei, respectively. After that, we expanded this study for in vivo host models of experimental candidiasis. G. mellonella larvae were inoculated with monotypic and heterotypic Candida suspensions for analysis of survival rate and quantification of fungal cells in the haemolymph. In the groups with single infections, 100% of the larvae died within 18 h after infection with C. albicans. However, interaction groups achieved 100% mortality after 72 h of infection by C. albicans-C. glabrata and 96 h of infection by C. albicans-C. krusei. C. albicans CFU/mL values from larvae hemolymph were lower in the interacting groups compared with the monoespecies group after 12 h of infection. In addition, immunosuppressed mice were also inoculated with monotypic and heterotypic microbial suspensions to induce oral candidiasis. C. albicans CFU/mL values recovered from oral cavity of mice were higher in the group with single infection by C. albicans than the groups with mixed infections by C. albicans-C. glabrata and C. albicans-C. krusei. Moreover, the group with single infection by C. albicans had a higher degree of hyphae and epithelial changes in the tongue dorsum than the groups with mixed infections. We concluded that single infections by C. albicans were more harmful for animal models than mixed infections with non-albicans species, suggesting that C. albicans establish competitive interactions with C. krusei and C. glabrata during biofilm formation and development of experimental candidiasis. PMID:26146832

  2. New Technologies for Studying Biofilms

    PubMed Central

    FRANKLIN, MICHAEL J.; CHANG, CONNIE; AKIYAMA, TATSUYA; BOTHNER, BRIAN

    2016-01-01

    Bacteria have traditionally been studied as single-cell organisms. In laboratory settings, aerobic bacteria are usually cultured in aerated flasks, where the cells are considered essentially homogenous. However, in many natural environments, bacteria and other microorganisms grow in mixed communities, often associated with surfaces. Biofilms are comprised of surface-associated microorganisms, their extracellular matrix material, and environmental chemicals that have adsorbed to the bacteria or their matrix material. While this definition of a biofilm is fairly simple, biofilms are complex and dynamic. Our understanding of the activities of individual biofilm cells and whole biofilm systems has developed rapidly, due in part to advances in molecular, analytical, and imaging tools and the miniaturization of tools designed to characterize biofilms at the enzyme level, cellular level, and systems level. PMID:26350329

  3. Extracellular DNA Contributes to Dental Biofilm Stability.

    PubMed

    Schlafer, Sebastian; Meyer, Rikke L; Dige, Irene; Regina, Viduthalai R

    2017-01-01

    Extracellular DNA (eDNA) is a major matrix component of many bacterial biofilms. While the presence of eDNA and its role in biofilm stability have been demonstrated for several laboratory biofilms of oral bacteria, there is no data available on the presence and function of eDNA in in vivo grown dental biofilms. This study aimed to determine whether eDNA was part of the matrix in biofilms grown in situ in the absence of sucrose and whether treatment with DNase dispersed biofilms grown for 2.5, 5, 7.5, 16.5, or 24 h. Three hundred biofilms from 10 study participants were collected and treated with either DNase or heat-inactivated DNase for 1 h. The bacterial biovolume was determined with digital image analysis. Staining with TOTO®-1 allowed visualization of eDNA both on bacterial cell surfaces and, with a cloud-like appearance, in the intercellular space. DNase treatment strongly reduced the amount of biofilm in very early stages of growth (up to 7.5 h), but the treatment effect decreased with increasing biofilm age. This study proves the involvement of eDNA in dental biofilm formation and its importance for biofilm stability in the earliest stages. Further research is required to uncover the interplay of eDNA and other matrix components and to explore the therapeutic potential of DNase treatment for biofilm control. © 2017 S. Karger AG, Basel.

  4. Activity of essential oil-based microemulsions against Staphylococcus aureus biofilms developed on stainless steel surface in different culture media and growth conditions.

    PubMed

    Campana, Raffaella; Casettari, Luca; Fagioli, Laura; Cespi, Marco; Bonacucina, Giulia; Baffone, Wally

    2017-01-16

    Food safety is a fundamental concern for both consumers and the food industry, especially as the numbers of reported cases of food-associated infections continue to increase. Industrial surfaces can provide a suitable substrate for the development and persistence of bacterial organized in biofilms that represent a potential source of food contamination. The negative consumer perception of chemical disinfectants has shifted the attention to natural substances, such as plant extracts. The aim of this study was to investigate the possibility of using the essential oils (EOs) in the fight against S. aureus biofilms. First, the Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), Minimum Biofilm Inhibitory Concentration (MBIC), Minimum Biofilm Eradication Concentration (MBEC) of eleven EOs against S. aureus were determined. Cinnamomum cassia and Salvia officinalis EOs showed the greatest antibacterial properties with 1.25% MIC and MBC, 1.25% MBIC and 2.5% MBEC respectively. Gas Chromatography/Mass Spectrometry analysis revealed cinnamaldehyde (82.66%) and methoxy cinnamaldehyde (10.12%) as the most abundant substances of C. cassia, while cis-thujone (23.90%), camphor (19.22%) and 1.8-cineole (10.62%) of S. officinalis. Three different microemulsions, formulated with C. cassia, S. officinalis or both, were finally tested against S. aureus biofilms in different culture media and growth conditions, causing a >3 logarithmic reductions in S. aureus 24h-old biofilms and desiccated biofilms, and up to 68% of biofilm removal after 90min of exposure. The obtained data suggest the potential use of EOs, alone or in combination, for the formulation of sanitizers as alternative or in support in the disinfection of contaminated surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. S-aryl-L-cysteine sulphoxides and related organosulphur compounds alter oral biofilm development and AI-2-based cell-cell communication.

    PubMed

    Kasper, S H; Samarian, D; Jadhav, A P; Rickard, A H; Musah, R A; Cady, N C

    2014-11-01

    To design and synthesize a library of structurally related, small molecules related to homologues of compounds produced by the plant Petiveria alliacea and determine their ability to interfere with AI-2 cell-cell communication and biofilm formation by oral bacteria. Many human diseases are associated with persistent bacterial biofilms. Oral biofilms (dental plaque) are problematic as they are often associated with tooth decay, periodontal disease and systemic disorders such as heart disease and diabetes. Using a microplate-based approach, a bio-inspired small molecule library was screened for anti-biofilm activity against the oral species Streptococcus mutans UA159, Streptococcus sanguis 10556 and Actinomyces oris MG1. To complement the static screen, a flow-based BioFlux microfluidic system screen was also performed under conditions representative of the human oral cavity. Several compounds were found to display biofilm inhibitory activity in all three of the oral bacteria tested. These compounds were also shown to inhibit bioluminescence by Vibrio harveyi and were thus inferred to be quorum sensing (QS) inhibitors. Due to the structural similarity of these compounds to each other, and to key molecules in AI-2 biosynthetic pathways, we propose that these molecules potentially reduce biofilm formation via antagonism of QS or QS-related pathways. This study highlights the potential for a non-antimicrobial-based strategy, focused on AI-2 cell-cell signalling, to control the development of dental plaque. Considering that many bacterial species use AI-2 cell-cell signalling, as well as the increased concern of the use of antimicrobials in healthcare products, such an anti-biofilm approach could also be used to control biofilms in environments beyond the human oral cavity. © 2014 The Society for Applied Microbiology.

  6. Pb and Cd binding to natural freshwater biofilms developed at different pH: the important role of culture pH.

    PubMed

    Hua, Xiuyi; Dong, Deming; Ding, Xiaoou; Yang, Fan; Jiang, Xu; Guo, Zhiyong

    2013-01-01

    The effects of solution pH on adsorption of trace metals to different types of natural aquatic solid materials have been studied extensively, but few studies have been carried out to investigate the effect of pH at which the solid materials were formed on the adsorption. The purpose of present study is to examine this effect of culture pH on metal adsorption to natural freshwater biofilms. The adsorption of Pb and Cd to biofilms which were developed at different culture pH values (ranging from 6.5 to 9.0) was measured at the same adsorption pH value (6.5). The culture pH had considerable effects on both composition and metal adsorption ability of the biofilms. Higher culture pH usually promoted the accumulation of organic material and Fe oxides in the biofilms. The culture pH also affected the quantity and species of algae in the biofilms. The adsorption of Pb and Cd to the biofilms generally increased with the increase of culture pH. This increase was minor at lower pH range and significant at higher pH range and was more remarkable for Cd adsorption than for Pb adsorption. The notable contribution of organic material to the adsorption at higher culture pH values was also observed. The profound impacts of culture pH on adsorption behavior of biofilms mainly resulted from the variation of total contents of the biofilm components and were also affected by the alteration of composition and properties of the components.

  7. Development of a poly (ether urethane) system for the controlled release of two novel anti-biofilm agents based on gallium or zinc and its efficacy to prevent bacterial biofilm formation

    PubMed Central

    Ma, Hongyan; Darmawan, Erica T.; Zhang, Min; Zhange, Lei; Bryers, James D.

    2013-01-01

    Traditional antibiotic therapy to control medical device-based infections typically fails to clear biofilm infections and may even promote the evolution of antibiotic resistant species. We report here the development of two novel antibiofilm agents; gallium (Ga) or zinc (Zn) complexed with protoporphyrin IX (PP) or mesoprotoporphyrin IX (MP) that are both highly effective in negating suspended bacterial growth and biofilm formation. These chelated gallium or zinc complexes act as iron siderophore analogs, surplanting the natural iron uptake of most bacteria. Poly (ether urethane) (PEU; Biospan®) polymer films were fabricated for the controlled sustained release of the Ga- or Zn-complexes, using an incorporated pore-forming agent, poly (ethylene glycol) (PEG). An optimum formulation containing 8% PEG (MW=1450) in the PEU polymer effectively sustained drug release for at least 3 months. All drug-loaded PEU films exhibited in vitro ≥ 90% reduction of Gram-positive (Staphylococcus epidermidis) and Gram-negative (Pseudomonas aeruginosa) bacteria in both suspended and biofilm culture versus the negative control PEU films releasing nothing. Cytotoxicity and endotoxin evaluation demonstrated no adverse responses to the Ga- or Zn-complex releasing PEU films. Finally, in vivo studies further substantiate the anti-biofilm efficacy of the PEU films releasing Ga- or Zn- complexes. PMID:24140747

  8. Development of a poly(ether urethane) system for the controlled release of two novel anti-biofilm agents based on gallium or zinc and its efficacy to prevent bacterial biofilm formation.

    PubMed

    Ma, Hongyan; Darmawan, Erica T; Zhang, Min; Zhang, Lei; Bryers, James D

    2013-12-28

    Traditional antibiotic therapy to control medical device-based infections typically fails to clear biofilm infections and may even promote the evolution of antibiotic resistant species. We report here the development of two novel antibiofilm agents; gallium (Ga) or zinc (Zn) complexed with protoporphyrin IX (PP) or mesoprotoporphyrin IX (MP) that are both highly effective in negating suspended bacterial growth and biofilm formation. These chelated gallium or zinc complexes act as iron siderophore analogs, supplanting the natural iron uptake of most bacteria. Poly (ether urethane) (PEU; Biospan®) polymer films were fabricated for the controlled sustained release of the Ga- or Zn-complexes, using an incorporated pore-forming agent, poly(ethylene glycol) (PEG). An optimum formulation containing 8% PEG (MW=1450) in the PEU polymer effectively sustained drug release for at least 3months. All drug-loaded PEU films exhibited in vitro ≥ 90% reduction of Gram-positive (Staphylococcus epidermidis) and Gram-negative (Pseudomonas aeruginosa) bacteria in both suspended and biofilm culture versus the negative control PEU films releasing nothing. Cytotoxicity and endotoxin evaluation demonstrated no adverse responses to the Ga- or Zn-complex releasing PEU films. Finally, in vivo studies further substantiate the anti-biofilm efficacy of the PEU films releasing Ga- or Zn- complexes. © 2013.

  9. Development of a calibration protocol and identification of the most sensitive parameters for the particulate biofilm models used in biological wastewater treatment.

    PubMed

    Eldyasti, Ahmed; Nakhla, George; Zhu, Jesse

    2012-05-01

    Biofilm models are valuable tools for process engineers to simulate biological wastewater treatment. In order to enhance the use of biofilm models implemented in contemporary simulation software, model calibration is both necessary and helpful. The aim of this work was to develop a calibration protocol of the particulate biofilm model with a help of the sensitivity analysis of the most important parameters in the biofilm model implemented in BioWin® and verify the predictability of the calibration protocol. A case study of a circulating fluidized bed bioreactor (CFBBR) system used for biological nutrient removal (BNR) with a fluidized bed respirometric study of the biofilm stoichiometry and kinetics was used to verify and validate the proposed calibration protocol. Applying the five stages of the biofilm calibration procedures enhanced the applicability of BioWin®, which was capable of predicting most of the performance parameters with an average percentage error (APE) of 0-20%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Development of Mesorhizobium ciceri-Based Biofilms and Analyses of Their Antifungal and Plant Growth Promoting Activity in Chickpea Challenged by Fusarium Wilt.

    PubMed

    Das, Krishnashis; Rajawat, Mahendra Vikram Singh; Saxena, Anil Kumar; Prasanna, Radha

    2017-03-01

    Biofilmed biofertilizers have emerged as a new improved inoculant technology to provide efficient nutrient and pest management and sustain soil fertility. In this investigation, development of a Trichoderma viride - Mesorhizobium ciceri biofilmed inoculant was undertaken, which we hypothesized, would possess more effective biological nitrogen fixing ability and plant growth promoting properties. As a novel attempt, we selected Mesorhizobium ciceri spp. with good antifungal attributes with the assumption that such inoculants could also serve as biocontrol agents. These biofilms exhibited significant enhancement in several plant growth promoting attributes, including 13-21 % increase in seed germination, production of ammonia, IAA and more than onefold to twofold enhancement in phosphate solubilisation, when compared to their individual partners. Enhancement of 10-11 % in antifungal activity against Fusarium oxysporum f. sp. ciceri was also recorded, over the respective M. ciceri counterparts. The effect of biofilms and the M. ciceri cultures individual on growth parameters of chickpea under pathogen challenged soil illustrated that the biofilms performed at par with the M. ciceri strains for most plant biometrical and disease related attributes. Elicitation of defense related enzymes like l-phenylalanine ammonia lyase, peroxidase and polyphenol oxidase was higher in M. ciceri /biofilm treated plants as compared to uninoculated plants under pathogen challenged soil. Further work on the signalling mechanisms among the partners and their tripartite interactions with host plant is envisaged in future studies.

  11. Influence of Disinfectant Residual on Biofilm Development, Microbial Ecology, and Pathogen Fate and Transport in Drinking Water Infrastructure

    EPA Science Inventory

    This project focuses on providing basic data to bound risk estimates resulting from pathogens associated with pipe biofilms. Researchers will compare biofilm pathogen effects under two different disinfection scenarios (free chlorine or chloramines) for a conventionally treated s...

  12. [In vitro activity of matrine against Candida albicans biofilms].

    PubMed

    Wu, Lan; Zhou, Zeng-tong; Zhou, Yong-mei; Wang, Hai-yan; Shi, Lin-jun

    2009-08-01

    To establish a model of Candida albicans biofilms and to examine the effect of matrine on C.albicans biofilms and ultrastructure. C. albicans collection strain ATCC76615 was obtained and propagated. Biofilms were formed in 96-well microtiter plates. Antifungal susceptibility testing of C. albicans biofilms were assessed with the tetrazolium salt (XTT) reduction assay. Confocal laser scanning microscopy (CLSM) and dead/live fluorescent staining technique were combined to detect the effects of Matrine on preformed C. albican biofilms' composition and ultrastructure. Matrine was active against different growth stages (early,middle,mature) of biofilms; The bioactivity and drug-resistance of C. albican biofilm increased with culturing time. CLSM showed that C. albicans biofilms were inhibited and growth were predominantly composed of yeast cells and pseudohyphae. This study demonstrates that Matrine has potent activity against C.albicans biofilms in vitro and potential therapeutic implication for biofilm-associated candidal infections.

  13. Early childhood development in deprived urban settlements.

    PubMed

    Nair, M K C; Radhakrishnan, S Rekha

    2004-03-01

    Poverty, the root cause of the existence of slums or settlement colonies in urban areas has a great impact on almost all aspects of life of the urban poor, especially the all-round development of children. Examples from countries, across the globe provide evidence of improved early child development, made possible through integrated slum improvement programs, are few in numbers. The observed 2.5% prevalence of developmental delay in the less than 2 year olds of deprived urban settlements, the presence of risk factors for developmental delay like low birth weight, birth asphyxia, coupled with poor environment of home and alternate child care services, highlights the need for simple cost effective community model for promoting early child development. This review on early child development focuses on the developmental status of children in the deprived urban settlements, who are yet to be on the priority list of Governments and international agencies working for the welfare of children, the contributory nature-nurture factors and replicable working models like infant stimulation, early detection of developmental delay in infancy itself, developmental screening of toddlers, skill assessment for preschool children, school readiness programs, identification of mental sub-normality and primary education enhancement program for primary school children. Further, the review probes feasible intervention strategies through community owned early child care and development facilities, utilizing existing programs like ICDS, Urban Basic Services and by initiating services like Development Friendly Well Baby Clinics, Community Extension services, Child Development Referral Units at district hospitals and involving trained manpower like anganwadi/creche workers, public health nurses and developmental therapists. With the decentralization process the local self-government at municipalities and city corporations are financially equipped to be the prime movers to initiate, monitor and

  14. Early Brain Development Research Review and Update

    ERIC Educational Resources Information Center

    Schiller, Pam

    2010-01-01

    Thanks to imaging technology used in neurobiology, people have access to useful and critical information regarding the development of the human brain. This information allows them to become much more effective in helping children in their early development. In fact, when people base their practices on the findings from medical science research,…

  15. Catabolite Repression of Escherichia coli Biofilm Formation

    PubMed Central

    Jackson, Debra W.; Simecka, Jerry W.; Romeo, Tony

    2002-01-01

    Biofilm formation was repressed by glucose in several species of Enterobacteriaceae. In Escherichia coli, this effect was mediated at least in part by cyclic AMP (cAMP)-cAMP receptor protein. A temporal role for cAMP in biofilm development was indicated by the finding that glucose addition after ∼24 h failed to repress and generally activated biofilm formation. PMID:12029060

  16. Modified wound dressing with phyto-nanostructured coating to prevent staphylococcal and pseudomonal biofilm development

    PubMed Central

    2012-01-01

    This paper reports a newly fabricated nanophyto-modified wound dressing with microbicidal and anti-adherence properties. Nanofluid-based magnetite doped with eugenol or limonene was used to fabricate modified wound dressings. Nanostructure coated materials were characterized by TEM, XRD, and FT-IR. For the quantitative measurement of biofilm-embedded microbial cells, a culture-based method for viable cell count was used. The optimized textile dressing samples proved to be more resistant to staphylococcal and pseudomonal colonization and biofilm formation compared to the uncoated controls. The functionalized surfaces for wound dressing seems to be a very useful tool for the prevention of wound microbial contamination on viable tissues. PMID:23272823

  17. Biofilms in periprosthetic orthopedic infections

    PubMed Central

    McConoughey, Stephen J; Howlin, Rob; Granger, Jeff F; Manring, Maurice M; Calhoun, Jason H; Shirtlif, Mark; Kathju, Sandeep; Stoodley, Paul

    2015-01-01

    As the number of total joint arthroplasty and internal fixation procedures continues to rise, the threat of infection following surgery has significant clinical implications. These infections may have highly morbid consequences to patients, who often endure additional surgeries and lengthy exposures to systemic antibiotics, neither of which are guaranteed to resolve the infection. Of particular concern is the threat of bacterial biofilm development, since biofilm-mediated infections are difficult to diagnose and effective treatments are lacking. Developing therapeutic strategies have targeted mechanisms of biofilm formation and the means by which these bacteria communicate with each other to take on specialized roles such as persister cells within the biofilm. In addition, prevention of infection through novel coatings for prostheses and the local delivery of high concentrations of antibiotics by absorbable carriers has shown promise in laboratory and animal studies. Biofilm development, especially in an arthoplasty environment, and future diagnostic and treatment options are discussed. PMID:25302955

  18. Biofilm Producing Salmonella Typhi: Chronic Colonization and Development of Gallbladder Cancer

    PubMed Central

    Cavallo, Ilaria; Pontone, Martina; Toma, Luigi; Ensoli, Fabrizio

    2017-01-01

    Salmonella enterica subspecies enterica serovar Typhi is the aetiological agent of typhoid or enteric fever. In a subset of individuals, S. Typhi colonizes the gallbladder causing an asymptomatic chronic infection. Nonetheless, these asymptomatic carriers provide a reservoir for further spreading of the disease. Epidemiological studies performed in regions where S. Typhi is endemic, revealed that the majority of chronically infected carriers also harbour gallstones, which in turn, have been indicated as a primary predisposing factor for the onset of gallbladder cancer (GC). It is now well recognised, that S. Typhi produces a typhoid toxin with a carcinogenic potential, that induces DNA damage and cell cycle alterations in intoxicated cells. In addition, biofilm production by S. Typhi may represent a key factor for the promotion of a persistent infection in the gallbladder, thus sustaining a chronic local inflammatory response and exposing the epithelium to repeated damage caused by carcinogenic toxins. This review aims to highlight the putative connection between the chronic colonization by highly pathogenic strains of S. Typhi capable of combining biofilm and toxin production and the onset of GC. Considering the high risk of GC associated with the asymptomatic carrier status, the rapid identification and profiling of biofilm production by S. Typhi strains would be key for effective therapeutic management and cancer prevention. PMID:28858232

  19. Enamel Carious Lesion Development in Response to Sucrose and Fluoride Concentrations and to Time of Biofilm Formation: An Artificial-Mouth Study

    PubMed Central

    Arthur, Rodrigo Alex; Kohara, Eduardo Kazuo; Waeiss, Robert Aaron; Eckert, George J.; Zero, Domenick; Ando, Masatoshi

    2015-01-01

    The aim of this study was to evaluate both sucrose and fluoride concentrations and time of biofilm formation on enamel carious lesions induced by an in vitro artificial-mouth caries model. For Study 1, biofilms formed by streptococci and lactobacilli were grown on the surface of human enamel slabs and exposed to artificial saliva containing 0.50 or 0.75 ppmF (22.5 h/d) and broth containing 3 or 5% sucrose (30 min; 3x/d) over 5 d. In Study 2, biofilms were grown in the presence of 0.75 ppmF and 3% sucrose over 3 and 9 days. Counts of viable cells on biofilms, lesion depth (LD), and the integrated mineral loss (IML) on enamel specimens were assessed at the end of the tested conditions. Counts of total viable cells and L. casei were affected by sucrose and fluoride concentrations as well as by time of biofilm formation. Enamel carious lesions were shallower and IML was lower in the presence of 0.75 ppmF than in the presence of 0.50 ppmF (P < 0.005). No significant effect of sucrose concentrations was found with respect to LD and IML (P > 0.25). Additionally, deeper lesions and higher IML were found after 9 d of biofilm formation (P < 0.005). Distinct sucrose concentrations did not affect enamel carious lesion development. The severity of enamel demineralization was reduced by the presence of the higher fluoride concentration. Additionally, an increase in the time of biofilm formation produced greater demineralization. Our results also suggest that the present model is suitable for studying aspects related to caries lesion development. PMID:25664342

  20. Tolerance development in Listeria monocytogenes-Escherichia coli dual-species biofilms after sublethal exposures to pronase-benzalkonium chloride combined treatments.

    PubMed

    Rodríguez-López, Pedro; Cabo, Marta López

    2017-10-01

    This study was designed to assess the effects that sublethal exposures to pronase (PRN) and benzalkonium chloride (BAC) combined treatments have on Listeria monocytogenes-Escherichia coli dual-species biofilms grown on stainless steel in terms of tolerance development (TD) to these compounds. Additionally, fluorescence microscopy was used to observe the changes of the biofilm structure. PRN-BAC exposure was carried out using three different approaches and TD was evaluated treating biofilms with a final 100 μg/ml PRN followed by 50 μg/ml BAC combined treatment. Results showed that exposure to PRN-BAC significantly decreased the number of adhered L. monocytogenes (P < 0.05), while E. coli counts remained generally unaltered. It was also demonstrated that the incorporation of recovery periods during sublethal exposures increased the tolerance of both species of the mixed biofilm to the final PRN-BAC treatment. Moreover, control biofilms became more resistant to PRN-BAC if longer incubation periods were used. Regardless of the treatment used, log reduction values were generally lower in L. monocytogenes compared to E. coli. Additionally, microscopy images showed an altered morphology produced by sublethal PRN-BAC in exposed L. monocytogenes-E. coli dual-species biofilms compared to control samples. Results also demonstrated that L. monocytogenes-E. coli dual-species biofilms are able to develop tolerance to PRN-BAC combined treatments depending on way they have been previously exposed. Moreover, they suggest that the generation of bacterial tolerance should be included as a parameter for sanitation procedures design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Plant Biofilm Inhibitors to Discover Biofilm Genes

    DTIC Science & Technology

    2011-04-08

    REPORT Final Report for Plant Biofilm Inhibitors to Discover Biofilm Genes 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: To control biofilms , we have...synthesized the natural biofilm inhibitor (5Z)-4-bromo-5-(bromomethylene) -3-butyl-2(5H)-furanone from the red alga Delisea pulchra and determined that...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS biofilms , biofilm inhibitors Thomas K. Wood Texas Engineering

  2. Rapid identification of bacterial biofilms and biofilm wound models using a multichannel nanosensor.

    PubMed

    Li, Xiaoning; Kong, Hao; Mout, Rubul; Saha, Krishnendu; Moyano, Daniel F; Robinson, Sandra M; Rana, Subinoy; Zhang, Xinrong; Riley, Margaret A; Rotello, Vincent M

    2014-12-23

    Identification of infectious bacteria responsible for biofilm-associated infections is challenging due to the complex and heterogeneous biofilm matrix. To address this issue and minimize the impact of heterogeneity on biofilm identification, we developed a gold nanoparticle (AuNP)-based multichannel sensor to detect and identify biofilms based on their physicochemical properties. Our results showed that the sensor can discriminate six bacterial biofilms including two composed of uropathogenic bacteria. The capability of the sensor was further demonstrated through discrimination of biofilms in a mixed bacteria/mammalian cell in vitro wound model.

  3. Microbiota diversity and gene expression dynamics in human oral biofilms

    PubMed Central

    2014-01-01

    Background Micro-organisms inhabiting teeth surfaces grow on biofilms where a specific and complex succession of bacteria has been described by co-aggregation tests and DNA-based studies. Although the composition of oral biofilms is well established, the active portion of the bacterial community and the patterns of gene expression in vivo have not been studied. Results Using RNA-sequencing technologies, we present the first metatranscriptomic study of human dental plaque, performed by two different approaches: (1) A short-reads, high-coverage approach by Illumina sequencing to characterize the gene activity repertoire of the microbial community during biofilm development; (2) A long-reads, lower-coverage approach by pyrosequencing to determine the taxonomic identity of the active microbiome before and after a meal ingestion. The high-coverage approach allowed us to analyze over 398 million reads, revealing that microbial communities are individual-specific and no bacterial species was detected as key player at any time during biofilm formation. We could identify some gene expression patterns characteristic for early and mature oral biofilms. The transcriptomic profile of several adhesion genes was confirmed through qPCR by measuring expression of fimbriae-associated genes. In addition to the specific set of gene functions overexpressed in early and mature oral biofilms, as detected through the short-reads dataset, the long-reads approach detected specific changes when comparing the metatranscriptome of the same individual before and after a meal, which can narrow down the list of organisms responsible for acid production and therefore potentially involved in dental caries. Conclusions The bacteria changing activity during biofilm formation and after meal ingestion were person-specific. Interestingly, some individuals showed extreme homeostasis with virtually no changes in the active bacterial population after food ingestion, suggesting the presence of a microbial

  4. Microbiota diversity and gene expression dynamics in human oral biofilms.

    PubMed

    Benítez-Páez, Alfonso; Belda-Ferre, Pedro; Simón-Soro, Aurea; Mira, Alex

    2014-04-27

    Micro-organisms inhabiting teeth surfaces grow on biofilms where a specific and complex succession of bacteria has been described by co-aggregation tests and DNA-based studies. Although the composition of oral biofilms is well established, the active portion of the bacterial community and the patterns of gene expression in vivo have not been studied. Using RNA-sequencing technologies, we present the first metatranscriptomic study of human dental plaque, performed by two different approaches: (1) A short-reads, high-coverage approach by Illumina sequencing to characterize the gene activity repertoire of the microbial community during biofilm development; (2) A long-reads, lower-coverage approach by pyrosequencing to determine the taxonomic identity of the active microbiome before and after a meal ingestion. The high-coverage approach allowed us to analyze over 398 million reads, revealing that microbial communities are individual-specific and no bacterial species was detected as key player at any time during biofilm formation. We could identify some gene expression patterns characteristic for early and mature oral biofilms. The transcriptomic profile of several adhesion genes was confirmed through qPCR by measuring expression of fimbriae-associated genes. In addition to the specific set of gene functions overexpressed in early and mature oral biofilms, as detected through the short-reads dataset, the long-reads approach detected specific changes when comparing the metatranscriptome of the same individual before and after a meal, which can narrow down the list of organisms responsible for acid production and therefore potentially involved in dental caries. The bacteria changing activity during biofilm formation and after meal ingestion were person-specific. Interestingly, some individuals showed extreme homeostasis with virtually no changes in the active bacterial population after food ingestion, suggesting the presence of a microbial community which could be

  5. Inactivation of biofilm bacteria.

    PubMed Central

    LeChevallier, M W; Cawthon, C D; Lee, R G

    1988-01-01

    The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria. Images PMID:2849380

  6. Discovering Biofilms: Inquiry-Based Activities for the Classroom

    ERIC Educational Resources Information Center

    Redelman, Carly V.; Marrs, Kathleen; Anderson, Gregory G.

    2012-01-01

    In nature, bacteria exist in and adapt to different environments by forming microbial communities called "biofilms." We propose simple, inquiry-based laboratory exercises utilizing a biofilm formation assay, which allows controlled biofilm growth. Students will be able to qualitatively assess biofilm growth via staining. Recently, we developed a…

  7. Early executive function predicts reasoning development.

    PubMed

    Richland, Lindsey E; Burchinal, Margaret R

    2013-01-01

    Analogical reasoning is a core cognitive skill that distinguishes humans from all other species and contributes to general fluid intelligence, creativity, and adaptive learning capacities. Yet its origins are not well understood. In the study reported here, we analyzed large-scale longitudinal data from the Study of Early Child Care and Youth Development to test predictors of growth in analogical-reasoning skill from third grade to adolescence. Our results suggest an integrative resolution to the theoretical debate regarding contributory factors arising from smaller-scale, cross-sectional experiments on analogy development. Children with greater executive-function skills (both composite and inhibitory control) and vocabulary knowledge in early elementary school displayed higher scores on a verbal analogies task at age 15 years, even after adjusting for key covariates. We posit that knowledge is a prerequisite to analogy performance, but strong executive-functioning resources during early childhood are related to long-term gains in fundamental reasoning skills.

  8. A novel bioassay for evaluating the efficacy of biocides to inhibit settling and early establishment of marine biofilms.

    PubMed

    Arrhenius, Åsa; Backhaus, Thomas; Hilvarsson, Annelie; Wendt, Ida; Zgrundo, Aleksandra; Blanck, Hans

    2014-10-15

    This paper presents a novel assay that allows a quick and robust assessment of the effects of biocides on the initial settling and establishment of marine photoautotrophic biofilms including the multitude of indigenous fouling organisms. Briefly, biofilms are established in the field, sampled, comminuted and re-settled on clean surfaces, after 72h chlorophyll a is measured as an integrating endpoint to reflect both settling and growth. Eight antifoulants were used to evaluate the assay. Efficacy ranking, based on EC98 values from most to least efficacious compound is: copper pyrithione>TPBP>DCOIT>tolylfluanid>zinc pyrithione>medetomidine>copper (Cu(2+)), while ecotoxicological ranking (based on EC10 values) is irgarol, copper pyrithione>zinc pyrithione>TPBP>tolylfluanid>DCOIT>copper (Cu(2+))>medetomidine. The algaecide irgarol did not cause full inhibition. Instead the inhibition leveled out at 95% effect at 30 nmoll(-)(1), a concentration that was clearly lower than for any other of the tested biocides. Copyright © 2014. Published by Elsevier Ltd.

  9. Bioecological Theory, Early Child Development and the Validation of the Population-Level Early Development Instrument

    ERIC Educational Resources Information Center

    Guhn, Martin; Goelman, Hillel

    2011-01-01

    The Early Development Instrument (EDI; Janus and Offord in "Canadian Journal of Behavioural Science" 39:1-22, 2007) project is a Canadian population-level, longitudinal research project, in which teacher ratings of Kindergarten children's early development and wellbeing are linked to health and academic achievement variables at the…

  10. A short history of microbial biofilms and biofilm infections.

    PubMed

    Høiby, Niels

    2017-04-01

    The observation of aggregated microbes surrounded by a self-produced matrix adhering to surfaces or located in tissues or secretions is old since both Leeuwenhoek and Pasteur have described the phenomenon. In environmental and technical microbiology, biofilms, 80-90 years ago, were already shown to be important for biofouling on submerged surfaces, for example, ships. The concept of biofilm infections and their importance in medicine was, however, initiated in the early 1970s by the observation of heaps of Pseudomonas aeruginosa cells in sputum and lung tissue from chronically infected cystic fibrosis patients. The term biofilm was introduced into medicine in 1985 by J. W. Costerton. During the following decades, the number of published biofilm articles and methods for studying biofilms increased rapidly and it was shown that adhering and nonadhering biofilm infections are widespread in medicine. The medical importance of biofilm infections is now generally accepted and guidelines for prophylaxis, diagnosis, and treatment have been published. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  11. Early Phonological Development: Creating an Assessment Test

    ERIC Educational Resources Information Center

    Stoel-Gammon, Carol; Williams, A. Lynn

    2013-01-01

    This paper describes a new protocol for assessing the phonological systems of two-year-olds with typical development and older children with delays in vocabulary acquisition. The test (Profiles of Early Expressive Phonological Skills ("PEEPS"), Williams & Stoel-Gammon, in preparation) differs from currently available assessments in…

  12. Early Intervention, Maternal Development and Children's Play.

    ERIC Educational Resources Information Center

    Slaughter, Diana T.

    The purposes of this longitudinal study of early intervention with 83 black mother-child dyads were (a) to test the thesis that sociocultural transmission influences childhood development in educationally significant ways, and (b) to describe the process through which such transmission can occur. Two social intervention programs were contrasted;…

  13. The Early Years: Development, Learning and Teaching.

    ERIC Educational Resources Information Center

    Boulton-Lewis, Gillian, Ed.; Catherwood, Di, Ed.

    Designed for teachers, students, caregivers, and health professionals who work with children from birth to age 8, this book provides a review of recent research and theories of development and learning in the early childhood years, with an emphasis on implications for effective teaching. Where appropriate, the book takes an Australian perspective,…

  14. EARLY CRANIOFACIAL DEVELOPMENT: LIFE AMONG THE SIGNALS

    EPA Science Inventory

    Early Craniofacial Development: Life Among the Signals. Sid Hunter and Keith Ward. Reproductive Toxicology Division, NHEERL, US EPA, RTP, NC, 27711

    Haloacetic acids (HAA) are chemicals formed during drinking water disinfection and present in finished tap water. Exposure o...

  15. Maggot excretions inhibit biofilm formation on biomaterials.

    PubMed

    Cazander, Gwendolyn; van de Veerdonk, Mariëlle C; Vandenbroucke-Grauls, Christina M J E; Schreurs, Marco W J; Jukema, Gerrolt N

    2010-10-01

    Biofilm-associated infections in trauma surgery are difficult to treat with conventional therapies. Therefore, it is important to develop new treatment modalities. Maggots in captured bags, which are permeable for larval excretions/secretions, aid in healing severe, infected wounds, suspect for biofilm formation. Therefore we presumed maggot excretions/secretions would reduce biofilm formation. We studied biofilm formation of Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella oxytoca, Enterococcus faecalis, and Enterobacter cloacae on polyethylene, titanium, and stainless steel. We compared the quantities of biofilm formation between the bacterial species on the various biomaterials and the quantity of biofilm formation after various incubation times. Maggot excretions/secretions were added to existing biofilms to examine their effect. Comb-like models of the biomaterials, made to fit in a 96-well microtiter plate, were incubated with bacterial suspension. The formed biofilms were stained in crystal violet, which was eluted in ethanol. The optical density (at 595 nm) of the eluate was determined to quantify biofilm formation. Maggot excretions/secretions were pipetted in different concentrations to (nonstained) 7-day-old biofilms, incubated 24 hours, and finally measured. The strongest biofilms were formed by S. aureus and S. epidermidis on polyethylene and the weakest on titanium. The highest quantity of biofilm formation was reached within 7 days for both bacteria. The presence of excretions/secretions reduced biofilm formation on all biomaterials. A maximum of 92% of biofilm reduction was measured. Our observations suggest maggot excretions/secretions decrease biofilm formation and could provide a new treatment for biofilm formation on infected biomaterials.

  16. Turbulence accelerates the growth of drinking water biofilms.

    PubMed

    Tsagkari, E; Sloan, W T

    2018-06-01

    Biofilms are found at the inner surfaces of drinking water pipes and, therefore, it is essential to understand biofilm processes to control their formation. Hydrodynamics play a crucial role in shaping biofilms. Thus, knowing how biofilms form, develop and disperse under different flow conditions is critical in the successful management of these systems. Here, the development of biofilms after 4 weeks, the initial formation of biofilms within 10 h and finally, the response of already established biofilms within 24-h intervals in which the flow regime was changed, were studied using a rotating annular reactor under three different flow regimes: turbulent, transition and laminar. Using fluorescence microscopy, information about the number of microcolonies on the reactor slides, the surface area of biofilms and of extracellular polymeric substances and the biofilm structures was acquired. Gravimetric measurements were conducted to characterise the thickness and density of biofilms, and spatial statistics were used to characterise the heterogeneity and spatial correlation of biofilm structures. Contrary to the prevailing view, it was shown that turbulent flow did not correlate with a reduction in biofilms; turbulence was found to enhance both the initial formation and the development of biofilms on the accessible surfaces. Additionally, after 24-h changes of the flow regime it was indicated that biofilms responded to the quick changes of the flow regime. Overall, this work suggests that different flow conditions can cause substantial changes in biofilm morphology and growth and specifically that turbulent flow can accelerate biofilm growth in drinking water.

  17. Reduction of saliva-promoted adhesion of Streptococcus mutans MT8148 and dental biofilm development by tragacanth gum and yeast-derived phosphomannan.

    PubMed

    Shimotoyodome, A; Kobayashi, H; Nakamura, J; Tokimitsu, I; Hase, T; Inoue, T; Matsukubo, T; Takaesu, Y

    2006-01-01

    The aim of this study was to investigate materials which reduce saliva-promoted adhesion of Streptococcus mutans onto enamel surfaces, and their potential in preventing dental biofilm development. The effects of hydroxyapatite (HA) surface pretreatment with hydrophilic polysaccharides on saliva-promoted S. mutans adhesion in vitro and de novo dental biofilm deposition in vivo were examined. Saliva-promoted adhesion of S. mutans MT8148 was significantly reduced by pretreatment of the HA surface with tragacanth gum (TG) and yeast-derived phosphoglycans. Extracellular phosphomannan (PM) from Pichia capsulata NRRL Y-1842 and TG reduced biofilm development on lower incisors in plaque-susceptible rats when administered via drinking water at concentrations of 0.5% and 0.01%, respectively. The inhibitory effect of TG on de novo dental biofilm formation was also demonstrated when administered via mouthwash in humans. It is concluded that TG and yeast-derived PM have the potential for use as anti-adherent agents and are effective in reducing de novo dental biofilm formation.

  18. Biofilm-specific extracellular matrix proteins of nontypeable Haemophilus influenzae.

    PubMed

    Wu, Siva; Baum, Marc M; Kerwin, James; Guerrero, Debbie; Webster, Simon; Schaudinn, Christoph; VanderVelde, David; Webster, Paul

    2014-12-01

    Nontypeable Haemophilus influenzae (NTHi), a human respiratory tract pathogen, can form colony biofilms in vitro. Bacterial cells and the amorphous extracellular matrix (ECM) constituting the biofilm can be separated using sonication. The ECM from 24- and 96-h NTHi biofilms contained polysaccharides and proteinaceous components as detected by nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) spectroscopy. More conventional chemical assays on the biofilm ECM confirmed the presence of these components and also DNA. Proteomics revealed eighteen proteins present in biofilm ECM that were not detected in planktonic bacteria. One ECM protein was unique to 24-h biofilms, two were found only in 96-h biofilms, and fifteen were present in the ECM of both 24- and 96-h NTHi biofilms. All proteins identified were either associated with bacterial membranes or cytoplasmic proteins. Immunocytochemistry showed two of the identified proteins, a DNA-directed RNA polymerase and the outer membrane protein OMP P2, associated with bacteria and biofilm ECM. Identification of biofilm-specific proteins present in immature biofilms is an important step in understanding the in vitro process of NTHi biofilm formation. The presence of a cytoplasmic protein and a membrane protein in the biofilm ECM of immature NTHi biofilms suggests that bacterial cell lysis may be a feature of early biofilm formation. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Development and characterization of p1025-loaded bioadhesive liquid-crystalline system for the prevention of Streptococcus mutans biofilms.

    PubMed

    Calixto, Giovana Maria Fioramonti; Duque, Cristiane; Aida, Kelly Limi; Dos Santos, Vanessa Rodrigues; Massunari, Loiane; Chorilli, Marlus

    2018-01-01

    Formation of a dental biofilm by Streptococcus mutans can cause dental caries, and remains a costly health problem worldwide. Recently, there has been a growing interest in the use of peptidic drugs, such as peptide p1025, analogous to the fragments 1025-1044 of S. mutans cellular adhesin, responsible for the adhesion and formation of dental biofilm. However, peptides have physicochemical characteristics that may affect their biological action, limiting their clinical performance. Therefore, drug-delivery systems, such as a bioadhesive liquid-crystalline system (LCS), may be attractive strategies for peptide delivery. Potentiation of the action of LCS can be achieved with the use of bioadhesive polymers to prolong their residence on the teeth. In line with this, three formulations - polyoxypropylene-(5)-polyoxyethylene-(20)-cetyl alcohol, oleic acid, and Carbopol C974P in different combinations (F1C, F2C, and F3C) were developed to observe the influence of water in the LCS, with the aim of achieving in situ gelling in the oral environment. These formulations were assessed by polarized light microscopy, small-angle X-ray scattering, rheological analysis, and in vitro bioadhesion analysis. Then, p1025 and a control (chlorhexidine) were incorporated into the aqueous phase of the formulation (F + p1025 and F + chlorhexidine), to determine their antibiofilm effect and toxicity on epithelial cells. Polarized light microscopy and small-angle X-ray scattering showed that F1C and F2C were LCS, whereas F3C was a microemulsion. F1C and F2C showed pseudoplastic behavior and F3C Newtonian behavior. F1C showed the highest elastic and bioadhesive characteristics compared to other formulations. Antibiofilm effects were observed for F + p1025 when applied in the surface-bound salivary phase. The p1025-loaded nanostructured LCS presented limited cytotoxicity and effectively reduced S. mutans biofilm formation, and could be a promising p1025-delivery strategy to prevent the formation

  20. Biofilm models of polymicrobial infection.

    PubMed

    Gabrilska, Rebecca A; Rumbaugh, Kendra P

    2015-01-01

    Interactions between microbes are complex and play an important role in the pathogenesis of infections. These interactions can range from fierce competition for nutrients and niches to highly evolved cooperative mechanisms between different species that support their mutual growth. An increasing appreciation for these interactions, and desire to uncover the mechanisms that govern them, has resulted in a shift from monomicrobial to polymicrobial biofilm studies in different disease models. Here we provide an overview of biofilm models used to study select polymicrobial infections and highlight the impact that the interactions between microbes within these biofilms have on disease progression. Notable recent advances in the development of polymicrobial biofilm-associated infection models and challenges facing the study of polymicrobial biofilms are addressed.

  1. Biofilm models of polymicrobial infection

    PubMed Central

    Gabrilska, Rebecca A; Rumbaugh, Kendra P

    2015-01-01

    Interactions between microbes are complex and play an important role in the pathogenesis of infections. These interactions can range from fierce competition for nutrients and niches to highly evolved cooperative mechanisms between different species that support their mutual growth. An increasing appreciation for these interactions, and desire to uncover the mechanisms that govern them, has resulted in a shift from monomicrobial to polymicrobial biofilm studies in different disease models. Here we provide an overview of biofilm models used to study select polymicrobial infections and highlight the impact that the interactions between microbes within these biofilms have on disease progression. Notable recent advances in the development of polymicrobial biofilm-associated infection models and challenges facing the study of polymicrobial biofilms are addressed. PMID:26592098

  2. Breastfeeding, parenting, and early cognitive development.

    PubMed

    Gibbs, Benjamin G; Forste, Renata

    2014-03-01

    To explain why breastfeeding is associated with children's cognitive development. By using a nationally representative longitudinal survey of early childhood (N = 7500), we examined how breastfeeding practices, the early introduction of solid foods, and putting an infant to bed with a bottle were associated with cognitive development across early childhood. We also explored whether this link can be explained by parenting behaviors and maternal education. There is a positive relationship between predominant breastfeeding for 3 months or more and child reading skills, but this link is the result of cognitively supportive parenting behaviors and greater levels of education among women who predominantly breastfed. We found little-to-no relationship between infant feeding practices and the cognitive development of children with less-educated mothers. Instead, reading to a child every day and being sensitive to a child's development were significant predictors of math and reading readiness outcomes. Although breastfeeding has important benefits in other settings, the encouragement of breastfeeding to promote school readiness does not appear to be a key intervention point. Promoting parenting behaviors that improve child cognitive development may be a more effective and direct strategy for practitioners to adopt, especially for disadvantaged children. Copyright © 2014 Mosby, Inc. All rights reserved.

  3. Atomic Force Microscopy Reveals a Morphological Differentiation of Chromobacterium violaceum Cells Associated with Biofilm Development and Directed by N-Hexanoyl-L-Homoserine Lactone

    PubMed Central

    Kamaeva, Anara A.; Vasilchenko, Alexey S.; Deryabin, Dmitry G.

    2014-01-01

    Chromobacterium violaceum abounds in soil and water ecosystems in tropical and subtropical regions and occasionally causes severe and often fatal human and animal infections. The quorum sensing (QS) system and biofilm formation are essential for C. violaceum's adaptability and pathogenicity, however, their interrelation is still unknown. C. violaceum's cell and biofilm morphology were examined by atomic force microscopy (AFM) in comparison with growth rates, QS-dependent violacein biosynthesis and biofilm biomass quantification. To evaluate QS regulation of these processes, the wild-type strain C. violaceum ATCC 31532 and its mini-Tn5 mutant C. violaceum NCTC 13274, cultivated with and without the QS autoinducer N-hexanoyl-L-homoserine lactone (C6-HSL), were used. We report for the first time the unusual morphological differentiation of C. violaceum cells, associated with biofilm development and directed by the QS autoinducer. AFM revealed numerous invaginations of the external cytoplasmic membrane of wild-type cells, which were repressed in the mutant strain and restored by exogenous C6-HSL. With increasing bacterial growth, polymer matrix extrusions formed in place of invaginations, whereas mutant cells were covered with a diffusely distributed extracellular substance. Thus, quorum sensing in C. violaceum involves a morphological differentiation that organises biofilm formation and leads to a highly differentiated matrix structure. PMID:25111599

  4. Atomic force microscopy reveals a morphological differentiation of chromobacterium violaceum cells associated with biofilm development and directed by N-hexanoyl-L-homoserine lactone.

    PubMed

    Kamaeva, Anara A; Vasilchenko, Alexey S; Deryabin, Dmitry G

    2014-01-01

    Chromobacterium violaceum abounds in soil and water ecosystems in tropical and subtropical regions and occasionally causes severe and often fatal human and animal infections. The quorum sensing (QS) system and biofilm formation are essential for C. violaceum's adaptability and pathogenicity, however, their interrelation is still unknown. C. violaceum's cell and biofilm morphology were examined by atomic force microscopy (AFM) in comparison with growth rates, QS-dependent violacein biosynthesis and biofilm biomass quantification. To evaluate QS regulation of these processes, the wild-type strain C. violaceum ATCC 31532 and its mini-Tn5 mutant C. violaceum NCTC 13274, cultivated with and without the QS autoinducer N-hexanoyl-L-homoserine lactone (C6-HSL), were used. We report for the first time the unusual morphological differentiation of C. violaceum cells, associated with biofilm development and directed by the QS autoinducer. AFM revealed numerous invaginations of the external cytoplasmic membrane of wild-type cells, which were repressed in the mutant strain and restored by exogenous C6-HSL. With increasing bacterial growth, polymer matrix extrusions formed in place of invaginations, whereas mutant cells were covered with a diffusely distributed extracellular substance. Thus, quorum sensing in C. violaceum involves a morphological differentiation that organises biofilm formation and leads to a highly differentiated matrix structure.

  5. Development of an Escherichia coli K12-specific quantitative polymerase chain reaction assay and DNA isolation suited to biofilms associated with iron drinking water pipe corrosion products.

    PubMed

    Lu, Jingrang; Gerke, Tammie L; Buse, Helen Y; Ashbolt, Nicholas J

    2014-12-01

    A quantitative polymerase chain reaction assay (115 bp amplicon) specific to Escherichia coli K12 with an ABI(TM) internal control was developed based on sequence data encoding the rfb gene cluster. Assay specificity was evaluated using three E. coli K12 strains (ATCC W3110, MG1655 & DH1), 24 non-K12 E. coli and 23 bacterial genera. The biofilm detection limit was 10(3) colony-forming units (CFU) E. coli K12 mL(-1), but required a modified protocol, which included a bio-blocker Pseudomonas aeruginosa with ethylenediaminetetraacetic acid buffered to pH 5 prior to cell lysis/DNA extraction. The novel protocol yielded the same sensitivity for drinking water biofilms associated with Fe3O4 (magnetite)-coated SiO2 (quartz) grains and biofilm-surface iron corrosion products from a drinking water distribution system. The novel DNA extraction protocol and specific E. coli K12 assay are sensitive and robust enough for detection and quantification within iron drinking water pipe biofilms, and are particularly well suited for studying enteric bacterial interactions within biofilms.

  6. Fabrication of Acrylonitrile-Butadiene-Styrene Nanostructures with Anodic Alumina Oxide Templates, Characterization and Biofilm Development Test for Staphylococcus epidermidis

    PubMed Central

    Desrousseaux, Camille; Cueff, Régis; Aumeran, Claire; Garrait, Ghislain; Mailhot-Jensen, Bénédicte; Traoré, Ousmane; Sautou, Valérie

    2015-01-01

    Medical devices can be contaminated by microbial biofilm which causes nosocomial infections. One of the strategies for the prevention of such microbial adhesion is to modify the biomaterials by creating micro or nanofeatures on their surface. This study aimed (1) to nanostructure acrylonitrile-butadiene-styrene (ABS), a polymer composing connectors in perfusion devices, using Anodic Alumina Oxide templates, and to control the reproducibility of this process; (2) to characterize the physico-chemical properties of the nanostructured surfaces such as wettability using captive-bubble contact angle measurement technique; (3) to test the impact of nanostructures on Staphylococcus epidermidis biofilm development. Fabrication of Anodic Alumina Oxide molds was realized by double anodization in oxalic acid. This process was reproducible. The obtained molds present hexagonally arranged 50 nm diameter pores, with a 100 nm interpore distance and a length of 100 nm. Acrylonitrile-butadiene-styrene nanostructures were successfully prepared using a polymer solution and two melt wetting methods. For all methods, the nanopicots were obtained but inside each sample their length was different. One method was selected essentially for industrial purposes and for better reproducibility results. The flat ABS surface presents a slightly hydrophilic character, which remains roughly unchanged after nanostructuration, the increasing apparent wettability observed in that case being explained by roughness effects. Also, the nanostructuration of the polymer surface does not induce any significant effect on Staphylococcus epidermidis adhesion. PMID:26284922

  7. The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139

    PubMed Central

    Watnick, Paula I.; Lauriano, Crystal M.; Klose, Karl E.; Croal, Laura; Kolter, Roberto

    2010-01-01

    Summary Throughout most of history, epidemic and pandemic cholera was caused by Vibrio cholerae of the serogroup O1. In 1992, however, a V. cholerae strain of the serogroup O139 emerged as a new agent of epidemic cholera. Interestingly, V. cholerae O139 forms biofilms on abiotic surfaces more rapidly than V. cholerae O1 biotype El Tor, perhaps because regulation of exopolysaccharide synthesis in V. cholerae O139 differs from that in O1 El Tor. Here, we show that all flagellar mutants of V. cholerae O139 have a rugose colony morphology that is dependent on the vps genes. This suggests that the absence of the flagellar structure constitutes a signal to increase exopolysaccharide synthesis. Furthermore, although exopolysaccharide production is required for the development of a three-dimensional biofilm, inappropriate exopolysaccharide production leads to inefficient colonization of the infant mouse intestinal epithelium by flagellar mutants. Thus, precise regulation of exopolysaccharide synthesis is an important factor in the survival of V. cholerae O139 in both aquatic environments and the mammalian intestine. PMID:11136445

  8. Current Research Approaches to Target Biofilm Infections

    PubMed Central

    van Tilburg Bernardes, Erik; Lewenza, Shawn

    2017-01-01

    This review will focus on strategies to develop new treatments that target the biofilm mode of growth and that can be used to treat biofilm infections. These approaches aim to reduce or inhibit biofilm formation, or to increase biofilm dispersion. Many antibiofilm compounds are not bactericidal but render the cells in a planktonic growth state, which are more susceptible to antibiotics and more easily cleared by the immune system. Novel compounds are being developed with antibiofilm activity that includes antimicrobial peptides, natural products, small molecules and polymers. Bacteriophages are being considered for use in treating biofilms, as well as the use of enzymes that degrade the extracellular matrix polymers to dissolve biofilms. There is great potential in these new approaches for use in treating chronic biofilm infections. PMID:28748199

  9. Nurturing care: promoting early childhood development.

    PubMed

    Britto, Pia R; Lye, Stephen J; Proulx, Kerrie; Yousafzai, Aisha K; Matthews, Stephen G; Vaivada, Tyler; Perez-Escamilla, Rafael; Rao, Nirmala; Ip, Patrick; Fernald, Lia C H; MacMillan, Harriet; Hanson, Mark; Wachs, Theodore D; Yao, Haogen; Yoshikawa, Hirokazu; Cerezo, Adrian; Leckman, James F; Bhutta, Zulfiqar A

    2017-01-07

    The UN Sustainable Development Goals provide a historic opportunity to implement interventions, at scale, to promote early childhood development. Although the evidence base for the importance of early childhood development has grown, the research is distributed across sectors, populations, and settings, with diversity noted in both scope and focus. We provide a comprehensive updated analysis of early childhood development interventions across the five sectors of health, nutrition, education, child protection, and social protection. Our review concludes that to make interventions successful, smart, and sustainable, they need to be implemented as multi-sectoral intervention packages anchored in nurturing care. The recommendations emphasise that intervention packages should be applied at developmentally appropriate times during the life course, target multiple risks, and build on existing delivery platforms for feasibility of scale-up. While interventions will continue to improve with the growth of developmental science, the evidence now strongly suggests that parents, caregivers, and families need to be supported in providing nurturing care and protection in order for young children to achieve their developmental potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Species sorting during biofilm assembly by artificial substrates deployed in a cold seep system

    PubMed Central

    Zhang, Wei Peng; Wang, Yong; Tian, Ren Mao; Bougouffa, Salim; Yang, Bo; Cao, Hui Luo; Zhang, Gen; Wong, Yue Him; Xu, Wei; Batang, Zenon; Al-Suwailem, Abdulaziz; Zhang, Xi Xiang; Qian, Pei-Yuan

    2014-01-01

    Studies focusing on biofilm assembly in deep-sea environments are rarely conducted. To examine the effects of substrate type on microbial community assembly, biofilms were developed on different substrates for different durations at two locations in the Red Sea: in a brine pool and in nearby bottom water (NBW) adjacent to the Thuwal cold seep II. The composition of the microbial communities in 51 biofilms and water samples were revealed by classification of pyrosequenced 16S rRNA gene amplicons. Together with the microscopic characteristics of the biofilms, the results indicate a stronger selection effect by the substrates on the microbial assembly in the brine pool compared with the NBW. Moreover, the selection effect by substrate type was stronger in the early stages compared with the later stages of the biofilm development. These results are consistent with the hypotheses proposed in the framework of species sorting theory, which states that the power of species sorting during microbial community assembly is dictated by habitat conditions, duration and the structure of the source community. Therefore, the results of this study shed light on the control strategy underlying biofilm-associated marine fouling and provide supporting evidence for ecological theories important for understanding the formation of deep-sea biofilms. PMID:25323200

  11. Early childhood development: putting knowledge into action.

    PubMed

    2000-11-01

    As part of its continuing mission to serve trustees and staff of health foundations and corporate giving programs, Grantmakers In Health (GIH) convened a select group of grantmakers and national experts who have made a major commitment to improve the health and well being of young children. The roundtable explored the latest research examining early childhood development, as well as public and private programs serving families with young children. The discussion ultimately centered upon the importance of grantmaker involvement to improve early childhood development, including the services delivered to young children and their families, training for professionals, and continued research and evaluation. This report brings together key points from the day's discussion with factual information on demographic, health and human services, and public policy trends drawn from a background paper prepared for the meeting. When available, recent findings, facts, and figures have been incorporated.

  12. QCD development in the early universe

    SciTech Connect

    Gromov, N. A., E-mail: gromov@dm.komisc.ru

    The high-energy limit of Quantum Chromodynamics is generated by the contraction of its gauge groups. Contraction parameters are taken identical with those of the Electroweak Model and tend to zero when energy increases. At the infinite energy limit all quarks lose masses and have only one color degree of freedom. The limit model represents the development of Quantum Chromodynamics in the early Universe from the Big Bang up to the end of several milliseconds.

  13. Biofilm spatial organization by the emerging pathogen Campylobacter jejuni: comparison between NCTC 11168 and 81-176 strains under microaerobic and oxygen-enriched conditions.

    PubMed

    Turonova, Hana; Briandet, Romain; Rodrigues, Ramila; Hernould, Mathieu; Hayek, Nabil; Stintzi, Alain; Pazlarova, Jarmila; Tresse, Odile

    2015-01-01

    During the last years, Campylobacter has emerged as the leading cause of bacterial foodborne infections in developed countries. Described as an obligate microaerophile, Campylobacter has puzzled scientists by surviving a wide range of environmental oxidative stresses on foods farm to retail, and thereafter intestinal transit and oxidative damage from macrophages to cause human infection. In this study, confocal laser scanning microscopy (CLSM) was used to explore the biofilm development of two well-described Campylobacter jejuni strains (NCTC 11168 and 81-176) prior to or during cultivation under oxygen-enriched conditions. Quantitative and qualitative appraisal indicated that C. jejuni formed finger-like biofilm structures with an open ultrastructure for 81-176 and a multilayer-like structure for NCTC 11168 under microaerobic conditions (MAC). The presence of motile cells within the biofilm confirmed the maturation of the C. jejuni 81-176 biofilm. Acclimation of cells to oxygen-enriched conditions led to significant enhancement of biofilm formation during the early stages of the process. Exposure to these conditions during biofilm cultivation induced an even greater biofilm development for both strains, indicating that oxygen demand for biofilm formation is higher than for planktonic growth counterparts. Overexpression of cosR in the poorer biofilm-forming strain, NCTC 11168, enhanced biofilm development dramatically by promoting an open ultrastructure similar to that observed for 81-176. Consequently, the regulator CosR is likely to be a key protein in the maturation of C. jejuni biofilm, although it is not linked to oxygen stimulation. These unexpected data advocate challenging studies by reconsidering the paradigm of fastidious requirements for C. jejuni growth when various subpopulations (from quiescent to motile cells) coexist in biofilms. These findings constitute a clear example of a survival strategy used by this emerging human pathogen.

  14. Modeling of the Bacillus subtilis Bacterial Biofilm Growing on an Agar Substrate

    PubMed Central

    Wang, Xiaoling; Wang, Guoqing; Hao, Mudong

    2015-01-01

    Bacterial biofilms are organized communities composed of millions of microorganisms that accumulate on almost any kinds of surfaces. In this paper, a biofilm growth model on an agar substrate is developed based on mass conservation principles, Fick's first law, and Monod's kinetic reaction, by considering nutrient diffusion between biofilm and agar substrate. Our results show biofilm growth evolution characteristics such as biofilm thickness, active biomass, and nutrient concentration in the agar substrate. We quantitatively obtain biofilm growth dependence on different parameters. We provide an alternative mathematical method to describe other kinds of biofilm growth such as multiple bacterial species biofilm and also biofilm growth on various complex substrates. PMID:26355542

  15. Modeling of the Bacillus subtilis Bacterial Biofilm Growing on an Agar Substrate.

    PubMed

    Wang, Xiaoling; Wang, Guoqing; Hao, Mudong

    2015-01-01

    Bacterial biofilms are organized communities composed of millions of microorganisms that accumulate on almost any kinds of surfaces. In this paper, a biofilm growth model on an agar substrate is developed based on mass conservation principles, Fick's first law, and Monod's kinetic reaction, by considering nutrient diffusion between biofilm and agar substrate. Our results show biofilm growth evolution characteristics such as biofilm thickness, active biomass, and nutrient concentration in the agar substrate. We quantitatively obtain biofilm growth dependence on different parameters. We provide an alternative mathematical method to describe other kinds of biofilm growth such as multiple bacterial species biofilm and also biofilm growth on various complex substrates.

  16. Early colonial health developments in Mauritius.

    PubMed

    Parahoo, K A

    1986-01-01

    The historical development of Mauritius and in particular the early developments in health care are crucial to an understanding of the contemporary health system. The introduction of major epidemic diseases through the movements of French soldiers to and from India and the immigration of indentured laborers from India account for the high mortality and morbidity rates in the 18th and 19th centuries and later. The colonial economy created and fortified the dependence on a single cash crop and on imported food. It also contributed toward the impoverization of large sections of the Mauritian population. The colonial era is also responsible for initiating a three tier system of health care.

  17. Biofilm development in a hotspot of mixing between shallow and deep groundwater in a fractured aquifer: field evidence from joint flow, chemical and microbiological measurements

    NASA Astrophysics Data System (ADS)

    Bochet, O.; Dufresne, A.; Pédrot, M.; Chatton, E.; Labasque, T.; Ben Maamar, S.; Burté, L.; de la Bernardie, J.; Guihéneuf, N.; Lavenant, N.; Petton, C.; Bour, O.; Aquilina, L.; Le Borgne, T.

    2015-12-01

    Biofilms play a major role in controlling the fluxes and reactivity of chemical species transported in hydro-logical systems. Micro-organisms require both electron donors and electron acceptors for cellular growth, proliferation and maintenance of their metabolic functions. The mechanisms controlling these reactions derive from the interactions occurring at the micro-scale that depend on mineral compositions, the biota of subsurface environment, but also fluid mixing, which determines the local concentrations of nutriments, electron donors and electron acceptors. Hence, mixing zones between oxygen and nutriment rich shallow groundwater and mineralized deep groundwater are often considered as potential hotspots of microbial activity, although relatively few field data document flow distributions, transport properties, chemical gradients and micro-organisms distributions across these mixing interfaces. Here we investigate the origin of a localized biofilm development observed in the fractured granite aquifer at the Ploemeur observatory (H+ network hplus.ore.fr).This biofilm composed of ferro-oxidizing bacteria is observed in an 130m deep artesian well. Borehole video logs show an important colonization of the well by the biofilm in the shallower part (0 to 60m), while it is inexistent in the deeper part (60 to 130m). As flow is localized in a few deep and shallow fractures, we presume that the spatial distribution of biofilm is controlled by mixing between shallow and deep groundwater. To verify this hypothesis we conducted a field campaign with joint characterization of the flow and chemical composition of water flowing from the different fractures, as well as the microbiological composition of the biofilm at different depth, using pyrosequencing techniques. We will discuss in this presentation the results of this interdisciplinary dataset and their implications for the occurrence of hotspots of microbiological activity in the subsurface.

  18. The Biofilm Community-Rebels with a Cause.

    PubMed

    Aruni, A Wilson; Dou, Yuetan; Mishra, Arunima; Fletcher, Hansel M

    2015-03-01

    Oral Biofilms are one of the most complex and diverse ecosystem developed by successive colonization of more than 600 bacterial taxa. Development starts with the attachment of early colonizers such as Actinomyces species and oral streptococci on the acquired pellicle and tooth enamel. These bacteria not only adhere to tooth surface but also interact with each other and lay foundation for attachment of bridging colonizer such as Fusobacterium nucleatum followed by late colonizers including the red complex species: Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola -the founders of periodontal disease. As the biofilm progresses from supragingival sites to subgingival sites, the environment changes from aerobic to anaerobic thus favoring the growth of mainly Gram-negative obligate anaerobes while restricting the growth of the early Gram-positive facultative aerobes. Microbes present at supragingival level are mainly related to gingivitis and root-caries whereas subgingival species advance the destruction of teeth supporting tissues and thus causing periodontitis. This review summarizes our present understanding and recent developments on the characteristic features of supra- and subgingival biofilms, interaction between different genera and species of bacteria constituting these biofilms and draws our attention to the role of some of the recently discovered members of the oral community.

  19. The Biofilm Community-Rebels with a Cause

    PubMed Central

    Aruni, A. Wilson; Dou, Yuetan; Mishra, Arunima; Fletcher, Hansel M.

    2015-01-01

    Oral Biofilms are one of the most complex and diverse ecosystem developed by successive colonization of more than 600 bacterial taxa. Development starts with the attachment of early colonizers such as Actinomyces species and oral streptococci on the acquired pellicle and tooth enamel. These bacteria not only adhere to tooth surface but also interact with each other and lay foundation for attachment of bridging colonizer such as Fusobacterium nucleatum followed by late colonizers including the red complex species: Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola-the founders of periodontal disease. As the biofilm progresses from supragingival sites to subgingival sites, the environment changes from aerobic to anaerobic thus favoring the growth of mainly Gram-negative obligate anaerobes while restricting the growth of the early Gram-positive facultative aerobes. Microbes present at supragingival level are mainly related to gingivitis and root-caries whereas subgingival species advance the destruction of teeth supporting tissues and thus causing periodontitis. This review summarizes our present understanding and recent developments on the characteristic features of supra- and subgingival biofilms, interaction between different genera and species of bacteria constituting these biofilms and draws our attention to the role of some of the recently discovered members of the oral community. PMID:26120510

  20. Proteomic regulation during Legionella pneumophila biofilm development: decrease of virulence factors and enhancement of response to oxidative stress.

    PubMed

    Khemiri, Arbia; Lecheheb, Sandra Ahmed; Chi Song, Philippe Chan; Jouenne, Thierry; Cosette, Pascal

    2014-06-01

    Legionella pneumophila (L. pneumophila) is a Gram-negative bacterium, which can be found worldwide in aquatic environments. It tends to persist because it is often protected within biofilms or amoebae. L. pneumophila biofilms have a major impact on water systems, making the understanding of the bacterial physiological adaptation in biofilms a fundamental step towards their eradication. In this study, we report for the first time the influence of the biofilm mode of growth on the proteome of L. pneumophila. We compared the protein patterns of microorganisms grown as suspensions, cultured as colonies on agar plates or recovered with biofilms formed on stainless steel coupons. Statistical analyses of the protein expression data set confirmed the biofilm phenotype specificity which had been previously observed. It also identified dozens of proteins whose abundance was modified in biofilms. Proteins corresponding to virulence factors (macrophage infectivity potentiator protein, secreted proteases) were largely repressed in adherent cells. In contrast, a peptidoglycan-associated lipoprotein (Lpg2043) and a peroxynitrite reductase (Lpg2965) were accumulated by biofilm cells. Remarkably, hypothetical proteins, that appear to be unique to the Legionella genus (Lpg0563, Lpg1111 and Lpg1809), were over-expressed by sessile bacteria.

  1. Inhibition of Candida albicans Biofilm Formation by the Synthetic Lactoferricin Derived Peptide hLF1-11.

    PubMed

    Morici, Paola; Fais, Roberta; Rizzato, Cosmeri; Tavanti, Arianna; Lupetti, Antonella

    2016-01-01

    The aim of this study was to evaluate the in vitro activity of the synthetic peptide hLF1-11 against biofilm produced by clinical isolates of Candida albicans with different fluconazole susceptibility. The antibiofilm activity of the peptide hLF1-11 was assessed in terms of reduction of biofilm cellular density, metabolic activity and sessile cell viability. The extent of morphogenesis in hLF1-11 treated and untreated biofilms was also investigated microscopically. Transcription levels of genes related to cell adhesion, hyphal development and extracellular matrix production were analysed by qRT-PCR in hLF1-11 treated and untreated biofilms. Exogenous dibutyryl-cAMP (db-cAMP) was used to rescue morphogenesis in cells exposed to the peptide. The results revealed that hLF1-11 exhibited an inhibitory effect on biofilm formation by all C. albicans isolates tested in a dose-dependent manner, regardless of their fluconazole susceptibility. Visual inspection of treated or untreated biofilm cells with an inverted microscope revealed a significant reduction in hyphal formation by hLF1-11 treated cells, as early as 3 hours of incubation. Moreover, hLF1-11 showed a reduced activity on preadherent cells. hLF1-11 induced the down-regulation of biofilm and hyphal-associated genes, which were predominantly regulated via the Ras1-cAMP-Efg1 pathway. Indeed, exogenous db-cAMP restored morphogenesis in hLF1-11 treated cells. The hLF1-11 peptide significantly inhibited biofilm formation by C. albicans mainly at early stages, interfering with biofilm cellular density and metabolic activity, and affected morphogenesis through the Ras1-cAMP-Efg1 pathway. Our findings provide the first evidence that hLF1-11 could represent a potential candidate for the prevention of biofilm formation by C. albicans.

  2. Forward Genetic Dissection of Biofilm Development by Fusobacterium nucleatum: Novel Functions of Cell Division Proteins FtsX and EnvC.

    PubMed

    Wu, Chenggang; Al Mamun, Abu Amar Mohamed; Luong, Truc Thanh; Hu, Bo; Gu, Jianhua; Lee, Ju Huck; D'Amore, Melissa; Das, Asis; Ton-That, Hung

    2018-04-24

    Fusobacterium nucleatum is a key member of the human oral biofilm. It is also implicated in preterm birth and colorectal cancer. To facilitate basic studies of fusobacterial virulence, we describe here a versatile transposon mutagenesis procedure and a pilot screen for mutants defective in biofilm formation. Out of 10 independent biofilm-defective mutants isolated, the affected genes included the homologs of the Escherichia coli cell division proteins FtsX and EnvC, the electron transport protein RnfA, and four proteins with unknown functions. Next, a facile new gene deletion method demonstrated that nonpolar, in-frame deletion of ftsX or envC produces viable bacteria that are highly filamentous due to defective cell division. Transmission electron and cryo-electron microscopy revealed that the Δ ftsX and Δ envC mutant cells remain joined with apparent constriction, and scanning electron microscopy (EM) uncovered a smooth cell surface without the microfolds present in wild-type cells. FtsX and EnvC proteins interact with each other as well as a common set of interacting partners, many with unknown function. Last, biofilm development is altered when cell division is blocked by MinC overproduction; however, unlike the phenotypes of Δ ftsX and Δ envC mutants, a weakly adherent biofilm is formed, and the wild-type rugged cell surface is maintained. Therefore, FtsX and EnvC may perform novel functions in Fusobacterium cell biology. This is the first report of an unbiased approach to uncover genetic determinants of fusobacterial biofilm development. It points to an intriguing link among cytokinesis, cell surface dynamics, and biofilm formation, whose molecular underpinnings remain to be elucidated. IMPORTANCE Little is known about the virulence mechanisms and associated factors in F. nucleatum , due mainly to the lack of convenient genetic tools for this organism. We employed two efficient genetic strategies to identify F. nucleatum biofilm-defective mutants

  3. Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity.

    PubMed

    Pagno, Carlos H; Costa, Tania M H; de Menezes, Eliana W; Benvenutti, Edilson V; Hertz, Plinho F; Matte, Carla R; Tosati, Juliano V; Monteiro, Alcilene R; Rios, Alessandro O; Flôres, Simone H

    2015-04-15

    Active biofilms of quinoa (Chenopodium quinoa, W.) starch were prepared by incorporating gold nanoparticles stabilised by an ionic silsesquioxane that contains the 1,4-diazoniabicyclo[2.2.2]octane chloride group. The biofilms were characterised and their antimicrobial activity was evaluated against Escherichiacoli and Staphylococcusaureus. The presence of gold nanoparticles produces an improvement in the mechanical, optical and morphological properties, maintaining the thermal and barrier properties unchanged when compared to the standard biofilm. The active biofilms exhibited strong antibacterial activity against food-borne pathogens with inhibition percentages of 99% against E. coli and 98% against S. aureus. These quinoa starch biofilms containing gold nanoparticles are very promising to be used as active food packaging for the maintenance of food safety and extension of the shelf life of packaged foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Pharmacogenomics in early-phase clinical development

    PubMed Central

    Burt, Tal; Dhillon, Savita

    2015-01-01

    Pharmacogenomics (PGx) offers the promise of utilizing genetic fingerprints to predict individual responses to drugs in terms of safety, efficacy and pharmacokinetics. Early-phase clinical trial PGx applications can identify human genome variations that are meaningful to study design, selection of participants, allocation of resources and clinical research ethics. Results can inform later-phase study design and pipeline developmental decisions. Nevertheless, our review of the clinicaltrials.gov database demonstrates that PGx is rarely used by drug developers. Of the total 323 trials that included PGx as an outcome, 80% have been conducted by academic institutions after initial regulatory approval. Barriers for the application of PGx are discussed. We propose a framework for the role of PGx in early-phase drug development and recommend PGx be universally considered in study design, result interpretation and hypothesis generation for later-phase studies, but PGx results from underpowered studies should not be used by themselves to terminate drug-development programs. PMID:23837482

  5. The developing hypopharyngeal microbiota in early life.

    PubMed

    Mortensen, Martin Steen; Brejnrod, Asker Daniel; Roggenbuck, Michael; Abu Al-Soud, Waleed; Balle, Christina; Krogfelt, Karen Angeliki; Stokholm, Jakob; Thorsen, Jonathan; Waage, Johannes; Rasmussen, Morten Arendt; Bisgaard, Hans; Sørensen, Søren Johannes

    2016-12-30

    The airways of healthy humans harbor a distinct microbial community. Perturbations in the microbial community have been associated with disease, yet little is known about the formation and development of a healthy airway microbiota in early life. Our goal was to understand the establishment of the airway microbiota within the first 3 months of life. We investigated the hypopharyngeal microbiota in the unselected COPSAC 2010 cohort of 700 infants, using 16S rRNA gene sequencing of hypopharyngeal aspirates from 1 week, 1 month, and 3 months of age. Our analysis shows that majority of the hypopharyngeal microbiota of healthy infants belong to each individual's core microbiota and we demonstrate five distinct community pneumotypes. Four of these pneumotypes are dominated by the genera Staphylococcus, Streptococcus, Moraxella, and Corynebacterium, respectively. Furthermore, we show temporal pneumotype changes suggesting a rapid development towards maturation of the hypopharyngeal microbiota and a significant effect from older siblings. Despite an overall common trajectory towards maturation, individual infants' microbiota are more similar to their own, than to others, over time. Our findings demonstrate a consolidation of the population of indigenous bacteria in healthy airways and indicate distinct trajectories in the early development of the hypopharyngeal microbiota.

  6. Three-dimensional biofilm structure quantification.

    PubMed

    Beyenal, Haluk; Donovan, Conrad; Lewandowski, Zbigniew; Harkin, Gary

    2004-12-01

    Quantitative parameters describing biofilm physical structure have been extracted from three-dimensional confocal laser scanning microscopy images and used to compare biofilm structures, monitor biofilm development, and quantify environmental factors affecting biofilm structure. Researchers have previously used biovolume, volume to surface ratio, roughness coefficient, and mean and maximum thicknesses to compare biofilm structures. The selection of these parameters is dependent on the availability of software to perform calculations. We believe it is necessary to develop more comprehensive parameters to describe heterogeneous biofilm morphology in three dimensions. This research presents parameters describing three-dimensional biofilm heterogeneity, size, and morphology of biomass calculated from confocal laser scanning microscopy images. This study extends previous work which extracted quantitative parameters regarding morphological features from two-dimensional biofilm images to three-dimensional biofilm images. We describe two types of parameters: (1) textural parameters showing microscale heterogeneity of biofilms and (2) volumetric parameters describing size and morphology of biomass. The three-dimensional features presented are average (ADD) and maximum diffusion distances (MDD), fractal dimension, average run lengths (in X, Y and Z directions), aspect ratio, textural entropy, energy and homogeneity. We discuss the meaning of each parameter and present the calculations in detail. The developed algorithms, including automatic thresholding, are implemented in software as MATLAB programs which will be available at site prior to publication of the paper.

  7. Early androgen exposure and human gender development.

    PubMed

    Hines, Melissa; Constantinescu, Mihaela; Spencer, Debra

    2015-01-01

    During early development, testosterone plays an important role in sexual differentiation of the mammalian brain and has enduring influences on behavior. Testosterone exerts these influences at times when the testes are active, as evidenced by higher concentrations of testosterone in developing male than in developing female animals. This article critically reviews the available evidence regarding influences of testosterone on human gender-related development. In humans, testosterone is elevated in males from about weeks 8 to 24 of gestation and then again during early postnatal development. Individuals exposed to atypical concentrations of testosterone or other androgenic hormones prenatally, for example, because of genetic conditions or because their mothers were prescribed hormones during pregnancy, have been consistently found to show increased male-typical juvenile play behavior, alterations in sexual orientation and gender identity (the sense of self as male or female), and increased tendencies to engage in physically aggressive behavior. Studies of other behavioral outcomes following dramatic androgen abnormality prenatally are either too small in their numbers or too inconsistent in their results, to provide similarly conclusive evidence. Studies relating normal variability in testosterone prenatally to subsequent gender-related behavior have produced largely inconsistent results or have yet to be independently replicated. For studies of prenatal exposures in typically developing individuals, testosterone has been measured in single samples of maternal blood or amniotic fluid. These techniques may not be sufficiently powerful to consistently detect influences of testosterone on behavior, particularly in the relatively small samples that have generally been studied. The postnatal surge in testosterone in male infants, sometimes called mini-puberty, may provide a more accessible opportunity for measuring early androgen exposure during typical development. This

  8. [Candida biofilm-related infections].

    PubMed

    Del Pozo, José Luis; Cantón, Emilia

    2016-01-01

    The number of biomedical devices (intravascular catheters, heart valves, joint replacements, etc.) that are implanted in our hospitals has increased exponentially in recent years. Candida species are pathogens which are becoming more significant in these kinds of infections. Candida has two forms of development: planktonic and in biofilms. A biofilm is a community of microorganisms which adhere to a surface and are enclosed by an extracellular matrix. This form of development confers a high resistance to the antimicrobial agents. This is the reason why antibiotic treatments usually fail and biomedical devices may have to be removed in most cases. Unspecific adhesion mechanisms, the adhesion-receptor systems, and an intercellular communication system called quorum sensing play an essential role in the development of Candida biofilms. In general, the azoles have poor activity against Candida biofilms, while echinocandins and polyenes show a greater activity. New therapeutic strategies need to be developed due to the high morbidity and mortality and high economic costs associated with these infections. Most studies to date have focused on bacterial biofilms. The knowledge of the formation of Candida biofilms and their composition is essential to develop new preventive and therapeutic strategies. Copyright © 2014 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Biofilm development in a hotspot of mixing between shallow and deep groundwater in a fractured aquifer: field evidence from joint flow, chemical and microbiological characterization

    NASA Astrophysics Data System (ADS)

    Bochet, Olivier; Le Borgne, Tanguy; Pédrot, Mathieu; Labasque, Thierry; Lavenant, Nicolas; Petton, Christophe; Dufresne, Alexis; Ben Maamar, Sarah; Chatton, Eliot; De la Bernardie, Jérôme; Aquilina, Luc

    2015-04-01

    Biofilm development in a hotspot of mixing between shallow and deep groundwater in a fractured aquifer: field evidence from joint flow, chemical and microbiological characterization Olivier Bochet1, Tanguy Le Borgne1, Mathieu Pédrot1, Thierry Labasque1, Nicolas Lavenant1, Christophe Petton1, Alexis Dufresne2,Sarah Ben Maamar1-2, Eliot Chatton1, Jérôme de la Bernardie1, Luc Aquilina1 1: Géosciences Rennes, CNRS UMR 6118, Université de Rennes 1, Campus de Beaulieu bât 14B, Rennes, France 2: Ecobio, CNRS UMR 6553, Université de Rennes 1, Campus de Beaulieu, bât 14, Rennes, France Biofilms play a major role in controlling the fluxes and reactivity of chemical species transported in hydrological systems. Their development can have either positive impacts on groundwater quality (e.g. attenuation of contaminants under natural or stimulated conditions), or possible negative effects on subsurface operations (e.g. bio-clogging of geothermal dipoles or artificial recharge systems). Micro-organisms require both electron donors and electron acceptors for cellular growth, proliferation and maintenance of their metabolic functions. The mechanisms controlling these reactions derive from the interactions occurring at the micro-scale that depend on mineral compositions, the biota of subsurface environment, but also fluid mixing, which determines the local concentrations of nutriments, electron donors and electron acceptors. Hence, mixing zones between oxygen and nutriment rich shallow groundwater and mineralized deep groundwater are often considered as potential hotspots of microbial activity, although relatively few field data document flow distributions, transport properties, chemical gradients and micro-organisms distributions across these mixing interfaces. Here we investigate the origin of a localized biofilm development observed in the fractured granite aquifer at the Ploemeur observatory (H+ network hplus.ore.fr).This biofilm composed of ferro-oxidizing bacteria is

  10. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers

    PubMed Central

    Kruszewski, Kristen M; Nistico, Laura; Longwell, Mark J; Hynes, Matthew J; Maurer, Joshua A

    2013-01-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (-CH3) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an “active” antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 hours, respectively. PMID:23498233

  11. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers.

    PubMed

    Kruszewski, Kristen M; Nistico, Laura; Longwell, Mark J; Hynes, Matthew J; Maurer, Joshua A; Hall-Stoodley, Luanne; Gawalt, Ellen S

    2013-05-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (-CH3) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an "active" antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 h, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Early Literacy and Early Numeracy: The Value of Including Early Literacy Skills in the Prediction of Numeracy Development

    ERIC Educational Resources Information Center

    Purpura, David J.; Hume, Laura E.; Sims, Darcey M.; Lonigan, Cristopher J.

    2011-01-01

    The purpose of this study was to examine whether early literacy skills uniquely predict early numeracy skills development. During the first year of the study, 69 3- to 5-year-old preschoolers were assessed on the Preschool Early Numeracy Skills (PENS) test and the Test of Preschool Early Literacy Skills (TOPEL). Participants were assessed again a…

  13. A Framework for Understanding the Evasion of Host Immunity by Candida Biofilms

    PubMed Central

    Garcia-Perez, Josselyn E.; Mathé, Lotte; Humblet-Baron, Stephanie; Braem, Annabel; Lagrou, Katrien; Van Dijck, Patrick; Liston, Adrian

    2018-01-01

    Candida biofilms are a major cause of nosocomial morbidity and mortality. The mechanism by which Candida biofilms evade the immune system remains unknown. In this perspective, we develop a theoretical framework of the three, not mutually exclusive, models, which could explain biofilm evasion of host immunity. First, biofilms may exhibit properties of immunological silence, preventing immune activation. Second, biofilms may produce immune-deviating factors, converting effective immunity into ineffective immunity. Third, biofilms may resist host immunity, which would otherwise be effective. Using a murine subcutaneous biofilm model, we found that mice infected with biofilms developed sterilizing immunity effective when challenged with yeast form Candida. Despite the induction of effective anti-Candida immunity, no spontaneous clearance of the biofilm was observed. These results support the immune resistance model of biofilm immune evasion and demonstrate an asymmetric relationship between the host and biofilms, with biofilms eliciting effective immune responses yet being resistant to immunological clearance. PMID:29616035

  14. Novel Model for Multispecies Biofilms That Uses Rigid Gas-Permeable Lenses ▿

    PubMed Central

    Peyyala, Rebecca; Kirakodu, Sreenatha S.; Ebersole, Jeffrey L.; Novak, Karen F.

    2011-01-01

    Oral biofilms comprise complex multispecies consortia aided by specific inter- and intraspecies interactions occurring among commensals and pathogenic bacterial species. Oral biofilms are primary initiating factors of periodontal disease, although complex multifactorial biological influences, including host cell responses, contribute to the individual outcome of the disease. To provide a system to study initial stages of interaction between oral biofilms and the host cells that contribute to the disease process, we developed a novel in vitro model system to grow biofilms on rigid gas-permeable contact lenses (RGPLs), which enable oxygen to permeate through the lens material. Bacterial species belonging to early- and late-colonizing groups were successfully established as single- or three-species biofilms, with each group comprising Streptococcus gordonii, Streptococcus oralis, and Streptococcus sanguinis; S. gordonii, Actinomyces naeslundii, and Fusobacterium nucleatum; or S. gordonii, F. nucleatum, and Porphyromonas gingivalis. Quantification of biofilm numbers by quantitative PCR (qPCR) revealed substantial differences in the magnitude of bacterial numbers in single-species and multispecies biofilms. We evaluated cell-permeable conventional nucleic acid stains acridine orange, hexidium iodide, and Hoechst 33258 and novel SYTO red, blue, and green fluorochromes for their effect on bacterial viability and fluorescence yield to allow visualization of the aggregates of individual bacterial species by confocal laser scanning microscopy (CLSM). Substantial differences in the quantity and distribution of the species in the multispecies biofilms were identified. The specific features of these biofilms may help us better understand the role of various bacteria in local challenge of oral tissues. PMID:21421785

  15. Symbiotic Relationship between Streptococcus mutans and Candida albicans Synergizes Virulence of Plaque Biofilms In Vivo

    PubMed Central

    Falsetta, Megan L.; Klein, Marlise I.; Colonne, Punsiri M.; Scott-Anne, Kathleen; Gregoire, Stacy; Pai, Chia-Hua; Gonzalez-Begne, Mireya; Watson, Gene; Krysan, Damian J.; Bowen, William H.

    2014-01-01

    Streptococcus mutans is often cited as the main bacterial pathogen in dental caries, particularly in early-childhood caries (ECC). S. mutans may not act alone; Candida albicans cells are frequently detected along with heavy infection by S. mutans in plaque biofilms from ECC-affected children. It remains to be elucidated whether this association is involved in the enhancement of biofilm virulence. We showed that the ability of these organisms together to form biofilms is enhanced in vitro and in vivo. The presence of C. albicans augments the production of exopolysaccharides (EPS), such that cospecies biofilms accrue more biomass and harbor more viable S. mutans cells than single-species biofilms. The resulting 3-dimensional biofilm architecture displays sizeable S. mutans microcolonies surrounded by fungal cells, which are enmeshed in a dense EPS-rich matrix. Using a rodent model, we explored the implications of this cross-kingdom interaction for the pathogenesis of dental caries. Coinfected animals displayed higher levels of infection and microbial carriage within plaque biofilms than animals infected with either species alone. Furthermore, coinfection synergistically enhanced biofilm virulence, leading to aggressive onset of the disease with rampant carious lesions. Our in vitro data also revealed that glucosyltransferase-derived EPS is a key mediator of cospecies biofilm development and that coexistence with C. albicans induces the expression of virulence genes in S. mutans (e.g., gtfB, fabM). We also found that Candida-derived β1,3-glucans contribute to the EPS matrix structure, while fungal mannan and β-glucan provide sites for GtfB binding and activity. Altogether, we demonstrate a novel mutualistic bacterium-fungus relationship that occurs at a clinically relevant site to amplify the severity of a ubiquitous infectious disease. PMID:24566629

  16. Influence of phosphorus availability on the community structure and physiology of cultured biofilms.

    PubMed

    Li, Shuangshuang; Wang, Chun; Qin, Hongjie; Li, Yinxia; Zheng, Jiaoli; Peng, Chengrong; Li, Dunhai

    2016-04-01

    Biofilms have important effects on nutrient cycling in aquatic ecosystems. However, publications about the community structure and functions under laboratory conditions are rare. This study focused on the developmental and physiological properties of cultured biofilms under various phosphorus concentrations performed in a closely controlled continuous flow incubator. The results showed that the biomass (Chl a) and photosynthesis of algae were inhibited under P-limitation conditions, while the phosphatase activity and P assimilation rate were promoted. The algal community structure of biofilms was more likely related to the colonization stage than with the phosphorus availability. Cyanobacteria were more competitive than other algae in biofilms, particularly when cultured under low P levels. A dominance shift occurred from non-filamentous algae in the early stage to filamentous algae in the mid and late stages under P concentrations of 0.01, 0.1 and 0.6 mg/L. However, the total N content, dry weight biomass and bacterial community structure of biofilms were unaffected by phosphorus availability. This may be attributed to the low respiration rate, high accumulation of extracellular polymeric substances and high alkaline phosphatase activity in biofilms when phosphorus availability was low. The bacterial community structure differed over time, while there was little difference between the four treatments, which indicated that it was mainly affected by the colonization stage of the biofilms rather than the phosphorus availability. Altogether, these results suggested that the development of biofilms was influenced by the phosphorus availability and/or the colonization stage and hence determined the role that biofilms play in the overlying water. Copyright © 2015. Published by Elsevier B.V.

  17. Development of Life on Early Mars

    NASA Technical Reports Server (NTRS)

    Gibson, Everett K.; McKay, David S.; Thomas-Keprta, Kathie L.; Clemett, Simon J.; Wentworth, Susan J.

    2009-01-01

    Exploration of Mars has begun to unveil the history of the planet. Combinations of remote sensing, in situ compositional measurements and photographic observations have shown Mars had a dynamic and active geologic evolution. Mars geologic evolution encompassed conditions that were suitable for supporting life. A habitable planet must have water, carbon and energy sources along with a dynamic geologic past. Mars meets all of these requirements. The first 600 My of Martian history were ripe for life to develop because of the abundance of (i) Water- as shown by carved canyons and oceans or lakes with the early presence of near surface water shown by precipitated carbonates in ALH84001, well-dated at 3.9 Gy, (ii) Energy from the original accretional processes, a molten core which generated a strong magnetic field leaving a permanent record in the early crust, active volcanism continuing throughout Martian history, and continuing impact processes, (iii) Carbon, water and a likely thicker atmosphere from extensive volcanic outgassing (i.e. H20, CO2, CH4, CO, O2, N2, H2S, SO2, etc.) and (iv) crustal tectonics as revealed by faulting and possible plate movement reflected by the magnetic pattern in the crust [1]. The question arises: "Why would life not develop from these favorable conditions on Mars in its first 600 My?" During this period, environmental near-surface conditions on Mars were more favorable to life than at any later time. Standing bodies of water, precipitation and flowing surface water, and possibly abundant hydrothermal energy would favor the formation of early life. (Even if life developed elsewhere on Earth, Venus, or on other bodies-it was transported to Mars where surface conditions were suitable for life to evolve). The commonly stated requirement that life would need hundreds of millions of year to get started is only an assumption; we know of no evidence that requires such a long interval for the development of life, if the proper habitable

  18. Cell fate regulation in early mammalian development

    NASA Astrophysics Data System (ADS)

    Oron, Efrat; Ivanova, Natalia

    2012-08-01

    Preimplantation development in mammals encompasses a period from fertilization to implantation and results in formation of a blastocyst composed of three distinct cell lineages: epiblast, trophectoderm and primitive endoderm. The epiblast gives rise to the organism, while the trophectoderm and the primitive endoderm contribute to extraembryonic tissues that support embryo development after implantation. In many vertebrates, such as frog or fish, maternally supplied lineage determinants are partitioned within the egg. Cell cleavage that follows fertilization results in polarization of these factors between the individual blastomeres, which become restricted in their developmental fate. In contrast, the mouse oocyte and zygote lack clear polarity and, until the eight-cell stage, individual blastomeres retain the potential to form all lineages. How are cell lineages specified in the absence of a maternally supplied blueprint? This is a fundamental question in the field of developmental biology. The answer to this question lies in understanding the cell-cell interactions and gene networks involved in embryonic development prior to implantation and using this knowledge to create testable models of the developmental processes that govern cell fates. We provide an overview of classic and contemporary models of early lineage development in the mouse and discuss the emerging body of work that highlights similarities and differences between blastocyst development in the mouse and other mammalian species.

  19. How Early Hormones Shape Gender Development

    PubMed Central

    Berenbaum, Sheri A.; Beltz, Adriene M.

    2015-01-01

    Many important psychological characteristics show sex differences, and are influenced by sex hormones at different developmental periods. We focus on the role of sex hormones in early development, particularly the differential effects of prenatal androgens on aspects of gender development. Increasing evidence confirms that prenatal androgens have facilitative effects on male-typed activity interests and engagement (including child toy preferences and adult careers), and spatial abilities, but relatively minimal effects on gender identity. Recent emphasis has been directed to the psychological mechanisms underlying these effects (including sex differences in propulsive movement, and androgen effects on interest in people versus things), and neural substrates of androgen effects (including regional brain volumes, and neural responses to mental rotation, sexually arousing stimuli, emotion, and reward). Ongoing and planned work is focused on understanding the ways in which hormones act jointly with the social environment across time to produce varying trajectories of gender development, and clarifying mechanisms by which androgens affect behaviors. Such work will be facilitated by applying lessons from other species, and by expanding methodology. Understanding hormonal influences on gender development enhances knowledge of psychological development generally, and has important implications for basic and applied questions, including sex differences in psychopathology, women’s underrepresentation in science and math, and clinical care of individuals with variations in gender expression. PMID:26688827

  20. An improved protocol for harvesting Bacillus subtilis colony biofilms.

    PubMed

    Fuchs, Felix Matthias; Driks, Adam; Setlow, Peter; Moeller, Ralf

    2017-03-01

    Bacterial biofilms cause severe problems in medicine and industry due to the high resistance to disinfectants and environmental stress of organisms within biofilms. Addressing challenges caused by biofilms requires full understanding of the underlying mechanisms for bacterial resistance and survival in biofilms. However, such work is hampered by a relative lack of systems for biofilm cultivation that are practical and reproducible. To address this problem, we developed a readily applicable method to culture Bacillus subtilis biofilms on a membrane filter. The method results in biofilms with highly reproducible characteristics, and which can be readily analyzed by a variety of methods with little further manipulation. This biofilm preparation method simplifies routine generation of B. subtilis biofilms for molecular and cellular analysis, and could be applicable to other microbial systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Phosphorylcholine Decreases Early Inflammation and Promotes the Establishment of Stable Biofilm Communities of Nontypeable Haemophilus influenzae Strain 86-028NP in a Chinchilla Model of Otitis Media▿ †

    PubMed Central

    Hong, Wenzhou; Mason, Kevin; Jurcisek, Joseph; Novotny, Laura; Bakaletz, Lauren O.; Swords, W. Edward

    2007-01-01

    Nontypeable Haemophilus influenzae (NTHi) is a leading causative agent of otitis media. Much of the inflammation occurring during NTHi disease is initiated by lipooligosaccharides (LOS) on the bacterial surface. Phosphorylcholine (PCho) is added to some LOS forms in a phase-variable manner, and these PCho+ variants predominate in vivo. Thus, we asked whether this modification confers some advantage during infection. Virulence of an otitis media isolate (NTHi strain 86-028NP) was compared with that of an isogenic PCho transferase (licD) mutant using a chinchilla (Chinchilla lanigera) model of otitis media. Animals infected with NTHi 86-028NP licD demonstrated increased early inflammation and a delayed increase in bacterial counts compared to animals infected with NTHi 86-028NP. LOS purified from chinchilla-passed NTHi 86-028NP had increased PCho content compared to LOS purified from the inoculum. Both strains were recovered from middle ear fluids as long as 14 days postinfection. Biofilms were macroscopically visible in the middle ears of euthanized animals infected with NTHi 86-028NP 7 days and 14 days postchallenge. Conversely, less dense biofilms were observed in animals infected with NTHi 86-028NP licD 7 days postinfection, and none of the animals infected with NTHi 86-028NP licD had a visible biofilm by 14 days. Fluorescent antibody staining revealed PCho+ variants within biofilms, similar to our prior results with tissue culture cells in vitro (S. L. West-Barnette, A. Rockel, and W. E. Swords, Infect. Immun. 74:1828-1836, 2006). Animals coinfected with equal proportions of both strains had equal persistence of each strain and somewhat greater severity of disease. We thus conclude that PCho promotes NTHi infection and persistence by reducing the host inflammatory response and by promoting formation of stable biofilm communities. PMID:17130253

  2. Influence of Al(III) on biofilm and its extracellular polymeric substances in sequencing batch biofilm reactors.

    PubMed

    Hu, Xuewei; Yang, Lei; Lai, Xinke; Yao, Qi; Chen, Kai

    2017-10-03

    This paper presented the influence of Al(III) on biodegradability, micromorphology, composition and functional groups characteristics of the biofilm extracellular polymeric substances (EPS) during different growth phases. The sequencing batch biofilm reactors were developed to cultivate biofilms under different Al(III) dosages. The results elucidated that Al(III) affected biofilm development adversely at the beginning of biofilm growth, but promoted the biofilm mass and improved the biofilm activity with the growth of the biofilm. The micromorphological observation indicated that Al(III) led to a reduction of the filaments and promotion of the EPS secretion in growth phases of the biofilm, also Al(III) could promote microorganisms to form larger colonies for mature biofilm. Then, the analysis of EPS contents and components suggested that Al(III) could increase the protein (PN) of tightly bound EPS (TB-EPS) which alleviated the metal toxicity inhibition on the biofilm during the initial phases of biofilm growth. The biofilm could gradually adapt to the inhibition caused by Al(III) at the biofilm maturation moment. Finally, through the Fourier transform infrared spectroscopy, it was found that Al(III) was beneficial for the proliferation and secretion of TB-EPS functional groups, especially the functional groups of protein and polysaccharides.

  3. I. Development of Metal-Mediated SPOT-Synthesis Methods for the Efficient Construction of Small-Molecule Macroarrays. II. Design and Synthesis of Novel Bacterial Biofilm Inhibitors

    NASA Astrophysics Data System (ADS)

    Frei, Reto

    I. The use of small molecule probes to explore biological phenomena has become a valuable tool in chemical biology. As a result, methods that permit the rapid synthesis and biological evaluation of such compounds are highly sought-after. The small molecule macroarray represents one such approach for the synthesis and identification of novel bioactive agents. Macroarrays are readily constructed via the SPOT-synthesis technique on planar cellulose membranes, yielding spatially addressed libraries of ˜10-1000 unique compounds. We sought to expand the arsenal of chemical reactions compatible with this solid-phase platform, and developed highly efficient SPOT-synthesis protocols for the Mizoroki-Heck, Suzuki-Miyaura, and copper-catalyzed azide-alkyne cycloaddition reaction. We demonstrated that these metal-mediated reactions can be implemented, either individually or sequentially, for the efficient construction of small molecules in high purity on rapid time scales. Utilizing these powerful C-C and C-N bond forming coupling reactions, we constructed a series of macroarrays based on novel stilbene, phenyl-naphthalene, and triazole scaliblds. Subsequent biological testing of the stilbene and phenyl-naphthalene libraries revealed several potent antagonists and agonists, respectively, of the quorum sensing (QS) receptor LuxR in Vibrio fischeri. II. Bacteria living within biofilms are notorious for their resistance to known antibiotic agents, and constitute a major human health threat. Methods to attenuate biofilm growth would have a significant impact on the management of bacterial infections. Despite intense research efforts, small molecules capable of either inhibiting or dispersing biolilms remain scarce. We utilized natural products with purported anti-biofilm or QS inhibitory activity as sources of structural insight to guide the synthesis of novel biofilm modulators with improved activities. These studies revealed 2-aminobenzimidazole derivatives as highly potent

  4. Physicochemical characteristics and microbial community evolution of biofilms during the start-up period in a moving bed biofilm reactor.

    PubMed

    Zhu, Yan; Zhang, Yan; Ren, Hong-Qiang; Geng, Jin-Ju; Xu, Ke; Huang, Hui; Ding, Li-Li

    2015-03-01

    This study aimed to investigate biofilm properties evolution coupled with different ages during the start-up period in a moving bed biofilm reactor system. Physicochemical characteristics including adhesion force, extracellular polymeric substances (EPS), morphology as well as volatile solid and microbial community were studied. Results showed that the formation and development of biofilms exhibited four stages, including (I) initial attachment and young biofilm formation, (II) biofilms accumulation, (III) biofilm sloughing and updating, and (IV) biofilm maturation. During the whole start-up period, adhesion force was positively and significantly correlated with the contents of EPS, especially the content of polysaccharide. In addition, increased adhesion force and EPS were beneficial for biofilm retention. Gram-negative bacteria mainly including Sphaerotilus, Zoogloea and Haliscomenobacter were predominant in the initial stage. Actinobacteria was beneficial to resist sloughing. Furthermore, filamentous bacteria were dominant in maturation biofilm. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Early Vascular Ageing - A Concept in Development.

    PubMed

    M Nilsson, Peter

    2015-04-01

    Cardiovascular disease (CVD) is a prevalent condition in the elderly, often associated with metabolic disturbance and type 2 diabetes. For a number of years, research dedicated to understand atherosclerosis dominated, and for many good reasons, this pathophysiological process being proximal to the CVD events. In recent years, research has been devoted to an earlier stage of vascular pathology named arteriosclerosis (arterial stiffness) and the new concept of early vascular ageing (EVA), developed by a group of mostly European researchers. This overview describes recent developments in research dedicated to EVA and new emerging aspects found in studies of families at high cardiovascular risk. There are new aspects related to genetics, telomere biology and the role of gut microbiota. However, there is still no unifying definition available of EVA and no direct treatment, but rather only recommendations for conventional cardiovascular risk factor control. New interventions are being developed - not only new antihypertensive drugs, but also new drugs for vascular protection - the selective angiotensin-II (AT2) agonist Compound 21 (C21). Human studies are eagerly awaited. Even new functional food products could have the potential to positively influence cardiometabolic regulation, to be confirmed.

  6. Hybrid discrete-continuum modeling for transport, biofilm development and solid restructuring including electrostatic effects

    NASA Astrophysics Data System (ADS)

    Prechtel, Alexander; Ray, Nadja; Rupp, Andreas

    2017-04-01

    We want to present an approach for the mathematical, mechanistic modeling and numerical treatment of processes leading to the formation, stability, and turnover of soil micro-aggregates. This aims at deterministic aggregation models including detailed mechanistic pore-scale descriptions to account for the interplay of geochemistry and microbiology, and the link to soil functions as, e.g., the porosity. We therefore consider processes at the pore scale and the mesoscale (laboratory scale). At the pore scale transport by diffusion, advection, and drift emerging from electric forces can be taken into account, in addition to homogeneous and heterogeneous reactions of species. In the context of soil micro-aggregates the growth of biofilms or other glueing substances as EPS (extracellular polymeric substances) is important and affects the structure of the pore space in space and time. This model is upscaled mathematically in the framework of (periodic) homogenization to transfer it to the mesoscale resulting in effective coefficients/parameters there. This micro-macro model thus couples macroscopic equations that describe the transport and fluid flow at the scale of the porous medium (mesoscale) with averaged time- and space-dependent coefficient functions. These functions may be explicitly computed by means of auxiliary cell problems (microscale). Finally, the pore space in which the cell problems are defined is time and space dependent and its geometry inherits information from the transport equation's solutions. The microscale problems rely on versatile combinations of cellular automata and discontiuous Galerkin methods while on the mesoscale mixed finite elements are used. The numerical simulations allow to study the interplay between these processes.

  7. Plasticity of Candida albicans Biofilms

    PubMed Central

    Daniels, Karla J.

    2016-01-01

    SUMMARY Candida albicans, the most pervasive fungal pathogen that colonizes humans, forms biofilms that are architecturally complex. They consist of a basal yeast cell polylayer and an upper region of hyphae encapsulated in extracellular matrix. However, biofilms formed in vitro vary as a result of the different conditions employed in models, the methods used to assess biofilm formation, strain differences, and, in a most dramatic fashion, the configuration of the mating type locus (MTL). Therefore, integrating data from different studies can lead to problems of interpretation if such variability is not taken into account. Here we review the conditions and factors that cause biofilm variation, with the goal of engendering awareness that more attention must be paid to the strains employed, the methods used to assess biofilm development, every aspect of the model employed, and the configuration of the MTL locus. We end by posing a set of questions that may be asked in comparing the results of different studies and developing protocols for new ones. This review should engender the notion that not all biofilms are created equal. PMID:27250770

  8. Development of a Novel, Highly Quantitative In Vivo Model for the Study of Biofilm-Impaired Cutaneous Wound Healing

    DTIC Science & Technology

    2011-01-01

    established on microbiologically naıve tissues (such as in endocarditis or cystic fibrosis). Whether on damaged heart valves or poorly functioning respiratory...time. Although wound infections represent a spectrum of bacterial phenotypes, involving bacteria in both the plank- tonic and biofilm phases, we use...our model to study differ- ences in planktonic- and biofilm-dominant infections , which are classically associated with acute and chronic wound

  9. Prevention and treatment of Staphylococcus aureus biofilms

    PubMed Central

    Bhattacharya, Mohini; Wozniak, Daniel J; Stoodley, Paul; Hall-Stoodley, Luanne

    2016-01-01

    S. aureus colonizes both artificial and tissue surfaces in humans causing chronic persistent infections that are difficult to cure. It is a notorious pathogen due to its antibiotic recalcitrance and phenotypic adaptability, both of which are facilitated by its ability to develop biofilms. S. aureus biofilms challenge conventional anti-infective approaches, most notably antibiotic therapy. Therefore there is an unmet need to develop and include parallel approaches that target S. aureus biofilm infections. This review discusses two broad anti-infective strategies: (1) preventative approaches (anti-biofilm surface coatings, the inclusion of biofilm-specific vaccine antigens); and (2) approaches aimed at eradicating established S. aureus biofilms, particularly those associated with implant infections. Advances in understanding the distinct nature of S. aureus biofilm development and pathogenesis have led to growing optimism in S. aureus biofilm targeted anti-infective strategies. Further research is needed however, to see the successful administration and validation of these approaches to the diverse types of infections caused by S. aureus biofilms from multiple clinical strains. PMID:26646248

  10. Focus on the physics of biofilms

    NASA Astrophysics Data System (ADS)

    Lecuyer, Sigolene; Stocker, Roman; Rusconi, Roberto

    2015-03-01

    Bacteria are the smallest and most abundant form of life. They have traditionally been considered as primarily planktonic organisms, swimming or floating in a liquid medium, and this view has shaped many of the approaches to microbial processes, including for example the design of most antibiotics. However, over the last few decades it has become clear that many bacteria often adopt a sessile, surface-associated lifestyle, forming complex multicellular communities called biofilms. Bacterial biofilms are found in a vast range of environments and have major consequences on human health and industrial processes, from biofouling of surfaces to the spread of diseases. Although the study of biofilms has been biologists’ territory for a long time, a multitude of phenomena in the formation and development of biofilms hinges on physical processes. We are pleased to present a collection of research papers that discuss some of the latest developments in many of the areas to which physicists can contribute a deeper understanding of biofilms, both experimentally and theoretically. The topics covered range from the influence of physical environmental parameters on cell attachment and subsequent biofilm growth, to the use of local probes and imaging techniques to investigate biofilm structure, to the development of biofilms in complex environments and the modeling of colony morphogenesis. The results presented contribute to addressing some of the major challenges in microbiology today, including the prevention of surface contamination, the optimization of biofilm disruption methods and the effectiveness of antibiotic treatments.

  11. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes.

    PubMed

    Lehtola, Markku J; Miettinen, Ilkka T; Keinänen, Minna M; Kekki, Tomi K; Laine, Olli; Hirvonen, Arja; Vartiainen, Terttu; Martikainen, Pertti J

    2004-10-01

    We studied the changes in water quality and formation of biofilms occurring in a pilot-scale water distribution system with two generally used pipe materials: copper and plastic (polyethylene, PE). The formation of biofilms with time was analysed as the number of total bacteria, heterotrophic plate counts and the concentration of ATP in biofilms. At the end of the experiment (after 308 days), microbial community structure, viable biomass and gram-negative bacterial biomass were analysed via lipid biomarkers (phospholipid fatty acids and lipopolysaccharide 3-hydroxy fatty acids), and the numbers of virus-like particles and total bacteria were enumerated by SYBR Green I staining. The formation of biofilm was slower in copper pipes than in the PE pipes, but after 200 days there was no difference in microbial numbers between the pipe materials. Copper ion led to lower microbial numbers in water during the first 200 days, but thereafter there were no differences between the two pipe materials. The number of virus-like particles was lower in biofilms and in outlet water from the copper pipes than PE pipes. Pipe material influenced also the microbial and gram-negative bacterial community structure in biofilms and water.

  12. Material modeling of biofilm mechanical properties.

    PubMed

    Laspidou, C S; Spyrou, L A; Aravas, N; Rittmann, B E

    2014-05-01

    A biofilm material model and a procedure for numerical integration are developed in this article. They enable calculation of a composite Young's modulus that varies in the biofilm and evolves with deformation. The biofilm-material model makes it possible to introduce a modeling example, produced by the Unified Multi-Component Cellular Automaton model, into the general-purpose finite-element code ABAQUS. Compressive, tensile, and shear loads are imposed, and the way the biofilm mechanical properties evolve is assessed. Results show that the local values of Young's modulus increase under compressive loading, since compression results in the voids "closing," thus making the material stiffer. For the opposite reason, biofilm stiffness decreases when tensile loads are imposed. Furthermore, the biofilm is more compliant in shear than in compression or tension due to the how the elastic shear modulus relates to Young's modulus. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Calcium at fertilization and in early development

    PubMed Central

    Whitaker, Michael

    2012-01-01

    Fertilization calcium waves are introduced and the evidence from which we can infer general mechanisms of these waves is presented. The two main classes of hypothesis put forward to explain the generation of the fertilization calcium wave are set out and it is concluded that initiation of the fertilization calcium wave can be most generally explained in inverterbrates by a mechanism in which an activating substance enters the egg from the sperm on sperm-egg fusion, activating the egg by stimulating phospholipase C activation through a src family kinase pathway and in mammals by the diffusion of a sperm-specific phospholipase C from sperm to egg on sperm-egg fusion. The fertilization calcium wave is then set into the context of cell cycle control and the mechanism of repetitive calcium spiking in mammalian eggs is investigated. Evidence that calcium signals control cell division in early embryos is reviewed, and it is concluded that calcium signals are essential at all three stages of cell division in early embryos. Evidence that phosphoinositide signalling pathways control the resumption of meiosis during oocyte maturation is considered. It is concluded on balance that the evidence points to a need for phosphoinositide/calcium signalling during resumption of meiosis. Changes to the calcium signalling machinery occur during meiosis to enable the production of a calcium wave in the mature oocyte when it is fertilized; evidence that the shape and structure of the endoplasmic reticulum alters dynamically during maturation and after fertilization is reviewed and the link between ER dynamics and the cytoskeleton is discussed. There is evidence that calcium signalling plays a key part in the development of patterning in early embryos. Morphogenesis in ascidian, frog and zebrafish embryos is briefly described to provide the developmental context in which calcium signals act. Intracellular calcium waves that may play a role in axis formation in ascidian are discussed

  14. Early Years Practitioners' Views on Early Personal, Social and Emotional Development

    ERIC Educational Resources Information Center

    Aubrey, Carol; Ward, Karen

    2013-01-01

    Current policy guidance stresses the need for early identification of obstacles to learning and appropriate intervention. New standards for learning (Early Years Foundation Stage) place personal, social and emotional development (PSED) as central to learning and development. This paper reports a survey and follow-up interviews with early years…

  15. Acoustic vibration can enhance bacterial biofilm formation.

    PubMed

    Murphy, Mark F; Edwards, Thomas; Hobbs, Glyn; Shepherd, Joanna; Bezombes, Frederic

    2016-12-01

    This paper explores the use of low-frequency-low-amplitude acoustic vibration on biofilm formation. Biofilm development is thought to be governed by a diverse range of environmental signals and much effort has gone into researching the effects of environmental factors including; nutrient availability, pH and temperature on the growth of biofilms. Many biofilm-forming organisms have evolved to thrive in mechanically challenging environments, for example soil yet, the effects of the physical environment on biofilm formation has been largely ignored. Exposure of Pseudomonas aeruginosa to vibration at 100, 800 and 1600 Hz for 48 h, resulted in a significant increase in biofilm formation compared with the control, with the greatest growth seen at 800 Hz vibration. The results also show that this increase in biofilm formation is accompanied with an increase in P. aeruginosa cell number. Acoustic vibration was also found to regulate the spatial distribution of biofilm formation in a frequency-dependent manner. Exposure of Staphylococcus aureus to acoustic vibration also resulted in enhanced biofilm formation with the greatest level of biofilm being formed following 48 h exposure at 1600 Hz. These results show that acoustic vibration can be used to control biofilm formation and therefore presents a novel and potentially cost effective means to manipulate the development and yield of biofilms in a range of important industrial and medical processes. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Bacterial Biofilms as Complex Communities

    NASA Astrophysics Data System (ADS)

    Vlamakis, Hera

    2010-03-01

    Many microbial populations form surface-associated multicellular communities known as biofilms. These multicellular communities are encased in a self-produced extracellular matrix composed of polysaccharides and proteins. Division of labor is a key feature of these communities and different cells serve distinct functions. We have found that in biofilms of the bacterium Bacillus subtilis, different cell types including matrix-producing and sporulating cells coexist and localize to distinct regions within the structured community. We were interested in understanding how these different cell types arise. Using fluorescence reporters under the control of promoters that are specific for distinct cell types we were able to follow the dynamics of differentiation throughout biofilm development. We found that a series of extracellular signals leads to differentiation of distinct cell types during biofilm formation. In addition, we found that extracellular matrix functions as a differentiation signal for timely sporulation within a biofilm and mutants unable to produce matrix were delayed in sporulation. Our results indicate that within a biofilm, cell-cell signaling is directional in that one cell type produces a signal that is sensed by another distinct cell type. Furthermore, once differentiated, cells become resistant to the action of other signaling molecules making it possible to maintain distinct cell populations over prolonged periods.

  17. Candida Biofilms: Threats, Challenges, and Promising Strategies.

    PubMed

    Cavalheiro, Mafalda; Teixeira, Miguel Cacho

    2018-01-01

    Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis , and Candida parapsilosis , highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS) and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed.

  18. AFM Structural Characterization of Drinking Water Biofilm ...

    EPA Pesticide Factsheets

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodology will allow future in situ investigations to temporally monitor mixed culture drinking water biofilm structural changes during disinfection treatments. Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodo

  19. Candida Biofilms: Threats, Challenges, and Promising Strategies

    PubMed Central

    Cavalheiro, Mafalda; Teixeira, Miguel Cacho

    2018-01-01

    Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis, and Candida parapsilosis, highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS) and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed. PMID:29487851

  20. Biofilm matrix exoproteins induce a protective immune response against Staphylococcus aureus biofilm infection.

    PubMed

    Gil, Carmen; Solano, Cristina; Burgui, Saioa; Latasa, Cristina; García, Begoña; Toledo-Arana, Alejandro; Lasa, Iñigo; Valle, Jaione

    2014-03-01

    The Staphylococcus aureus biofilm mode of growth is associated with several chronic infections that are very difficult to treat due to the recalcitrant nature of biofilms to clearance by antimicrobials. Accordingly, there is an increasing interest in preventing the formation of S. aureus biofilms and developing efficient antibiofilm vaccines. Given the fact that during a biofilm-associated infection, the first primary interface between the host and the bacteria is the self-produced extracellular matrix, in this study we analyzed the potential of extracellular proteins found in the biofilm matrix to induce a protective immune response against S. aureus infections. By using proteomic approaches, we characterized the exoproteomes of exopolysaccharide-based and protein-based biofilm matrices produced by two clinical S. aureus strains. Remarkably, results showed that independently of the nature of the biofilm matrix, a common core of secreted proteins is contained in both types of exoproteomes. Intradermal administration of an exoproteome extract of an exopolysaccharide-dependent biofilm induced a humoral immune response and elicited the production of interleukin 10 (IL-10) and IL-17 in mice. Antibodies against such an extract promoted opsonophagocytosis and killing of S. aureus. Immunization with the biofilm matrix exoproteome significantly reduced the number of bacterial cells inside a biofilm and on the surrounding tissue, using an in vivo model of mesh-associated biofilm infection. Furthermore, immunized mice also showed limited organ colonization by bacteria released from the matrix at the dispersive stage of the biofilm cycle. Altogether, these data illustrate the potential of biofilm matrix exoproteins as a promising candidate multivalent vaccine against S. aureus biofilm-associated infections.

  1. Development sites, feeding modes and early stages of seven European Palloptera species (Diptera, Pallopteridae).

    PubMed

    Rotheray, Graham E

    2014-12-19

    Two hundred and ninety-eight rearing records and 87 larvae and puparia were obtained of seven species of Palloptera Fallén (Diptera, Pallopteridae), mainly in Scotland during 2012-2013. The third stage larva and puparium of each species were assessed morphologically and development sites and feeding modes investigated by rearing, observation and feeding tests. Early stages appear to be distinguished by the swollen, apico-lateral margins of the prothorax which are coated in vestiture and a poorly developed anal lobe with few spicules. Individual pallopteran species are separated by features of the head skeleton, locomotory spicules and the posterior respiratory organs. Five species can be distinguished by unique character states. Observations and feeding tests suggest that the frequently cited attribute of zoophagy is accidental and that saprophagy is the primary larval feeding mode with autumn/winter as the main period of development. Food plants were confirmed for flowerhead and stem developing species and rain is important for maintaining biofilms on which larvae feed. Due to difficulties in capturing adults, especially males, the distribution and abundance of many pallopteran species is probably underestimated. Better informed estimates are possible if early stages are included in biodiversity assessments. To facilitate this for the species investigated, a key to the third stage larva and puparium along with details on finding them, is provided. 

  2. Early Parental Depression and Child Language Development

    ERIC Educational Resources Information Center

    Paulson, James F.; Keefe, Heather A.; Leiferman, Jenn A.

    2009-01-01

    Objective: To examine the effects of early maternal and paternal depression on child expressive language at age 24 months and the role that parent-to-child reading may play in this pathway. Participants and methods: The 9-month and 24-month waves from a national prospective study of children and their families, the Early Childhood Longitudinal…

  3. Biophysics of biofilm infection.

    PubMed

    Stewart, Philip S

    2014-04-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofilm and release of planktonic microbial cells is also important in vivo because it can result in dissemination of infection. The fundamental criterion for detachment and dissemination is that the applied stress exceeds the biofilm failure strength. The apparent contradiction for a biofilm to both persist and disseminate is resolved by recognizing that biofilm material properties are inherently heterogeneous. There are also mechanical aspects to the ways that infectious biofilms evade leukocyte phagocytosis. The possibility of alternative therapies for treating biofilm infections that work by reducing biofilm cohesion could (1) allow prevailing hydrodynamic shear to remove biofilm, (2) increase the efficacy of designed interventions for removing biofilms, (3) enable phagocytic engulfment of softened biofilm aggregates, and (4) improve phagocyte mobility and access to biofilm. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. Biophysics of Biofilm Infection

    PubMed Central

    Stewart, Philip S.

    2014-01-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofilm and release of planktonic microbial cells is also important in vivo because it can result in dissemination of infection. The fundamental criterion for detachment and dissemination is that the applied stress exceeds the biofilm failure strength. The apparent contradiction for a biofilm to both persist and disseminate is resolved by recognizing that biofilm material properties are inherently heterogeneous. There are also mechanical aspects to the ways that infectious biofilms evade leukocyte phagocytosis. The possibility of alternative therapies for treating biofilm infections that work by reducing biofilm cohesion could: 1) allow prevailing hydrodynamic shear to remove biofilm, 2) increase the efficacy of designed interventions for removing biofilms, 3) enable phagocytic engulfment of softened biofilm aggregates, and 4) improve phagocyte mobility and access to biofilm. PMID:24376149

  5. The early research and development of ebselen.

    PubMed

    Parnham, Michael J; Sies, Helmut

    2013-11-01

    Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one; PZ-51, DR-3305), is an organoselenium compound with glutathione peroxidase (GPx)-like, thiol-dependent, hydroperoxide reducing activity. As an enzyme mimic for activity of the selenoenzyme GPx, this compound has proved to be highly useful in research on mechanisms in redox biology. Furthermore, the reactivity of ebselen with protein thiols has helped to identify novel, selective targets for inhibitory actions on several enzymes of importance in pharmacology and toxicology. Importantly, the selenium in ebselen is not released and thus is not bioavailable, ebselen metabolites being excreted in bile and urine. As a consequence, initial concerns about selenium toxicity, fortunately, were unfounded. Potential applications in medical settings have been explored, notably in brain ischemia and stroke. More recently, there has been a surge in interest as new medical applications have been taken into consideration. The first publication on the biochemical effects of ebselen appeared 30 years ago (Müller et al.), which prompted the authors to retrace the early development from their perspective. It is a fascinating example of fruitful interaction between research-oriented industry and academia. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Extracellular DNA and lipoteichoic acids interact with exopolysaccharides in the extracellular matrix of Streptococcus mutans biofilms

    PubMed Central

    Castillo Pedraza, Midian C.; Novais, Tatiana F.; Faustoferri, Roberta C.; Quivey, Robert G.; Terekhov, Anton; Hamaker, Bruce R.; Klein, Marlise I.

    2018-01-01

    Streptococcus mutans -derived exopolysaccharides are virulence determinants in the matrix of biofilms that cause caries. Extracellular DNA (eDNA) and lipoteichoic acid (LTA) are found in cariogenic biofilms, but their functions are unclear. Therefore, strains of S. mutans carrying single deletions that would modulate matrix components were used: eDNA – ΔlytS and ΔlytT; LTA – ΔdltA and ΔdltD; and insoluble exopolysaccharide – ΔgtfB. Single-species (parental strain S. mutans UA159 or individual mutant strains) and mixed-species (UA159 or mutant strain, Actinomyces naeslundii and Streptococcus gordonii) biofilms were evaluated. Distinct amounts of matrix components were detected, depending on the inactivated gene. eDNA was found to be cooperative with exopolysaccharide in early phases, while LTA played a larger role in the later phases of biofilm development. The architecture of mutant strains biofilms was distinct (vs UA159), demonstrating that eDNA and LTA influence exopolysaccharide distribution and microcolony organization. Thus, eDNA and LTA may shape exopolysaccharide structure, affecting strategies for controlling pathogenic biofilms. PMID:28946780

  7. Extracellular DNA and lipoteichoic acids interact with exopolysaccharides in the extracellular matrix of Streptococcus mutans biofilms.

    PubMed

    Castillo Pedraza, Midian C; Novais, Tatiana F; Faustoferri, Roberta C; Quivey, Robert G; Terekhov, Anton; Hamaker, Bruce R; Klein, Marlise I

    2017-10-01

    Streptococcus mutans-derived exopolysaccharides are virulence determinants in the matrix of biofilms that cause caries. Extracellular DNA (eDNA) and lipoteichoic acid (LTA) are found in cariogenic biofilms, but their functions are unclear. Therefore, strains of S. mutans carrying single deletions that would modulate matrix components were used: eDNA - ∆lytS and ∆lytT; LTA - ∆dltA and ∆dltD; and insoluble exopolysaccharide - ΔgtfB. Single-species (parental strain S. mutans UA159 or individual mutant strains) and mixed-species (UA159 or mutant strain, Actinomyces naeslundii and Streptococcus gordonii) biofilms were evaluated. Distinct amounts of matrix components were detected, depending on the inactivated gene. eDNA was found to be cooperative with exopolysaccharide in early phases, while LTA played a larger role in the later phases of biofilm development. The architecture of mutant strains biofilms was distinct (vs UA159), demonstrating that eDNA and LTA influence exopolysaccharide distribution and microcolony organization. Thus, eDNA and LTA may shape exopolysaccharide structure, affecting strategies for controlling pathogenic biofilms.

  8. Characterization of the TolB-Pal trans-envelope complex from Xylella fastidiosa reveals a dynamic and coordinated protein expression profile during the biofilm development process.

    PubMed

    Santos, Clelton A; Janissen, Richard; Toledo, Marcelo A S; Beloti, Lilian L; Azzoni, Adriano R; Cotta, Monica A; Souza, Anete P

    2015-10-01

    The intriguing roles of the bacterial Tol-Pal trans-envelope protein complex range from maintenance of cell envelope integrity to potential participation in the process of cell division. In this study, we report the characterization of the XfTolB and XfPal proteins of the Tol-Pal complex of Xylella fastidiosa. X. fastidiosa is a major plant pathogen that forms biofilms inside xylem vessels, triggering the development of diseases in important cultivable plants around the word. Based on functional complementation experiments in Escherichia coli tolB and pal mutant strains, we confirmed the role of xftolB and xfpal in outer membrane integrity. In addition, we observed a dynamic and coordinated protein expression profile during the X. fastidiosa biofilm development process. Using small-angle X-ray scattering (SAXS), the low-resolution structure of the isolated XfTolB-XfPal complex in solution was solved for the first time. Finally, the localization of the XfTolB and XfPal polar ends was visualized via immunofluorescence labeling in vivo during bacterial cell growth. Our results highlight the major role of the components of the cell envelope, particularly the TolB-Pal complex, during the different phases of bacterial biofilm development. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Red and Green Fluorescence from Oral Biofilms

    PubMed Central

    Hoogenkamp, Michel A.; Krom, Bastiaan P.; Janus, Marleen M.; ten Cate, Jacob M.; de Soet, Johannes J.; Crielaard, Wim; van der Veen, Monique H.

    2016-01-01

    Red and green autofluorescence have been observed from dental plaque after excitation by blue light. It has been suggested that this red fluorescence is related to caries and the cariogenic potential of dental plaque. Recently, it was suggested that red fluorescence may be related to gingivitis. Little is known about green fluorescence from biofilms. Therefore, we assessed the dynamics of red and green fluorescence in real-time during biofilm formation. In addition, the fluorescence patterns of biofilm formed from saliva of eight different donors are described under simulated gingivitis and caries conditions. Biofilm formation was analysed for 12 hours under flow conditions in a microfluidic BioFlux flow system with high performance microscopy using a camera to allow live cell imaging. For fluorescence images dedicated excitation and emission filters were used. Both green and red fluorescence were linearly related with the total biomass of the biofilms. All biofilms displayed to some extent green and red fluorescence, with higher red and green fluorescence intensities from biofilms grown in the presence of serum (gingivitis simulation) as compared to the sucrose grown biofilms (cariogenic simulation). Remarkably, cocci with long chain lengths, presumably streptococci, were observed in the biofilms. Green and red fluorescence were not found homogeneously distributed within the biofilms: highly fluorescent spots (both green and red) were visible throughout the biomass. An increase in red fluorescence from the in vitro biofilms appeared to be related to the clinical inflammatory response of the respective saliva donors, which was previously assessed during an in vivo period of performing no-oral hygiene. The BioFlux model proved to be a reliable model to assess biofilm fluorescence. With this model, a prediction can be made whether a patient will be prone to the development of gingivitis or caries. PMID:27997567

  10. Red and Green Fluorescence from Oral Biofilms.

    PubMed

    Volgenant, Catherine M C; Hoogenkamp, Michel A; Krom, Bastiaan P; Janus, Marleen M; Ten Cate, Jacob M; de Soet, Johannes J; Crielaard, Wim; van der Veen, Monique H

    2016-01-01

    Red and green autofluorescence have been observed from dental plaque after excitation by blue light. It has been suggested that this red fluorescence is related to caries and the cariogenic potential of dental plaque. Recently, it was suggested that red fluorescence may be related to gingivitis. Little is known about green fluorescence from biofilms. Therefore, we assessed the dynamics of red and green fluorescence in real-time during biofilm formation. In addition, the fluorescence patterns of biofilm formed from saliva of eight different donors are described under simulated gingivitis and caries conditions. Biofilm formation was analysed for 12 hours under flow conditions in a microfluidic BioFlux flow system with high performance microscopy using a camera to allow live cell imaging. For fluorescence images dedicated excitation and emission filters were used. Both green and red fluorescence were linearly related with the total biomass of the biofilms. All biofilms displayed to some extent green and red fluorescence, with higher red and green fluorescence intensities from biofilms grown in the presence of serum (gingivitis simulation) as compared to the sucrose grown biofilms (cariogenic simulation). Remarkably, cocci with long chain lengths, presumably streptococci, were observed in the biofilms. Green and red fluorescence were not found homogeneously distributed within the biofilms: highly fluorescent spots (both green and red) were visible throughout the biomass. An increase in red fluorescence from the in vitro biofilms appeared to be related to the clinical inflammatory response of the respective saliva donors, which was previously assessed during an in vivo period of performing no-oral hygiene. The BioFlux model proved to be a reliable model to assess biofilm fluorescence. With this model, a prediction can be made whether a patient will be prone to the development of gingivitis or caries.

  11. Parental Obesity and Early Childhood Development.

    PubMed

    Yeung, Edwina H; Sundaram, Rajeshwari; Ghassabian, Akhgar; Xie, Yunlong; Buck Louis, Germaine

    2017-02-01

    Previous studies identified associations between maternal obesity and childhood neurodevelopment, but few examined paternal obesity despite potentially distinct genetic/epigenetic effects related to developmental programming. Upstate KIDS (2008-2010) recruited mothers from New York State (excluding New York City) at ∼4 months postpartum. Parents completed the Ages and Stages Questionnaire (ASQ) when their children were 4, 8, 12, 18, 24, 30, and 36 months of age corrected for gestation. The ASQ is validated to screen for delays in 5 developmental domains (ie, fine motor, gross motor, communication, personal-social functioning, and problem-solving ability). Analyses included 3759 singletons and 1062 nonrelated twins with ≥1 ASQs returned. Adjusted odds ratios (aORs) and 95% confidence intervals were estimated by using generalized linear mixed models accounting for maternal covariates (ie, age, race, education, insurance, marital status, parity, and pregnancy smoking). Compared with normal/underweight mothers (BMI <25), children of obese mothers (26% with BMI ≥30) had increased odds of failing the fine motor domain (aOR 1.67; confidence interval 1.12-2.47). The association remained after additional adjustment for paternal BMI (1.67; 1.11-2.52). Paternal obesity (29%) was associated with increased risk of failing the personal-social domain (1.75; 1.13-2.71), albeit attenuated after adjustment for maternal obesity (aOR 1.71; 1.08-2.70). Children whose parents both had BMI ≥35 were likely to additionally fail the problem-solving domain (2.93; 1.09-7.85). Findings suggest that maternal and paternal obesity are each associated with specific delays in early childhood development, emphasizing the importance of family information when screening child development. Copyright © 2017 by the American Academy of Pediatrics.

  12. Parental Obesity and Early Childhood Development

    PubMed Central

    Sundaram, Rajeshwari; Ghassabian, Akhgar; Xie, Yunlong; Buck Louis, Germaine

    2017-01-01

    BACKGROUND: Previous studies identified associations between maternal obesity and childhood neurodevelopment, but few examined paternal obesity despite potentially distinct genetic/epigenetic effects related to developmental programming. METHODS: Upstate KIDS (2008–2010) recruited mothers from New York State (excluding New York City) at ∼4 months postpartum. Parents completed the Ages and Stages Questionnaire (ASQ) when their children were 4, 8, 12, 18, 24, 30, and 36 months of age corrected for gestation. The ASQ is validated to screen for delays in 5 developmental domains (ie, fine motor, gross motor, communication, personal-social functioning, and problem-solving ability). Analyses included 3759 singletons and 1062 nonrelated twins with ≥1 ASQs returned. Adjusted odds ratios (aORs) and 95% confidence intervals were estimated by using generalized linear mixed models accounting for maternal covariates (ie, age, race, education, insurance, marital status, parity, and pregnancy smoking). RESULTS: Compared with normal/underweight mothers (BMI <25), children of obese mothers (26% with BMI ≥30) had increased odds of failing the fine motor domain (aOR 1.67; confidence interval 1.12–2.47). The association remained after additional adjustment for paternal BMI (1.67; 1.11–2.52). Paternal obesity (29%) was associated with increased risk of failing the personal-social domain (1.75; 1.13–2.71), albeit attenuated after adjustment for maternal obesity (aOR 1.71; 1.08–2.70). Children whose parents both had BMI ≥35 were likely to additionally fail the problem-solving domain (2.93; 1.09–7.85). CONCLUSIONS: Findings suggest that maternal and paternal obesity are each associated with specific delays in early childhood development, emphasizing the importance of family information when screening child development. PMID:28044047

  13. Effect of Silver or Copper Nanoparticles-Dispersed Silane Coatings on Biofilm Formation in Cooling Water Systems

    PubMed Central

    Ogawa, Akiko; Kanematsu, Hideyuki; Sano, Katsuhiko; Sakai, Yoshiyuki; Ishida, Kunimitsu; Beech, Iwona B.; Suzuki, Osamu; Tanaka, Toshihiro

    2016-01-01

    Biofouling often occurs in cooling water systems, resulting in the reduction of heat exchange efficiency and corrosion of the cooling pipes, which raises the running costs. Therefore, controlling biofouling is very important. To regulate biofouling, we focus on the formation of biofilm, which is the early step of biofouling. In this study, we investigated whether silver or copper nanoparticles-dispersed silane coatings inhibited biofilm formation in cooling systems. We developed a closed laboratory biofilm reactor as a model of a cooling pipe and used seawater as a model for cooling water. Silver or copper nanoparticles-dispersed silane coating (Ag coating and Cu coating) coupons were soaked in seawater, and the seawater was circulated in the laboratory biofilm reactor for several days to create biofilms. Three-dimensional images of the surface showed that sea-island-like structures were formed on silane coatings and low concentration Cu coating, whereas nothing was formed on high concentration Cu coatings and low concentration Ag coating. The sea-island-like structures were analyzed by Raman spectroscopy to estimate the components of the biofilm. We found that both the Cu coating and Ag coating were effective methods to inhibit biofilm formation in cooling pipes. PMID:28773758

  14. Distinctive colonization of Bacillus sp. bacteria and the influence of the bacterial biofilm on electrochemical behaviors of aluminum coatings.

    PubMed

    Abdoli, Leila; Suo, Xinkun; Li, Hua

    2016-09-01

    Formation of biofilm is usually essential for the development of biofouling and crucially impacts the corrosion of marine structures. Here we report the attachment behaviors of Bacillus sp. bacteria and subsequent formation of bacterial biofilm on stainless steel and thermal sprayed aluminum coatings in artificial seawater. The colonized bacteria accelerate the corrosion of the steel plates, and markedly enhance the anti-corrosion performances of the Al coatings in early growth stage of the bacterial biofilm. After 7days incubation, the biofilm formed on the steel is heterogeneous while exhibits homogeneous feature on the Al coating. Atomic force microscopy examination discloses inception of formation of local pitting on steel plates associated with significantly roughened surface. Electrochemical testing suggests that the impact of the bacterial biofilm on the corrosion behaviors of marine structures is not decided by the biofilm alone, it is instead attributed to synergistic influence by both the biofilm and physicochemical characteristics of the substratum materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Terrestrial Biomarkers for Early Life on Earth as Analogs for Possible Martian Life Forms: Examples of Minerally Replaced Bacteria and Biofilms From the 3.5 - 3.3-Ga Barberton Greenstone Belt, South Africa

    NASA Technical Reports Server (NTRS)

    Westall, F.; McKay, D. S.; Gibson, E. K.; deWit, M. J.; Dann, J.; Gerneke, D.; deRonde, C. E. J.

    1998-01-01

    The search for extraterrestrial life and especially martian life hinges on a variety of methods used to identify vestiges of what we could recognize as life, including chemical signatures, morphological fossils, and biogenic precipitates. Although the possibility of extant life on Mars (subsurface) is being considered, most exploration efforts may be directed toward the search for fossil life. Geomorphological evidence points to a warmer and wetter Mars early on in its history, a scenario that encourages comparison with the early Earth. For this reason, study of the early terrestrial life forms and environment in which they lived may provide clues as to how to search for extinct martian life. As a contribution to the early Archean database of terrestrial microfossils, we present new data on morphological fossils from the 3.5-3.3-Ga Barberton greenstone belt (BGB), South Africa. This study underlines the variety of fossil types already present in some of the oldest, best-preserved terrestrial sediments, ranging from minerally replaced bacteria and bacteria molds of vaRious morphologies (coccoid, coccobacillus, bacillus) to minerally replaced biofilm. Biofilm or extracellular polymeric substance (EPS) is produced by bacteria and appears to be more readily fossilisable than bacteria themselves. The BGB fossils occur in shallow water to subaerial sediments interbedded with volcanic lavas, the whole being deposited on oceanic crust. Penecontemporaneous silicification of sediments and volcanics resulted in the chertification of the rocks, which were later subjected to low-grade metamorphism (lower greenschist).

  16. Solid-state NMR for bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Reichhardt, Courtney; Cegelski, Lynette

    2014-04-01

    Bacteria associate with surfaces and one another by elaborating an extracellular matrix to encapsulate cells, creating communities termed biofilms. Biofilms are beneficial in some ecological niches, but also contribute to the pathogenesis of serious and chronic infectious diseases. New approaches and quantitative measurements are needed to define the composition and architecture of bacterial biofilms to help drive the development of strategies to interfere with biofilm assembly. Solid-state nuclear magnetic resonance (NMR) is uniquely suited to the examination of insoluble and complex macromolecular and whole-cell systems. This article highlights three examples that implement solid-state NMR to deliver insights into bacterial biofilm composition and changes in cell-wall composition as cells transition to the biofilm lifestyle. Most recently, solid-state NMR measurements provided a total accounting of the protein and polysaccharide components in the extracellular matrix of an Escherichia coli biofilm and transformed our qualitative descriptions of matrix composition into chemical parameters that permit quantitative comparisons among samples. We present additional data for whole biofilm samples (cells plus the extracellular matrix) that complement matrix-only analyses. The study of bacterial biofilms by solid-state NMR is an exciting avenue ripe with many opportunities and we close the article by articulating some outstanding questions and future directions in this area.

  17. Mechanisms of Candida biofilm drug resistance

    PubMed Central

    Taff, Heather T; Mitchell, Kaitlin F; Edward, Jessica A; Andes, David R

    2013-01-01

    Candida commonly adheres to implanted medical devices, growing as a resilient biofilm capable of withstanding extraordinarily high antifungal concentrations. As currently available antifungals have minimal activity against biofilms, new drugs to treat these recalcitrant infections are urgently needed. Recent investigations have begun to shed light on the mechanisms behind the profound resistance associated with the biofilm mode of growth. This resistance appears to be multifactorial, involving both mechanisms similar to conventional, planktonic antifungal resistance, such as increased efflux pump activity, as well as mechanisms specific to the biofilm lifestyle. A unique biofilm property is the production of an extracellular matrix. Two components of this material, β-glucan and extracellular DNA, promote biofilm resistance to multiple antifungals. Biofilm formation also engages several stress response pathways that impair the activity of azole drugs. Resistance within a biofilm is often heterogeneous, with the development of a subpopulation of resistant persister cells. In this article we review the molecular mechanisms underlying Candida biofilm antifungal resistance and their relative contributions during various growth phases. PMID:24059922

  18. Mitigation of Biofilm Development on Thin-Film Composite Membranes Functionalized with Zwitterionic Polymers and Silver Nanoparticles.

    PubMed

    Liu, Caihong; Faria, Andreia F; Ma, Jun; Elimelech, Menachem

    2017-01-03

    We demonstrate the functionalization of thin-film composite membranes with zwitterionic polymers and silver nanoparticles (AgNPs) for combating biofouling. Combining hydrophilic zwitterionic polymer brushes and biocidal AgNPs endows the membrane with dual functionality: antiadhesion and bacterial inactivation. An atom transfer radical polymerization (ATRP) reaction is used to graft zwitterionic poly(sulfobetaine methacrylate) (PSBMA) brushes to the membrane surface, while AgNPs are synthesized in situ through chemical reduction of silver. Two different membrane architectures (Ag-PSBMA and PSBMA-Ag TFC) are developed according to the sequence AgNPs, and PSBMA brushes are grafted on the membrane surface. A static adhesion assay shows that both modified membranes significantly reduced the adsorption of proteins, which served as a model organic foulant. However, improved antimicrobial activity is observed for PSBMA-Ag TFC (i.e., AgNPs on top of the polymer brush) in comparison to the Ag-PSBMA TFC membrane (i.e., polymer brush on top of AgNPs), indicating that architecture of the antifouling layer is an important factor in the design of zwitterion-silver membranes. Confocal laser scanning microscopy (CLSM) imaging indicated that PSBMA-Ag TFC membranes effectively inhibit biofilm formation under dynamic cross-flow membrane biofouling tests. Finally, we demonstrate the regeneration of AgNPs on the membrane after depletion of silver from the surface of the PSBMA-Ag TFC membrane.

  19. Influence of porosity and composition of supports on the methanogenic biofilm characteristics developed in a fixed bed anaerobic reactor.

    PubMed

    Picanço, A P; Vallero, M V; Gianotti, E P; Zaiat, M; Blundi, C E

    2001-01-01

    This paper reports on the influence of the material porosity on the anaerobic biomass adhesion on four different inert matrices: polyurethane foam, PVC, refractory brick and special ceramic. The biofilm development was performed in a fixed-bed anaerobic reactor containing all the support materials and fed with a synthetic wastewater containing protein, lipids and carbohydrates. The data obtained from microscopic analysis and kinetic assays indicated that the material porosity has a crucial importance in the retention of the anaerobic biomass. The polyurethane foam particles and the special ceramic were found to present better retentive properties than the PVC and the refractory brick. The large specific surface area, directly related to material porosity, is fundamental to provide a large amount of attached biomass. However, different supports can provide specific conditions for the adherence of distinct microorganism types. The microbiological exams revealed a distinction in the support colonization. A predominance of methanogenic archaeas resembling Methanosaeta was observed both in the refractory brick and the special ceramic. Methanosarcina-like microorganisms were predominant in the PVC and the polyurethane foam matrices.

  20. Commonly used disinfectants fail to eradicate Salmonella enterica biofilms from food contact surface materials.

    PubMed

    Corcoran, M; Morris, D; De Lappe, N; O'Connor, J; Lalor, P; Dockery, P; Cormican, M

    2014-02-01

    Salmonellosis is the second most common cause of food-borne illness worldwide. Contamination of surfaces in food processing environments may result in biofilm formation with a risk of food contamination. Effective decontamination of biofilm-contaminated surfaces is challenging. Using the CDC biofilm reactor, the activities of sodium hypochlorite, sodium hydroxide, and benzalkonium chloride were examined against an early (48-h) and relatively mature (168-h) Salmonella biofilm. All 3 agents result in reduction in viable counts of Salmonella; however, only sodium hydroxide resulted in eradication of the early biofilm. None of the agents achieved eradication of mature biofilm, even at the 90-min contact time. Studies of activity of chemical disinfection against biofilm should include assessment of activity against mature biofilm. The difficulty of eradication of established Salmonella biofilm serves to emphasize the priority of preventing access of Salmonella to postcook areas of food production facilities.

  1. Community shift of biofilms developed in a full-scale drinking water distribution system switching from different water sources.

    PubMed

    Li, Weiying; Wang, Feng; Zhang, Junpeng; Qiao, Yu; Xu, Chen; Liu, Yao; Qian, Lin; Li, Wenming; Dong, Bingzhi

    2016-02-15

    The bacterial community of biofilms in drinking water distribution systems (DWDS) with various water sources has been rarely reported. In this research, biofilms were sampled at three points (A, B, and C) during the river water source phase (phase I), the interim period (phase II) and the reservoir water source phase (phase III), and the biofilm community was determined using the 454-pyrosequencing method. Results showed that microbial diversity declined in phase II but increased in phase III. The primary phylum was Proteobacteria during three phases, while the dominant class at points A and B was Betaproteobacteria (>49%) during all phases, but that changed to Holophagae in phase II (62.7%) and Actinobacteria in phase III (35.6%) for point C, which was closely related to its water quality. More remarkable community shift was found at the genus level. In addition, analysis results showed that water quality could significantly affect microbial diversity together, while the nutrient composition (e.g. C/N ration) of the water environment might determine the microbial community. Furthermore, Mycobacterium spp. and Pseudomonas spp. were detected in the biofilm, which should give rise to attention. This study revealed that water source switching produced substantial impact on the biofilm community. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Update on biofilm infections in the urinary tract.

    PubMed

    Tenke, Peter; Köves, Béla; Nagy, Károly; Hultgren, Scott J; Mendling, Werner; Wullt, Björn; Grabe, Magnus; Wagenlehner, Florian M E; Cek, Mete; Pickard, Robert; Botto, Henry; Naber, Kurt G; Bjerklund Johansen, Truls E

    2012-02-01

    Biofilm infections have a major role in implants or devices placed in the human body. As part of the endourological development, a great variety of foreign bodies have been designed, and with the increasing number of biomaterial devices used in urology, biofilm formation and device infection is an issue of growing importance. A literature search was performed in the Medline database regarding biofilm formation and the role of biofilms in urogenital infections using the following items in different combinations: "biofilm," "urinary tract infection," "bacteriuria," "catheter," "stent," and "encrustation." The studies were graded using the Oxford Centre for Evidence-based Medicine classification. The authors present an update on the mechanism of biofilm formation in the urinary tract with special emphasis on the role of biofilms in lower and upper urinary tract infections, as well as on biofilm formation on foreign bodies, such as catheters, ureteral stents, stones, implants, and artificial urinary sphincters. The authors also summarize the different methods developed to prevent biofilm formation on urinary foreign bodies. Several different approaches are being investigated for preventing biofilm formation, and some promising results have been obtained. However, an ideal method has not been developed. Future researches have to aim at identifying effective mechanisms for controlling biofilm formation and to develop antimicrobial agents effective against bacteria in biofilms.

  3. Update on biofilm infections in the urinary tract

    PubMed Central

    Köves, Béla; Nagy, Károly; Hultgren, Scott J.; Mendling, Werner; Wullt, Björn; Grabe, Magnus; Wagenlehner, Florian M. E.; Cek, Mete; Pickard, Robert; Botto, Henry; Naber, Kurt G.; Bjerklund Johansen, Truls E.

    2015-01-01

    Purpose Biofilm infections have a major role in implants or devices placed in the human body. As part of the endourological development, a great variety of foreign bodies have been designed, and with the increasing number of biomaterial devices used in urology, biofilm formation and device infection is an issue of growing importance. Methods A literature search was performed in the Medline database regarding biofilm formation and the role of biofilms in urogenital infections using the following items in different combinations: “biofilm,” “urinary tract infection,” “bacteriuria,” “catheter,” “stent,” and “encrustation.” The studies were graded using the Oxford Centre for Evidence-based Medicine classification. Results The authors present an update on the mechanism of biofilm formation in the urinary tract with special emphasis on the role of biofilms in lower and upper urinary tract infections, as well as on biofilm formation on foreign bodies, such as catheters, ureteral stents, stones, implants, and artificial urinary sphincters. The authors also summarize the different methods developed to prevent biofilm formation on urinary foreign bodies. Conclusions Several different approaches are being investigated for preventing biofilm formation, and some promising results have been obtained. However, an ideal method has not been developed. Future researches have to aim at identifying effective mechanisms for controlling biofilm formation and to develop antimicrobial agents effective against bacteria in biofilms. PMID:21590469

  4. Streptococcus gordonii LuxS/autoinducer-2 quorum-sensing system modulates the dual-species biofilm formation with Streptococcus mutans.

    PubMed

    Wang, Xiao; Li, Xiaolan; Ling, Junqi

    2017-07-01

    Dental plaques are mixed-species biofilms that are related to the development of dental caries. Streptococcus mutans (S. mutans) is an important cariogenic bacterium that forms mixed-species biofilms with Streptococcus gordonii (S. gordonii), an early colonizer of the tooth surface. The LuxS/autoinducer-2(AI-2) quorum sensing system is involved in the regulation of mixed-species biofilms, and AI-2 is proposed as a universal signal for the interaction between bacterial species. In this work, a S. gordonii luxS deficient strain was constructed to investigate the effect of the S. gordonii luxS gene on dual-species biofilm formed by S. mutans and S. gordonii. In addition, AI-2 was synthesized in vitro by incubating recombinant LuxS and Pfs enzymes of S. gordonii together. The effect of AI-2 on S. mutans single-species biofilm formation and cariogenic virulence gene expression were also assessed. The results showed that luxS disruption in S. gordonii altered dual-species biofilm formation, architecture, and composition, as well as the susceptibility to chlorhexidine. And the in vitro synthesized AI-2 had a concentration-dependent effect on S. mutans biofilm formation and virulence gene expression. These findings indicate that LuxS/AI-2 quorum-sensing system of S. gordonii plays a role in regulating the dual-species biofilm formation with S. mutans. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. SURFACE FINISHES ON STAINLESS STEEL REDUCE BACTERIAL ATTACHMENT AND EARLY BIOFILM FORMATION: SCANNING ELECTRON AND ATOMIC FORCE MICROSCOPY STUDY

    EPA Science Inventory

    Three common finishing treatments of stainless steel that are used for equipment during poultry processing were tested for resistance to bacterial contamination. Methods were developed to measure attached bacteria and to identify factors that make surface finishes susceptible or ...

  6. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms.

    PubMed

    Nguyen, Uyen T; Burrows, Lori L

    2014-09-18

    Current sanitation methods in the food industry are not always sufficient for prevention or dispersal of Listeria monocytogenes biofilms. Here, we determined if prevention of adherence or dispersal of existing biofilms could occur if biofilm matrix components were disrupted enzymatically. Addition of DNase during biofilm formation reduced attachment (<50% of control) to polystyrene. Treatment of established 72h biofilms with 100μg/ml of DNase for 24h induced incomplete biofilm dispersal, with <25% biofilm remaining compared to control. In contrast, addition of proteinase K completely inhibited biofilm formation, and 72h biofilms-including those grown under stimulatory conditions-were completely dispersed with 100μg/ml proteinase K. Generally-regarded-as-safe proteases bromelain and papain were less effective dispersants than proteinase K. In a time course assay, complete dispersal of L. monocytogenes biofilms from both polystyrene and type 304H food-grade stainless steel occurred within 5min at proteinase K concentrations above 25μg/ml. These data confirm that both DNA and proteins are required for L. monocytogenes biofilm development and maintenance, and that these components of the biofilm matrix can be targeted for effective prevention and removal of biofilms. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Electroactive Biofilms: Current Status and Future Research Needs

    SciTech Connect

    Borole, Abhijeet P; Reguera, Gemma; Ringeisen, Bradley

    2011-01-01

    Electroactive biofilms generated by electrochemically active microorganisms have many potential applications in bioenergy and chemicals production. This review assesses the effects of microbiological and process parameters on enrichment of such biofilms as well as critically evaluates the current knowledge of the mechanisms of extracellular electron transfer in BES systems. First we discuss the role of biofilm forming microorganisms vs. planktonic microorganisms. Physical, chemical and electrochemical parameters which dictate the enrichment and subsequent performance of the biofilms are discussed. Potential dependent biological parameters including biofilm growth rate, specific electron transfer rate and others and their relationship to BES system performance ismore » assessed. A review of the mechanisms of electron transfer in BES systems is included followed by a discussion of biofilm and its exopolymeric components and their electrical conductivity. A discussion of the electroactive biofilms in biocathodes is also included. Finally, we identify the research needs for further development of the electroactive biofilms to enable commercial applications.« less

  8. Biofilm density and detection of biofilm-producing genes in methicillin-resistant Staphylococcus aureus strains.

    PubMed

    Szczuka, Ewa; Urbańska, Katarzyna; Pietryka, Marta; Kaznowski, Adam

    2013-01-01

    Many serious diseases caused by Staphylococcus aureus appear to be associated with biofilms. Therefore, we investigated the biofilm-forming ability of the methicillin-resistant S. aureus (MRSA) isolates collected from hospitalized patients. As many as 96 % strains had the ability to form biofilm in vitro. The majority of S. aureus strains formed biofilm in ica-dependent mechanism. However, 23 % of MRSA isolates formed biofilm in ica-independent mechanism. Half of these strains carried fnbB genes encoding surface proteins fibronectin-binding protein B involved in intercellular accumulation and biofilm development in S. aureus strains. The biofilm structures were examined via confocal laser scanning microscopy (CLSM) and three-dimensional structures were reconstructed. The images obtained in CLSM revealed that the biofilm created by ica-positive strains was different from biofilm formed by ica-negative strains. The MRSA population showed a large genetic diversity and we did not find a single clone that occurred preferentially in hospital environment. Our results demonstrated the variation in genes encoding adhesins for the host matrix proteins (elastin, laminin, collagen, fibronectin, and fibrinogen) and in the gene involved in biofilm formation (icaA) within the majority of S. aureus clones.

  9. Inhibition of biofilm development of uropathogens by curcumin - an anti-quorum sensing agent from Curcuma longa.

    PubMed

    Packiavathy, Issac Abraham Sybiya Vasantha; Priya, Selvam; Pandian, Shunmugiah Karutha; Ravi, Arumugam Veera

    2014-04-01

    Urinary tract infection is caused primarily by the quorum sensing (QS)-dependent biofilm forming ability of uropathogens. In the present investigation, an anti-quorum sensing (anti-QS) agent curcumin from Curcuma longa (turmeric) was shown to inhibit the biofilm formation of uropathogens, such as Escherichia coli, Pseudomonas aeruginosa PAO1, Proteus mirabilis and Serratia marcescens, possibly by interfering with their QS systems. The antibiofilm potential of curcumin on uropathogens as well as its efficacy in disturbing the mature biofilms was examined under light microscope and confocal laser scanning microscope. The treatment with curcumin was also found to attenuate the QS-dependent factors, such as exopolysaccharide production, alginate production, swimming and swarming motility of uropathogens. Furthermore, it was documented that curcumin enhanced the susceptibility of a marker strain and uropathogens to conventional antibiotics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development

    PubMed Central

    Sakhtah, Hassan; Koyama, Leslie; Zhang, Yihan; Morales, Diana K.; Fields, Blanche L.; Price-Whelan, Alexa; Hogan, Deborah A.; Shepard, Kenneth; Dietrich, Lars E. P.

    2016-01-01

    Redox-cycling compounds, including endogenously produced phenazine antibiotics, induce expression of the efflux pump MexGHI-OpmD in the opportunistic pathogen Pseudomonas aeruginosa. Previous studies of P. aeruginosa virulence, physiology, and biofilm development have focused on the blue phenazine pyocyanin and the yellow phenazine-1-carboxylic acid (PCA). In P. aeruginosa phenazine biosynthesis, conversion of PCA to pyocyanin is presumed to proceed through the intermediate 5-methylphenazine-1-carboxylate (5-Me-PCA), a reactive compound that has eluded detection in most laboratory samples. Here, we apply electrochemical methods to directly detect 5-Me-PCA and find that it is transported by MexGHI-OpmD in P. aeruginosa strain PA14 planktonic and biofilm cells. We also show that 5-Me-PCA is sufficient to fully induce MexGHI-OpmD expression and that it is required for wild-type colony biofilm morphogenesis. These physiological effects are consistent with the high redox potential of 5-Me-PCA, which distinguishes it from other well-studied P. aeruginosa phenazines. Our observations highlight the importance of this compound, which was previously overlooked due to the challenges associated with its detection, in the context of P. aeruginosa gene expression and multicellular behavior. This study constitutes a unique demonstration of efflux-based self-resistance, controlled by a simple circuit, in a Gram-negative pathogen. PMID:27274079

  11. The N-Terminus of Human Lactoferrin Displays Anti-biofilm Activity on Candida parapsilosis in Lumen Catheters.

    PubMed

    Fais, Roberta; Di Luca, Mariagrazia; Rizzato, Cosmeri; Morici, Paola; Bottai, Daria; Tavanti, Arianna; Lupetti, Antonella

    2017-01-01

    Candida parapsilosis is a major cause of hospital-acquired infection, often related to parenteral nutrition administered via catheters and hand colonization of health care workers, and its peculiar biofilm formation ability on plastic surfaces. The mortality rate of 30% points to the pressing need for new antifungal drugs. The present study aimed at analyzing the inhibitory activity of the N-terminal lactoferrin-derived peptide, further referred to as hLF 1-11, against biofilms produced by clinical isolates of C. parapsilosis characterized for their biofilm forming ability and fluconazole susceptibility. hLF 1-11 anti-biofilm activity was assessed in terms of reduction of biofilm biomass, metabolic activity, and observation of sessile cell morphology on polystyrene microtiter plates and using an in vitro model of catheter-associated C. parapsilosis biofilm production. Moreover, fluctuation in transcription levels of genes related to cell adhesion, hyphal development and extracellular matrix production upon peptide exposure were evaluated by quantitative real time RT-PCR. The results revealed that hLF 1-11 exhibits an inhibitory effect on biofilm formation by all the C. parapsilosis isolates tested, in a dose-dependent manner, regardless of their fluconazole susceptibility. In addition, hLF 1-11 induced a statistically significant dose-dependent reduction of preformed-biofilm cellular density and metabolic activity at high peptide concentrations only. Interestingly, when assessed in a catheter lumen, hLF 1-11 was able to induce a 2-log reduction of sessile cell viability at both the peptide concentrations used in RPMI diluted in NaPB. A more pronounced anti-biofilm effect was observed (3.5-log reduction) when a 10% glucose solution was used as experimental condition on both early and preformed C. parapsilosis biofilm. Quantitative real time RT-PCR experiments confirmed that hLF 1-11 down-regulates key biofilm related genes. The overall findings suggest hLF 1-11 as a

  12. The N-Terminus of Human Lactoferrin Displays Anti-biofilm Activity on Candida parapsilosis in Lumen Catheters

    PubMed Central

    Fais, Roberta; Di Luca, Mariagrazia; Rizzato, Cosmeri; Morici, Paola; Bottai, Daria; Tavanti, Arianna; Lupetti, Antonella

    2017-01-01

    Candida parapsilosis is a major cause of hospital-acquired infection, often related to parenteral nutrition administered via catheters and hand colonization of health care workers, and its peculiar biofilm formation ability on plastic surfaces. The mortality rate of 30% points to the pressing need for new antifungal drugs. The present study aimed at analyzing the inhibitory activity of the N-terminal lactoferrin-derived peptide, further referred to as hLF 1-11, against biofilms produced by clinical isolates of C. parapsilosis characterized for their biofilm forming ability and fluconazole susceptibility. hLF 1-11 anti-biofilm activity was assessed in terms of reduction of biofilm biomass, metabolic activity, and observation of sessile cell morphology on polystyrene microtiter plates and using an in vitro model of catheter-associated C. parapsilosis biofilm production. Moreover, fluctuation in transcription levels of genes related to cell adhesion, hyphal development and extracellular matrix production upon peptide exposure were evaluated by quantitative real time RT-PCR. The results revealed that hLF 1-11 exhibits an inhibitory effect on biofilm formation by all the C. parapsilosis isolates tested, in a dose-dependent manner, regardless of their fluconazole susceptibility. In addition, hLF 1-11 induced a statistically significant dose-dependent reduction of preformed-biofilm cellular density and metabolic activity at high peptide concentrations only. Interestingly, when assessed in a catheter lumen, hLF 1-11 was able to induce a 2-log reduction of sessile cell viability at both the peptide concentrations used in RPMI diluted in NaPB. A more pronounced anti-biofilm effect was observed (3.5-log reduction) when a 10% glucose solution was used as experimental condition on both early and preformed C. parapsilosis biofilm. Quantitative real time RT-PCR experiments confirmed that hLF 1-11 down-regulates key biofilm related genes. The overall findings suggest hLF 1-11 as a

  13. Early Intervention Paraprofessional Standards: Development and Field Validation

    ERIC Educational Resources Information Center

    Banerjee, Rashida; Chopra, Ritu V.; DiPalma, Geraldine

    2017-01-01

    Personnel standards are the foundations for how states and nations approve a program, engage in systemic assessment, and provide effective professional development to its early childhood professionals. However, despite the extensive use of paraprofessionals in early intervention/early childhood special education programs, there is a lack of…

  14. Early Developments in Argumentation in Physics.

    ERIC Educational Resources Information Center

    Bazerman, Charles

    An evaluation of four seventeenth and eighteenth century essays on optics revealed early trends in the evolution of scientific articles. The later articles showed a growing tendency to (1) separate practice from pure knowledge, (2) organize information around problems of knowledge and theory rather than around chronological events, (3) emphasize…

  15. The Development of Self-Regulation across Early Childhood

    ERIC Educational Resources Information Center

    Montroy, Janelle J.; Bowles, Ryan P.; Skibbe, Lori E.; McClelland, Megan M.; Morrison, Frederick J.

    2016-01-01

    The development of early childhood self-regulation is often considered an early life marker for later life successes. Yet little longitudinal research has evaluated whether there are different trajectories of self-regulation development across children. This study investigates the development of behavioral self-regulation between the ages of 3 and…

  16. Early Development and the Brain: Teaching Resources for Educators

    ERIC Educational Resources Information Center

    Gilkerson, Linda, Ed.; Klein, Rebecca, Ed.

    2008-01-01

    This nine-unit curriculum translates current scientific research on early brain development into practical suggestions to help early childhood professionals understand the reciprocal link between caregiving and brain development. The curriculum was created and extensively field-tested by the Erikson Institute Faculty Development Project on the…

  17. Parents' Role in the Early Head Start Children's Language Development

    ERIC Educational Resources Information Center

    Griswold, Cecelia Smalls

    2014-01-01

    The development of language during a child's early years has been linked to parental involvement. While Early Head Start (EHS) researchers have theorized that parental involvement is an important factor in language development, there has been little research on how parents view their roles in the language development process. The purpose of this…

  18. Classroom Effects of an Early Childhood Educator Professional Development Partnership

    ERIC Educational Resources Information Center

    Algozzine, Bob; Babb, Julie; Algozzine, Kate; Mraz, Maryann; Kissel, Brian; Spano, Sedra; Foxworth, Kimberly

    2011-01-01

    We evaluated an Early Childhood Educator Professional Development (ECEPD) project that provided high-quality, sustained, and intensive professional development designed to support developmentally appropriate instruction for preschool-age children based on the best available research on early childhood pedagogy, child development, and preschool…

  19. [The yeast biofilm in human medicine].

    PubMed

    Růzicka, Filip; Holá, Veronika; Votava, Miroslav

    2007-08-01

    In recent years, the role of Candida yeasts as causative agents of nosocomial infections has increased. One of the important virulence factors contributing to the development of such infections is biofilm production. This virulence factor enables yeast to colonize both native surfaces and artificial implants. The most common sources of infection are patients themselves, in particular the gastrointestinal tract and skin. The vectors of exogenous yeast infections are predominantly the hands of the health personnel and contaminated medical instruments. The adhesion of yeasts to the implant surfaces is determined both by implant surface and yeast characteristics. This is followed by proliferation and production of microcolonies and extracellular matrix. The final biofilm structure is also influenced by the production of hyphae and pseudohyphae. The entire process of biofilm production is controlled by numerous regulatory systems, with the key role being played by the quorum sensing system. Like the adhered bacterial cultures, candidas growing in the form of a biofilm are highly resistant to antimicrobial therapy. Resistance of yeast biofilms to antifungals is a complex process with multiple contributing factors. These are especially increased gene expression (e.g. genes encoding the so called multidrug efflux pumps), limited penetration of substances through the extracellular matrix, inhibited cell growth and altered microenvironment in deeper biofilm layers. The concentrations of antifungals able to effectively affect the biofilm cells exceed, by several orders of magnitude, the values of conventionally determined MICs. High biofilm resistance results in ineffective antifungal therapy of biofilm infections. Therefore, if possible, the colonized implant should be removed. Conservative therapy should involve antifungals with a proven effect on the biofilm (e.g. caspofungin). The most effective measure in fighting biofilm infections is prevention, especially adhering to

  20. Fungal Biofilms: In vivo models for discovery of anti-biofilm drugs

    PubMed Central

    Nett, Jeniel E.; Andes, David

    2015-01-01

    SUMMARY During infection, fungi frequently transition to a biofilm lifestyle, proliferating as communities of surface-adherent aggregates of cells. Phenotypically, cells in a biofilm are distinct from free-floating cells. Their high tolerance of antifungals and ability to withstand host defenses are two characteristics that foster resilience. Biofilm infections are particularly difficult to eradicate and most available antifungals have minimal activity. Therefore, the discovery of novel compounds and innovative strategies to treat fungal biofilms is of great interest. Although many fungi have been observed to form biofilms, the most well-studied is Candida albicans. Animal models have been developed to simulate common Candida device-associated infections, including those involving vascular catheters, dentures, urinary catheters, and subcutaneous implants. Models have also reproduced the most common mucosal biofilm infections, oropharyngeal and vaginal candidiasis. These models incorporate the anatomical site, immune components, and fluid dynamics of clinical niches and have been instrumental in the study of drug resistance and investigation of novel therapies. This chapter describes the significance of fungal biofilm infections, the animal models developed for biofilm study, and how these models have contributed to development of new strategies for eradication of fungal biofilm infections. PMID:26397003

  1. Methodologies for Studying B. subtilis Biofilms as a Model for Characterizing Small Molecule Biofilm Inhibitors.

    PubMed

    Bucher, Tabitha; Kartvelishvily, Elena; Kolodkin-Gal, Ilana

    2016-10-09

    This work assesses different methodologies to study the impact of small molecule biofilm inhibitors, such as D-amino acids, on the development and resilience of Bacillus subtilis biofilms. First, methods are presented that select for small molecule inhibitors with biofilm-specific targets in order to separate the effect of the small molecule inhibitors on planktonic growth from their effect on biofilm formation. Next, we focus on how inoculation conditions affect the sensitivity of multicellular, floating B. subtilis cultures to small molecule inhibitors. The results suggest that discrepancies in the reported effects of such inhibitors such as D-amino acids are due to inconsistent pre-culture conditions. Furthermore, a recently developed protocol is described for evaluating the contribution of small molecule treatments towards biofilm resistance to antibacterial substances. Lastly, scanning electron microscopy (SEM) techniques are presented to analyze the three-dimensional spatial arrangement of cells and their surrounding extracellular matrix in a B. subtilis biofilm. SEM facilitates insight into the three-dimensional biofilm architecture and the matrix texture. A combination of the methods described here can greatly assist the study of biofilm development in the presence and absence of biofilm inhibitors, and shed light on the mechanism of action of these inhibitors.

  2. Fungal Biofilms: In Vivo Models for Discovery of Anti-Biofilm Drugs.

    PubMed

    Nett, Jeniel E; Andes, David R

    2015-06-01

    During infection, fungi frequently transition to a biofilm lifestyle, proliferating as communities of surface-adherent aggregates of cells. Phenotypically, cells in a biofilm are distinct from free-floating cells. Their high tolerance of antifungals and ability to withstand host defenses are two characteristics that foster resilience. Biofilm infections are particularly difficult to eradicate, and most available antifungals have minimal activity. Therefore, the discovery of novel compounds and innovative strategies to treat fungal biofilms is of great interest. Although many fungi have been observed to form biofilms, the most well-studied is Candida albicans. Animal models have been developed to simulate common Candida device-associated infections, including those involving vascular catheters, dentures, urinary catheters, and subcutaneous implants. Models have also reproduced the most common mucosal biofilm infections: oropharyngeal and vaginal candidiasis. These models incorporate the anatomical site, immune components, and fluid dynamics of clinical niches and have been instrumental in the study of drug resistance and investigation of novel therapies. This chapter describes the significance of fungal biofilm infections, the animal models developed for biofilm study, and how these models have contributed to the development of new strategies for the eradication of fungal biofilm infections.

  3. Medical biofilms--nanotechnology approaches.

    PubMed

    Neethirajan, Suresh; Clond, Morgan A; Vogt, Adam

    2014-10-01

    Biofilms are colonies of bacteria or fungi that adhere to a surface, protected by an extracellular polymer matrix composed of polysaccharides and extracellular DNA. They are highly complex and dynamic multicellular structures that resist traditional means of killing planktonic bacteria. Recent developments in nanotechnology provide novel approaches to preventing and dispersing biofilm infections, which are a leading cause of morbidity and mortality. Medical device infections are responsible for approximately 60% of hospital acquired infections. In the United States, the estimated cost of caring for healthcare-associated infections is approximately between $28 billion and $45 billion per year. In this review, we will discuss our current understanding of biofilm formation and degradation, its relevance to challenges in clinical practice, and new technological developments in nanotechnology that are designed to address these challenges.

  4. Laser-generated shockwave for clearing medical device biofilms.

    PubMed

    Kizhner, Victor; Krespi, Yosef P; Hall-Stoodley, Luanne; Stoodley, Paul

    2011-04-01

    This study aimed to evaluate a laser method of biofilm interruption from the surface of various common medical devices and from surgically removed sinus tissue with adherent biofilms in a timely manner. Biofilm has emerged as a new threat not amenable to most antibiotic treatments. Biofilms, as opposed to planktonic bacteria, develop an extracellular polymeric slime matrix to facilitate adherence to host tissue or a prosthetic surface and to form a protective shield. A laser-induced biofilms disruption concept was previously described. Biofilms were grown in the laboratory on metallic and plastic medical device surfaces such as stents. Attempts to remove the biofilms with a laser were undertaken three times for each device. Q-switched Nd:YAG laser-generated shockwaves affecting Pseudomonas aeruginosa biofilms expressing yellow fluorescent protein (YFP) biofilm coating were applied with biologically safe parameters utilizing a fiber delivery system and a special probe. A confocal microscope was used to identify the biofilm structure prior to, during, and after laser application. The amount of biofilm removed from the medical devices in time was measured by quantifying green fluorescence. The biofilm fluctuated and eventually broke off the surface as shock waves neared the target. The time to remove 97.9 ± 0.4% (mean ± 1SD, n = 3) the biofilm from the surface of a Nitinol (NiTi) stent ranged from 4 to 10 s. The detached biofilm was observed floating in fluid media in various microscopic size particles. A new treatment modality using laser-generated shockwaves in the warfare against biofilms growing on surgical devices was demonstrated. Q-switched laser pulses stripped biofilm from the surface it adhered to, changing the bacteria to their planktonic form, making them amenable to conventional treatment. This therapeutic modality appears to be rapid, effective, and safe on metallic and plastic medical device surfaces.

  5. Development of corn silk as a biocarrier for Zymomonas mobilis biofilms in ethanol production from rice straw.

    PubMed

    Todhanakasem, Tatsaporn; Tiwari, Rashmi; Thanonkeo, Pornthap

    2016-01-01

    Z. mobilis cell immobilization has been proposed as an effective means of improving ethanol production. In this work, polystyrene and corn silk were used as biofilm developmental matrices for Z. mobilis ethanol production with rice straw hydrolysate as a substrate. Rice straw was hydrolyzed by dilute sulfuric acid (H2SO4) and enzymatic hydrolysis. The final hydrolysate contained furfural (271.95 ± 76.30 ppm), 5-hydroxymethyl furfural (0.07 ± 0.00 ppm), vanillin (1.81 ± 0.00 ppm), syringaldehyde (5.07 ± 0.83 ppm), 4-hydroxybenzaldehyde (4-HB) (2.39 ± 1.20 ppm) and acetic acid (0.26 ± 0.08%). Bacterial attachment or biofilm formation of Z. mobilis strain TISTR 551 on polystyrene and delignified corn silk carrier provided significant ethanol yields. Results showed up to 0.40 ± 0.15 g ethanol produced/g glucose consumed when Z. mobilis was immobilized on a polystyrene carrier and 0.51 ± 0.13 g ethanol produced/g glucose consumed when immobilized on delignified corn silk carrier under batch fermentation by Z. mobilis TISTR 551 biofilm. The higher ethanol yield from immobilized, rather than free living, Z. mobilis could possibly be explained by a higher cell density, better control of anaerobic conditions and higher toxic tolerance of Z. mobilis biofilms over free cells.

  6. Biofilm Attached Cultivation of Chlorella pyrenoidosa Is a Developed System for Swine Wastewater Treatment and Lipid Production

    PubMed Central

    Cheng, Pengfei; Wang, Yuanzhu; Liu, Tianzhong; Liu, Defu

    2017-01-01

    This study showed the new potential of using soluble contents and heavy metals in swine wastewater as nutrient supplements for the algae Chlorella pyrenoidosa with biofilm attached method. Algae with biofilm attached cultivation grew well in unpasteurized wastewater reaching a biomass productivity of 5.03 g m−2 d−1, lipid content of 35.9% and lipid productivity of 1.80 g m−2 d−1. Chlorella grew in BG11 medium delivered lower values for each of the aforementioned parameters. The FAMEs compositions in the algae paste were mainly consisted of C16:0, C18:2, and C18:3. Algae removed NH4+–N, total phosphorus (TP), and COD by 75.9, 68.4, and 74.8%, respectively. Notably, Zn2+, Cu+, and Fe2+ were removed from wastewater with a ratio of 65.71, 53.64, and 58.89%, respectively. Biofilm attached cultivation of C. pyrenoidosa in swine wastewater containing heavy metals could accumulate considerable biomass and lipid, and the removal ratio of NH4+–N, TP, COD, and as well as heavy metal were high. Treatment of wastewater with biofilm attached cultivation showed an increasingly popular for the concentration of microalgae and environmental sustainability. PMID:28983302

  7. Early literacy and early numeracy: the value of including early literacy skills in the prediction of numeracy development.

    PubMed

    Purpura, David J; Hume, Laura E; Sims, Darcey M; Lonigan, Christopher J

    2011-12-01

    The purpose of this study was to examine whether early literacy skills uniquely predict early numeracy skills development. During the first year of the study, 69 3- to 5-year-old preschoolers were assessed on the Preschool Early Numeracy Skills (PENS) test and the Test of Preschool Early Literacy Skills (TOPEL). Participants were assessed again a year later on the PENS test and on the Applied Problems and Calculation subtests of the Woodcock-Johnson III Tests of Achievement. Three mixed effect regressions were conducted using Time 2 PENS, Applied Problems, and Calculation as the dependent variables. Print Knowledge and Vocabulary accounted for unique variance in the prediction of Time 2 numeracy scores. Phonological Awareness did not uniquely predict any of the mathematics domains. The findings of this study identify an important link between early literacy and early numeracy development. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Effects of CO2 laser irradiation on matrix-rich biofilm development formation-an in vitro study.

    PubMed

    Zancopé, Bruna Raquel; Dainezi, Vanessa B; Nobre-Dos-Santos, Marinês; Duarte, Sillas; Pardi, Vanessa; Murata, Ramiro M

    2016-01-01

    A carbon dioxide (CO 2 ) laser has been used to morphologically and chemically modify the dental enamel surface as well as to make it more resistant to demineralization. Despite a variety of experiments demonstrating the inhibitory effect of a CO 2 laser in reduce enamel demineralization, little is known about the effect of surface irradiated on bacterial growth. Thus, this in vitro study was preformed to evaluate the biofilm formation on enamel previously irradiated with a CO 2 laser (λ = 10.6 µM). For this in vitro study, 96 specimens of bovine enamel were employed, which were divided into two groups (n = 48): 1) Control-non-irradiated surface and 2) Irradiated enamel surface. Biofilms were grown on the enamel specimens by one, three and five days under intermittent cariogenic condition in the irradiated and non-irradiated surface. In each assessment time, the biofilm were evaluated by dry weigh, counting the number of viable colonies and, in fifth day, were evaluated by polysaccharides analysis, quantitative real time Polymerase Chain Reaction (PCR) as well as by contact angle. In addition, the morphology of biofilms was characterized by fluorescence microscopy and field emission scanning electron microscopy (FESEM). Initially, the assumptions of equal variances and normal distribution of errors were conferred and the results are analyzed statistically by t-test and Mann Whitney test. The mean of log CFU/mL obtained for the one-day biofilm evaluation showed that there is statistical difference between the experimental groups. When biofilms were exposed to the CO 2 laser, CFU/mL and CFU/dry weight in three day was reduced significantly compared with control group. The difference in the genes expression (Glucosyltransferases (gtfB) and Glucan-binding protein (gbpB)) and polysaccharides was not statically significant. Contact angle was increased relative to control when the surface was irradiated with the CO 2 laser. Similar morphology was also visible with both

  9. Rates of species accumulation and taxonomic diversification during phototrophic biofilm development are controlled by both nutrient supply and current velocity.

    PubMed

    Larson, Chad A; Passy, Sophia I

    2013-03-01

    The accumulation of new and taxonomically diverse species is a marked feature of community development, but the role of the environment in this process is not well understood. To address this problem, we subjected periphyton in laboratory streams to low (10-cm · s(-1)), high (30-cm · s(-1)), and variable (9- to 32-cm · s(-1)) current velocity and low- versus high-nutrient inputs. We examined how current velocity and resource supply constrained (i) the rates of species accumulation, a measure of temporal beta-diversity, and (ii) the rates of diversification of higher taxonomic categories, defined here as the rate of higher taxon richness increase with the increase of species richness. Temporal biofilm dynamics were controlled by a strong nutrient-current interaction. Nutrients accelerated the rates of accumulation of new species, when flow velocity was not too stressful. Species were more taxonomically diverse under variable than under low-flow conditions, indicating that flow heterogeneity increased the niche diversity in the high-nutrient treatments. Conversely, the lower diversification rates under high- than under low-nutrient conditions at low velocity are explained with finer resource partitioning among species, belonging to a limited number of related genera. The overall low rates of diversification in high-current treatments suggest that the ability to withstand current stress was conserved within closely related species. Temporal heterogeneity of disturbance has been shown to promote species richness, but here we further demonstrate that it also affects two other components of biodiversity, i.e., temporal beta-diversity and diversification rate. Therefore, management efforts for preserving the inherent temporal heterogeneity of natural ecosystems will have detectable positive effects on biodiversity.

  10. Rates of Species Accumulation and Taxonomic Diversification during Phototrophic Biofilm Development Are Controlled by both Nutrient Supply and Current Velocity

    PubMed Central

    2013-01-01

    The accumulation of new and taxonomically diverse species is a marked feature of community development, but the role of the environment in this process is not well understood. To address this problem, we subjected periphyton in laboratory streams to low (10-cm · s−1), high (30-cm · s−1), and variable (9- to 32-cm · s−1) current velocity and low- versus high-nutrient inputs. We examined how current velocity and resource supply constrained (i) the rates of species accumulation, a measure of temporal beta-diversity, and (ii) the rates of diversification of higher taxonomic categories, defined here as the rate of higher taxon richness increase with the increase of species richness. Temporal biofilm dynamics were controlled by a strong nutrient-current interaction. Nutrients accelerated the rates of accumulation of new species, when flow velocity was not too stressful. Species were more taxonomically diverse under variable than under low-flow conditions, indicating that flow heterogeneity increased the niche diversity in the high-nutrient treatments. Conversely, the lower diversification rates under high- than under low-nutrient conditions at low velocity are explained with finer resource partitioning among species, belonging to a limited number of related genera. The overall low rates of diversification in high-current treatments suggest that the ability to withstand current stress was conserved within closely related species. Temporal heterogeneity of disturbance has been shown to promote species richness, but here we further demonstrate that it also affects two other components of biodiversity, i.e., temporal beta-diversity and diversification rate. Therefore, management efforts for preserving the inherent temporal heterogeneity of natural ecosystems will have detectable positive effects on biodiversity. PMID:23335757

  11. Biofilm-specific extracellular matrix proteins of non-typeable Haemophilus influenzae

    PubMed Central

    Wu, Siva; Baum, Marc M.; Kerwin, James; Guerrero-Given, Debbie; Webster, Simon; Schaudinn, Christoph; VanderVelde, David; Webster, Paul

    2014-01-01

    Non-typeable Haemophilus influenzae (NTHi), a human respiratory tract pathogen can form colony biofilms in vitro. Bacterial cells and the amorphous extracellular matrix (ECM) constituting the biofilm can be separated using sonication. The ECM from 24 hr and 96 hr NTHi biofilms contained polysaccharides and proteinaceous components as detected by NMR and FTIR spectroscopy. More conventional chemical assays on the biofilm ECM confirmed the presence of these components and also DNA. Proteomics revealed eighteen proteins present in biofilm ECM that were not detected in planktonic bacteria. One ECM protein was unique to 24 hr biofilms, two were found only in 96 hr biofilms, and fifteen were present in the ECM of both 24 hr and 96 hr NTHi biofilms. All proteins identified were either associated with bacterial membranes or were cytoplasmic proteins. Immunocytochemistry showed two of the identified proteins, a DNA-directed RNA polymerase and the outer membrane protein OMP P2, associated with bacteria and biofilm ECM. Identification of biofilm-specific proteins present in immature biofilms is an important step in understanding the in vitro process of NTHi biofilm formation. The presence of a cytoplasmic protein and a membrane protein in the biofilm ECM of immature NTHi biofilms suggests that bacterial cell lysis may be a feature of early biofilm formation. PMID:24942343

  12. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm.

    PubMed

    Okuda, Ken-ichi; Zendo, Takeshi; Sugimoto, Shinya; Iwase, Tadayuki; Tajima, Akiko; Yamada, Satomi; Sonomoto, Kenji; Mizunoe, Yoshimitsu

    2013-11-01

    Control of biofilms formed by microbial pathogens is an important subject for medical researchers, since the development of biofilms on foreign-body surfaces often causes biofilm-associated infections in patients with indwelling medical devices. The present study examined the effects of different kinds of bacteriocins, which are ribosomally synthesized antimicrobial peptides produced by certain bacteria, on biofilms formed by a clinical isolate of methicillin-resistant Staphylococcus aureus (MRSA). The activities and modes of action of three bacteriocins with different structures (nisin A, lacticin Q, and nukacin ISK-1) were evaluated. Vancomycin, a glycopeptide antibiotic used in the treatment of MRSA infections, showed bactericidal activity against planktonic cells but not against biofilm cells. Among the tested bacteriocins, nisin A showed the highest bactericidal activity against both planktonic cells and biofilm cells. Lacticin Q also showed bactericidal activity against both planktonic cells and biofilm cells, but its activity against biofilm cells was significantly lower than that of nisin A. Nukacin ISK-1 showed bacteriostatic activity against planktonic cells and did not show bactericidal activity against biofilm cells. Mode-of-action studies indicated that pore formation leading to ATP efflux is important for the bactericidal activity against biofilm cells. Our results suggest that bacteriocins that form stable pores on biofilm cells are highly potent for the treatment of MRSA biofilm infections.

  13. Effects of Bacteriocins on Methicillin-Resistant Staphylococcus aureus Biofilm

    PubMed Central

    Zendo, Takeshi; Sugimoto, Shinya; Iwase, Tadayuki; Tajima, Akiko; Yamada, Satomi; Sonomoto, Kenji

    2013-01-01

    Control of biofilms formed by microbial pathogens is an important subject for medical researchers, since the development of biofilms on foreign-body surfaces often causes biofilm-associated infections in patients with indwelling medical devices. The present study examined the effects of different kinds of bacteriocins, which are ribosomally synthesized antimicrobial peptides produced by certain bacteria, on biofilms formed by a clinical isolate of methicillin-resistant Staphylococcus aureus (MRSA). The activities and modes of action of three bacteriocins with different structures (nisin A, lacticin Q, and nukacin ISK-1) were evaluated. Vancomycin, a glycopeptide antibiotic used in the treatment of MRSA infections, showed bactericidal activity against planktonic cells but not against biofilm cells. Among the tested bacteriocins, nisin A showed the highest bactericidal activity against both planktonic cells and biofilm cells. Lacticin Q also showed bactericidal activity against both planktonic cells and biofilm cells, but its activity against biofilm cells was significantly lower than that of nisin A. Nukacin ISK-1 showed bacteriostatic activity against planktonic cells and did not show bactericidal activity against biofilm cells. Mode-of-action studies indicated that pore formation leading to ATP efflux is important for the bactericidal activity against biofilm cells. Our results suggest that bacteriocins that form stable pores on biofilm cells are highly potent for the treatment of MRSA biofilm infections. PMID:23979748

  14. Conceptions of and Early Childhood Educators' Experiences in Early Childhood Professional Development Programs: A Qualitative Metasynthesis

    ERIC Educational Resources Information Center

    Brown, Christopher P.; Englehardt, Joanna

    2016-01-01

    Policy makers and early childhood stakeholders across the United States continue to seek policy solutions that improve early educators' instruction of young children. A primary vehicle for attaining this goal is professional development. This has led to an influx of empirical studies that seek to develop a set of best practices for professional…

  15. Differential growth of wrinkled biofilms

    NASA Astrophysics Data System (ADS)

    Espeso, D. R.; Carpio, A.; Einarsson, B.

    2015-02-01

    Biofilms are antibiotic-resistant bacterial aggregates that grow on moist surfaces and can trigger hospital-acquired infections. They provide a classical example in biology where the dynamics of cellular communities may be observed and studied. Gene expression regulates cell division and differentiation, which affect the biofilm architecture. Mechanical and chemical processes shape the resulting structure. We gain insight into the interplay between cellular and mechanical processes during biofilm development on air-agar interfaces by means of a hybrid model. Cellular behavior is governed by stochastic rules informed by a cascade of concentration fields for nutrients, waste, and autoinducers. Cellular differentiation and death alter the structure and the mechanical properties of the biofilm, which is deformed according to Föppl-Von Kármán equations informed by cellular processes and the interaction with the substratum. Stiffness gradients due to growth and swelling produce wrinkle branching. We are able to reproduce wrinkled structures often formed by biofilms on air-agar interfaces, as well as spatial distributions of differentiated cells commonly observed with B. subtilis.

  16. Embedded biofilm, a new biofilm model based on the embedded growth of bacteria.

    PubMed

    Jung, Yong-Gyun; Choi, Jungil; Kim, Soo-Kyoung; Lee, Joon-Hee; Kwon, Sunghoon

    2015-01-01

    A variety of systems have been developed to study biofilm formation. However, most systems are based on the surface-attached growth of microbes under shear stress. In this study, we designed a microfluidic channel device, called a microfluidic agarose channel (MAC), and found that microbial cells in the MAC system formed an embedded cell aggregative structure (ECAS). ECASs were generated from the embedded growth of bacterial cells in an agarose matrix and better mimicked the clinical environment of biofilms formed within mucus or host tissue under shear-free conditions. ECASs were developed with the production of extracellular polymeric substances (EPS), the most important feature of biofilms, and eventually burst to release planktonic cells, which resembles the full developmental cycle of biofilms. Chemical and genetic effects have also confirmed that ECASs are a type of biofilm. Unlike the conventional biofilms formed in the flow cell model system, this embedded-type biofilm completes the developmental cycle in only 9 to 12 h and can easily be observed with ordinary microscopes. We suggest that ECASs are a type of biofilm and that the MAC is a system for observing biofilm formation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Pseudomonas biofilm matrix composition and niche biology

    PubMed Central

    Mann, Ethan E.; Wozniak, Daniel J.

    2014-01-01

    Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produce several biofilm matrix molecules, including polysaccharides, nucleic acids, and proteins. Accessory matrix components shown to aid biofilm formation and adaptability under varying conditions are also produced by pseudomonads. Adaptation facilitated by biofilm formation allows for selection of genetic variants with unique and distinguishable colony morphology. Examples include rugose small-colony variants and wrinkly spreaders (WS), which over produce Psl/Pel or cellulose, respectively, and mucoid bacteria that over produce alginate. The well-documented emergence of these variants suggests that pseudomonads take advantage of matrix-building subpopulations conferring specific benefits for the entire population. This review will focus on various polysaccharides as well as additional Pseudomonas biofilm matrix components. Discussions will center on structure–function relationships, regulation, and the role of individual matrix molecules in niche biology. PMID:22212072

  18. Constructivist Early Education for Moral Development.

    ERIC Educational Resources Information Center

    DeVries, Rheta; Hildebrandt, Carolyn; Zan, Betty

    2000-01-01

    Examines role that constructivist teachers play in fostering moral development in young children. Traces development of perspective taking, autonomy, and self- regulation, and examines effects of different teaching and parenting practices on children's character development. Provides suggestions for teachers to promote optimal moral development by…

  19. Redefining Leadership: Lessons from an Early Education Leadership Development Initiative

    ERIC Educational Resources Information Center

    Douglass, Anne

    2018-01-01

    This study examined how experienced early educators developed as change agents in the context of a leadership development program. Unlike in many other professions, experienced early educators lack opportunities to grow throughout their careers and access the supports they need to lead change in their classrooms, organizations, the profession, and…

  20. Promoting Professional Development for Physical Therapists in Early Intervention

    ERIC Educational Resources Information Center

    Catalino, Tricia; Chiarello, Lisa A.; Long, Toby; Weaver, Priscilla

    2015-01-01

    Early intervention service providers are expected to form cohesive teams to build the capacity of a family to promote their child's development. Given the differences in personnel preparation across disciplines of service providers, the Early Childhood Personnel Center is creating integrated and comprehensive professional development models for…

  1. Investments for Future: Early Childhood Development and Education

    ERIC Educational Resources Information Center

    Kartal, Hulya

    2007-01-01

    Investments relevant to the first years of life are directly connected to the future of societies. It can be argued that investments for early childhood development and education are one of the best ways of decreasing social inequality caused by adverse environments which hinder development in early ages and tackling poverty by reducing the rate…

  2. Assessing Home Environment for Early Child Development in Pakistan

    ERIC Educational Resources Information Center

    Nadeem, Sanober; Rafique, Ghazala; Khowaja, Liaquat; Yameen, Anjum

    2014-01-01

    Family environment plays a very important role in early child development and the availability of stimulating material in the early years of a child's life is crucial for optimising development. The Home Observation for Measurement of the Environment (HOME) inventory is one of the most widely used measures to assess the quality and quantity of…

  3. Early Communication Development and Intervention for Children with Autism

    ERIC Educational Resources Information Center

    Landa, Rebecca

    2007-01-01

    Autism is a neurodevelopmental disorder defined by impairments in social and communication development, accompanied by stereotyped patterns of behavior and interest. The focus of this paper is on the early development of communication in autism, and early intervention for impairments in communication associated with this disorder. An overview of…

  4. Diffusion of antimicrobials in multispecies biofilms evaluated in a new biofilm model.

    PubMed

    van der Waal, S V; de Almeida, J; Krom, B P; de Soet, J J; Crielaard, W

    2017-04-01

    To describe the application of a newly-developed in vitro model in which the diffusion of antimicrobials in oral biofilms can be studied. In a flow chamber consisting of three parallel feeding channels connected with each other by eight perpendicular side channels, multispecies biofilms were grown from saliva of a single donor for 48 h. The dimensions of the side channels were 100 μm × 100 μm × 5130 μm (H × W × L). When one or more side channels were filled with biofilm, the biofilms were stained with fluorescent stains. Then, one side-channel biofilm was selected and treated with phosphate buffered saline, 2% sodium hypochlorite (NaOCl), 17% ethylenediaminetetra-acetic acid (EDTA) or modified salt solution (MSS). Diffusion of the irrigants was observed by acquiring fluorescence images at 10× objective every 15 s for 30 min. It was possible to culture biofilms in the narrow (100 μm) channels. The biofilms varied in phenotype. In this model, no diffusion of NaOCl into the biofilms was seen after its application. Seventeen-percentage EDTA only diffused into the biofilm up to 200 μm in 30 min. MSS did diffuse in the biofilm over a distance of 450 μm within 2 min after a single application. This new model enables the investigation of the diffusion of antimicrobials in biofilms. Other applications to improve our understanding of the characteristics of biofilms are now possible. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  5. Comparative transcriptomics of early dipteran development

    PubMed Central

    2013-01-01

    Background Modern sequencing technologies have massively increased the amount of data available for comparative genomics. Whole-transcriptome shotgun sequencing (RNA-seq) provides a powerful basis for comparative studies. In particular, this approach holds great promise for emerging model species in fields such as evolutionary developmental biology (evo-devo). Results We have sequenced early embryonic transcriptomes of two non-drosophilid dipteran species: the moth midge Clogmia albipunctata, and the scuttle fly Megaselia abdita. Our analysis includes a third, published, transcriptome for the hoverfly Episyrphus balteatus. These emerging models for comparative developmental studies close an important phylogenetic gap between Drosophila melanogaster and other insect model systems. In this paper, we provide a comparative analysis of early embryonic transcriptomes across species, and use our data for a phylogenomic re-evaluation of dipteran phylogenetic relationships. Conclusions We show how comparative transcriptomics can be used to create useful resources for evo-devo, and to investigate phylogenetic relationships. Our results demonstrate that de novo assembly of short (Illumina) reads yields high-quality, high-coverage transcriptomic data sets. We use these data to investigate deep dipteran phylogenetic relationships. Our results, based on a concatenation of 160 orthologous genes, provide support for the traditional view of Clogmia being the sister group of Brachycera (Megaselia, Episyrphus, Drosophila), rather than that of Culicomorpha (which includes mosquitoes and blackflies). PMID:23432914

  6. History and early development of INCAP.

    PubMed

    Scrimshaw, Nevin S

    2010-02-01

    Nevin Scrimshaw was the founding Director of the Institute of Nutrition of Central America and Panama (INCAP), serving as Director from 1949 to 1961. In this article, he reviews the history of the founding of INCAP, including the role of the Rockefeller and Kellogg Foundations, the Central American governments, and the Pan American Health Organization. The objectives pursued by INCAP in its early years were to assess the nutrition and related health problems of Central America, to carry out research to find practical solutions to these problems, and to provide technical assistance to its member countries to implement solutions. INCAP pursued a strategy of selecting promising Central Americans for advanced education and training in the US who assumed positions of leadership on their return. After this early phase, talented non-Central Americans of diverse origins were brought to INCAP, as well as additional researchers from the region. Growth of INCAP, as reflected in its annual budget and in the physical plant, was rapid and this was accompanied by high scientific productivity. Several field studies were launched that contributed impetus and design elements for the Oriente Longitudinal Study, which is the focus of this supplement.

  7. Bacteriophages as Weapons Against Bacterial Biofilms in the Food Industry

    PubMed Central

    Gutiérrez, Diana; Rodríguez-Rubio, Lorena; Martínez, Beatriz; Rodríguez, Ana; García, Pilar

    2016-01-01

    Microbiological contamination in the food industry is often attributed to the presence of biofilms in processing plants. Bacterial biofilms are complex communities of bacteria attached to a surface and surrounded by an extracellular polymeric material. Their extreme resistance to cleaning and disinfecting processes is related to a unique organization, which implies a differential bacterial growth and gene expression inside the biofilm. The impact of biofilms on health, and the economic consequences, has promoted the development of different approaches to control or remove biofilm formation. Recently, successful results in phage therapy have boosted new research in bacteriophages and phage lytic proteins for biofilm eradication. In this regard, this review examines the environmental factors that determine biofilm development in food-processing equipment. In addition, future perspectives for the use of bacteriophage-derived tools as disinfectants are discussed. PMID:27375566

  8. Bacteriophages as Weapons Against Bacterial Biofilms in the Food Industry.

    PubMed

    Gutiérrez, Diana; Rodríguez-Rubio, Lorena; Martínez, Beatriz; Rodríguez, Ana; García, Pilar

    2016-01-01

    Microbiological contamination in the food industry is often attributed to the presence of biofilms in processing plants. Bacterial biofilms are complex communities of bacteria attached to a surface and surrounded by an extracellular polymeric material. Their extreme resistance to cleaning and disinfecting processes is related to a unique organization, which implies a differential bacterial growth and gene expression inside the biofilm. The impact of biofilms on health, and the economic consequences, has promoted the development of different approaches to control or remove biofilm formation. Recently, successful results in phage therapy have boosted new research in bacteriophages and phage lytic proteins for biofilm eradication. In this regard, this review examines the environmental factors that determine biofilm development in food-processing equipment. In addition, future perspectives for the use of bacteriophage-derived tools as disinfectants are discussed.

  9. Developments in early intervention for psychosis in Hong Kong.

    PubMed

    Wong, G H Y; Hui, C L M; Wong, D Y; Tang, J Y M; Chang, W C; Chan, S K W; Lee, E H M; Xu, J Q; Lin, J J X; Lai, D C; Tam, W; Kok, J; Chung, D W S; Hung, S F; Chen, E Y H

    2012-09-01

    The year 2011 marked the 10-year milestone of early intervention for psychosis in Hong Kong. Since 2001, the landscape of early psychosis services has changed markedly in Hong Kong. Substantial progress has been made in the areas of early intervention service implementation, knowledge generation, and public awareness promotion. Favourable outcomes attributable to the early intervention service are supported by solid evidence from local clinical research studies; early intervention service users showed improved functioning, ameliorated symptoms, and decreased hospitalisation and suicide rates. Continued development of early intervention in Hong Kong over the decade includes the introduction and maturation of several key platforms, such as the Hospital Authority Early Assessment Service for Young People with Psychosis programme, the Psychosis Studies and Intervention Unit by the University of Hong Kong, the Hong Kong Early Psychosis Intervention Society, the Jockey Club Early Psychosis Project, and the postgraduate Psychological Medicine (Psychosis Studies) programme. In this paper, we reviewed some of the major milestones in local service development with reference to features of the Hong Kong mental health system. We describe chronologically the implementation and consolidation of public early intervention services as well as recent progresses in public awareness work that are tied in with knowledge generation and transfer, and outline the prospects for early intervention in the next decade and those that follow.

  10. A method for rapid quantitative assessment of biofilms with biomolecular staining and image analysis

    SciTech Connect

    Larimer, Curtis J.; Winder, Eric M.; Jeters, Robert T.

    Here, the accumulation of bacteria in surface attached biofilms, or biofouling, can be detrimental to human health, dental hygiene, and many industrial processes. A critical need in identifying and preventing the deleterious effects of biofilms is the ability to observe and quantify their development. Analytical methods capable of assessing early stage fouling are cumbersome or lab-confined, subjective, and qualitative. Herein, a novel photographic method is described that uses biomolecular staining and image analysis to enhance contrast of early stage biofouling. A robust algorithm was developed to objectively and quantitatively measure surface accumulation of Pseudomonas putida from photographs and results weremore » compared to independent measurements of cell density. Results from image analysis quantified biofilm growth intensity accurately and with approximately the same precision of the more laborious cell counting method. This simple method for early stage biofilm detection enables quantifiable measurement of surface fouling and is flexible enough to be applied from the laboratory to the field. Broad spectrum staining highlights fouling biomass, photography quickly captures a large area of interest, and image analysis rapidly quantifies fouling in the image.« less

  11. A method for rapid quantitative assessment of biofilms with biomolecular staining and image analysis

    DOE PAGES

    Larimer, Curtis J.; Winder, Eric M.; Jeters, Robert T.; ...

    2015-12-07

    Here, the accumulation of bacteria in surface attached biofilms, or biofouling, can be detrimental to human health, dental hygiene, and many industrial processes. A critical need in identifying and preventing the deleterious effects of biofilms is the ability to observe and quantify their development. Analytical methods capable of assessing early stage fouling are cumbersome or lab-confined, subjective, and qualitative. Herein, a novel photographic method is described that uses biomolecular staining and image analysis to enhance contrast of early stage biofouling. A robust algorithm was developed to objectively and quantitatively measure surface accumulation of Pseudomonas putida from photographs and results weremore » compared to independent measurements of cell density. Results from image analysis quantified biofilm growth intensity accurately and with approximately the same precision of the more laborious cell counting method. This simple method for early stage biofilm detection enables quantifiable measurement of surface fouling and is flexible enough to be applied from the laboratory to the field. Broad spectrum staining highlights fouling biomass, photography quickly captures a large area of interest, and image analysis rapidly quantifies fouling in the image.« less

  12. Sex Role Development in Early Adolescence.

    ERIC Educational Resources Information Center

    Wittig, Michele Andrisin

    1983-01-01

    Research involving adolescent identification with and development of sex roles is reviewed in the areas of cognitive skills and personality traits, theories of sex role development, and minority group adolescent sex role development. Emerging issues and educational implications in these areas are discussed. (CJ)

  13. COAGGREGATION OCCURS AMONGST BACTERIA WITHIN AND BETWEEN DOMESTIC SHOWERHEAD BIOFILMS

    PubMed Central

    Vornhagen, Jay; Stevens, Michael; McCormick, David; Dowd, Scot E.; Eisenberg, Joseph N.S.; Boles, Blaise R.; Rickard, Alexander H.

    2014-01-01

    Showerheads support the development multi-species biofilms that can be unsightly, produce malodor, and may harbor pathogens. The outer surface spray plates of many showerheads support visible biofilms that likely contain a mixture of bacteria from freshwater and potentially from human users. Coaggregation, a mechanism by which genetically distinct bacteria specifically recognize one another, may contribute to the retention and enrichment of different species within these biofilms. The aim of this work was to identify the bacterial composition of outer spray plate biofilms of three domestic shower heads and to determine the inter- and intra-biofilm coaggregation ability of each culturable isolate. The bacterial composition of the three biofilms was determined by using bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) and by culturing on R2A medium. An average of 31 genera per biofilm were identified using bTEFAP and a total of 30 isolates were cultured. Even though the microbial diversity of each showerhead biofilm differed, every cultured isolate was able to coaggregate with at least one other isolate from the same or different showerhead biofilm. Promiscuous coaggregating isolates belonged to the genera Brevundimonas, Micrococcus, and Lysobacter. This work suggests that coaggregation may be a common feature of showerhead biofilms. Characterization of the mechanisms mediating coaggregation, and the inter-species interactions they facilitate, may allow for novel strategies to inhibit biofilm development. PMID:23194413

  14. Ginger Extract Inhibits Biofilm Formation by Pseudomonas aeruginosa PA14

    PubMed Central

    Kim, Han-Shin; Park, Hee-Deung

    2013-01-01

    Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger’s ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39–56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3′-5′)-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor. PMID:24086697

  15. Predation Response of Vibrio fischeri Biofilms to Bacterivorus Protists

    PubMed Central

    Chavez-Dozal, Alba; Gorman, Clayton; Erken, Martina; Steinberg, Peter D.; McDougald, Diane

    2013-01-01

    Vibrio fischeri proliferates in a sessile, stable community known as a biofilm, which is one alternative survival strategy of its life cycle. Although this survival strategy provides adequate protection from abiotic factors, marine biofilms are still susceptible to grazing by bacteria-consuming protozoa. Subsequently, grazing pressure can be controlled by certain defense mechanisms that confer higher biofilm antipredator fitness. In the present work, we hypothesized that V. fischeri exhibits an antipredator fitness behavior while forming biofilms. Different predators representing commonly found species in aquatic populations were examined, including the flagellates Rhynchomonas nasuta and Neobodo designis (early biofilm feeders) and the ciliate Tetrahymena pyriformis (late biofilm grazer). V. fischeri biofilms included isolates from both seawater and squid hosts (Euprymna and Sepiola species). Our results demonstrate inhibition of predation by biofilms, specifically, isolates from seawater. Additionally, antiprotozoan behavior was observed to be higher in late biofilms, particularly toward the ciliate T. pyriformis; however, inhibitory effects were found to be widespread among all isolates tested. These results provide an alternative explanation for the adaptive advantage and persistence of V. fischeri biofilms and provide an important contribution to the understanding of defensive mechanisms that exist in the out-of-host environment. PMID:23144127

  16. Early Numeracy Assessment: The Development of the Preschool Early Numeracy Scales

    ERIC Educational Resources Information Center

    Purpura, David J.; Lonigan, Christopher J.

    2015-01-01

    Research Findings: The focus of this study was to construct and validate 12 brief early numeracy assessment tasks that measure the skills and concepts identified as key to early mathematics development by the National Council of Teachers of Mathematics (2006) and the National Mathematics Advisory Panel (2008)-as well as critical developmental…

  17. Parents Resourcing Children's Early Development and Learning

    ERIC Educational Resources Information Center

    Nichols, Sue; Nixon, Helen; Pudney, Valerie; Jurvansuu, Sari

    2009-01-01

    Parents deal with a complex web of choices when seeking and using knowledge and resources related to their young children's literacy development. Information concerning children's learning and development comes in many forms and is produced by an increasingly diverse range of players including governments, non-government organizations and…

  18. Candida biofilms: is adhesion sexy?

    PubMed

    Soll, David R

    2008-08-26

    The development of Candida albicans biofilms requires two types of adhesion molecule - the Als proteins and Hwp1. Mutational analyses have recently revealed that these molecules play complementary roles, and their characteristics suggest that they may have evolved from primitive mating agglutinins.

  19. The application of impedance measurement to assess biofilm development on technical materials used for water supply system construction

    NASA Astrophysics Data System (ADS)

    Wolf, Mirela; Traczewska, Teodora; Grzebyk, Tomasz

    2017-11-01

    The lack of biological stability of water which is introduced into the network, leads primarily to its secondary contamination during transport to the consumer. The water that is biologically unstable creates ideal conditions for colonization of the inner surface of pipelines by microorganisms and adhesion of their products (biocorrosion). The studies was conducted using the identified microorganisms isolated from the water supply network which accounted inocula in continuous culture of biofilm in CDC reactor. As a result of studies it was revealed the presence of biofilm formed on different materials polyethylene, polypropylene, polyvinyl chloride, polybutylene. Microbiological biodiversity of organisms inhabiting a biofilm of the diversity of nucleic acids was used. It was observed the amount of the psychrophilic bacteria oscillation in the effluent from the reactor. It was also determined the affinity of various bacteria to the plastic through adhesion measurement using impedance spectroscopy. For impedance measurements apparatus SIGNAL RECOVERY 7280 DSP LOCK-IN AMPLIFIER was used, recording impedance components (real and imaginary). The results will allow for the creation of biosensor systems that can be used in predicting health risks in connection with drinking water and taking corrective actions.

  20. Inhibition of biofilm development and spoilage potential of Shewanella baltica by quorum sensing signal in cell-free supernatant from Pseudomonas fluorescens.

    PubMed

    Zhao, Aifei; Zhu, Junli; Ye, Xiaofeng; Ge, Yangyang; Li, Jianrong

    2016-08-02

    The objective of this study was to in vitro evaluate the effect of a cell-free supernatant (CFS) containing quorum sensing (QS) signal of Pseudomonas fluorescens on the growth, biofilm development and spoilage potential of Shewanella baltica, and preliminarily assess the interactive influences of various chemically synthesized autoinducers on spoilage phenotypes of S. baltica. PF01 strain isolated from spoiled Pseudosciaen crocea was identified P. fluorescens. The addition of 25% and 50% CFS to S. baltica culture had no effect on the growth rate during the lag and exponential phase, however, caused cell decline during the stationary phase. The presence of CFS from P. fluorescens significantly inhibited biofilm development, and greatly decreased the production of trimethylamine (TMA) and biogenic amino in S. baltica. Various signal molecules of QS in the CFS of P. fluorescens culture were detected, including seven N-acyl-l-homoserine lactones (AHLs), autoinducer-2 (AI-2) and two diketopiperazines (DKPs). Exogenous supplement of synthesized seven AHLs containing in the CFS decreased biofilm formation and TMA production in S. baltica, while exposure to exogenous cyclo-(l-Pro-l-Leu) was showed to promote spoilage potential, which revealed that S. baltica also sense the two QS molecules. Furthermore, the stimulating effect of cyclo-(l-Pro-l-Leu) was affected when AHL was simultaneously added, suggesting that the inhibitory activity of spoilage phenotypes in S. baltica might be attributed to a competitive effect of these QS compounds in the CFS of P. fluorescens. The present studies provide a good basis for future research on the role of QS in the regulation of spoilage microbial flora. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Microscale Confinement features in microfluidic devices can affect biofilm

    SciTech Connect

    Kumar, Aloke; Karig, David K; Neethirajan, Suresh

    2013-01-01

    Biofilms are aggregations of microbes that are encased by extra-cellular polymeric substances (EPS) and adhere to surfaces and interfaces. Biofilm development on abiotic surfaces is a dynamic process, which typically proceeds through an initial phase of adhesion of plankntonic microbes to the substrate, followed by events such as growth, maturation and EPS secretion. However, the coupling of hydrodynamics, microbial adhesion and biofilm growth remain poorly understood. Here, we investigate the effect of semiconfined features on biofilm formation. Using a microfluidic device and fluorescent time-lapse microscopy, we establish that confinement features can significantly affect biofilm formation. Biofilm dynamics change not onlymore » as a function of confinement features, but also of the total fluid flow rate, and our combination of experimental results and numerical simulations reveal insights into the link between hydrodynamics and biofilm formation.« less

  2. Unravelling the core microbiome of biofilms in cooling tower systems.

    PubMed

    Di Gregorio, L; Tandoi, V; Congestri, R; Rossetti, S; Di Pippo, F

    2017-11-01

    In this study, next generation sequencing and catalyzed reporter deposition fluorescence in situ hybridization, combined with confocal microscopy, were used to provide insights into the biodiversity and structure of biofilms collected from four full-scale European cooling systems. Water samples were also analyzed to evaluate the impact of suspended microbes on biofilm formation. A common core microbiome, containing members of the families Sphingomonadaceae, Comamonadaceae and Hyphomicrobiaceae, was found in all four biofilms, despite the water of each coming from different sources (river and groundwater). This suggests that selection of the pioneer community was influenced by abiotic factors (temperature, pH) and tolerances to biocides. Members of the Sphingomonadaceae were assumed to play a key role in initial biofilm formation. Subsequent biofilm development was driven primarily by light availability, since biofilms were dominated by phototrophs in the two studied 'open' systems. Their interactions with other microbial populations then shaped the structure of the mature biofilm communities analyzed.

  3. Bacterial signaling ecology and potential applications during aquatic biofilm construction.

    PubMed

    Vega, Leticia M; Alvarez, Pedro J; McLean, Robert J C

    2014-07-01

    In their natural environment, bacteria and other microorganisms typically grow as surface-adherent biofilm communities. Cell signal processes, including quorum signaling, are now recognized as being intimately involved in the development and function of biofilms. In contrast to their planktonic (unattached) counterparts, bacteria within biofilms are notoriously resistant to many traditional antimicrobial agents and so represent a major challenge in industry and medicine. Although biofilms impact many human activities, they actually represent an ancient mode of bacterial growth as shown in the fossil record. Consequently, many aquatic organisms have evolved strategies involving signal manipulation to control or co-exist with biofilms. Here, we review the chemical ecology of biofilms and propose mechanisms whereby signal manipulation can be used to promote or control biofilms.

  4. Inhibitory effect of alpha-mangostin on Candida biofilms.

    PubMed

    Kaomongkolgit, Ruchadaporn; Jamdee, Kusuma

    2017-04-01

    The objective of this study was to determine the inhibitory effect of alpha-mangostin on Candida biofilms. Candida species including Candida albicans, Candida krusei, Candida tropicalis, and Candida glabrata were tested. Candida biofilms were formed in flat-bottomed 96-well microtiter plates. The metabolic activity of cells within biofilms was quantified using the XTT assay. The results demonstrated that alpha-mangostin showed a significant anti-biofilm effect on both developing biofilms and preformed biofilms of Candida species. It may be concluded that alpha-mangostin could be an anti-biofilm agent against Candida species. Further in vivo investigations are needed to uncover the therapeutic values of this medicinal plant.

  5. Early psychosis workforce development: Core competencies for mental health professionals working in the early psychosis field.

    PubMed

    Osman, Helen; Jorm, Anthony F; Killackey, Eoin; Francey, Shona; Mulcahy, Dianne

    2017-08-09

    The aim of this study was to identify the core competencies required of mental health professionals working in the early psychosis field, which could function as an evidence-based tool to support the early psychosis workforce and in turn assist early psychosis service implementation and strengthen early psychosis model fidelity. The Delphi method was used to establish expert consensus on the core competencies. In the first stage, a systematic literature search was conducted to generate competency items. In the second stage, a panel consisting of expert early psychosis clinicians from around the world was formed. Panel members then rated each of the competency items on how essential they are to the clinical practice of all early psychosis clinicians. In total, 1023 pieces of literature including textbooks, journal articles and grey literature were reviewed. A final 542 competency items were identified for inclusion in the questionnaire. A total of 63 early psychosis experts participated in 3 rating rounds. Of the 542 competency items, 242 were endorsed as the required core competencies. There were 29 competency items that were endorsed by 62 or more experts, and these may be considered the foundational competencies for early psychosis practice. The study generated a set of core competencies that provide a common language for early psychosis clinicians across professional disciplines and country of practice, and potentially are a useful professional resource to support early psychosis workforce development and service reform. © 2017 John Wiley & Sons Australia, Ltd.

  6. Early development of fern gametophytes in microgravity

    NASA Techni