Science.gov

Sample records for early brain response

  1. Abnormal early brain responses during visual search are evident in schizophrenia but not bipolar affective disorder.

    PubMed

    VanMeerten, Nicolaas J; Dubke, Rachel E; Stanwyck, John J; Kang, Seung Suk; Sponheim, Scott R

    2016-01-01

    People with schizophrenia show deficits in processing visual stimuli but neural abnormalities underlying the deficits are unclear and it is unknown whether such functional brain abnormalities are present in other severe mental disorders or in individuals who carry genetic liability for schizophrenia. To better characterize brain responses underlying visual search deficits and test their specificity to schizophrenia we gathered behavioral and electrophysiological responses during visual search (i.e., Span of Apprehension [SOA] task) from 38 people with schizophrenia, 31 people with bipolar disorder, 58 biological relatives of people with schizophrenia, 37 biological relatives of people with bipolar disorder, and 65 non-psychiatric control participants. Through subtracting neural responses associated with purely sensory aspects of the stimuli we found that people with schizophrenia exhibited reduced early posterior task-related neural responses (i.e., Span Endogenous Negativity [SEN]) while other groups showed normative responses. People with schizophrenia exhibited longer reaction times than controls during visual search but nearly identical accuracy. Those individuals with schizophrenia who had larger SENs performed more efficiently (i.e., shorter reaction times) on the SOA task suggesting that modulation of early visual cortical responses facilitated their visual search. People with schizophrenia also exhibited a diminished P300 response compared to other groups. Unaffected first-degree relatives of people with bipolar disorder and schizophrenia showed an amplified N1 response over posterior brain regions in comparison to other groups. Diminished early posterior brain responses are associated with impaired visual search in schizophrenia and appear to be specifically associated with the neuropathology of schizophrenia. Published by Elsevier B.V.

  2. Discrimination of timbre in early auditory responses of the human brain.

    PubMed

    Seol, Jaeho; Oh, MiAe; Kim, June Sic; Jin, Seung-Hyun; Kim, Sun Il; Chung, Chun Kee

    2011-01-01

    The issue of how differences in timbre are represented in the neural response still has not been well addressed, particularly with regard to the relevant brain mechanisms. Here we employ phasing and clipping of tones to produce auditory stimuli differing to describe the multidimensional nature of timbre. We investigated the auditory response and sensory gating as well, using by magnetoencephalography (MEG). Thirty-five healthy subjects without hearing deficit participated in the experiments. Two different or same tones in timbre were presented through conditioning (S1)-testing (S2) paradigm as a pair with an interval of 500 ms. As a result, the magnitudes of auditory M50 and M100 responses were different with timbre in both hemispheres. This result might support that timbre, at least by phasing and clipping, is discriminated in the auditory early processing. The second response in a pair affected by S1 in the consecutive stimuli occurred in M100 of the left hemisphere, whereas both M50 and M100 responses to S2 only in the right hemisphere reflected whether two stimuli in a pair were the same or not. Both M50 and M100 magnitudes were different with the presenting order (S1 vs. S2) for both same and different conditions in the both hemispheres. Our results demonstrate that the auditory response depends on timbre characteristics. Moreover, it was revealed that the auditory sensory gating is determined not by the stimulus that directly evokes the response, but rather by whether or not the two stimuli are identical in timbre.

  3. Prediction in the service of comprehension: modulated early brain responses to omitted speech segments.

    PubMed

    Bendixen, Alexandra; Scharinger, Mathias; Strauß, Antje; Obleser, Jonas

    2014-04-01

    Speech signals are often compromised by disruptions originating from external (e.g., masking noise) or internal (e.g., inaccurate articulation) sources. Speech comprehension thus entails detecting and replacing missing information based on predictive and restorative neural mechanisms. The present study targets predictive mechanisms by investigating the influence of a speech segment's predictability on early, modality-specific electrophysiological responses to this segment's omission. Predictability was manipulated in simple physical terms in a single-word framework (Experiment 1) or in more complex semantic terms in a sentence framework (Experiment 2). In both experiments, final consonants of the German words Lachs ([laks], salmon) or Latz ([lats], bib) were occasionally omitted, resulting in the syllable La ([la], no semantic meaning), while brain responses were measured with multi-channel electroencephalography (EEG). In both experiments, the occasional presentation of the fragment La elicited a larger omission response when the final speech segment had been predictable. The omission response occurred ∼125-165 msec after the expected onset of the final segment and showed characteristics of the omission mismatch negativity (MMN), with generators in auditory cortical areas. Suggestive of a general auditory predictive mechanism at work, this main observation was robust against varying source of predictive information or attentional allocation, differing between the two experiments. Source localization further suggested the omission response enhancement by predictability to emerge from left superior temporal gyrus and left angular gyrus in both experiments, with additional experiment-specific contributions. These results are consistent with the existence of predictive coding mechanisms in the central auditory system, and suggestive of the general predictive properties of the auditory system to support spoken word recognition. Copyright © 2014 Elsevier Ltd. All

  4. Converging early responses to brain injury pave the road to epileptogenesis.

    PubMed

    Neuberger, Eric J; Gupta, Akshay; Subramanian, Deepak; Korgaonkar, Akshata A; Santhakumar, Vijayalakshmi

    2017-11-29

    Epilepsy, characterized by recurrent seizures and abnormal electrical activity in the brain, is one of the most prevalent brain disorders. Over two million people in the United States have been diagnosed with epilepsy and 3% of the general population will be diagnosed with it at some point in their lives. While most developmental epilepsies occur due to genetic predisposition, a class of "acquired" epilepsies results from a variety of brain insults. A leading etiological factor for epilepsy that is currently on the rise is traumatic brain injury (TBI), which accounts for up to 20% of all symptomatic epilepsies. Remarkably, the presence of an identified early insult that constitutes a risk for development of epilepsy provides a therapeutic window in which the pathological processes associated with brain injury can be manipulated to limit the subsequent development of recurrent seizure activity and epilepsy. Recent studies have revealed diverse pathologies, including enhanced excitability, activated immune signaling, cell death, and enhanced neurogenesis within a week after injury, suggesting a period of heightened adaptive and maladaptive plasticity. An integrated understanding of these processes and their cellular and molecular underpinnings could lead to novel targets to arrest epileptogenesis after trauma. This review attempts to highlight and relate the diverse early changes after trauma and their role in development of epilepsy and suggests potential strategies to limit neurological complications in the injured brain. © 2017 Wiley Periodicals, Inc.

  5. Moderate alcohol exposure during early brain development increases stimulus-response habits in adulthood.

    PubMed

    Parker, Matthew O; Evans, Alexandra M-D; Brock, Alistair J; Combe, Fraser J; Teh, Muy-Teck; Brennan, Caroline H

    2016-01-01

    Exposure to alcohol during early central nervous system development has been shown variously to affect aspects of physiological and behavioural development. In extreme cases, this can extend to craniofacial defects, severe developmental delay and mental retardation. At more moderate levels, subtle differences in brain morphology and behaviour have been observed. One clear effect of developmental alcohol exposure is an increase in the propensity to develop alcoholism and other addictions. The mechanisms by which this occurs, however, are not currently understood. In this study, we tested the hypothesis that adult zebrafish chronically exposed to moderate levels of ethanol during early brain ontogenesis would show an increase in conditioned place preference for alcohol and an increased propensity towards habit formation, a key component of drug addiction in humans. We found support for both of these hypotheses and found that the exposed fish had changes in mRNA expression patterns for dopamine receptor, nicotinic acetylcholine receptor and μ-opioid receptor encoding genes. Collectively, these data show an explicit link between the increased proclivity for addiction and addiction-related behaviour following exposure to ethanol during early brain development and alterations in the neural circuits underlying habit learning. © 2014 Society for the Study of Addiction.

  6. Potential subjects' responses to an ethics questionnaire in a phase I study of deep brain stimulation in early Parkinson's disease.

    PubMed

    Finder, Stuart G; Bliton, Mark J; Gill, Chandler E; Davis, Thomas L; Konrad, Peter E; Charles, P David

    2012-01-01

    Central to ethically justified clinical trial design is the need for an informed consent process responsive to how potential subjects actually comprehend study participation, especially study goals, risks, and potential benefits. This will be particularly challenging when studying deep brain stimulation and whether it impedes symptom progression in Parkinson's disease, since potential subjects will be Parkinson's patients for whom deep brain stimulation will likely have therapeutic value in the future as their disease progresses. As part of an expanded informed consent process for a pilot Phase I study of deep brain stimulation in early stage Parkinson's disease, an ethics questionnaire composed of 13 open-ended questions was distributed to potential subjects. The questionnaire was designed to guide potential subjects in thinking about their potential participation. While the purpose of the study (safety and tolerability) was extensively presented during the informed consent process, in returned responses 70 percent focused on effectiveness and 91 percent included personal benefit as poten- tial benefit from enrolling. However, 91 percent also indicated helping other Parkinson's patients as motivation when considering whether or not to enroll. This combination of responses highlights two issues to which investigators need to pay close attention in future trial designs: (1) how, and in what ways, informed consent processes reinforce potential subjects' preconceived understandings of benefit, and (2) that potential subjects see themselves as part of a community of Parkinson's sufferers with responsibilities extending beyond self-interest. More importantly, it invites speculation that a different paradigm for informed consent may be needed.

  7. Fetal Magnetoencephalography--Achievements and Challenges in the Study of Prenatal and Early Postnatal Brain Responses: A Review

    ERIC Educational Resources Information Center

    Sheridan, Carolin J.; Matuz, Tamara; Draganova, Rossitza; Eswaran, Hari; Preissl, Hubert

    2010-01-01

    Fetal magnetoencephalography (fMEG) is the only non-invasive method for investigating evoked brain responses and spontaneous brain activity generated by the fetus "in utero". Fetal auditory as well as visual-evoked fields have been successfully recorded in basic stimulus-response studies. Moreover, paradigms investigating precursors for cognitive…

  8. Reversing the Real Brain Drain: Early Years Study--A Response.

    ERIC Educational Resources Information Center

    Killoran, Isabel

    2001-01-01

    Presents concerns over the "Early Years Study" (McCain & Mustard). Focuses on diversity issues related to the readiness measure used, parenting styles, and the importance of first language development. Questions the report's definition of "developmentally-attuned." Concludes by expressing hope that the Early Years Study…

  9. Age-Related Changes in Transient and Oscillatory Brain Responses to Auditory Stimulation during Early Adolescence

    ERIC Educational Resources Information Center

    Poulsen, Catherine; Picton, Terence W.; Paus, Tomas

    2009-01-01

    Maturational changes in the capacity to process quickly the temporal envelope of sound have been linked to language abilities in typically developing individuals. As part of a longitudinal study of brain maturation and cognitive development during adolescence, we employed dense-array EEG and spatiotemporal source analysis to characterize…

  10. Predictive value of early brain atrophy on response in patients treated with interferon β

    PubMed Central

    Pérez-Miralles, Francisco Carlos; Vidal-Jordana, Angela; Río, Jordi; Auger, Cristina; Pareto, Deborah; Tintoré, Mar; Rovira, Alex; Montalban, Xavier

    2015-01-01

    Objective: To investigate the association between brain volume loss during the first year of interferon treatment and clinical outcome at 4 years. Methods: Patients with multiple sclerosis initiating interferon β were clinically evaluated every 6 months for the presence of relapses and assessment of global disability using the Expanded Disability Status Scale (EDSS). MRI scans were performed at baseline and after 12 months, and the percentage of brain volume change (PBVC), brain parenchymal volume change (BPVc%), gray matter volume change (GMVc%), and white matter volume change (WMVc%) were estimated. Patients were divided based on the cutoff values for predicting confirmed EDSS worsening obtained by receiver operating characteristic analysis for all atrophy measurements. Survival curves and Cox proportional hazards regression to predict disability worsening at last observation were applied, adjusting for demographic, clinical, and radiologic variables. Results: Larger PBVC and WMVc% decreases were observed in patients with disability worsening at 4 years of follow-up, whereas no differences were found in BPVc% or GMVc%. Cutoff points were obtained for PBVC (−0.86%; sensitivity 65.5%, specificity 71.4%) and WMVc% (−2.49%; sensitivity 85.3%, specificity 43.8%). Patients with decreases of PBVC and WMVc% below cutoff values were more prone to develop disability worsening (unadjusted hazard ratio [HR] 3.875, p = 0.005; HR 4.246, p = 0.004, respectively). PBVC (HR 4.751, p = 0.008) and the interaction of new T2 lesions with WMVc% (HR 1.086, p = 0.005) were found to be independent predictors of disability worsening in the multivariate analysis. Conclusions: At the patient level, whole-brain and white matter volume changes in the first year of interferon β therapy are predictive of subsequent clinical evolution under treatment. PMID:26185778

  11. Predictive value of early brain atrophy on response in patients treated with interferon β.

    PubMed

    Pérez-Miralles, Francisco Carlos; Sastre-Garriga, Jaume; Vidal-Jordana, Angela; Río, Jordi; Auger, Cristina; Pareto, Deborah; Tintoré, Mar; Rovira, Alex; Montalban, Xavier

    2015-08-01

    To investigate the association between brain volume loss during the first year of interferon treatment and clinical outcome at 4 years. Patients with multiple sclerosis initiating interferon β were clinically evaluated every 6 months for the presence of relapses and assessment of global disability using the Expanded Disability Status Scale (EDSS). MRI scans were performed at baseline and after 12 months, and the percentage of brain volume change (PBVC), brain parenchymal volume change (BPVc%), gray matter volume change (GMVc%), and white matter volume change (WMVc%) were estimated. Patients were divided based on the cutoff values for predicting confirmed EDSS worsening obtained by receiver operating characteristic analysis for all atrophy measurements. Survival curves and Cox proportional hazards regression to predict disability worsening at last observation were applied, adjusting for demographic, clinical, and radiologic variables. Larger PBVC and WMVc% decreases were observed in patients with disability worsening at 4 years of follow-up, whereas no differences were found in BPVc% or GMVc%. Cutoff points were obtained for PBVC (-0.86%; sensitivity 65.5%, specificity 71.4%) and WMVc% (-2.49%; sensitivity 85.3%, specificity 43.8%). Patients with decreases of PBVC and WMVc% below cutoff values were more prone to develop disability worsening (unadjusted hazard ratio [HR] 3.875, p = 0.005; HR 4.246, p = 0.004, respectively). PBVC (HR 4.751, p = 0.008) and the interaction of new T2 lesions with WMVc% (HR 1.086, p = 0.005) were found to be independent predictors of disability worsening in the multivariate analysis. At the patient level, whole-brain and white matter volume changes in the first year of interferon β therapy are predictive of subsequent clinical evolution under treatment.

  12. Early cellular responses against tributyltin chloride exposure in primary cultures derived from various brain regions.

    PubMed

    Mitra, Sumonto; Siddiqui, Waseem A; Khandelwal, Shashi

    2014-05-01

    Tributyltin (TBT) is a potent biocide and commonly used in various industrial sectors. Humans are mainly exposed through the food chain. We have previously demonstrated tin accumulation in brain following TBT-chloride (TBTC) exposure. In this study, effect of TBTC on dissociated cells from different brain regions was evaluated. Cytotoxicity assay (MTT), mode of cell death (Annexin V/PI assay), oxidative stress parameters (ROS and lipid peroxidation), reducing power of the cell (GSH), mitochondrial membrane potential (MMP) and intracellular Ca(2+) were evaluated to ascertain the effect of TBTC. Expression of glial fibrillary acidic protein (GFAP) was measured to understand the effect on astroglial cells. TBTC as low as 30 nM was found to reduce GSH levels, whereas higher doses of 300 and 3000 nM induced ROS generation and marked loss in cell viability mainly through apoptosis. Striatum showed higher susceptibility than other regions, which may have further implications on various neurological aspects. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Early Adverse Caregiving Experiences and Preschoolers' Current Attachment Affect Brain Responses during Facial Familiarity Processing: An ERP Study.

    PubMed

    Kungl, Melanie T; Bovenschen, Ina; Spangler, Gottfried

    2017-01-01

    When being placed into more benign environments like foster care, children from adverse rearing backgrounds are capable of forming attachment relationships to new caregivers within the first year of placement, while certain problematic social behaviors appear to be more persistent. Assuming that early averse experiences shape neural circuits underlying social behavior, neurophysiological studies on individual differences in early social-information processing have great informative value. More precisely, ERP studies have repeatedly shown face processing to be sensitive to experience especially regarding the caregiving background. However, studies on effects of early adverse caregiving experiences are restricted to children with a history of institutionalization. Also, no study has investigated effects of attachment security as a marker of the quality of the caregiver-child relationship. Thus, the current study asks how adverse caregiving experiences and attachment security to (new) caregivers affect early- and mid-latency ERPs sensitive to facial familiarity processing. Therefore, pre-school aged foster children during their second year within the foster home were compared to an age matched control group. Attachment was assessed using the AQS and neurophysiological data was collected during a passive viewing task presenting (foster) mother and stranger faces. Foster children were comparable to the control group with regard to attachment security. On a neurophysiological level, however, the foster group showed dampened N170 amplitudes for both face types. In both foster and control children, dampened N170 amplitudes were also found for stranger as compared to (foster) mother faces, and, for insecurely attached children as compared to securely attached children. This neural pattern may be viewed as a result of poorer social interactions earlier in life. Still, there was no effect on P1 amplitudes. Indicating heightened attentional processing, Nc amplitude responses

  14. Brain responses to filled gaps.

    PubMed

    Hestvik, Arild; Maxfield, Nathan; Schwartz, Richard G; Shafer, Valerie

    2007-03-01

    An unresolved issue in the study of sentence comprehension is whether the process of gap-filling is mediated by the construction of empty categories (traces), or whether the parser relates fillers directly to the associated verb's argument structure. We conducted an event-related potentials (ERP) study that used the violation paradigm to examine the time course and spatial distribution of brain responses to ungrammatically filled gaps. The results indicate that the earliest brain response to the violation is an early left anterior negativity (eLAN). This ERP indexes an early phase of pure syntactic structure building, temporally preceding ERPs that reflect semantic integration and argument structure satisfaction. The finding is interpreted as evidence that gap-filling is mediated by structurally predicted empty categories, rather than directly by argument structure operations.

  15. Early- and Late-Onset Depression in Late Life: A Prospective Study on Clinical and Structural Brain Characteristics and Response to Electroconvulsive Therapy.

    PubMed

    Dols, Annemiek; Bouckaert, Filip; Sienaert, Pascal; Rhebergen, Didi; Vansteelandt, Kristof; Ten Kate, Mara; de Winter, Francois-Laurent; Comijs, Hannie C; Emsell, Louise; Oudega, Mardien L; van Exel, Eric; Schouws, Sigfried; Obbels, Jasmien; Wattjes, Mike; Barkhof, Frederik; Eikelenboom, Piet; Vandenbulcke, Mathieu; Stek, Max L

    2017-02-01

    The clinical profile of late-life depression (LLD) is frequently associated with cognitive impairment, aging-related brain changes, and somatic comorbidity. This two-site naturalistic longitudinal study aimed to explore differences in clinical and brain characteristics and response to electroconvulsive therapy (ECT) in early- (EOD) versus late-onset (LOD) late-life depression (respectively onset <55 and ≥55 years). Between January 2011 and December 2013, 110 patients aged 55 years and older with ECT-treated unipolar depression were included in The Mood Disorders in Elderly treated with ECT study. Clinical profile and somatic health were assessed. Magnetic resonance imaging (MRI) scans were performed before the first ECT and visually rated. Response rate was 78.2% and similar between the two sites but significantly higher in LOD compared with EOD (86.9 versus 67.3%). Clinical, somatic, and brain characteristics were not different between EOD and LOD. Response to ECT was associated with late age at onset and presence of psychotic symptoms and not with structural MRI characteristics. In EOD only, the odds for a higher response were associated with a shorter index episode. The clinical profile, somatic comorbidities, and brain characteristics in LLD were similar in EOD and LOD. Nevertheless, patients with LOD showed a superior response to ECT compared with patients with EOD. Our results indicate that ECT is very effective in LLD, even in vascular burdened patients. Copyright © 2017 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging.

    PubMed

    Mardor, Yael; Pfeffer, Raphael; Spiegelmann, Roberto; Roth, Yiftach; Maier, Stephan E; Nissim, Ouzi; Berger, Raanan; Glicksman, Ami; Baram, Jacob; Orenstein, Arie; Cohen, Jack S; Tichler, Thomas

    2003-03-15

    To study the feasibility of using diffusion-weighted magnetic resonance imaging (DWMRI), which is sensitive to the diffusion of water molecules in tissues, for detection of early tumor response to radiation therapy; and to evaluate the additional information obtained from high DWMRI, which is more sensitive to low-mobility water molecules (such as intracellular or bound water), in increasing the sensitivity to response. Standard MRI and DWMRI were acquired before and at regular intervals after initiating radiation therapy for 10 malignant brain lesions in eight patients. One week posttherapy, three of six responding lesions showed an increase in the conventional DWMRI parameters. Another three responding lesions showed no change. Four nonresponding lesions showed a decrease or no change. The early change in the diffusion parameters was enhanced by using high DWMRI. When high DWMRI was used, all responding lesions showed increase in the diffusion parameter and all nonresponding lesions showed no change or decrease. Response was determined by standard MRI 7 weeks posttherapy. The changes in the diffusion parameters measured 1 week after initiating treatment were correlated with later tumor response or no response (P <.006). This correlation was increased to P <.0006 when high DWMRI was used. The significant correlation between changes in diffusion parameters 1 week after initiating treatment and later tumor response or no response suggests the feasibility of using DWMRI for early, noninvasive prediction of tumor response. The ability to predict response may enable early termination of treatment in nonresponding patients, prevent additional toxicity, and allow for early changes in treatment.

  17. Early brain response to low-dose radiation exposure involves molecular networks and pathways associated with cognitive functions, advanced aging and Alzheimer's disease.

    PubMed

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J

    2009-01-01

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy and environmental nuclear contamination as well as for Earth-orbit and space missions. Analyses of transcriptome profiles of mouse brain tissue after whole-body irradiation showed that low-dose exposures (10 cGy) induced genes not affected by high-dose radiation (2 Gy) and that low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues and pathways that were specific for brain tissue. Low-dose genes clustered into a saturated network (P < 10(-53)) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified nine neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose irradiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down-regulated in normal human aging and Alzheimer's disease.

  18. Brain anatomical networks in early human brain development.

    PubMed

    Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2011-02-01

    Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. Copyright © 2010. Published by Elsevier Inc.

  19. Early Prefrontal Brain Responses to the Hedonic Quality of Emotional Words – A Simultaneous EEG and MEG Study

    PubMed Central

    Keuper, Kati; Zwitserlood, Pienie; Rehbein, Maimu A.; Eden, Annuschka S.; Laeger, Inga; Junghöfer, Markus; Zwanzger, Peter; Dobel, Christian

    2013-01-01

    The hedonic meaning of words affects word recognition, as shown by behavioral, functional imaging, and event-related potential (ERP) studies. However, the spatiotemporal dynamics and cognitive functions behind are elusive, partly due to methodological limitations of previous studies. Here, we account for these difficulties by computing combined electro-magnetoencephalographic (EEG/MEG) source localization techniques. Participants covertly read emotionally high-arousing positive and negative nouns, while EEG and MEG were recorded simultaneously. Combined EEG/MEG current-density reconstructions for the P1 (80–120 ms), P2 (150–190 ms) and EPN component (200–300 ms) were computed using realistic individual head models, with a cortical constraint. Relative to negative words, the P1 to positive words predominantly involved language-related structures (left middle temporal and inferior frontal regions), and posterior structures related to directed attention (occipital and parietal regions). Effects shifted to the right hemisphere in the P2 component. By contrast, negative words received more activation in the P1 time-range only, recruiting prefrontal regions, including the anterior cingulate cortex (ACC). Effects in the EPN were not statistically significant. These findings show that different neuronal networks are active when positive versus negative words are processed. We account for these effects in terms of an “emotional tagging” of word forms during language acquisition. These tags then give rise to different processing strategies, including enhanced lexical processing of positive words and a very fast language-independent alert response to negative words. The valence-specific recruitment of different networks might underlie fast adaptive responses to both approach- and withdrawal-related stimuli, be they acquired or biological. PMID:23940642

  20. Early Brain Development Research Review and Update

    ERIC Educational Resources Information Center

    Schiller, Pam

    2010-01-01

    Thanks to imaging technology used in neurobiology, people have access to useful and critical information regarding the development of the human brain. This information allows them to become much more effective in helping children in their early development. In fact, when people base their practices on the findings from medical science research,…

  1. Brain responses to food images during the early and late follicular phase of the menstrual cycle in healthy young women: relation to fasting and feeding1234

    PubMed Central

    Ziemke, Florencia; Magkos, Faidon; Barrios, Fernando A; Brinkoetter, Mary; Boyd, Ingrid; Rifkin-Graboi, Anne; Yannakoulia, Mary; Rojas, Rafael; Pascual-Leone, Alvaro; Mantzoros, Christos S

    2011-01-01

    Background: Food intake fluctuates throughout the menstrual cycle; it is greater during the early follicular and luteal phases than in the late follicular (periovulatory) phase. Ovarian steroids can influence brain areas that process food-related information, but the specific contribution of individual hormones and the importance of the prandial state remain unknown. Objective: The objective was to examine whether brain activation during food visualization is affected by changes in estradiol concentration in the fasted and fed conditions. Design: Nine eumenorrheic, lean young women [mean (±SD) age: 26.2 ± 3.2 y; body mass index (in kg/m2): 22.4 ± 1.2] completed 2 visits, one in the early (low estradiol) and one in the late (high estradiol) follicular phase of their menstrual cycle. At each visit, subjects underwent functional magnetic resonance imaging while they viewed food and nonfood images, before and after a standardized meal. Region-of-interest analysis was used to examine the effect of follicular phase and prandial state on brain activation (food > nonfood contrast) and its association with estradiol concentration. Results: Differences were identified in the inferior frontal and fusiform gyri. In these areas, visualization of food elicited greater activation in the fed state than during fasting but only in the late follicular phase, when estradiol concentration was high. The change in estradiol concentration across the follicular phase (late minus early) was inversely correlated with the change in fusiform gyrus activation in the fasted state but not in the fed state. Conclusion: Our findings suggest that estradiol may reduce food intake by decreasing sensitivity to food cues in the ventral visual pathway under conditions of energy deprivation. This trial was registered at clinicaltrials.gov as NCT00130117. PMID:21593494

  2. Inflammatory Responses in Brain Ischemia

    PubMed Central

    Kawabori, Masahito; Yenari, Midori A.

    2017-01-01

    Brain infarction causes tissue death by ischemia due to occlusion of the cerebral vessels and recent work has shown that post stroke inflammation contributes significantly to the development of ischemic pathology. Because secondary damage by brain inflammation may have a longer therapeutic time window compared to the rescue of primary damage following arterial occlusion, controlling inflammation would be an obvious therapeutic target. A substantial amount of experimentall progress in this area has been made in recent years. However, it is difficult to elucidate the precise mechanisms of the inflammatory responses following ischemic stroke because inflammation is a complex series of interactions between inflammatory cells and molecules, all of which could be either detrimental or beneficial. We review recent advances in neuroinflammation and the modulation of inflammatory signaling pathways in brain ischemia. Potential targets for treatment of ischemic stroke will also be covered. The roles of the immune system and brain damage versus repair will help to clarify how immune modulation may treat stroke. PMID:25666795

  3. Early Brain Vulnerability in Wolfram Syndrome

    PubMed Central

    Hershey, Tamara; Lugar, Heather M.; Shimony, Joshua S.; Rutlin, Jerrel; Koller, Jonathan M.; Perantie, Dana C.; Paciorkowski, Alex R.; Eisenstein, Sarah A.; Permutt, M. Alan

    2012-01-01

    Wolfram Syndrome (WFS) is a rare autosomal recessive disease characterized by insulin-dependent diabetes mellitus, optic nerve atrophy, diabetes insipidus, deafness, and neurological dysfunction leading to death in mid-adulthood. WFS is caused by mutations in the WFS1 gene, which lead to endoplasmic reticulum (ER) stress-mediated cell death. Case studies have found widespread brain atrophy in late stage WFS. However, it is not known when in the disease course these brain abnormalities arise, and whether there is differential vulnerability across brain regions and tissue classes. To address this limitation, we quantified regional brain abnormalities across multiple imaging modalities in a cohort of young patients in relatively early stages of WFS. Children and young adults with WFS were evaluated with neurological, cognitive and structural magnetic resonance imaging measures. Compared to normative data, the WFS group had intact cognition, significant anxiety and depression, and gait abnormalities. Compared to healthy and type 1 diabetic control groups, the WFS group had smaller intracranial volume and preferentially affected gray matter volume and white matter microstructural integrity in the brainstem, cerebellum and optic radiations. Abnormalities were detected in even the youngest patients with mildest symptoms, and some measures did not follow the typical age-dependent developmental trajectory. These results establish that WFS is associated with smaller intracranial volume with specific abnormalities in the brainstem and cerebellum, even at the earliest stage of clinical symptoms. This pattern of abnormalities suggests that WFS has a pronounced impact on early brain development in addition to later neurodegenerative effects, representing a significant new insight into the WFS disease process. Longitudinal studies will be critical for confirming and expanding our understanding of the impact of ER stress dysregulation on brain development. PMID:22792385

  4. Brain Mechanisms Involved in Early Visual Perception.

    ERIC Educational Resources Information Center

    Karmel, Bernard Z.

    This document presents an analysis of the early attending responses and orienting reactions of infants which can be observed at birth and shortly thereafter. Focus is on one specific orienting reaction, the early direction and maintenance of one's eyes and head toward certain stimuli instead of others. The physical properties of stimuli that…

  5. Activation of bradykinin B2 receptor induced the inflammatory responses of cytosolic phospholipase A2 after the early traumatic brain injury.

    PubMed

    Chao, Honglu; Liu, Yinlong; Lin, Chao; Xu, Xiupeng; Li, Zheng; Bao, Zhongyuan; Fan, Liang; Tao, Chao; Zhao, Lin; Liu, Yan; Wang, Xiaoming; You, Yongping; Liu, Ning; Ji, Jing

    2018-06-09

    Phospholipase A 2 is a known aggravator of inflammation and deteriorates neurological outcomes after traumatic brain injury (TBI), however the exact inflammatory mechanisms remain unknown. This study investigated the role of bradykinin and its receptor, which are known initial mediators within inflammation activation, as well as the mechanisms of the cytosolic phospholipase A 2 (cPLA 2 )-related inflammatory responses after TBI. We found that cPLA 2 and bradykinin B2 receptor were upregulated after a TBI. Rats treated with the bradykinin B2 receptor inhibitor LF 16-0687 exhibited significantly less cPLA 2 expression and related inflammatory responses in the brain cortex after sustaining a controlled cortical impact (CCI) injury. Both the cPLA 2 inhibitor and the LF16-0687 improved CCI rat outcomes by decreasing neuron death and reducing brain edema. The following TBI model utilized both primary astrocytes and primary neurons in order to gain further understanding of the inflammation mechanisms of the B2 bradykinin receptor and the cPLA 2 in the central nervous system. There was a stronger reaction from the astrocytes as well as a protective effect of LF16-0687 after the stretch injury and bradykinin treatment. The protein kinase C pathway was thought to be involved in the B2 bradykinin receptor as well as the cPLA 2 -related inflammatory responses. Rottlerin, a Protein Kinase C (PKC) δ inhibitor, decreased the activity of the cPLA 2 activity post-injury, and LF16-0687 suppressed both the PKC pathway and the cPLA 2 activity within the astrocytes. These results indicated that the bradykinin B2 receptor-mediated pathway is involved in the cPLA 2 -related inflammatory response from the PKC pathway. Copyright © 2018. Published by Elsevier B.V.

  6. [Early mobilization. Competencies, responsibilities, milestones].

    PubMed

    Nydahl, P; Dewes, M; Dubb, R; Filipovic, S; Hermes, C; Jüttner, F; Kaltwasser, A; Klarmann, S; Klas, K; Mende, H; Rothaug, O; Schuchhardt, D

    2016-03-01

    Early mobilization is an evident, interprofessional concept to improve the outcome of intensive care patients. It reduces psychocognitive deficits and delirium and attenuates a general deconditioning, including atrophy of the respiratory pump and skeletal muscles. In this regard the interdisciplinary approach of early mobilization, taking into account different levels of mobilization, appears to be beneficial. The purpose of this study was to explore opinions on collaboration and tasks between different professional groups. During the 25th Bremen Conference on Intensive Medicine and Nursing on 20 February 2015, a questionnaire survey was carried out among the 120 participants of the German Early Mobilization Network meeting. In all, 102 questionnaires were analyzed. Most participants reported on the interdisciplinarity of the approach, but none of the tasks and responsibilities concerning early mobilization can be assigned to a single professional group. The practical implementation of mobilizing orally intubated patients may require two registered nurses as well as a physical therapist. Implementation in daily practice seems to be heterogeneous. There is no consensus regarding collaboration, competencies, and responsibilities with respect to early mobilization of intensive care patients. The approach to date has been characterized by a lack of interprofessional communication, which may lead to an inefficient use of the broad and varied base of knowledge and experienceof the different professions.

  7. Plasticity during Early Brain Development Is Determined by Ontogenetic Potential.

    PubMed

    Krägeloh-Mann, Ingeborg; Lidzba, Karen; Pavlova, Marina A; Wilke, Marko; Staudt, Martin

    2017-04-01

    Two competing hypotheses address neuroplasticity during early brain development: the "Kennard principle" describes the compensatory capacities of the immature developing CNS as superior to those of the adult brain, whereas the "Hebb principle" argues that the young brain is especially sensitive to insults. We provide evidence that these principles are not mutually exclusive. Following early brain lesions that are unilateral, the brain can refer to homotopic areas of the healthy hemisphere. This potential for reorganization is unique to the young brain but available only when, during ontogenesis of brain development, these areas have been used for the functions addressed. With respect to motor function, ipsilateral motor tracts can be recruited, which are only available during early brain development. Language can be reorganized to the right after early left hemispheric lesions, as the representation of the language network is initially bilateral. However, even in these situations, compensatory capacities of the developing brain are found to have limitations, probably defined by early determinants. Thus, plasticity and adaptivity are seen only within ontogenetic potential; that is, axonal or cortical structures cannot be recruited beyond early developmental possibilities. The young brain is probably more sensitive and vulnerable to lesions when these are bilateral. This is shown here for bilateral periventricular white matter lesions that clearly have an impact on cortical architecture and function, thus probably interfering with early network building. Georg Thieme Verlag KG Stuttgart · New York.

  8. Law, Responsibility, and the Brain

    NASA Astrophysics Data System (ADS)

    Mobbs, Dean; Lau, Hakwan C.; Jones, Owen D.; Frith, Chris D.

    In perhaps the first attempt to link the brain to mental illness, Hippocrates elegantly wrote that it is the brain that makes us mad or delirious. Epitomizing one of the fundamental assumptions of contemporary neuroscience, Hippocrates' words resonate far beyond the classic philosophical puzzle of mind and body and posit that our behavior, no matter how monstrous, lies at the mercy of our brain's integrity. While clinicopathological observations have long pointed to several putative neurobiological systems as important in antisocial and violent criminal behavior, recent advances in brain-imaging have the potential to provide unparalleled insight. Consequently, brain-imaging studies have reinvigorated the neurophilosophical and legal debate of whether we are free agents in control of our own actions or mere prisoners of a biologically determined brain. In this chapter, we review studies pointing to brain dysfunction in criminally violent individuals and address a range of philosophical and practical issues concerning the use of brainimaging in court. We finally lay out several guidelines for its use in the legal system.

  9. Starting Smart: How Early Experiences Affect Brain Development. Second Edition.

    ERIC Educational Resources Information Center

    Hawley, Theresa

    Based on recent research, it is now believed that brain growth is highly dependent upon children's early experiences. Neurons allow communication and coordinated functioning among various brain areas. Brain development after birth consists of an ongoing process of wiring and rewiring the connections among neurons. The forming and breaking of…

  10. Early Development and the Brain: Teaching Resources for Educators

    ERIC Educational Resources Information Center

    Gilkerson, Linda, Ed.; Klein, Rebecca, Ed.

    2008-01-01

    This nine-unit curriculum translates current scientific research on early brain development into practical suggestions to help early childhood professionals understand the reciprocal link between caregiving and brain development. The curriculum was created and extensively field-tested by the Erikson Institute Faculty Development Project on the…

  11. Early alterations of social brain networks in young children with autism

    PubMed Central

    Kojovic, Nada; Rihs, Tonia Anahi; Jan, Reem Kais; Franchini, Martina; Plomp, Gijs; Vulliemoz, Serge; Eliez, Stephan; Michel, Christoph Martin; Schaer, Marie

    2018-01-01

    Social impairments are a hallmark of Autism Spectrum Disorders (ASD), but empirical evidence for early brain network alterations in response to social stimuli is scant in ASD. We recorded the gaze patterns and brain activity of toddlers with ASD and their typically developing peers while they explored dynamic social scenes. Directed functional connectivity analyses based on electrical source imaging revealed frequency specific network atypicalities in the theta and alpha frequency bands, manifesting as alterations in both the driving and the connections from key nodes of the social brain associated with autism. Analyses of brain-behavioural relationships within the ASD group suggested that compensatory mechanisms from dorsomedial frontal, inferior temporal and insular cortical regions were associated with less atypical gaze patterns and lower clinical impairment. Our results provide strong evidence that directed functional connectivity alterations of social brain networks is a core component of atypical brain development at early stages of ASD. PMID:29482718

  12. Linking Brain Principles to High-Quality Early Childhood Education

    ERIC Educational Resources Information Center

    Rushton, Stephen; Juola-Rushton, Anne

    2011-01-01

    Many educators are already knowledgeable about and skilled in best practices. And much of what is happening in developmentally appropriate programs exemplifies "brain compatible" practices. Being educated in the connections between best practices and brain compatibility is an important part of the knowledge base of early childhood educators. Just…

  13. Early detection and rapid response

    USGS Publications Warehouse

    Westbrooks, Randy G.; Eplee, Robert E.; Simberloff, Daniel; Rejmánek, Marcel

    2011-01-01

    Prevention is the first line of defense against introduced invasive species - it is always preferable to prevent the introduction of new invaders into a region or country. However, it is not always possible to detect all alien hitchhikers imported in cargo, or to predict with any degree of certainty which introduced species will become invasive over time. Fortunately, the majority of introduced plants and animals don't become invasive. But, according to scientists at Cornell University, costs and losses due to species that do become invasive are now estimated to be over $137 billion/year in the United States. Early detection and rapid response (EDRR) is the second line of defense against introduced invasive species - EDRR is the preferred management strategy for preventing the establishment and spread of invasive species. Over the past 50 years, there has been a gradual shift away from large and medium scale federal/state single-agency-led weed eradication programs in the United States, to smaller interagency-led projects involving impacted and potential stakeholders. The importance of volunteer weed spotters in detecting and reporting suspected new invasive species has also been recognized in recent years.

  14. Brain Development and Early Learning: Research on Brain Development. Quality Matters. Volume 1, Winter 2007

    ERIC Educational Resources Information Center

    Edie, David; Schmid, Deborah

    2007-01-01

    For decades researchers have been aware of the extraordinary development of a child's brain during the first five years of life. Recent advances in neuroscience have helped crystallize earlier findings, bringing new clarity and understanding to the field of early childhood brain development. Children are born ready to learn. They cultivate 85…

  15. Infants’ brain responses to speech suggest Analysis by Synthesis

    PubMed Central

    Kuhl, Patricia K.; Ramírez, Rey R.; Bosseler, Alexis; Lin, Jo-Fu Lotus; Imada, Toshiaki

    2014-01-01

    Historic theories of speech perception (Motor Theory and Analysis by Synthesis) invoked listeners’ knowledge of speech production to explain speech perception. Neuroimaging data show that adult listeners activate motor brain areas during speech perception. In two experiments using magnetoencephalography (MEG), we investigated motor brain activation, as well as auditory brain activation, during discrimination of native and nonnative syllables in infants at two ages that straddle the developmental transition from language-universal to language-specific speech perception. Adults are also tested in Exp. 1. MEG data revealed that 7-mo-old infants activate auditory (superior temporal) as well as motor brain areas (Broca’s area, cerebellum) in response to speech, and equivalently for native and nonnative syllables. However, in 11- and 12-mo-old infants, native speech activates auditory brain areas to a greater degree than nonnative, whereas nonnative speech activates motor brain areas to a greater degree than native speech. This double dissociation in 11- to 12-mo-old infants matches the pattern of results obtained in adult listeners. Our infant data are consistent with Analysis by Synthesis: auditory analysis of speech is coupled with synthesis of the motor plans necessary to produce the speech signal. The findings have implications for: (i) perception-action theories of speech perception, (ii) the impact of “motherese” on early language learning, and (iii) the “social-gating” hypothesis and humans’ development of social understanding. PMID:25024207

  16. Infants' brain responses to speech suggest analysis by synthesis.

    PubMed

    Kuhl, Patricia K; Ramírez, Rey R; Bosseler, Alexis; Lin, Jo-Fu Lotus; Imada, Toshiaki

    2014-08-05

    Historic theories of speech perception (Motor Theory and Analysis by Synthesis) invoked listeners' knowledge of speech production to explain speech perception. Neuroimaging data show that adult listeners activate motor brain areas during speech perception. In two experiments using magnetoencephalography (MEG), we investigated motor brain activation, as well as auditory brain activation, during discrimination of native and nonnative syllables in infants at two ages that straddle the developmental transition from language-universal to language-specific speech perception. Adults are also tested in Exp. 1. MEG data revealed that 7-mo-old infants activate auditory (superior temporal) as well as motor brain areas (Broca's area, cerebellum) in response to speech, and equivalently for native and nonnative syllables. However, in 11- and 12-mo-old infants, native speech activates auditory brain areas to a greater degree than nonnative, whereas nonnative speech activates motor brain areas to a greater degree than native speech. This double dissociation in 11- to 12-mo-old infants matches the pattern of results obtained in adult listeners. Our infant data are consistent with Analysis by Synthesis: auditory analysis of speech is coupled with synthesis of the motor plans necessary to produce the speech signal. The findings have implications for: (i) perception-action theories of speech perception, (ii) the impact of "motherese" on early language learning, and (iii) the "social-gating" hypothesis and humans' development of social understanding.

  17. Manifestations of early brain recovery associated with abstinence from alcoholism.

    PubMed

    Bartsch, Andreas J; Homola, György; Biller, Armin; Smith, Stephen M; Weijers, Heinz-Gerd; Wiesbeck, Gerhard A; Jenkinson, Mark; De Stefano, Nicola; Solymosi, László; Bendszus, Martin

    2007-01-01

    Chronic alcohol abuse results in morphological, metabolic, and functional brain damage which may, to some extent, be reversible with early effects upon abstinence. Although morphometric, spectroscopic, and neuropsychological indicators of cerebral regeneration have been described previously, the overall amount and spatial preference of early brain recovery attained by abstinence and its associations with other indicators of regeneration are not well established. We investigated global and local brain volume changes in a longitudinal two-timepoint study with T1-weighted MRI at admission and after short-term (6-7 weeks) sobriety follow-up in 15 uncomplicated, recently detoxified alcoholics. Volumetric brain gain was related to metabolic and neuropsychological recovery. On admission and after short-term abstinence, structural image evaluation using normalization of atrophy (SIENA), its voxelwise statistical extension to multiple subjects, proton MR spectroscopy (1H-MRS), and neuropsychological tests were applied. Upon short-term sobriety, 1H-MRS levels of cerebellar choline and frontomesial N-acetylaspartate (NAA) were significantly augmented. Automatically detected global brain volume gain amounted to nearly two per cent on average and was spatially significant around the superior vermis, perimesencephalic, periventricular and frontal brain edges. It correlated positively with the percentages of cerebellar and frontomesial choline increase, as detected by 1H-MRS. Moreover, frontomesial NAA gains were associated with improved performance on the d2-test of attention. In 10 age- and gender-matched healthy control subjects, no significant brain volume or metabolite changes were observed. Although cerebral osmotic regulations may occur initially upon sobriety, significant increases of cerebellar choline and frontomesial NAA levels detected at stable brain water integrals and creatine concentrations, serum electrolytes and red blood cell indices in our patient sample

  18. Bone density and brain atrophy in early Alzheimer's disease.

    PubMed

    Loskutova, Natalia; Honea, Robyn A; Vidoni, Eric D; Brooks, William M; Burns, Jeffrey M

    2009-01-01

    Studies suggest a link between bone loss and Alzheimer's disease. To examine bone mineral density (BMD) in early Alzheimer's disease (AD) and its relationship to brain structure and cognition, we evaluated 71 patients with early stage AD (Clinical Dementia Rating (CDR) 0.5 and 1) and 69 non-demented elderly control participants (CDR 0). Measures included whole body BMD by dual energy x-ray absorptiometry (DXA) and normalized whole brain volumes computed from structural MRI scans. Cognition was assessed with a standard neuropsychological test battery. Mean BMD was lower in the early AD group (1.11 +/- 0.13) compared to the non-demented control group (1.16 +/- 0.12, p = 0.02), independent of age, gender, habitual physical activity, smoking, depression, estrogen replacement, and apolipoprotein E4 carrier status. In the early AD group, BMD was related to whole brain volume (b = 0.18, p = 0.03). BMD was also associated with cognitive performance, primarily in tests of memory (logical memory [b = 0.15, p = 0.04], delayed logical memory [b = 0.16, p = 0.02], and the selective reminding task - free recall [b = 0.18, p = 0.009]). BMD is reduced in the earliest clinical stages of AD and associated with brain atrophy and memory decline, suggesting that central mechanisms may contribute to bone loss in early AD.

  19. Mind Over Matter: The Brain's Response to Marijuana

    MedlinePlus

    ... Brain's Response to Marijuana The Brain's Response to Marijuana Print Hi, my name is Sara Bellum. Welcome ... issue, we'll investigate the fascinating facts about marijuana. You may have heard it called pot, weed, ...

  20. Human amniotic fluid contaminants alter thyroid hormone signalling and early brain development in Xenopus embryos

    NASA Astrophysics Data System (ADS)

    Fini, Jean-Baptiste; Mughal, Bilal B.; Le Mével, Sébastien; Leemans, Michelle; Lettmann, Mélodie; Spirhanzlova, Petra; Affaticati, Pierre; Jenett, Arnim; Demeneix, Barbara A.

    2017-03-01

    Thyroid hormones are essential for normal brain development in vertebrates. In humans, abnormal maternal thyroid hormone levels during early pregnancy are associated with decreased offspring IQ and modified brain structure. As numerous environmental chemicals disrupt thyroid hormone signalling, we questioned whether exposure to ubiquitous chemicals affects thyroid hormone responses during early neurogenesis. We established a mixture of 15 common chemicals at concentrations reported in human amniotic fluid. An in vivo larval reporter (GFP) assay served to determine integrated thyroid hormone transcriptional responses. Dose-dependent effects of short-term (72 h) exposure to single chemicals and the mixture were found. qPCR on dissected brains showed significant changes in thyroid hormone-related genes including receptors, deiodinases and neural differentiation markers. Further, exposure to mixture also modified neural proliferation as well as neuron and oligodendrocyte size. Finally, exposed tadpoles showed behavioural responses with dose-dependent reductions in mobility. In conclusion, exposure to a mixture of ubiquitous chemicals at concentrations found in human amniotic fluid affect thyroid hormone-dependent transcription, gene expression, brain development and behaviour in early embryogenesis. As thyroid hormone signalling is strongly conserved across vertebrates the results suggest that ubiquitous chemical mixtures could be exerting adverse effects on foetal human brain development.

  1. Early caregiving and physiological stress responses.

    PubMed

    Luecken, Linda J; Lemery, Kathryn S

    2004-05-01

    Inadequate early caregiving has been associated with risks of stress-related psychological and physical illness over the life span. Dysregulated physiological stress responses may represent a mechanism linking early caregiving to health outcomes. This paper reviews evidence linking early caregiving to physiological responses that can increase vulnerability to stress-related illness. A number of high-risk family characteristics, including high conflict, divorce, abuse, and parental psychopathology, are considered in the development of stress vulnerability. Three theoretical pathways linking caregiving to physiological stress responses are outlined: genetic, psychosocial, and cognitive-affective. Exciting preliminary evidence suggests that early caregiving can impact long-term physiological stress responses. Directions for future research in this area are suggested.

  2. A prospective phase II trial of response adapted whole brain radiotherapy after high dose methotrexate based chemotherapy in patients with newly diagnosed primary central nervous system lymphoma-analysis of acute toxicity profile and early clinical outcome.

    PubMed

    Adhikari, Narayan; Biswas, Ahitagni; Gogia, Ajay; Sahoo, Ranjit Kumar; Garg, Ajay; Nehra, Ashima; Sharma, Mehar Chand; Bhasker, Suman; Singh, Manmohan; Sreenivas, Vishnubhatla; Chawla, Rohan; Joshi, Garima; Kumar, Lalit; Chander, Subhash

    2018-04-09

    The treatment of primary CNS lymphoma (PCNSL) comprises high dose methotrexate (HDMTX) based chemotherapy followed by whole brain radiotherapy (WBRT), the major drawback of which is long term neurotoxicity. We intended to assess the feasibility of response adapted WBRT in PCNSL in the Indian setting. We screened 32 patients and enrolled 22 eligible patients with PCNSL from 2015 to 2017 in a prospective phase II trial. The patients underwent five 2-weekly cycles of induction chemotherapy with rituximab, methotrexate, vincristine, procarbazine. Patients with complete response(CR) to induction chemotherapy were given reduced dose WBRT 23.4 Gy/13 fractions/2.5 weeks while those with partial response (PR), stable or progressive disease (SD or PD) were given standard dose WBRT 45 Gy/25 fractions/5 weeks. Thereafter two cycles of consolidation chemotherapy with cytarabine were given. The primary endpoints of the study were assessment of response rate (RR) and progression free survival (PFS). The secondary endpoints of the study were assessment of overall survival (OS), toxicity profile of treatment and serial changes in quality of life and neuropsychological parameters. Out of 19 patients who completed HDMTX based chemotherapy, 10 (52.63%) patients achieved CR, 8 (42.11%) patients had PR and 1 patient had PD. After a median follow-up period of 11.25 months, the estimated median OS was 19 months. The actuarial rates of PFS and OS were respectively 94.1 and 68.2% at 1 year and 50.2 and 48.5% at 2 years. Three patients in reduced dose WBRT arm had recurrence and two of them died of progressive disease, whereas there was no recurrence or disease related death in standard dose WBRT arm. On univariate analysis of PFS, age ≤ 50 years and use of standard dose WBRT (45 Gy) led to significantly improved outcome (p value 0.03 and 0.02 respectively). In patients with PCNSL, reduced dose WBRT after CR to HDMTX based chemotherapy may lead to suboptimal clinical outcome due

  3. Mapping of brain activity by automated volume analysis of immediate early genes

    PubMed Central

    Renier, Nicolas; Adams, Eliza L.; Kirst, Christoph; Wu, Zhuhao; Azevedo, Ricardo; Kohl, Johannes; Autry, Anita E.; Kadiri, Lolahon; Venkataraju, Kannan Umadevi; Zhou, Yu; Wang, Victoria X.; Tang, Cheuk Y.; Olsen, Olav; Dulac, Catherine; Osten, Pavel; Tessier-Lavigne, Marc

    2016-01-01

    Summary Understanding how neural information is processed in physiological and pathological states would benefit from precise detection, localization and quantification of the activity of all neurons across the entire brain, which has not to date been achieved in the mammalian brain. We introduce a pipeline for high speed acquisition of brain activity at cellular resolution through profiling immediate early gene expression using immunostaining and light-sheet fluorescence imaging, followed by automated mapping and analysis of activity by an open-source software program we term ClearMap. We validate the pipeline first by analysis of brain regions activated in response to Haloperidol. Next, we report new cortical regions downstream of whisker-evoked sensory processing during active exploration. Lastly, we combine activity mapping with axon tracing to uncover new brain regions differentially activated during parenting behavior. This pipeline is widely applicable to different experimental paradigms, including animal species for which transgenic activity reporters are not readily available. PMID:27238021

  4. Narrative discourse in children with early focal brain injury.

    PubMed

    Reilly, J S; Bates, E A; Marchman, V A

    1998-02-15

    Children with early brain damage, unlike adult stroke victims, often go on to develop nearly normal language. However, the route and extent of their linguistic development are still unclear, as is the relationship between lesion site and patterns of delay and recovery. Here we address these questions by examining narratives from children with early brain damage. Thirty children (ages 3:7-10:10) with pre- or perinatal unilateral focal brain damage and their matched controls participated in a storytelling task. Analyses focused on linguistic proficiency and narrative competence. Overall, children with brain damage scored significantly lower than their age-matched controls on both linguistic (morphological and syntactic) indices and those targeting broader narrative qualities. Rather than indicating that children with brain damage fully catch up, these data suggest that deficits in linguistic abilities reassert themselves as children face new linguistic challenges. Interestingly, after age 5, site of lesion does not appear to be a significant factor and the delays we have witnessed do not map onto the lesion profiles observed in adults with analogous brain injuries.

  5. Traumatic Brain Injury in Early Childhood: Developmental Effects and Interventions.

    ERIC Educational Resources Information Center

    Lowenthal, Barbara; Lowenthal, Barbara

    1998-01-01

    Describes the unique effects of traumatic brain injury (TBI) on development in early childhood and offers suggestions for interventions in the cognitive, language, social-emotional, motor, and adaptive domains. Urges more intensive, long-term studies on the immediate and long-term effects of TBI. (Author/DB)

  6. Brain and psyche in early Christian asceticism.

    PubMed

    Bradford, David T

    2011-10-01

    This study is an 11-part investigation of the psychology and neuropsychology of early Christian asceticism as represented by Evagrius Ponticus (AD 345-399), the tradition's first ascetical theologian and possibly its mosfinfluential. Evagrius's biography is reviewed in the first section. The living circuinstaii and perceptual consequences of desert asceticism are considered in the second. Penitence, dispassion, and the mysticism of "pure prayer" are discussed in the third. Austerities are addressed in the fourth section, particularly fasting, prostrations, and prolonged standing. Ascetical perspectives on sleep, dreams, and the hypnogogic state are analyzed in the fifth. The depressive syndrome of acedia is discussed in the sixth. Evagrius's reports of auditory, olfactory, and visual hallucinations are analyzed in the seventh. Multiple complementary interpretations of demonic phenoniena are developed in the eighth section. Evagrius's psychotherapy for anger is reviewed in the ninth. Interpersonal relations among ascetics are considered in the tenth section. The study concludes with a summary.

  7. MRI surveillance of cancer cell fate in a brain metastasis model after early radiotherapy.

    PubMed

    Murrell, Donna H; Zarghami, Niloufar; Jensen, Michael D; Dickson, Fiona; Chambers, Ann F; Wong, Eugene; Foster, Paula J

    2017-10-01

    Incidence of brain metastasis attributed to breast cancer is increasing and prognosis is poor. It is thought that disseminated dormant cancer cells persist in metastatic organs and may evade treatments, thereby facilitating a mechanism for recurrence. Radiotherapy is used to treat brain metastases clinically, but assessment has been limited to macroscopic tumor volumes detectable by clinical imaging. Here, we use cellular MRI to understand the concurrent responses of metastases and nonproliferative or slowly cycling cancer cells to radiotherapy. MRI cell tracking was used to investigate the impact of early cranial irradiation on the fate of individual iron-labeled cancer cells and outgrowth of breast cancer brain metastases in the human MDA-MB-231-BR-HER2 cell model. Early whole-brain radiotherapy significantly reduced the outgrowth of metastases from individual disseminated cancer cells in treated animals compared to controls. However, the numbers of nonproliferative iron-retaining cancer cells in the brain were not significantly different. Radiotherapy, when given early in cancer progression, is effective in preventing the outgrowth of solitary cancer cells to brain metastases. Future studies of the nonproliferative cancer cells' clonogenic potentials are warranted, given that their persistent presence suggests that they may have evaded treatment. Magn Reson Med 78:1506-1512, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  8. Changes in spontaneous brain activity in early Parkinson's disease.

    PubMed

    Yang, Hong; Zhou, Xiaohong Joe; Zhang, Min-Ming; Zheng, Xu-Ning; Zhao, Yi-Lei; Wang, Jue

    2013-08-09

    Resting state brain activity can provide valuable insights into the pathophysiology of Parkinson's disease (PD). The purpose of the present study was (a) to investigate abnormal spontaneous neuronal activity in early PD patients using resting-state functional MRI (fMRI) with a regional homogeneity (ReHo) method and (b) to demonstrate the potential of using changes in abnormal spontaneous neuronal activity for monitoring the progression of PD during its early stages. Seventeen early PD patients were assessed with the Unified Parkinson's Disease Rating Scale (UPDRS), the Hoehn and Yahr disability scale and the Mini-mental State Examination (MMSE) were compared with seventeen gender- and age-matched healthy controls. All subjects underwent MRI scans using a 1.5T General Electric Signa Excite II scanner. The MRI scan protocol included whole-brain volumetric imaging using a 3D inversion recovery prepared (IR-Prep) fast spoiled gradient-echo pulse sequence and 2D multi-slice (22 axial slices covering the whole brain) resting-state fMRI using an echo planar imaging (EPI) sequence. Images were analyzed in SPM5 together with a ReHo algorithm using the in-house software program REST. A corrected threshold of p<0.05 was determined by AlphaSim and used in statistical analysis. Compared with the healthy controls, the early PD group showed significantly increased ReHo in a number of brain regions, including the left cerebellum, left parietal lobe, right middle temporal lobe, right sub-thalamic nucleus areas, right superior frontal gyrus, middle frontal gyrus (MFG), right inferior parietal lobe (IPL), right precuneus lobe, left MFG and left IPL. Additionally, significantly reduced ReHo was also observed in the early PD patients in the following brain regions: the left putamen, left inferior frontal gyrus, right hippocampus, right anterior cingulum, and bilateral lingual gyrus. Moreover, in PD patients, ReHo in the left putamen was negatively correlated with the UPDRS scores (r=-0

  9. Hypobaric Hypoxia Exacerbates the Neuroinflammatory Response to Traumatic Brain Injury

    PubMed Central

    Goodman, Michael D.; Makley, Amy T.; Huber, Nathan L.; Clarke, Callisia N.; Friend, Lou Ann W.; Schuster, Rebecca M.; Bailey, Stephanie R.; Barnes, Stephen L.; Dorlac, Warren C.; Johannigman, Jay A.; Lentsch, Alex B.; Pritts, Timothy A.

    2015-01-01

    Objective To determine the inflammatory effects of time-dependent exposure to the hypobaric environment of simulated aeromedical evacuation following traumatic brain injury (TBI). Methods Mice were subjected to a blunt TBI or sham injury. Righting reflex response (RRR) time was assessed as an indicator of neurologic recovery. Three or 24 h (Early and Delayed groups, respectively) after TBI, mice were exposed to hypobaric flight conditions (Fly) or ground-level control (No Fly) for 5 h. Arterial blood gas samples were obtained from all groups during simulated flight. Serum and cortical brain samples were analyzed for inflammatory cytokines after flight. Neuron specific enolase (NSE) was measured as a serum biomarker of TBI severity. Results TBI resulted in prolonged RRR time compared with sham injury. After TBI alone, serum levels of interleukin-6 (IL-6) and keratinocyte-derived chemokine (KC) were increased by 6 h post-injury. Simulated flight significantly reduced arterial oxygen saturation levels in the Fly group. Post-injury altitude exposure increased cerebral levels of IL-6 and macrophage inflammatory protein-1α (MIP-1α), as well as serum NSE in the Early but not Delayed Flight group compared to ground-level controls. Conclusions The hypobaric environment of aero-medical evacuation results in significant hypoxia. Early, but not delayed, exposure to a hypobaric environment following TBI increases the neuroinflammatory response to injury and the severity of secondary brain injury. Optimization of the post-injury time to fly using serum cytokine and biomarker levels may reduce the potential secondary cerebral injury induced by aeromedical evacuation. PMID:20850781

  10. Starting Smart: How Early Experiences Affect Brain Development. An Ounce of Prevention Fund Paper.

    ERIC Educational Resources Information Center

    Ounce of Prevention Fund.

    Recent research has provided great insight into the impact of early experience on brain development. It is now believed that brain growth is highly dependent upon early experiences. Neurons allow communication and coordinated functioning among various brain areas. Brain development after birth consists of an ongoing process of wiring and rewiring…

  11. Early Influences on Brain Architecture: An Interview with Neuroscientist Eric Knudsen. Perspectives

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2006

    2006-01-01

    Early experience has a powerful and lasting influence on how the brain develops. The physical and chemical conditions that encourage the building of a strong, adaptive brain architecture are present early in life. As brains age, a number of changes lock in the ways information is processed, making it more difficult for the brain to change to other…

  12. Prenatal cocaine effects on brain structure in early infancy.

    PubMed

    Grewen, Karen; Burchinal, Margaret; Vachet, Clement; Gouttard, Sylvain; Gilmore, John H; Lin, Weili; Johns, Josephine; Elam, Mala; Gerig, Guido

    2014-11-01

    Prenatal cocaine exposure (PCE) is related to subtle deficits in cognitive and behavioral function in infancy, childhood and adolescence. Very little is known about the effects of in utero PCE on early brain development that may contribute to these impairments. The purpose of this study was to examine brain structural differences in infants with and without PCE. We conducted MRI scans of newborns (mean age = 5 weeks) to determine cocaine's impact on early brain structural development. Subjects were three groups of infants: 33 with PCE co-morbid with other drugs, 46 drug-free controls and 40 with prenatal exposure to other drugs (nicotine, alcohol, marijuana, opiates, SSRIs) but without cocaine. Infants with PCE exhibited lesser total gray matter (GM) volume and greater total cerebral spinal fluid (CSF) volume compared with controls and infants with non-cocaine drug exposure. Analysis of regional volumes revealed that whole brain GM differences were driven primarily by lesser GM in prefrontal and frontal brain regions in infants with PCE, while more posterior regions (parietal, occipital) did not differ across groups. Greater CSF volumes in PCE infants were present in prefrontal, frontal and parietal but not occipital regions. Greatest differences (GM reduction, CSF enlargement) in PCE infants were observed in dorsal prefrontal cortex. Results suggest that PCE is associated with structural deficits in neonatal cortical gray matter, specifically in prefrontal and frontal regions involved in executive function and inhibitory control. Longitudinal study is required to determine whether these early differences persist and contribute to deficits in cognitive functions and enhanced risk for drug abuse seen at school age and in later life. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Cholinergic Mechanisms, Early Brain Development, and Risk for Schizophrenia

    PubMed Central

    Ross, Randal G; Stevens, Karen E; Proctor, William R; Leonard, Sherry; Kisley, Michael A; Hunter, Sharon K; Freedman, Robert; Adams, Catherine E

    2009-01-01

    Neuropsychiatric diseases are complex illnesses where the onset of diagnostic symptomology is often the end result of a decades-long process of aberrant brain development. The identification of novel treatment strategies aimed at normalizing early brain development and preventing mental illness should be a major therapeutic goal; however, there are few models for how this goal might be achieved. This report uses the attentional deficits of schizophrenia as an example and reviews data from genetic, anatomical, physiological, and pharmacologic studies to hypothesize a developmental model with translational primary prevention implications. Specifically, the model suggests that an early interaction between α7 nicotinic receptor density and choline availability may contribute to the development of schizophrenia-associated attentional deficits. Translational implications, including perinatal dietary choline supplementation, are discussed. It is hoped that presentation of this model will stimulate other efforts to develop empirically-driven primary prevention strategies. PMID:19925602

  14. Sigmund Freud-early network theories of the brain.

    PubMed

    Surbeck, Werner; Killeen, Tim; Vetter, Johannes; Hildebrandt, Gerhard

    2018-06-01

    Since the early days of modern neuroscience, psychological models of brain function have been a key component in the development of new knowledge. These models aim to provide a framework that allows the integration of discoveries derived from the fundamental disciplines of neuroscience, including anatomy and physiology, as well as clinical neurology and psychiatry. During the initial stages of his career, Sigmund Freud (1856-1939), became actively involved in these nascent fields with a burgeoning interest in functional neuroanatomy. In contrast to his contemporaries, Freud was convinced that cognition could not be localised to separate modules and that the brain processes cognition not in a merely serial manner but in a parallel and dynamic fashion-anticipating fundamental aspects of current network theories of brain function. This article aims to shed light on Freud's seminal, yet oft-overlooked, early work on functional neuroanatomy and his reasons for finally abandoning the conventional neuroscientific "brain-based" reference frame in order to conceptualise the mind from a purely psychological perspective.

  15. Mechanical origins of rightward torsion in early chick brain development

    NASA Astrophysics Data System (ADS)

    Chen, Zi; Guo, Qiaohang; Dai, Eric; Taber, Larry

    2015-03-01

    During early development, the neural tube of the chick embryo undergoes a combination of progressive ventral bending and rightward torsion. This torsional deformation is one of the major organ-level left-right asymmetry events in development. Previous studies suggested that bending is mainly due to differential growth, however, the mechanism for torsion remains poorly understood. Since the heart almost always loops rightwards that the brain twists, researchers have speculated that heart looping affects the direction of brain torsion. However, direct evidence is lacking, nor is the mechanical origin of such torsion understood. In our study, experimental perturbations show that the bending and torsional deformations in the brain are coupled and that the vitelline membrane applies an external load necessary for torsion to occur. Moreover, the asymmetry of the looping heart gives rise to the chirality of the twisted brain. A computational model and a 3D printed physical model are employed to help interpret these findings. Our work clarifies the mechanical origins of brain torsion and the associated left-right asymmetry, and further reveals that the asymmetric development in one organ can induce the asymmetry of another developing organ through mechanics, reminiscent of D'Arcy Thompson's view of biological form as ``diagram of forces''. Z.C. is supported by the Society in Science - Branco Weiss fellowship, administered by ETH Zurich. L.A.T acknowledges the support from NIH Grants R01 GM075200 and R01 NS070918.

  16. Media representations of early human development: protecting, feeding and loving the developing brain.

    PubMed

    O'Connor, Cliodhna; Joffe, Helene

    2013-11-01

    The public profile of neurodevelopmental research has expanded in recent years. This paper applies social representations theory to explore how early brain development was represented in the UK print media in the first decade of the 21st century. A thematic analysis was performed on 505 newspaper articles published between 2000 and 2010 that discussed early brain development. Media coverage centred around concern with 'protecting' the prenatal brain (identifying threats to foetal neurodevelopment), 'feeding' the infant brain (indicating the patterns of nutrition that enhance brain development) and 'loving' the young child's brain (elucidating the developmental significance of emotionally nurturing family environments). The media focused almost exclusively on the role of parental action in promoting optimal neurodevelopment, rarely acknowledging wider structural, cultural or political means of supporting child development. The significance of parental care was intensified by deterministic interpretations of critical periods, which implied that inappropriate parental input would produce profound and enduring neurobiological impairments. Neurodevelopmental research was also used to promulgate normative judgements concerning the acceptability of certain gender roles and family contexts. The paper argues that media representations of neurodevelopment stress parental responsibility for shaping a child's future while relegating the contributions of genetic or wider societal factors, and examines the consequences of these representations for society and family life. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Genomic responses in rat cerebral cortex after traumatic brain injury

    PubMed Central

    von Gertten, Christina; Morales, Amilcar Flores; Holmin, Staffan; Mathiesen, Tiit; Nordqvist, Ann-Christin Sandberg

    2005-01-01

    Background Traumatic brain injury (TBI) initiates a complex sequence of destructive and neuroprotective cellular responses. The initial mechanical injury is followed by an extended time period of secondary brain damage. Due to the complicated pathological picture a better understanding of the molecular events occurring during this secondary phase of injury is needed. This study was aimed at analysing gene expression patterns following cerebral cortical contusion in rat using high throughput microarray technology with the goal of identifying genes involved in an early and in a more delayed phase of trauma, as genomic responses behind secondary mechanisms likely are time-dependent. Results Among the upregulated genes 1 day post injury, were transcription factors and genes involved in metabolism, e.g. STAT-3, C/EBP-δ and cytochrome p450. At 4 days post injury we observed increased gene expression of inflammatory factors, proteases and their inhibitors, like cathepsins, α-2-macroglobulin and C1q. Notably, genes with biological function clustered to immune response were significantly upregulated 4 days after injury, which was not found following 1 day. Osteopontin and one of its receptors, CD-44, were both upregulated showing a local mRNA- and immunoreactivity pattern in and around the injury site. Fewer genes had decreased expression both 1 and 4 days post injury and included genes implicated in transport, metabolism, signalling, and extra cellular matrix formation, e.g. vitronectin, neuroserpin and angiotensinogen. Conclusion The different patterns of gene expression, with little overlap in genes, 1 and 4 days post injury showed time dependence in genomic responses to trauma. An early induction of factors involved in transcription could lead to the later inflammatory response with strongly upregulated CD-44 and osteopontin expression. An increased knowledge of genes regulating the pathological mechanisms in trauma will help to find future treatment targets. Since

  18. Resilience in mathematics after early brain injury: The roles of parental input and early plasticity.

    PubMed

    Glenn, Dana E; Demir-Lira, Özlem Ece; Gibson, Dominic J; Congdon, Eliza L; Levine, Susan C

    2018-04-01

    Children with early focal unilateral brain injury show remarkable plasticity in language development. However, little is known about how early brain injury influences mathematical learning. Here, we examine early number understanding, comparing cardinal number knowledge of typically developing children (TD) and children with pre- and perinatal lesions (BI) between 42 and 50 months of age. We also examine how this knowledge relates to the number words children hear from their primary caregivers early in life. We find that children with BI, are, on average, slightly behind TD children in both cardinal number knowledge and later mathematical performance, and show slightly slower learning rates than TD children in cardinal number knowledge during the preschool years. We also find that parents' "number talk" to their toddlers predicts later mathematical ability for both TD children and children with BI. These findings suggest a relatively optimistic story in which neural plasticity is at play in children's mathematical development following early brain injury. Further, the effects of early number input suggest that intervening to enrich the number talk that children with BI hear during the preschool years could narrow the math achievement gap. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Early Brain and Child Development: Connections to Early Education and Child Care

    ERIC Educational Resources Information Center

    Romano, Judith T.

    2013-01-01

    The vast majority of young children spend time in settings outside of the home, and the nature of those settings directly impacts the child's health and development. The ecobiodevelopmental framework of early brain and child development serve as the backdrop for establishing quality. This article describes the use of quality rating systems,…

  20. High frequency oscillations in brain hemodynamic response

    NASA Astrophysics Data System (ADS)

    Akin, Ata; Bolay, Hayrunnisa

    2007-07-01

    Tight autoregulation of vessel tone guarantees proper delivery of nutrients to the tissues. This regulation is maintained at a more delicate level in the brain since any decrease in the supply of glucose and oxygen to neuronal tissues might lead to unrecoverable injury. Functional near infrared spectroscopy has been proposed as a new tool to monitor the cerebrovascular response during cognitive activity. We have observed that during a Stroop task three distinct oscillatory patterns govern the control of the cerebrovascular reactivity: very low frequency (0.02-0.05 Hz), low frequency (0.08-0.12 Hz) and high frequency (0.12-0.18 Hz). High frequency oscillations have been shown to be related to stress level of the subjects. Our findings indicate that as the stress level is increased so does the energy of the high frequency component indicating a higher stimulation from the autonomic nervous system.

  1. Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage

    PubMed Central

    Wang, Jian; Doré, Sylvain

    2008-01-01

    Because heme oxygenase (HO) is the rate limiting enzyme in the degradation of the pro-oxidant hemin/heme from blood, here we investigated the contribution of the inducible HO-1 to early brain injury produced by intracerebral haemorrhage (ICH). We found that after induction of ICH, HO-1 proteins were highly detectable in the peri-ICH region predominantly in microglia/macrophages and endothelial cells. Remarkably, the injury volume was significantly smaller in HO-1 knockout (HO-1−/−) mice than in wild-type controls 24 and 72 h after ICH. Although the brain water content did not appear to be significantly different, the protection in HO-1−/− mice was associated with a marked reduction in ICH-induced leucocyte infiltration, microglia/macrophage activation and free radical levels. These data reveal a previously unrecognized role of HO-1 in early brain injury after ICH. Thus, modulation of HO-1 signalling should be assessed further in clinical settings, especially for haemorrhagic states. PMID:17525142

  2. Temporal orienting precedes intersensory attention and has opposing effects on early evoked brain activity.

    PubMed

    Keil, Julian; Pomper, Ulrich; Feuerbach, Nele; Senkowski, Daniel

    2017-03-01

    Intersensory attention (IA) describes the process of directing attention to a specific modality. Temporal orienting (TO) characterizes directing attention to a specific moment in time. Previously, studies indicated that these two processes could have opposite effects on early evoked brain activity. The exact time-course and processing stages of both processes are still unknown. In this human electroencephalography study, we investigated the effects of IA and TO on visuo-tactile stimulus processing within one paradigm. IA was manipulated by presenting auditory cues to indicate whether participants should detect visual or tactile targets in visuo-tactile stimuli. TO was manipulated by presenting stimuli block-wise at fixed or variable inter-stimulus intervals. We observed that TO affects evoked activity to visuo-tactile stimuli prior to IA. Moreover, we found that TO reduces the amplitude of early evoked brain activity, whereas IA enhances it. Using beamformer source-localization, we observed that IA increases neural responses in sensory areas of the attended modality whereas TO reduces brain activity in widespread cortical areas. Based on these findings we derive an updated working model for the effects of temporal and intersensory attention on early evoked brain activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Children's Executive Functions: Are They Poorer after Very Early Brain Insult

    ERIC Educational Resources Information Center

    Anderson, Vicki; Spencer-Smith, Megan; Coleman, Lee; Anderson, Peter; Williams, Jackie; Greenham, Mardee; Leventer, Richard J.; Jacobs, Rani

    2010-01-01

    Traditionally early brain insult (EBI) has been considered to have better outcome than later injury, consistent with the notion that the young brain is flexible and able to reorganize. Recent research findings question this view, suggesting that EBI might lead to poorer outcome than brain insult at any other age. Exploring this early vulnerability…

  4. Early Life Experience and Gut Microbiome: The Brain-Gut-Microbiota Signaling System.

    PubMed

    Cong, Xiaomei; Henderson, Wendy A; Graf, Joerg; McGrath, Jacqueline M

    2015-10-01

    Over the past decades, advances in neonatal care have led to substantial increases in survival among preterm infants. With these gains, recent concerns have focused on increases in neurodevelopment morbidity related to the interplay between stressful early life experiences and the immature neuroimmune systems. This interplay between these complex mechanisms is often described as the brain-gut signaling system. The role of the gut microbiome and the brain-gut signaling system have been found to be remarkably related to both short- and long-term stress and health. Recent evidence supports that microbial species, ligands, and/or products within the developing intestine play a key role in early programming of the central nervous system and regulation of the intestinal innate immunity. The purpose of this state-of-the-science review is to explore the supporting evidence demonstrating the importance of the brain-gut-microbiota axis in regulation of early life experience. We also discuss the role of gut microbiome in modulating stress and pain responses in high-risk infants. A conceptual framework has been developed to illustrate the regulation mechanisms involved in early life experience. The science in this area is just beginning to be uncovered; having a fundamental understanding of these relationships will be important as new discoveries continue to change our thinking, leading potentially to changes in practice and targeted interventions.

  5. Deep brain stimulation effects in dystonia: time course of electrophysiological changes in early treatment.

    PubMed

    Ruge, Diane; Tisch, Stephen; Hariz, Marwan I; Zrinzo, Ludvic; Bhatia, Kailash P; Quinn, Niall P; Jahanshahi, Marjan; Limousin, Patricia; Rothwell, John C

    2011-08-15

    Deep brain stimulation to the internal globus pallidus is an effective treatment for primary dystonia. The optimal clinical effect often occurs only weeks to months after starting stimulation. To better understand the underlying electrophysiological changes in this period, we assessed longitudinally 2 pathophysiological markers of dystonia in patients prior to and in the early treatment period (1, 3, 6 months) after deep brain stimulation surgery. Transcranial magnetic stimulation was used to track changes in short-latency intracortical inhibition, a measure of excitability of GABA(A) -ergic corticocortical connections and long-term potentiation-like synaptic plasticity (as a response to paired associative stimulation). Deep brain stimulation remained on for the duration of the study. Prior to surgery, inhibition was reduced and plasticity increased in patients compared with healthy controls. Following surgery and commencement of deep brain stimulation, short-latency intracortical inhibition increased toward normal levels over the following months with the same monotonic time course as the patients' clinical benefit. In contrast, synaptic plasticity changed rapidly, following a nonmonotonic time course: it was absent early (1 month) after surgery, and then over the following months increased toward levels observed in healthy individuals. We postulate that before surgery preexisting high levels of plasticity form strong memories of dystonic movement patterns. When deep brain stimulation is turned on, it disrupts abnormal basal ganglia signals, resulting in the absent response to paired associative stimulation at 1 month. Clinical benefit is delayed because engrams of abnormal movement persist and take time to normalize. Our observations suggest that plasticity may be a driver of long-term therapeutic effects of deep brain stimulation in dystonia. Copyright © 2011 Movement Disorder Society.

  6. How Early Events Affect Growing Brains. An Interview with Neuroscientist Pat Levitt

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2006

    2006-01-01

    Recent advances in neuroscience show clearly how experience can change brain neurochemicals, and how this in turn affects the way the brain functions. As a result, early negative events actually get built into the growing brain's neurochemistry, altering the brain's architecture. Research is continuing to investigate how children with genetic…

  7. Neural Basis of Brain Dysfunction Produced by Early Sleep Problems.

    PubMed

    Kohyama, Jun

    2016-01-29

    There is a wealth of evidence that disrupted sleep and circadian rhythms, which are common in modern society even during the early stages of life, have unfavorable effects on brain function. Altered brain function can cause problem behaviors later in life, such as truancy from or dropping out of school, quitting employment, and committing suicide. In this review, we discuss findings from several large cohort studies together with recent results of a cohort study using the marshmallow test, which was first introduced in the 1960s. This test assessed the ability of four-year-olds to delay gratification and showed how this ability correlated with success later in life. The role of the serotonergic system in sleep and how this role changes with age are also discussed. The serotonergic system is involved in reward processing and interactions with the dorsal striatum, ventral striatum, and the prefrontal cortex are thought to comprise the neural basis for behavioral patterns that are affected by the quantity, quality, and timing of sleep early in life.

  8. Brain responses differ to faces of mothers and fathers.

    PubMed

    Arsalidou, Marie; Barbeau, Emmanuel J; Bayless, Sarah J; Taylor, Margot J

    2010-10-01

    We encounter many faces each day but relatively few are personally familiar. Once faces are familiar, they evoke semantic and social information known about the person. Neuroimaging studies demonstrate differential brain activity to familiar and non-familiar faces; however, brain responses related to personally familiar faces have been more rarely studied. We examined brain activity with fMRI in adults in response to faces of their mothers and fathers compared to faces of celebrities and strangers. Overall, faces of mothers elicited more activity in core and extended brain regions associated with face processing, compared to fathers, celebrity or stranger faces. Fathers' faces elicited activity in the caudate, a deep brain structure associated with feelings of love. These new findings of differential brain responses elicited by faces of mothers and fathers are consistent with psychological research on attachment, evident even during adulthood. 2010 Elsevier Inc. All rights reserved.

  9. Changes of brain response induced by simulated weightlessness

    NASA Astrophysics Data System (ADS)

    Wei, Jinhe; Yan, Gongdong; Guan, Zhiqiang

    The characteristics change of brain response was studied during 15° head-down tilt (HDT) comparing with 45° head-up tilt (HUT). The brain responses evaluated included the EEG power spectra change at rest and during mental arithmetic, and the event-related potentials (ERPs) of somatosensory, selective attention and mental arithmetic activities. The prominent feature of brain response change during HDT revealed that the brain function was inhibited to some extent. Such inhibition included that the significant increment of "40Hz" activity during HUT arithmetic almost disappeared during HDT arithmetic, and that the positive-potential effect induced by HDT presented in all kinds of ERPs measured, but the slow negative wave reflecting mental arithmetic and memory process was elongated. These data suggest that the brain function be affected profoundly by the simulated weightlessness, therefore, the brain function change during space flight should be studied systematically.

  10. Early Brain Injury Associated with Systemic Inflammation After Subarachnoid Hemorrhage.

    PubMed

    Savarraj, Jude; Parsha, Kaushik; Hergenroeder, Georgene; Ahn, Sungho; Chang, Tiffany R; Kim, Dong H; Choi, H Alex

    2018-04-01

    Early brain injury (EBI) after aneurysmal subarachnoid hemorrhage (aSAH) is defined as brain injury occurring within 72 h of aneurysmal rupture. Although EBI is the most significant predictor of outcomes after aSAH, its underlying pathophysiology is not well understood. We hypothesize that EBI after aSAH is associated with an increase in peripheral inflammation measured by cytokine expression levels and changes in associations between cytokines. aSAH patients were enrolled into a prospective observational study and were assessed for markers of EBI: global cerebral edema (GCE), subarachnoid hemorrhage early brain edema score (SEBES), and Hunt-Hess grade. Serum samples collected at ≤ 48 h of admission were analyzed using multiplex bead-based assays to determine levels of 13 pro- and anti-inflammatory cytokines. Pairwise correlation coefficients between cytokines were represented as networks. Cytokine levels and differences in correlation networks were compared between EBI groups. Of the 71 patients enrolled in the study, 17 (24%) subjects had GCE, 31 (44%) subjects had SEBES ≥ 3, and 21 (29%) had HH ≥ 4. IL-6 was elevated in groups with GCE, SEBES ≥ 3, and HH ≥ 4. MIP1β was independently associated with high-grade SEBES. Correlation network analysis suggests higher systematic inflammation in subjects with SEBES ≥ 3. EBI after SAH is associated with increased levels of specific cytokines. Peripheral levels of IL-10, IL-6, and MIP1β may be important markers of EBI. Investigating systematic correlations in addition to expression levels of individual cytokines may offer deeper insight into the underlying mechanisms related to EBI.

  11. Support Network Responses to Acquired Brain Injury

    ERIC Educational Resources Information Center

    Chleboun, Steffany; Hux, Karen

    2011-01-01

    Acquired brain injury (ABI) affects social relationships; however, the ways social and support networks change and evolve as a result of brain injury is not well understood. This study explored ways in which survivors of ABI and members of their support networks perceive relationship changes as recovery extends into the long-term stage. Two…

  12. Brain Arteriovenous Malformation Pathogenesis: A Response-to-Injury Paradigm

    PubMed Central

    Kim, Helen; Su, Hua; Weinsheimer, Shantel; Pawlikowska, Ludmila; Young, William L.

    2011-01-01

    Brain arteriovenous malformations (AVMs) are a rare but important cause of intracranial hemorrhage (ICH) in young adults. In this paper, we review both human and animal studies of brain AVM, focusing on the: (1) natural history of AVM hemorrhage; (2) genetic and expression studies of AVM susceptibility and hemorrhage; and (3) strategies for development of a brain AVM model in adult mice. These data target various mechanisms which must act in concert to regulate normal angiogenic response to injury. Based on the various lines of evidence reviewed in this paper, we propose a “response-to-injury” model of brain AVM pathogenesis. PMID:21725736

  13. Brain Responses to Lexical-Semantic Priming in Children At-Risk for Dyslexia

    ERIC Educational Resources Information Center

    Torkildsen, Janne von Koss; Syversen, Gro; Simonsen, Hanne Gram; Moen, Inger; Lindgren, Magnus

    2007-01-01

    Deviances in early event-related potential (ERP) components reflecting auditory and phonological processing are well-documented in children at familial risk for dyslexia. However, little is known about brain responses which index processing in other linguistic domains such as lexicon, semantics and syntax in this group. The present study…

  14. Early Oxygen-Utilization and Brain Activity in Preterm Infants

    PubMed Central

    de Vries, Linda S.; Groenendaal, Floris; Toet, Mona C.; Lemmers, Petra M. A.; Vosse van de, Renè E.; van Bel, Frank; Benders, Manon J. N. L.

    2015-01-01

    The combined monitoring of oxygen supply and delivery using Near-InfraRed spectroscopy (NIRS) and cerebral activity using amplitude-integrated EEG (aEEG) could yield new insights into brain metabolism and detect potentially vulnerable conditions soon after birth. The relationship between NIRS and quantitative aEEG/EEG parameters has not yet been investigated. Our aim was to study the association between oxygen utilization during the first 6 h after birth and simultaneously continuously monitored brain activity measured by aEEG/EEG. Forty-four hemodynamically stable babies with a GA < 28 weeks, with good quality NIRS and aEEG/EEG data available and who did not receive morphine were included in the study. aEEG and NIRS monitoring started at NICU admission. The relation between regional cerebral oxygen saturation (rScO2) and cerebral fractional tissue oxygen extraction (cFTOE), and quantitative measurements of brain activity such as number of spontaneous activity transients (SAT) per minute (SAT rate), the interval in seconds (i.e. time) between SATs (ISI) and the minimum amplitude of the EEG in μV (min aEEG) were evaluated. rScO2 was negatively associated with SAT rate (β=-3.45 [CI=-5.76- -1.15], p=0.004) and positively associated with ISI (β=1.45 [CI=0.44-2.45], p=0.006). cFTOE was positively associated with SAT rate (β=0.034 [CI=0.009-0.059], p=0.008) and negatively associated with ISI (β=-0.015 [CI=-0.026- -0.004], p=0.007). Oxygen delivery and utilization, as indicated by rScO2 and cFTOE, are directly related to functional brain activity, expressed by SAT rate and ISI during the first hours after birth, showing an increase in oxygen extraction in preterm infants with increased early electro-cerebral activity. NIRS monitored oxygenation may be a useful biomarker of brain vulnerability in high-risk infants. PMID:25965343

  15. Mapping of Brain Activity by Automated Volume Analysis of Immediate Early Genes.

    PubMed

    Renier, Nicolas; Adams, Eliza L; Kirst, Christoph; Wu, Zhuhao; Azevedo, Ricardo; Kohl, Johannes; Autry, Anita E; Kadiri, Lolahon; Umadevi Venkataraju, Kannan; Zhou, Yu; Wang, Victoria X; Tang, Cheuk Y; Olsen, Olav; Dulac, Catherine; Osten, Pavel; Tessier-Lavigne, Marc

    2016-06-16

    Understanding how neural information is processed in physiological and pathological states would benefit from precise detection, localization, and quantification of the activity of all neurons across the entire brain, which has not, to date, been achieved in the mammalian brain. We introduce a pipeline for high-speed acquisition of brain activity at cellular resolution through profiling immediate early gene expression using immunostaining and light-sheet fluorescence imaging, followed by automated mapping and analysis of activity by an open-source software program we term ClearMap. We validate the pipeline first by analysis of brain regions activated in response to haloperidol. Next, we report new cortical regions downstream of whisker-evoked sensory processing during active exploration. Last, we combine activity mapping with axon tracing to uncover new brain regions differentially activated during parenting behavior. This pipeline is widely applicable to different experimental paradigms, including animal species for which transgenic activity reporters are not readily available. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Subthalamic nucleus deep brain stimulation in early stage Parkinson's disease.

    PubMed

    Charles, David; Konrad, Peter E; Neimat, Joseph S; Molinari, Anna L; Tramontana, Michael G; Finder, Stuart G; Gill, Chandler E; Bliton, Mark J; Kao, Chris; Phibbs, Fenna T; Hedera, Peter; Salomon, Ronald M; Cannard, Kevin R; Wang, Lily; Song, Yanna; Davis, Thomas L

    2014-07-01

    Deep brain stimulation (DBS) is an effective and approved therapy for advanced Parkinson's disease (PD), and a recent study suggests efficacy in mid-stage disease. This manuscript reports the results of a pilot trial investigating preliminary safety and tolerability of DBS in early PD. Thirty subjects with idiopathic PD (Hoehn & Yahr Stage II off medication), age 50-75, on medication ≥6 months but ≤4 years, and without motor fluctuations or dyskinesias were randomized to optimal drug therapy (ODT) (n = 15) or DBS + ODT (n = 15). Co-primary endpoints were the time to reach a 4-point worsening from baseline in the UPDRS-III off therapy and the change in levodopa equivalent daily dose from baseline to 24 months. As hypothesized, the mean UPDRS total and part III scores were not significantly different on or off therapy at 24 months. Medication requirements in the DBS + ODT group were lower at all time points with a maximal difference at 18 months. With a few exceptions, differences in neuropsychological functioning were not significant. Two subjects in the DBS + ODT group suffered serious adverse events; remaining adverse events were mild or transient. This study demonstrates that subjects with early stage PD will enroll in and complete trials testing invasive therapies and provides preliminary evidence that DBS is well tolerated in early PD. The results of this trial provide the data necessary to design a large, phase III, double-blind, multicenter trial investigating the safety and efficacy of DBS in early PD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Brain Responses Differ to Faces of Mothers and Fathers

    ERIC Educational Resources Information Center

    Arsalidou, Marie; Barbeau, Emmanuel J.; Bayless, Sarah J.; Taylor, Margot J.

    2010-01-01

    We encounter many faces each day but relatively few are personally familiar. Once faces are familiar, they evoke semantic and social information known about the person. Neuroimaging studies demonstrate differential brain activity to familiar and non-familiar faces; however, brain responses related to personally familiar faces have been more rarely…

  18. DEVELOPMENTAL CHANGES IN SEROTONIN SIGNALING: IMPLICATIONS FOR EARLY BRAIN FUNCTION, BEHAVIOR AND ADAPTATION

    PubMed Central

    BRUMMELTE, S.; GLANAGHY, E. MC; BONNIN, A.; OBERLANDER, T. F.

    2017-01-01

    The neurotransmitter serotonin (5-HT) plays a central role in brain development, regulation of mood, stress reactivity and risk of psychiatric disorders, and thus alterations in 5-HT signaling early in life have critical implications for behavior and mental health across the life span. Drawing on preclinical and emerging human evidence this narrative review paper will examine three key aspects when considering the consequences of early life changes in 5-HT: (1) developmental origins of variations of 5-HT signaling; (2) influence of genetic and epigenetic factors; and (3) preclinical and clinical consequences of 5-HT-related changes associated with antidepressant exposure (SSRIs). The developmental consequences of altered prenatal 5-HT signaling varies greatly and outcomes depend on an ongoing interplay between biological (genetic/epigenetic variations) and environmental factors, both pre and postnatally. Emerging evidence suggests that variations in 5-HT signaling may increase sensitivity to risky home environments, but may also amplify a positive response to a nurturing environment. In this sense, factors that change central 5-HT levels may act as ‘plasticity’ rather than ‘risk’ factors associated with developmental vulnerability. Understanding the impact of early changes in 5-HT levels offers critical insights that might explain the variations in early typical brain development that underlies behavioral risk. PMID:26905950

  19. Benevolent sexism alters executive brain responses.

    PubMed

    Dardenne, Benoit; Dumont, Muriel; Sarlet, Marie; Phillips, Christophe; Balteau, Evelyne; Degueldre, Christian; Luxen, André; Salmon, Eric; Maquet, Pierre; Collette, Fabienne

    2013-07-10

    Benevolence is widespread in our societies. It is defined as considering a subordinate group nicely but condescendingly, that is, with charity. Deleterious consequences for the target have been reported in the literature. In this experiment, we used functional MRI (fMRI) to identify whether being the target of (sexist) benevolence induces changes in brain activity associated with a working memory task. Participants were confronted by benevolent, hostile, or neutral comments before and while performing a reading span test in an fMRI environment. fMRI data showed that brain regions associated previously with intrusive thought suppression (bilateral, dorsolateral, prefrontal, and anterior cingulate cortex) reacted specifically to benevolent sexism compared with hostile sexism and neutral conditions during the performance of the task. These findings indicate that, despite being subjectively positive, benevolence modifies task-related brain networks by recruiting supplementary areas likely to impede optimal cognitive performance.

  20. [Developmental amnesia and early brain damage: neuropsychology and neuroimaging].

    PubMed

    Crespo-Eguilaz, N; Dominguez, P D; Vaquero, M; Narbona, J

    2018-03-01

    To contribute to neuropsychological profiling of developmental amnesia subsequent to bilateral damage to both hippocampi in early age. The total sample of 24 schoolchildren from both sexes is distributed in three groups: perinatal hypoxic-ischaemic encephalopathy and everyday complaints of memory in school age (n = 8); perinatal hypoxic-ischaemic encephalopathy without memory complaints (n = 7); and a group of typically developing (n = 9). All participants in every groups did have normal general intelligence and attention. Both clinical groups had, as another clinical consequence, spastic cerebral palsy (diplegia). Neuropsychological exam consisted on tests of general intelligence, attentional abilities, declarative memory and semantic knowledge. All participants had a brain magnetic resonance image and spectroscopy of hippocampi. Scheltens criteria were used for visual estimation of hippocampal atrophy. Parametric and non-parametric statistical contrasts were made. Despite preservation of semantic and procedural learning, declarative-episodic memory is impaired in the first group versus the other two groups. A significant proportion of bilateral hippocampal atrophy is only present in the first group versus the other two non-amnesic groups using Scheltens estimation on MRI. Two cases without evident atrophy did have diminished NAA/(Cho + Cr) index in both hippocampi. Taken together, these results contribute to delineate developmental amnesia as an specific impairment due to early partial bihippocampal damage, in agreement with previous studies. After diagnosis of developmental amnesia, a specific psychoeducational intervention must be made; also this impairment could be candidate for pharmacological trials in the future.

  1. Restrained eaters show altered brain response to food odor.

    PubMed

    Kemmotsu, Nobuko; Murphy, Claire

    2006-02-28

    Do restrained and unrestrained eaters differ in their brain response to food odor? We addressed this question by examining restrained eaters' brain response to food (chocolate) and non-food (geraniol, floral) odors, both when odor was attended to and when ignored. Using olfactory event-related potentials (OERPs), we found that restrained eaters and controls responded similarly to the non-food odor; however, unlike controls, restrained eaters showed no increase in brain response to the food odor when they focused attention on it. Rather, restrained eaters showed attenuated OERP amplitudes to the food odor in both attended and ignored conditions, suggesting that the brain's response to attended food odor was abnormally suppressed.

  2. Brain Development and Its Relationship to Early Childhood Education.

    ERIC Educational Resources Information Center

    Slegers, Brenda

    New research on brain development has profound implications in the areas of child development and education. This review of the research describes how the brain develops to shape children's growing intelligence, addressing such questions as: (1) What are the brain's functions? (2) What are the critical or sensitive periods in brain development?…

  3. Validation of the Early Functional Abilities scale: An assessment of four dimensions in early recovery after traumatic brain injury.

    PubMed

    Poulsen, Ingrid; Kreiner, Svend; Engberg, Aase W

    2018-02-13

    The Early Functional Abilities scale assesses the restoration of brain function after brain injury, based on 4 dimensions. The primary objective of this study was to evaluate the validity, objectivity, reliability and measurement precision of the Early Functional Abilities scale by Rasch model item analysis. A secondary objective was to examine the relationship between the Early Functional Abilities scale and the Functional Independence Measurement™, in order to establish the criterion validity of the Early Functional Abilities scale and to compare the sensitivity of measurements using the 2 instruments. The Rasch analysis was based on the assessment of 408 adult patients at admission to sub-acute rehabilitation in Copenhagen, Denmark after traumatic brain injury. The Early Functional Abilities scale provides valid and objective measurement of vegetative (autonomic), facio-oral, sensorimotor and communicative/cognitive functions. Removal of one item from the sensorimotor scale confirmed unidimensionality for each of the 4 subscales, but not for the entire scale. The Early Functional Abilities subscales are sensitive to differences between patients in ranges in which the Functional Independence Measurement™ has a floor effect. The Early Functional Abilities scale assesses the early recovery of important aspects of brain function after traumatic brain injury, but is not unidimensional. We recommend removal of the "standing" item and calculation of summary subscales for the separate dimensions.

  4. Face and location processing in children with early unilateral brain injury.

    PubMed

    Paul, Brianna; Appelbaum, Mark; Carapetian, Stephanie; Hesselink, John; Nass, Ruth; Trauner, Doris; Stiles, Joan

    2014-07-01

    Human visuospatial functions are commonly divided into those dependent on the ventral visual stream (ventral occipitotemporal regions), which allows for processing the 'what' of an object, and the dorsal visual stream (dorsal occipitoparietal regions), which allows for processing 'where' an object is in space. Information about the development of each of the two streams has been accumulating, but very little is known about the effects of injury, particularly very early injury, on this developmental process. Using a set of computerized dorsal and ventral stream tasks matched for stimuli, required response, and difficulty (for typically-developing individuals), we sought to compare the differential effects of injury to the two systems by examining performance in individuals with perinatal brain injury (PBI), who present with selective deficits in visuospatial processing from a young age. Thirty participants (mean=15.1 years) with early unilateral brain injury (15 right hemisphere PBI, 15 left hemisphere PBI) and 16 matched controls participated. On our tasks children with PBI performed more poorly than controls (lower accuracy and longer response times), and this was particularly prominent for the ventral stream task. Lateralization of PBI was also a factor, as the dorsal stream task did not seem to be associated with lateralized deficits, with both PBI groups showing only subtle decrements in performance, while the ventral stream task elicited deficits from RPBI children that do not appear to improve with age. Our findings suggest that early injury results in lesion-specific visuospatial deficits that persist into adolescence. Further, as the stimuli used in our ventral stream task were faces, our findings are consistent with what is known about the neural systems for face processing, namely, that they are established relatively early, follow a comparatively rapid developmental trajectory (conferring a vulnerability to early insult), and are biased toward the right

  5. Pedophilic brain potential responses to adult erotic stimuli.

    PubMed

    Knott, Verner; Impey, Danielle; Fisher, Derek; Delpero, Emily; Fedoroff, Paul

    2016-02-01

    Cognitive mechanisms associated with the relative lack of sexual interest in adults by pedophiles are poorly understood and may benefit from investigations examining how the brain processes adult erotic stimuli. The current study used event-related brain potentials (ERP) to investigate the time course of the explicit processing of erotic, emotional, and neutral pictures in 22 pedophilic patients and 22 healthy controls. Consistent with previous studies, early latency anterior ERP components were highly selective for erotic pictures. Although the ERPs elicited by emotional stimuli were similar in patients and controls, an early frontal positive (P2) component starting as early as 185 ms was significantly attenuated and slow to onset in pedophilia, and correlated with a clinical measure of cognitive distortions. Failure of rapid attentional capture by erotic stimuli suggests a relative reduction in early processing in pedophilic patients which may be associated with relatively diminished sexual interest in adults. Copyright © 2016. Published by Elsevier B.V.

  6. fMRI during natural sleep as a method to study brain function during early childhood.

    PubMed

    Redcay, Elizabeth; Kennedy, Daniel P; Courchesne, Eric

    2007-12-01

    Many techniques to study early functional brain development lack the whole-brain spatial resolution that is available with fMRI. We utilized a relatively novel method in which fMRI data were collected from children during natural sleep. Stimulus-evoked responses to auditory and visual stimuli as well as stimulus-independent functional networks were examined in typically developing 2-4-year-old children. Reliable fMRI data were collected from 13 children during presentation of auditory stimuli (tones, vocal sounds, and nonvocal sounds) in a block design. Twelve children were presented with visual flashing lights at 2.5 Hz. When analyses combined all three types of auditory stimulus conditions as compared to rest, activation included bilateral superior temporal gyri/sulci (STG/S) and right cerebellum. Direct comparisons between conditions revealed significantly greater responses to nonvocal sounds and tones than to vocal sounds in a number of brain regions including superior temporal gyrus/sulcus, medial frontal cortex and right lateral cerebellum. The response to visual stimuli was localized to occipital cortex. Furthermore, stimulus-independent functional connectivity MRI analyses (fcMRI) revealed functional connectivity between STG and other temporal regions (including contralateral STG) and medial and lateral prefrontal regions. Functional connectivity with an occipital seed was localized to occipital and parietal cortex. In sum, 2-4 year olds showed a differential fMRI response both between stimulus modalities and between stimuli in the auditory modality. Furthermore, superior temporal regions showed functional connectivity with numerous higher-order regions during sleep. We conclude that the use of sleep fMRI may be a valuable tool for examining functional brain organization in young children.

  7. Altruistic behavior: mapping responses in the brain

    PubMed Central

    Filkowski, Megan M; Cochran, R Nick; Haas, Brian W

    2016-01-01

    Altruism is an important social construct related to human relationships and the way many interpersonal and economic decisions are made. Recent progress in social neuroscience research shows that altruism is associated with a specific pattern of brain activity. The tendency to engage in altruistic behaviors is associated with greater activity within limbic regions such as the nucleus accumbens and anterior cingulate cortex in addition to cortical regions such as the medial prefrontal cortex and temporoparietal junction. Here, we review existing theoretical models of altruism as well as recent empirical neuroimaging research demonstrating how altruism is processed within the brain. This review not only highlights the progress in neuroscience research on altruism but also shows that there exist several open questions that remain unexplored. PMID:28580317

  8. Detectability of early brain meningitis with magnetic resonance imaging

    SciTech Connect

    Runge, V.M.; Wells, J.W.; Williams, N.M.

    1995-08-01

    The ability of high-field (1.5 T) magnetic resonance imaging (MRI) to detect early brain meningitis was evaluated in a canine model. Contrast dose, timing postinjection, and imaging technique (specifically the use of magnetization transfer) were assessed. Imaging of five canines was performed at 1.5 T 24 hours after injection of Cowans staphylococcus into the cisterna magna. Two control animals also were imaged using the same protocol. Contrast doses of 0.1, 0.3, and 0.8 mmol/kg gadoteridol were compared. Scans were performed at 2, 13, and 22 minutes after an initial injection of 0.1 mmol/kg. Thirty minutes after the initial injection ofmore » contrast, a supplemental dose of 0.2 mmol/kg was given. Scans were then repeated at 2, 12, and 22 minutes after this dose was administered. A second supplemental contrast injection of 0.5 mmol/kg was given at 70 minutes, and immediate postinjection scans with and without MT were acquired. Results. In the animals receiving a cisternal injection of bacteria, the degree of meningeal enhancement was greatest at 0.8 mmol/kg, intermediate at 0.3 mmol/kg, and least at 0.1 mmol/kg. Scans in control studies did not demonstrate abnormal meningeal enhancement. High-contrast dose, MT, and acquisition of immediate postcontrast scans all resulted in statistically significant improvement. On masked film review, abnormal meningeal enhancement was noted in only 2 of 5 experimental dogs at a dose of 0.1 mmol/kg (regardless of the use of MT) compared with all animals at a dose of 0.3 mmol/kg. In 18 of 37 dogs (paired scans with and without MT), when abnormal enhancement was noted, the use of MT improved the visualization of abnormal meningeal enhancement. In early brain meningitis, high-contrast dose (0.3 mmol/kg), MT, and scanning immediately after injection improve detection of abnormal meningeal enhancement, thus facilitating the diagnosis of meningitis. Of these factors, contrast dose is the most important. 14 refs., 9 figs., 2 tabs.« less

  9. Brain Ischemia Induces Diversified Neuroantigen-Specific T-Cell Responses That Exacerbate Brain Injury.

    PubMed

    Jin, Wei-Na; Gonzales, Rayna; Feng, Yan; Wood, Kristofer; Chai, Zhi; Dong, Jing-Fei; La Cava, Antonio; Shi, Fu-Dong; Liu, Qiang

    2018-06-01

    Autoimmune responses can occur when antigens from the central nervous system are presented to lymphocytes in the periphery or central nervous system in several neurological diseases. However, whether autoimmune responses emerge after brain ischemia and their impact on clinical outcomes remains controversial. We hypothesized that brain ischemia facilitates the genesis of autoimmunity and aggravates ischemic brain injury. Using a mouse strain that harbors a transgenic T-cell receptor to a central nervous system antigen, MOG 35-55 (myelin oligodendrocyte glycoprotein) epitope (2D2), we determined the anatomic location and involvement of antigen-presenting cells in the development of T-cell reactivity after brain ischemia and how T-cell reactivity impacts stroke outcome. Transient middle cerebral artery occlusion and photothrombotic stroke models were used in this study. We also quantified the presence and status of T cells from brain slices of ischemic patients. By coupling transfer of labeled MOG 35-55 -specific (2D2) T cells with tetramer tracking, we show an expansion in reactivity of 2D2 T cells to MOG 91-108 and MOG 103-125 in transient middle cerebral artery occlusion and photothrombotic stroke models. This reactivity and T-cell activation first occur locally in the brain after ischemia. Also, microglia act as antigen-presenting cells that effectively present MOG antigens, and depletion of microglia ablates expansion of 2D2 reactive T cells. Notably, the adoptive transfer of neuroantigen-experienced 2D2 T cells exacerbates Th1/Th17 responses and brain injury. Finally, T-cell activation and MOG-specific T cells are present in the brain of patients with ischemic stroke. Our findings suggest that brain ischemia activates and diversifies T-cell responses locally, which exacerbates ischemic brain injury. © 2018 The Authors.

  10. Influence of strain rate on indentation response of porcine brain.

    PubMed

    Qian, Long; Zhao, Hongwei; Guo, Yue; Li, Yuanshang; Zhou, Mingxing; Yang, Liguo; Wang, Zhiwei; Sun, Yifan

    2018-06-01

    Knowledge of brain tissue mechanical properties may be critical for formulating hypotheses about some specific diseases mechanisms and its accurate simulations such as traumatic brain injury (TBI) and tumor growth. Compared to traditional tests (e.g. tensile and compression), indentation shows superiority by virtue of its pinpoint and nondestructive/quasi-nondestructive. As a viscoelastic material, the properties of brain tissue depend on the strain rate by definition. However most efforts focus on the aspect of velocity in the field of brain indentation, rather than strain rate. The influence of strain rate on indentation response of brain tissue is taken little attention. Further, by comparing different results from literatures, it is also obvious that strain rate rather than velocity is more appropriate to characterize mechanical properties of brain. In this paper, to systematically characterize the influence of strain rate, a series of indentation-relaxation tests n = 210) are performed on the cortex of porcine brain using a custom-designed indentation device. The mechanical response that correlates with indenter diameters, depths of indentation and velocities, is revealed for the indentation portion, and elastic behavior of brain tissue is analyzed as the function of strain rate. Similarly, a linear viscoelastic model with a Prony series is employed for the indentation-relaxation portion, wherein the brain tissue shows more viscous and responds more quickly with increasing strain rate. Understanding the effect of strain rate on mechanical properties of brain indentation may be far-reaching for brain injury biomechanics and accurate simulations, but be important for bridging between indentation results of different literatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Joint Pairing and Structured Mapping of Convolutional Brain Morphological Multiplexes for Early Dementia Diagnosis.

    PubMed

    Lisowska, Anna; Rekik, Islem

    2018-06-21

    Diagnosis of brain dementia, particularly early mild cognitive impairment (eMCI), is critical for early intervention to prevent the onset of Alzheimer's Disease (AD), where cognitive decline is severe and irreversible. There is a large body of machine-learning based research investigating how dementia alters brain connectivity, mainly using structural (derived from diffusion MRI) and functional (derived from resting-state functional MRI) brain connectomic data. However, how early dementia affects cortical brain connections in morphology remains largely unexplored. To fill this gap, we propose a joint morphological brain multiplexes pairing and mapping strategy for early MCI detection, where a brain multiplex not only encodes the similarity in morphology between pairs of brain regions, but also a pair of brain morphological networks. Experimental results confirm that the proposed framework outperforms in classification accuracy several state-of-the-art methods. More importantly, we unprecedentedly identified most discriminative brain morphological networks between eMCI and NC, which included the paired views derived from maximum principal curvature and the sulcal depth for the left hemisphere and sulcal depth and the average curvature for the right hemisphere. We also identified the most highly correlated morphological brain connections in our cohort, which included the (pericalcarine cortex, insula cortex) on the maximum principal curvature view, (entorhinal cortex, insula cortex) on the mean sulcal depth view, and (entorhinal cortex, pericalcarine cortex) on the mean average curvature view, for both hemispheres. These highly correlated morphological connections might serve as biomarkers for early MCI diagnosis.

  12. Brain signatures of early lexical and morphological learning of a new language.

    PubMed

    Havas, Viktória; Laine, Matti; Rodríguez Fornells, Antoni

    2017-07-01

    Morphology is an important part of language processing but little is known about how adult second language learners acquire morphological rules. Using a word-picture associative learning task, we have previously shown that a brief exposure to novel words with embedded morphological structure (suffix for natural gender) is enough for language learners to acquire the hidden morphological rule. Here we used this paradigm to study the brain signatures of early morphological learning in a novel language in adults. Behavioural measures indicated successful lexical (word stem) and morphological (gender suffix) learning. A day after the learning phase, event-related brain potentials registered during a recognition memory task revealed enhanced N400 and P600 components for stem and suffix violations, respectively. An additional effect observed with combined suffix and stem violations was an enhancement of an early N2 component, most probably related to conflict-detection processes. Successful morphological learning was also evident in the ERP responses to the subsequent rule-generalization task with new stems, where violation of the morphological rule was associated with an early (250-400ms) and late positivity (750-900ms). Overall, these findings tend to converge with lexical and morphosyntactic violation effects observed in L1 processing, suggesting that even after a short exposure, adult language learners can acquire both novel words and novel morphological rules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Structural and Maturational Covariance in Early Childhood Brain Development.

    PubMed

    Geng, Xiujuan; Li, Gang; Lu, Zhaohua; Gao, Wei; Wang, Li; Shen, Dinggang; Zhu, Hongtu; Gilmore, John H

    2017-03-01

    Brain structural covariance networks (SCNs) composed of regions with correlated variation are altered in neuropsychiatric disease and change with age. Little is known about the development of SCNs in early childhood, a period of rapid cortical growth. We investigated the development of structural and maturational covariance networks, including default, dorsal attention, primary visual and sensorimotor networks in a longitudinal population of 118 children after birth to 2 years old and compared them with intrinsic functional connectivity networks. We found that structural covariance of all networks exhibit strong correlations mostly limited to their seed regions. By Age 2, default and dorsal attention structural networks are much less distributed compared with their functional maps. The maturational covariance maps, however, revealed significant couplings in rates of change between distributed regions, which partially recapitulate their functional networks. The structural and maturational covariance of the primary visual and sensorimotor networks shows similar patterns to the corresponding functional networks. Results indicate that functional networks are in place prior to structural networks, that correlated structural patterns in adult may arise in part from coordinated cortical maturation, and that regional co-activation in functional networks may guide and refine the maturation of SCNs over childhood development. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Start Smart! Building Brain Power in the Early Years.

    ERIC Educational Resources Information Center

    Schiller, Pam

    Noting current brain development research, this book offers simple, straightforward ways to boost children's brain power with active exploration, repetition, sensory exploration, laughter, and more. The chapters describe how and why the brain develops and explain how parents can give their children the best foundation for future learning.…

  15. Brain signatures of moral sensitivity in adolescents with early social deprivation.

    PubMed

    Escobar, María Josefina; Huepe, David; Decety, Jean; Sedeño, Lucas; Messow, Marie Kristin; Baez, Sandra; Rivera-Rei, Álvaro; Canales-Johnson, Andrés; Morales, Juan Pablo; Gómez, David Maximiliano; Schröeder, Johannes; Manes, Facundo; López, Vladimir; Ibánez, Agustín

    2014-06-19

    The present study examined neural responses associated with moral sensitivity in adolescents with a background of early social deprivation. Using high-density electroencephalography (hdEEG), brain activity was measured during an intentional inference task, which assesses rapid moral decision-making regarding intentional or unintentional harm to people and objects. We compared the responses to this task in a socially deprived group (DG) with that of a control group (CG). The event-related potentials (ERPs) results showed atypical early and late frontal cortical markers associated with attribution of intentionality during moral decision-making in DG (especially regarding intentional harm to people). The source space of the hdEEG showed reduced activity for DG compared with CG in the right prefrontal cortex, bilaterally in the ventromedial prefrontal cortex (vmPFC), and right insula. Moreover, the reduced response in vmPFC for DG was predicted by higher rates of externalizing problems. These findings demonstrate the importance of the social environment in early moral development, supporting a prefrontal maturation model of social deprivation.

  16. Brain Responses during the Anticipation of Dyspnea

    PubMed Central

    Stoeckel, M. Cornelia; Esser, Roland W.; Büchel, Christian

    2016-01-01

    Dyspnea is common in many cardiorespiratory diseases. Already the anticipation of this aversive symptom elicits fear in many patients resulting in unfavorable health behaviors such as activity avoidance and sedentary lifestyle. This study investigated brain mechanisms underlying these anticipatory processes. We induced dyspnea using resistive-load breathing in healthy subjects during functional magnetic resonance imaging. Blocks of severe and mild dyspnea alternated, each preceded by anticipation periods. Severe dyspnea activated a network of sensorimotor, cerebellar, and limbic areas. The left insular, parietal opercular, and cerebellar cortices showed increased activation already during dyspnea anticipation. Left insular and parietal opercular cortex showed increased connectivity with right insular and anterior cingulate cortex when severe dyspnea was anticipated, while the cerebellum showed increased connectivity with the amygdala. Notably, insular activation during dyspnea perception was positively correlated with midbrain activation during anticipation. Moreover, anticipatory fear was positively correlated with anticipatory activation in right insular and anterior cingulate cortex. The results demonstrate that dyspnea anticipation activates brain areas involved in dyspnea perception. The involvement of emotion-related areas such as insula, anterior cingulate cortex, and amygdala during dyspnea anticipation most likely reflects anticipatory fear and might underlie the development of unfavorable health behaviors in patients suffering from dyspnea. PMID:27648309

  17. Brain Responses during the Anticipation of Dyspnea.

    PubMed

    Stoeckel, M Cornelia; Esser, Roland W; Gamer, Matthias; Büchel, Christian; von Leupoldt, Andreas

    2016-01-01

    Dyspnea is common in many cardiorespiratory diseases. Already the anticipation of this aversive symptom elicits fear in many patients resulting in unfavorable health behaviors such as activity avoidance and sedentary lifestyle. This study investigated brain mechanisms underlying these anticipatory processes. We induced dyspnea using resistive-load breathing in healthy subjects during functional magnetic resonance imaging. Blocks of severe and mild dyspnea alternated, each preceded by anticipation periods. Severe dyspnea activated a network of sensorimotor, cerebellar, and limbic areas. The left insular, parietal opercular, and cerebellar cortices showed increased activation already during dyspnea anticipation. Left insular and parietal opercular cortex showed increased connectivity with right insular and anterior cingulate cortex when severe dyspnea was anticipated, while the cerebellum showed increased connectivity with the amygdala. Notably, insular activation during dyspnea perception was positively correlated with midbrain activation during anticipation. Moreover, anticipatory fear was positively correlated with anticipatory activation in right insular and anterior cingulate cortex. The results demonstrate that dyspnea anticipation activates brain areas involved in dyspnea perception. The involvement of emotion-related areas such as insula, anterior cingulate cortex, and amygdala during dyspnea anticipation most likely reflects anticipatory fear and might underlie the development of unfavorable health behaviors in patients suffering from dyspnea.

  18. Mouse brain responses to charged particle radiation

    NASA Astrophysics Data System (ADS)

    Nelson, Gregory; Nelson, Gregory; Chang, Polly; Favre, Cecile; Fike, John; Mao, Xiao-Wen; Obenaus, Andre; Pecaut, Michael; Vlkolinsky, Roman; Song, Sheng-Kwei; Spigelman, Igor; Stampanoni, Marco

    CHANGES IN DISEASE LATENCY AND HOMEOSTASIS: 1) APP23 transgenic mice exhibit many of the pathological features of Alzheimer's Disease, and the disease progression is continuous over several months. Electrophysiological measurements have shown that disease-related decreases in synaptic efficacy occur earlier in irradiated APP23 animals. 2) Using vascular polymer cast technology combined with micro-tomographic imaging, microvasculature changes following irradiation have been detected and are consistent with loss of vessels and an increased spacing between them. The time course of vessel changes to control and irradiated animals is being constructed. 3) In order to assess the ability of the brain to respond to external environmental shocks and restore orderly normal function (homeostasis), we apply a controlled septic shock by treating animals with lipopolysaccharide (LPS). We find that in irradiated animals, the patterns of electrophysiological changes associated with reactions to lipopolysaccharide (LPS) are complex and unlike those of either LPS or irradiation alone. They further suggest that the brain continues to remodel for up to 6 months following radiation. This is consistent with the idea that irradiation may potentiate the risks from late secondary insults.

  19. Neurotechnology and Society: Strengthening Responsible Innovation in Brain Science.

    PubMed

    Garden, Hermann; Bowman, Diana M; Haesler, Sebastian; Winickoff, David E

    2016-11-02

    Technological advances have the potential to dramatically increase our understanding of the human brain, treat and cure injury and disease, and enhance our general well-being. While advances in neuroscience hold great promise, they also raise profound ethical, legal, and social questions. In this vein, the Organization for Economic Co-operation and Development (OECD) convened an international workshop in September 2016 to explore responsible research and innovation in brain science. Copyright © 2016 OECD. Published by Elsevier Inc. All rights reserved.

  20. Prolonged maternal separation disturbs the serotonergic system during early brain development.

    PubMed

    Ohta, Ken-Ichi; Miki, Takanori; Warita, Katsuhiko; Suzuki, Shingo; Kusaka, Takashi; Yakura, Tomiko; Liu, Jun-Qian; Tamai, Motoki; Takeuchi, Yoshiki

    2014-04-01

    Early life stress interrupts brain development through the disturbance of various neurotransmitter and neurotrophic factor activities, but the details remain unclear. In the current study, we focused on the serotonergic system, which plays a critical role in brain development, and examined the time-dependent influence of prolonged maternal separation on male Sprague-Dawley rats. The rats were separated from their dams for 3h twice-daily during postnatal days (PDs) 2-20. The influence of prolonged maternal separation was analyzed on PDs 7, 14, 21, and 28 using HPLC to assess concentrations of serotonin and 5-hydroxyindoleacetic acid and using real-time RT-PCR to measure mRNA expression of the serotonin 1A and 2A receptors in various brain regions. HPLC revealed imbalance between serotonin and 5-hydroxyindoleacetic acid in midbrain raphe nuclei, the amygdala, the hippocampus, and the medial prefrontal cortex (mPFC) on PDs 7 and 14. Furthermore, real-time RT-PCR showed attenuation of mRNA expression of the serotonin 1A receptor in the hippocampus and the mPFC and of the serotonin 2A receptor only in the mPFC on PDs 7 and 14. The observed alterations returned to control levels after maternal separation ended. These findings suggest that the early life stress of prolonged maternal separation disturbs the serotonergic system during a crucial period of brain development, which might in part be responsible for emotional abnormalities later in life. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.

  1. [The brain and its representations in early modern Europe].

    PubMed

    Mandressi, Rafael

    2011-01-01

    The history of the representations of the brain is broadly the history of the brain itself, since observations and ideas which concern it are closely linked, and are even depending on each other. These representations are images, but are also materials produced by manipulating, cutting, fixing the brain; they are also the descriptions of these objects. The interpretations, structured by the representations, ultimately organize the knowledge.

  2. Baseline Brain Activity Predicts Response to Neuromodulatory Pain Treatment

    PubMed Central

    Jensen, Mark P.; Sherlin, Leslie H.; Fregni, Felipe; Gianas, Ann; Howe, Jon D.; Hakimian, Shahin

    2015-01-01

    Objectives The objective of this study was to examine the associations between baseline electroencephalogram (EEG)-assessed brain oscillations and subsequent response to four neuromodulatory treatments. Based on available research, we hypothesized that baseline theta oscillations would prospectively predict response to hypnotic analgesia. Analyses involving other oscillations and the other treatments (meditation, neurofeedback, and both active and sham transcranial direct current stimulation) were viewed as exploratory, given the lack of previous research examining brain oscillations as predictors of response to these other treatments. Design Randomized controlled study of single sessions of four neuromodulatory pain treatments and a control procedure. Methods Thirty individuals with spinal cord injury and chronic pain had their EEG recorded before each session of four active treatments (hypnosis, meditation, EEG biofeedback, transcranial direct current stimulation) and a control procedure (sham transcranial direct stimulation). Results As hypothesized, more presession theta power was associated with greater response to hypnotic analgesia. In exploratory analyses, we found that less baseline alpha power predicted pain reduction with meditation. Conclusions The findings support the idea that different patients respond to different pain treatments and that between-person treatment response differences are related to brain states as measured by EEG. The results have implications for the possibility of enhancing pain treatment response by either 1) better patient/treatment matching or 2) influencing brain activity before treatment is initiated in order to prepare patients to respond. Research is needed to replicate and confirm the findings in additional samples of individuals with chronic pain. PMID:25287554

  3. Global Genetic Variations Predict Brain Response to Faces

    PubMed Central

    Dickie, Erin W.; Tahmasebi, Amir; French, Leon; Kovacevic, Natasa; Banaschewski, Tobias; Barker, Gareth J.; Bokde, Arun; Büchel, Christian; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Gallinat, Juergen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Lawrence, Claire; Mann, Karl; Martinot, Jean-Luc; Nees, Frauke; Nichols, Thomas; Lathrop, Mark; Loth, Eva; Pausova, Zdenka; Rietschel, Marcela; Smolka, Michal N.; Ströhle, Andreas; Toro, Roberto; Schumann, Gunter; Paus, Tomáš

    2014-01-01

    Face expressions are a rich source of social signals. Here we estimated the proportion of phenotypic variance in the brain response to facial expressions explained by common genetic variance captured by ∼500,000 single nucleotide polymorphisms. Using genomic-relationship-matrix restricted maximum likelihood (GREML), we related this global genetic variance to that in the brain response to facial expressions, as assessed with functional magnetic resonance imaging (fMRI) in a community-based sample of adolescents (n = 1,620). Brain response to facial expressions was measured in 25 regions constituting a face network, as defined previously. In 9 out of these 25 regions, common genetic variance explained a significant proportion of phenotypic variance (40–50%) in their response to ambiguous facial expressions; this was not the case for angry facial expressions. Across the network, the strength of the genotype-phenotype relationship varied as a function of the inter-individual variability in the number of functional connections possessed by a given region (R2 = 0.38, p<0.001). Furthermore, this variability showed an inverted U relationship with both the number of observed connections (R2 = 0.48, p<0.001) and the magnitude of brain response (R2 = 0.32, p<0.001). Thus, a significant proportion of the brain response to facial expressions is predicted by common genetic variance in a subset of regions constituting the face network. These regions show the highest inter-individual variability in the number of connections with other network nodes, suggesting that the genetic model captures variations across the adolescent brains in co-opting these regions into the face network. PMID:25122193

  4. Brain stem auditory evoked responses in human infants and adults

    NASA Technical Reports Server (NTRS)

    Hecox, K.; Galambos, R.

    1974-01-01

    Brain stem evoked potentials were recorded by conventional scalp electrodes in infants (3 weeks to 3 years of age) and adults. The latency of one of the major response components (wave V) is shown to be a function both of click intensity and the age of the subject; this latency at a given signal strength shortens postnatally to reach the adult value (about 6 msec) by 12 to 18 months of age. The demonstrated reliability and limited variability of these brain stem electrophysiological responses provide the basis for an optimistic estimate of their usefulness as an objective method for assessing hearing in infants and adults.

  5. Behavioural and brain responses related to Internet search and memory.

    PubMed

    Dong, Guangheng; Potenza, Marc N

    2015-10-01

    The ready availability of data via searches on the Internet has changed how many people seek and perhaps store and recall information, although the brain mechanisms underlying these processes are not well understood. This study investigated brain mechanisms underlying Internet-based vs. non-Internet-based searching. The results showed that Internet searching was associated with lower accuracy in recalling information as compared with traditional book searching. During functional magnetic resonance imaging, Internet searching was associated with less regional brain activation in the left ventral stream, the association area of the temporal-parietal-occipital cortices, and the middle frontal cortex. When comparing novel items with remembered trials, Internet-based searching was associated with higher brain activation in the right orbitofrontal cortex and lower brain activation in the right middle temporal gyrus when facing those novel trials. Brain activations in the middle temporal gyrus were inversely correlated with response times, and brain activations in the orbitofrontal cortex were positively correlated with self-reported search impulses. Taken together, the results suggest that, although Internet-based searching may have facilitated the information-acquisition process, this process may have been performed more hastily and be more prone to difficulties in recollection. In addition, people appear less confident in recalling information learned through Internet searching and that recent Internet searching may promote motivation to use the Internet. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Early detection of consciousness in patients with acute severe traumatic brain injury.

    PubMed

    Edlow, Brian L; Chatelle, Camille; Spencer, Camille A; Chu, Catherine J; Bodien, Yelena G; O'Connor, Kathryn L; Hirschberg, Ronald E; Hochberg, Leigh R; Giacino, Joseph T; Rosenthal, Eric S; Wu, Ona

    2017-09-01

    See Schiff (doi:10.1093/awx209) for a scientific commentary on this article. Patients with acute severe traumatic brain injury may recover consciousness before self-expression. Without behavioural evidence of consciousness at the bedside, clinicians may render an inaccurate prognosis, increasing the likelihood of withholding life-sustaining therapies or denying rehabilitative services. Task-based functional magnetic resonance imaging and electroencephalography techniques have revealed covert consciousness in the chronic setting, but these techniques have not been tested in the intensive care unit. We prospectively enrolled 16 patients admitted to the intensive care unit for acute severe traumatic brain injury to test two hypotheses: (i) in patients who lack behavioural evidence of language expression and comprehension, functional magnetic resonance imaging and electroencephalography detect command-following during a motor imagery task (i.e. cognitive motor dissociation) and association cortex responses during language and music stimuli (i.e. higher-order cortex motor dissociation); and (ii) early responses to these paradigms are associated with better 6-month outcomes on the Glasgow Outcome Scale-Extended. Patients underwent functional magnetic resonance imaging on post-injury Day 9.2 ± 5.0 and electroencephalography on Day 9.8 ± 4.6. At the time of imaging, behavioural evaluation with the Coma Recovery Scale-Revised indicated coma (n = 2), vegetative state (n = 3), minimally conscious state without language (n = 3), minimally conscious state with language (n = 4) or post-traumatic confusional state (n = 4). Cognitive motor dissociation was identified in four patients, including three whose behavioural diagnosis suggested a vegetative state. Higher-order cortex motor dissociation was identified in two additional patients. Complete absence of responses to language, music and motor imagery was only observed in coma patients. In patients with behavioural evidence

  7. Relationship between somatosensory deficit and brain somatosensory system after early brain lesion: A morphometric study.

    PubMed

    Perivier, Maximilien; Delion, Matthieu; Chinier, Eva; Loustau, Sebastien; Nguyen, Sylvie; Ter Minassian, Aram; Richard, Isabelle; Dinomais, Mickael

    2016-05-01

    Cerebral Palsy (CP) is a group of permanent motor disorders due to non-progressive damage to the developing brain. Poor tactile discrimination is common in children with unilateral CP. Previous findings suggest the crucial role of structural integrity of the primary (S1) and secondary (S2) somatosensory areas located in the ipsilesional hemisphere for somatosensory function processing. However, no focus on the relationship between structural characteristics of ipsilesional S1 and S2 and tactile discrimination function in paretic hands has been proposed. Using structural MRI and a two-point discrimination assessment (2 PD), we explore this potential link in a group of 21 children (mean age 13 years and 7 months) with unilateral CP secondary to a periventricular white matter injury (PWMI) or middle cerebral artery infarct (MCA). For our whole sample there was a significant negative correlation between the 2 PD and the gray matter volume in the ipsilesional S2 (rho = -0.50 95% confidence interval [-0.76, -0.08], one-tailed p-value = 0.0109) and in the ipsilesional S1 (rho = -0.57, 95% confidence interval [-0.81, -0.19], one-tailed p-value = 0.0032). When studying these relationships with regard to the lesion types, we found these correlations were non-significant in the patients with PWMI but stronger in patients with MCA. According to our results, the degree of sensory impairment is related to the spared gray matter volume in ipsilesional S1 and S2 and is marked after an MCA stroke. Our work contributes to a better understanding of why some patients with CP have variable somatosensory deficit following an early brain lesion. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  8. Lipopolysaccharide hyporesponsiveness: protective or damaging response to the brain?

    PubMed

    Pardon, Marie Christine

    2015-01-01

    Lipopolysaccharide (LPS) endotoxins are widely used as experimental models of systemic bacterial infection and trigger robust inflammation by potently activating toll-like receptors 4 (TLR4) expressed on innate immune cells. Their ability to trigger robust neuroinflammation despite poor brain penetration can prove useful for the understanding of how inflammation induced by viral infections contributes to the pathogenesis of neurodegenerative diseases. A single LPS challenge often result in a blunted inflammatory response to subsequent stimulation by LPS and other TLR ligands, but the extent to which endotoxin tolerance occur in the brain requires further clarification. LPS is also thought to render the brain transiently resistant to subsequent brain injuries by attenuating the concomitant pro-inflammatory response. While LPS hyporesponsiveness and preconditioning are classically seen as protective mechanisms limiting the toxic effects of sustained inflammation, recent research casts doubt as to whether they have beneficial or detrimental roles on the brain and in neurodegenerative disease. These observations suggest that spatio-temporal aspects of the immune responses to LPS and the disease status are determinant factors. Endotoxin tolerance may lead to a late pro-inflammatory response with potential harmful consequences. And while reduced TLR4 signaling reduces the risk of neurodegenerative diseases, up-regulation of anti-inflammatory cytokines associated with LPS hyporesponsiveness can have deleterious consequences to the brain by inhibiting the protective phenotype of microglia, aggravating the progression of some neurodegenerative conditions such as Alzheimer's disease. Beneficial effects of LPS preconditioning, however appear to require a stimulation of anti-inflammatory mediators rather than an attenuation of the pro-inflammatory response.

  9. Optimization of SSVEP brain responses with application to eight-command Brain-Computer Interface.

    PubMed

    Bakardjian, Hovagim; Tanaka, Toshihisa; Cichocki, Andrzej

    2010-01-18

    This study pursues the optimization of the brain responses to small reversing patterns in a Steady-State Visual Evoked Potentials (SSVEP) paradigm, which could be used to maximize the efficiency of applications such as Brain-Computer Interfaces (BCI). We investigated the SSVEP frequency response for 32 frequencies (5-84 Hz), and the time dynamics of the brain response at 8, 14 and 28 Hz, to aid the definition of the optimal neurophysiological parameters and to outline the onset-delay and other limitations of SSVEP stimuli in applications such as our previously described four-command BCI system. Our results showed that the 5.6-15.3 Hz pattern reversal stimulation evoked the strongest responses, peaking at 12 Hz, and exhibiting weaker local maxima at 28 and 42 Hz. After stimulation onset, the long-term SSVEP response was highly non-stationary and the dynamics, including the first peak, was frequency-dependent. The evaluation of the performance of a frequency-optimized eight-command BCI system with dynamic neurofeedback showed a mean success rate of 98%, and a time delay of 3.4s. Robust BCI performance was achieved by all subjects even when using numerous small patterns clustered very close to each other and moving rapidly in 2D space. These results emphasize the need for SSVEP applications to optimize not only the analysis algorithms but also the stimuli in order to maximize the brain responses they rely on. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  10. Sugars, Sweet Taste Receptors, and Brain Responses.

    PubMed

    Lee, Allen A; Owyang, Chung

    2017-06-24

    Sweet taste receptors are composed of a heterodimer of taste 1 receptor member 2 (T1R2) and taste 1 receptor member 3 (T1R3). Accumulating evidence shows that sweet taste receptors are ubiquitous throughout the body, including in the gastrointestinal tract as well as the hypothalamus. These sweet taste receptors are heavily involved in nutrient sensing, monitoring changes in energy stores, and triggering metabolic and behavioral responses to maintain energy balance. Not surprisingly, these pathways are heavily regulated by external and internal factors. Dysfunction in one or more of these pathways may be important in the pathogenesis of common diseases, such as obesity and type 2 diabetes mellitus.

  11. Early Exposure to Toxic Substances Damages Brain Architecture. Working Paper #4

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2006

    2006-01-01

    New science shows that exposure to toxins prenatally or early in life can have a devastating and lifelong effect on the developing architecture of the brain. Exposures to many chemicals have much more severe consequences for embryos, fetuses, and young children, whose brains are still developing, than for adults. Substances that can have a truly…

  12. Development of a Human Neurovascular Unit Organotypic Systems Model of Early Brain Development

    EPA Science Inventory

    The inability to model human brain and blood-brain barrier development in vitro poses a major challenge in studies of how chemicals impact early neurogenic periods. During human development, disruption of thyroid hormone (TH) signaling is related to adverse morphological effects ...

  13. Effects of Experience on the Brain: The Role of Neuroscience in Early Development and Education

    ERIC Educational Resources Information Center

    Twardosz, Sandra

    2012-01-01

    Research Findings: Research on the effect of experience on the structure and function of the brain across the lifespan pertains directly to the concerns of professionals involved with children's early development and education. This paper briefly reviews (a) the role of experience in shaping the developing brain, (b) individual adaptation to the…

  14. Research Review: Cholinergic Mechanisms, Early Brain Development, and Risk for Schizophrenia

    ERIC Educational Resources Information Center

    Ross, Randal G.; Stevens, Karen E.; Proctor, William R.; Leonard, Sherry; Kisley, Michael A.; Hunter, Sharon K.; Freedman, Robert; Adams, Catherine E.

    2010-01-01

    The onset of diagnostic symptomology for neuropsychiatric diseases is often the end result of a decades-long process of aberrant brain development. Identification of novel treatment strategies aimed at normalizing early brain development and preventing mental illness should be a major therapeutic goal. However, there are few models for how this…

  15. Early parental care is important for hippocampal maturation: evidence from brain morphology in humans.

    PubMed

    Rao, Hengyi; Betancourt, Laura; Giannetta, Joan M; Brodsky, Nancy L; Korczykowski, Marc; Avants, Brian B; Gee, James C; Wang, Jiongjiong; Hurt, Hallam; Detre, John A; Farah, Martha J

    2010-01-01

    The effects of early life experience on later brain structure and function have been studied extensively in animals, yet the relationship between childhood experience and normal brain development in humans remains largely unknown. Using a unique longitudinal data set including ecologically valid in-home measures of early experience during childhood (at age 4 and 8 years) and high-resolution structural brain imaging during adolescence (mean age 14 years), we examined the effects on later brain morphology of two dimensions of early experience: parental nurturance and environmental stimulation. Parental nurturance at age 4 predicts the volume of the left hippocampus in adolescence, with better nurturance associated with smaller hippocampal volume. In contrast, environmental stimulation did not correlate with hippocampal volume. Moreover, the association between hippocampal volume and parental nurturance disappears at age 8, supporting the existence of a sensitive developmental period for brain maturation. These findings indicate that variation in normal childhood experience is associated with differences in brain morphology, and hippocampal volume is specifically associated with early parental nurturance. Our results provide neuroimaging evidence supporting the important role of warm parental care during early childhood for brain maturation.

  16. Impact of Blood-Brain Barrier Integrity on Tumor Growth and Therapy Response in Brain Metastases.

    PubMed

    Osswald, Matthias; Blaes, Jonas; Liao, Yunxiang; Solecki, Gergely; Gömmel, Miriam; Berghoff, Anna S; Salphati, Laurent; Wallin, Jeffrey J; Phillips, Heidi S; Wick, Wolfgang; Winkler, Frank

    2016-12-15

    The role of blood-brain barrier (BBB) integrity for brain tumor biology and therapy is a matter of debate. We developed a new experimental approach using in vivo two-photon imaging of mouse brain metastases originating from a melanoma cell line to investigate the growth kinetics of individual tumor cells in response to systemic delivery of two PI3K/mTOR inhibitors over time, and to study the impact of microregional vascular permeability. The two drugs are closely related but differ regarding a minor chemical modification that greatly increases brain penetration of one drug. Both inhibitors demonstrated a comparable inhibition of downstream targets and melanoma growth in vitro In vivo, increased BBB permeability to sodium fluorescein was associated with accelerated growth of individual brain metastases. Melanoma metastases with permeable microvessels responded similarly to equivalent doses of both inhibitors. In contrast, metastases with an intact BBB showed an exclusive response to the brain-penetrating inhibitor. The latter was true for macro- and micrometastases, and even single dormant melanoma cells. Nuclear morphology changes and single-cell regression patterns implied that both inhibitors, if extravasated, target not only perivascular melanoma cells but also those distant to blood vessels. Our study provides the first direct evidence that nonpermeable brain micro- and macrometastases can effectively be targeted by a drug designed to cross the BBB. Small-molecule inhibitors with these optimized properties are promising agents in preventing or treating brain metastases in patients. Clin Cancer Res; 22(24); 6078-87. ©2016 AACRSee related commentary by Steeg et al., p. 5953. ©2016 American Association for Cancer Research.

  17. A new rabbit model for the study of early brain injury after subarachnoid hemorrhage.

    PubMed

    Marbacher, Serge; Andereggen, Lukas; Neuschmelting, Volker; Widmer, Hans Rudolf; von Gunten, Michael; Takala, Jukka; Jakob, Stephan M; Fandino, Javier

    2012-07-15

    Pathophysiological disturbances during subarachnoid hemorrhage (SAH) and within the first few days thereafter are responsible for significant brain damage. Early brain injury (EBI) after SAH has become the focus of current research activities. The purpose of the present study was to evaluate whether a novel rabbit SAH model provokes EBI by means of neuronal degeneration, brain tissue death, and apoptosis in cerebral vascular endothelial cells. SAH was performed using an extra-intracranial blood shunt. Intracranial pressure (ICP), cerebral perfusion pressure (CPP), and bilateral regional cerebral blood flow (rCBF) were continuously measured. Apoptosis and neurodegeneration were detected 24h post-SAH in basilar artery endothelial cells, bilateral basal cortex, and hippocampus (CA1 and CA3) using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and Fluoro-jade B (FJB), respectively. ICP increase caused a CPP decrease to almost zero (8±5mmHg) and decreases in left and right rCBF to 23±8% and 19±9% of their baseline values. TUNEL- and FJB-stained sections revealed significant apoptosis and neurodegeneration in both basal cortex and hippocampal regions compared to sham-operated animals. The apoptotic index in basilar artery endothelial cells was 74%±11%. The blood shunt rabbit SAH model elicits acute physiological dearrangements and provokes marked and consistent early damage to the hippocampus, basal cortex, and cerebral vasculature 24h thereafter. These findings make the model a valid tool for investigation of pre-vasospasm pathophysiological mechanisms and novel treatment modalities. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. R6/2 Huntington's disease mice develop early and progressive abnormal brain metabolism and seizures.

    PubMed

    Cepeda-Prado, Efrain; Popp, Susanna; Khan, Usman; Stefanov, Dimitre; Rodríguez, Jorge; Menalled, Liliana B; Dow-Edwards, Diana; Small, Scott A; Moreno, Herman

    2012-05-09

    A hallmark feature of Huntington's disease pathology is the atrophy of brain regions including, but not limited to, the striatum. Though MRI studies have identified structural CNS changes in several Huntington's disease (HD) mouse models, the functional consequences of HD pathology during the progression of the disease have yet to be investigated using in vivo functional MRI (fMRI). To address this issue, we first established the structural and functional MRI phenotype of juvenile HD mouse model R6/2 at early and advanced stages of disease. Significantly higher fMRI signals [relative cerebral blood volumes (rCBVs)] and atrophy were observed in both age groups in specific brain regions. Next, fMRI results were correlated with electrophysiological analysis, which showed abnormal increases in neuronal activity in affected brain regions, thus identifying a mechanism accounting for the abnormal fMRI findings. [(14)C] 2-deoxyglucose maps to investigate patterns of glucose utilization were also generated. An interesting mismatch between increases in rCBV and decreases in glucose uptake was observed. Finally, we evaluated the sensitivity of this mouse line to audiogenic seizures early in the disease course. We found that R6/2 mice had an increased susceptibility to develop seizures. Together, these findings identified seizure activity in R6/2 mice and show that neuroimaging measures sensitive to oxygen metabolism can be used as in vivo biomarkers, preceding the onset of an overt behavioral phenotype. Since fMRI-rCBV can also be obtained in patients, we propose that it may serve as a translational tool to evaluate therapeutic responses in humans and HD mouse models.

  19. Sugars, Sweet Taste Receptors, and Brain Responses

    PubMed Central

    Lee, Allen A.; Owyang, Chung

    2017-01-01

    Sweet taste receptors are composed of a heterodimer of taste 1 receptor member 2 (T1R2) and taste 1 receptor member 3 (T1R3). Accumulating evidence shows that sweet taste receptors are ubiquitous throughout the body, including in the gastrointestinal tract as well as the hypothalamus. These sweet taste receptors are heavily involved in nutrient sensing, monitoring changes in energy stores, and triggering metabolic and behavioral responses to maintain energy balance. Not surprisingly, these pathways are heavily regulated by external and internal factors. Dysfunction in one or more of these pathways may be important in the pathogenesis of common diseases, such as obesity and type 2 diabetes mellitus. PMID:28672790

  20. Cooperative dynamics in auditory brain response

    NASA Astrophysics Data System (ADS)

    Kwapień, J.; DrożdŻ, S.; Liu, L. C.; Ioannides, A. A.

    1998-11-01

    Simultaneous estimates of activity in the left and right auditory cortex of five normal human subjects were extracted from multichannel magnetoencephalography recordings. Left, right, and binaural stimulations were used, in separate runs, for each subject. The resulting time series of left and right auditory cortex activity were analyzed using the concept of mutual information. The analysis constitutes an objective method to address the nature of interhemispheric correlations in response to auditory stimulations. The results provide clear evidence of the occurrence of such correlations mediated by a direct information transport, with clear laterality effects: as a rule, the contralateral hemisphere leads by 10-20 ms, as can be seen in the average signal. The strength of the interhemispheric coupling, which cannot be extracted from the average data, is found to be highly variable from subject to subject, but remarkably stable for each subject.

  1. Brain activity and connectivity changes in response to glucose ingestion.

    PubMed

    van Opstal, A M; Hafkemeijer, A; van den Berg-Huysmans, A A; Hoeksma, M; Blonk, C; Pijl, H; Rombouts, S A R B; van der Grond, J

    2018-05-27

    The regulatory role of the brain in directing eating behavior becomes increasingly recognized. Although many areas in the brain have been found to respond to food cues, very little data is available after actual caloric intake. The aim of this study was to determine normal whole brain functional responses to ingestion of glucose after an overnight fast. Twenty-five normal weight, adult males underwent functional MRI on two separate visits. In a single-blind randomized study setup, participants received either glucose solution (50 g/300 ml of water) or plain water. We studied changes in Blood Oxygen Level Dependent (BOLD) signal, voxel-based connectivity by Eigenvector Centrality Mapping, and functional network connectivity. Ingestion of glucose led to increased centrality in the thalamus and to decreases in BOLD signal in various brain areas. Decreases in connectivity in the sensory-motor and dorsal visual stream networks were found. Ingestion of water resulted in increased centrality across the brain, and increases in connectivity in the medial and lateral visual cortex network. Increased BOLD intensity was found in the intracalcarine and cingulate cortex. Our data show that ingestion of glucose leads to decreased activity and connectivity in brain areas and networks linked to energy seeking and satiation. In contrast, drinking plain water leads to increased connectivity probably associated with continued food seeking and unfulfilled reward. Trail registration: This study combines data of two studies registered at clinicaltrails.gov under numbers NCT03202342 and NCT03247114.

  2. Structural MRI markers of brain aging early after ischemic stroke.

    PubMed

    Werden, Emilio; Cumming, Toby; Li, Qi; Bird, Laura; Veldsman, Michele; Pardoe, Heath R; Jackson, Graeme; Donnan, Geoffrey A; Brodtmann, Amy

    2017-07-11

    To examine associations between ischemic stroke, vascular risk factors, and MRI markers of brain aging. Eighty-one patients (mean age 67.5 ± 13.1 years, 31 left-sided, 61 men) with confirmed first-ever (n = 66) or recurrent (n = 15) ischemic stroke underwent 3T MRI scanning within 6 weeks of symptom onset (mean 26 ± 9 days). Age-matched controls (n = 40) completed identical testing. Multivariate regression analyses examined associations between group membership and MRI markers of brain aging (cortical thickness, total brain volume, white matter hyperintensity [WMH] volume, hippocampal volume), normalized against intracranial volume, and the effects of vascular risk factors on these relationships. First-ever stroke was associated with smaller hippocampal volume ( p = 0.025) and greater WMH volume ( p = 0.004) relative to controls. Recurrent stroke was in turn associated with smaller hippocampal volume relative to both first-ever stroke ( p = 0.017) and controls ( p = 0.001). These associations remained significant after adjustment for age, sex, education, and, in stroke patients, infarct volume. Total brain volume was not significantly smaller in first-ever stroke patients than in controls ( p = 0.056), but the association became significant after further adjustment for atrial fibrillation ( p = 0.036). Cortical thickness and brain volumes did not differ as a function of stroke type, infarct volume, or etiology. Brain structure is likely to be compromised before ischemic stroke by vascular risk factors. Smaller hippocampal and total brain volumes and increased WMH load represent proxies for underlying vascular brain injury. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  3. Maternal brain response to own baby-cry is affected by cesarean section delivery

    PubMed Central

    Swain, James E.; Tasgin, Esra; Mayes, Linda C.; Feldman, Ruth; Constable, R. Todd; Leckman, James F.

    2011-01-01

    A range of early circumstances surrounding the birth of a child affects peripartum hormones, parental behavior and infant wellbeing. One of these factors, which may lead to postpartum depression, is the mode of delivery: vaginal delivery (VD) or cesarean section delivery (CSD). To test the hypothesis that CSD mothers would be less responsive to own baby-cry stimuli than VD mothers in the immediate postpartum period, we conducted functional magnetic resonance imaging, 2–4 weeks after delivery, of the brains of six mothers who delivered vaginally and six who had an elective CSD. VD mothers’ brains were significantly more responsive than CSD mothers’ brains to their own baby-cry in the superior and middle temporal gyri, superior frontal gyrus, medial fusiform gyrus, superior parietal lobe, as well as regions of the caudate, thalamus, hypothalamus, amygdala and pons. Also, within preferentially active regions of VD brains, there were correlations across all 12 mothers with out-of-magnet variables. These include correlations between own baby-cry responses in the left and right lenticular nuclei and parental preoccupations (r = .64, p < .05 and .67, p < .05 respectively), as well as in the superior frontal cortex and Beck depression inventory (r = .78, p < .01). First this suggests that VD mothers are more sensitive to own baby-cry than CSD mothers in the early postpartum in sensory processing, empathy, arousal, motivation, reward and habit-regulation circuits. Second, independent of mode of delivery, parental worries and mood are related to specific brain activations in response to own baby-cry. PMID:18771508

  4. How the Timing and Quality of Early Experiences Influence the Development of Brain Architecture

    PubMed Central

    Fox, Sharon E.; Levitt, Pat; Nelson, Charles A.

    2009-01-01

    Early life events can exert a powerful influence on both the pattern of brain architecture and behavioral development. In this paper a conceptual framework is provided for considering how the structure of early experience gets “under the skin.” The paper begins with a description of the genetic framework that lays the foundation for brain development, and then to the ways experience interacts with and modifies the structures and functions of the developing brain. Much of the attention is focused on early experience and sensitive periods, although it is made clear that later experience also plays an important role in maintaining and elaborating this early wiring diagram, which is critical to establishing a solid footing for development beyond the early years. PMID:20331653

  5. Human Traumatic Brain Injury Induces Autoantibody Response against Glial Fibrillary Acidic Protein and Its Breakdown Products

    PubMed Central

    Mondello, Stefania; Newsom, Kimberly J.; Yang, Zhihui; Yang, Boxuan; Kobeissy, Firas; Guingab, Joy; Glushakova, Olena; Robicsek, Steven; Heaton, Shelley; Buki, Andras; Hannay, Julia; Gold, Mark S.; Rubenstein, Richard; Lu, Xi-chun May; Dave, Jitendra R.; Schmid, Kara; Tortella, Frank; Robertson, Claudia S.; Wang, Kevin K. W.

    2014-01-01

    The role of systemic autoimmunity in human traumatic brain injury (TBI) and other forms of brain injuries is recognized but not well understood. In this study, a systematic investigation was performed to identify serum autoantibody responses to brain-specific proteins after TBI in humans. TBI autoantibodies showed predominant immunoreactivity against a cluster of bands from 38–50 kDa on human brain immunoblots, which were identified as GFAP and GFAP breakdown products. GFAP autoantibody levels increased by 7 days after injury, and were of the IgG subtype predominantly. Results from in vitro tests and rat TBI experiments also indicated that calpain was responsible for removing the amino and carboxyl termini of GFAP to yield a 38 kDa fragment. Additionally, TBI autoantibody staining co-localized with GFAP in injured rat brain and in primary rat astrocytes. These results suggest that GFAP breakdown products persist within degenerating astrocytes in the brain. Anti-GFAP autoantibody also can enter living astroglia cells in culture and its presence appears to compromise glial cell health. TBI patients showed an average 3.77 fold increase in anti-GFAP autoantibody levels from early (0–1 days) to late (7–10 days) times post injury. Changes in autoantibody levels were negatively correlated with outcome as measured by GOS-E score at 6 months, suggesting that TBI patients with greater anti-GFAP immune-responses had worse outcomes. Due to the long lasting nature of IgG, a test to detect anti-GFAP autoantibodies is likely to prolong the temporal window for assessment of brain damage in human patients. PMID:24667434

  6. Responses of brain and non-brain endothelial cells to meningitis-causing Escherichia coli K1.

    PubMed

    Paul-Satyaseela, Maneesh; Xie, Yi; Di Cello, Francescopaolo; Kim, Kwang Sik

    2006-03-31

    Bacterial interaction with specific host tissue may contribute to its propensity to cause an infection in a particular site. In this study, we examined whether meningitis-causing Escherichia coli K1 interaction with human brain microvascular endothelial cells, which constitute the blood-brain barrier, differed from its interaction with non-brain endothelial cells derived from skin and umbilical cord. We showed that E. coli K1 association was significantly greater with human brain microvascular endothelial cells than with non-brain endothelial cells. In addition, human brain microvascular endothelial cells maintained their morphology and intercellular junctional resistance in response to E. coli K1. In contrast, non-brain endothelial cells exhibited decreased transendothelial electrical resistance and detachment from the matrix upon exposure to E. coli K1. These different responses of brain and non-brain endothelial cells to E. coli K1 may form the basis of E. coli K1's propensity to cause meningitis.

  7. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury.

    PubMed

    Yang, Lianhong; Yang, Jianhua; Li, Guoqian; Li, Yi; Wu, Rong; Cheng, Jinping; Tang, Yamei

    2017-03-01

    The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.

  8. Early metabolic crisis-related brain atrophy and cognition in traumatic brain injury.

    PubMed

    Wright, Matthew J; McArthur, David L; Alger, Jeffry R; Van Horn, Jack; Irimia, Andrei; Filippou, Maria; Glenn, Thomas C; Hovda, David A; Vespa, Paul

    2013-09-01

    Traumatic brain injury often results in acute metabolic crisis. We recently demonstrated that this is associated with chronic brain atrophy, which is most prominent in the frontal and temporal lobes. Interestingly, the neuropsychological profile of traumatic brain injury is often characterized as 'frontal-temporal' in nature, suggesting a possible link between acute metabolic crisis-related brain atrophy and neurocognitive impairment in this population. While focal lesions and diffuse axonal injury have a well-established role in the neuropsychological deficits observed following traumatic brain injury, no studies to date have examined the possible contribution of acute metabolic crisis-related atrophy in the neuropsychological sequelae of traumatic brain injury. In the current study we employed positron emission tomography, magnetic resonance imaging, and neuropsychological assessments to ascertain the relationship between acute metabolic crisis-related brain atrophy and neurocognitive outcome in a sample of 14 right-handed traumatic brain injury survivors. We found that acute metabolic crisis-related atrophy in the frontal and temporal lobes was associated with poorer attention, executive functioning, and psychomotor abilities at 12 months post-injury. Furthermore, participants with gross frontal and/or temporal lobe atrophy exhibited numerous clinically significant neuropsychological deficits in contrast to participants with other patterns of brain atrophy. Our findings suggest that interventions that reduce acute metabolic crisis may lead to improved functional outcomes for traumatic brain injury survivors.

  9. Trajectories of Early Brain Volume Development in Fragile X and Autism RH: Trajectory of Brain Volume in Fragile X

    PubMed Central

    Hazlett, Heather Cody; Poe, Michele D.; Lightbody, Amy A.; Styner, Martin; MacFall, James R.; Reiss, Allan L.; Piven, Joseph

    2012-01-01

    Objective To examine patterns of early brain growth in young children with fragile X syndrome (FXS) compared to a comparison group (controls) and a group with idiopathic autism. Method The study included 53 boys between 18–42 months of age with FXS, 68 boys with idiopathic autism (ASD), and a comparison group of 50 typically-developing and developmentally-delayed controls. We examined structural brain volumes using magnetic resonance imaging (MRI) across two timepoints between ages 2–3 and 4–5 years and examined total brain volumes and regional (lobar) tissue volumes. Additionally, we studied a selected group of subcortical structures implicated in the behavioral features of FXS (e.g., basal ganglia, hippocampus, amygdala). Results Children with FXS had greater global brain volumes compared to controls, but were not different than children with idiopathic autism, and the rate of brain growth between ages 2 and 5 paralleled that seen in controls. In contrast to the children with idiopathic autism who had generalized cortical lobe enlargement, the children with FXS showed a specific enlargement in temporal lobe white matter, cerebellar gray matter, and caudate nucleus, but significantly smaller amygdala. Conclusions This structural longitudinal MRI study of preschoolers with FXS observed generalized brain overgrowth in FXS compared to controls, evident at age 2 and maintained across ages 4–5. We also find different patterns of brain growth that distinguishes boys with FXS from children with idiopathic autism. PMID:22917205

  10. The Early Anthropogenic Hypothesis: Challenges and Responses

    NASA Astrophysics Data System (ADS)

    Ruddiman, William F.

    2007-12-01

    Ruddiman (2003) proposed that late Holocene anthropogenic intervention caused CH4 and CO2 increases that kept climate from cooling and that preindustrial pandemics caused CO2 decreases and a small cooling. Every aspect of this early anthropogenic hypothesis has been challenged: the timescale, the issue of stage 11 as a better analog, the ability of human activities to account for the gas anomalies, and the impact of the pandemics. This review finds that the late Holocene gas trends are anomalous in all ice timescales; greenhouse gases decreased during the closest stage 11 insolation analog; disproportionate biomass burning and rice irrigation can explain the methane anomaly; and pandemics explain half of the CO2 decrease since 1000 years ago. Only ˜25% of the CO2 anomaly can, however, be explained by carbon from early deforestation. The remainder must have come from climate system feedbacks, including a Holocene ocean that remained anomalously warm because of anthropogenic intervention.

  11. Sex differences in directional brain responses to infant hunger cries.

    PubMed

    De Pisapia, Nicola; Bornstein, Marc H; Rigo, Paola; Esposito, Gianluca; De Falco, Simona; Venuti, Paola

    2013-02-13

    Infant cries are a critical survival mechanism that draw the attention of adult caregivers, who can then satisfy the basic needs of otherwise helpless infants. Here, we used functional neuroimaging to determine the effects of infant hunger cries on the brain activity of adults who were in a cognitively nondemanding mental state of awake rest. We found that the brains of men and women, independent of parental status (parent or nonparent), reacted differently to infant cries. Specifically, the dorsal medial prefrontal and posterior cingulate areas, known to be involved in mind wandering (the stream of thought typical of awake rest), remained active in men during exposure to infant cries, whereas in women, activity in these regions decreased. These results show sex-dependent modulation of brain responses to infant requests to be fed, and specifically, they indicate that women interrupt mind wandering when exposed to the sounds of infant hunger cries, whereas men carry on without interruption.

  12. How the Timing and Quality of Early Experiences Influence the Development of Brain Architecture

    ERIC Educational Resources Information Center

    Fox, Sharon E.; Levitt, Pat; Nelson, Charles A., III.

    2010-01-01

    Early life events can exert a powerful influence on both the pattern of brain architecture and behavioral development. In this study a conceptual framework is provided for considering how the structure of early experience gets "under the skin." The study begins with a description of the genetic framework that lays the foundation for brain…

  13. Culture and the Brain: Making the Most of Learning in the Early Childhood Classroom

    ERIC Educational Resources Information Center

    Thomas-Fair, Ursula

    2007-01-01

    This article reviews the impetus for higher quality, culturally appropriate early learning experiences. It investigates the economic costs of low quality learning and the absence of early learning programs as well. The article identifies and explores the tenets of brain-based learning and its connection to culture. Finally, the article describes…

  14. Loss of serum IGF-I input to the brain as an early biomarker of disease onset in Alzheimer mice

    PubMed Central

    Trueba-Sáiz, A; Cavada, C; Fernandez, A M; Leon, T; González, D A; Fortea Ormaechea, J; Lleó, A; Del Ser, T; Nuñez, A; Torres-Aleman, I

    2013-01-01

    Circulating insulin-like growth factor I (IGF-I) enters the brain and promotes clearance of amyloid peptides known to accumulate in Alzheimer's disease (AD) brains. Both patients and mouse models of AD show decreased level of circulating IGF-I enter the brain as evidenced by a lower ratio of cerebrospinal fluid/plasma IGF-I. Importantly, in presymptomatic AD mice this reduction is already manifested as a decreased brain input of serum IGF-I in response to environmental enrichment. To explore a potential diagnostic use of this early loss of IGF-I input, we monitored electrocorticogram (ECG) responses to systemic IGF-I in mice. Whereas control mice showed enhanced ECG activity after IGF-I, presymptomatic AD mice showed blunted ECG responses. Because nonhuman primates showed identically enhanced electroencephalogram (EEG) activity in response to systemic IGF-I, loss of the EEG signature of serum IGF-I may be exploited as a disease biomarker in AD patients. PMID:24301648

  15. Submillisecond unmasked subliminal visual stimuli evoke electrical brain responses.

    PubMed

    Sperdin, Holger F; Spierer, Lucas; Becker, Robert; Michel, Christoph M; Landis, Theodor

    2015-04-01

    Subliminal perception is strongly associated to the processing of meaningful or emotional information and has mostly been studied using visual masking. In this study, we used high density 256-channel EEG coupled with an liquid crystal display (LCD) tachistoscope to characterize the spatio-temporal dynamics of the brain response to visual checkerboard stimuli (Experiment 1) or blank stimuli (Experiment 2) presented without a mask for 1 ms (visible), 500 µs (partially visible), and 250 µs (subliminal) by applying time-wise, assumption-free nonparametric randomization statistics on the strength and on the topography of high-density scalp-recorded electric field. Stimulus visibility was assessed in a third separate behavioral experiment. Results revealed that unmasked checkerboards presented subliminally for 250 µs evoked weak but detectable visual evoked potential (VEP) responses. When the checkerboards were replaced by blank stimuli, there was no evidence for the presence of an evoked response anymore. Furthermore, the checkerboard VEPs were modulated topographically between 243 and 296 ms post-stimulus onset as a function of stimulus duration, indicative of the engagement of distinct configuration of active brain networks. A distributed electrical source analysis localized this modulation within the right superior parietal lobule near the precuneus. These results show the presence of a brain response to submillisecond unmasked subliminal visual stimuli independently of their emotional saliency or meaningfulness and opens an avenue for new investigations of subliminal stimulation without using visual masking. © 2014 Wiley Periodicals, Inc.

  16. Overweight adolescents' brain response to sweetened beverages mirrors addiction pathways.

    PubMed

    Feldstein Ewing, Sarah W; Claus, Eric D; Hudson, Karen A; Filbey, Francesca M; Yakes Jimenez, Elizabeth; Lisdahl, Krista M; Kong, Alberta S

    2017-08-01

    Many adolescents struggle with overweight/obesity, which exponentially increases in the transition to adulthood. Overweight/obesity places youth at risk for serious health conditions, including type 2 diabetes. In adults, neural substrates implicated in addiction (e.g., orbitofrontal cortex (OFC), striatum, amygdala, and ventral tegmental area) have been found to be relevant to risk for overweight/obesity. In this study, we examined three hypotheses to disentangle the potential overlap between addiction and overweight/obesity processing by examining (1) brain response to high vs. low calorie beverages, (2) the strength of correspondence between biometrics, including body mass index (BMI) and insulin resistance, and brain response and (3) the relationship between a measure of food addiction and brain response using an established fMRI gustatory cue exposure task with a sample of overweight/obese youth (M age = 16.46; M BMI = 33.1). Greater BOLD response was observed across the OFC, inferior frontal gyrus (IFG), nucleus accumbens, right amygdala, and additional frontoparietal and temporal regions in neural processing of high vs. low calorie beverages. Further, BMI scores positively correlated with BOLD activation in the high calorie > low calorie contrast in the right postcentral gyrus and central operculum. Insulin resistance positively correlated with BOLD activation across the bilateral middle/superior temporal gyrus, left OFC, and superior parietal lobe. No relationships were observed between measures of food addiction and brain response. These findings support the activation of parallel addiction-related neural pathways in adolescents' high calorie processing, while also suggesting the importance of refining conceptual and neurocognitive models to fit this developmental period.

  17. Study of a fetal brain affected by a severe form of tyrosine hydroxylase deficiency, a rare cause of early parkinsonism.

    PubMed

    Tristán-Noguero, Alba; Díez, Héctor; Jou, Cristina; Pineda, Mercè; Ormazábal, Aida; Sánchez, Aurora; Artuch, Rafael; Garcia-Cazorla, Àngels

    2016-06-01

    Tyrosine hydroxylase (TH) deficiency is an inborn error of dopamine synthesis. Two clinical phenotypes have been described. The THD "B" phenotype produces a severe encephalopathy of early-onset with sub-optimal L-Dopa response, whereas the "A" phenotype has a better L-Dopa response and outcome. The objective of the study is to describe the expression of key synaptic proteins and neurodevelopmental markers in a fetal brain of THD "B" phenotype. The brain of a 16-week-old miscarried human fetus was dissected in different brain areas and frozen until the analysis. TH gene study revealed the p.R328W/p.T399M mutations, the same mutations that produced a B phenotype in her sister. After protein extraction, western blot analyses were performed to assess protein expression. The results were compared to an age-matched control. We observed a decreased expression in TH and in other dopaminergic proteins, such as VMAT 1 and 2 and dopamine receptors, especially D2DR. GABAergic and glutamatergic proteins such as GABA VT, NMDAR1 and calbindin were also altered. Developmental markers for synapses, axons and dendrites were decreased whereas markers of neuronal volume were preserved. Although this is an isolated case, this brain sample is unique and corresponds to the first reported study of a THD brain. It provides interesting information about the influence of dopamine as a regulator of other neurotransmitter systems, brain development and movement disorders with origin at the embryological state. This study could also contribute to a better understanding of the pathophysiology of THD at early fetal stages.

  18. Brain response to taste in overweight children: A pilot feasibility study.

    PubMed

    Bohon, Cara

    2017-01-01

    Understanding the neural response to food and food cues during early stages of weight gain in childhood may help us determine the drive processes involved in unhealthy eating behavior and risk for obesity. Healthy weight and overweight children ages 6-8 (N = 18; 10 with BMI between 5th and 85th %ile and 8 with BMI >85th %ile) underwent fMRI scans while anticipating and receiving tastes of chocolate milkshake. Parents completed a Children's Eating Behaviour Questionnaire. Results reveal greater response to milkshake taste receipt in overweight children in the right insula, operculum, precentral gyrus, and angular gyrus, and bilateral precuneus and posterior cingulate. No group differences were found for brain response to a visual food cue. Exploratory analyses revealed interactions between self-report measures of eating behavior and weight status on brain response to taste. This pilot study provides preliminary evidence of feasibility of studying young children's taste processing and suggests a possible developmental shift in brain response to taste.

  19. Brain response to taste in overweight children: A pilot feasibility study

    PubMed Central

    Bohon, Cara

    2017-01-01

    Understanding the neural response to food and food cues during early stages of weight gain in childhood may help us determine the drive processes involved in unhealthy eating behavior and risk for obesity. Healthy weight and overweight children ages 6–8 (N = 18; 10 with BMI between 5th and 85th %ile and 8 with BMI >85th %ile) underwent fMRI scans while anticipating and receiving tastes of chocolate milkshake. Parents completed a Children’s Eating Behaviour Questionnaire. Results reveal greater response to milkshake taste receipt in overweight children in the right insula, operculum, precentral gyrus, and angular gyrus, and bilateral precuneus and posterior cingulate. No group differences were found for brain response to a visual food cue. Exploratory analyses revealed interactions between self-report measures of eating behavior and weight status on brain response to taste. This pilot study provides preliminary evidence of feasibility of studying young children’s taste processing and suggests a possible developmental shift in brain response to taste. PMID:28235080

  20. 125 Brain Games for Babies: Simple Games To Promote Early Brain Development.

    ERIC Educational Resources Information Center

    Silberg, Jackie

    Scientists believe that the stimulation that infants and young children receive determines which synapses form in the brain. This book presents 125 games for infants from birth to 12 months and is designed to nurture brain development. The book is organized chronologically in 3-month increments. Each game description includes information from…

  1. Role of von Willebrand Factor and ADAMTS13 in early brain injury after experimental subarachnoid hemorrhage.

    PubMed

    Wan, H; Wang, Y; Ai, J; Brathwaite, S; Ni, H; Macdonald, R L; Hol, E M; Meijers, J C M; Vergouwen, M D I

    2018-05-05

    Early brain injury is an important determinant of poor functional outcome and case-fatality after aneurysmal subarachnoid hemorrhage (SAH) and associated with early platelet aggregation. No treatment exists for early brain injury after SAH. We investigated if von Willebrand Factor (VWF) is involved in the pathogenesis of early brain injury, and if ultra-early treatment with recombinant ADAMTS13 (rADAMTS13) reduces early brain injury after experimental SAH. Experimental SAH in mice was induced by prechiasmatic injection of non-anticoagulated blood from a littermate. The following experimental SAH groups were investigated: C57BL/6J control (n=21), VWF -/- (n=25), ADAMTS13 -/- (n=23), and C57BL/6J treated with rADAMTS13 (n=26). Mice were sacrificed at 2 hours post-SAH. Primary outcome measures were microglial activation (Iba-1 surface area) and neuronal injury (number of cleaved caspase-3 positive neurons). Compared with controls, microglial activation was decreased in VWF -/- mice (mean difference -20.0%; 95% CI: -4.0% to -38.6%), increased in ADAMTS13 -/- mice (mean difference +34.0%; 95% CI: 16.2% to 51.7%), and decreased in rADAMTS13 treated mice (mean difference -22.1%; 95% CI: -3.4% to -39.1%). Compared with controls (185 neurons [IQR 133-353]), neuronal injury in the cerebral cortex was decreased in VWF -/- mice (63 neurons [IQR 25-78]), not changed in ADAMTS13 -/- mice (53 neurons [IQR 26-221]), and reduced in rADAMTS13 treated mice (45 neurons [IQR 9-115]). Our findings suggest that VWF is involved in the pathogenesis of early brain injury and support the further study of rADAMTS13 as a treatment option for early brain injury after SAH. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Premature brain aging in humans exposed to maternal nutrient restriction during early gestation.

    PubMed

    Franke, Katja; Gaser, Christian; Roseboom, Tessa J; Schwab, Matthias; de Rooij, Susanne R

    2018-06-01

    Prenatal exposure to undernutrition is widespread in both developing and industrialized countries, causing irreversible damage to the developing brain, resulting in altered brain structure and decreased cognitive function during adulthood. The Dutch famine in 1944/45 was a humanitarian disaster, now enabling studies of the effects of prenatal undernutrition during gestation on brain aging in late adulthood. We hypothesized that study participants prenatally exposed to maternal nutrient restriction (MNR) would demonstrate altered brain structure resembling premature brain aging in late adulthood, expecting the effect being stronger in men. Utilizing the Dutch famine birth cohort (n = 118; mean age: 67.5 ± 0.9 years), this study implements an innovative biomarker for individual brain aging, using structural neuroimaging. BrainAGE was calculated using state-of-the-art pattern recognition methods, trained on an independent healthy reference sample, then applied to the Dutch famine MRI sample, to evaluate the effects of prenatal undernutrition during early gestation on individual brain aging in late adulthood. Exposure to famine in early gestation was associated with BrainAGE scores indicative of an older-appearing brain in the male sample (mean difference to subjects born before famine: 4.3 years, p < 0.05). Furthermore, in explaining the observed variance in individual BrainAGE scores in the male sample, maternal age at birth, head circumference at birth, medical treatment of hypertension, history of cerebral incidences, actual heart rate, and current alcohol intake emerged to be the most influential variables (adjusted R 2  = 0.63, p < 0.01). The findings of our study on exposure to prenatal undernutrition being associated with a status of premature brain aging during late adulthood, as well as individual brain structure being shaped by birth- and late-life health characteristics, are strongly supporting the critical importance of sufficient nutrient

  3. Early event-related brain potentials that reflect interest for content information in the media.

    PubMed

    Adachi, Shinobu; Morikawa, Koji; Nittono, Hiroshi

    2012-03-28

    This study investigated the relationship between event-related brain potentials (ERPs) to abridged content information in the media and the subsequent decisions to view the full content. Student volunteers participated in a task that simulated information selection on the basis of the content information. Screenshots of television clips and headlines of news articles on the Web were used as content information for the image condition and the headline condition, respectively. Following presentation of a stimulus containing content information, participants decided whether or not they would view the full content by pressing a select or a reject button. When the select button was pressed, participants were presented with a television clip or a news article. When the reject button was pressed, participants continued on to the next trial, without viewing further. In comparison with rejected stimuli, selected stimuli elicited a larger negative component, with a peak latency of ∼250 ms. The increase in the negative component was independent of the type of visual stimulus. These results suggest that interest toward content information is reflected in early-stage event-related brain potential responses.

  4. Early Campus Response to Disruptive Behavior

    ERIC Educational Resources Information Center

    Stump, Linda J.; Zdziarski, Eugene L.

    2008-01-01

    As major events define generations and tragedies define and refine protocol response to significant incidents, a sense of comfort and confidence is attained as the authors train individually and organizationally to respond to extreme events, and yet those who have experienced them know that no plan goes as it should. There are, however, steps or…

  5. Menarche: Responses of Early Adolescent Females.

    ERIC Educational Resources Information Center

    McGrory, Arlene

    1990-01-01

    Investigated responses of menarcheal age females to menarche. Results from 95 girls indicated that premenarcheal girls thought menses was more debilitating than did postmenarcheal girls. Subjects who had been menstruating longer considered menses natural event but denied its effects. Found no significant difference in overall self-esteem and…

  6. Early Life Stress Differentially Modulates Distinct Forms of Brain Plasticity in Young and Adult Mice

    PubMed Central

    Reichardt, Wilfried; Clark, Kristin; Geiger, Julia; Gross, Claus M.; Heyer, Andrea; Neagu, Valentin; Bhatia, Harsharan; Atas, Hasan C.; Fiebich, Bernd L.; Bischofberger, Josef; Haas, Carola A.; Normann, Claus

    2012-01-01

    Background Early life trauma is an important risk factor for many psychiatric and somatic disorders in adulthood. As a growing body of evidence suggests that brain plasticity is disturbed in affective disorders, we examined the short-term and remote effects of early life stress on different forms of brain plasticity. Methodology/Principal Findings Mice were subjected to early deprivation by individually separating pups from their dam in the first two weeks after birth. Distinct forms of brain plasticity were assessed in the hippocampus by longitudinal MR volumetry, immunohistochemistry of neurogenesis, and whole-cell patch-clamp measurements of synaptic plasticity. Depression-related behavior was assessed by the forced swimming test in adult animals. Neuropeptides and their receptors were determined by real-time PCR and immunoassay. Early maternal deprivation caused a loss of hippocampal volume, which returned to normal in adulthood. Adult neurogenesis was unaffected by early life stress. Long-term synaptic potentiation, however, was normal immediately after the end of the stress protocol but was impaired in adult animals. In the forced swimming test, adult animals that had been subjected to early life stress showed increased immobility time. Levels of substance P were increased both in young and adult animals after early deprivation. Conclusion Hippocampal volume was affected by early life stress but recovered in adulthood which corresponded to normal adult neurogenesis. Synaptic plasticity, however, exhibited a delayed impairment. The modulation of synaptic plasticity by early life stress might contribute to affective dysfunction in adulthood. PMID:23071534

  7. The early development and evolution of the human brain.

    PubMed

    Crawford, M A

    1990-01-01

    THE CHEMISTRY OF THE BRAIN: The brain and nervous system is characterised by a heavy investment in lipid chemistry which accounts for up to 60% of its structural material. In the different mammalian species so far studied, only the 20 and 22 carbon chain length polyenoic fatty acids were present and the balance of the n-3 to n-6 fatty acids was consistently 1:1. The difference observed between species, was not in the chemistry but in the extent to which the brain is developed. This paper discusses the possibility that essential fatty acids may have played a part in it evolution. THE ORIGIN OF AIR BREATHING ANIMALS: The first phase of the planet's existence indulged in high temperature reactions in which oxygen combined with everything feasible: from silicon to make rocks to hydrogen to make water. Once the planet's temperature dropped to a point at which water could condense on the surface allowing chemical reactions to take place in it. The atmosphere was at that time devoid of oxygen so life evolved in a reducing atmosphere. Oxygen was liberated by photolysis of water and as a by-product of the blue-green algae through photosynthesis. When the point was reached at which oxidative metabolism became thermodynamically possible, animal life evolved with all the principle phyla establishing themselves within a relatively short space of geological time. (Bernal 1973). DHA and nerve cell membranes DHA AND NERVE CELL MEMBRANES: From the chemistry of contemporary algae it is likely that animal life evolved in an n-3 rich environment although not exclusively so as smaller amounts of n-6 fatty acids would have been present. A key feature of the first animals was the evolution of the photoreceptor: in examples of marine, amphibian and modern mammalian species, it has been found to use docosahexaenoic acid (DHA) as the principle membrane fatty acid in the phosphoglycerides. It is likely that the first animals did so as well. Coincidentally, the synaptic membranes involved in

  8. Novel Risk Stratification Score for Predicting Early Distant Brain Failure and Salvage Whole Brain Radiotherapy after Stereotactic Radiosurgery for Brain Metastases

    PubMed Central

    Press, Robert H.; Prabhu, Roshan S.; Nickleach, Dana C.; Liu, Yuan; Shu, Hui-Kuo G.; Kandula, Shravan; Patel, Kirtesh R.; Curran, Walter J.; Crocker, Ian

    2015-01-01

    Background The purpose of this study was to evaluate predictors of early distant brain failure (DBF) and salvage whole brain radiotherapy (WBRT) after treatment with stereotactic radiosurgery (SRS) for brain metastases and create a clinically relevant risk score in order to stratify patients’ risk of these events. Methods We reviewed records of 270 patients with brain metastases treated with SRS between 2003-2012. Pre-treatment patient and tumor characteristics were analyzed by univariate and multivariable analyses. Cumulative incidence (CI) of first DBF and salvage WBRT were calculated. Significant factors were used to create a score for stratifying early (6-month) DBF risk. Results No prior WBRT, total lesion volume <1.3 cm3, primary breast cancer or malignant melanoma histology, and multiple metastases (≥2) were found to be significant predictors for early DBF. Each factor was ascribed one point due to similar hazard ratios. Scores of 0-1, 2, and 3-4 were considered low, intermediate, and high risk, respectively. This correlated with 6-month CI of DBF of 16.6%, 28.8%, and 54.4%, respectively (p<0.001). For patients without prior WBRT, the 6-month CI of salvage WBRT by 6-months was 2%, 17.7%, and 25.7%, respectively (p<0.001). Conclusion Early DBF after SRS requiring salvage WBRT remains a significant clinical problem. Patient stratification for early DBF can better inform the decision for initial treatment strategy for brain metastases. The provided risk score may help predict for early DBF and subsequent salvage WBRT if initial SRS is used. External validation is needed prior to clinical implementation. PMID:26242475

  9. Early brain development in infants at high risk for autism spectrum disorder

    PubMed Central

    Hazlett, Heather Cody; Gu, Hongbin; Munsell, Brent C.; Kim, Sun Hyung; Styner, Martin; Wolff, Jason J.; Elison, Jed T.; Swanson, Meghan R.; Zhu, Hongtu; Botteron, Kelly N.; Collins, D. Louis; Constantino, John N.; Dager, Stephen R.; Estes, Annette M.; Evans, Alan C.; Fonov, Vladimir S.; Gerig, Guido; Kostopoulos, Penelope; McKinstry, Robert C.; Pandey, Juhi; Paterson, Sarah; Pruett, John R.; Schultz, Robert T.; Shaw, Dennis W.; Zwaigenbaum, Lonnie; Piven, Joseph

    2017-01-01

    Summary Brain enlargement has been observed in children with Autism Spectrum Disorder (ASD), but the timing of this phenomenon and its relationship to the appearance of behavioral symptoms is unknown. Retrospective head circumference and longitudinal brain volume studies of 2 year olds followed up at age 4 years, have provided evidence that increased brain volume may emerge early in development.1, 2 Studies of infants at high familial risk for autism can provide insight into the early development of autism and have found that characteristic social deficits in ASD emerge during the latter part of the first and in the second year of life3,4. These observations suggest that prospective brain imaging studies of infants at high familial risk for ASD might identify early post-natal changes in brain volume occurring before the emergence of an ASD diagnosis. In this prospective neuroimaging study of 106 infants at high familial risk of ASD and 42 low-risk infants, we show that cortical surface area hyper-expansion between 6-12 months of age precedes brain volume overgrowth observed between 12-24 months in the 15 high-risk infants diagnosed with autism at 24 months. Brain volume overgrowth was linked to the emergence and severity of autistic social deficits. A deep learning algorithm primarily using surface area information from brain MRI at 6 and 12 months of age predicted the diagnosis of autism in individual high-risk children at 24 months (with a positive predictive value of 81%, sensitivity of 88%). These findings demonstrate that early brain changes unfold during the period in which autistic behaviors are first emerging. PMID:28202961

  10. Early brain development in infants at high risk for autism spectrum disorder.

    PubMed

    Hazlett, Heather Cody; Gu, Hongbin; Munsell, Brent C; Kim, Sun Hyung; Styner, Martin; Wolff, Jason J; Elison, Jed T; Swanson, Meghan R; Zhu, Hongtu; Botteron, Kelly N; Collins, D Louis; Constantino, John N; Dager, Stephen R; Estes, Annette M; Evans, Alan C; Fonov, Vladimir S; Gerig, Guido; Kostopoulos, Penelope; McKinstry, Robert C; Pandey, Juhi; Paterson, Sarah; Pruett, John R; Schultz, Robert T; Shaw, Dennis W; Zwaigenbaum, Lonnie; Piven, Joseph

    2017-02-15

    Brain enlargement has been observed in children with autism spectrum disorder (ASD), but the timing of this phenomenon, and the relationship between ASD and the appearance of behavioural symptoms, are unknown. Retrospective head circumference and longitudinal brain volume studies of two-year olds followed up at four years of age have provided evidence that increased brain volume may emerge early in development. Studies of infants at high familial risk of autism can provide insight into the early development of autism and have shown that characteristic social deficits in ASD emerge during the latter part of the first and in the second year of life. These observations suggest that prospective brain-imaging studies of infants at high familial risk of ASD might identify early postnatal changes in brain volume that occur before an ASD diagnosis. In this prospective neuroimaging study of 106 infants at high familial risk of ASD and 42 low-risk infants, we show that hyperexpansion of the cortical surface area between 6 and 12 months of age precedes brain volume overgrowth observed between 12 and 24 months in 15 high-risk infants who were diagnosed with autism at 24 months. Brain volume overgrowth was linked to the emergence and severity of autistic social deficits. A deep-learning algorithm that primarily uses surface area information from magnetic resonance imaging of the brain of 6-12-month-old individuals predicted the diagnosis of autism in individual high-risk children at 24 months (with a positive predictive value of 81% and a sensitivity of 88%). These findings demonstrate that early brain changes occur during the period in which autistic behaviours are first emerging.

  11. Endocranial morphology of Palaeocene Plesiadapis tricuspidens and evolution of the early primate brain.

    PubMed

    Orliac, Maeva J; Ladevèze, Sandrine; Gingerich, Philip D; Lebrun, Renaud; Smith, Thierry

    2014-04-22

    Expansion of the brain is a key feature of primate evolution. The fossil record, although incomplete, allows a partial reconstruction of changes in primate brain size and morphology through time. Palaeogene plesiadapoids, closest relatives of Euprimates (or crown-group primates), are crucial for understanding early evolution of the primate brain. However, brain morphology of this group remains poorly documented, and major questions remain regarding the initial phase of euprimate brain evolution. Micro-CT investigation of the endocranial morphology of Plesiadapis tricuspidens from the Late Palaeocene of Europe--the most complete plesiadapoid cranium known--shows that plesiadapoids retained a very small and simple brain. Plesiadapis has midbrain exposure, and minimal encephalization and neocorticalization, making it comparable with that of stem rodents and lagomorphs. However, Plesiadapis shares a domed neocortex and downwardly shifted olfactory-bulb axis with Euprimates. If accepted phylogenetic relationships are correct, then this implies that the euprimate brain underwent drastic reorganization during the Palaeocene, and some changes in brain structure preceded brain size increase and neocortex expansion during evolution of the primate brain.

  12. Overdrinking, swallowing inhibition, and regional brain responses prior to swallowing

    PubMed Central

    Saker, Pascal; Egan, Gary F.; McKinley, Michael J.; Denton, Derek A.

    2016-01-01

    In humans, drinking replenishes fluid loss and satiates the sensation of thirst that accompanies dehydration. Typically, the volume of water drunk in response to thirst matches the deficit. Exactly how this accurate metering is achieved is unknown; recent evidence implicates swallowing inhibition as a potential factor. Using fMRI, this study investigated whether swallowing inhibition is present after more water has been drunk than is necessary to restore fluid balance within the body. This proposal was tested using ratings of swallowing effort and measuring regional brain responses as participants prepared to swallow small volumes of liquid while they were thirsty and after they had overdrunk. Effort ratings provided unequivocal support for swallowing inhibition, with a threefold increase in effort after overdrinking, whereas addition of 8% (wt/vol) sucrose to water had minimal effect on effort before or after overdrinking. Regional brain responses when participants prepared to swallow showed increases in the motor cortex, prefrontal cortices, posterior parietal cortex, striatum, and thalamus after overdrinking, relative to thirst. Ratings of swallowing effort were correlated with activity in the right prefrontal cortex and pontine regions in the brainstem; no brain regions showed correlated activity with pleasantness ratings. These findings are all consistent with the presence of swallowing inhibition after excess water has been drunk. We conclude that swallowing inhibition is an important mechanism in the overall regulation of fluid intake in humans. PMID:27791015

  13. Simulation of blast-induced early-time intracranial wave physics leading to traumatic brain injury.

    PubMed

    Taylor, Paul A; Ford, Corey C

    2009-06-01

    The objective of this modeling and simulation study was to establish the role of stress wave interactions in the genesis of traumatic brain injury (TBI) from exposure to explosive blast. A high resolution (1 mm3 voxels) five material model of the human head was created by segmentation of color cryosections from the Visible Human Female data set. Tissue material properties were assigned from literature values. The model was inserted into the shock physics wave code, CTH, and subjected to a simulated blast wave of 1.3 MPa (13 bars) peak pressure from anterior, posterior, and lateral directions. Three-dimensional plots of maximum pressure, volumetric tension, and deviatoric (shear) stress demonstrated significant differences related to the incident blast geometry. In particular, the calculations revealed focal brain regions of elevated pressure and deviatoric stress within the first 2 ms of blast exposure. Calculated maximum levels of 15 KPa deviatoric, 3.3 MPa pressure, and 0.8 MPa volumetric tension were observed before the onset of significant head accelerations. Over a 2 ms time course, the head model moved only 1 mm in response to the blast loading. Doubling the blast strength changed the resulting intracranial stress magnitudes but not their distribution. We conclude that stress localization, due to early-time wave interactions, may contribute to the development of multifocal axonal injury underlying TBI. We propose that a contribution to traumatic brain injury from blast exposure, and most likely blunt impact, can occur on a time scale shorter than previous model predictions and before the onset of linear or rotational accelerations traditionally associated with the development of TBI.

  14. The relationship between age and brain response to visual erotic stimuli in healthy heterosexual males.

    PubMed

    Seo, Y; Jeong, B; Kim, J-W; Choi, J

    2010-01-01

    The various changes of sexuality, including decreased sexual desire and erectile dysfunction, are also accompanied with aging. To understand the effect of aging on sexuality, we explored the relationship between age and the visual erotic stimulation-related brain response in sexually active male subjects. Twelve healthy, heterosexual male subjects (age 22-47 years) were recorded the functional magnetic resonance imaging (fMRI) signals of their brain activation elicited by passive viewing erotic (ERO), happy-faced (HA) couple, food and nature pictures. Mixed effect analysis and correlation analysis were performed to investigate the relationship between the age and the change of brain activity elicited by erotic stimuli. Our results showed age was positively correlated with the activation of right occipital fusiform gyrus and amygdala, and negatively correlated with the activation of right insula and inferior frontal gyrus. These findings suggest age might be related with functional decline in brain regions being involved in both interoceptive sensation and prefrontal modulation while it is related with the incremental activity of the brain region for early processing of visual emotional stimuli in sexually healthy men.

  15. Brain responses in 4-month-old infants are already language specific.

    PubMed

    Friederici, Angela D; Friedrich, Manuela; Christophe, Anne

    2007-07-17

    Language is the most important faculty that distinguishes humans from other animals. Infants learn their native language fast and effortlessly during the first years of life, as a function of the linguistic input in their environment. Behavioral studies reported the discrimination of melodic contours [1] and stress patterns [2, 3] in 1-4-month-olds. Behavioral [4, 5] and brain measures [6-8] have shown language-independent discrimination of phonetic contrasts at that age. Language-specific discrimination, however, has been reported for phonetic contrasts only for 6-12-month-olds [9-12]. Here we demonstrate language-specific discrimination of stress patterns in 4-month-old German and French infants by using electrophysiological brain measures. We compare the processing of disyllabic words differing in their rhythmic structure, mimicking German words being stressed on the first syllable, e.g., pápa/daddy[13], and French ones being stressed on the second syllable, e.g., papá/daddy. Event-related brain potentials reveal that experience with German and French differentially affects the brain responses of 4-month-old infants, with each language group displaying a processing advantage for the rhythmic structure typical in its native language. These data indicate language-specific neural representations of word forms in the infant brain as early as 4 months of age.

  16. Exploring early public responses to geoengineering.

    PubMed

    Pidgeon, Nick; Corner, Adam; Parkhill, Karen; Spence, Alexa; Butler, Catherine; Poortinga, Wouter

    2012-09-13

    Proposals for geoengineering the Earth's climate are prime examples of emerging or 'upstream' technologies, because many aspects of their effectiveness, cost and risks are yet to be researched, and in many cases are highly uncertain. This paper contributes to the emerging debate about the social acceptability of geoengineering technologies by presenting preliminary evidence on public responses to geoengineering from two of the very first UK studies of public perceptions and responses. The discussion draws upon two datasets: qualitative data (from an interview study conducted in 42 households in 2009), and quantitative data (from a subsequent nationwide survey (n=1822) of British public opinion). Unsurprisingly, baseline awareness of geoengineering was extremely low in both cases. The data from the survey indicate that, when briefly explained to people, carbon dioxide removal approaches were preferred to solar radiation management, while significant positive correlations were also found between concern about climate change and support for different geoengineering approaches. We discuss some of the wider considerations that are likely to shape public perceptions of geoengineering as it enters the media and public sphere, and conclude that, aside from technical considerations, public perceptions are likely to prove a key element influencing the debate over questions of the acceptability of geoengineering proposals.

  17. Ventilatory gas exchange and early response to cardiac resynchronization therapy.

    PubMed

    Kim, Chul-Ho; Olson, Lyle J; Shen, Win K; Cha, Yong-Mei; Johnson, Bruce D

    2015-11-01

    Cardiac resynchronization therapy (CRT) is an accepted intervention for chronic heart failure (HF), although approximately 30% of patients are non-responders. The purpose of this study was to determine whether exercise respiratory gas exchange obtained before CRT implantation predicts early response to CRT. Before CRT implantation, patients were assigned to either a mild-moderate group (Mod G, n = 33, age 67 ± 10 years) or a moderate-severe group (Sev G, n = 31, age 67 ± 10 years), based on abnormalities in exercise gas exchange. Severity of impaired gas exchange was based on a score from the measures of VE/VCO(2) slope, resting PETCO(2) and change of PETCO(2) from resting to peak. All measurements were performed before and 3 to 4 months after CRT implantation. Although Mod G did not have improved gas exchange (p > 0.05), Sev G improved significantly (p < 0.05) post-CRT. In addition, Mod G did not show improved right ventricular systolic pressure (RSVP; pre vs post: 37 ± 14 vs 36 ± 11 mm Hg, p > 0.05), yet Sev G showed significantly improved RVSP, by 23% (50 ± 14 vs 42 ± 12 mm Hg, p < 0.05). Both groups had improved left ventricular ejection fraction (p < 0.05), New York Heart Association class (p < 0.05) and quality of life (p < 0.05), but no significant differences were observed between groups (p > 0.05). No significant changes were observed in brain natriuretic peptide in either group post-CRT. Based on pre-CRT implantation ventilatory gas exchange, subjects with the most impaired values appeared to have more improvement post-CRT, possibly associated with a decrease in RVSP. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  18. Plasticity following early-life brain injury: Insights from quantitative MRI.

    PubMed

    Fiori, Simona; Guzzetta, Andrea

    2015-03-01

    Over the last decade, the application of novel advanced neuroimaging techniques to study congenital brain damage has provided invaluable insights into the mechanisms underlying early neuroplasticity. The concept that is clearly emerging, both from human and nun-human studies, is that functional reorganization in the immature brain is substantially different from that of the more mature, developed brain. This applies to the reorganization of language, the sensorimotor system, and the visual system. The rapid implementation and development of higher order imaging methods will offer increased, currently unavailable knowledge about the specific mechanisms of cerebral plasticity in infancy, which is essential to support the development of early therapeutic interventions aimed at supporting and enhancing functional reorganization during a time of greatest potential brain plasticity. Copyright © 2015. Published by Elsevier Inc.

  19. Food-induced brain responses and eating behaviour.

    PubMed

    Smeets, Paul A M; Charbonnier, Lisette; van Meer, Floor; van der Laan, Laura N; Spetter, Maartje S

    2012-11-01

    The brain governs food intake behaviour by integrating many different internal and external state and trait-related signals. Understanding how the decisions to start and to stop eating are made is crucial to our understanding of (maladaptive patterns of) eating behaviour. Here, we aim to (1) review the current state of the field of 'nutritional neuroscience' with a focus on the interplay between food-induced brain responses and eating behaviour and (2) highlight research needs and techniques that could be used to address these. The brain responses associated with sensory stimulation (sight, olfaction and taste), gastric distension, gut hormone administration and food consumption are the subject of increasing investigation. Nevertheless, only few studies have examined relations between brain responses and eating behaviour. However, the neural circuits underlying eating behaviour are to a large extent generic, including reward, self-control, learning and decision-making circuitry. These limbic and prefrontal circuits interact with the hypothalamus, a key homeostatic area. Target areas for further elucidating the regulation of food intake are: (eating) habit and food preference formation and modification, the neural correlates of self-control, nutrient sensing and dietary learning, and the regulation of body adiposity. Moreover, to foster significant progress, data from multiple studies need to be integrated. This requires standardisation of (neuroimaging) measures, data sharing and the application and development of existing advanced analysis and modelling techniques to nutritional neuroscience data. In the next 20 years, nutritional neuroscience will have to prove its potential for providing insights that can be used to tackle detrimental eating behaviour.

  20. Brain Responses to High-Protein Diets12

    PubMed Central

    Journel, Marion; Chaumontet, Catherine; Darcel, Nicolas; Fromentin, Gilles; Tomé, Daniel

    2012-01-01

    Proteins are suspected to have a greater satiating effect than the other 2 macronutrients. After protein consumption, peptide hormones released from the gastrointestinal tract (mainly anorexigenic gut peptides such as cholecystokinin, glucagon peptide 1, and peptide YY) communicate information about the energy status to the brain. These hormones and vagal afferents control food intake by acting on brain regions involved in energy homeostasis such as the brainstem and the hypothalamus. In fact, a high-protein diet leads to greater activation than a normal-protein diet in the nucleus tractus solitarius and in the arcuate nucleus. More specifically, neural mechanisms triggered particularly by leucine consumption involve 2 cellular energy sensors: the mammalian target of rapamycin and AMP-activated protein kinase. In addition, reward and motivation aspects of eating behavior, controlled mainly by neurons present in limbic regions, play an important role in the reduced hedonic response of a high-protein diet. This review examines how metabolic signals emanating from the gastrointestinal tract after protein ingestion target the brain to control feeding, energy expenditure, and hormones. Understanding the functional roles of brain areas involved in the satiating effect of proteins and their interactions will demonstrate how homeostasis and reward are integrated with the signals from peripheral organs after protein consumption. PMID:22585905

  1. Children processing music: electric brain responses reveal musical competence and gender differences.

    PubMed

    Koelsch, Stefan; Grossmann, Tobias; Gunter, Thomas C; Hahne, Anja; Schröger, Erich; Friederici, Angela D

    2003-07-01

    Numerous studies investigated physiological correlates of the processing of musical information in adults. How these correlates develop during childhood is poorly understood. In the present study, we measured event-related electric brain potentials elicited in 5- and 9-year-old children while they listened to (major-minor tonal) music. Stimuli were chord sequences, infrequently containing harmonically inappropriate chords. Our results demonstrate that the degree of (in)appropriateness of the chords modified the brain responses in both groups according to music-theoretical principles. This suggests that already 5-year-old children process music according to a well-established cognitive representation of the major-minor tonal system and according to music-syntactic regularities. Moreover, we show that, in contrast to adults, an early negative brain response was left predominant in boys, whereas it was bilateral in girls, indicating a gender difference in children processing music, and revealing that children process music with a hemispheric weighting different from that of adults. Because children process, in contrast to adults, music in the same hemispheres as they process language, results indicate that children process music and language more similarly than adults. This finding might support the notion of a common origin of music and language in the human brain, and concurs with findings that demonstrate the importance of musical features of speech for the acquisition of language.

  2. Intravenous Heroin Induces Rapid Brain Hypoxia and Hyperglycemia that Precede Brain Metabolic Response.

    PubMed

    Solis, Ernesto; Cameron-Burr, Keaton T; Shaham, Yavin; Kiyatkin, Eugene A

    2017-01-01

    Heroin use and overdose have increased in recent years as people transition from abusing prescription opiates to using the cheaper street drug. Despite a long history of research, many physiological effects of heroin and their underlying mechanisms remain unknown. Here, we used high-speed amperometry to examine the effects of intravenous heroin on oxygen and glucose levels in the nucleus accumbens (NAc) in freely-moving rats. Heroin within the dose range of human drug use and rat self-administration (100-200 μg/kg) induced a rapid, strong, but transient drop in NAc oxygen that was followed by a slower and more prolonged rise in glucose. Using oxygen recordings in the subcutaneous space, a densely-vascularized site with no metabolic activity, we confirmed that heroin-induced brain hypoxia results from decreased blood oxygen, presumably due to drug-induced respiratory depression. Respiratory depression and the associated rise in CO 2 levels appear to drive tonic increases in NAc glucose via local vasodilation. Heroin-induced changes in oxygen and glucose were rapid and preceded the slow and prolonged increase in brain temperature and were independent of enhanced intra-brain heat production, an index of metabolic activation. A very high heroin dose (3.2 mg/kg), corresponding to doses used by experienced drug users in overdose conditions, caused strong and prolonged brain hypoxia and hyperglycemia coupled with robust initial hypothermia that preceded an extended hyperthermic response. Our data suggest heroin-induced respiratory depression as a trigger for brain hypoxia, which leads to hyperglycemia, both of which appear independent of subsequent changes in brain temperature and metabolic neural activity.

  3. Intravenous Heroin Induces Rapid Brain Hypoxia and Hyperglycemia that Precede Brain Metabolic Response

    PubMed Central

    Cameron-Burr, Keaton T.; Shaham, Yavin

    2017-01-01

    Heroin use and overdose have increased in recent years as people transition from abusing prescription opiates to using the cheaper street drug. Despite a long history of research, many physiological effects of heroin and their underlying mechanisms remain unknown. Here, we used high-speed amperometry to examine the effects of intravenous heroin on oxygen and glucose levels in the nucleus accumbens (NAc) in freely-moving rats. Heroin within the dose range of human drug use and rat self-administration (100–200 μg/kg) induced a rapid, strong, but transient drop in NAc oxygen that was followed by a slower and more prolonged rise in glucose. Using oxygen recordings in the subcutaneous space, a densely-vascularized site with no metabolic activity, we confirmed that heroin-induced brain hypoxia results from decreased blood oxygen, presumably due to drug-induced respiratory depression. Respiratory depression and the associated rise in CO2 levels appear to drive tonic increases in NAc glucose via local vasodilation. Heroin-induced changes in oxygen and glucose were rapid and preceded the slow and prolonged increase in brain temperature and were independent of enhanced intra-brain heat production, an index of metabolic activation. A very high heroin dose (3.2 mg/kg), corresponding to doses used by experienced drug users in overdose conditions, caused strong and prolonged brain hypoxia and hyperglycemia coupled with robust initial hypothermia that preceded an extended hyperthermic response. Our data suggest heroin-induced respiratory depression as a trigger for brain hypoxia, which leads to hyperglycemia, both of which appear independent of subsequent changes in brain temperature and metabolic neural activity. PMID:28593192

  4. Early brain development toward shaping of human mind: an integrative psychoneurodevelopmental model in prenatal and perinatal medicine.

    PubMed

    Hruby, Radovan; Maas, Lili M; Fedor-Freybergh, P G

    2013-01-01

    The article introduces an integrative psychoneurodevelopmental model of complex human brain and mind development based on the latest findings in prenatal and perinatal medicine in terms of integrative neuroscience. The human brain development is extraordinarily complex set of events and could be influenced by a lot of factors. It is supported by new insights into the early neuro-ontogenic processes with the help of structural 3D magnetic resonance imaging or diffusion tensor imaging of fetal human brain. Various factors and targets for neural development including birth weight variability, fetal and early-life programming, fetal neurobehavioral states and fetal behavioral responses to various stimuli and others are discussed. Molecular biology reveals increasing sets of genes families as well as transcription and neurotropic factors together with critical epigenetic mechanisms to be deeply employed in the crucial neurodevelopmental events. Another field of critical importance is psychoimmuno-neuroendocrinology. Various effects of glucocorticoids as well as other hormones, prenatal stress and fetal HPA axis modulation are thought to be of special importance for brain development. The early postnatal period is characterized by the next intense shaping of complex competences, induced mainly by the very unique mother - newborn´s interactions and bonding. All these mechanisms serve to shape individual human mind with complex abilities and neurobehavioral strategies. Continuous research elucidating these special competences of human fetus and newborn/child supports integrative neuroscientific approach to involve various scientific disciplines for the next progress in human brain and mind research, and opens new scientific challenges and philosophic attitudes. New findings and approaches in this field could establish new methods in science, in primary prevention and treatment strategies, and markedly contribute to the development of modern integrative and personalized

  5. Altered brain response for semantic knowledge in Alzheimer's disease.

    PubMed

    Wierenga, Christina E; Stricker, Nikki H; McCauley, Ashley; Simmons, Alan; Jak, Amy J; Chang, Yu-Ling; Nation, Daniel A; Bangen, Katherine J; Salmon, David P; Bondi, Mark W

    2011-02-01

    Word retrieval deficits are common in Alzheimer's disease (AD) and are thought to reflect a degradation of semantic memory. Yet, the nature of semantic deterioration in AD and the underlying neural correlates of these semantic memory changes remain largely unknown. We examined the semantic memory impairment in AD by investigating the neural correlates of category knowledge (e.g., living vs. nonliving) and featural processing (global vs. local visual information). During event-related fMRI, 10 adults diagnosed with mild AD and 22 cognitively normal (CN) older adults named aloud items from three categories for which processing of specific visual features has previously been dissociated from categorical features. Results showed widespread group differences in the categorical representation of semantic knowledge in several language-related brain areas. For example, the right inferior frontal gyrus showed selective brain response for nonliving items in the CN group but living items in the AD group. Additionally, the AD group showed increased brain response for word retrieval irrespective of category in Broca's homologue in the right hemisphere and rostral cingulate cortex bilaterally, which suggests greater recruitment of frontally mediated neural compensatory mechanisms in the face of semantic alteration. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Brain responses mediating idiom comprehension: gender and hemispheric differences.

    PubMed

    Kana, Rajesh K; Murdaugh, Donna L; Wolfe, Kelly R; Kumar, Sandhya L

    2012-07-27

    Processing figurative language, such as idioms, is unique in that it requires one to make associations between words and non-literal meanings that are contextually appropriate. At the neural level, processing idiomatic phrases has been linked to recruitment of bilateral dorsolateral prefrontal cortices (DLPFC), the left temporal cortex, superior medial prefrontal gyrus (MPFC), and the left inferior frontal gyrus (LIFG). This functional MRI study examined the brain responses associated with processing idiomatic compared to literal sentences. In addition, gender differences in neural responses associated with language comprehension were also explored. In an fMRI scanner, thirty-six healthy adult volunteers viewed sentences that were either literal or idiomatic in nature, and answered subsequent comprehension questions. This sentence comprehension tasks activated mainly prefrontal language areas (LIFG, LSFG, and RMFG). Consistent with previous findings, idiomatic sentences showed increased response in LIFG. These results are discussed in the backdrop of the graded salience hypothesis. Furthermore, we found gender differences in brain activation and functional connectivity during this task. Women showed greater overall activation than men when comprehending literal and idiomatic sentences; whereas men had significantly greater functional connectivity between LIFG and LMTG than women across tasks. Overall, the findings of this study highlight the gender differences in neural responses associated with figurative language comprehension. Published by Elsevier B.V.

  7. Oxytocin selectively modulates brain response to stimuli probing social synchrony.

    PubMed

    Levy, Jonathan; Goldstein, Abraham; Zagoory-Sharon, Orna; Weisman, Omri; Schneiderman, Inna; Eidelman-Rothman, Moranne; Feldman, Ruth

    2016-01-01

    The capacity to act collectively within groups has led to the survival and thriving of Homo sapiens. A central group collaboration mechanism is "social synchrony," the coordination of behavior during joint action among affiliative members, which intensifies under threat. Here, we tested brain response to vignettes depicting social synchrony among combat veterans trained for coordinated action and following life-threatening group experience, versus controls, as modulated by oxytocin (OT), a neuropeptide supporting social synchrony. Using a randomized, double-blind, within-subject design, 40 combat-trained and control male veterans underwent magnetoencephalography (MEG) twice following OT/placebo administration while viewing two social vignettes rated as highly synchronous: pleasant male social gathering and coordinated unit during combat. Both vignettes activated a wide response across the social brain in the alpha band; the combat scene triggered stronger activations. Importantly, OT effects were modulated by prior experience. Among combat veterans, OT attenuated the increased response to combat stimuli in the posterior superior temporal sulcus (pSTS) - a hub of social perception, action observation, and mentalizing - and enhanced activation in the inferior parietal lobule (IPL) to the pleasant social scene. Among controls, OT enhanced inferior frontal gyrus (IFG) response to combat cues, demonstrating selective OT effects on mirror-neuron and mentalizing networks. OT-enhanced mirror network activity was dampened in veterans reporting higher posttraumatic symptoms. Results demonstrate that the social brain responds online, via modulation of alpha rhythms, to stimuli probing social synchrony, particularly those involving threat to survival, and OT's enhancing versus anxiolytic effects are sensitive to salient experiences within social groups. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Repeated diffusion MRI reveals earliest time point for stratification of radiotherapy response in brain metastases

    NASA Astrophysics Data System (ADS)

    Mahmood, Faisal; Johannesen, Helle H.; Geertsen, Poul; Hansen, Rasmus H.

    2017-04-01

    An imaging biomarker for early prediction of treatment response potentially provides a non-invasive tool for better prognostics and individualized management of the disease. Radiotherapy (RT) response is generally related to changes in gross tumor volume manifesting months later. In this prospective study we investigated the apparent diffusion coefficient (ADC), perfusion fraction and pseudo diffusion coefficient derived from diffusion weighted MRI as potential early biomarkers for radiotherapy response of brain metastases. It was a particular aim to assess the optimal time point for acquiring the DW-MRI scan during the course of treatment, since to our knowledge this important question has not been addressed directly in previous studies. Twenty-nine metastases (N  =  29) from twenty-one patients, treated with whole-brain fractionated external beam RT were analyzed. Patients were scanned with a 1 T MRI system to acquire DW-, T2*W-, T2W- and T1W scans, before start of RT, at each fraction and at follow up two to three months after RT. The DW-MRI parameters were derived using regions of interest based on high b-value images (b  =  800 s mm-2). Both volumetric and RECIST criteria were applied for response evaluation. It was found that in non-responding metastases the mean ADC decreased and in responding metastases it increased. The volume based response proved to be far more consistently predictable by the ADC change found at fraction number 7 and later, compared to the linear response (RECIST). The perfusion fraction and pseudo diffusion coefficient did not show sufficient prognostic value with either response assessment criteria. In conclusion this study shows that the ADC derived using high b-values may be a reliable biomarker for early assessment of radiotherapy response for brain metastases patients. The earliest response stratification can be achieved using two DW-MRI scans, one pre-treatment and one at treatment day 7-9 (equivalent to 21 Gy).

  9. Auditory brain development in premature infants: the importance of early experience.

    PubMed

    McMahon, Erin; Wintermark, Pia; Lahav, Amir

    2012-04-01

    Preterm infants in the neonatal intensive care unit (NICU) often close their eyes in response to bright lights, but they cannot close their ears in response to loud sounds. The sudden transition from the womb to the overly noisy world of the NICU increases the vulnerability of these high-risk newborns. There is a growing concern that the excess noise typically experienced by NICU infants disrupts their growth and development, putting them at risk for hearing, language, and cognitive disabilities. Preterm neonates are especially sensitive to noise because their auditory system is at a critical period of neurodevelopment, and they are no longer shielded by maternal tissue. This paper discusses the developmental milestones of the auditory system and suggests ways to enhance the quality control and type of sounds delivered to NICU infants. We argue that positive auditory experience is essential for early brain maturation and may be a contributing factor for healthy neurodevelopment. Further research is needed to optimize the hospital environment for preterm newborns and to increase their potential to develop into healthy children. © 2012 New York Academy of Sciences.

  10. Planarian shows decision-making behavior in response to multiple stimuli by integrative brain function.

    PubMed

    Inoue, Takeshi; Hoshino, Hajime; Yamashita, Taiga; Shimoyama, Seira; Agata, Kiyokazu

    2015-01-01

    Planarians belong to an evolutionarily early group of organisms that possess a central nervous system including a well-organized brain with a simple architecture but many types of neurons. Planarians display a number of behaviors, such as phototaxis and thermotaxis, in response to external stimuli, and it has been shown that various molecules and neural pathways in the brain are involved in controlling these behaviors. However, due to the lack of combinatorial assay methods, it remains obscure whether planarians possess higher brain functions, including integration in the brain, in which multiple signals coming from outside are coordinated and used in determining behavioral strategies. In the present study, we designed chemotaxis and thigmotaxis/kinesis tracking assays to measure several planarian behaviors in addition to those measured by phototaxis and thermotaxis assays previously established by our group, and used these tests to analyze planarian chemotactic and thigmotactic/kinetic behaviors. We found that headless planarian body fragments and planarians that had specifically lost neural activity following regeneration-dependent conditional gene knockdown (Readyknock) of synaptotagmin in the brain lost both chemotactic and thigmotactic behaviors, suggesting that neural activity in the brain is required for the planarian's chemotactic and thigmotactic behaviors. Furthermore, we compared the strength of phototaxis, chemotaxis, thigmotaxis/kinesis, and thermotaxis by presenting simultaneous binary stimuli to planarians. We found that planarians showed a clear order of predominance of these behaviors. For example, when planarians were simultaneously exposed to 400 lux of light and a chemoattractant, they showed chemoattractive behavior irrespective of the direction of the light source, although exposure to light of this intensity alone induces evasive behavior away from the light source. In contrast, when the light intensity was increased to 800 or 1600 lux and

  11. Normal variation in early parental sensitivity predicts child structural brain development.

    PubMed

    Kok, Rianne; Thijssen, Sandra; Bakermans-Kranenburg, Marian J; Jaddoe, Vincent W V; Verhulst, Frank C; White, Tonya; van IJzendoorn, Marinus H; Tiemeier, Henning

    2015-10-01

    Early caregiving can have an impact on brain structure and function in children. The influence of extreme caregiving experiences has been demonstrated, but studies on the influence of normal variation in parenting quality are scarce. Moreover, no studies to date have included the role of both maternal and paternal sensitivity in child brain maturation. This study examined the prospective relation between mothers' and fathers' sensitive caregiving in early childhood and brain structure later in childhood. Participants were enrolled in a population-based prenatal cohort. For 191 families, maternal and paternal sensitivity was repeatedly observed when the child was between 1 year and 4 years of age. Head circumference was assessed at 6 weeks, and brain structure was assessed using magnetic resonance imaging (MRI) measurements at 8 years of age. Higher levels of parental sensitivity in early childhood were associated with larger total brain volume (adjusted β = 0.15, p = .01) and gray matter volume (adjusted β = 0.16, p = .01) at 8 years, controlling for infant head size. Higher levels of maternal sensitivity in early childhood were associated with a larger gray matter volume (adjusted β = 0.13, p = .04) at 8 years, independent of infant head circumference. Associations with maternal versus paternal sensitivity were not significantly different. Normal variation in caregiving quality is related to markers of more optimal brain development in children. The results illustrate the important role of both mothers and fathers in child brain development. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Early life stress-induced alterations in rat brain structures measured with high resolution MRI.

    PubMed

    Sarabdjitsingh, R Angela; Loi, Manila; Joëls, Marian; Dijkhuizen, Rick M; van der Toorn, Annette

    2017-01-01

    Adverse experiences early in life impair cognitive function both in rodents and humans. In humans this increases the vulnerability to develop mental illnesses while in the rodent brain early life stress (ELS) abnormalities are associated with changes in synaptic plasticity, excitability and microstructure. Detailed information on the effects of ELS on rodent brain structural integrity at large and connectivity within the brain is currently lacking; this information is highly relevant for understanding the mechanism by which early life stress predisposes to mental illnesses. Here, we exposed rats to 24 hours of maternal deprivation (MD) at postnatal day 3, a paradigm known to increase corticosterone levels and thereby activate glucocorticoid receptors in the brain. Using structural magnetic resonance imaging we examined: i) volumetric changes and white/grey matter properties of the whole cerebrum and of specific brain areas; and ii) whether potential alterations could be normalized by blocking glucocorticoid receptors with mifepristone during the critical developmental window of early adolescence, i.e. between postnatal days 26 and 28. The results show that MD caused a volumetric reduction of the prefrontal cortex, particularly the ventromedial part, and the orbitofrontal cortex. Within the whole cerebrum, white (relative to grey) matter volume was decreased and region-specifically in prefrontal cortex and dorsomedial striatum following MD. A trend was found for the hippocampus. Grey matter fractions were not affected. Treatment with mifepristone did not normalize these changes. This study indicates that early life stress in rodents has long lasting consequences for the volume and structural integrity of the brain. However, changes were relatively modest and-unlike behavior- not mitigated by blockade of glucocorticoid receptors during a critical developmental period.

  13. Early endocrine alterations reflect prolonged stress and relate to 1-year functional outcome in patients with severe brain injury.

    PubMed

    Marina, Djordje; Klose, Marianne; Nordenbo, Annette; Liebach, Annette; Feldt-Rasmussen, Ulla

    2015-06-01

    Severe brain injury may increase the risk of developing acute and chronic hypopituitarism. Pituitary hormone alterations developed in the early recovery phase after brain injury may have implications for long-term functional recovery. The objective of the present study was to assess the pattern and prevalence of pituitary hormone alterations 3 months after a severe brain injury with relation to functional outcome at a 1-year follow-up. Prospective study at a tertiary university referral centre. A total of 163 patients admitted to neurorehabilitation after severe traumatic brain injury (TBI, n=111) or non-TBI (n=52) were included. The main outcome measures were endocrine alterations 3.3 months (median) after the brain injury and their relationship to the functioning and ability of the patients at a 1-year follow-up, as measured by the Functional Independence Measure and the Glasgow Outcome Scale-Extended. Three months after the injury, elevated stress hormones (i.e. 30 min stimulated cortisol, prolactin and/or IGF1) and/or suppressed gonadal or thyroid hormones were recorded in 68 and 32% of the patients respectively. At 1 year after the injury, lower functioning level (Functional Independence Measure) and lower capability of performing normal life activities (Glasgow Outcome Scale-Extended) were related to both the elevated stress hormones (P≤0.01) and the reduced gonadal and/or thyroid hormones (P≤0.01) measured at 3 months. The present study suggests that brain injury-related endocrine alterations that mimic secondary hypogonadism and hypothyroidism and that occur with elevated stress hormones most probably reflect a prolonged stress response 2-5 months after severe brain injury, rather than pituitary insufficiency per se. These endocrine alterations thus seem to reflect a more severe disease state and relate to 1-year functional outcome. © 2015 European Society of Endocrinology.

  14. Exposure to dim light at night during early development increases adult anxiety-like responses.

    PubMed

    Borniger, Jeremy C; McHenry, Zachary D; Abi Salloum, Bachir A; Nelson, Randy J

    2014-06-22

    Early experiences produce effects that may persist throughout life. Therefore, to understand adult phenotype, it is important to investigate the role of early environmental stimuli in adult behavior and health. Artificial light at night (LAN) is an increasingly common phenomenon throughout the world. However, animals, including humans, evolved under dark night conditions. Many studies have revealed affective, immune, and metabolic alterations provoked by aberrant light exposure and subsequent circadian disruption. Pups are receptive to entraining cues from the mother and then light early during development, raising the possibility that the early life light environment may influence subsequent behavior. Thus, to investigate potential influences of early life exposure to LAN on adult phenotype, we exposed mice to dim (~5 lux; full spectrum white light) or dark (~0 lux) nights pre- and/or postnatally. After weaning at 3 weeks of age, all mice were maintained in dark nights until adulthood (9 weeks of age) when behavior was assessed. Mice exposed to dim light in early life increased anxiety-like behavior and fearful responses on the elevated plus maze and passive avoidance tests. These mice also displayed reduced growth rates, which ultimately normalized during adolescence. mRNA expression of brain derived neurotrophic factor (BDNF), a neurotrophin previously linked to early life environment and adult phenotype, was not altered in the prefrontal cortex or hippocampus by early life LAN exposure. Serum corticosterone concentrations were similar between groups at weaning, suggesting that early life LAN does not elicit a long-term physiologic stress response. Dim light exposure did not influence behavior on the open field, novel object, sucrose anhedonia, or forced swim tests. Our data highlight the potential deleterious consequences of low levels of light during early life to development and subsequent behavior. Whether these changes are due to altered maternal behavior

  15. How task demands shape brain responses to visual food cues.

    PubMed

    Pohl, Tanja Maria; Tempelmann, Claus; Noesselt, Toemme

    2017-06-01

    Several previous imaging studies have aimed at identifying the neural basis of visual food cue processing in humans. However, there is little consistency of the functional magnetic resonance imaging (fMRI) results across studies. Here, we tested the hypothesis that this variability across studies might - at least in part - be caused by the different tasks employed. In particular, we assessed directly the influence of task set on brain responses to food stimuli with fMRI using two tasks (colour vs. edibility judgement, between-subjects design). When participants judged colour, the left insula, the left inferior parietal lobule, occipital areas, the left orbitofrontal cortex and other frontal areas expressed enhanced fMRI responses to food relative to non-food pictures. However, when judging edibility, enhanced fMRI responses to food pictures were observed in the superior and middle frontal gyrus and in medial frontal areas including the pregenual anterior cingulate cortex and ventromedial prefrontal cortex. This pattern of results indicates that task sets can significantly alter the neural underpinnings of food cue processing. We propose that judging low-level visual stimulus characteristics - such as colour - triggers stimulus-related representations in the visual and even in gustatory cortex (insula), whereas discriminating abstract stimulus categories activates higher order representations in both the anterior cingulate and prefrontal cortex. Hum Brain Mapp 38:2897-2912, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Gesturing with an Injured Brain: How Gesture Helps Children with Early Brain Injury Learn Linguistic Constructions

    ERIC Educational Resources Information Center

    Ozcaliskan, Seyda; Levine, Susan C.; Goldin-Meadow, Susan

    2013-01-01

    Children with pre/perinatal unilateral brain lesions (PL) show remarkable plasticity for language development. Is this plasticity characterized by the same developmental trajectory that characterizes typically developing (TD) children, with gesture leading the way into speech? We explored this question, comparing eleven children with PL -- matched…

  17. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour.

    PubMed

    Desbonnet, Lieve; Clarke, Gerard; Traplin, Alexander; O'Sullivan, Orla; Crispie, Fiona; Moloney, Rachel D; Cotter, Paul D; Dinan, Timothy G; Cryan, John F

    2015-08-01

    There is growing appreciation for the importance of bacteria in shaping brain development and behaviour. Adolescence and early adulthood are crucial developmental periods during which exposure to harmful environmental factors can have a permanent impact on brain function. Such environmental factors include perturbations of the gut bacteria that may affect gut-brain communication, altering the trajectory of brain development, and increasing vulnerability to psychiatric disorders. Here we assess the effects of gut bacterial depletion from weaning onwards on adult cognitive, social and emotional behaviours and markers of gut-brain axis dysfunction in mice. Mice were treated with a combination of antibiotics from weaning onwards and effects on behaviours and potential gut-brain axis neuromodulators (tryptophan, monoamines, and neuropeptides) and BDNF expression were assessed in adulthood. Antibiotic-treatment depleted and restructured gut microbiota composition of caecal contents and decreased spleen weights in adulthood. Depletion of the gut microbiota from weaning onwards reduced anxiety, induced cognitive deficits, altered dynamics of the tryptophan metabolic pathway, and significantly reduced BDNF, oxytocin and vasopressin expression in the adult brain. Microbiota depletion from weaning onwards by means of chronic treatment with antibiotics in mice impacts on anxiety and cognitive behaviours as well as key neuromodulators of gut-brain communication in a manner that is similar to that reported in germ-free mice. This model may represent a more amenable alternative for germ-free mice in the assessment of microbiota modulation of behaviour. Finally, these data suggest that despite the presence of a normal gut microbiome in early postnatal life, reduced abundance and diversity of the gut microbiota from weaning influences adult behaviours and key neuromodulators of the microbiota-gut-brain axis suggesting that dysregulation of this axis in the post-weaning period may

  18. Toward Understanding How Early-Life Stress Reprograms Cognitive and Emotional Brain Networks.

    PubMed

    Chen, Yuncai; Baram, Tallie Z

    2016-01-01

    Vulnerability to emotional disorders including depression derives from interactions between genes and environment, especially during sensitive developmental periods. Adverse early-life experiences provoke the release and modify the expression of several stress mediators and neurotransmitters within specific brain regions. The interaction of these mediators with developing neurons and neuronal networks may lead to long-lasting structural and functional alterations associated with cognitive and emotional consequences. Although a vast body of work has linked quantitative and qualitative aspects of stress to adolescent and adult outcomes, a number of questions are unclear. What distinguishes 'normal' from pathologic or toxic stress? How are the effects of stress transformed into structural and functional changes in individual neurons and neuronal networks? Which ones are affected? We review these questions in the context of established and emerging studies. We introduce a novel concept regarding the origin of toxic early-life stress, stating that it may derive from specific patterns of environmental signals, especially those derived from the mother or caretaker. Fragmented and unpredictable patterns of maternal care behaviors induce a profound chronic stress. The aberrant patterns and rhythms of early-life sensory input might also directly and adversely influence the maturation of cognitive and emotional brain circuits, in analogy to visual and auditory brain systems. Thus, unpredictable, stress-provoking early-life experiences may influence adolescent cognitive and emotional outcomes by disrupting the maturation of the underlying brain networks. Comprehensive approaches and multiple levels of analysis are required to probe the protean consequences of early-life adversity on the developing brain. These involve integrated human and animal-model studies, and approaches ranging from in vivo imaging to novel neuroanatomical, molecular, epigenomic, and computational

  19. Blood gene expression profiling of an early acetaminophen response.

    PubMed

    Bushel, P R; Fannin, R D; Gerrish, K; Watkins, P B; Paules, R S

    2017-06-01

    Acetaminophen can adversely affect the liver especially when overdosed. We used whole blood as a surrogate to identify genes as potential early indicators of an acetaminophen-induced response. In a clinical study, healthy human subjects were dosed daily with 4 g of either acetaminophen or placebo pills for 7 days and evaluated over the course of 14 days. Alanine aminotransferase (ALT) levels for responders to acetaminophen increased between days 4 and 9 after dosing, and 12 genes were detected with expression profiles significantly altered within 24 h. The early responsive genes separated the subjects by class and dose period. In addition, the genes clustered patients who overdosed on acetaminophen apart from controls and also predicted the exposure classifications with 100% accuracy. The responsive genes serve as early indicators of an acetaminophen exposure, and their gene expression profiles can potentially be evaluated as molecular indicators for further consideration.

  20. Blood Gene Expression Profiling of an Early Acetaminophen Response

    PubMed Central

    Bushel, Pierre R.; Fannin, Rick D.; Gerrish, Kevin; Watkins, Paul B.; Paules, Richard S.

    2018-01-01

    Acetaminophen can adversely affect the liver especially when overdosed. We used whole blood as a surrogate to identify genes as potential early indicators of an acetaminophen-induced response. In a clinical study, healthy human subjects were dosed daily with 4g of either acetaminophen or placebo pills for 7 days and evaluated over the course of 14 days. Alanine aminotransferase (ALT) levels for responders to acetaminophen increased between days 4 and 9 after dosing and 12 genes were detected with expression profiles significantly altered within 24 hrs. The early responsive genes separated the subjects by class and dose period. In addition, the genes clustered patients who overdosed on acetaminophen apart from controls and also predicted the exposure classifications with 100% accuracy. The responsive genes serve as early indicators of an acetaminophen exposure and their gene expression profiles can potentially be evaluated as molecular indicators for further consideration. PMID:26927286

  1. Neurocognitive Brain Response to Transient Impairment of Wernicke's Area

    PubMed Central

    Mason, Robert A.; Prat, Chantel S.; Just, Marcel Adam

    2014-01-01

    This study examined how the brain system adapts and reconfigures its information processing capabilities to maintain cognitive performance after a key cortical center [left posterior superior temporal gyrus (LSTGp)] is temporarily impaired during the performance of a language comprehension task. By applying repetitive transcranial magnetic stimulation (rTMS) to LSTGp and concurrently assessing the brain response with functional magnetic resonance imaging, we found that adaptation consisted of 1) increased synchronization between compensating regions coupled with a decrease in synchronization within the primary language network and 2) a decrease in activation at the rTMS site as well as in distal regions, followed by their recovery. The compensatory synchronization included 3 centers: The contralateral homolog (RSTGp) of the area receiving rTMS, areas adjacent to the rTMS site, and a region involved in discourse monitoring (medial frontal gyrus). This approach reveals some principles of network-level adaptation to trauma with potential application to traumatic brain injury, stroke, and seizure. PMID:23322403

  2. Neurocognitive brain response to transient impairment of Wernicke's area.

    PubMed

    Mason, Robert A; Prat, Chantel S; Just, Marcel Adam

    2014-06-01

    This study examined how the brain system adapts and reconfigures its information processing capabilities to maintain cognitive performance after a key cortical center [left posterior superior temporal gyrus (LSTGp)] is temporarily impaired during the performance of a language comprehension task. By applying repetitive transcranial magnetic stimulation (rTMS) to LSTGp and concurrently assessing the brain response with functional magnetic resonance imaging, we found that adaptation consisted of 1) increased synchronization between compensating regions coupled with a decrease in synchronization within the primary language network and 2) a decrease in activation at the rTMS site as well as in distal regions, followed by their recovery. The compensatory synchronization included 3 centers: The contralateral homolog (RSTGp) of the area receiving rTMS, areas adjacent to the rTMS site, and a region involved in discourse monitoring (medial frontal gyrus). This approach reveals some principles of network-level adaptation to trauma with potential application to traumatic brain injury, stroke, and seizure.

  3. Early Environmental Enrichment Enhances Abnormal Brain Connectivity in a Rabbit Model of Intrauterine Growth Restriction.

    PubMed

    Illa, Miriam; Brito, Verónica; Pla, Laura; Eixarch, Elisenda; Arbat-Plana, Ariadna; Batallé, Dafnis; Muñoz-Moreno, Emma; Crispi, Fatima; Udina, Esther; Figueras, Francesc; Ginés, Silvia; Gratacós, Eduard

    2017-10-12

    The structural correspondence of neurodevelopmental impairments related to intrauterine growth restriction (IUGR) that persists later in life remains elusive. Moreover, early postnatal stimulation strategies have been proposed to mitigate these effects. Long-term brain connectivity abnormalities in an IUGR rabbit model and the effects of early postnatal environmental enrichment (EE) were explored. IUGR was surgically induced in one horn, whereas the contralateral one produced the controls. Postnatally, a subgroup of IUGR animals was housed in an enriched environment. Functional assessment was performed at the neonatal and long-term periods. At the long-term period, structural brain connectivity was evaluated by means of diffusion-weighted brain magnetic resonance imaging and by histological assessment focused on the hippocampus. IUGR animals displayed poorer functional results and presented altered whole-brain networks and decreased median fractional anisotropy in the hippocampus. Reduced density of dendritic spines and perineuronal nets from hippocampal neurons were also observed. Of note, IUGR animals exposed to enriched environment presented an improvement in terms of both function and structure. IUGR is associated with altered brain connectivity at the global and cellular level. A strategy based on early EE has the potential to restore the neurodevelopmental consequences of IUGR. © 2017 S. Karger AG, Basel.

  4. Necrostatin-1 attenuates early brain injury after subarachnoid hemorrhage in rats by inhibiting necroptosis.

    PubMed

    Chen, Fuxiang; Su, Xingfen; Lin, Zhangya; Lin, Yuanxiang; Yu, Lianghong; Cai, Jiawei; Kang, Dezhi; Hu, Liwen

    2017-01-01

    Necroptosis is programmed cell death that has been recently proposed and reported to be involved in several neurologic diseases. However, the role of necroptosis in early brain injury after subarachnoid hemorrhage (SAH) is still unknown. The purpose of this study was to investigate whether necroptosis was involved in SAH-induced early brain injury, and to assess the possible neuroprotective effect of necrostatin-1 using an endovascular perforation rat model of SAH. Our results showed that the expression levels of necroptosis-related proteins including RIP1, RIP3 and MLKL in the basal cortex all increased at 3 hours after SAH ( P <0.05) and peaked at 48 hours after SAH ( P <0.05). However, they were greatly reduced after treatment with necrostatin-1 ( P <0.05). Concurrently, neurologic outcomes were significantly improved after necrostatin-1 treatment ( P <0.05). Furthermore, brain edema, blood-brain barrier disruption, necrotic cell death and neuroinflammation were also greatly inhibited after necrostatin-1 treatment. These results indicate that necroptosis is an important mechanism of cell death involved in the early brain injury after experimental SAH. Necrostatin-1 perhaps can serve as a promising neuroprotective agent for SAH treatment.

  5. Sex-Steroid Hormone Manipulation Reduces Brain Response to Reward.

    PubMed

    Macoveanu, Julian; Henningsson, Susanne; Pinborg, Anja; Jensen, Peter; Knudsen, Gitte M; Frokjaer, Vibe G; Siebner, Hartwig R

    2016-03-01

    Mood disorders are twice as frequent in women than in men. Risk mechanisms for major depression include adverse responses to acute changes in sex-steroid hormone levels, eg, postpartum in women. Such adverse responses may involve an altered processing of rewards. Here, we examine how women's vulnerability for mood disorders is linked to sex-steroid dynamics by investigating the effects of a pharmacologically induced fluctuation in ovarian sex steroids on the brain response to monetary rewards. In a double-blinded placebo controlled study, healthy women were randomized to receive either placebo or the gonadotropin-releasing hormone agonist (GnRHa) goserelin, which causes a net decrease in sex-steroid levels. Fifty-eight women performed a gambling task while undergoing functional MRI at baseline, during the mid-follicular phase, and again following the intervention. The gambling task enabled us to map regional brain activity related to the magnitude of risk during choice and to monetary reward. The GnRHa intervention caused a net reduction in ovarian sex steroids (estradiol and testosterone) and increased depression symptoms. Compared with placebo, GnRHa reduced amygdala's reactivity to high monetary rewards. There was a positive association between the individual changes in testosterone and changes in bilateral insula response to monetary rewards. Our data provide evidence for the involvement of sex-steroid hormones in reward processing. A blunted amygdala response to rewarding stimuli following a rapid decline in sex-steroid hormones may reflect a reduced engagement in positive experiences. Abnormal reward processing may constitute a neurobiological mechanism by which sex-steroid fluctuations provoke mood disorders in susceptible women.

  6. Enhanced regional brain metabolic responses to benzodiazepines in cocaine abusers

    SciTech Connect

    Volkow, N.D.; Wang, G.J.; Fowler, J.S.

    While dopamine (DA) appears to be crucial for cocaine reinforcement, its involvement in cocaine addiction is much less clear. Using PET we have shown persistent reductions in striatal DA D2 receptors (which arc predominantly located on GABA cells) in cocaine abusers. This finding coupled to GABA`s role as an effector for DA led us to investigate if there were GABAergic abnormalities in cocaine abusers. In this study we measured regional brain metabolic responses to lorazepam, to indirectly assess GABA function (benzodiazepines facilitate GABAergic neurotransmission). Methods: The experimental subjects consisted of 12 active cocaine abusers and 32 age matched controls. Eachmore » subject underwent two PET FDG scans obtained within 1 week of each other. The first FDG scan was obtained after administration of placebo (3 cc of saline solution) given 40-50 minutes prior to FDG; and the second after administration of lorazepam (30 {mu}g/kg) given 40-50 minutes prior to FDG. The subjects were blind to the drugs received. Results: Lorazepam-induced sleepiness was significantly greater in abusers than in controls (p<0.001). Lorazepam-induced decreases in brain glucose metabolism were significantly larger in cocaine abusers than in controls. Whereas in controls whole brain metabolism decreased 13{+-}7 %, in cocaine abusers it decreased 21{+-}13 % (p < 0.05). Lorazepam-induced decrements in regional metabolism were significantly larger in striatum (p < 0.0 1), thalamus (p < 0.01) and cerebellum (p < 0.005) of cocaine abusers than of controls (ANOVA diagnosis by condition (placebo versus lorazepam) interaction effect). The only brain region for which the absolute metabolic changes-induced by lorazepam in cocaine abusers were equivalent to those in controls was the orbitofrontal cortex. These results document an accentuated sensitivity to benzodiazepines in cocaine abusers which is compatible with disrupted GABAergic function in these patients.« less

  7. Rebooting the Brain: Using Early Childhood Education to Heal Trauma from Abuse and Neglect

    ERIC Educational Resources Information Center

    McLintock, Ben

    2011-01-01

    Abused and neglected children live in a world that usually includes some sort of violence, chaos, and tremendous physical and mental stress. This toxic environment wreaks havoc on a child's developing brain. This article discusses how to use early childhood education to heal trauma from abuse and neglect. It shares the story of two children, Bryce…

  8. Brain Development in Autism: Early Overgrowth Followed by Premature Arrest of Growth

    ERIC Educational Resources Information Center

    Courchesne, Eric

    2004-01-01

    Due to the relatively late age of clinical diagnosis of autism, the early brain pathology of children with autism has remained largely unstudied. The increased use of retrospective measures such as head circumference, along with a surge of MRI studies of toddlers with autism, have opened a whole new area of research and discovery. Recent studies…

  9. Minimal Brain Dysfunction in Childhood: 1. Outcome in Late Adolescence and Early Adult Years. Final Version.

    ERIC Educational Resources Information Center

    Milman, Doris H.

    Seventy-three patients, diagnosed in childhood as having either maturational lag or organic brain syndrome, were followed for an average of 12 years into late adolescence and early adult life for the purpose of discovering the outcome with respect to ultimate psychiatric status, educational attainment, social adjustment, and global adjustment. At…

  10. Grammaticality Sensitivity in Children with Early Focal Brain Injury and Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Wulfeck, Beverly; Bates, Elizabeth; Krupa-Kwiatkowski, Magda; Saltzman, Danna

    2004-01-01

    Grammaticality judgments and processing times associated with violation detection were examined in typically developing children, children with focal brain lesions (FL) acquired early in life, and children with specific language impairment (SLI). Grammatical sensitivity in the FL group, while below typically developing children, was above levels…

  11. Trajectories of Early Brain Volume Development in Fragile X Syndrome and Autism

    ERIC Educational Resources Information Center

    Hazlett, Heather Cody; Poe, Michele D.; Lightbody, Amy A.; Styner, Martin; MacFall, James R.; Reiss, Allan L.; Piven, Joseph

    2012-01-01

    Objective: To examine patterns of early brain growth in young children with fragile X syndrome (FXS) compared with a comparison group (controls) and a group with idiopathic autism. Method: The study included 53 boys 18 to 42 months of age with FXS, 68 boys with idiopathic autism (autism spectrum disorder), and a comparison group of 50 typically…

  12. Socioeconomic Status and Functional Brain Development--Associations in Early Infancy

    ERIC Educational Resources Information Center

    Tomalski, Przemyslaw; Moore, Derek G.; Ribeiro, Helena; Axelsson, Emma L.; Murphy, Elizabeth; Karmiloff-Smith, Annette; Johnson, Mark H.; Kushnerenko, Elena

    2013-01-01

    Socioeconomic status (SES) impacts on both structural and functional brain development in childhood, but how early its effects can be demonstrated is unknown. In this study we measured resting baseline EEG activity in the gamma frequency range in awake 6-9-month-olds from areas of East London with high socioeconomic deprivation. Between-subject…

  13. Functional Topography of Early Periventricular Brain Lesions in Relation to Cytoarchitectonic Probabilistic Maps

    ERIC Educational Resources Information Center

    Staudt, Martin; Ticini, Luca F.; Grodd, Wolfgang; Krageloh-Mann, Ingeborg; Karnath, Hans-Otto

    2008-01-01

    Early periventricular brain lesions can not only cause cerebral palsy, but can also induce a reorganization of language. Here, we asked whether these different functional consequences can be attributed to topographically distinct portions of the periventricular white matter damage. Eight patients with pre- and perinatally acquired left-sided…

  14. Enhanced microglial pro-inflammatory response to lipopolysaccharide correlates with brain infiltration and blood-brain barrier dysregulation in a mouse model of telomere shortening.

    PubMed

    Raj, Divya D A; Moser, Jill; van der Pol, Susanne M A; van Os, Ronald P; Holtman, Inge R; Brouwer, Nieske; Oeseburg, Hisko; Schaafsma, Wandert; Wesseling, Evelyn M; den Dunnen, Wilfred; Biber, Knut P H; de Vries, Helga E; Eggen, Bart J L; Boddeke, Hendrikus W G M

    2015-12-01

    Microglia are a proliferative population of resident brain macrophages that under physiological conditions self-renew independent of hematopoiesis. Microglia are innate immune cells actively surveying the brain and are the earliest responders to injury. During aging, microglia elicit an enhanced innate immune response also referred to as 'priming'. To date, it remains unknown whether telomere shortening affects the proliferative capacity and induces priming of microglia. We addressed this issue using early (first-generation G1 mTerc(-/-) )- and late-generation (third-generation G3 and G4 mTerc(-/-) ) telomerase-deficient mice, which carry a homozygous deletion for the telomerase RNA component gene (mTerc). Late-generation mTerc(-/-) microglia show telomere shortening and decreased proliferation efficiency. Under physiological conditions, gene expression and functionality of G3 mTerc(-/-) microglia are comparable with microglia derived from G1 mTerc(-/-) mice despite changes in morphology. However, after intraperitoneal injection of bacterial lipopolysaccharide (LPS), G3 mTerc(-/-) microglia mice show an enhanced pro-inflammatory response. Nevertheless, this enhanced inflammatory response was not accompanied by an increased expression of genes known to be associated with age-associated microglia priming. The increased inflammatory response in microglia correlates closely with increased peripheral inflammation, a loss of blood-brain barrier integrity, and infiltration of immune cells in the brain parenchyma in this mouse model of telomere shortening. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  15. Genetic and early environmental influences on the serotonin system: consequences for brain development and risk for psychopathology

    PubMed Central

    Booij, Linda; Tremblay, Richard E.; Szyf, Moshe; Benkelfat, Chawki

    2015-01-01

    Background Despite more than 60 years of research in the role of serotonin (5-HT) in psychopathology, many questions still remain. From a developmental perspective, studies have provided more insight into how 5-HT dysfunctions acquired in utero or early in life may modulate brain development. This paper discusses the relevance of the developmental role of 5-HT for the understanding of psychopathology. We review developmental milestones of the 5-HT system, how genetic and environmental 5-HT disturbances could affect brain development and the potential role of DNA methylation in 5-HT genes for brain development. Methods Studies were identified using common databases (e.g., PubMed, Google Scholar) and reference lists. Results Despite the widely supported view that the 5-HT system matures in early life, different 5-HT receptors, proteins and enzymes have different developmental patterns, and development is brain region–specific. A disruption in 5-HT homeostasis during development may lead to structural and functional changes in brain circuits that modulate emotional stress responses, including subcortical limbic and (pre)frontal areas. This may result in a predisposition to psychopathology. DNA methylation might be one of the underlying physiologic mechanisms. Limitations There is a need for prospective studies. The impact of stressors during adolescence on the 5-HT system is understudied. Questions regarding efficacy of drugs acting on 5-HT still remain. Conclusion A multidisciplinary and longitudinal approach in designing studies on the role of 5-HT in psychopathology might help to bring us closer to the understanding of the role of 5-HT in psychopathology. PMID:25285876

  16. Acute and delayed neuroinflammatory response following experimental penetrating ballistic brain injury in the rat

    PubMed Central

    Williams, Anthony J; Wei, Hans H; Dave, Jitendra R; Tortella, Frank C

    2007-01-01

    Background Neuroinflammation following acute brain trauma is considered to play a prominent role in both the pathological and reconstructive response of the brain to injury. Here we characterize and contrast both an acute and delayed phase of inflammation following experimental penetrating ballistic brain injury (PBBI) in rats out to 7 days post-injury. Methods Quantitative real time PCR (QRT-PCR) was used to evaluate changes in inflammatory gene expression from the brain tissue of rats exposed to a unilateral frontal PBBI. Brain histopathology was assessed using hematoxylin and eosin (H&E), silver staining, and immunoreactivity for astrocytes (GFAP), microglia (OX-18) and the inflammatory proteins IL-1β and ICAM-1. Results Time course analysis of gene expression levels using QRT-PCR indicated a peak increase during the acute phase of the injury between 3–6 h for the cytokines TNF-α (8–11 fold), IL-1β (11–13 fold), and IL-6 (40–74 fold) as well as the cellular adhesion molecules VCAM (2–3 fold), ICAM-1 (7–15 fold), and E-selectin (11–13 fold). Consistent with the upregulation of pro-inflammatory genes, peripheral blood cell infiltration was a prominent post-injury event with peak levels of infiltrating neutrophils (24 h) and macrophages (72 h) observed throughout the core lesion. In regions of the forebrain immediately surrounding the lesion, strong immunoreactivity for activated astrocytes (GFAP) was observed as early as 6 h post-injury followed by prominent microglial reactivity (OX-18) at 72 h and resolution of both cell types in cortical brain regions by day 7. Delayed thalamic inflammation (remote from the primary lesion) was also observed as indicated by both microglial and astrocyte reactivity (72 h to 7 days) concomitant with the presence of fiber degeneration (silver staining). Conclusion In summary, PBBI induces both an acute and delayed neuroinflammatory response occurring in distinct brain regions, which may provide useful diagnostic

  17. The effects of brain serotonin deficiency on behavioural disinhibition and anxiety-like behaviour following mild early life stress.

    PubMed

    Sachs, Benjamin D; Rodriguiz, Ramona M; Siesser, William B; Kenan, Alexander; Royer, Elizabeth L; Jacobsen, Jacob P R; Wetsel, William C; Caron, Marc G

    2013-10-01

    Aberrant serotonin (5-HT) signalling and exposure to early life stress have both been suggested to play a role in anxiety- and impulsivity-related behaviours. However, whether congenital 5-HT deficiency × early life stress interactions influence the development of anxiety- or impulsivity-like behaviour has not been established. Here, we examined the effects of early life maternal separation (MS) stress on anxiety-like behaviour and behavioural disinhibition, a type of impulsivity-like behaviour, in wild-type (WT) and tryptophan hydroxylase 2 (Tph2) knock-in (Tph2KI) mice, which exhibit ~60-80% reductions in the levels of brain 5-HT due to a R439H mutation in Tph2. We also investigated the effects of 5-HT deficiency and early life stress on adult hippocampal neurogenesis, plasma corticosterone levels and several signal transduction pathways in the amygdala. We demonstrate that MS slightly increases anxiety-like behaviour in WT mice and induces behavioural disinhibition in Tph2KI animals. We also demonstrate that MS leads to a slight decrease in cell proliferation within the hippocampus and potentiates corticosterone responses to acute stress, but these effects are not affected by brain 5-HT deficiency. However, we show that 5-HT deficiency leads to significant alterations in SGK-1 and GSK3β signalling and NMDA receptor expression in the amygdala in response to MS. Together, these findings support a potential role for 5-HT-dependent signalling in the amygdala in regulating the long-term effects of early life stress on anxiety-like behaviour and behavioural disinhibition.

  18. Nanotheranostics: Emerging Strategies for Early Diagnosis and Therapy of Brain Cancer

    PubMed Central

    Sonali; Viswanadh, Matte Kasi; Singh, Rahul Pratap; Agrawal, Poornima; Mehata, Abhishesh Kumar; Pawde, Datta Maroti; Narendra; Sonkar, Roshan; Muthu, Madaswamy Sona

    2018-01-01

    Nanotheranostics have demonstrated the development of advanced platforms that can diagnose brain cancer at early stages, initiate first-line therapy, monitor it, and if needed, rapidly start subsequent treatments. In brain nanotheranostics, therapeutic as well as diagnostic entities are loaded in a single nanoplatform, which can be further developed as a clinical formulation for targeting various modes of brain cancer. In the present review, we concerned about theranostic nanosystems established till now in the research field. These include gold nanoparticles, carbon nanotubes, magnetic nanoparticles, mesoporous silica nanoparticles, quantum dots, polymeric nanoparticles, upconversion nanoparticles, polymeric micelles, solid lipid nanoparticles and dendrimers for the advanced detection and treatment of brain cancer with advanced features. Also, we included the role of three-dimensional models of the BBB and cancer stem cell concept for the advanced characterization of nanotheranostic systems for the unification of diagnosis and treatment of brain cancer. In future, brain nanotheranostics will be able to provide personalized treatment which can make brain cancer even remediable or at least treatable at the primary stages. PMID:29291164

  19. Gut dysbiosis and neuroimmune responses to brain infection with Theiler’s murine encephalomyelitis virus

    PubMed Central

    Carrillo-Salinas, F. J.; Mestre, L.; Mecha, M.; Feliú, A.; del Campo, R.; Villarrubia, N.; Espejo, C.; Montalbán, X.; Álvarez-Cermeño, J. C.; Villar, L. M.; Guaza, C.

    2017-01-01

    Recent studies have begun to point out the contribution of microbiota to multiple sclerosis (MS) pathogenesis. Theiler’s murine encephalomyelitis virus induced demyelinating disease (TMEV-IDD) is a model of progressive MS. Here, we first analyze the effect of intracerebral infection with TMEV on commensal microbiota and secondly, whether the early microbiota depletion influences the immune responses to TMEV on the acute phase (14 dpi) and its impact on the chronic phase (85 dpi). The intracranial inoculation of TMEV was associated with a moderate dysbiosis. The oral administration of antibiotics (ABX) of broad spectrum modified neuroimmune responses to TMEV dampening brain CD4+ and CD8+ T infiltration during the acute phase. The expression of cytokines, chemokines and VP2 capsid protein was enhanced and accompanied by clusters of activated microglia disseminated throughout the brain. Furthermore, ABX treated mice displayed lower levels of CD4+ and CD8+T cells in cervical and mesenteric lymph nodes. Increased mortality to TMEV was observed after ABX cessation at day 28pi. On the chronic phase, mice that survived after ABX withdrawal and recovered microbiota diversity showed subtle changes in brain cell infiltrates, microglia and gene expression of cytokines. Accordingly, the surviving mice of the group ABX-TMEV displayed similar disease severity than TMEV mice. PMID:28290524

  20. Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder.

    PubMed

    Dawson, Geraldine

    2008-01-01

    Advances in the fields of cognitive and affective developmental neuroscience, developmental psychopathology, neurobiology, genetics, and applied behavior analysis have contributed to a more optimistic outcome for individuals with autism spectrum disorder (ASD). These advances have led to new methods for early detection and more effective treatments. For the first time, prevention of ASD is plausible. Prevention will entail detecting infants at risk before the full syndrome is present and implementing treatments designed to alter the course of early behavioral and brain development. This article describes a developmental model of risk, risk processes, symptom emergence, and adaptation in ASD that offers a framework for understanding early brain plasticity in ASD and its role in prevention of the disorder.

  1. Adaptive neuroplastic responses in early and late hemispherectomized monkeys.

    PubMed

    Burke, Mark W; Kupers, Ron; Ptito, Maurice

    2012-01-01

    Behavioural recovery in children who undergo medically required hemispherectomy showcase the remarkable ability of the cerebral cortex to adapt and reorganize following insult early in life. Case study data suggest that lesions sustained early in childhood lead to better recovery compared to those that occur later in life. In these children, it is possible that neural reorganization had begun prior to surgery but was masked by the dysfunctional hemisphere. The degree of neural reorganization has been difficult to study systematically in human infants. Here we present a 20-year culmination of data on our nonhuman primate model (Chlorocebus sabeus) of early-life hemispherectomy in which behavioral recovery is interpreted in light of plastic processes that lead to the anatomical reorganization of the early-damaged brain. The model presented here suggests that significant functional recovery occurs after the removal of one hemisphere in monkeys with no preexisting neurological dysfunctions. Human and primate studies suggest a critical role for subcortical and brainstem structures as well as corticospinal tracts in the neuroanatomical reorganization which result in the remarkable behavioral recovery following hemispherectomy. The non-human primate model presented here offers a unique opportunity for studying the behavioral and functional neuroanatomical reorganization that underlies developmental plasticity.

  2. Real-time photoacoustic imaging of rat deep brain: hemodynamic responses to hypoxia

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Iwazaki, Hideaki; Ida, Taiichiro; Hosaka, Tomoya; Kawaguchi, Yasushi; Nawashiro, Hiroshi; Sato, Shunichi

    2013-03-01

    Hemodynamic responses of the brain to hypoxia or ischemia are one of the major interests in neurosurgery and neuroscience. In this study, we performed real-time transcutaneous PA imaging of the rat brain that was exposed to a hypoxic stress and investigated depth-resolved responses of the brain, including the hippocampus. A linear-array 8ch 10-MHz ultrasonic sensor (measurement length, 10 mm) was placed on the shaved scalp. Nanosecond, 570-nm and 595- nm light pulses were used to excite PA signals indicating cerebral blood volume (CBV) and blood deoxygenation, respectively. Under spontaneous respiration, inhalation gas was switched from air to nitrogen, and then reswitched to oxygen, during which real-time PA imaging was performed continuously. High-contrast PA signals were observed from the depth regions corresponding to the scalp, skull, cortex and hippocampus. After starting hypoxia, PA signals at 595 nm increased immediately in both the cortex and hippocampus for about 1.5 min, showing hemoglobin deoxygenation. On the other hand, PA signals at 570 nm coming from these regions did not increase in the early phase but started to increase at about 1.5 min after starting hypoxia, indicating reactive hyperemia to hypoxia. During hypoxia, PA signals coming from the scalp decreased transiently, which is presumably due to compensatory response in the peripheral tissue to preserve blood perfusion in the brain. The reoxygenation caused a gradual recovery of these PA signals. These findings demonstrate the usefulness of PA imaging for real-time, depth-resolved observation of cerebral hemodynamics.

  3. Early response to psychological trauma--what GPs can do.

    PubMed

    Wade, Darryl; Howard, Alexandra; Fletcher, Susan; Cooper, John; Forbes, David

    2013-09-01

    There is a high prevalence of psychological trauma exposure among primary care patients. General practitioners are well placed to provide appropriate support for patients coping with trauma. This article outlines an evidence-based early response to psychological trauma. Psychological first aid is the preferred approach in providing early assistance to patients who have experienced a traumatic event. General practitioners can be guided by five empirically derived principles in their early response: promoting a sense of safety, calming, self efficacy, connectedness and hope. Structured psychological interventions, including psychological debriefing, are not routinely recommended in the first few weeks following trauma exposure. General practitioner self care is an important aspect of providing post-trauma patient care.

  4. Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs.

    PubMed

    Zhang, Hai-Tao; Zhang, Ping; Gao, Yi; Li, Chen-Long; Wang, Hong-Jun; Chen, Ling-Chao; Feng, Yan; Li, Rui-Yan; Li, Yong-Li; Jiang, Chuan-Lu

    2017-01-01

    Vascular endothelial growth factor (VEGF) inhibition has been demonstrated to be an effective strategy in preserving the integrity of the blood-brain barrier (BBB) in patients with acute ischemic stroke. Loss of the BBB is the key event associated with morbidity and mortality in these patients. However, the underlying mechanisms remain poorly understood. In the present study, the effects of VEGF inhibition and the possible mechanism that underlies acute cerebral ischemia in rats was investigated. Following the induction of transient middle cerebral artery occlusion for a 90‑min period, either an anti‑VEGF neutralizing antibody (RB‑222; 5 or 10 µg), or IgG (control), was administered by intracerebroventricular injection at 1 h following reperfusion. Functional outcomes, BBB leakage, brain edema, microvessel numbers and the relative protein levels of VEGF, matrix metalloproteinase (MMP)-2, MMP-9, occludin and collagen-IV were then determined using neurological assessments, Evans Blue staining, brain water content, CD31 staining and western blotting. Treatment with RB‑222 at a dose of 5 and 10 µg significantly improved neurological functional outcomes and diminished infarct size, BBB leakage and brain edema compared with the MCAO and IgG groups at 24 h following reperfusion; 10 µg RB‑222 was more effective than a 5 µg dose of the antibody. In addition, RB‑222 reduced the number of immature microvessels, which subsequently attenuated BBB permeability. RB‑222 significantly repressed VEGF expression as well as decreased MMP‑2 and MMP‑9 expression. However, it enhanced occludin and collagen‑IV levels in the ischemic rat brain compared with the MCAO and IgG groups. Taken together, the results indicate that early inhibition of VEGF may have significant potential against cerebral ischemia, partly by regulating the expression of MMPs.

  5. Effects of unexpected chords and of performer's expression on brain responses and electrodermal activity.

    PubMed

    Koelsch, Stefan; Kilches, Simone; Steinbeis, Nikolaus; Schelinski, Stefanie

    2008-07-09

    There is lack of neuroscientific studies investigating music processing with naturalistic stimuli, and brain responses to real music are, thus, largely unknown. This study investigates event-related brain potentials (ERPs), skin conductance responses (SCRs) and heart rate (HR) elicited by unexpected chords of piano sonatas as they were originally arranged by composers, and as they were played by professional pianists. From the musical excerpts played by the pianists (with emotional expression), we also created versions without variations in tempo and loudness (without musical expression) to investigate effects of musical expression on ERPs and SCRs. Compared to expected chords, unexpected chords elicited an early right anterior negativity (ERAN, reflecting music-syntactic processing) and an N5 (reflecting processing of meaning information) in the ERPs, as well as clear changes in the SCRs (reflecting that unexpected chords also elicited emotional responses). The ERAN was not influenced by emotional expression, whereas N5 potentials elicited by chords in general (regardless of their chord function) differed between the expressive and the non-expressive condition. These results show that the neural mechanisms of music-syntactic processing operate independently of the emotional qualities of a stimulus, justifying the use of stimuli without emotional expression to investigate the cognitive processing of musical structure. Moreover, the data indicate that musical expression affects the neural mechanisms underlying the processing of musical meaning. Our data are the first to reveal influences of musical performance on ERPs and SCRs, and to show physiological responses to unexpected chords in naturalistic music.

  6. Attentional shifts between surfaces: effects on detection and early brain potentials.

    PubMed

    Pinilla, T; Cobo, A; Torres, K; Valdes-Sosa, M

    2001-06-01

    Two consecutive events transforming the same illusory surface in transparent motion (brief changes in direction) can be discriminated with ease, but a prolonged interference ( approximately 500 ms) on the discrimination of the second event arises when different surfaces are concerned [Valdes-Sosa, M., Cobo, A., & Pinilla, T. (2000). Attention to object files defined by transparent motion. Journal of Experimental Psychology: Human Perception and Performance, 26(2), 488-505]. Here we further characterise this phenomenon and compare it to the attentional blink AB [Shapiro, K.L., Raymond, J.E., & Arnell, K.M. (1994). Attention to visual pattern information produces the attentional blink in RSVP. Journal of Experimental Psychology: Human Perception and Performance, 20, 357-371]. Similar to the AB, reduced sensitivity (d') was found in the two-surface condition. However, the two-surface cost was associated with a reduced N1 brain response in contrast to reports for AB [Vogel, E.K., Luck, S.J., & Shapiro, K. (1998). Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 24(6), 1656-1674]. The results from this study indicate that the two-surface cost corresponds to competitive effects in early vision. Reasons for the discrepancy with the AB study are considered.

  7. Early Twentieth Century Responses to the Drug Problem.

    ERIC Educational Resources Information Center

    Pfennig, Dennis Joseph

    1991-01-01

    Describes early twentieth-century responses to the drug problem in the United States. Discusses pressure from the media and reformers to control the availability of drugs such as opium and cocaine that were widely available in over-the-counter medications. Focuses on New York State, which took the lead in enacting drug control legislation. (DK)

  8. A Comparison of Responsive Interventions on Kindergarteners' Early Reading Achievement

    ERIC Educational Resources Information Center

    Little, Mary E.; Rawlinson, D'Ann; Simmons, Deborah C.; Kim, Minjung; Kwok, Oi-man; Hagan-Burke, Shanna; Simmons, Leslie E.; Fogarty, Melissa; Oslund, Eric; Coyne, Michael D.

    2012-01-01

    This study compared the effects of Tier 2 reading interventions that operated in response-to-intervention contexts. Kindergarten children (N = 90) who were identified as at risk for reading difficulties were stratified by school and randomly assigned to receive (a) Early Reading Intervention (ERI; Pearson/Scott Foresman, 2004) modified in response…

  9. A Framework for Providing Culturally Responsive Early Intervention Services

    ERIC Educational Resources Information Center

    Bradshaw, Wendy

    2013-01-01

    The purpose of this article is to provide a framework that offers a way for early intervention (EI) service providers to better meet the needs of the culturally diverse children and families they serve. This framework was created to organize existing research and literature on cultural responsiveness in a way that fit the unique context of EI. The…

  10. The Reasons behind Early Adolescents' Responses to Peer Victimization

    ERIC Educational Resources Information Center

    Bellmore, Amy; Chen, Wei-Ting; Rischall, Emily

    2013-01-01

    Victims of school-based peer harassment face a range of risks including psycho-social, physical, and academic harm. The aim of the present study was to examine the behavioral coping responses used by early adolescents when they face peer victimization. To meet this aim, 216 sixth grade students (55% girls) from two urban middle schools and 254…

  11. Permanent hypopituitarism is rare after structural traumatic brain injury in early childhood.

    PubMed

    Heather, Natasha L; Jefferies, Craig; Hofman, Paul L; Derraik, José G B; Brennan, Christine; Kelly, Patrick; Hamill, James K M; Jones, Rhys G; Rowe, Deborah L; Cutfield, Wayne S

    2012-02-01

    We sought to determine the incidence of permanent hypopituitarism in a potentially high-risk group: young children after structural traumatic brain injury (TBI). We conducted a cross-sectional study with longitudinal follow-up. Dynamic tests of pituitary function (GH and ACTH) were performed in all subjects and potential abnormalities critically evaluated. Puberty was clinically staged; baseline thyroid function, prolactin, IGF-I, serum sodium, and osmolality were compared with age-matched data. Diagnosis of GH deficiency was based on an integrated assessment of stimulated GH peak (<5 μg/liter suggestive of deficiency), IGF-I, and growth pattern. ACTH deficiency was diagnosed based on a subnormal response to two serial Synacthen tests (peak cortisol <500 nmol/liter) and a metyrapone test. We studied 198 survivors of structural TBI sustained in early childhood (112 male, age at injury 1.7 ± 1.5 yr) 6.5 ± 3.2 yr after injury. Sixty-four of the injuries (33%) were inflicted and 134 (68%) accidental. Two participants had developed precocious puberty, which is within the expected background population rate. Peak stimulated GH was subnormal in 16 participants (8%), in the context of normal IGF-I and normal growth. Stimulated peak cortisol was low in 17 (8%), but all had normal ACTH function on follow-up. One participant had a transient low serum T(4). Therefore, no cases of hypopituitarism were recorded. Permanent hypopituitarism is rare after both inflicted and accidental structural TBI in early childhood. Precocious puberty was the only pituitary hormone abnormality found, but the prevalence did not exceed that of the normal population.

  12. The shopping brain: math anxiety modulates brain responses to buying decisions.

    PubMed

    Jones, William J; Childers, Terry L; Jiang, Yang

    2012-01-01

    Metacognitive theories propose that consumers track fluency feelings when buying, which may have biological underpinnings. We explored this using event-related potential (ERP) measures as twenty high-math anxiety (High MA) and nineteen low-math anxiety (Low MA) consumers made buying decisions for promoted (e.g., 15% discount) and non-promoted products. When evaluating prices, ERP correlates of higher perceptual and conceptual fluency were associated with buys, however only for High MA females under no promotions. In contrast, High MA females and Low MA males demonstrated greater FN400 amplitude, associated with enhanced conceptual processing, to prices of buys relative to non-buys under promotions. Concurrent late positive component (LPC) differences under no promotions suggest discrepant retrieval processes during price evaluations between consumer groups. When making decisions to buy or not, larger (smaller) P3, sensitive to outcome responses in the brain, was associated with buying for High MA females (Low MA females) under promotions, an effect also present for males under no promotions. Thus, P3 indexed decisions to buy differently between anxiety groups, but only for promoted items among females and for no promotions among males. Our findings indicate that perceptual and conceptual processes interact with anxiety and gender to modulate brain responses during consumer choices. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. External Validity of a Risk Stratification Score Predicting Early Distant Brain Failure and Salvage Whole Brain Radiation Therapy After Stereotactic Radiosurgery for Brain Metastases.

    PubMed

    Press, Robert H; Boselli, Danielle M; Symanowski, James T; Lankford, Scott P; McCammon, Robert J; Moeller, Benjamin J; Heinzerling, John H; Fasola, Carolina E; Burri, Stuart H; Patel, Kirtesh R; Asher, Anthony L; Sumrall, Ashley L; Curran, Walter J; Shu, Hui-Kuo G; Crocker, Ian R; Prabhu, Roshan S

    2017-07-01

    A scoring system using pretreatment factors was recently published for predicting the risk of early (≤6 months) distant brain failure (DBF) and salvage whole brain radiation therapy (WBRT) after stereotactic radiosurgery (SRS) alone. Four risk factors were identified: (1) lack of prior WBRT; (2) melanoma or breast histologic features; (3) multiple brain metastases; and (4) total volume of brain metastases <1.3 cm 3 , with each factor assigned 1 point. The purpose of this study was to assess the validity of this scoring system and its appropriateness for clinical use in an independent external patient population. We reviewed the records of 247 patients with 388 brain metastases treated with SRS between 2010 at 2013 at Levine Cancer Institute. The Press (Emory) risk score was calculated and applied to the validation cohort population, and subsequent risk groups were analyzed using cumulative incidence. The low-risk (LR) group had a significantly lower risk of early DBF than did the high-risk (HR) group (22.6% vs 44%, P=.004), but there was no difference between the HR and intermediate-risk (IR) groups (41.2% vs 44%, P=.79). Total lesion volume <1.3 cm 3  (P=.004), malignant melanoma (P=.007), and multiple metastases (P<.001) were validated as predictors for early DBF. Prior WBRT and breast cancer histologic features did not retain prognostic significance. Risk stratification for risk of early salvage WBRT were similar, with a trend toward an increased risk for HR compared with LR (P=.09) but no difference between IR and HR (P=.53). The 3-level Emory risk score was shown to not be externally valid, but the model was able to stratify between 2 levels (LR and not-LR [combined IR and HR]) for early (≤6 months) DBF. These results reinforce the importance of validating predictive models in independent cohorts. Further refinement of this scoring system with molecular information and in additional contemporary patient populations is warranted. Copyright © 2017

  14. Regional brain responses in nulliparous women to emotional infant stimuli.

    PubMed

    Montoya, Jessica L; Landi, Nicole; Kober, Hedy; Worhunsky, Patrick D; Rutherford, Helena J V; Mencl, W Einar; Mayes, Linda C; Potenza, Marc N

    2012-01-01

    Infant cries and facial expressions influence social interactions and elicit caretaking behaviors from adults. Recent neuroimaging studies suggest that neural responses to infant stimuli involve brain regions that process rewards. However, these studies have yet to investigate individual differences in tendencies to engage or withdraw from motivationally relevant stimuli. To investigate this, we used event-related fMRI to scan 17 nulliparous women. Participants were presented with novel infant cries of two distress levels (low and high) and unknown infant faces of varying affect (happy, sad, and neutral) in a randomized, counter-balanced order. Brain activation was subsequently correlated with scores on the Behavioral Inhibition System/Behavioral Activation System scale. Infant cries activated bilateral superior and middle temporal gyri (STG and MTG) and precentral and postcentral gyri. Activation was greater in bilateral temporal cortices for low- relative to high-distress cries. Happy relative to neutral faces activated the ventral striatum, caudate, ventromedial prefrontal, and orbitofrontal cortices. Sad versus neutral faces activated the precuneus, cuneus, and posterior cingulate cortex, and behavioral activation drive correlated with occipital cortical activations in this contrast. Behavioral inhibition correlated with activation in the right STG for high- and low-distress cries relative to pink noise. Behavioral drive correlated inversely with putamen, caudate, and thalamic activations for the comparison of high-distress cries to pink noise. Reward-responsiveness correlated with activation in the left precentral gyrus during the perception of low-distress cries relative to pink noise. Our findings indicate that infant cry stimuli elicit activations in areas implicated in auditory processing and social cognition. Happy infant faces may be encoded as rewarding, whereas sad faces activate regions associated with empathic processing. Differences in motivational

  15. A review on neuroimaging studies of genetic and environmental influences on early brain development.

    PubMed

    Gao, Wei; Grewen, Karen; Knickmeyer, Rebecca C; Qiu, Anqi; Salzwedel, Andrew; Lin, Weili; Gilmore, John H

    2018-04-16

    The past decades witnessed a surge of interest in neuroimaging study of normal and abnormal early brain development. Structural and functional studies of normal early brain development revealed massive structural maturation as well as sequential, coordinated, and hierarchical emergence of functional networks during the infancy period, providing a great foundation for the investigation of abnormal early brain development mechanisms. Indeed, studies of altered brain development associated with either genetic or environmental risks emerged and thrived. In this paper, we will review selected studies of genetic and environmental risks that have been relatively more extensively investigated-familial risks, candidate risk genes, and genome-wide association studies (GWAS) on the genetic side; maternal mood disorders and prenatal drug exposures on the environmental side. Emerging studies on environment-gene interactions will also be reviewed. Our goal was not to perform an exhaustive review of all studies in the field but to leverage some representative ones to summarize the current state, point out potential limitations, and elicit discussions on important future directions. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Statistical distribution of blood serotonin as a predictor of early autistic brain abnormalities

    PubMed Central

    Janušonis, Skirmantas

    2005-01-01

    Background A wide range of abnormalities has been reported in autistic brains, but these abnormalities may be the result of an earlier underlying developmental alteration that may no longer be evident by the time autism is diagnosed. The most consistent biological finding in autistic individuals has been their statistically elevated levels of 5-hydroxytryptamine (5-HT, serotonin) in blood platelets (platelet hyperserotonemia). The early developmental alteration of the autistic brain and the autistic platelet hyperserotonemia may be caused by the same biological factor expressed in the brain and outside the brain, respectively. Unlike the brain, blood platelets are short-lived and continue to be produced throughout the life span, suggesting that this factor may continue to operate outside the brain years after the brain is formed. The statistical distributions of the platelet 5-HT levels in normal and autistic groups have characteristic features and may contain information about the nature of this yet unidentified factor. Results The identity of this factor was studied by using a novel, quantitative approach that was applied to published distributions of the platelet 5-HT levels in normal and autistic groups. It was shown that the published data are consistent with the hypothesis that a factor that interferes with brain development in autism may also regulate the release of 5-HT from gut enterochromaffin cells. Numerical analysis revealed that this factor may be non-functional in autistic individuals. Conclusion At least some biological factors, the abnormal function of which leads to the development of the autistic brain, may regulate the release of 5-HT from the gut years after birth. If the present model is correct, it will allow future efforts to be focused on a limited number of gene candidates, some of which have not been suspected to be involved in autism (such as the 5-HT4 receptor gene) based on currently available clinical and experimental studies. PMID

  17. Statistical distribution of blood serotonin as a predictor of early autistic brain abnormalities.

    PubMed

    Janusonis, Skirmantas

    2005-07-19

    A wide range of abnormalities has been reported in autistic brains, but these abnormalities may be the result of an earlier underlying developmental alteration that may no longer be evident by the time autism is diagnosed. The most consistent biological finding in autistic individuals has been their statistically elevated levels of 5-hydroxytryptamine (5-HT, serotonin) in blood platelets (platelet hyperserotonemia). The early developmental alteration of the autistic brain and the autistic platelet hyperserotonemia may be caused by the same biological factor expressed in the brain and outside the brain, respectively. Unlike the brain, blood platelets are short-lived and continue to be produced throughout the life span, suggesting that this factor may continue to operate outside the brain years after the brain is formed. The statistical distributions of the platelet 5-HT levels in normal and autistic groups have characteristic features and may contain information about the nature of this yet unidentified factor. The identity of this factor was studied by using a novel, quantitative approach that was applied to published distributions of the platelet 5-HT levels in normal and autistic groups. It was shown that the published data are consistent with the hypothesis that a factor that interferes with brain development in autism may also regulate the release of 5-HT from gut enterochromaffin cells. Numerical analysis revealed that this factor may be non-functional in autistic individuals. At least some biological factors, the abnormal function of which leads to the development of the autistic brain, may regulate the release of 5-HT from the gut years after birth. If the present model is correct, it will allow future efforts to be focused on a limited number of gene candidates, some of which have not been suspected to be involved in autism (such as the 5-HT4 receptor gene) based on currently available clinical and experimental studies.

  18. Delineation of early brain development from fetuses to infants with diffusion MRI and beyond.

    PubMed

    Ouyang, Minhui; Dubois, Jessica; Yu, Qinlin; Mukherjee, Pratik; Huang, Hao

    2018-04-12

    Dynamic macrostructural and microstructural changes take place from the mid-fetal stage to 2 years after birth. Delineating structural changes of the brain during early development provides new insights into the complicated processes of both typical development and the pathological mechanisms underlying various psychiatric and neurological disorders including autism, attention deficit hyperactivity disorder and schizophrenia. Decades of histological studies have identified strong spatial and functional maturation gradients in human brain gray and white matter. The recent improvements in magnetic resonance imaging (MRI) techniques, especially diffusion MRI (dMRI), relaxometry imaging, and magnetization transfer imaging (MTI) have provided unprecedented opportunities to non-invasively quantify and map the early developmental changes at whole brain and regional levels. Here, we review the recent advances in understanding early brain structural development during the second half of gestation and the first two postnatal years using modern MR techniques. Specifically, we review studies that delineate the emergence and microstructural maturation of white matter tracts, as well as dynamic mapping of inhomogeneous cortical microstructural organization unique to fetuses and infants. These imaging studies converge into maturational curves of MRI measurements that are distinctive across different white matter tracts and cortical regions. Furthermore, contemporary models offering biophysical interpretations of the dMRI-derived measurements are illustrated to infer the underlying microstructural changes. Collectively, this review summarizes findings that contribute to charting spatiotemporally heterogeneous gray and white matter structural development, offering MRI-based biomarkers of typical brain development and setting the stage for understanding aberrant brain development in neurodevelopmental disorders. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Gesturing with an injured brain: How gesture helps children with early brain injury learn linguistic constructions

    PubMed Central

    Özçalışkan, Şeyda; Levine, Susan C.; Goldin-Meadow, Susan

    2013-01-01

    Children with pre/perinatal unilateral brain lesions (PL) show remarkable plasticity for language development. Is this plasticity characterized by the same developmental trajectory that characterizes typically developing (TD) children, with gesture leading the way into speech? We explored this question, comparing 11 children with PL—matched to 30 TD children on expressive vocabulary—in the second year of life. Children with PL showed similarities to TD children for simple but not complex sentence types. Children with PL produced simple sentences across gesture and speech several months before producing them entirely in speech, exhibiting parallel delays in both gesture+speech and speech-alone. However, unlike TD children, children with PL produced complex sentence types first in speech-alone. Overall, the gesture-speech system appears to be a robust feature of language-learning for simple—but not complex—sentence constructions, acting as a harbinger of change in language development even when that language is developing in an injured brain. PMID:23217292

  20. Effect of Early Adversity and Childhood Internalizing Symptoms on Brain Structure in Young Men.

    PubMed

    Jensen, Sarah K G; Dickie, Erin W; Schwartz, Deborah H; Evans, C John; Dumontheil, Iroise; Paus, Tomáš; Barker, Edward D

    2015-10-01

    Early adversity is an important risk factor that relates to internalizing symptoms and altered brain structure. To assess the direct effects of early adversity and child internalizing symptoms (ie, depression, anxiety) on cortical gray matter (GM) volume, as well as the extent to which early adversity associates with variation in cortical GM volume indirectly via increased levels of internalizing symptoms. A prospective investigation of associations between adversity within the first 6 years of life, internalizing symptoms during childhood and early adolescence, and altered brain structure in late adolescence (age, 18-21 years) was conducted in a community-based birth cohort in England (Avon Longitudinal Study of Parents and Children). Participants from the cohort included 494 mother-son pairs monitored since the mothers were pregnant (estimated date of delivery between April 1, 1991, and December 31, 1992). Data collection for the present study was conducted between April 1, 1991, and November 30, 2010; the neuroimaging data were collected between September 1, 2010, and November 30, 2012, and data analyses for the present study occurred between January 25, 2013, and February 15, 2015. Risk factors were adversity within the first 6 years of the child's life (including prenatal exposure) and the child's internalizing symptoms between age 7 and 13 years. Early childhood adversity. The main outcome was GM volume of cortical regions previously associated with major depression measured through T1-weighted magnetic resonance images collected in late adolescence. Among 494 young men included in this analysis, early adversity was directly associated with lower GM volumes in the anterior cingulate cortex (β = -.18; P = .01) and higher GM volume in the precuneus (β = .18; P = .009). Childhood internalizing symptoms were associated with lower GM volume in the right superior frontal gyrus (β = -.20; P = .002). Early adversity was also associated with higher

  1. Effects of oxycodone on brain responses to emotional images.

    PubMed

    Wardle, Margaret C; Fitzgerald, Daniel A; Angstadt, Michael; Rabinak, Christine A; de Wit, Harriet; Phan, K Luan

    2014-11-01

    Evidence from animal and human studies suggests that opiate drugs decrease emotional responses to negative stimuli and increase responses to positive stimuli. Such emotional effects may motivate misuse of oxycodone (OXY), a widely abused opiate. Yet, we know little about how OXY affects neural circuits underlying emotional processing in humans. We examined effects of OXY on brain activity during presentation of positive and negative visual emotional stimuli. We predicted that OXY would decrease amygdala activity to negative stimuli and increase ventral striatum (VS) activity to positive stimuli. Secondarily, we examined the effects of OXY on other emotional network regions on an exploratory basis. In a three-session study, healthy adults (N = 17) received placebo, 10 and 20 mg OXY under counterbalanced, double-blind conditions. At each session, participants completed subjective and cardiovascular measures and underwent functional MRI (fMRI) scanning while completing two emotional response tasks. Our emotional tasks reliably activated emotional network areas. OXY produced subjective effects but did not alter either behavioral responses to emotional stimuli or activity in our primary areas of interest. OXY did decrease right medial orbitofrontal cortex (MOFC) responses to happy faces. Contrary to our expectations, OXY did not affect behavioral or neural responses to emotional stimuli in our primary areas of interest. Further, the effects of OXY in the MOFC would be more consistent with a decrease in value for happy faces. This may indicate that healthy adults do not receive emotional benefits from opiates, or the pharmacological actions of OXY differ from other opiates.

  2. Differential chemokine responses in the murine brain following lyssavirus infection.

    PubMed

    Hicks, D J; Núñez, A; Banyard, A C; Williams, A; Ortiz-Pelaez, A; Fooks, A R; Johnson, N

    2013-11-01

    The hallmark of lyssavirus infection is lethal encephalomyelitis. Previous studies have reported distinct lyssavirus isolate-related differences in severity of cellular recruitment into the encephalon in a murine model of infection following peripheral inoculation with rabies virus (RABV) and European bat lyssavirus (EBLV)-1 and -2. In order to understand the role of chemokines in this process, comparative studies of the chemokine pattern, distribution and production in response to infection with these lyssaviruses were undertaken. Expression of CCL2, CCL5 and CXCL10 was observed throughout the murine brain with a distinct caudal bias in distribution, similar to both inflammatory changes and virus antigen distribution. CCL2 immunolabelling was localized to neuronal and astroglial populations. CCL5 immunolabelling was only detected in the astroglia, while CXCL10 labelling, although present in the astroglia, was more prominent in neurons. Isolate-dependent differences in the amount of chemokine immunolabelling in specific brain regions and chemokine production by neurons in vitro were observed, with a greater expression of CCL5 in vivo and CXCL10 production in vitro after EBLV infection. Additionally, strong positive associations between chemokine immunolabelling and perivascular cuffing and, to a lesser extent, virus antigen score were also observed. These differences in chemokine expression may explain the variation in severity of encephalitic changes observed in animals infected with different lyssavirus isolates. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  3. Brain Transcriptomic Response to Social Eavesdropping in Zebrafish (Danio rerio)

    PubMed Central

    Oliveira, Rui F.

    2015-01-01

    Public information is widely available at low cost to animals living in social groups. For instance, bystanders may eavesdrop on signaling interactions between conspecifics and use it to adapt their subsequent behavior towards the observed individuals. This social eavesdropping ability is expected to require specialized mechanisms such as social attention, which selects social information available for learning. To begin exploring the genetic basis of social eavesdropping, we used a previously established attention paradigm in the lab to study the brain gene expression profile of male zebrafish (Danio rerio) in relation to the attention they paid towards conspecifics involved or not involved in agonistic interactions. Microarray gene chips were used to characterize their brain transcriptomes based on differential expression of single genes and gene sets. These analyses were complemented by promoter region-based techniques. Using data from both approaches, we further drafted protein interaction networks. Our results suggest that attentiveness towards conspecifics, whether interacting or not, activates pathways linked to neuronal plasticity and memory formation. The network analyses suggested that fos and jun are key players on this response, and that npas4a, nr4a1 and egr4 may also play an important role. Furthermore, specifically observing fighting interactions further triggered pathways associated to a change in the alertness status (dnajb5) and to other genes related to memory formation (btg2, npas4b), which suggests that the acquisition of eavesdropped information about social relationships activates specific processes on top of those already activated just by observing conspecifics. PMID:26713440

  4. Inter-subject synchronization of brain responses during natural music listening

    PubMed Central

    Abrams, Daniel A.; Ryali, Srikanth; Chen, Tianwen; Chordia, Parag; Khouzam, Amirah; Levitin, Daniel J.; Menon, Vinod

    2015-01-01

    Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic ‘real-world’ music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non-musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right-lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo-musical control conditions. Remarkably, inter-subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro-temporal features of the stimulus. Increased synchronization during music listening was also evident in a right-hemisphere fronto-parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences. PMID:23578016

  5. Inter-subject synchronization of brain responses during natural music listening.

    PubMed

    Abrams, Daniel A; Ryali, Srikanth; Chen, Tianwen; Chordia, Parag; Khouzam, Amirah; Levitin, Daniel J; Menon, Vinod

    2013-05-01

    Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic 'real-world' music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non-musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right-lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo-musical control conditions. Remarkably, inter-subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro-temporal features of the stimulus. Increased synchronization during music listening was also evident in a right-hemisphere fronto-parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Early primary biliary cholangitis is characterised by brain abnormalities on cerebral magnetic resonance imaging.

    PubMed

    Grover, V P B; Southern, L; Dyson, J K; Kim, J U; Crossey, M M E; Wylezinska-Arridge, M; Patel, N; Fitzpatrick, J A; Bak-Bol, A; Waldman, A D; Alexander, G J; Mells, G F; Chapman, R W; Jones, D E J; Taylor-Robinson, S D

    2016-11-01

    Brain change can occur in primary biliary cholangitis (PBC), potentially as a result of cholestatic and/or inflammatory processes. This change is linked to systemic symptoms of fatigue and cognitive impairment. To identify whether brain change occurs early in PBC. If the change develops early and is progressive, it may explain the difficulty in treating these symptoms. Early disease brain change was explored in 13 patients with newly diagnosed biopsy-proven precirrhotic PBC using magnetisation transfer, diffusion-weighted imaging and 1 H magnetic resonance spectroscopy. Results were compared to 17 healthy volunteers. Cerebral magnetisation transfer ratios were reduced in early PBC, compared to healthy volunteers, in the thalamus, putamen and head of caudate with no greater reduction in patients with greater symptom severity. Mean apparent diffusion coefficients were increased in the thalamus only. No 1 H magnetic resonance spectroscopy abnormalities were seen. Serum manganese levels were elevated in all PBC patients, but no relationship was seen with imaging or symptom parameters. There were no correlations between neuroimaging data, laboratory data, symptom severity scores or age. This is the first study to be performed in this precirrhotic patient population, and we have highlighted that neuroimaging changes are present at a much earlier stage than previously demonstrated. The neuroimaging abnormalities suggest that the brain changes seen in PBC occur early in the pathological process, even before significant liver damage has occurred. If such changes are linked to symptom pathogenesis, this could have important implications for the timing of second-line-therapy use. © 2016 The Authors. Alimentary Pharmacology & Therapeutics published by John Wiley & Sons Ltd.

  7. MRI patterns in prolonged low response states following traumatic brain injury in children and adolescents.

    PubMed

    Patrick, Peter D; Mabry, Jennifer L; Gurka, Matthew J; Buck, Marcia L; Boatwright, Evelyn; Blackman, James A

    2007-01-01

    To explore the relationship between location and pattern of brain injury identified on MRI and prolonged low response state in children post-traumatic brain injury (TBI). This observational study compared 15 children who spontaneously recovered within 30 days post-TBI to 17 who remained in a prolonged low response state. 92.9% of children with brain stem injury were in the low response group. The predicted probability was 0.81 for brain stem injury alone, increasing to 0.95 with a regional pattern of injury to the brain stem, basal ganglia, and thalamus. Low response state in children post-TBI is strongly correlated with two distinctive regions of injury: the brain stem alone, and an injury pattern to the brain stem, basal ganglia, and thalamus. This study demonstrates the need for large-scale clinical studies using MRI as a tool for outcome assessment in children and adolescents following severe TBI.

  8. Brain Imaging of Human Sexual Response: Recent Developments and Future Directions.

    PubMed

    Ruesink, Gerben B; Georgiadis, Janniko R

    2017-01-01

    The purpose of this study is to provide a comprehensive summary of the latest developments in the experimental brain study of human sexuality, focusing on brain connectivity during the sexual response. Stable patterns of brain activation have been established for different phases of the sexual response, especially with regard to the wanting phase, and changes in these patterns can be linked to sexual response variations, including sexual dysfunctions. From this solid basis, connectivity studies of the human sexual response have begun to add a deeper understanding of the brain network function and structure involved. The study of "sexual" brain connectivity is still very young. Yet, by approaching the brain as a connected organ, the essence of brain function is captured much more accurately, increasing the likelihood of finding useful biomarkers and targets for intervention in sexual dysfunction.

  9. Hypnotic analgesia reduces brain responses to pain seen in others.

    PubMed

    Braboszcz, Claire; Brandao-Farinelli, Edith; Vuilleumier, Patrik

    2017-08-29

    Brain responses to pain experienced by oneself or seen in other people show consistent overlap in the pain processing network, particularly anterior insula, supporting the view that pain empathy partly relies on neural processes engaged by self-nociception. However, it remains unresolved whether changes in one's own pain sensation may affect empathic responding to others' pain. Here we show that inducing analgesia through hypnosis leads to decreased responses to both self and vicarious experience of pain. Activations in the right anterior insula and amygdala were markedly reduced when participants received painful thermal stimuli following hypnotic analgesia on their own hand, but also when they viewed pictures of others' hand in pain. Functional connectivity analysis indicated that this hypnotic modulation of pain responses was associated with differential recruitment of right prefrontal regions implicated in selective attention and inhibitory control. Our results provide novel support to the view that self-nociception is involved during empathy for pain, and demonstrate the possibility to use hypnotic procedures to modulate higher-level emotional and social processes.

  10. Assessment of pedophilia using hemodynamic brain response to sexual stimuli.

    PubMed

    Ponseti, Jorge; Granert, Oliver; Jansen, Olav; Wolff, Stephan; Beier, Klaus; Neutze, Janina; Deuschl, Günther; Mehdorn, Hubertus; Siebner, Hartwig; Bosinski, Hartmut

    2012-02-01

    Accurately assessing sexual preference is important in the treatment of child sex offenders. Phallometry is the standard method to identify sexual preference; however, this measure has been criticized for its intrusiveness and limited reliability. To evaluate whether spatial response pattern to sexual stimuli as revealed by a change in the blood oxygen level-dependent signal facilitates the identification of pedophiles. During functional magnetic resonance imaging, pedophilic and nonpedophilic participants were briefly exposed to same- and opposite-sex images of nude children and adults. We calculated differences in blood oxygen level-dependent signals to child and adult sexual stimuli for each participant. The corresponding contrast images were entered into a group analysis to calculate whole-brain difference maps between groups. We calculated an expression value that corresponded to the group result for each participant. These expression values were submitted to 2 different classification algorithms: Fisher linear discriminant analysis and κ -nearest neighbor analysis. This classification procedure was cross-validated using the leave-one-out method. Section of Sexual Medicine, Medical School, Christian Albrechts University of Kiel, Kiel, Germany. We recruited 24 participants with pedophilia who were sexually attracted to either prepubescent girls (n = 11) or prepubescent boys (n = 13) and 32 healthy male controls who were sexually attracted to either adult women (n = 18) or adult men (n = 14). Sensitivity and specificity scores of the 2 classification algorithms. The highest classification accuracy was achieved by Fisher linear discriminant analysis, which showed a mean accuracy of 95% (100% specificity, 88% sensitivity). Functional brain response patterns to sexual stimuli contain sufficient information to identify pedophiles with high accuracy. The automatic classification of these patterns is a promising objective tool to clinically diagnose

  11. Brain network response underlying decisions about abstract reinforcers.

    PubMed

    Mills-Finnerty, Colleen; Hanson, Catherine; Hanson, Stephen Jose

    2014-12-01

    Decision making studies typically use tasks that involve concrete action-outcome contingencies, in which subjects do something and get something. No studies have addressed decision making involving abstract reinforcers, where there are no action-outcome contingencies and choices are entirely hypothetical. The present study examines these kinds of choices, as well as whether the same biases that exist for concrete reinforcer decisions, specifically framing effects, also apply during abstract reinforcer decisions. We use both General Linear Model as well as Bayes network connectivity analysis using the Independent Multi-sample Greedy Equivalence Search (IMaGES) algorithm to examine network response underlying choices for abstract reinforcers under positive and negative framing. We find for the first time that abstract reinforcer decisions activate the same network of brain regions as concrete reinforcer decisions, including the striatum, insula, anterior cingulate, and VMPFC, results that are further supported via comparison to a meta-analysis of decision making studies. Positive and negative framing activated different parts of this network, with stronger activation in VMPFC during negative framing and in DLPFC during positive, suggesting different decision making pathways depending on frame. These results were further clarified using connectivity analysis, which revealed stronger connections between anterior cingulate, insula, and accumbens during negative framing compared to positive. Taken together, these results suggest that not only do abstract reinforcer decisions rely on the same brain substrates as concrete reinforcers, but that the response underlying framing effects on abstract reinforcers also resemble those for concrete reinforcers, specifically increased limbic system connectivity during negative frames. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Differential effects of voluntary and forced exercise on stress responses after traumatic brain injury.

    PubMed

    Griesbach, Grace S; Tio, Delia L; Vincelli, Jennifer; McArthur, David L; Taylor, Anna N

    2012-05-01

    Voluntary exercise increases levels of brain-derived neurotrophic factor (BDNF) after traumatic brain injury (TBI) when it occurs during a delayed time window. In contrast, acute post-TBI exercise does not increase BDNF. It is well known that increases in glucocorticoids suppress levels of BDNF. Moreover, recent work from our laboratory showed that there is a heightened stress response after fluid percussion injury (FPI). In order to determine if a heightened stress response is also observed with acute exercise, at post-injury days 0-4 and 7-11, corticosterone (CORT) and adrenocorticotropic hormone (ACTH) release were measured in rats running voluntarily or exposed to two daily 20-min periods of forced running wheel exercise. Forced, but not voluntary exercise, continuously elevated CORT. ACTH levels were initially elevated with forced exercise, but decreased by post-injury day 7 in the control, but not the FPI animals. As previously reported, voluntary exercise did not increase BDNF in the FPI group as it did in the control animals. Forced exercise did not increase levels of BDNF in any group. It did, however, decrease hippocampal glucocorticoid receptors in the control group. The results suggest that exercise regimens with strong stress responses may not be beneficial during the early post-injury period.

  13. Common resting brain dynamics indicate a possible mechanism underlying zolpidem response in severe brain injury

    PubMed Central

    Williams, Shawniqua T; Conte, Mary M; Goldfine, Andrew M; Noirhomme, Quentin; Gosseries, Olivia; Thonnard, Marie; Beattie, Bradley; Hersh, Jennifer; Katz, Douglas I; Victor, Jonathan D; Laureys, Steven; Schiff, Nicholas D

    2013-01-01

    Zolpidem produces paradoxical recovery of speech, cognitive and motor functions in select subjects with severe brain injury but underlying mechanisms remain unknown. In three diverse patients with known zolpidem responses we identify a distinctive pattern of EEG dynamics that suggests a mechanistic model. In the absence of zolpidem, all subjects show a strong low frequency oscillatory peak ∼6–10 Hz in the EEG power spectrum most prominent over frontocentral regions and with high coherence (∼0.7–0.8) within and between hemispheres. Zolpidem administration sharply reduces EEG power and coherence at these low frequencies. The ∼6–10 Hz activity is proposed to arise from intrinsic membrane properties of pyramidal neurons that are passively entrained across the cortex by locally-generated spontaneous activity. Activation by zolpidem is proposed to arise from a combination of initial direct drug effects on cortical, striatal, and thalamic populations and further activation of underactive brain regions induced by restoration of cognitively-mediated behaviors. DOI: http://dx.doi.org/10.7554/eLife.01157.001 PMID:24252875

  14. The Brain's Reward Response Occurs Even Without Actual Reward!

    PubMed

    Fielding, A; Fu, Y; Franz, E A

    2018-06-01

    What if the brain's response to reward occurs even when there is no reward? Wouldn't that be a further concern for people prone to problem gambling and other forms of addiction, like those related to eating? Electroencephalography was employed to investigate this possibility using probabilistic feedback manipulations and measures of known event-related potentials (ERPs) related to reward processing. We tested the hypothesis-that reward-based ERPs would occur even in the absence of a tangible reward and when manipulations on expectation are implicit. The well-known P300 response potential was a key focus, and was assessed in non-gambling volunteer undergraduates on a task involving experimentally-manipulated probabilities of positive or negative feedback comprising three trial types-80, 50, or 20% positive feedback. A feedback stimulus (F1) followed a guess response between two possible outcomes (implicit win/loss), and then a second feedback stimulus (F2) was presented to confirm an alleged 'win' or 'loss' (explicit win/loss). Results revealed that amplitude of the P300 in F1-locked data (implicit manipulation) was larger (more positive) on average for feedback outcomes that were manipulated to be less likely than expected. The effect is pronounced after increased time on task (later trials), even though the majority of participants were not explicitly aware of our probability manipulations. For the explicit effects in F2-locked data, no meaningful or significant effects were observed. These findings point to the existence of proposed success-response mechanisms that operate not only explicitly but also with implicit manipulations that do not involve any direct indication of a win or loss, and are not associated with tangible rewards. Thus, there seems to be a non-explicit form of perception (we call 'implicit') associated with an internal experience of wins/losses (in the absence of actual rewards or losses) that can be measured in associated brain processes. The

  15. Early Palliative Care for Patients With Brain Metastases Decreases Inpatient Admissions and Need for Imaging Studies.

    PubMed

    Habibi, Akram; Wu, S Peter; Gorovets, Daniel; Sansosti, Alexandra; Kryger, Marc; Beaudreault, Cameron; Chung, Wei-Yi; Shelton, Gary; Silverman, Joshua; Lowy, Joseph; Kondziolka, Douglas

    2018-01-01

    Early encounters with palliative care (PC) can influence health-care utilization, clinical outcome, and cost. To study the effect of timing of PC encounters on brain metastasis patients at an academic medical center. All patients diagnosed with brain metastases from January 2013 to August 2015 at a single institution with inpatient and/or outpatient PC records available for review (N = 145). Early PC was defined as having a PC encounter within 8 weeks of diagnosis with brain metastases; late PC was defined as having PC after 8 weeks of diagnosis. Propensity score matched cohorts of early (n = 46) and late (n = 46) PC patients were compared to control for differences in age, gender, and Karnofsky Performance Status (KPS) at diagnosis. Details of the palliative encounter, patient outcomes, and health-care utilization were collected. Early PC versus late PC patients had no differences in baseline KPS, age, or gender. Early PC patients had significantly fewer number of inpatient visits per patient (1.5 vs 2.9; P = .004), emergency department visits (1.2 vs 2.1; P = .006), positron emission tomography/computed tomography studies (1.2 vs 2.7, P = .005), magnetic resonance imaging scans (5.8 vs 8.1; P = .03), and radiosurgery procedures (0.6 vs 1.3; P < .001). There were no differences in overall survival (median 8.2 vs 11.2 months; P = .2). Following inpatient admissions, early PC patients were more likely to be discharged home (59% vs 35%; P = .04). Timely PC consultations are advisable in this patient population and can reduce health-care utilization.

  16. Localization of MEG human brain responses to retinotopic visual stimuli with contrasting source reconstruction approaches

    PubMed Central

    Cicmil, Nela; Bridge, Holly; Parker, Andrew J.; Woolrich, Mark W.; Krug, Kristine

    2014-01-01

    Magnetoencephalography (MEG) allows the physiological recording of human brain activity at high temporal resolution. However, spatial localization of the source of the MEG signal is an ill-posed problem as the signal alone cannot constrain a unique solution and additional prior assumptions must be enforced. An adequate source reconstruction method for investigating the human visual system should place the sources of early visual activity in known locations in the occipital cortex. We localized sources of retinotopic MEG signals from the human brain with contrasting reconstruction approaches (minimum norm, multiple sparse priors, and beamformer) and compared these to the visual retinotopic map obtained with fMRI in the same individuals. When reconstructing brain responses to visual stimuli that differed by angular position, we found reliable localization to the appropriate retinotopic visual field quadrant by a minimum norm approach and by beamforming. Retinotopic map eccentricity in accordance with the fMRI map could not consistently be localized using an annular stimulus with any reconstruction method, but confining eccentricity stimuli to one visual field quadrant resulted in significant improvement with the minimum norm. These results inform the application of source analysis approaches for future MEG studies of the visual system, and indicate some current limits on localization accuracy of MEG signals. PMID:24904268

  17. Propagation of damage in the rat brain following sarin exposure: Differential progression of early processes

    SciTech Connect

    Lazar, Shlomi; Egoz, Inbal; Brandeis, Rachel

    Sarin is an irreversible organophosphate cholinesterase inhibitor and a highly toxic warfare agent. Following the overt, dose-dependent signs (e.g. tremor, hyper secretion, seizures, respiratory depression and eventually death), brain damage is often reported. The goal of the present study was to characterize the early histopathological and biochemical events leading to this damage. Rats were exposed to 1LD50 of sarin (80 μg/kg, i.m.). Brains were removed at 1, 2, 6, 24 and 48 h and processed for analysis. Results showed that TSPO (translocator protein) mRNA increased at 6 h post exposure while TSPO receptor density increased only at 24 h. Inmore » all brain regions tested, bax mRNA decreased 1 h post exposure followed by an increase 24 h later, with only minor increase in bcl2 mRNA. At this time point a decrease was seen in both anti-apoptotic protein Bcl2 and pro-apoptotic Bax, followed by a time and region specific increase in Bax. An immediate elevation in ERK1/2 activity with no change in JNK may indicate an endogenous “first response” mechanism used to attenuate the forthcoming apoptosis. The time dependent increase in the severity of brain damage included an early bi-phasic activation of astrocytes, a sharp decrease in intact neuronal cells, a time dependent reduction in MAP2 and up to 15% of apoptosis. Thus, neuronal death is mostly due to necrosis and severe astrocytosis. The data suggests that timing of possible treatments should be determined by early events following exposure. For example, the biphasic changes in astrocytes activity indicate a possible beneficial effects of delayed anti-inflammatory intervention. - Highlights: • The severity of brain damage post 1LD50 sarin exposure is time dependent. • Sarin induce differential progression of early processes in the rat brain. • Potential treatments should be timed according to early events following exposure. • The biphasic astrocytes activity suggests a delay in anti

  18. Dosimetric evaluation of radionuclides for VCAM-1-targeted radionuclide therapy of early brain metastases.

    PubMed

    Falzone, Nadia; Ackerman, Nicole L; Rosales, Liset de la Fuente; Bernal, Mario A; Liu, Xiaoxuan; Peeters, Sarah Gja; Soto, Manuel Sarmiento; Corroyer-Dulmont, Aurélien; Bernaudin, Myriam; Grimoin, Elisa; Touzani, Omar; Sibson, Nicola R; Vallis, Katherine A

    2018-01-01

    Brain metastases develop frequently in patients with breast cancer, and present a pressing therapeutic challenge. Expression of vascular cell adhesion molecule 1 (VCAM-1) is upregulated on brain endothelial cells during the early stages of metastasis and provides a target for the detection and treatment of early brain metastases. The aim of this study was to use a model of early brain metastasis to evaluate the efficacy of α-emitting radionuclides, 149 Tb, 211 At, 212 Pb, 213 Bi and 225 Ac; β-emitting radionuclides, 90 Y, 161 Tb and 177 Lu; and Auger electron (AE)-emitters 67 Ga, 89 Zr, 111 In and 124 I, for targeted radionuclide therapy (TRT). Histologic sections and two photon microscopy of mouse brain parenchyma were used to inform a cylindrical vessel geometry using the Geant4 general purpose Monte Carlo (MC) toolkit with the Geant4-DNA low energy physics models. Energy deposition was evaluated as a radial function and the resulting phase spaces were superimposed on a DNA model to estimate double-strand break (DSB) yields for representative β- and α-emitters, 177 Lu and 212 Pb. Relative biological effectiveness (RBE) values were determined by only evaluating DNA damage due to physical interactions. 177 Lu produced 2.69 ± 0.08 DSB per GbpGy, without significant variation from the lumen of the vessel to a radius of 100 µm. The DSB yield of 212 Pb included two local maxima produced by the 6.1 MeV and 8.8 MeV α-emissions from decay products, 212 Bi and 212 Po, with yields of 7.64 ± 0.12 and 9.15 ± 0.24 per GbpGy, respectively. Given its higher DSB yield 212 Pb may be more effective for short range targeting of early micrometastatic lesions than 177 Lu. MC simulation of a model of early brain metastases provides invaluable insight into the potential efficacy of α-, β- and AE-emitting radionuclides for TRT. 212 Pb, which has the attributes of a theranostic radionuclide since it can be used for SPECT imaging, showed a favorable dose profile and RBE.

  19. Left hemisphere regions are critical for language in the face of early left focal brain injury.

    PubMed

    Raja Beharelle, Anjali; Dick, Anthony Steven; Josse, Goulven; Solodkin, Ana; Huttenlocher, Peter R; Levine, Susan C; Small, Steven L

    2010-06-01

    A predominant theory regarding early stroke and its effect on language development, is that early left hemisphere lesions trigger compensatory processes that allow the right hemisphere to assume dominant language functions, and this is thought to underlie the near normal language development observed after early stroke. To test this theory, we used functional magnetic resonance imaging to examine brain activity during category fluency in participants who had sustained pre- or perinatal left hemisphere stroke (n = 25) and in neurologically normal siblings (n = 27). In typically developing children, performance of a category fluency task elicits strong involvement of left frontal and lateral temporal regions and a lesser involvement of right hemisphere structures. In our cohort of atypically developing participants with early stroke, expressive and receptive language skills correlated with activity in the same left inferior frontal regions that support language processing in neurologically normal children. This was true independent of either the amount of brain injury or the extent that the injury was located in classical cortical language processing areas. Participants with bilateral activation in left and right superior temporal-inferior parietal regions had better language function than those with either predominantly left- or right-sided unilateral activation. The advantage conferred by left inferior frontal and bilateral temporal involvement demonstrated in our study supports a strong predisposition for typical neural language organization, despite an intervening injury, and argues against models suggesting that the right hemisphere fully accommodates language function following early injury.

  20. Quantitative Folding Pattern Analysis of Early Primary Sulci in Human Fetuses with Brain Abnormalities.

    PubMed

    Im, K; Guimaraes, A; Kim, Y; Cottrill, E; Gagoski, B; Rollins, C; Ortinau, C; Yang, E; Grant, P E

    2017-07-01

    Aberrant gyral folding is a key feature in the diagnosis of many cerebral malformations. However, in fetal life, it is particularly challenging to confidently diagnose aberrant folding because of the rapid spatiotemporal changes of gyral development. Currently, there is no resource to measure how an individual fetal brain compares with normal spatiotemporal variations. In this study, we assessed the potential for automatic analysis of early sulcal patterns to detect individual fetal brains with cerebral abnormalities. Triplane MR images were aligned to create a motion-corrected volume for each individual fetal brain, and cortical plate surfaces were extracted. Sulcal basins were automatically identified on the cortical plate surface and compared with a combined set generated from 9 normal fetal brain templates. Sulcal pattern similarities to the templates were quantified by using multivariate geometric features and intersulcal relationships for 14 normal fetal brains and 5 fetal brains that were proved to be abnormal on postnatal MR imaging. Results were compared with the gyrification index. Significantly reduced sulcal pattern similarities to normal templates were found in all abnormal individual fetuses compared with normal fetuses (mean similarity [normal, abnormal], left: 0.818, 0.752; P < .001; right: 0.810, 0.753; P < .01). Altered location and depth patterns of sulcal basins were the primary distinguishing features. The gyrification index was not significantly different between the normal and abnormal groups. Automated analysis of interrelated patterning of early primary sulci could outperform the traditional gyrification index and has the potential to quantitatively detect individual fetuses with emerging abnormal sulcal patterns. © 2017 by American Journal of Neuroradiology.

  1. Very early hypothermia induction in patients with severe brain injury (the National Acute Brain Injury Study: Hypothermia II): a randomised trial

    PubMed Central

    Clifton, Guy L; Valadka, Alex; Zygun, David; Coffey, Christopher S; Drever, Pamala; Fourwinds, Sierra; Janis, L Scott; Wilde, Elizabeth; Taylor, Pauline; Harshman, Kathy; Conley, Adam; Puccio, Ava; Levin, Harvey S; McCauley, Stephen R; Bucholz, Richard D; Smith, Kenneth R; Schmidt, John H; Scott, James N; Yonas, Howard; Okonkwo, David O

    2013-01-01

    Summary Background The inconsistent effect of hypothermia treatment on severe brain injury in previous trials might be because hypothermia was induced too late after injury. We aimed to assess whether very early induction of hypothermia improves outcome in patients with severe brain injury. Methods The National Acute Brain Injury Study: Hypothermia II (NABIS: H II) was a randomised, multicentre clinical trial of patients with severe brain injury who were enrolled within 2·5 h of injury at six sites in the USA and Canada. Patients with non-penetrating brain injury who were 16–45 years old and were not responsive to instructions were randomly assigned (1:1) by a random number generator to hypothermia or normothermia. Patients randomly assigned to hypothermia were cooled to 35°C until their trauma assessment was completed. Patients who had none of a second set of exclusion criteria were either cooled to 33°C for 48 h and then gradually rewarmed or treated at normothermia, depending upon their initial treatment assignment. Investigators who assessed the outcome measures were masked to treatment allocation. The primary outcome was the Glasgow outcome scale score at 6 months. Analysis was by modified intention to treat. This trial is registered with ClinicalTrials.gov, NCT00178711. Findings Enrolment occurred from December, 2005, to June, 2009, when the trial was terminated for futility. Follow-up was from June, 2006, to December, 2009. 232 patients were initially randomised a mean of 1·6 h (SD 0·5) after injury: 119 to hypothermia and 113 to normothermia. 97 patients (52 in the hypothermia group and 45 in the normothermia group) did not meet any of the second set of exclusion criteria. The mean time to 35°C for the 52 patients in the hypothermia group was 2·6 h (SD 1·2) and to 33°C was 4·4 h (1·5). Outcome was poor (severe disability, vegetative state, or death) in 31 of 52 patients in the hypothermia group and 25 of 56 in the normothermia group (relative

  2. Toward a conceptual framework for early brain and behavior development in autism

    PubMed Central

    Piven, J; Elison, J T; Zylka, M J

    2017-01-01

    Studies of infant siblings of older autistic probands, who are at elevated risk for autism, have demonstrated that the defining features of autism are not present in the first year of life but emerge late in the first and into the second year. A recent longitudinal neuroimaging study of high-risk siblings revealed a specific pattern of brain development in infants later diagnosed with autism, characterized by cortical surface area hyper-expansion in the first year followed by brain volume overgrowth in the second year that is associated with the emergence of autistic social deficits. Together with new observations from genetically defined autism risk alleles and rodent model, these findings suggest a conceptual framework for the early, post-natal development of autism. This framework postulates that an increase in the proliferation of neural progenitor cells and hyper-expansion of cortical surface area in the first year, occurring during a pre-symptomatic period characterized by disrupted sensorimotor and attentional experience, leads to altered experience-dependent neuronal development and decreased elimination of neuronal processes. This process is linked to brain volume overgrowth and disruption of the refinement of neural circuit connections and is associated with the emergence of autistic social deficits in the second year of life. A better understanding of the timing of developmental brain and behavior mechanisms in autism during infancy, a period which precedes the emergence of the defining features of this disorder, will likely have important implications for designing rational approaches to early intervention. PMID:28937691

  3. Comparison of molecular marker expression in early zebrafish brain development following chronic ethanol or morpholino treatment.

    PubMed

    Zhang, Chengjin; Boa-Amponsem, Oswald; Cole, Gregory J

    2017-08-01

    This study was undertaken to ascertain whether defined markers of early zebrafish brain development are affected by chronic ethanol exposure or morpholino knockdown of agrin, sonic hedgehog, retinoic acid, and fibroblast growth factors, four signaling molecules that are suggested to be ethanol sensitive. Zebrafish embryos were exposed to 2% ethanol from 6 to 24 hpf or injected with agrin, shha, aldh1a3, or fgf8a morpholinos. In situ hybridization was employed to analyze otx2, pax6a, epha4a, krx20, pax2a, fgf8a, wnt1, and eng2b expression during early brain development. Our results showed that pax6a mRNA expression was decreased in eye, forebrain, and hindbrain of both chronic ethanol exposed and select MO treatments. Epha4a expression in rhombomere R1 boundary was decreased in chronic ethanol exposure and aldh1a3 morphants, lost in fgf8a morphants, but largely unaffected in agrin and shha morphants. Ectopic pax6a and epha4a expression in midbrain was only found in fgf8a morphants. These results suggest that while chronic ethanol induces obvious morphological change in brain architecture, many molecular markers of these brain structures are relatively unaffected by ethanol exposure.

  4. Stressful Life Events, ADHD Symptoms, and Brain Structure in Early Adolescence.

    PubMed

    Humphreys, Kathryn L; Watts, Emily L; Dennis, Emily L; King, Lucy S; Thompson, Paul M; Gotlib, Ian H

    2018-05-21

    Despite a growing understanding that early adversity in childhood broadly affects risk for psychopathology, the contribution of stressful life events to the development of symptoms of attention-deficit/hyperactivity disorder (ADHD) is not clear. In the present study, we examined the association between number of stressful life events experienced and ADHD symptoms, assessed using the Attention Problems subscale of the Child Behavior Checklist, in a sample of 214 children (43% male) ages 9.11-13.98 years (M = 11.38, SD = 1.05). In addition, we examined whether the timing of the events (i.e., onset through age 5 years or after age 6 years) was associated with ADHD symptoms. Finally, we examined variation in brain structure to determine whether stressful life events were associated with volume in brain regions that were found to vary as a function of symptoms of ADHD. We found a small to moderate association between number of stressful life events and ADHD symptoms. Although the strength of the associations between number of events and ADHD symptoms did not differ as a function of the age of occurrence of stressful experiences, different brain regions were implicated in the association between stressors and ADHD symptoms in the two age periods during which stressful life events occurred. These findings support the hypothesis that early adversity is associated with ADHD symptoms, and provide insight into possible brain-based mediators of this association.

  5. A Survey of English Sixth Formers' Knowledge of Early Brain Development.

    PubMed

    Nolan, Mary

    2017-10-01

    Objectives To ascertain the knowledge of young people aged 16 to 19 of early brain development and their attitudes towards the care of babies and preschool children. Design Cross-sectional, school- and college-based survey including all sixth form students present on the days of data collection. The survey instrument comprised forced-choice questions in four sections: Demographics, Perceptions and Understanding of Early Childhood Development, Parental Behaviors to Support Early Brain development, and Resource Needs and Usage. Setting Two sixth form schools and one sixth form college in three towns of varying affluence in the West Midlands of the United Kingdom. Method The survey was mounted online and completed by 905 students who returned it directly to the researcher. Results Most students knew that tobacco, alcohol, and drugs are hazardous in pregnancy, and many recognized the impact of maternal stress on fetal brain development. Many believed that babies can be "spoiled" and did not appreciate the importance of reading to babies and of the relationship between play and early brain development. A significant minority thought that physical activity and a healthy diet have little impact on young children's development. Respondents said they would turn firstly to their parents for advice on baby care rather than professionals. Conclusion Young people need educating about parenting activities that support the all-round healthy development of infants. The importance of a healthy diet, physical activity, reading, and play should be included in sixth form curricula and antenatal classes. Consideration should be given to educating grandparents because of their influence on new parents.

  6. Symptomatic hypoglycemia causing brain injury in a term breast fed newborn following early discharge.

    PubMed

    Marwah, Ashish; Gathwala, Geeta

    2011-12-01

    Cerebral metabolism and functioning depends upon an adequate blood glucose supply which provides for majority of the brain's energy requirement. Studies from the past have shown that neonatal hypoglycemia is associated with acute and long term neurological sequelae. Early discharge without adequately established breast feeding may lead to feeding problems, post discharge hypoglycemia and its associated neurological complications. The authors describe one such case of an exclusively breast fed term newborn who presented on day 3 with symptomatic hypoglycemia and associated neurological injury.

  7. Cholinesterase inhibition modulates visual and attentional brain responses in Alzheimer's disease and health.

    PubMed

    Bentley, Paul; Driver, Jon; Dolan, Ray J

    2008-02-01

    Visuo-attentional deficits occur early in Alzheimer's disease (AD) and are considered more responsive to pro-cholinergic therapy than characteristic memory disturbances. We hypothesised that neural responses in AD during visuo-attentional processing would be impaired relative to controls, yet partially susceptible to improvement with the cholinesterase inhibitor physostigmine. We studied 16 mild AD patients and 17 age-matched healthy controls, using fMRI-scanning to enable within-subject placebo-controlled comparisons of effects of physostigmine on stimulus- and attention- related brain activations, plus between-group comparisons for these. Subjects viewed face or building stimuli while performing a shallow judgement (colour of image) or a deep judgement (young/old age of depicted face or building). Behaviourally, AD subjects performed slower than controls in both tasks, while physostigmine benefited the patients for the more demanding age-judgement task. Stimulus-selective (face minus building, and vice versa) BOLD signals in precuneus and posterior parahippocampal cortex were attenuated in patients relative to controls, but increased following physostigmine. By contrast, face-selective responses in fusiform cortex were not impaired in AD and showed decreases following physostigmine for both groups. Task-dependent responses in right parietal and prefrontal cortices were diminished in AD but improved following physostigmine. A similar pattern of group and treatment effects was observed in two extrastriate cortical regions that showed physostigmine-induced enhancement of stimulus-selectivity for the deep versus shallow task. Finally, for the healthy group, physostigmine decreased stimulus and task-dependent effects, partly due to an exaggeration of selectivity during the shallow relative to deep task. The differences in brain activations between groups and treatments were not attributable merely to performance (reaction time) differences. Our results demonstrate

  8. Regional brain activity during early-stage intense romantic love predicted relationship outcomes after 40 months: an fMRI assessment.

    PubMed

    Xu, Xiaomeng; Brown, Lucy; Aron, Arthur; Cao, Guikang; Feng, Tingyong; Acevedo, Bianca; Weng, Xuchu

    2012-09-20

    Early-stage romantic love is associated with activation in reward and motivation systems of the brain. Can these localized activations, or others, predict long-term relationship stability? We contacted participants from a previous fMRI study of early-stage love by Xu et al. [34] after 40 months from initial assessments. We compared brain activation during the initial assessment at early-stage love for those who were still together at 40 months and those who were apart, and surveyed those still together about their relationship happiness and commitment at 40 months. Six participants who were still with their partners at 40 months (compared to six who had broken up) showed less activation during early-stage love in the medial orbitofrontal cortex, right subcallosal cingulate and right accumbens, regions implicated in long-term love and relationship satisfaction [1,2]. These regions of deactivation at the early stage of love were also negatively correlated with relationship happiness scores collected at 40 months. Other areas involved were the caudate tail, and temporal and parietal lobes. These data are preliminary evidence that neural responses in the early stages of romantic love can predict relationship stability and quality up to 40 months later in the relationship. The brain regions involved suggest that forebrain reward functions may be predictive for relationship stability, as well as regions involved in social evaluation, emotional regulation, and mood. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Towards SSVEP-based, portable, responsive Brain-Computer Interface.

    PubMed

    Kaczmarek, Piotr; Salomon, Pawel

    2015-08-01

    A Brain-Computer Interface in motion control application requires high system responsiveness and accuracy. SSVEP interface consisted of 2-8 stimuli and 2 channel EEG amplifier was presented in this paper. The observed stimulus is recognized based on a canonical correlation calculated in 1 second window, ensuring high interface responsiveness. A threshold classifier with hysteresis (T-H) was proposed for recognition purposes. Obtained results suggest that T-H classifier enables to significantly increase classifier performance (resulting in accuracy of 76%, while maintaining average false positive detection rate of stimulus different then observed one between 2-13%, depending on stimulus frequency). It was shown that the parameters of T-H classifier, maximizing true positive rate, can be estimated by gradient-based search since the single maximum was observed. Moreover the preliminary results, performed on a test group (N=4), suggest that for T-H classifier exists a certain set of parameters for which the system accuracy is similar to accuracy obtained for user-trained classifier.

  10. Presence of early stage cancer does not impair the early protein metabolic response to major surgery

    PubMed Central

    Klimberg, V. Suzanne; Allasia, Arianna; Deutz, Nicolaas EP

    2017-01-01

    Abstract Background Combined bilateral mastectomy and reconstruction is a common major surgical procedure in women with breast cancer and in those with a family history of breast cancer. As this large surgical procedure induces muscle protein loss, a preserved anabolic response to nutrition is warranted for optimal recovery. It is unclear whether the presence of early stage cancer negatively affects the protein metabolic response to major surgery as this would mandate perioperative nutritional support. Methods In nine women with early stage (Stage II) breast malignancy and nine healthy women with a genetic predisposition to breast cancer undergoing the same large surgical procedure, we examined whether surgery influences the catabolic response to overnight fasting and the anabolic response to nutrition differently. Prior to and within 24 h after combined bilateral mastectomy and reconstruction surgery, whole body protein synthesis and breakdown rates were assessed after overnight fasting and after meal intake by stable isotope methodology to enable the calculation of net protein catabolism in the post‐absorptive state and net protein anabolic response to a meal. Results Major surgery resulted in an up‐regulation of post‐absorptive protein synthesis and breakdown rates (P < 0.001) and lower net protein catabolism (P < 0.05) and was associated with insulin resistance and increased systemic inflammation (P < 0.01). Net anabolic response to the meal was reduced after surgery (P < 0.05) but higher in cancer (P < 0.05) indicative of a more preserved meal efficiency. The significant relationship between net protein anabolism and the amount of amino acids available in the circulation (R 2 = 0.85, P < 0.001) was independent of the presence of non‐cachectic early stage breast cancer or surgery. Conclusions The presence of early stage breast cancer does not enhance the normal catabolic response to major surgery or further attenuates the

  11. Presence of early stage cancer does not impair the early protein metabolic response to major surgery.

    PubMed

    Engelen, Mariëlle P K J; Klimberg, V Suzanne; Allasia, Arianna; Deutz, Nicolaas Ep

    2017-06-01

    Combined bilateral mastectomy and reconstruction is a common major surgical procedure in women with breast cancer and in those with a family history of breast cancer. As this large surgical procedure induces muscle protein loss, a preserved anabolic response to nutrition is warranted for optimal recovery. It is unclear whether the presence of early stage cancer negatively affects the protein metabolic response to major surgery as this would mandate perioperative nutritional support. In nine women with early stage (Stage II) breast malignancy and nine healthy women with a genetic predisposition to breast cancer undergoing the same large surgical procedure, we examined whether surgery influences the catabolic response to overnight fasting and the anabolic response to nutrition differently. Prior to and within 24 h after combined bilateral mastectomy and reconstruction surgery, whole body protein synthesis and breakdown rates were assessed after overnight fasting and after meal intake by stable isotope methodology to enable the calculation of net protein catabolism in the post-absorptive state and net protein anabolic response to a meal. Major surgery resulted in an up-regulation of post-absorptive protein synthesis and breakdown rates (P < 0.001) and lower net protein catabolism (P < 0.05) and was associated with insulin resistance and increased systemic inflammation (P < 0.01). Net anabolic response to the meal was reduced after surgery (P < 0.05) but higher in cancer (P < 0.05) indicative of a more preserved meal efficiency. The significant relationship between net protein anabolism and the amount of amino acids available in the circulation (R 2  = 0.85, P < 0.001) was independent of the presence of non-cachectic early stage breast cancer or surgery. The presence of early stage breast cancer does not enhance the normal catabolic response to major surgery or further attenuates the anabolic response to meal intake within 24 h after

  12. Role of ischemic modified albumin in the early diagnosis of increased intracranial pressure and brain death.

    PubMed

    Kara, I; Pampal, H K; Yildirim, F; Dilekoz, E; Emmez, G; U, F P; Kocabiyik, M; Demirel, C B

    Increased intracranial pressure following trauma and subsequent possible development of brain death are important factors for morbidity and mortality due to ischemic changes. We aimed to establish the role of ischemic modified albumin (IMA) in the early diagnosis of the process, starting with increased intracranial pressure and ending with brain death. Eighteen Wistar-Albino rats were divided into three groups; control (CG, n = 6), increased intracranial pressure (ICPG, n = 6), and brain death (BDG, n = 6). Intracranial pressure elevation and brain death were constituted with the inflation of a balloon of a Fogarty catheter in the epidural space. In all three groups, blood samples were drawn before the procedure, and at minutes 150 and 240 for IMA and malondialdehyde (MDA) analysis. Serum IMA levels at 150 and 240 minutes were higher in ICPG than in CG (p < 0.05). IMA levels were similar in ICPG and BDG. Serum MDA levels at 150 and 240 minutes increased in ICPG and BDG groups compared to CG (p < 0.05). MDA levels were similar in ICP and BD groups. IMA should be considered as a biochemical parameter in the process starting from increased intracranial pressure elevation and ending at brain death (Tab. 3, Fig. 5, Ref. 31).

  13. Naringin alleviates early brain injury after experimental subarachnoid hemorrhage by reducing oxidative stress and inhibiting apoptosis.

    PubMed

    Han, Yuwei; Su, Jingyuan; Liu, Xiujuan; Zhao, Yuan; Wang, Chenchen; Li, Xiaoming

    2017-07-01

    This study aims to clarify the neuroprotective effect of naringin on early brain injury (EBI) following subarachnoid hemorrhage (SAH) and the possible mechanisms of naringin in the treatment of SAH. The endovascular puncture model was performed to induce SAH model in rats and the efficacy of 40mg/kg and 80mg/kg naringin were tested by intraperitoneally administration. SAH grade, neurological score, brain edema, blood-brain barrier permeability, the changes of oxidative stress related factors, apoptosis-related proteins, mitogen-activated protein kinase (MAPK) signaling pathway and neuronal morphology were detected to analyze the potential effect of naringin against SAH. The results demonstrated that naringin significantly ameliorated EBI, including SAH severity, neurologic deficits, brain edema and blood-brain barrier integrity by attenuating SAH-induced oxidative stress and apoptosis, and reduced the oxidant damage and apoptosis by inhibiting the activation of MAPK signaling pathway, which suggested a therapeutic potential of naringin in providing neuroprotection after SAH. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Early embryonic brain development in rats requires the trophic influence of cerebrospinal fluid.

    PubMed

    Martin, C; Alonso, M I; Santiago, C; Moro, J A; De la Mano, A; Carretero, R; Gato, A

    2009-11-01

    Cerebrospinal fluid has shown itself to be an essential brain component during development. This is particularly evident at the earliest stages of development where a lot of research, performed mainly in chick embryos, supports the evidence that cerebrospinal fluid is involved in different mechanisms controlling brain growth and morphogenesis, by exerting a trophic effect on neuroepithelial precursor cells (NPC) involved in controlling the behaviour of these cells. Despite it being known that cerebrospinal fluid in mammals is directly involved in corticogenesis at fetal stages, the influence of cerebrospinal fluid on the activity of NPC at the earliest stages of brain development has not been demonstrated. Here, using "in vitro" organotypic cultures of rat embryo brain neuroepithelium in order to expose NPC to or deprive them of cerebrospinal fluid, we show that the neuroepithelium needs the trophic influence of cerebrospinal fluid to undergo normal rates of cell survival, replication and neurogenesis, suggesting that NPC are not self-sufficient to induce their normal activity. This data shows that cerebrospinal fluid is an essential component in chick and rat early brain development, suggesting that its influence could be constant in higher vertebrates.

  15. Brain glutathione reductase induction increases early survival and decreases lipofuscin accumulation in aging frogs.

    PubMed

    López-Torres, M; Pérez-Campo, R; Fernandez, A; Barba, C; Barja de Quiroga, G

    1993-02-01

    Brain catalase was continuously depleted throughout the life span starting with a large population of initially young and old frogs. Free radical-related parameters were measured in the brain tissue once per year after 2.5, 14.5, and 26.5 months of experimentation. Brain lipofuscin accumulation was observed after 14.5 and 26.5 months, and survival was continuously followed during 33 months. The age of the animal did not decrease endogenous antioxidants nor increase tissue peroxidation either in cross-sectional or longitudinal comparisons. Continuous catalase depletion similarly affected young and old animals, inducing glutathione reductase, tending to decrease oxidized glutathione/reduced glutathione (GSSG/GSH) ratio, decreasing lipofuscin accumulation in the brain, and increasing survival from 46% to 91% after 14.5 months. At 26.5 months of experimentation the loss of the glutathione reductase induction in catalase-depleted animals was accompanied by the presence of higher lipofuscin deposits than in controls and was followed by a great increase in mortality rate. Even though the maximal life span (7 years) was the same in the control and treated animals which were already old (4.2 years) at the beginning of the experiment, the treated animals showed a strong reduction in the rates of early death. It is proposed that the maintenance of a high antioxidant/prooxidant balance in the vertebrate brain greatly increases the probability of the individual to reach the final segments of its species-specific life span.

  16. Early changes in brain structure correlate with language outcomes in children with neonatal encephalopathy.

    PubMed

    Shapiro, Kevin A; Kim, Hosung; Mandelli, Maria Luisa; Rogers, Elizabeth E; Gano, Dawn; Ferriero, Donna M; Barkovich, A James; Gorno-Tempini, Maria Luisa; Glass, Hannah C; Xu, Duan

    2017-01-01

    Global patterns of brain injury correlate with motor, cognitive, and language outcomes in survivors of neonatal encephalopathy (NE). However, it is still unclear whether local changes in brain structure predict specific deficits. We therefore examined whether differences in brain structure at 6 months of age are associated with neurodevelopmental outcomes in this population. We enrolled 32 children with NE, performed structural brain MR imaging at 6 months, and assessed neurodevelopmental outcomes at 30 months. All subjects underwent T1-weighted imaging at 3 T using a 3D IR-SPGR sequence. Images were normalized in intensity and nonlinearly registered to a template constructed specifically for this population, creating a deformation field map. We then used deformation based morphometry (DBM) to correlate variation in the local volume of gray and white matter with composite scores on the Bayley Scales of Infant and Toddler Development (Bayley-III) at 30 months. Our general linear model included gestational age, sex, birth weight, and treatment with hypothermia as covariates. Regional brain volume was significantly associated with language scores, particularly in perisylvian cortical regions including the left supramarginal gyrus, posterior superior and middle temporal gyri, and right insula, as well as inferior frontoparietal subcortical white matter. We did not find significant correlations between regional brain volume and motor or cognitive scale scores. We conclude that, in children with a history of NE, local changes in the volume of perisylvian gray and white matter at 6 months are correlated with language outcome at 30 months. Quantitative measures of brain volume on early MRI may help identify infants at risk for poor language outcomes.

  17. Brain metabolite alterations and cognitive dysfunction in early Huntington’s Disease

    PubMed Central

    Unschuld, Paul G.; Edden, Richard A. E.; Carass, Aaron; Liu, Xinyang; Shanahan, Megan; Wang, Xin; Oishi, Kenichi; Brandt, Jason; Bassett, Susan S.; Redgrave, Graham W.; Margolis, Russell L.; van Zijl, Peter C. M.; Barker, Peter B.; Ross, Christopher A.

    2012-01-01

    Background Huntington’s Disease (HD) is a neurodegenerative disorder characterized by early cognitive decline, which progresses at later stages to dementia and severe movement disorder. HD is caused by a cytosine-adenine-guanine triplet-repeat expansion mutation in the Huntingtin gene, allowing early diagnosis by genetic testing. This study aims to identify the relationship of N-acetylaspartate and other brain metabolites to cognitive function in HD-mutation carriers by using high field strength magnetic-resonance-spectroscopy at 7-Tesla. Methods Twelve individuals with the HD-mutation in premanifest or early stage of disease versus twelve healthy controls underwent 1H magnetic-resonance-spectroscopy (7.2ml voxel in the posterior cingulate cortex) at 7-Tesla, and also T1-weighted structural magnetic-resonance-imaging. All participants received standardized tests of cognitive functioning including the Montreal Cognitive Assessment and standardized quantified neurological examination within an hour before scanning. Results Individuals with the HD mutation had significantly lower posterior cingulate cortex N-acetylaspartate (−9.6%, p=0.02) and glutamate levels (−10.1%, p=0.02) than controls. By contrast, in this small group, measures of brain morphology including striatal and ventricle volumes did not differ significantly. Linear regression with Montreal Cognitive Assessment scores revealed significant correlations with N-acetylaspartate (r2=0.50, p=0.01) and glutamate (r2=0.64, p=0.002) in HD subjects. Conclusions Our data suggest a relationship between reduced N-acetylaspartate and glutamate levels in the posterior cingulate cortex with cognitive decline in early stages of HD. N-acetylaspartate and glutamate magnetic-resonance-spectroscopy signals of the posterior cingulate cortex region may serve as potential biomarkers of disease progression or treatment outcome in HD and other neurodegenerative disorders with early cognitive dysfunction, when structural

  18. Human protein status modulates brain reward responses to food cues.

    PubMed

    Griffioen-Roose, Sanne; Smeets, Paul Am; van den Heuvel, Emmy; Boesveldt, Sanne; Finlayson, Graham; de Graaf, Cees

    2014-07-01

    Protein is indispensable in the human diet, and its intake appears tightly regulated. The role of sensory attributes of foods in protein intake regulation is far from clear. We investigated the effect of human protein status on neural responses to different food cues with the use of functional magnetic resonance imaging (fMRI). The food cues varied by taste category (sweet compared with savory) and protein content (low compared with high). In addition, food preferences and intakes were measured. We used a randomized crossover design whereby 23 healthy women [mean ± SD age: 22 ± 2 y; mean ± SD body mass index (in kg/m(2)): 22.5 ± 1.8] followed two 16-d fully controlled dietary interventions involving consumption of either a low-protein diet (0.6 g protein · kg body weight(-1) · d(-1), ~7% of energy derived from protein, approximately half the normal protein intake) or a high-protein diet (2.2 g protein · kg body weight(-1) · d(-1), ~25% of energy, approximately twice the normal intake). On the last day of the interventions, blood oxygen level-dependent (BOLD) responses to odor and visual food cues were measured by using fMRI. The 2 interventions were followed by a 1-d ad libitum phase, during which a large array of food items was available and preference and intake were measured. When exposed to food cues (relative to the control condition), the BOLD response was higher in reward-related areas (orbitofrontal cortex, striatum) in a low-protein state than in a high-protein state. Specifically, BOLD was higher in the inferior orbitofrontal cortex in response to savory food cues. In contrast, the protein content of the food cues did not modulate the BOLD response. A low protein state also increased preferences for savory food cues and increased protein intake in the ad libitum phase as compared with a high-protein state. Protein status modulates brain responses in reward regions to savory food cues. These novel findings suggest that dietary protein status

  19. Scalp-recorded slow EEG responses generated in response to hemodynamic changes in the human brain.

    PubMed

    Vanhatalo, S; Tallgren, P; Becker, C; Holmes, M D; Miller, J W; Kaila, K; Voipio, J

    2003-09-01

    To study whether hemodynamic changes in human brain generate scalp-EEG responses. Direct current EEG (DC-EEG) was recorded from 12 subjects during 5 non-invasive manipulations that affect intracranial hemodynamics by different mechanisms: bilateral jugular vein compression (JVC), head-up tilt (HUT), head-down tilt (HDT), Valsalva maneuver (VM), and Mueller maneuver (MM). DC shifts were compared to changes in cerebral blood volume (CBV) measured by near-infrared spectroscopy (NIRS). DC shifts were observed during all manipulations with highest amplitudes (up to 250 microV) at the midline electrodes, and the most pronounced changes (up to 15 microV/cm) in the DC voltage gradient around vertex. In spite of inter-individual variation in both amplitude and polarity, the DC shifts were consistent and reproducible for each subject and they showed a clear temporal correlation with changes in CBV. Our results indicate that hemodynamic changes in human brain are associated with marked DC shifts that cannot be accounted for by intracortical neuronal or glial currents. Instead, the data are consistent with a non-neuronal generator mechanism that is associated with the blood-brain barrier. These findings have direct implications for mechanistic interpretation of slow EEG responses in various experimental paradigms.

  20. Dynamic Responses in Brain Networks to Social Feedback: A Dual EEG Acquisition Study in Adolescent Couples

    PubMed Central

    Kuo, Ching-Chang; Ha, Thao; Ebbert, Ashley M.; Tucker, Don M.; Dishion, Thomas J.

    2017-01-01

    Adolescence is a sensitive period for the development of romantic relationships. During this period the maturation of frontolimbic networks is particularly important for the capacity to regulate emotional experiences. In previous research, both functional magnetic resonance imaging (fMRI) and dense array electroencephalography (dEEG) measures have suggested that responses in limbic regions are enhanced in adolescents experiencing social rejection. In the present research, we examined social acceptance and rejection from romantic partners as they engaged in a Chatroom Interact Task. Dual 128-channel dEEG systems were used to record neural responses to acceptance and rejection from both adolescent romantic partners and unfamiliar peers (N = 75). We employed a two-step temporal principal component analysis (PCA) and spatial independent component analysis (ICA) approach to statistically identify the neural components related to social feedback. Results revealed that the early (288 ms) discrimination between acceptance and rejection reflected by the P3a component was significant for the romantic partner but not the unfamiliar peer. In contrast, the later (364 ms) P3b component discriminated between acceptance and rejection for both partners and peers. The two-step approach (PCA then ICA) was better able than either PCA or ICA alone in separating these components of the brain's electrical activity that reflected both temporal and spatial phases of the brain's processing of social feedback. PMID:28620292

  1. Brain-Stimulation Induced Blindsight: Unconscious Vision or Response Bias?

    PubMed Central

    Lloyd, David A.; Abrahamyan, Arman; Harris, Justin A.

    2013-01-01

    A dissociation between visual awareness and visual discrimination is referred to as “blindsight”. Blindsight results from loss of function of the primary visual cortex (V1) which can occur due to cerebrovascular accidents (i.e. stroke-related lesions). There are also numerous reports of similar, though reversible, effects on vision induced by transcranial Magnetic Stimulation (TMS) to early visual cortex. These effects point to V1 as the “gate” of visual awareness and have strong implications for understanding the neurological underpinnings of consciousness. It has been argued that evidence for the dissociation between awareness of, and responses to, visual stimuli can be a measurement artifact of the use of a high response criterion under yes-no measures of visual awareness when compared with the criterion free forced-choice responses. This difference between yes-no and forced-choice measures suggests that evidence for a dissociation may actually be normal near-threshold conscious vision. Here we describe three experiments that tested visual performance in normal subjects when their visual awareness was suppressed by applying TMS to the occipital pole. The nature of subjects’ performance whilst undergoing occipital TMS was then verified by use of a psychophysical measure (d') that is independent of response criteria. This showed that there was no genuine dissociation in visual sensitivity measured by yes-no and forced-choice responses. These results highlight that evidence for visual sensitivity in the absence of awareness must be analysed using a bias-free psychophysical measure, such as d', In order to confirm whether or not visual performance is truly unconscious. PMID:24324837

  2. Brain-stimulation induced blindsight: unconscious vision or response bias?

    PubMed

    Lloyd, David A; Abrahamyan, Arman; Harris, Justin A

    2013-01-01

    A dissociation between visual awareness and visual discrimination is referred to as "blindsight". Blindsight results from loss of function of the primary visual cortex (V1) which can occur due to cerebrovascular accidents (i.e. stroke-related lesions). There are also numerous reports of similar, though reversible, effects on vision induced by transcranial Magnetic Stimulation (TMS) to early visual cortex. These effects point to V1 as the "gate" of visual awareness and have strong implications for understanding the neurological underpinnings of consciousness. It has been argued that evidence for the dissociation between awareness of, and responses to, visual stimuli can be a measurement artifact of the use of a high response criterion under yes-no measures of visual awareness when compared with the criterion free forced-choice responses. This difference between yes-no and forced-choice measures suggests that evidence for a dissociation may actually be normal near-threshold conscious vision. Here we describe three experiments that tested visual performance in normal subjects when their visual awareness was suppressed by applying TMS to the occipital pole. The nature of subjects' performance whilst undergoing occipital TMS was then verified by use of a psychophysical measure (d') that is independent of response criteria. This showed that there was no genuine dissociation in visual sensitivity measured by yes-no and forced-choice responses. These results highlight that evidence for visual sensitivity in the absence of awareness must be analysed using a bias-free psychophysical measure, such as d', In order to confirm whether or not visual performance is truly unconscious.

  3. Stomatal Blue Light Response Is Present in Early Vascular Plants.

    PubMed

    Doi, Michio; Kitagawa, Yuki; Shimazaki, Ken-ichiro

    2015-10-01

    Light is a major environmental factor required for stomatal opening. Blue light (BL) induces stomatal opening in higher plants as a signal under the photosynthetic active radiation. The stomatal BL response is not present in the fern species of Polypodiopsida. The acquisition of a stomatal BL response might provide competitive advantages in both the uptake of CO2 and prevention of water loss with the ability to rapidly open and close stomata. We surveyed the stomatal opening in response to strong red light (RL) and weak BL under the RL with gas exchange technique in a diverse selection of plant species from euphyllophytes, including spermatophytes and monilophytes, to lycophytes. We showed the presence of RL-induced stomatal opening in most of these species and found that the BL responses operated in all euphyllophytes except Polypodiopsida. We also confirmed that the stomatal opening in lycophytes, the early vascular plants, is driven by plasma membrane proton-translocating adenosine triphosphatase and K(+) accumulation in guard cells, which is the same mechanism operating in stomata of angiosperms. These results suggest that the early vascular plants respond to both RL and BL and actively regulate stomatal aperture. We also found three plant species that absolutely require BL for both stomatal opening and photosynthetic CO2 fixation, including a gymnosperm, C. revoluta, and the ferns Equisetum hyemale and Psilotum nudum. © 2015 American Society of Plant Biologists. All Rights Reserved.

  4. Cholinergic modulation of visual and attentional brain responses in Alzheimer's disease and in health

    PubMed Central

    Bentley, P.; Driver, J.; Dolan, R.J.

    2008-01-01

    Visuo-attentional deficits occur early in Alzheimer's disease (AD) and are considered more responsive to pro-cholinergic therapy than characteristic memory disturbances. We hypothesised that neural responses in AD during visual attentional processing would be impaired relative to controls, yet partially susceptible to improvement with cholinesterase inhibition. We studied 16 mild AD patients and 17 age-matched healthy controls, using fMRI-scanning to enable within-subject placebo-controlled comparisons of the effects of physostigmine on stimulus- and attention-related brain activations, and to allow between-group comparisons for these. Subjects viewed stimuli comprising faces or buildings while performing a shallow judgement (colour of image) or a deep judgement (young/old age of depicted face or building). Behaviourally, AD subjects performed poorer than controls in both tasks, while physostigmine benefited AD patients for the more demanding age-judgement task. Stimulus-selective (face minus building, and vice versa) BOLD signals in precuneus and posterior parahippocampal cortex were attenuated in AD relative to controls but increased following physostigmine. By contrast, face-selective responses in fusiform cortex were not impaired in AD and showed decreases following physostigmine for both groups. Task-dependent responses in right parietal and prefrontal cortices were diminished in AD but improved following physostigmine. A similar pattern of group and treatment effects was observed in two extrastriate cortical regions that showed enhanced stimulus-selectivity for the deep versus shallow task. Finally, for the healthy group, physostigmine decreased task-dependent effects, partly due to an exaggeration of selectivity during the shallow relative to deep task. Our results demonstrate cholinergic-mediated improvements for both stimulus- and attention-dependent responses in functionally affected extrastriate and frontoparietal regions for AD. We also show that normal

  5. Brain Responses to Smoking Cues Differ Based on Nicotine Metabolism Rate

    PubMed Central

    Falcone, Mary; Cao, Wen; Bernardo, Leah; Tyndale, Rachel F; Loughead, James; Lerman, Caryn

    2017-01-01

    Background Inherited differences in the rate of metabolism of nicotine, the addictive chemical in tobacco, affect smoking behavior and quitting success. The nicotine metabolite ratio (NMR, 3′-hydroxycotinine/cotinine) is a reliable measure of nicotine clearance, and a well validated predictive biomarker of response to pharmacotherapy. To clarify the mechanisms underlying these associations, we investigated the neural responses to smoking cues in normal and slow nicotine metabolizers. Methods Sixty-nine treatment-seeking smokers (30 slow, 39 normal metabolizers) completed a visual cue reactivity task during functional magnetic resonance imaging on two separate occasions: once during smoking satiety and once following 24 hours of smoking abstinence. Results In whole brain analysis, normal (compared to slow) metabolizers exhibited heightened abstinence-induced neural responses to smoking cues in the left caudate, left inferior frontal gyrus, and left frontal pole. These effects were even more pronounced when extreme groups of slow and normal metabolizers were examined. Greater activation in the left caudate and left frontal pole was associated with abstinence-induced subjective cravings to smoke. Conclusion Inherited differences in rate of nicotine elimination may drive neural responses to smoking cues during early abstinence, providing a plausible mechanism to explain differences in smoking behaviors and response to cessation treatment. Normal metabolizers may benefit from adjunctive behavioral smoking cessation treatments, such as cue exposure therapy. PMID:26805583

  6. Multisensory stimuli elicit altered oscillatory brain responses at gamma frequencies in patients with schizophrenia

    PubMed Central

    Stone, David B.; Coffman, Brian A.; Bustillo, Juan R.; Aine, Cheryl J.; Stephen, Julia M.

    2014-01-01

    Deficits in auditory and visual unisensory responses are well documented in patients with schizophrenia; however, potential abnormalities elicited from multisensory audio-visual stimuli are less understood. Further, schizophrenia patients have shown abnormal patterns in task-related and task-independent oscillatory brain activity, particularly in the gamma frequency band. We examined oscillatory responses to basic unisensory and multisensory stimuli in schizophrenia patients (N = 46) and healthy controls (N = 57) using magnetoencephalography (MEG). Time-frequency decomposition was performed to determine regions of significant changes in gamma band power by group in response to unisensory and multisensory stimuli relative to baseline levels. Results showed significant behavioral differences between groups in response to unisensory and multisensory stimuli. In addition, time-frequency analysis revealed significant decreases and increases in gamma-band power in schizophrenia patients relative to healthy controls, which emerged both early and late over both sensory and frontal regions in response to unisensory and multisensory stimuli. Unisensory gamma-band power predicted multisensory gamma-band power differently by group. Furthermore, gamma-band power in these regions predicted performance in select measures of the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) test battery differently by group. These results reveal a unique pattern of task-related gamma-band power in schizophrenia patients relative to controls that may indicate reduced inhibition in combination with impaired oscillatory mechanisms in patients with schizophrenia. PMID:25414652

  7. Brain Responses to Smoking Cues Differ Based on Nicotine Metabolism Rate.

    PubMed

    Falcone, Mary; Cao, Wen; Bernardo, Leah; Tyndale, Rachel F; Loughead, James; Lerman, Caryn

    2016-08-01

    Inherited differences in the rate of metabolism of nicotine, the addictive chemical in tobacco, affect smoking behavior and quitting success. The nicotine metabolite ratio (3'-hydroxycotinine/cotinine) is a reliable measure of nicotine clearance and a well-validated predictive biomarker of response to pharmacotherapy. To clarify the mechanisms underlying these associations, we investigated the neural responses to smoking cues in normal and slow nicotine metabolizers. Treatment-seeking smokers (N = 69; 30 slow metabolizers and 39 normal metabolizers) completed a visual cue reactivity task during functional magnetic resonance imaging on two separate occasions: once during smoking satiety and once after 24 hours of smoking abstinence. In whole-brain analysis, normal (compared with slow) metabolizers exhibited heightened abstinence-induced neural responses to smoking cues in the left caudate, left inferior frontal gyrus, and left frontal pole. These effects were more pronounced when extreme groups of slow and normal metabolizers were examined. Greater activation in the left caudate and left frontal pole was associated with abstinence-induced subjective cravings to smoke. Inherited differences in rate of nicotine elimination may drive neural responses to smoking cues during early abstinence, providing a plausible mechanism to explain differences in smoking behaviors and response to cessation treatment. Normal metabolizers may benefit from adjunctive behavioral smoking cessation treatments, such as cue exposure therapy. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Galectin-3 released in response to traumatic brain injury acts as an alarmin orchestrating brain immune response and promoting neurodegeneration

    PubMed Central

    Yip, Ping Kei; Carrillo-Jimenez, Alejandro; King, Paul; Vilalta, Anna; Nomura, Koji; Chau, Chi Cheng; Egerton, Alexander Michael Scott; Liu, Zhuo-Hao; Shetty, Ashray Jayaram; Tremoleda, Jordi L.; Davies, Meirion; Deierborg, Tomas; Priestley, John V.; Brown, Guy Charles; Michael-Titus, Adina Teodora; Venero, Jose Luis; Burguillos, Miguel Angel

    2017-01-01

    Traumatic brain injury (TBI) is currently a major cause of morbidity and poor quality of life in Western society, with an estimate of 2.5 million people affected per year in Europe, indicating the need for advances in TBI treatment. Within the first 24 h after TBI, several inflammatory response factors become upregulated, including the lectin galectin-3. In this study, using a controlled cortical impact (CCI) model of head injury, we show a large increase in the expression of galectin-3 in microglia and also an increase in the released form of galectin-3 in the cerebrospinal fluid (CSF) 24 h after head injury. We report that galectin-3 can bind to TLR-4, and that administration of a neutralizing antibody against galectin-3 decreases the expression of IL-1β, IL-6, TNFα and NOS2 and promotes neuroprotection in the cortical and hippocampal cell populations after head injury. Long-term analysis demonstrated a significant neuroprotection in the cortical region in the galectin-3 knockout animals in response to TBI. These results suggest that following head trauma, released galectin-3 may act as an alarmin, binding, among other proteins, to TLR-4 and promoting inflammation and neuronal loss. Taking all together, galectin-3 emerges as a clinically relevant target for TBI therapy. PMID:28128358

  9. Early stage response problem for post-disaster incidents

    NASA Astrophysics Data System (ADS)

    Kim, Sungwoo; Shin, Youngchul; Lee, Gyu M.; Moon, Ilkyeong

    2018-07-01

    Research on evacuation plans for reducing damages and casualties has been conducted to advise defenders against threats. However, despite the attention given to the research in the past, emergency response management, designed to neutralize hazards, has been undermined since planners frequently fail to apprehend the complexities and contexts of the emergency situation. Therefore, this study considers a response problem with unique characteristics for the duration of the emergency. An early stage response problem is identified to find the optimal routing and scheduling plan for responders to prevent further hazards. Due to the complexity of the proposed mathematical model, two algorithms are developed. Data from a high-rise building, called Central City in Seoul, Korea, are used to evaluate the algorithms. Results show that the proposed algorithms can procure near-optimal solutions within a reasonable time.

  10. The brain responses to different frequencies of binaural beat sounds on QEEG at cortical level.

    PubMed

    Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan

    2015-01-01

    Beat phenomenon is occurred when two slightly different frequency waves interfere each other. The beat can also occur in the brain by providing two slightly different frequency waves separately each ear. This is called binaural beat. The brain responses to binaural beat are in discussion process whether the brain side and the brain area. Therefore, this study aims to figure out the brain responses to binaural beat by providing different binaural beat frequencies on 250 carrier tone continuously for 30 minutes to participants and using quantitative electroencephalography (QEEG) to interpret the data. The result shows that different responses appear in different beat frequency. Left hemisphere dominance occur in 3 Hz beat within 15 minutes and 15 Hz beat within 5 minutes. Right hemisphere dominance occurs in 10 Hz beat within 25 minute. 6 Hz beat enhances all area of the brain within 10 minutes. 8 Hz and 25 Hz beats have no clearly responses while 40 Hz beat enhances the responses in frontal lobe. These brain responses can be used for brain modulation application to induce the brain activity in further studies.

  11. Early prediction of blonanserin response in Japanese patients with schizophrenia.

    PubMed

    Kishi, Taro; Matsuda, Yuki; Fujita, Kiyoshi; Iwata, Nakao

    2014-01-01

    Blonanserin is a second-generation antipsychotic used for the treatment of schizophrenia in Japan and Korea. The present study aimed to examine early prediction of blonanserin in patients with schizophrenia. An 8-week, prospective, single-arm, flexible-dose clinical trial of blonanserin in patients with schizophrenia was conducted under real-world conditions. The inclusion criteria were antipsychotic naïve, and first-episode schizophrenia patients or schizophrenia patients with no consumption of any antipsychotic medication for more than 4 weeks before enrollment in this study. The positive predictive value, negative predictive value, sensitivity, specificity, and predictive power were calculated for the response status at week 4 to predict the subsequent response at week 8. Thirty-seven patients were recruited (56.8% of them had first-episode schizophrenia), and 28 (75.7%) completed the trial. At week 8, blonanserin was associated with a significant improvement in the Positive and Negative Syndrome Scale (PANSS) total score (P<0.0001) and in positive (P<0.0001), negative (P<0.0001), and general subscale scores (P<0.0001). In terms of percentage improvement of PANSS total scores from baseline to week 8, 64.9% of patients showed a ≥20% reduction in the PANSS total score and 48.6% showed a ≥30% reduction. However, 8.1% of patients experienced at least one adverse event. Using the 20% reduction in the PANSS total score at week 4 as a definition of an early response, the negative predictive values for later responses (ie, reductions of ≥30 and ≥40 in the PANSS total scores) were 88.9% and 94.1%, respectively. The specificities were 80.0% and 51.6%, respectively. Our results suggest that the blonanserin response at week 4 could predict the later response at week 8.

  12. Early prediction of blonanserin response in Japanese patients with schizophrenia

    PubMed Central

    Kishi, Taro; Matsuda, Yuki; Fujita, Kiyoshi; Iwata, Nakao

    2014-01-01

    Background Blonanserin is a second-generation antipsychotic used for the treatment of schizophrenia in Japan and Korea. The present study aimed to examine early prediction of blonanserin in patients with schizophrenia. Methods An 8-week, prospective, single-arm, flexible-dose clinical trial of blonanserin in patients with schizophrenia was conducted under real-world conditions. The inclusion criteria were antipsychotic naïve, and first-episode schizophrenia patients or schizophrenia patients with no consumption of any antipsychotic medication for more than 4 weeks before enrollment in this study. The positive predictive value, negative predictive value, sensitivity, specificity, and predictive power were calculated for the response status at week 4 to predict the subsequent response at week 8. Results Thirty-seven patients were recruited (56.8% of them had first-episode schizophrenia), and 28 (75.7%) completed the trial. At week 8, blonanserin was associated with a significant improvement in the Positive and Negative Syndrome Scale (PANSS) total score (P<0.0001) and in positive (P<0.0001), negative (P<0.0001), and general subscale scores (P<0.0001). In terms of percentage improvement of PANSS total scores from baseline to week 8, 64.9% of patients showed a ≥20% reduction in the PANSS total score and 48.6% showed a ≥30% reduction. However, 8.1% of patients experienced at least one adverse event. Using the 20% reduction in the PANSS total score at week 4 as a definition of an early response, the negative predictive values for later responses (ie, reductions of ≥30 and ≥40 in the PANSS total scores) were 88.9% and 94.1%, respectively. The specificities were 80.0% and 51.6%, respectively. Conclusion Our results suggest that the blonanserin response at week 4 could predict the later response at week 8. PMID:25285009

  13. Temperament and Parenting Styles in Early Childhood Differentially Influence Neural Response to Peer Evaluation in Adolescence.

    PubMed

    Guyer, Amanda E; Jarcho, Johanna M; Pérez-Edgar, Koraly; Degnan, Kathryn A; Pine, Daniel S; Fox, Nathan A; Nelson, Eric E

    2015-07-01

    Behavioral inhibition (BI) is a temperament characterized by social reticence and withdrawal from unfamiliar or novel contexts and conveys risk for social anxiety disorder. Developmental outcomes associated with this temperament can be influenced by children's caregiving context. The convergence of a child's temperamental disposition and rearing environment is ultimately expressed at both the behavioral and neural levels in emotional and cognitive response patterns to social challenges. The present study used functional neuroimaging to assess the moderating effects of different parenting styles on neural response to peer rejection in two groups of adolescents characterized by their early childhood temperament (M(age) = 17.89 years, N = 39, 17 males, 22 females; 18 with BI; 21 without BI). The moderating effects of authoritarian and authoritative parenting styles were examined in three brain regions linked with social anxiety: ventrolateral prefrontal cortex (vlPFC), striatum, and amygdala. In youth characterized with BI in childhood, but not in those without BI, diminished responses to peer rejection in vlPFC were associated with higher levels of authoritarian parenting. In contrast, all youth showed decreased caudate response to peer rejection at higher levels of authoritative parenting. These findings indicate that BI in early life relates to greater neurobiological sensitivity to variance in parenting styles, particularly harsh parenting, in late adolescence. These results are discussed in relation to biopsychosocial models of development.

  14. Temperament and Parenting Styles in Early Childhood Differentially Influence Neural Response to Peer Evaluation in Adolescence

    PubMed Central

    Guyer, Amanda E.; Jarcho, Johanna M.; Pérez-Edgar, Koraly; Degnan, Kathryn A.; Pine, Daniel S.; Fox, Nathan A.; Nelson, Eric E.

    2015-01-01

    Behavioral inhibition (BI) is a temperament characterized by social reticence and withdrawal from unfamiliar or novel contexts and conveys risk for social anxiety disorder. Developmental outcomes associated with this temperament can be influenced by children’s caregiving context. The convergence of a child’s temperamental disposition and rearing environment is ultimately expressed at both the behavioral and neural levels in emotional and cognitive response patterns to social challenges. The present study used functional neuroimaging to assess the moderating effects of different parenting styles on neural response to peer rejection in two groups of adolescents characterized by their early childhood temperament (Mage = 17.89 years, N= 39, 17 males, 22 females; 18 with BI; 21 without BI). The moderating effects of authoritarian and authoritative parenting styles were examined in three brain regions linked with social anxiety: ventrolateral prefrontal cortex (vlPFC), striatum, and amygdala. In youth characterized with BI in childhood, but not in those without BI, diminished responses to peer rejection in vlPFC were associated with higher levels of authoritarian parenting. In contrast, all youth showed decreased caudate response to peer rejection at higher levels of authoritative parenting. These findings indicate that BI in early life relates to greater neurobiological sensitivity to variance in parenting styles, particularly harsh parenting, in late adolescence. These results are discussed in relation to biopsychosocial models of development. PMID:25588884

  15. Early (N170/M170) Face-Sensitivity Despite Right Lateral Occipital Brain Damage in Acquired Prosopagnosia

    PubMed Central

    Prieto, Esther Alonso; Caharel, Stéphanie; Henson, Richard; Rossion, Bruno

    2011-01-01

    Compared to objects, pictures of faces elicit a larger early electromagnetic response at occipito-temporal sites on the human scalp, with an onset of 130 ms and a peak at about 170 ms. This N170 face effect is larger in the right than the left hemisphere and has been associated with the early categorization of the stimulus as a face. Here we tested whether this effect can be observed in the absence of some of the visual areas showing a preferential response to faces as typically identified in neuroimaging. Event-related potentials were recorded in response to faces, cars, and their phase-scrambled versions in a well-known brain-damaged case of prosopagnosia (PS). Despite the patient’s right inferior occipital gyrus lesion encompassing the most posterior cortical area showing preferential response to faces (“occipital face area”), we identified an early face-sensitive component over the right occipito-temporal hemisphere of the patient that was identified as the N170. A second experiment supported this conclusion, showing the typical N170 increase of latency and amplitude in response to inverted faces. In contrast, there was no N170 in the left hemisphere, where PS has a lesion to the middle fusiform gyrus and shows no evidence of face-preferential response in neuroimaging (no left “fusiform face area”). These results were replicated by a magnetoencephalographic investigation of the patient, disclosing a M170 component only in the right hemisphere. These observations indicate that face-preferential activation in the inferior occipital cortex is not necessary to elicit early visual responses associated with face perception (N170/M170) on the human scalp. These results further suggest that when the right inferior occipital cortex is damaged, the integrity of the middle fusiform gyrus and/or the superior temporal sulcus – two areas showing face-preferential responses in the patient’s right hemisphere – might be necessary to generate the N170 effect

  16. Connecting Brian Cambourne's Conditions of Learning Theory to Brain/Mind Principles: Implications for Early Childhood Educators.

    ERIC Educational Resources Information Center

    Rushton, Stephen P.; Eitelgeorge, Janice; Zickafoose, Ruby

    2003-01-01

    Relates each of the eight conditions of learning in Brian Cambourne's theory of literacy to findings in brain research within a constructivist approach to early childhood education. Cites sample classroom dialogues demonstrating classroom elements that foster a brain-based, developmentally appropriate learning environment supporting Cambourne's…

  17. The mating brain: early maturing sneaker males maintain investment into the brain also under fast body growth in Atlantic salmon (Salmo salar).

    PubMed

    Kotrschal, Alexander; Trombley, Susanne; Rogell, Björn; Brannström, Ioana; Foconi, Eric; Schmitz, Monika; Kolm, Niclas

    It has been suggested that mating behaviours require high levels of cognitive ability. However, since investment into mating and the brain both are costly features, their relationship is likely characterized by energetic trade-offs. Empirical data on the subject remains equivocal. We investigated if early sexual maturation was associated with brain development in Atlantic salmon ( Salmo salar ), in which males can either stay in the river and sexually mature at a small size (sneaker males) or migrate to the sea and delay sexual maturation until they have grown much larger (anadromous males). Specifically, we tested how sexual maturation may induce plastic changes in brain development by rearing juveniles on either natural or ad libitum feeding levels. After their first season we compared brain size and brain region volumes across both types of male mating tactics and females. Body growth increased greatly across both male mating tactics and females during ad libitum feeding as compared to natural feeding levels. However, despite similar relative increases in body size, early maturing sneaker males maintained larger relative brain size during ad libitum feeding levels as compared to anadromous males and females. We also detected several differences in the relative size of separate brain regions across feeding treatments, sexes and mating strategies. For instance, the relative size of the cognitive centre of the brain, the telencephalon, was largest in sneaker males. Our data support that a large relative brain size is maintained in individuals that start reproduction early also during fast body growth. We propose that the cognitive demands during complex mating behaviours maintain a high level of investment into brain development in reproducing individuals.

  18. Istanbul Earthquake Early Warning and Rapid Response System

    NASA Astrophysics Data System (ADS)

    Erdik, M. O.; Fahjan, Y.; Ozel, O.; Alcik, H.; Aydin, M.; Gul, M.

    2003-12-01

    As part of the preparations for the future earthquake in Istanbul a Rapid Response and Early Warning system in the metropolitan area is in operation. For the Early Warning system ten strong motion stations were installed as close as possible to the fault zone. Continuous on-line data from these stations via digital radio modem provide early warning for potentially disastrous earthquakes. Considering the complexity of fault rupture and the short fault distances involved, a simple and robust Early Warning algorithm, based on the exceedance of specified threshold time domain amplitude levels is implemented. The band-pass filtered accelerations and the cumulative absolute velocity (CAV) are compared with specified threshold levels. When any acceleration or CAV (on any channel) in a given station exceeds specific threshold values it is considered a vote. Whenever we have 2 station votes within selectable time interval, after the first vote, the first alarm is declared. In order to specify the appropriate threshold levels a data set of near field strong ground motions records form Turkey and the world has been analyzed. Correlations among these thresholds in terms of the epicenter distance the magnitude of the earthquake have been studied. The encrypted early warning signals will be communicated to the respective end users by UHF systems through a "service provider" company. The users of the early warning signal will be power and gas companies, nuclear research facilities, critical chemical factories, subway system and several high-rise buildings. Depending on the location of the earthquake (initiation of fault rupture) and the recipient facility the alarm time can be as high as about 8s. For the rapid response system one hundred 18 bit-resolution strong motion accelerometers were placed in quasi-free field locations (basement of small buildings) in the populated areas of the city, within an area of approximately 50x30km, to constitute a network that will enable early

  19. Peromyscus leucopus mouse brain transcriptome response to Powassan virus infection.

    PubMed

    Mlera, Luwanika; Meade-White, Kimberly; Dahlstrom, Eric; Baur, Rachel; Kanakabandi, Kishore; Virtaneva, Kimmo; Porcella, Stephen F; Bloom, Marshall E

    2018-02-01

    Powassan virus (POWV) is a tick-borne Flavivirus responsible for life-threatening encephalitis in North America and some regions of Russia. The ticks that have been reported to transmit the virus belong to the Ixodes species, and they feed on small-to-medium-sized mammals, such as Peromyscus leucopus mice, skunks, and woodchucks. We previously developed a P. leucopus mouse model of POWV infection, and the model is characterized by a lack of clinical signs of disease following intraperitoneal or intracranial inoculation. However, intracranial inoculation results in mild subclinical encephalitis from 5 days post infection (dpi), but the encephalitis resolves by 28 dpi. We used RNA sequencing to profile the P. leucopus mouse brain transcriptome at different time points after intracranial challenge with POWV. At 24 h post infection, 42 genes were significantly differentially expressed and the number peaked to 232 at 7 dpi before declining to 31 at 28 dpi. Using Ingenuity Pathway Analysis, we determined that the genes that were significantly expressed from 1 to 15 dpi were mainly associated with interferon signaling. As a result, many interferon-stimulated genes (ISGs) were upregulated. Some of the ISGs include an array of TRIMs (genes encoding tripartite motif proteins). These results will be useful for the identification of POWV restriction factors.

  20. Early functional and morphological brain disturbances in late-onset intrauterine growth restriction.

    PubMed

    Starčević, Mirta; Predojević, Maja; Butorac, Dražan; Tumbri, Jasna; Konjevoda, Paško; Kadić, Aida Salihagić

    2016-02-01

    To determine whether the brain disturbances develop in late-onset intrauterine growth restriction (IUGR) before blood flow redistribution towards the fetal brain (detected by Doppler measurements in the middle cerebral artery and umbilical artery). Further, to evaluate predictive values of Doppler arterial indices and umbilical cord blood gases and pH for early functional and/or morphological brain disturbances in late-onset IUGR. This cohort study included 60 singleton term pregnancies with placental insufficiency caused late-onset IUGR (IUGR occurring after 34 gestational weeks). Umbilical artery resistance index (URI), middle cerebral artery resistance index (CRI), and cerebroumbilical (C/U) ratio (CRI/URI) were monitored once weekly. Umbilical blood cord samples (arterial and venous) were collected for the analysis of pO2, pCO2 and pH. Morphological neurological outcome was evaluated by cranial ultrasound (cUS), whereas functional neurological outcome by Amiel-Tison Neurological Assessment at Term (ATNAT). 50 fetuses had C/U ratio>1, and 10 had C/U ratio≤1; among these 10 fetuses, 9 had abnormal neonatal cUS findings and all 10 had non-optimal ATNAT. However, the total number of abnormal neurological findings was much higher. 32 neonates had abnormal cUS (53.37%), and 42 (70.00%) had non-optimal ATNAT. Furthermore, Doppler indices had higher predictive validity for early brain disturbances than umbilical cord blood gases and pH. C/U ratio had the highest predictive validity with threshold for adverse neurological outcome at value 1.13 (ROC analysis), i.e., 1.18 (party machine learning algorithm). Adverse neurological outcome at average values of C/U ratios>1 confirmed that early functional and/or structural brain disturbances in late-onset IUGR develop even before activation of fetal cardiovascular compensatory mechanisms, i.e., before Doppler signs of blood flow redistribution between the fetal brain and the placenta. Copyright © 2015 Elsevier Ireland Ltd

  1. A functional requirement for astroglia in promoting blood vessel development in the early postnatal brain.

    PubMed

    Ma, Shang; Kwon, Hyo Jun; Huang, Zhen

    2012-01-01

    Astroglia are a major cell type in the brain and play a key role in many aspects of brain development and function. In the adult brain, astrocytes are known to intimately ensheath blood vessels and actively coordinate local neural activity and blood flow. During development of the neural retina, blood vessel growth follows a meshwork of astrocytic processes. Several genes have also been implicated in retinal astrocytes for regulating vessel development. This suggests a role of astrocytes in promoting angiogenesis throughout the central nervous system. To determine the roles that astrocytes may play during brain angiogenesis, we employ genetic approaches to inhibit astrogliogenesis during perinatal corticogenesis and examine its effects on brain vessel development. We find that conditional deletion from glial progenitors of orc3, a gene required for DNA replication, dramatically reduces glial progenitor cell number in the subventricular zone and astrocytes in the early postnatal cerebral cortex. This, in turn, results in severe reductions in both the density and branching frequency of cortical blood vessels. Consistent with a delayed growth but not regression of vessels, we find neither significant net decreases in vessel density between different stages after normalizing for cortical expansion nor obvious apoptosis of endothelial cells in these mutants. Furthermore, concomitant with loss of astroglial interactions, we find increased endothelial cell proliferation, enlarged vessel luminal size as well as enhanced cytoskeletal gene expression in pericytes, which suggests compensatory changes in vascular cells. Lastly, we find that blood vessel morphology in mutant cortices recovers substantially at later stages, following astrogliosis. These results thus implicate a functional requirement for astroglia in promoting blood vessel growth during brain development.

  2. Early brain enlargement and elevated extra-axial fluid in infants who develop autism spectrum disorder.

    PubMed

    Shen, Mark D; Nordahl, Christine W; Young, Gregory S; Wootton-Gorges, Sandra L; Lee, Aaron; Liston, Sarah E; Harrington, Kayla R; Ozonoff, Sally; Amaral, David G

    2013-09-01

    Prospective studies of infants at risk for autism spectrum disorder have provided important clues about the early behavioural symptoms of autism spectrum disorder. Diagnosis of autism spectrum disorder, however, is not currently made until at least 18 months of age. There is substantially less research on potential brain-based differences in the period between 6 and 12 months of age. Our objective in the current study was to use magnetic resonance imaging to identify any consistently observable brain anomalies in 6-9 month old infants who would later develop autism spectrum disorder. We conducted a prospective infant sibling study with longitudinal magnetic resonance imaging scans at three time points (6-9, 12-15, and 18-24 months of age), in conjunction with intensive behavioural assessments. Fifty-five infants (33 'high-risk' infants having an older sibling with autism spectrum disorder and 22 'low-risk' infants having no relatives with autism spectrum disorder) were imaged at 6-9 months; 43 of these (27 high-risk and 16 low-risk) were imaged at 12-15 months; and 42 (26 high-risk and 16 low-risk) were imaged again at 18-24 months. Infants were classified as meeting criteria for autism spectrum disorder, other developmental delays, or typical development at 24 months or later (mean age at outcome: 32.5 months). Compared with the other two groups, infants who developed autism spectrum disorder (n = 10) had significantly greater extra-axial fluid at 6-9 months, which persisted and remained elevated at 12-15 and 18-24 months. Extra-axial fluid is characterized by excessive cerebrospinal fluid in the subarachnoid space, particularly over the frontal lobes. The amount of extra-axial fluid detected as early as 6 months was predictive of more severe autism spectrum disorder symptoms at the time of outcome. Infants who developed autism spectrum disorder also had significantly larger total cerebral volumes at both 12-15 and 18-24 months of age. This is the first magnetic

  3. Effects of Early Life Stress on Depression, Cognitive Performance, and Brain Morphology

    PubMed Central

    Saleh, Ayman; Potter, Guy G.; McQuoid, Douglas R.; Boyd, Brian; Turner, Rachel; MacFall, James R; Taylor, Warren D.

    2016-01-01

    Background Childhood early life stress (ELS) increases risk of adulthood Major Depressive Disorder (MDD) and is associated with altered brain structure and function. It is unclear whether specific ELSs affect depression risk, cognitive function and brain structure. Methods This cross-sectional study included 64 antidepressant-free depressed and 65 never depressed individuals. Both groups reported a range of ELSs on the Early Life Stress Questionnaire, completed neuropsychological testing and 3T MRI. Neuropsychological testing assessed domains of episodic memory, working memory, processing speed and executive function. MRI measures included cortical thickness and regional gray matter volumes, with a priori focus on cingulate cortex, orbitofrontal cortex (OFC), amygdala, caudate and hippocampus. Results Of 19 ELSs, only emotional abuse, sexual abuse and severe family conflict independently predicted adulthood MDD diagnosis. The effect of total ELS score differed between groups. Greater ELS exposure was associated with slower processing speed and smaller OFC volumes in depressed subjects, but faster speed and larger volumes in nondepressed subjects. In contrast, exposure to ELSs predictive of depression had similar effects in both diagnostic groups. Individuals reporting predictive ELSs exhibited poorer processing speed and working memory performance, smaller volumes of the lateral OFC and caudate, and decreased cortical thickness in multiple areas including the insula bilaterally. Predictive ELS exposure was also associated with smaller left hippocampal volume in depressed subjects. Conclusion Findings suggest an association between childhood trauma exposure and adulthood cognitive function and brain structure. These relationships appear to differ between individuals who do and do not develop depression. PMID:27682320

  4. Early human speciation, brain expansion and dispersal influenced by African climate pulses.

    PubMed

    Shultz, Susanne; Maslin, Mark

    2013-01-01

    Early human evolution is characterised by pulsed speciation and dispersal events that cannot be explained fully by global or continental paleoclimate records. We propose that the collated record of ephemeral East African Rift System (EARS) lakes could be a proxy for the regional paleoclimate conditions experienced by early hominins. Here we show that the presence of these lakes is associated with low levels of dust deposition in both West African and Mediterranean records, but is not associated with long-term global cooling and aridification of East Africa. Hominin expansion and diversification seem to be associated with climate pulses characterized by the precession-forced appearance and disappearance of deep EARS lakes. The most profound period for hominin evolution occurs at about 1.9 Ma; with the highest recorded diversity of hominin species, the appearance of Homo (sensu stricto) and major dispersal events out of East Africa into Eurasia. During this period, ephemeral deep-freshwater lakes appeared along the whole length of the EARS, fundamentally changing the local environment. The relationship between the local environment and hominin brain expansion is less clear. The major step-wise expansion in brain size around 1.9 Ma when Homo appeared was coeval with the occurrence of ephemeral deep lakes. Subsequent incremental increases in brain size are associated with dry periods with few if any lakes. Plio-Pleistocene East African climate pulses as evinced by the paleo-lake records seem, therefore, fundamental to hominin speciation, encephalisation and migration.

  5. Early Human Speciation, Brain Expansion and Dispersal Influenced by African Climate Pulses

    PubMed Central

    Shultz, Susanne; Maslin, Mark

    2013-01-01

    Early human evolution is characterised by pulsed speciation and dispersal events that cannot be explained fully by global or continental paleoclimate records. We propose that the collated record of ephemeral East African Rift System (EARS) lakes could be a proxy for the regional paleoclimate conditions experienced by early hominins. Here we show that the presence of these lakes is associated with low levels of dust deposition in both West African and Mediterranean records, but is not associated with long-term global cooling and aridification of East Africa. Hominin expansion and diversification seem to be associated with climate pulses characterized by the precession-forced appearance and disappearance of deep EARS lakes. The most profound period for hominin evolution occurs at about 1.9 Ma; with the highest recorded diversity of hominin species, the appearance of Homo (sensu stricto) and major dispersal events out of East Africa into Eurasia. During this period, ephemeral deep-freshwater lakes appeared along the whole length of the EARS, fundamentally changing the local environment. The relationship between the local environment and hominin brain expansion is less clear. The major step-wise expansion in brain size around 1.9 Ma when Homo appeared was coeval with the occurrence of ephemeral deep lakes. Subsequent incremental increases in brain size are associated with dry periods with few if any lakes. Plio-Pleistocene East African climate pulses as evinced by the paleo-lake records seem, therefore, fundamental to hominin speciation, encephalisation and migration. PMID:24146922

  6. Hemoglobin phase of oxygenation and deoxygenation in early brain development measured using fNIRS

    PubMed Central

    Watanabe, Hama; Shitara, Yoshihiko; Aoki, Yoshinori; Inoue, Takanobu; Tsuchida, Shinya; Takahashi, Naoto; Taga, Gentaro

    2017-01-01

    A crucial issue in neonatal medicine is the impact of preterm birth on the developmental trajectory of the brain. Although a growing number of studies have shown alterations in the structure and function of the brain in preterm-born infants, we propose a method to detect subtle differences in neurovascular and metabolic functions in neonates and infants. Functional near-infrared spectroscopy (fNIRS) was used to obtain time-averaged phase differences between spontaneous low-frequency (less than 0.1 Hz) oscillatory changes in oxygenated hemoglobin (oxy-Hb) and those in deoxygenated hemoglobin (deoxy-Hb). This phase difference was referred to as hemoglobin phase of oxygenation and deoxygenation (hPod) in the cerebral tissue of sleeping neonates and infants. We examined hPod in term, late preterm, and early preterm infants with no evidence of clinical issues and found that all groups of infants showed developmental changes in the values of hPod from an in-phase to an antiphase pattern. Comparison of hPod among the groups revealed that developmental changes in hPod in early preterm infants precede those in late preterm and term infants at term equivalent age but then, progress at a slower pace. This study suggests that hPod measured using fNIRS is sensitive to the developmental stage of the integration of circular, neurovascular, and metabolic functions in the brains of neonates and infants. PMID:28196885

  7. Automated brain computed tomographic densitometry of early ischemic changes in acute stroke

    PubMed Central

    Stoel, Berend C.; Marquering, Henk A.; Staring, Marius; Beenen, Ludo F.; Slump, Cornelis H.; Roos, Yvo B.; Majoie, Charles B.

    2015-01-01

    Abstract. The Alberta Stroke Program Early CT score (ASPECTS) scoring method is frequently used for quantifying early ischemic changes (EICs) in patients with acute ischemic stroke in clinical studies. Varying interobserver agreement has been reported, however, with limited agreement. Therefore, our goal was to develop and evaluate an automated brain densitometric method. It divides CT scans of the brain into ASPECTS regions using atlas-based segmentation. EICs are quantified by comparing the brain density between contralateral sides. This method was optimized and validated using CT data from 10 and 63 patients, respectively. The automated method was validated against manual ASPECTS, stroke severity at baseline and clinical outcome after 7 to 10 days (NIH Stroke Scale, NIHSS) and 3 months (modified Rankin Scale). Manual and automated ASPECTS showed similar and statistically significant correlations with baseline NIHSS (R=−0.399 and −0.277, respectively) and with follow-up mRS (R=−0.256 and −0.272), except for the follow-up NIHSS. Agreement between automated and consensus ASPECTS reading was similar to the interobserver agreement of manual ASPECTS (differences <1 point in 73% of cases). The automated ASPECTS method could, therefore, be used as a supplementary tool to assist manual scoring. PMID:26158082

  8. The brain parenchyma has a type I interferon response that can limit virus spread.

    PubMed

    Drokhlyansky, Eugene; Göz Aytürk, Didem; Soh, Timothy K; Chrenek, Ryan; O'Loughlin, Elaine; Madore, Charlotte; Butovsky, Oleg; Cepko, Constance L

    2017-01-03

    The brain has a tightly regulated environment that protects neurons and limits inflammation, designated "immune privilege." However, there is not an absolute lack of an immune response. We tested the ability of the brain to initiate an innate immune response to a virus, which was directly injected into the brain parenchyma, and to determine whether this response could limit viral spread. We injected vesicular stomatitis virus (VSV), a transsynaptic tracer, or naturally occurring VSV-derived defective interfering particles (DIPs), into the caudate-putamen (CP) and scored for an innate immune response and inhibition of virus spread. We found that the brain parenchyma has a functional type I interferon (IFN) response that can limit VSV spread at both the inoculation site and among synaptically connected neurons. Furthermore, we characterized the response of microglia to VSV infection and found that infected microglia produced type I IFN and uninfected microglia induced an innate immune response following virus injection.

  9. Early-life inflammation, immune response and ageing.

    PubMed

    Khan, Imroze; Agashe, Deepa; Rolff, Jens

    2017-03-15

    Age-related diseases are often attributed to immunopathology, which results in self-damage caused by an inappropriate inflammatory response. Immunopathology associated with early-life inflammation also appears to cause faster ageing, although we lack direct experimental evidence for this association. To understand the interactions between ageing, inflammation and immunopathology, we used the mealworm beetle Tenebrio molitor as a study organism. We hypothesized that phenoloxidase, an important immune effector in insect defence, may impose substantial immunopathological costs by causing tissue damage to Malpighian tubules (MTs; functionally equivalent to the human kidney), in turn accelerating ageing. In support of this hypothesis, we found that RNAi knockdown of phenoloxidase (PO) transcripts in young adults possibly reduced inflammation-induced autoreactive tissue damage to MTs, and increased adult lifespan. Our work thus suggests a causative link between immunopathological costs of early-life inflammation and faster ageing. We also reasoned that if natural selection weakens with age, older individuals should display increased immunopathological costs associated with an immune response. Indeed, we found that while old infected individuals cleared infection faster than young individuals, possibly they also displayed exacerbated immunopathological costs (larger decline in MT function) and higher post-infection mortality. RNAi-mediated knockdown of PO response partially rescued MTs function in older beetles and resulted in increased lifespan after infection. Taken together, our data are consistent with a direct role of immunopathological consequences of immune response during ageing in insects. Our work is also the first report that highlights the pervasive role of tissue damage under diverse contexts of ageing and immune response. © 2017 The Author(s).

  10. Early life adversity influences stress response association with smoking relapse.

    PubMed

    al'Absi, Mustafa; Lemieux, Andrine; Westra, Ruth; Allen, Sharon

    2017-11-01

    We examined the hypothesis that stress-related blunting of cortisol in smokers is particularly pronounced in those with a history of severe life adversity. The two aims of this study were first to examine hormonal, craving, and withdrawal symptoms during ad libitum smoking and after the first 24 h of abstinence in smokers who experienced high or low levels of adversity. Second, we sought to examine the relationship between adversity and hypothalamic-pituitary-adrenal (HPA) hormones to predict relapse during the first month of a smoking cessation attempt. Hormonal and self-report measures were collected from 103 smokers (49 women) during ad libitum smoking and after the first 24 h of abstinence. HPA hormones were measured during baseline rest and in response to acute stress in both conditions. All smokers were interested in smoking cessation, and we prospectively used stress response measures to predict relapse during the first 4 weeks of the smoking cessation attempt. The results showed that high adversity was associated with higher distress and smoking withdrawal symptoms. High level of early life adversity was associated with elevated HPA activity, which was found in both salivary and plasma cortisol. Enhanced adrenocorticotropic hormone (ACTH) stress response was evident in high-adversity but not in low-adversity relapsers. This study demonstrated that early life adversity is associated with stress-related HPA responses. The study also demonstrated that, among smokers who experienced a high level of life adversity, heightened ACTH and cortisol responses were linked with increased risk for smoking relapse.

  11. Early-life inflammation, immune response and ageing

    PubMed Central

    2017-01-01

    Age-related diseases are often attributed to immunopathology, which results in self-damage caused by an inappropriate inflammatory response. Immunopathology associated with early-life inflammation also appears to cause faster ageing, although we lack direct experimental evidence for this association. To understand the interactions between ageing, inflammation and immunopathology, we used the mealworm beetle Tenebrio molitor as a study organism. We hypothesized that phenoloxidase, an important immune effector in insect defence, may impose substantial immunopathological costs by causing tissue damage to Malpighian tubules (MTs; functionally equivalent to the human kidney), in turn accelerating ageing. In support of this hypothesis, we found that RNAi knockdown of phenoloxidase (PO) transcripts in young adults possibly reduced inflammation-induced autoreactive tissue damage to MTs, and increased adult lifespan. Our work thus suggests a causative link between immunopathological costs of early-life inflammation and faster ageing. We also reasoned that if natural selection weakens with age, older individuals should display increased immunopathological costs associated with an immune response. Indeed, we found that while old infected individuals cleared infection faster than young individuals, possibly they also displayed exacerbated immunopathological costs (larger decline in MT function) and higher post-infection mortality. RNAi-mediated knockdown of PO response partially rescued MTs function in older beetles and resulted in increased lifespan after infection. Taken together, our data are consistent with a direct role of immunopathological consequences of immune response during ageing in insects. Our work is also the first report that highlights the pervasive role of tissue damage under diverse contexts of ageing and immune response. PMID:28275145

  12. Effects of Unexpected Chords and of Performer's Expression on Brain Responses and Electrodermal Activity

    PubMed Central

    Koelsch, Stefan; Kilches, Simone; Steinbeis, Nikolaus; Schelinski, Stefanie

    2008-01-01

    Background There is lack of neuroscientific studies investigating music processing with naturalistic stimuli, and brain responses to real music are, thus, largely unknown. Methodology/Principal Findings This study investigates event-related brain potentials (ERPs), skin conductance responses (SCRs) and heart rate (HR) elicited by unexpected chords of piano sonatas as they were originally arranged by composers, and as they were played by professional pianists. From the musical excerpts played by the pianists (with emotional expression), we also created versions without variations in tempo and loudness (without musical expression) to investigate effects of musical expression on ERPs and SCRs. Compared to expected chords, unexpected chords elicited an early right anterior negativity (ERAN, reflecting music-syntactic processing) and an N5 (reflecting processing of meaning information) in the ERPs, as well as clear changes in the SCRs (reflecting that unexpected chords also elicited emotional responses). The ERAN was not influenced by emotional expression, whereas N5 potentials elicited by chords in general (regardless of their chord function) differed between the expressive and the non-expressive condition. Conclusions/Significance These results show that the neural mechanisms of music-syntactic processing operate independently of the emotional qualities of a stimulus, justifying the use of stimuli without emotional expression to investigate the cognitive processing of musical structure. Moreover, the data indicate that musical expression affects the neural mechanisms underlying the processing of musical meaning. Our data are the first to reveal influences of musical performance on ERPs and SCRs, and to show physiological responses to unexpected chords in naturalistic music. PMID:18612459

  13. Early Neurodegeneration in the Brain of a Child Without Functional PKR-like Endoplasmic Reticulum Kinase.

    PubMed

    Bruch, Julius; Kurz, Carolin; Vasiljevic, Alexandre; Nicolino, Marc; Arzberger, Thomas; Höglinger, Günter U

    2015-08-01

    We report the first detailed examination of the brain of a patient with Wolcott-Rallison syndrome. Wolcott-Rallison syndrome is an extremely rare clinical manifestation of a lack of protein kinase R-like endoplasmic reticulum kinase (PERK) function caused by mutations in the PERK gene EIF2AK3. Protein kinase R-like endoplasmic reticulum kinase is thought to play a significant pathogenetic role in several neurodegenerative diseases, including Alzheimer disease, other tauopathies, and Parkinson disease. The brain of a male patient aged 4 years 7 months showed pathologic and immunohistochemical evidence that the absence of PERK for several years is sufficient to induce early changes reminiscent of various neurodegenerative conditions. These include neurofibrillary tangles (as in progressive supranuclear palsy), FUS-immunopositive and p62-immunopositive neurons, and reactive glial changes. We also detected an increased amount of p62-positive puncta coimmunostaining for LC3 and ubiquitin, suggesting changes in autophagic flux. Studying a human brain with absent PERK function presents the opportunity to assess the long-term consequences of nonfunctioning of PERK in the presence of all of the compensatory mechanisms that are normally active in a living human, thereby confirming the importance of PERK for autophagy in the brain and for neurodegeneration.

  14. Brain Regions Related to Impulsivity Mediate the Effects of Early Adversity on Antisocial Behavior.

    PubMed

    Mackey, Scott; Chaarani, Bader; Kan, Kees-Jan; Spechler, Philip A; Orr, Catherine; Banaschewski, Tobias; Barker, Gareth; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Cattrell, Anna; Conrod, Patricia J; Desrivières, Sylvane; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Paillère Martinot, Marie-Laure; Artiges, Eric; Nees, Frauke; Papadopoulos-Orfanos, Dimitri; Poustka, Luise; Smolka, Michael N; Jurk, Sarah; Walter, Henrik; Whelan, Robert; Schumann, Gunter; Althoff, Robert R; Garavan, Hugh

    2017-08-15

    Individual differences in impulsivity and early adversity are known to be strong predictors of adolescent antisocial behavior. However, the neurobiological bases of impulsivity and their relation to antisocial behavior and adversity are poorly understood. Impulsivity was estimated with a temporal discounting task. Voxel-based morphometry was used to determine the brain structural correlates of temporal discounting in a large cohort (n = 1830) of 14- to 15-year-old children. Mediation analysis was then used to determine whether the volumes of brain regions associated with temporal discounting mediate the relation between adverse life events (e.g., family conflict, serious accidents) and antisocial behaviors (e.g., precocious sexual activity, bullying, illicit substance use). Greater temporal discounting (more impulsivity) was associated with 1) lower volume in frontomedial cortex and bilateral insula and 2) greater volume in a subcortical region encompassing the ventral striatum, hypothalamus and anterior thalamus. The volume ratio between these cortical and subcortical regions was found to partially mediate the relation between adverse life events and antisocial behavior. Temporal discounting is related to regions of the brain involved in reward processing and interoception. The results support a developmental imbalance model of impulsivity and are consistent with the idea that negative environmental factors can alter the developing brain in ways that promote antisocial behavior. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Early brain connectivity alterations and cognitive impairment in a rat model of Alzheimer's disease.

    PubMed

    Muñoz-Moreno, Emma; Tudela, Raúl; López-Gil, Xavier; Soria, Guadalupe

    2018-02-07

    Animal models of Alzheimer's disease (AD) are essential to understanding the disease progression and to development of early biomarkers. Because AD has been described as a disconnection syndrome, magnetic resonance imaging (MRI)-based connectomics provides a highly translational approach to characterizing the disruption in connectivity associated with the disease. In this study, a transgenic rat model of AD (TgF344-AD) was analyzed to describe both cognitive performance and brain connectivity at an early stage (5 months of age) before a significant concentration of β-amyloid plaques is present. Cognitive abilities were assessed by a delayed nonmatch-to-sample (DNMS) task preceded by a training phase where the animals learned the task. The number of training sessions required to achieve a learning criterion was recorded and evaluated. After DNMS, MRI acquisition was performed, including diffusion-weighted MRI and resting-state functional MRI, which were processed to obtain the structural and functional connectomes, respectively. Global and regional graph metrics were computed to evaluate network organization in both transgenic and control rats. The results pointed to a delay in learning the working memory-related task in the AD rats, which also completed a lower number of trials in the DNMS task. Regarding connectivity properties, less efficient organization of the structural brain networks of the transgenic rats with respect to controls was observed. Specific regional differences in connectivity were identified in both structural and functional networks. In addition, a strong correlation was observed between cognitive performance and brain networks, including whole-brain structural connectivity as well as functional and structural network metrics of regions related to memory and reward processes. In this study, connectivity and neurocognitive impairments were identified in TgF344-AD rats at a very early stage of the disease when most of the pathological hallmarks

  16. Mind Over Matter: The Brain's Response to Drugs. Teacher's Guide.

    ERIC Educational Resources Information Center

    National Inst. on Drug Abuse (DHHS/PHS), Rockville, MD.

    This teacher's guide aims to develop an understanding among students grades 5 through 9 of the physical reality of drug use. Contents include: (1) "Brain Anatomy"; (2) "Nerve Cells and Neurotransmission"; (3) "Effects of Drugs on the Brain"; (4) "Marijuana"; (5) "Opiates"; (6) "Inhalants"; (7) "Hallucinogens"; (8) "Steroids"; (9) "Stimulants";…

  17. Students with Acquired Brain Injury. The School's Response.

    ERIC Educational Resources Information Center

    Glang, Ann, Ed.; Singer, George H. S., Ed.; Todis, Bonnie, Ed.

    Designed for educators, this book focuses on educational issues relating to students with acquired brain injury (ABI), and describes approaches that have been effective in improving the school experiences of students with brain injury. Section 1 provides an introduction to issues related to ABI in children and youth and includes: "An Overview of…

  18. Surprise responses in the human brain demonstrate statistical learning under high concurrent cognitive demand

    NASA Astrophysics Data System (ADS)

    Garrido, Marta Isabel; Teng, Chee Leong James; Taylor, Jeremy Alexander; Rowe, Elise Genevieve; Mattingley, Jason Brett

    2016-06-01

    The ability to learn about regularities in the environment and to make predictions about future events is fundamental for adaptive behaviour. We have previously shown that people can implicitly encode statistical regularities and detect violations therein, as reflected in neuronal responses to unpredictable events that carry a unique prediction error signature. In the real world, however, learning about regularities will often occur in the context of competing cognitive demands. Here we asked whether learning of statistical regularities is modulated by concurrent cognitive load. We compared electroencephalographic metrics associated with responses to pure-tone sounds with frequencies sampled from narrow or wide Gaussian distributions. We showed that outliers evoked a larger response than those in the centre of the stimulus distribution (i.e., an effect of surprise) and that this difference was greater for physically identical outliers in the narrow than in the broad distribution. These results demonstrate an early neurophysiological marker of the brain's ability to implicitly encode complex statistical structure in the environment. Moreover, we manipulated concurrent cognitive load by having participants perform a visual working memory task while listening to these streams of sounds. We again observed greater prediction error responses in the narrower distribution under both low and high cognitive load. Furthermore, there was no reliable reduction in prediction error magnitude under high-relative to low-cognitive load. Our findings suggest that statistical learning is not a capacity limited process, and that it proceeds automatically even when cognitive resources are taxed by concurrent demands.

  19. A Response to the Legitimacy of Brain Death in Islam.

    PubMed

    Rady, Mohamed Y; Verheijde, Joseph L

    2016-08-01

    Brain death is a novel construct of death for the procurement of transplantable organs. Many authoritative Islamic organizations and governments have endorsed brain death as true death for organ donation. Many commentators have reiterated the misconception that the Quranic text does not define death. We respond by clarifying: (1) the Quran does define death as biologic disintegration and clearly distinguishes it from the dying process, (2) brain death belongs scientifically within the spectrum of neurologic disorders of consciousness and should not be confused with death, and (3) religious and legal discord about brain death has grown in jurisdictions worldwide. We urge for public transparency and truthfulness about brain death and the accommodation and respect of religious objection to the determination of death by neurologic criteria.

  20. Dynamic contrast-enhanced MR imaging pharmacokinetic parameters as predictors of treatment response of brain metastases in patients with lung cancer.

    PubMed

    Kuchcinski, Grégory; Le Rhun, Emilie; Cortot, Alexis B; Drumez, Elodie; Duhal, Romain; Lalisse, Maxime; Dumont, Julien; Lopes, Renaud; Pruvo, Jean-Pierre; Leclerc, Xavier; Delmaire, Christine

    2017-09-01

    To determine the diagnostic accuracy of pharmacokinetic parameters measured by dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) in predicting the response of brain metastases to antineoplastic therapy in patients with lung cancer. Forty-four consecutive patients with lung cancer, harbouring 123 newly diagnosed brain metastases prospectively underwent conventional 3-T MRI at baseline (within 1 month before treatment), during the early (7-10 weeks) and midterm (5-7 months) post-treatment period. An additional DCE MRI sequence was performed during baseline and early post-treatment MRI to evaluate baseline pharmacokinetic parameters (K trans , k ep , v e , v p ) and their early variation (∆K trans , ∆k ep , ∆v e , ∆v p ). The objective response was judged by the volume variation of each metastasis from baseline to midterm MRI. ROC curve analysis determined the best DCE MRI parameter to predict the objective response. Baseline DCE MRI parameters were not associated with the objective response. Early ∆K trans , ∆v e and ∆v p were significantly associated with the objective response (p = 0.02, p = 0.001 and p = 0.02, respectively). The best predictor of objective response was ∆v e with an area under the curve of 0.93 [95% CI = 0.87, 0.99]. DCE MRI and early ∆v e may be a useful tool to predict the objective response of brain metastases in patients with lung cancer. • DCE MRI could predict the response of brain metastases from lung cancer • ∆v e was the best predictor of response • DCE MRI could be used to individualize patients' follow-up.

  1. Influence of Musical Enculturation on Brain Responses to Metric Deviants.

    PubMed

    Haumann, Niels T; Vuust, Peter; Bertelsen, Freja; Garza-Villarreal, Eduardo A

    2018-01-01

    The ability to recognize metric accents is fundamental in both music and language perception. It has been suggested that music listeners prefer rhythms that follow simple binary meters, which are common in Western music. This means that listeners expect odd-numbered beats to be strong and even-numbered beats to be weak. In support of this, studies have shown that listeners exposed to Western music show stronger novelty and incongruity related P3 and irregularity detection related mismatch negativity (MMN) brain responses to attenuated odd- than attenuated even-numbered metric positions. Furthermore, behavioral evidence suggests that music listeners' preferences can be changed by long-term exposure to non-Western rhythms and meters, e.g., by listening to African or Balkan music. In our study, we investigated whether it might be possible to measure effects of music enculturation on neural responses to attenuated tones on specific metric positions. We compared the magnetic mismatch negativity (MMNm) to attenuated beats in a "Western group" of listeners ( n = 12) mainly exposed to Western music and a "Bicultural group" of listeners ( n = 13) exposed for at least 1 year to both Sub-Saharan African music in addition to Western music. We found that in the "Western group" the MMNm was higher in amplitude to deviant tones on odd compared to even metric positions, but not in the "Bicultural group." In support of this finding, there was also a trend of the "Western group" to rate omitted beats as more surprising on odd than even metric positions, whereas the "Bicultural group" seemed to discriminate less between metric positions in terms of surprise ratings. Also, we observed that the overall latency of the MMNm was significantly shorter in the Bicultural group compared to the Western group. These effects were not biased by possible differences in rhythm perception ability or music training, measured with the Musical Ear Test (MET). Furthermore, source localization analyses

  2. Influence of Musical Enculturation on Brain Responses to Metric Deviants

    PubMed Central

    Haumann, Niels T.; Vuust, Peter; Bertelsen, Freja; Garza-Villarreal, Eduardo A.

    2018-01-01

    The ability to recognize metric accents is fundamental in both music and language perception. It has been suggested that music listeners prefer rhythms that follow simple binary meters, which are common in Western music. This means that listeners expect odd-numbered beats to be strong and even-numbered beats to be weak. In support of this, studies have shown that listeners exposed to Western music show stronger novelty and incongruity related P3 and irregularity detection related mismatch negativity (MMN) brain responses to attenuated odd- than attenuated even-numbered metric positions. Furthermore, behavioral evidence suggests that music listeners' preferences can be changed by long-term exposure to non-Western rhythms and meters, e.g., by listening to African or Balkan music. In our study, we investigated whether it might be possible to measure effects of music enculturation on neural responses to attenuated tones on specific metric positions. We compared the magnetic mismatch negativity (MMNm) to attenuated beats in a “Western group” of listeners (n = 12) mainly exposed to Western music and a “Bicultural group” of listeners (n = 13) exposed for at least 1 year to both Sub-Saharan African music in addition to Western music. We found that in the “Western group” the MMNm was higher in amplitude to deviant tones on odd compared to even metric positions, but not in the “Bicultural group.” In support of this finding, there was also a trend of the “Western group” to rate omitted beats as more surprising on odd than even metric positions, whereas the “Bicultural group” seemed to discriminate less between metric positions in terms of surprise ratings. Also, we observed that the overall latency of the MMNm was significantly shorter in the Bicultural group compared to the Western group. These effects were not biased by possible differences in rhythm perception ability or music training, measured with the Musical Ear Test (MET). Furthermore, source

  3. Residual brain injury after early discontinuation of cooling therapy in mild neonatal encephalopathy.

    PubMed

    Lally, Peter J; Montaldo, Paolo; Oliveira, Vânia; Swamy, Ravi Shankar; Soe, Aung; Shankaran, Seetha; Thayyil, Sudhin

    2018-07-01

    We examined the brain injury and neurodevelopmental outcomes in a prospective cohort of 10 babies with mild encephalopathy who had early cessation of cooling therapy. All babies had MRI and spectroscopy within 2 weeks after birth and neurodevelopmental assessment at 2 years. Cooling was prematurely discontinued at a median age of 9 hours (IQR 5-13) due to rapid clinical improvement. Five (50%) had injury on MRI or spectroscopy, and two (20%) had an abnormal neurodevelopmental outcome at 2 years. Premature cessation of cooling therapy in babies with mild neonatal encephalopathy does not exclude residual brain injury and adverse long-term neurodevelopmental outcomes. This study refers to babies recruited into the MARBLE study (NCT01309711, pre-results stage). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Brain volume in early MS patients with and without IgG oligoclonal bands in CSF.

    PubMed

    Fenu, G; Lorefice, L; Sechi, V; Loi, L; Contu, F; Cabras, F; Coghe, G; Frau, J; Secci, M A; Melis, C; Schirru, L; Costa, G; Melas, V; Arru, M; Barracciu, M A; Marrosu, M G; Cocco, E

    2018-01-01

    Oligoclonal bands of IgG (OB) are proposed as an early prognostic factor of the disease. Growing attention is directed towards brain volume evaluation as a possible marker of the severity of MS. Previous studies found that MS patients lacking OB have less brain atrophy. to evaluate a possible relationship between OB and cerebral volume in a cohort of early MS patients. Inclusion criteria were: diagnosis of relapsing-remitting MS; CSF analysis and MRI acquired simultaneously and within 12 months from clinical onset. A total of 15 healthy controls underwent MRI. In 20 MS patients, CSF analysis did not show OB synthesis (OB negative group). A control group of 25 MS patients in whom OB was detected was also randomly recruited (OB positive group). T test showed a significant difference in NWV between the OB positive and OB negative groups (P value = 0.01), and between the OB positive group and the healthy controls (P value = 0.001). No differences were detected between OB negative group and healthy controls. Multivariable linear regression showed a relationship between NWV and OB synthesis (P value = 0.02) controlling for age, gender, and EDSS. Our preliminary results suggest that OB positive patients show more atrophy of white matter since early phases of the disease, supporting the role of CSF analysis as a prognostic factor in MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Reproducibility assessment of brain responses to visual food stimuli in adults with overweight and obesity.

    PubMed

    Drew Sayer, R; Tamer, Gregory G; Chen, Ningning; Tregellas, Jason R; Cornier, Marc-Andre; Kareken, David A; Talavage, Thomas M; McCrory, Megan A; Campbell, Wayne W

    2016-10-01

    The brain's reward system influences ingestive behavior and subsequently obesity risk. Functional magnetic resonance imaging (fMRI) is a common method for investigating brain reward function. This study sought to assess the reproducibility of fasting-state brain responses to visual food stimuli using BOLD fMRI. A priori brain regions of interest included bilateral insula, amygdala, orbitofrontal cortex, caudate, and putamen. Fasting-state fMRI and appetite assessments were completed by 28 women (n = 16) and men (n = 12) with overweight or obesity on 2 days. Reproducibility was assessed by comparing mean fasting-state brain responses and measuring test-retest reliability of these responses on the two testing days. Mean fasting-state brain responses on day 2 were reduced compared with day 1 in the left insula and right amygdala, but mean day 1 and day 2 responses were not different in the other regions of interest. With the exception of the left orbitofrontal cortex response (fair reliability), test-retest reliabilities of brain responses were poor or unreliable. fMRI-measured responses to visual food cues in adults with overweight or obesity show relatively good mean-level reproducibility but considerable within-subject variability. Poor test-retest reliability reduces the likelihood of observing true correlations and increases the necessary sample sizes for studies. © 2016 The Obesity Society.

  6. STAT3 precedes HIF1α transcriptional responses to oxygen and oxygen and glucose deprivation in human brain pericytes.

    PubMed

    Carlsson, Robert; Özen, Ilknur; Barbariga, Marco; Gaceb, Abderahim; Roth, Michaela; Paul, Gesine

    2018-01-01

    Brain pericytes are important to maintain vascular integrity of the neurovascular unit under both physiological and ischemic conditions. Ischemic stroke is known to induce an inflammatory and hypoxic response due to the lack of oxygen and glucose in the brain tissue. How this early response to ischemia is molecularly regulated in pericytes is largely unknown and may be of importance for future therapeutic targets. Here we evaluate the transcriptional responses in in vitro cultured human brain pericytes after oxygen and/or glucose deprivation. Hypoxia has been widely known to stabilise the transcription factor hypoxia inducible factor 1-alpha (HIF1α) and mediate the induction of hypoxic transcriptional programs after ischemia. However, we find that the transcription factors Jun Proto-Oncogene (c-JUN), Nuclear Factor Of Kappa Light Polypeptide Gene Enhancer In B-Cells (NFκB) and signal transducer and activator of transcription 3 (STAT3) bind genes regulated after 2hours (hs) of omitted glucose and oxygen before HIF1α. Potent HIF1α responses require 6hs of hypoxia to substantiate transcriptional regulation comparable to either c-JUN or STAT3. Phosphorylated STAT3 protein is at its highest after 5 min of oxygen and glucose (OGD) deprivation, whereas maximum HIF1α stabilisation requires 120 min. We show that STAT3 regulates angiogenic and metabolic pathways before HIF1α, suggesting that HIF1α is not the initiating trans-acting factor in the response of pericytes to ischemia.

  7. Evasion of Early Antiviral Responses by Herpes Simplex Viruses

    PubMed Central

    Suazo, Paula A.; Ibañez, Francisco J.; Retamal-Díaz, Angello R.; Paz-Fiblas, Marysol V.; Bueno, Susan M.; Kalergis, Alexis M.; González, Pablo A.

    2015-01-01

    Besides overcoming physical constraints, such as extreme temperatures, reduced humidity, elevated pressure, and natural predators, human pathogens further need to overcome an arsenal of antimicrobial components evolved by the host to limit infection, replication and optimally, reinfection. Herpes simplex virus-1 (HSV-1) and herpes simplex virus-2 (HSV-2) infect humans at a high frequency and persist within the host for life by establishing latency in neurons. To gain access to these cells, herpes simplex viruses (HSVs) must replicate and block immediate host antiviral responses elicited by epithelial cells and innate immune components early after infection. During these processes, infected and noninfected neighboring cells, as well as tissue-resident and patrolling immune cells, will sense viral components and cell-associated danger signals and secrete soluble mediators. While type-I interferons aim at limiting virus spread, cytokines and chemokines will modulate resident and incoming immune cells. In this paper, we discuss recent findings relative to the early steps taking place during HSV infection and replication. Further, we discuss how HSVs evade detection by host cells and the molecular mechanisms evolved by these viruses to circumvent early antiviral mechanisms, ultimately leading to neuron infection and the establishment of latency. PMID:25918478

  8. Impaired early visual response modulations to spatial information in chronic schizophrenia

    PubMed Central

    Knebel, Jean-François; Javitt, Daniel C.; Murray, Micah M.

    2011-01-01

    Early visual processing stages have been demonstrated to be impaired in schizophrenia patients and their first-degree relatives. The amplitude and topography of the P1 component of the visual evoked potential (VEP) are both affected; the latter of which indicates alterations in active brain networks between populations. At least two issues remain unresolved. First, the specificity of this deficit (and suitability as an endophenotype) has yet to be established, with evidence for impaired P1 responses in other clinical populations. Second, it remains unknown whether schizophrenia patients exhibit intact functional modulation of the P1 VEP component; an aspect that may assist in distinguishing effects specific to schizophrenia. We applied electrical neuroimaging analyses to VEPs from chronic schizophrenia patients and healthy controls in response to variation in the parafoveal spatial extent of stimuli. Healthy controls demonstrated robust modulation of the VEP strength and topography as a function of the spatial extent of stimuli during the P1 component. By contrast, no such modulations were evident at early latencies in the responses from patients with schizophrenia. Source estimations localized these deficits to the left precuneus and medial inferior parietal cortex. These findings provide insights on potential underlying low-level impairments in schizophrenia. PMID:21764264

  9. Early and Later Life Stress Alter Brain Activity and Sleep in Rats

    PubMed Central

    Mrdalj, Jelena; Pallesen, Ståle; Milde, Anne Marita; Jellestad, Finn Konow; Murison, Robert; Ursin, Reidun; Bjorvatn, Bjørn; Grønli, Janne

    2013-01-01

    Exposure to early life stress may profoundly influence the developing brain in lasting ways. Neuropsychiatric disorders associated with early life adversity may involve neural changes reflected in EEG power as a measure of brain activity and disturbed sleep. The main aim of the present study was for the first time to characterize possible changes in adult EEG power after postnatal maternal separation in rats. Furthermore, in the same animals, we investigated how EEG power and sleep architecture were affected after exposure to a chronic mild stress protocol. During postnatal day 2–14 male rats were exposed to either long maternal separation (180 min) or brief maternal separation (10 min). Long maternally separated offspring showed a sleep-wake nonspecific reduction in adult EEG power at the frontal EEG derivation compared to the brief maternally separated group. The quality of slow wave sleep differed as the long maternally separated group showed lower delta power in the frontal-frontal EEG and a slower reduction of the sleep pressure. Exposure to chronic mild stress led to a lower EEG power in both groups. Chronic exposure to mild stressors affected sleep differently in the two groups of maternal separation. Long maternally separated offspring showed more total sleep time, more episodes of rapid eye movement sleep and higher percentage of non-rapid eye movement episodes ending in rapid eye movement sleep compared to brief maternal separation. Chronic stress affected similarly other sleep parameters and flattened the sleep homeostasis curves in all offspring. The results confirm that early environmental conditions modulate the brain functioning in a long-lasting way. PMID:23922857

  10. Novel insights into early neuroanatomical evolution in penguins from the oldest described penguin brain endocast.

    PubMed

    Proffitt, J V; Clarke, J A; Scofield, R P

    2016-08-01

    Digital methodologies for rendering the gross morphology of the brain from X-ray computed tomography data have expanded our current understanding of the origin and evolution of avian neuroanatomy and provided new perspectives on the cognition and behavior of birds in deep time. However, fossil skulls germane to extracting digital endocasts from early stem members of extant avian lineages remain exceptionally rare. Data from early-diverging species of major avian subclades provide key information on ancestral morphologies in Aves and shifts in gross neuroanatomical structure that have occurred within those groups. Here we describe data on the gross morphology of the brain from a mid-to-late Paleocene penguin fossil from New Zealand. This most basal and geochronologically earliest-described endocast from the penguin clade indicates that described neuroanatomical features of early stem penguins, such as lower telencephalic lateral expansion, a relatively wider cerebellum, and lack of cerebellar folding, were present far earlier in penguin history than previously inferred. Limited dorsal expansion of the wulst in the new fossil is a feature seen in outgroup waterbird taxa such as Gaviidae (Loons) and diving Procellariiformes (Shearwaters, Diving Petrels, and allies), indicating that loss of flight may not drastically affect neuroanatomy in diving taxa. Wulst enlargement in the penguin lineage is first seen in the late Eocene, at least 25 million years after loss of flight and cooption of the flight stroke for aquatic diving. Similar to the origin of avian flight, major shifts in gross brain morphology follow, but do not appear to evolve quickly after, acquisition of a novel locomotor mode. Enlargement of the wulst shows a complex pattern across waterbirds, and may be linked to sensory modifications related to prey choice and foraging strategy. © 2016 Anatomical Society.

  11. Decreased prefrontal functional brain response during memory testing in women with Cushing's syndrome in remission.

    PubMed

    Ragnarsson, Oskar; Stomby, Andreas; Dahlqvist, Per; Evang, Johan A; Ryberg, Mats; Olsson, Tommy; Bollerslev, Jens; Nyberg, Lars; Johannsson, Gudmundur

    2017-08-01

    Neurocognitive dysfunction is an important feature of Cushing's syndrome (CS). Our hypothesis was that patients with CS in remission have decreased functional brain responses in the prefrontal cortex and hippocampus during memory testing. In this cross-sectional study we included 19 women previously treated for CS and 19 controls matched for age, gender, and education. The median remission time was 7 (IQR 6-10) years. Brain activity was studied with functional magnetic resonance imaging during episodic- and working-memory tasks. The primary regions of interest were the prefrontal cortex and the hippocampus. A voxel-wise comparison of functional brain responses in patients and controls was performed. During episodic-memory encoding, patients displayed lower functional brain responses in the left and right prefrontal gyrus (p<0.001) and in the right inferior occipital gyrus (p<0.001) compared with controls. There was a trend towards lower functional brain responses in the left posterior hippocampus in patients (p=0.05). During episodic-memory retrieval, the patients displayed lower functional brain responses in several brain areas with the most predominant difference in the right prefrontal cortex (p<0.001). During the working memory task, patients had lower response in the prefrontal cortices bilaterally (p<0.005). Patients, but not controls, had lower functional brain response during a more complex working memory task compared with a simpler one. In conclusion, women with CS in long-term remission have reduced functional brain responses during episodic and working memory testing. This observation extends previous findings showing long-term adverse effects of severe hypercortisolaemia on brain function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants.

    PubMed

    Dubois, J; Dehaene-Lambertz, G; Kulikova, S; Poupon, C; Hüppi, P S; Hertz-Pannier, L

    2014-09-12

    Studying how the healthy human brain develops is important to understand early pathological mechanisms and to assess the influence of fetal or perinatal events on later life. Brain development relies on complex and intermingled mechanisms especially during gestation and first post-natal months, with intense interactions between genetic, epigenetic and environmental factors. Although the baby's brain is organized early on, it is not a miniature adult brain: regional brain changes are asynchronous and protracted, i.e. sensory-motor regions develop early and quickly, whereas associative regions develop later and slowly over decades. Concurrently, the infant/child gradually achieves new performances, but how brain maturation relates to changes in behavior is poorly understood, requiring non-invasive in vivo imaging studies such as magnetic resonance imaging (MRI). Two main processes of early white matter development are reviewed: (1) establishment of connections between brain regions within functional networks, leading to adult-like organization during the last trimester of gestation, (2) maturation (myelination) of these connections during infancy to provide efficient transfers of information. Current knowledge from post-mortem descriptions and in vivo MRI studies is summed up, focusing on T1- and T2-weighted imaging, diffusion tensor imaging, and quantitative mapping of T1/T2 relaxation times, myelin water fraction and magnetization transfer ratio. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Plasma-Sprayed Titanium Patterns for Enhancing Early Cell Responses

    NASA Astrophysics Data System (ADS)

    Shi, Yunqi; Xie, Youtao; Pan, Houhua; Zheng, Xuebin; Huang, Liping; Ji, Fang; Li, Kai

    2016-06-01

    Titanium coating has been widely used as a biocompatible metal in biomedical applications. However, the early cell responses and long-term fixation of titanium implants are not satisfied. To obviate these defects, in this paper, micro-post arrays with various widths (150-1000 μm) and intervals (100-300 μm) were fabricated on the titanium substrate by template-assisted plasma spraying technology. In vitro cell culture experiments showed that MC3T3-E1 cells exhibited significantly higher osteogenic differentiation as well as slightly improved adhesion and proliferation on the micro-patterned coatings compared with the traditional one. The cell number on the pattern with 1000 µm width reached 130% after 6 days of incubation, and the expressions of osteopontin (OPN) as well as osteocalcin (OC) were doubled. No obvious difference was found in cell adhesion on various size patterns. The present micro-patterned coatings proposed a new modification method for the traditional plasma spraying technology to enhance the early cell responses and convenience for the bone in-growth.

  14. The Golden Beauty: Brain Response to Classical and Renaissance Sculptures

    PubMed Central

    Di Dio, Cinzia; Macaluso, Emiliano; Rizzolatti, Giacomo

    2007-01-01

    Is there an objective, biological basis for the experience of beauty in art? Or is aesthetic experience entirely subjective? Using fMRI technique, we addressed this question by presenting viewers, naïve to art criticism, with images of masterpieces of Classical and Renaissance sculpture. Employing proportion as the independent variable, we produced two sets of stimuli: one composed of images of original sculptures; the other of a modified version of the same images. The stimuli were presented in three conditions: observation, aesthetic judgment, and proportion judgment. In the observation condition, the viewers were required to observe the images with the same mind-set as if they were in a museum. In the other two conditions they were required to give an aesthetic or proportion judgment on the same images. Two types of analyses were carried out: one which contrasted brain response to the canonical and the modified sculptures, and one which contrasted beautiful vs. ugly sculptures as judged by each volunteer. The most striking result was that the observation of original sculptures, relative to the modified ones, produced activation of the right insula as well as of some lateral and medial cortical areas (lateral occipital gyrus, precuneus and prefrontal areas). The activation of the insula was particularly strong during the observation condition. Most interestingly, when volunteers were required to give an overt aesthetic judgment, the images judged as beautiful selectively activated the right amygdala, relative to those judged as ugly. We conclude that, in observers naïve to art criticism, the sense of beauty is mediated by two non-mutually exclusive processes: one based on a joint activation of sets of cortical neurons, triggered by parameters intrinsic to the stimuli, and the insula (objective beauty); the other based on the activation of the amygdala, driven by one's own emotional experiences (subjective beauty). PMID:18030335

  15. Brain stem auditory-evoked response of the nonanesthetized dog.

    PubMed

    Marshall, A E

    1985-04-01

    The brain stem auditory evoked-response was measured from a group of 24 healthy dogs under conditions suitable for clinical diagnostic use. The waveforms were identified, and analysis of amplitude ratios, latencies, and interpeak latencies were done. The group was subdivided into subgroups based on tranquilization, nontranquilization, sex, and weight. Differences were not observed among any of these subgroups. All dogs responded to the click stimulus from 30 dB to 90 dB, but only 62.5% of the dogs responded at 5 dB. The total number of peaks averaged 1.6 at 5 dB, increased linearly to 6.5 at 50 dB, and remained at 6.5 to 90 dB. Frequency of recognizability of each wave was tabulated for each stimulus intensity tested; recognizability increased with increased stimulus intensity. Amplitudes of waves increased with increasing stimulus intensity, but were highly variable. The 4th wave had the greatest amplitude at the lower stimulus intensities, and the 1st wave had the greatest amplitude at the higher stimulus intensities. Amplitude ratio of the 1st to 5th wave was greater than 1 at less than or equal to 50 dB stimulus intensity, and was 1 for stimulus intensities greater than 50 dB. Interpeak latencies did not change relative to stimulus intensities. Peak latencies of each wave averaged at 5-dB hearing level for the 1st to 6th waves were 2.03, 2.72, 3.23, 4.14, 4.41, and 6.05 ms, respectively; latencies of these 6 waves at 90 dB were 0.92, 1.79, 2.46, 3.03, 3.47, and 4.86 ms, respectively. Latency decreased between 0.009 to 0.014 ms/dB for the waves.

  16. Early lung retrieval from traumatic brain-dead donors does not compromise outcomes following lung transplantation.

    PubMed

    Moreno, Paula; Alvarez, Antonio; Illana, Jennifer; Espinosa, Dionisio; Baamonde, Carlos; Cerezo, Francisco; Algar, Francisco Javier; Salvatierra, Angel

    2013-06-01

    To determine whether lung retrieval from traumatic donors performed within 24 h of brain death has a negative impact on early graft function and survival after lung transplantation (LT), when compared with those retrieved after 24 h. Review of lung transplants performed from traumatic donors over a 17-year period. Recipients were distributed into two groups: transplants from traumatic donor lungs retrieved within 24 h of brain death (Group A), and transplants from traumatic donor lungs retrieved after 24 h of brain death (Group B). Demographic data of donors and recipients, early graft function, perioperative complications and mortality were compared between both groups. Among 356 lung transplants performed at our institution, 132 were from traumatic donors (70% male, 30% female). Group A: 73 (55%); Group B: 59 (45%). There were 53 single, 77 double, and 2 combined LT. Indications were emphysema in 41 (31%), pulmonary fibrosis in 31 (23%), cystic fibrosis in 38 (29%), bronchiectasis in 9 (7%) and other indications in 13 patients (10%). Donor and recipient demographic data, need or cardiopulmonary bypass, postoperative complications and Intensive Care Unit and hospital stay did not differ between groups. Primary graft dysfunction (A vs B): 9 (16%) vs 13 (26%) P = 0.17. PaO2/FiO2 24 h post-transplant (A vs B): 303 mmHg vs 288 mmHg (P = 0.57). Number of acute rejection episodes (A vs B): 0.93 vs 1.49 (P = 0.01). Postoperative intubation time (A vs B): 99 vs 100 h (P = 0.99). 30-day mortality (A vs B): 7 (10%) vs 2 (3.5%) (P = 0.13). Freedom from bronchiolitis obliterans syndrome (A vs B): 82, 72, 37, 22 vs 78, 68, 42, 15%, at 3, 5, 10 and 15 years, respectively (P = 0.889). Survival (A vs B): 65, 54, 46, 42 and 27 vs 60, 50, 45, 43 and 29% at 3, 5, 7, 10 and 15 years, respectively (P = 0.937). In our experience, early lung retrieval after brain death from traumatic donors does not adversely affect early and long-term outcomes after LT.

  17. Early developmental gene enhancers affect subcortical volumes in the adult human brain.

    PubMed

    Becker, Martin; Guadalupe, Tulio; Franke, Barbara; Hibar, Derrek P; Renteria, Miguel E; Stein, Jason L; Thompson, Paul M; Francks, Clyde; Vernes, Sonja C; Fisher, Simon E

    2016-05-01

    Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype-phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P < 0.0083 at an alpha of 0.05). In analyses of individual single nucleotide polymorphisms (SNPs), we identified an association upstream of the ID2 gene with rs7588305 and variation in hippocampal volume. This SNP-based association survived multiple-testing correction for the number of SNPs analyzed but not for the number of subcortical structures. Targeting known regulatory regions offers a way to understand the underlying biology that connects genotypes to phenotypes, particularly in the context of neuroimaging genetics. This biology-driven approach generates testable hypotheses regarding the functional biology of identified associations. Hum Brain Mapp 37:1788-1800, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Early Alterations of Brain Cellular Energy Homeostasis in Huntington Disease Models*

    PubMed Central

    Mochel, Fanny; Durant, Brandon; Meng, Xingli; O'Callaghan, James; Yu, Hua; Brouillet, Emmanuel; Wheeler, Vanessa C.; Humbert, Sandrine; Schiffmann, Raphael; Durr, Alexandra

    2012-01-01

    Brain energy deficit has been a suggested cause of Huntington disease (HD), but ATP depletion has not reliably been shown in preclinical models, possibly because of the immediate post-mortem changes in cellular energy metabolism. To examine a potential role of a low energy state in HD, we measured, for the first time in a neurodegenerative model, brain levels of high energy phosphates using microwave fixation, which instantaneously inactivates brain enzymatic activities and preserves in vivo levels of analytes. We studied HD transgenic R6/2 mice at ages 4, 8, and 12 weeks. We found significantly increased creatine and phosphocreatine, present as early as 4 weeks for phosphocreatine, preceding motor system deficits and decreased ATP levels in striatum, hippocampus, and frontal cortex of R6/2 mice. ATP and phosphocreatine concentrations were inversely correlated with the number of CAG repeats. Conversely, in mice injected with 3-nitroproprionic acid, an acute model of brain energy deficit, both ATP and phosphocreatine were significantly reduced. Increased creatine and phosphocreatine in R6/2 mice was associated with decreased guanidinoacetate N-methyltransferase and creatine kinase, both at the protein and RNA levels, and increased phosphorylated AMP-dependent protein kinase (pAMPK) over AMPK ratio. In addition, in 4-month-old knock-in HdhQ111/+ mice, the earliest metabolic alterations consisted of increased phosphocreatine in the frontal cortex and increased the pAMPK/AMPK ratio. Altogether, this study provides the first direct evidence of chronic alteration in homeostasis of high energy phosphates in HD models in the earliest stages of the disease, indicating possible reduced utilization of the brain phosphocreatine pool. PMID:22123819

  19. Predicting Outcome after Pediatric Traumatic Brain Injury by Early Magnetic Resonance Imaging Lesion Location and Volume

    PubMed Central

    Smitherman, Emily; Hernandez, Ana; Stavinoha, Peter L.; Huang, Rong; Kernie, Steven G.; Diaz-Arrastia, Ramon

    2016-01-01

    Abstract Brain lesions after traumatic brain injury (TBI) are heterogeneous, rendering outcome prognostication difficult. The aim of this study is to investigate whether early magnetic resonance imaging (MRI) of lesion location and lesion volume within discrete brain anatomical zones can accurately predict long-term neurological outcome in children post-TBI. Fluid-attenuated inversion recovery (FLAIR) MRI hyperintense lesions in 63 children obtained 6.2±5.6 days postinjury were correlated with the Glasgow Outcome Scale Extended-Pediatrics (GOS-E Peds) score at 13.5±8.6 months. FLAIR lesion volume was expressed as hyperintensity lesion volume index (HLVI)=(hyperintensity lesion volume / whole brain volume)×100 measured within three brain zones: zone A (cortical structures); zone B (basal ganglia, corpus callosum, internal capsule, and thalamus); and zone C (brainstem). HLVI-total and HLVI-zone C predicted good and poor outcome groups (p<0.05). GOS-E Peds correlated with HLVI-total (r=0.39; p=0.002) and HLVI in all three zones: zone A (r=0.31; p<0.02); zone B (r=0.35; p=0.004); and zone C (r=0.37; p=0.003). In adolescents ages 13–17 years, HLVI-total correlated best with outcome (r=0.5; p=0.007), whereas in younger children under the age of 13, HLVI-zone B correlated best (r=0.52; p=0.001). Compared to patients with lesions in zone A alone or in zones A and B, patients with lesions in all three zones had a significantly higher odds ratio (4.38; 95% confidence interval, 1.19–16.0) for developing an unfavorable outcome. PMID:25808802

  20. Neuropsychiatric subsyndromes and brain metabolic network dysfunctions in early onset Alzheimer's disease.

    PubMed

    Ballarini, Tommaso; Iaccarino, Leonardo; Magnani, Giuseppe; Ayakta, Nagehan; Miller, Bruce L; Jagust, William J; Gorno-Tempini, Maria Luisa; Rabinovici, Gil D; Perani, Daniela

    2016-12-01

    Neuropsychiatric symptoms (NPSs) often occur in early-age-of-onset Alzheimer's disease (EOAD) and cluster into sub-syndromes (SSy). The aim of this study was to investigate the association between 18 F-FDG-PET regional and connectivity-based brain metabolic dysfunctions and neuropsychiatric SSy. NPSs were assessed in 27 EOAD using the Neuropsychiatric Inventory and further clustered into four SSy (apathetic, hyperactivity, affective, and psychotic SSy). Eighty-five percent of EOAD showed at least one NPS. Voxel-wise correlations between SSy scores and brain glucose metabolism (assessed with 18 F-FDG positron emission tomography) were studied. Interregional correlation analysis was used to explore metabolic connectivity in the salience (aSN) and default mode networks (DMN) in a larger sample of EOAD (N = 51) and Healthy Controls (N = 57). The apathetic, hyperactivity, and affective SSy were highly prevalent (>60%) as compared to the psychotic SSy (33%). The hyperactivity SSy scores were associated with increase of glucose metabolism in frontal and limbic structures, implicated in behavioral control. A comparable positive correlation with part of the same network was found for the affective SSy scores. On the other hand, the apathetic SSy scores were negatively correlated with metabolism in the bilateral orbitofrontal and dorsolateral frontal cortex known to be involved in motivation and decision-making processes. Consistent with these SSy regional correlations with brain metabolic dysfunction, the connectivity analysis showed increases in the aSN and decreases in the DMN. Behavioral abnormalities in EOAD are associated with specific dysfunctional changes in brain metabolic activity, in particular in the aSN that seems to play a crucial role in NPSs in EOAD. Hum Brain Mapp 37:4234-4247, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Diffusion MRI in early cancer therapeutic response assessment

    PubMed Central

    Galbán, C. J.; Hoff, B. A.; Chenevert, T. L.; Ross, B. D.

    2016-01-01

    Imaging biomarkers for the predictive assessment of treatment response in patients with cancer earlier than standard tumor volumetric metrics would provide new opportunities to individualize therapy. Diffusion-weighted MRI (DW-MRI), highly sensitive to microenvironmental alterations at the cellular level, has been evaluated extensively as a technique for the generation of quantitative and early imaging biomarkers of therapeutic response and clinical outcome. First demonstrated in a rodent tumor model, subsequent studies have shown that DW-MRI can be applied to many different solid tumors for the detection of changes in cellularity as measured indirectly by an increase in the apparent diffusion coefficient (ADC) of water molecules within the lesion. The introduction of quantitative DW-MRI into the treatment management of patients with cancer may aid physicians to individualize therapy, thereby minimizing unnecessary systemic toxicity associated with ineffective therapies, saving valuable time, reducing patient care costs and ultimately improving clinical outcome. This review covers the theoretical basis behind the application of DW-MRI to monitor therapeutic response in cancer, the analytical techniques used and the results obtained from various clinical studies that have demonstrated the efficacy of DW-MRI for the prediction of cancer treatment response. PMID:26773848

  2. Early disrupted neurovascular coupling and changed event level hemodynamic response function in type 2 diabetes: an fMRI study.

    PubMed

    Duarte, João V; Pereira, João M S; Quendera, Bruno; Raimundo, Miguel; Moreno, Carolina; Gomes, Leonor; Carrilho, Francisco; Castelo-Branco, Miguel

    2015-10-01

    Type 2 diabetes (T2DM) patients develop vascular complications and have increased risk for neurophysiological impairment. Vascular pathophysiology may alter the blood flow regulation in cerebral microvasculature, affecting neurovascular coupling. Reduced fMRI signal can result from decreased neuronal activation or disrupted neurovascular coupling. The uncertainty about pathophysiological mechanisms (neurodegenerative, vascular, or both) underlying brain function impairments remains. In this cross-sectional study, we investigated if the hemodynamic response function (HRF) in lesion-free brains of patients is altered by measuring BOLD (Blood Oxygenation Level-Dependent) response to visual motion stimuli. We used a standard block design to examine the BOLD response and an event-related deconvolution approach. Importantly, the latter allowed for the first time to directly extract the true shape of HRF without any assumption and probe neurovascular coupling, using performance-matched stimuli. We discovered a change in HRF in early stages of diabetes. T2DM patients show significantly different fMRI response profiles. Our visual paradigm therefore demonstrated impaired neurovascular coupling in intact brain tissue. This implies that functional studies in T2DM require the definition of HRF, only achievable with deconvolution in event-related experiments. Further investigation of the mechanisms underlying impaired neurovascular coupling is needed to understand and potentially prevent the progression of brain function decrements in diabetes.

  3. Early plasma transfusion is associated with improved survival after isolated traumatic brain injury in patients with multifocal intracranial hemorrhage.

    PubMed

    Chang, Ronald; Folkerson, Lindley E; Sloan, Duncan; Tomasek, Jeffrey S; Kitagawa, Ryan S; Choi, H Alex; Wade, Charles E; Holcomb, John B

    2017-02-01

    Plasma-based resuscitation improves outcomes in trauma patients with hemorrhagic shock, while large-animal and limited clinical data suggest that it also improves outcomes and is neuroprotective in the setting of combined hemorrhage and traumatic brain injury. However, the choice of initial resuscitation fluid, including the role of plasma, is unclear for patients after isolated traumatic brain injury. We reviewed adult trauma patients admitted from January 2011 to July 2015 with isolated traumatic brain injury. "Early plasma" was defined as transfusion of plasma within 4 hours. Purposeful multiple logistic regression modeling was performed to analyze the relationship of early plasma and inhospital survival. After testing for interaction, subgroup analysis was performed based on the pattern of brain injury on initial head computed tomography: epidural hematoma, intraparenchymal contusion, subarachnoid hemorrhage, subdural hematoma, or multifocal intracranial hemorrhage. Of the 633 isolated traumatic brain injury patients included, 178 (28%) who received early plasma were injured more severely coagulopathic, hypoperfused, and hypotensive on admission. Survival was similar in the early plasma versus no early plasma groups (78% vs 84%, P = .08). After adjustment for covariates, early plasma was not associated with improved survival (odds ratio 1.18, 95% confidence interval 0.71-1.96). On subgroup analysis, multifocal intracranial hemorrhage was the largest subgroup with 242 patients. Of these, 61 (25%) received plasma within 4 hours. Within-group logistic regression analysis with adjustment for covariates found that early plasma was associated with improved survival (odds ratio 3.34, 95% confidence interval 1.20-9.35). Although early plasma transfusion was not associated with improved in-hospital survival for all isolated traumatic brain injury patients, early plasma was associated with increased in-hospital survival in those with multifocal intracranial

  4. Voxel-based analysis of the immediate early gene, c-jun, in the honey bee brain after a sucrose stimulus.

    PubMed

    McNeill, M S; Robinson, G E

    2015-06-01

    Immediate early genes (IEGs) have served as useful markers of brain neuronal activity in mammals, and more recently in insects. The mammalian canonical IEG, c-jun, is part of regulatory pathways conserved in insects and has been shown to be responsive to alarm pheromone in honey bees. We tested whether c-jun was responsive in honey bees to another behaviourally relevant stimulus, sucrose, in order to further identify the brain regions involved in sucrose processing. To identify responsive regions, we developed a new method of voxel-based analysis of c-jun mRNA expression. We found that c-jun is expressed in somata throughout the brain. It was rapidly induced in response to sucrose stimuli, and it responded in somata near the antennal and mechanosensory motor centre, mushroom body calices and lateral protocerebrum, which are known to be involved in sucrose processing. c-jun also responded to sucrose in somata near the lateral suboesophageal ganglion, dorsal optic lobe, ventral optic lobe and dorsal posterior protocerebrum, which had not been previously identified by other methods. These results demonstrate the utility of voxel-based analysis of mRNA expression in the insect brain. © 2015 The Royal Entomological Society.

  5. Short-term Second Language and Music Training Induces Lasting Functional Brain Changes in Early Childhood

    PubMed Central

    Moreno, Sylvain; Lee, Yunjo

    2014-01-01

    Immediate and lasting effects of music or second-language training were examined in early childhood using event-related potentials (ERPs). ERPs were recorded for French vowels and musical notes in a passive oddball paradigm in 36 four- to six-year-old children who received either French or music training. Following training, both groups showed enhanced late discriminative negativity (LDN) in their trained condition (music group–musical notes; French group–French vowels) and reduced LDN in the untrained condition. These changes reflect improved processing of relevant (trained) sounds, and an increased capacity to suppress irrelevant (untrained) sounds. After one year, training-induced brain changes persisted and new hemispheric changes appeared. Such results provide evidence for the lasting benefit of early intervention in young children. PMID:25346534

  6. Brain Structure Changes Visualized in Early- and Late-Onset Blind Subjects

    PubMed Central

    Leporé, Natasha; Voss, Patrice; Lepore, Franco; Chou, Yi-Yu; Fortin, Madeleine; Gougoux, Frédéric; Lee, Agatha D.; Brun, Caroline; Lassonde, Maryse; Madsen, Sarah K.; Toga, Arthur W.; Thompson, Paul M.

    2009-01-01

    We examine 3D patterns of volume differences in the brain associated with blindness, in subjects grouped according to early and late onset. Using tensor-based morphometry, we map volume reductions and gains in 16 early-onset (EB) and 16 late-onset (LB) blind adults (onset <5 and >14 years old, respectively) relative to 16 matched sighted controls. Each subject’s structural MRI was fluidly registered to a common template. Anatomical differences between groups were mapped based on statistical analysis of the resulting deformation fields revealing profound deficits in primary and secondary visual cortices for both blind groups. Regions outside the occipital lobe showed significant hypertrophy, suggesting widespread compensatory adaptations. EBs but not LBs showed deficits in the splenium and hypertrophy in the isthmus. Gains in the isthmus and non-occipital white matter were more widespread in the EBs. These differences may reflect regional alterations in late neurodevelopmental processes, such as myelination, that continue into adulthood. PMID:19643183

  7. More insights into early brain development through statistical analyses of eigen-structural elements of diffusion tensor imaging using multivariate adaptive regression splines

    PubMed Central

    Chen, Yasheng; Zhu, Hongtu; An, Hongyu; Armao, Diane; Shen, Dinggang; Gilmore, John H.; Lin, Weili

    2013-01-01

    The aim of this study was to characterize the maturational changes of the three eigenvalues (λ1 ≥ λ2 ≥ λ3) of diffusion tensor imaging (DTI) during early postnatal life for more insights into early brain development. In order to overcome the limitations of using presumed growth trajectories for regression analysis, we employed Multivariate Adaptive Regression Splines (MARS) to derive data-driven growth trajectories for the three eigenvalues. We further employed Generalized Estimating Equations (GEE) to carry out statistical inferences on the growth trajectories obtained with MARS. With a total of 71 longitudinal datasets acquired from 29 healthy, full-term pediatric subjects, we found that the growth velocities of the three eigenvalues were highly correlated, but significantly different from each other. This paradox suggested the existence of mechanisms coordinating the maturations of the three eigenvalues even though different physiological origins may be responsible for their temporal evolutions. Furthermore, our results revealed the limitations of using the average of λ2 and λ3 as the radial diffusivity in interpreting DTI findings during early brain development because these two eigenvalues had significantly different growth velocities even in central white matter. In addition, based upon the three eigenvalues, we have documented the growth trajectory differences between central and peripheral white matter, between anterior and posterior limbs of internal capsule, and between inferior and superior longitudinal fasciculus. Taken together, we have demonstrated that more insights into early brain maturation can be gained through analyzing eigen-structural elements of DTI. PMID:23455648

  8. Functional aspects of early brain development are preserved in tuberous sclerosis complex (TSC) epileptogenic lesions.

    PubMed

    Ruffolo, Gabriele; Iyer, Anand; Cifelli, Pierangelo; Roseti, Cristina; Mühlebner, Angelika; van Scheppingen, Jackelien; Scholl, Theresa; Hainfellner, Johannes A; Feucht, Martha; Krsek, Pavel; Zamecnik, Josef; Jansen, Floor E; Spliet, Wim G M; Limatola, Cristina; Aronica, Eleonora; Palma, Eleonora

    2016-11-01

    Tuberous sclerosis complex (TSC) is a rare multi-system genetic disease characterized by several neurological disorders, the most common of which is the refractory epilepsy caused by highly epileptogenic cortical lesions. Previous studies suggest an alteration of GABAergic and glutamatergic transmission in TSC brain indicating an unbalance of excitation/inhibition that can explain, at least in part, the high incidence of epilepsy in these patients. Here we investigate whether TSC cortical tissues could retain GABAA and AMPA receptors at early stages of human brain development thus contributing to the generation and recurrence of seizures. Given the limited availability of pediatric human brain specimens, we used the microtransplantation method of injecting Xenopus oocytes with membranes from TSC cortical tubers and control brain tissues. Moreover, qPCR was performed to investigate the expression of GABAA and AMPA receptor subunits (GABAA α1-5, β3, γ2, δ; GluA1, GluA2) and cation chloride co-transporters NKCC1 and KCC2. The evaluation of nine human cortical brain samples, from 15 gestation weeks to 15years old, showed a progressive shift towards more hyperpolarized GABAA reversal potential (EGABA). This shift was associated with a differential expression of the chloride cotransporters NKCC1 and KCC2. Furthermore, the GluA1/GluA2 mRNA ratio of expression paralleled the development process. On the contrary, in oocytes micro-transplanted with epileptic TSC tuber tissue from seven patients, neither the GABAA reversal potential nor the GluA1/GluA2 expression showed similar developmental changes. Our data indicate for the first time, that in the same cohort of TSC patients, the pattern of both GABAAR and GluA1/GluA2 functions retains features that are typical of an immature brain. These observations support the potential contribution of altered receptor function to the epileptic disorder of TSC and may suggest novel therapeutic approaches. Furthermore, our findings

  9. A Bayesian Model of Category-Specific Emotional Brain Responses

    PubMed Central

    Wager, Tor D.; Kang, Jian; Johnson, Timothy D.; Nichols, Thomas E.; Satpute, Ajay B.; Barrett, Lisa Feldman

    2015-01-01

    Understanding emotion is critical for a science of healthy and disordered brain function, but the neurophysiological basis of emotional experience is still poorly understood. We analyzed human brain activity patterns from 148 studies of emotion categories (2159 total participants) using a novel hierarchical Bayesian model. The model allowed us to classify which of five categories—fear, anger, disgust, sadness, or happiness—is engaged by a study with 66% accuracy (43-86% across categories). Analyses of the activity patterns encoded in the model revealed that each emotion category is associated with unique, prototypical patterns of activity across multiple brain systems including the cortex, thalamus, amygdala, and other structures. The results indicate that emotion categories are not contained within any one region or system, but are represented as configurations across multiple brain networks. The model provides a precise summary of the prototypical patterns for each emotion category, and demonstrates that a sufficient characterization of emotion categories relies on (a) differential patterns of involvement in neocortical systems that differ between humans and other species, and (b) distinctive patterns of cortical-subcortical interactions. Thus, these findings are incompatible with several contemporary theories of emotion, including those that emphasize emotion-dedicated brain systems and those that propose emotion is localized primarily in subcortical activity. They are consistent with componential and constructionist views, which propose that emotions are differentiated by a combination of perceptual, mnemonic, prospective, and motivational elements. Such brain-based models of emotion provide a foundation for new translational and clinical approaches. PMID:25853490

  10. Neuroimaging, a new tool for investigating the effects of early diet on cognitive and brain development

    PubMed Central

    Isaacs, Elizabeth B.

    2013-01-01

    Nutrition is crucial to the initial development of the central nervous system (CNS), and then to its maintenance, because both depend on dietary intake to supply the elements required to develop and fuel the system. Diet in early life is often seen in the context of “programming” where a stimulus occurring during a vulnerable period can have long-lasting or even lifetime effects on some aspect of the organism's structure or function. Nutrition was first shown to be a programming stimulus for growth, and then for cognitive behavior, in animal studies that were able to employ methods that allowed the demonstration of neural effects of early nutrition. Such research raised the question of whether nutrition could also programme cognition/brain structure in humans. Initial studies of cognitive effects were observational, usually conducted in developing countries where the presence of confounding factors made it difficult to interpret the role of nutrition in the cognitive deficits that were seen. Attributing causality to nutrition required randomized controlled trials (RCTs) and these, often in developed countries, started to appear around 30 years ago. Most demonstrated convincingly that early nutrition could affect subsequent cognition. Until the advent of neuroimaging techniques that allowed in vivo examination of the brain, however, we could determine very little about the neural effects of early diet in humans. The combination of well-designed trials with neuroimaging tools means that we are now able to pose and answer questions that would have seemed impossible only recently. This review discusses various neuroimaging methods that are suitable for use in nutrition studies, while pointing out some of the limitations that they may have. The existing literature is small, but examples of studies that have used these methods are presented. Finally, some considerations that have arisen from previous studies, as well as suggestions for future research, are discussed

  11. Cellular responses to recurrent pentylenetetrazole-induced seizures in the adult zebrafish brain

    PubMed Central

    Duy, Phan Q; Berberoglu, Michael A; Beattie, Christine E; Hall, Charles W

    2017-01-01

    A seizure is a sustained increase in brain electrical activity that can result in loss of consciousness and injury. Understanding how the brain responds to seizures is important for development of new treatment strategies for epilepsy, a neurological condition characterized by recurrent and unprovoked seizures. Pharmacological induction of seizures in rodent models results in a myriad of cellular alterations, including inflammation, angiogenesis, and adult neurogenesis. The purpose of this study is to investigate the cellular responses to recurrent pentylenetetrazole seizures in the adult zebrafish brain. We subjected zebrafish to five once daily pentylenetetrazole induced seizures and characterized the cellular consequences of these seizures. In response to recurrent seizures, we found histologic evidence of vasodilatation, perivascular leukocyte egress and leukocyte proliferation suggesting seizure-induced acute CNS inflammation. We also found evidence of increased proliferation, neurogenesis, and reactive gliosis. Collectively, our results suggest that the cellular responses to seizures in the adult zebrafish brain are similar to those observed in mammalian brains. PMID:28238851

  12. FOUR Score Predicts Early Outcome in Patients After Traumatic Brain Injury.

    PubMed

    Nyam, Tee-Tau Eric; Ao, Kam-Hou; Hung, Shu-Yu; Shen, Mei-Li; Yu, Tzu-Chieh; Kuo, Jinn-Rung

    2017-04-01

    The aim of the study was to determine whether the Full Outline of UnResponsiveness (FOUR) score, which includes eyes opening (E), motor function (M), brainstem reflex (B), and respiratory pattern (R), can be used as an alternate method to the Glasgow Coma Scale (GCS) in predicting intensive care unit (ICU) mortality in traumatic brain injury (TBI) patients. From January 2015 to June 2015, patients with isolated TBI admitted to the ICU were enrolled. Three advanced practice nurses administered the FOUR score, GCS, Acute Physiology and Chronic Health Evaluation II (APACHE II), and Therapeutic Intervention Scoring System (TISS) concurrently from ICU admissions. The endpoint of observation was mortality when the patients left the ICU. Data are presented as frequency with percentages, mean with standard deviation, or median with interquartile range. Each measurement tool used area under the receiver operating characteristic curve to compare the predictive power between these four tools. In addition, the difference between survival and death was estimated using the Wilcoxon rank sum test. From 55 TBI patients, males (72.73 %) were represented more than females, the mean age was 63.1 ± 17.9, and 19 of 55 observations (35 %) had a maximum FOUR score of 16. The overall mortality rate was 14.6 %. The area under the receiver operating characteristic curve was 74.47 % for the FOUR score, 74.73 % for the GCS, 81.78 % for the APACHE II, and 53.32 % for the TISS. The FOUR score has similar predictive power of mortality compared to the GCS and APACHE II. Each of the parameters-E, M, B, and R-of the FOUR score showed a significant difference between mortality and survival group, while the verbal and eye-opening components of the GCS did not. Having similar predictive power of mortality compared to the GCS and APACHE II, the FOUR score can be used as an alternative in the prediction of early mortality in TBI patients in the ICU.

  13. Correlates of early pregnancy serum brain-derived neurotrophic factor in a Peruvian population.

    PubMed

    Yang, Na; Levey, Elizabeth; Gelaye, Bizu; Zhong, Qiu-Yue; Rondon, Marta B; Sanchez, Sixto E; Williams, Michelle A

    2017-12-01

    Knowledge about factors that influence serum brain-derived neurotrophic factor (BDNF) concentrations during early pregnancy is lacking. The aim of the study is to examine the correlates of early pregnancy serum BDNF concentrations. A total of 982 women attending prenatal care clinics in Lima, Peru, were recruited in early pregnancy. Pearson's correlation coefficient was calculated to evaluate the relation between BDNF concentrations and continuous covariates. Analysis of variance and generalized linear models were used to compare the unadjusted and adjusted BDNF concentrations according to categorical variables. Multivariable linear regression models were applied to determine the factors that influence early pregnancy serum BDNF concentrations. In bivariate analysis, early pregnancy serum BDNF concentrations were positively associated with maternal age (r = 0.16, P < 0.001) and early pregnancy body mass index (BMI) (r = 0.17, P < 0.001), but inversely correlated with gestational age at sample collection (r = -0.21, P < 0.001) and C-reactive protein (CRP) concentrations (r = -0.07, P < 0.05). In the multivariable linear regression model, maternal age (β = 0.11, P = 0.001), early pregnancy BMI (β = 1.58, P < 0.001), gestational age at blood collection (β = -0.33, P < 0.001), and serum CRP concentrations (β = -0.57, P = 0.002) were significantly associated with early pregnancy serum BDNF concentrations. Participants with moderate antepartum depressive symptoms (Patient Health Questionnaire-9 (PHQ-9) score ≥ 10) had lower serum BDNF concentrations compared with participants with no/mild antepartum depressive symptoms (PHQ-9 score < 10). Maternal age, early pregnancy BMI, gestational age, and the presence of moderate antepartum depressive symptoms were statistically significantly associated with early pregnancy serum BDNF concentrations in low-income Peruvian women. Biological changes of CRP during pregnancy may affect serum

  14. Enhancing early child care quality and learning for toddlers at risk: the responsive early childhood program.

    PubMed

    Landry, Susan H; Zucker, Tricia A; Taylor, Heather B; Swank, Paul R; Williams, Jeffrey M; Assel, Michael; Crawford, April; Huang, Weihua; Clancy-Menchetti, Jeanine; Lonigan, Christopher J; Phillips, Beth M; Eisenberg, Nancy; Spinrad, Tracy L; de Villiers, Jill; de Villiers, Peter; Barnes, Marcia; Starkey, Prentice; Klein, Alice

    2014-02-01

    Despite reports of positive effects of high-quality child care, few experimental studies have examined the process of improving low-quality center-based care for toddler-age children. In this article, we report intervention effects on child care teachers' behaviors and children's social, emotional, behavioral, early literacy, language, and math outcomes as well as the teacher-child relationship. The intervention targeted the use of a set of responsive teacher practices, derived from attachment and sociocultural theories, and a comprehensive curriculum. Sixty-five childcare classrooms serving low-income 2- and 3-year-old children were randomized into 3 conditions: business-as-usual control, Responsive Early Childhood Curriculum (RECC), and RECC plus explicit social-emotional classroom activities (RECC+). Classroom observations showed greater gains for RECC and RECC+ teachers' responsive practices including helping children manage their behavior, establishing a predictable schedule, and use of cognitively stimulating activities (e.g., shared book reading) compared with controls; however, teacher behaviors did not differ for focal areas such as sensitivity and positive discipline supports. Child assessments demonstrated that children in the interventions outperformed controls in areas of social and emotional development, although children's performance in control and intervention groups was similar for cognitive skills (language, literacy, and math). Results support the positive impact of responsive teachers and environments providing appropriate support for toddlers' social and emotional development. Possible explanations for the absence of systematic differences in children's cognitive skills are considered, including implications for practice and future research targeting low-income toddlers.

  15. Intracranial baroreflex yielding an early cushing response in human.

    PubMed

    Schmidt, E A; Czosnyka, Z; Momjian, S; Czosnyka, M; Bech, R A; Pickard, J D

    2005-01-01

    The Cushing response is a pre-terminal sympatho-adrenal systemic response to very high ICP. Animal studies have demonstrated that a moderate rise of ICP yields a reversible pressure-mediated systemic response. Infusion studies are routine procedures to investigate, by infusing CSF space with saline, the cerebrospinal fluid (CSF) biophysics in patients suspected of hydrocephalus. Our study aims at assessing systemic and cerebral haemodynamic changes during moderate rise of ICP in human. Infusion studies were performed in 34 patients. This is a routine test perform in patients presenting with symptoms of NPH during their pre-shunting assessment. Arterial blood pressure (ABP) and cerebral blood flow velocity (FV) were non-invasively monitored with photoplethysmography and transcranial Doppler. The rise in ICP (8.2 +/- 5.1 mmHg to 25 +/- 8.3 mmHg) was followed by a significant rise in ABP (106.6 +/- 29.7 mmHg to 115.2 +/- 30.1 mmHg), drop in CPP (98.3 +/- 29 mmHg to 90.2 +/- 30.7 mmHg) and decrease in FV (55.6 +/- 17 cm/s to 51.1 +/- 16.3 cm/s). Increasing ICP did not alter heart rate (70.4 +/- 10.4/min to 70.3 +/- 9.1/min) but augmented the heart rate variance (0.046 +/- 0.058 to 0.067 +/- 0.075/min). In a population suspected of hydrocephalus, our study demonstrated that a moderate rise of ICP yields a reversible pressure-mediated systemic response, demonstrating an early Cushing response in human and a putative intracranial baroreflex.

  16. A dominant bursting electromyograph pattern in dystonic conditions predicts an early response to pallidal stimulation.

    PubMed

    Yianni, John; Wang, Shou Yan; Liu, Xuguang; Bain, Peter G; Nandi, Dipankar; Gregory, Ralph; Joint, Carole; Stein, John F; Aziz, Tipu Z

    2006-08-01

    Although chronic pallidal deep brain stimulation (DBS) is effective in the treatment of medically intractable dystonia, there is no way of predicting the variations in clinical outcome, partly due to our limited understanding of the pathophysiological mechanisms underlying this condition. We recorded electromyographic (EMG) activity from the most severely affected muscle groups in seven dystonia patients before and after pallidal DBS. Patient EMG recordings could be classified into two groups: one consisting of patients who at rest demonstrated a dominant low frequency component of activity on power spectral analysis (ranging from 2 to 5 Hz), and one group in which this dominant pattern was absent. Early postoperative improvements (within 2-3 days) were observed in the former group, whereas the latter group benefited more gradually (over several months). Analysis of EMG activity may provide a sensitive means of identifying dystonic patients who are likely to be most responsive to functional neurosurgical intervention.

  17. INVITED REVIEW – NEUROIMAGING RESPONSE ASSESSMENT CRITERIA FOR BRAIN TUMORS IN VETERINARY PATIENTS

    PubMed Central

    Rossmeisl, John H.; Garcia, Paulo A.; Daniel, Gregory B.; Bourland, John Daniel; Debinski, Waldemar; Dervisis, Nikolaos; Klahn, Shawna

    2013-01-01

    The evaluation of therapeutic response using cross-sectional imaging techniques, particularly gadolinium-enhanced MRI, is an integral part of the clinical management of brain tumors in veterinary patients. Spontaneous canine brain tumors are increasingly recognized and utilized as a translational model for the study of human brain tumors. However, no standardized neuroimaging response assessment criteria have been formulated for use in veterinary clinical trials. Previous studies have found that the pathophysiologic features inherent to brain tumors and the surrounding brain complicate the use of the Response Evaluation Criteria in Solid Tumors (RECIST) assessment system. Objectives of this review are to describe strengths and limitations of published imaging-based brain tumor response criteria and propose a system for use in veterinary patients. The widely used human Macdonald and Response Assessment in Neuro-oncology (RANO) criteria are reviewed and described as to how they can be applied to veterinary brain tumors. Discussion points will include current challenges associated with the interpretation of brain tumor therapeutic responses such as imaging pseudophenomena and treatment-induced necrosis, and how advancements in perfusion imaging, positron emission tomography, and magnetic resonance spectroscopy have shown promise in differentiating tumor progression from therapy-induced changes. Finally, although objective endpoints such as MR-imaging and survival estimates will likely continue to comprise the foundations for outcome measures in veterinary brain tumor clinical trials, we propose that in order to provide a more relevant therapeutic response metric for veterinary patients, composite response systems should be formulated and validated that combine imaging and clinical assessment criteria. PMID:24219161

  18. Reproducibility assessment of brain responses to visual food stimuli in adults with overweight and obesity

    PubMed Central

    Sayer, R Drew; Tamer, Gregory G; Chen, Ningning; Tregellas, Jason R; Cornier, Marc-Andre; Kareken, David A; Talavage, Thomas M; McCrory, Megan A; Campbell, Wayne W

    2016-01-01

    Objective The brain’s reward system influences ingestive behavior and subsequently, obesity risk. Functional magnetic resonance imaging (fMRI) is a common method for investigating brain reward function. We sought to assess the reproducibility of fasting-state brain responses to visual food stimuli using BOLD fMRI. Methods A priori brain regions of interest included bilateral insula, amygdala, orbitofrontal cortex, caudate, and putamen. Fasting-state fMRI and appetite assessments were completed by 28 women (n=16) and men (n=12) with overweight or obesity on 2 days. Reproducibility was assessed by comparing mean fasting-state brain responses and measuring test-retest reliability of these responses on the 2 testing days. Results Mean fasting-state brain responses on Day 2 were reduced compared to Day 1 in the left insula and right amygdala, but mean Day 1 and Day 2 responses were not different in the other regions of interest. With the exception of the left orbitofrontal cortex response (fair reliability), test-retest reliabilities of brain responses were poor or unreliable. Conclusion fMRI-measured responses to visual food cues in adults with overweight or obesity show relatively good mean-level reproducibility, but considerable within-subject variability. Poor test-retest reliability reduces the likelihood of observing true correlations and increases the necessary sample sizes for studies. PMID:27542906

  19. Deep Brain Stimulation in Early Parkinson’s Disease: Enrollment Experience from a Pilot Trial

    PubMed Central

    Charles, PD; Dolhun, RM; Gill, CE; Davis, TL; Bliton, MJ; Tramontana, MG; Salomon, RM; Wang; Hedera, P; Phibbs, FT; Neimat, JS; Konrad, PE

    2011-01-01

    Background Deep brain stimulation (DBS) of the subthalamic nucleus is an accepted therapy for advanced Parkinson’s disease (PD). In animal models, pharmacologic ablation and stimulation of the subthalamic nucleus have resulted in clinical improvement and, in some cases, improved survival of dopaminergic neurons. DBS has not been studied in the early stages of PD, but early application should be explored to evaluate safety, efficacy, and the potential to alter disease progression. Methods We are conducting a prospective, randomized, single-blind clinical trial of optimal drug therapy (ODT) compared to medication plus DBS (ODT + DBS) in subjects with Hoehn & Yahr Stage II idiopathic PD who are without motor fluctuations or dementia. We report here subject screening, enrollment, baseline characteristics, and adverse events. Results 30 subjects (average age 60 ± 6.9 years, average duration of medicine 2.1 ± 1.3 years, average UPDRS-III scores 14.9 on medication and 27.0 off medication) are enrolled in the ongoing study. Twelve of 15 subjects randomized to DBS experienced perioperative adverse events, the majority of which were related to the procedure or device and resolved without sequelae. Frequently reported adverse events included wound healing problems, headache, edema, and confusion. Conclusion This report demonstrates that subjects with early stage PD can be successfully recruited, consented and retained in a long term clinical trial of DBS. Our ongoing pilot investigation will provide important preliminary safety and tolerability data concerning the application of DBS in early stage PD. PMID:22104012

  20. The impact of early-onset cannabis use on functional brain correlates of working memory.

    PubMed

    Becker, Benjamin; Wagner, Daniel; Gouzoulis-Mayfrank, Euphrosyne; Spuentrup, Elmar; Daumann, Jörg

    2010-08-16

    Cannabis is the most commonly used illicit drug. Prevalence rates are particularly high among adolescents. Neuropsychological studies have identified cannabis-associated memory deficits, particularly linked to an early onset of use. However, it remains unclear, whether the age of onset accounts for altered cortical activation patterns usually observed in cannabis users. Functional magnetic resonance imaging was used to examine cortical activation during verbal working memory challenge in (1) early-onset (onset before the age of sixteen; n=26) and (2) late-onset cannabis users (age at onset at least sixteen; n=17). Early-onset users showed increased activation in the left superior parietal lobe. Correlational analyses confirmed the association between an earlier start of use and increased activity. Contrariwise neither cumulative dose, frequency nor time since last use was significantly associated with cortical activity. Our findings suggest that an early start of cannabis use is associated with increased cortical activation in adult cannabis users, possibly reflecting suboptimal cortical efficiency during cognitive challenge. The maturing brain might be more vulnerable to the harmful effects of cannabis use. However, due to a lack of a non-using control group we cannot exclude alternative interpretations. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  1. TALE transcription factors during early development of the vertebrate brain and eye.

    PubMed

    Schulte, Dorothea; Frank, Dale

    2014-01-01

    Our brain's cognitive performance arises from the coordinated activities of billions of nerve cells. Despite a high degree of morphological and functional differences, all neurons of the vertebrate central nervous system (CNS) arise from a common field of multipotent progenitors. Cell fate specification and differentiation are directed by multistep processes that include inductive/external cues, such as the extracellular matrix or growth factors, and cell-intrinsic determinants, such as transcription factors and epigenetic modulators of proteins and DNA. Here we review recent findings implicating TALE-homeodomain proteins in these processes. Although originally identified as HOX-cofactors, TALE proteins also contribute to many physiological processes that do not require HOX-activity. Particular focus is, therefore, given to HOX-dependent and -independent functions of TALE proteins during early vertebrate brain development. Additionally, we provide an overview about known upstream and downstream factors of TALE proteins in the developing vertebrate brain and discuss general concepts of how TALE proteins function to modulate neuronal cell fate specification. Copyright © 2013 Wiley Periodicals, Inc.

  2. Early Development of Functional Network Segregation Revealed by Connectomic Analysis of the Preterm Human Brain.

    PubMed

    Cao, Miao; He, Yong; Dai, Zhengjia; Liao, Xuhong; Jeon, Tina; Ouyang, Minhui; Chalak, Lina; Bi, Yanchao; Rollins, Nancy; Dong, Qi; Huang, Hao

    2017-03-01

    Human brain functional networks are topologically organized with nontrivial connectivity characteristics such as small-worldness and densely linked hubs to support highly segregated and integrated information processing. However, how they emerge and change at very early developmental phases remains poorly understood. Here, we used resting-state functional MRI and voxel-based graph theory analysis to systematically investigate the topological organization of whole-brain networks in 40 infants aged around 31 to 42 postmenstrual weeks. The functional connectivity strength and heterogeneity increased significantly in primary motor, somatosensory, visual, and auditory regions, but much less in high-order default-mode and executive-control regions. The hub and rich-club structures in primary regions were already present at around 31 postmenstrual weeks and exhibited remarkable expansions with age, accompanied by increased local clustering and shortest path length, indicating a transition from a relatively random to a more organized configuration. Moreover, multivariate pattern analysis using support vector regression revealed that individual brain maturity of preterm babies could be predicted by the network connectivity patterns. Collectively, we highlighted a gradually enhanced functional network segregation manner in the third trimester, which is primarily driven by the rapid increases of functional connectivity of the primary regions, providing crucial insights into the topological development patterns prior to birth. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Brain network informed subject community detection in early-onset schizophrenia.

    PubMed

    Yang, Zhi; Xu, Yong; Xu, Ting; Hoy, Colin W; Handwerker, Daniel A; Chen, Gang; Northoff, Georg; Zuo, Xi-Nian; Bandettini, Peter A

    2014-07-03

    Early-onset schizophrenia (EOS) offers a unique opportunity to study pathophysiological mechanisms and development of schizophrenia. Using 26 drug-naïve, first-episode EOS patients and 25 age- and gender-matched control subjects, we examined intrinsic connectivity network (ICN) deficits underlying EOS. Due to the emerging inconsistency between behavior-based psychiatric disease classification system and the underlying brain dysfunctions, we applied a fully data-driven approach to investigate whether the subjects can be grouped into highly homogeneous communities according to the characteristics of their ICNs. The resultant subject communities and the representative characteristics of ICNs were then associated with the clinical diagnosis and multivariate symptom patterns. A default mode ICN was statistically absent in EOS patients. Another frontotemporal ICN further distinguished EOS patients with predominantly negative symptoms. Connectivity patterns of this second network for the EOS patients with predominantly positive symptom were highly similar to typically developing controls. Our post-hoc functional connectivity modeling confirmed that connectivity strength in this frontotemporal circuit was significantly modulated by relative severity of positive and negative syndromes in EOS. This study presents a novel subtype discovery approach based on brain networks and proposes complex links between brain networks and symptom patterns in EOS.

  4. Preclinical Comparison of Osimertinib with Other EGFR-TKIs in EGFR-Mutant NSCLC Brain Metastases Models, and Early Evidence of Clinical Brain Metastases Activity.

    PubMed

    Ballard, Peter; Yates, James W T; Yang, Zhenfan; Kim, Dong-Wan; Yang, James Chih-Hsin; Cantarini, Mireille; Pickup, Kathryn; Jordan, Angela; Hickey, Mike; Grist, Matthew; Box, Matthew; Johnström, Peter; Varnäs, Katarina; Malmquist, Jonas; Thress, Kenneth S; Jänne, Pasi A; Cross, Darren

    2016-10-15

    Approximately one-third of patients with non-small cell lung cancer (NSCLC) harboring tumors with EGFR-tyrosine kinase inhibitor (TKI)-sensitizing mutations (EGFRm) experience disease progression during treatment due to brain metastases. Despite anecdotal reports of EGFR-TKIs providing benefit in some patients with EGFRm NSCLC brain metastases, there is a clinical need for novel EGFR-TKIs with improved efficacy against brain lesions. We performed preclinical assessments of brain penetration and activity of osimertinib (AZD9291), an oral, potent, irreversible EGFR-TKI selective for EGFRm and T790M resistance mutations, and other EGFR-TKIs in various animal models of EGFR-mutant NSCLC brain metastases. We also present case reports of previously treated patients with EGFRm-advanced NSCLC and brain metastases who received osimertinib in the phase I/II AURA study (NCT01802632). Osimertinib demonstrated greater penetration of the mouse blood-brain barrier than gefitinib, rociletinib (CO-1686), or afatinib, and at clinically relevant doses induced sustained tumor regression in an EGFRm PC9 mouse brain metastases model; rociletinib did not achieve tumor regression. Under positron emission tomography micro-dosing conditions, [ 11 C]osimertinib showed markedly greater exposure in the cynomolgus monkey brain than [ 11 C]rociletinib and [ 11 C]gefitinib. Early clinical evidence of osimertinib activity in previously treated patients with EGFRm-advanced NSCLC and brain metastases is also reported. Osimertinib may represent a clinically significant treatment option for patients with EGFRm NSCLC and brain metastases. Further investigation of osimertinib in this patient population is ongoing. Clin Cancer Res; 22(20); 5130-40. ©2016 AACR. ©2016 American Association for Cancer Research.

  5. The developmental disruptions of serotonin signaling may involved in autism during early brain development.

    PubMed

    Yang, C-J; Tan, H-P; Du, Y-J

    2014-05-16

    Autism is a developmental disorder defined by the presence of a triad of communication, social and stereo typical behavioral characteristics with onset before 3years of age. In spite of the fact that there are potential environmental factors for autistic behavior, the dysfunction of serotonin during early development of the brain could be playing a role in this prevalence rise. Serotonin can modulate a number of developmental events, including cell division, neuronal migration, cell differentiation and synaptogenesis. Hyperserotonemia during fetal development results in the loss of serotonin terminals through negative feedback. The increased serotonin causes a decrease of oxytocin in the paraventricular nucleus of the hypothalamus and an increase in calcitonin gene-related peptide (CGRP) in the central nucleus of the amygdale, which are associated with social interactions and vital in autism. However, hyposerotonemia may be also relevant to the development of sensory as well as motor and cognitive faculties. And the paucity of placenta-derived serotonin should have potential importance when the pathogenesis of autism is considered. This review briefly summarized the developmental disruptions of serotonin signaling involved in the pathogenesis of autism during early development of the brain. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. A diagnosis model for early Tourette syndrome children based on brain structural network characteristics

    NASA Astrophysics Data System (ADS)

    Wen, Hongwei; Liu, Yue; Wang, Jieqiong; Zhang, Jishui; Peng, Yun; He, Huiguang

    2016-03-01

    Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder characterized by the presence of multiple motor and vocal tics. Tic generation has been linked to disturbed networks of brain areas involved in planning, controlling and execution of action. The aim of our work is to select topological characteristics of structural network which were most efficient for estimating the classification models to identify early TS children. Here we employed the diffusion tensor imaging (DTI) and deterministic tractography to construct the structural networks of 44 TS children and 48 age and gender matched healthy children. We calculated four different connection matrices (fiber number, mean FA, averaged fiber length weighted and binary matrices) and then applied graph theoretical methods to extract the regional nodal characteristics of structural network. For each weighted or binary network, nodal degree, nodal efficiency and nodal betweenness were selected as features. Support Vector Machine Recursive Feature Extraction (SVM-RFE) algorithm was used to estimate the best feature subset for classification. The accuracy of 88.26% evaluated by a nested cross validation was achieved on combing best feature subset of each network characteristic. The identified discriminative brain nodes mostly located in the basal ganglia and frontal cortico-cortical networks involved in TS children which was associated with tic severity. Our study holds promise for early identification and predicting prognosis of TS children.

  7. Gyrification brain abnormalities associated with adolescence and early-adulthood cannabis use.

    PubMed

    Mata, Ignacio; Perez-Iglesias, Rocio; Roiz-Santiañez, Roberto; Tordesillas-Gutierrez, Diana; Pazos, Angel; Gutierrez, Agustin; Vazquez-Barquero, Jose Luis; Crespo-Facorro, Benedicto

    2010-03-04

    Although cannabis is the most widely used illicit drug in the world, the long-term effect of its use in the brain remains controversial. In order to determine whether adolescence and early-adulthood cannabis use is associated with gross volumetric and gyrification abnormalities in the brain, we set up a cross-sectional study using structural magnetic resonance imaging in a sample of general population subjects. Thirty cannabis-using subjects (mean age, 25.7 years; mean duration of regular use, 8.4 years, range: 3-21) with no history of polydrug use or neurologic/mental disorder and 44 non-using control subjects (mean age, 25.8 years) were included. Cannabis users showed bilaterally decreased concavity of the sulci and thinner sulci in the right frontal lobe. Among non-users, age was significantly correlated with decreased gyrification (i.e., less concave sulci and more convexe gyri) and decreased cortical thickness, supporting the notion of age-related gyrification changes. However, among cannabis users gyrification indices did not show significant dependency on age, age of regular cannabis use initiation, or cumulative exposure to cannabis. These results suggest that cannabis use in adolescence and early-adulthood might involve a premature alteration in cortical gyrification similar to what is normally observed at a later age, probably through disruption of normal neurodevelopment. 2009 Elsevier B.V. All rights reserved.

  8. Tackling the ‘dyslexia paradox’: reading brain and behavior for early markers of developmental dyslexia

    PubMed Central

    Ozernov-Palchik, Ola; Gaab, Nadine

    2016-01-01

    Developmental dyslexia is an unexplained inability to acquire accurate or fluent reading that affects approximately 5–17% of children. Dyslexia is associated with structural and functional alterations in various brain regions that support reading. Neuroimaging studies in infants and pre-reading children suggest that these alterations predate reading instruction and reading failure, supporting the hypothesis that variant function in dyslexia susceptibility genes lead to atypical neural migration and/or axonal growth during early, most likely in utero, brain development. Yet, dyslexia is typically not diagnosed until a child has failed to learn to read as expected (usually in second grade or later). There is emerging evidence that neuroimaging measures, when combined with key behavioral measures, can enhance the accuracy of identification of dyslexia risk in prereading children but its sensitivity, specificity, and cost-efficiency is still unclear. Early identification of dyslexia risk carries important implications for dyslexia remediation and the amelioration of the psychosocial consequences commonly associated with reading failure. PMID:26836227

  9. Early coagulation events induce acute lung injury in a rat model of blunt traumatic brain injury.

    PubMed

    Yasui, Hideki; Donahue, Deborah L; Walsh, Mark; Castellino, Francis J; Ploplis, Victoria A

    2016-07-01

    Acute lung injury (ALI) and systemic coagulopathy are serious complications of traumatic brain injury (TBI) that frequently lead to poor clinical outcomes. Although the release of tissue factor (TF), a potent initiator of the extrinsic pathway of coagulation, from the injured brain is thought to play a key role in coagulopathy after TBI, its function in ALI following TBI remains unclear. In this study, we investigated whether the systemic appearance of TF correlated with the ensuing coagulopathy that follows TBI in ALI using an anesthetized rat blunt trauma TBI model. Blood and lung samples were obtained after TBI. Compared with controls, pulmonary edema and increased pulmonary permeability were observed as early as 5 min after TBI without evidence of norepinephrine involvement. Systemic TF increased at 5 min and then diminished 60 min after TBI. Lung injury and alveolar hemorrhaging were also observed as early as 5 min after TBI. A biphasic elevation of TF was observed in the lungs after TBI, and TF-positive microparticles (MPs) were detected in the alveolar spaces. Fibrin(ogen) deposition was also observed in the lungs within 60 min after TBI. Additionally, preadministration of a direct thrombin inhibitor, Refludan, attenuated lung injuries, thus implicating thrombin as a direct participant in ALI after TBI. The results from this study demonstrated that enhanced systemic TF may be an initiator of coagulation activation that contributes to ALI after TBI. Copyright © 2016 the American Physiological Society.

  10. Regional rat brain noradrenaline turnover in response to restraint stress.

    PubMed

    Glavin, G B; Tanaka, M; Tsuda, A; Kohno, Y; Hoaki, Y; Nagasaki, N

    1983-08-01

    Male Wistar rats were starved for 12 hr and then subjected to either 2 hr of wire mesh "envelope" restraint at room temperature; 2 hr of supine restraint in a specially constructed harness at room temperature or were not restrained. Eight brain regions were examined for NA level and the level of its major metabolite, MHPG-SO4. Plasma corticosterone and gastric ulcer incidence were also measured. All restrained rats displayed marked elevations in MHPG-SO4 levels in most brain regions. In addition, several brain regions in restrained animals showed a reduction in NA level. All restrained rats showed elevated plasma corticosterone levels and evidence of gastric lesions. In general, supine restraint produced greater alterations in regional brain NA turnover, greater evidence of ulcer disease, and higher plasma corticosterone levels than did wire mesh restraint. These data suggest that acute but intense stress in the form of restraint causes markedly altered brain NA activity--a possible neurochemical mechanism underlying the phenomenon of stress-induced disease.

  11. Alteration of diffusion-tensor MRI measures in brain regions involved in early stages of Parkinson's disease.

    PubMed

    Chen, Nan-Kuei; Chou, Ying-Hui; Sundman, Mark; Hickey, Patrick; Kasoff, Willard S; Bernstein, Adam; Trouard, Theodore P; Lin, Tanya; Rapcsak, Steven Z; Sherman, Scott J; Weingarten, Carol

    2018-06-07

    Many non-motor symptoms (e.g., hyposmia) appear years before the cardinal motor features of Parkinson's disease (PD). It is thus desirable to be able to use noninvasive brain imaging methods, such as magnetic resonance imaging (MRI), to detect brain abnormalities in early PD stages. Among the MRI modalities, diffusion tensor imaging (DTI) is suitable for detecting changes of brain tissue structure due to neurological diseases. The main purpose of this study was to investigate whether DTI signals measured from brain regions involved in early stages of PD differ from those of healthy controls. To answer this question, we analyzed whole-brain DTI data of 30 early-stage PD patients and 30 controls using improved ROI based analysis methods. Results showed that 1) the fractional anisotropy (FA) values in the olfactory tract (connected with the olfactory bulb: one of the first structures affected by PD) are lower in PD patients than healthy controls; 2) FA values are higher in PD patients than healthy controls in the following brain regions: corticospinal tract, cingulum (near hippocampus), and superior longitudinal fasciculus (temporal part). Experimental results suggest that the tissue property, measured by FA, in olfactory regions is structurally modulated by PD with a mechanism that is different from other brain regions.

  12. Response to Early AED Therapy and Its Prognostic Implications

    PubMed Central

    French, Jacqueline A.

    2002-01-01

    Determining the prognosis of patients when they first present with epilepsy is a difficult task. Several clinical studies have shed light on this very important topic. Potential predictors of the refractory state, including seizure etiology, duration of epilepsy before treatment, and epilepsy type, have not been successful indicators of long-term outcome. One predictor of the refractory state appears to be early response to AED therapy. Inadequate seizure control after initial treatment is a poor prognostic sign. Recent research into genetic causes of the refractory state has included investigation of the multiple drug resistance gene, and polymorphisms at drug targets. More work is needed to determine the causes and predictors of drug resistance. PMID:15309146

  13. Infusing Culturally Responsive Science Curriculum into Early Childhood Teacher Preparation

    NASA Astrophysics Data System (ADS)

    Yoon, Jiyoon; Martin, Leisa A.

    2017-08-01

    Previous research studies in early childhood teacher education have indicated that teacher candidates are not adequately prepared to demonstrate the knowledge and skills needed to teach science to all children including culturally and linguistically diverse students. To address this issue, the researchers provided 31 early childhood teacher candidates with instructions through a culturally responsive science education curriculum that integrates American and Korean science curriculum corresponding to the American and Korean standards for teacher education. The results showed a statistically significant increase in their Personal Science Teaching Efficacy (PSTE). In addition, the teacher candidates were able to create a multicultural/diverse lesson in the developing and proficiency levels based on Ambrosio's lesson matrix. This study provides teacher candidates' knowledge as well as an additional resource for developing their self-efficacy and understanding the role of multicultural/diverse lesson planning for science instruction. Also, teacher candidates could be better prepared by understanding how other countries approach science education and integrating this knowledge to enrich their own science instruction.

  14. Early disaster response in Haiti: the Israeli field hospital experience.

    PubMed

    Kreiss, Yitshak; Merin, Ofer; Peleg, Kobi; Levy, Gad; Vinker, Shlomo; Sagi, Ram; Abargel, Avi; Bartal, Carmi; Lin, Guy; Bar, Ariel; Bar-On, Elhanan; Schwaber, Mitchell J; Ash, Nachman

    2010-07-06

    The earthquake that struck Haiti in January 2010 caused an estimated 230,000 deaths and injured approximately 250,000 people. The Israel Defense Forces Medical Corps Field Hospital was fully operational on site only 89 hours after the earthquake struck and was capable of providing sophisticated medical care. During the 10 days the hospital was operational, its staff treated 1111 patients, hospitalized 737 patients, and performed 244 operations on 203 patients. The field hospital also served as a referral center for medical teams from other countries that were deployed in the surrounding areas. The key factor that enabled rapid response during the early phase of the disaster from a distance of 6000 miles was a well-prepared and trained medical unit maintained on continuous alert. The prompt deployment of advanced-capability field hospitals is essential in disaster relief, especially in countries with minimal medical infrastructure. The changing medical requirements of people in an earthquake zone dictate that field hospitals be designed to operate with maximum flexibility and versatility regarding triage, staff positioning, treatment priorities, and hospitalization policies. Early coordination with local administrative bodies is indispensable.

  15. Na+/H+ Exchanger 9 Regulates Iron Mobilization at the Blood-Brain Barrier in Response to Iron Starvation.

    PubMed

    Beydoun, Rami; Hamood, Mohamed A; Gomez Zubieta, Daniela M; Kondapalli, Kalyan C

    2017-03-10

    Iron is essential for brain function, with loss of iron homeostasis in the brain linked to neurological diseases ranging from rare syndromes to more common disorders, such as Parkinson's and Alzheimer's diseases. Iron entry into the brain is regulated by the blood-brain barrier (BBB). Molecular mechanisms regulating this transport are poorly understood. Using an in vitro model of the BBB, we identify NHE9, an endosomal cation/proton exchanger, as a novel regulator of this system. Human brain microvascular endothelial cells (hBMVECs) that constitute the BBB receive brain iron status information via paracrine signals from ensheathing astrocytes. In hBMVECs, we show that NHE9 expression is up-regulated very early in a physiological response invoked by paracrine signals from iron-starved astrocytes. Ectopic expression of NHE9 in hBMVECs without external cues induced up-regulation of the transferrin receptor (TfR) and down-regulation of ferritin, leading to an increase in iron uptake. Mechanistically, we demonstrate that NHE9 localizes to recycling endosomes in hBMVECs where it raises the endosomal pH. The ensuing alkalization of the endosomal lumen increased translocation of TfRs to the hBMVEC membrane. TfRs on the membrane were previously shown to facilitate both recycling-dependent and -independent iron uptake. We propose that NHE9 regulates TfR-dependent, recycling-independent iron uptake in hBMVECs by fine-tuning the endosomal pH in response to paracrine signals and is therefore an important regulator in iron mobilization pathway at the BBB. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Early Cerebral Small Vessel Disease and Brain Volume, Cognition, and Gait

    PubMed Central

    Smith, Eric E; O'Donnell, Martin; Dagenais, Gilles; Lear, Scott A; Wielgosz, Andreas; Sharma, Mukul; Poirier, Paul; Stotts, Grant; Black, Sandra E; Strother, Stephen; Noseworthy, Michael D; Benavente, Oscar; Modi, Jayesh; Goyal, Mayank; Batool, Saima; Sanchez, Karla; Hill, Vanessa; McCreary, Cheryl R; Frayne, Richard; Islam, Shofiqul; DeJesus, Jane; Rangarajan, Sumathy; Teo, Koon; Yusuf, Salim

    2015-01-01

    Objective Decline in cognitive function begins by the 40s, and may be related to future dementia risk. We used data from a community-representative study to determine whether there are age-related differences in simple cognitive and gait tests by the 40s, and whether these differences were associated with covert cerebrovascular disease on magnetic resonance imaging (MRI). Methods Between 2010 and 2012, 803 participants aged 40 to 75 years in the Prospective Urban Rural Epidemiological (PURE) study, recruited from prespecified postal code regions centered on 4 Canadian cities, underwent brain MRI and simple tests of cognition and gait as part of a substudy (PURE-MIND). Results Mean age was 58 ± 8 years. Linear decreases in performance on the Montreal Cognitive Assessment, Digit Symbol Substitution Test (DSST), and Timed Up and Go test of gait were seen with each age decade from the 40s to the 70s. Silent brain infarcts were observed in 3% of 40- to 49-year-olds, with increasing prevalence up to 18.9% in 70-year-olds. Silent brain infarcts were associated with slower timed gait and lower volume of supratentorial white matter. Higher volume of supratentorial MRI white matter hyperintensity was associated with slower timed gait and worse performance on DSST, and lower volumes of the supratentorial cortex and white matter, and cerebellum. Interpretation Covert cerebrovascular disease and its consequences on cognitive and gait performance and brain atrophy are manifest in some clinically asymptomatic persons as early as the 5th decade of life. Ann Neurol 2015;77:251–261 PMID:25428654

  17. Brain SPECT can differentiate between essential tremor and early-stage tremor-dominant Parkinson's disease.

    PubMed

    Song, In-Uk; Park, Jeong-Wook; Chung, Sung-Woo; Chung, Yong-An

    2014-09-01

    There are no confirmatory or diagnostic tests or tools to differentiate between essential tremor (ET) and tremor in idiopathic Parkinson's disease (PD). Although a number of imaging studies have indicated that there are differences between ET and PD, the functional imaging study findings are controversial. Therefore, we analyzed regional cerebral blood flow (CBF) by perfusion brain single-photon emission computed tomography (SPECT) to identify differences between ET and tremor-dominant Parkinson's disease (TPD). We recruited 33 patients with TPD, 16 patients with ET, and 33 healthy controls. We compared the severity of tremor symptoms by comparing the Fahn-Tolosa-Marin rating scale (FTM) score and the tremor score from Unified Parkinson's Disease Rating Scale (UPDRS) between TPD and ET patients. Subjects were evaluated by neuropsychological assessments, MRI and perfusion SPECT of the brain. Total FTM score was significantly higher in ET patients than TPD patients. However, there was no significant difference in FTM Part A scores between the two patient groups, while the scores for FTM Part B and C were significantly higher in ET patients than TPD patients. Brain SPECT analysis of the TPD group demonstrated significant hypoperfusion of both the lentiform nucleus and thalamus compared to the ET group. Brain perfusion SPECT may be a useful clinical method to differentiate between TPD and ET even during early-phase PD, because the lentiform nucleus and thalamus show differences in regional perfusion between these two groups during this time period. Additionally, we found evidence of cerebellar dysfunction in both TPT and ET. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Neuropsychiatric Subsyndromes and Brain Metabolic Network Dysfunctions in Early Onset Alzheimer’s Disease

    PubMed Central

    Tommaso, Ballarini; Leonardo, Iaccarino; Giuseppe, Magnani; Nagehan, Ayakta; Bruce L, Miller; William J, Jagust; Luisa, Gorno-Tempini Maria; Gil D, Rabinovici; Daniela, Perani

    2017-01-01

    Neuropsychiatric symptoms (NPSs) often occur in early-age-of-onset Alzheimer’s disease (EOAD) and cluster into sub-syndromes (SSy). The aim of this study was to investigate the association between 18F-FDG-PET regional and connectivity-based brain metabolic dysfunctions and neuropsychiatric SSy. NPSs were assessed in 27 EOAD using the Neuropsychiatric Inventory and further clustered into four SSy (apathetic, hyperactivity, affective and psychotic SSy). 85% of EOAD showed at least one NPS. Voxel-wise correlations between SSy scores and brain glucose metabolism (assessed with 18F-FDG positron emission tomography) were studied. Interregional correlation analysis was used to explore metabolic connectivity in the salience (aSN) and default mode networks (DMN) in a larger sample of EOAD (N=51) and Healthy Controls (N=57). The apathetic, hyperactivity and affective SSy were highly prevalent (>60%) as compared to the psychotic SSy (33%). The hyperactivity SSy scores were associated with increase of glucose metabolism in frontal and limbic structures, implicated in behavioral control. A comparable positive correlation with part of the same network was found for the affective SSy scores. On the other hand, the apathetic SSy scores were negatively correlated with metabolism in the bilateral orbitofrontal and dorsolateral frontal cortex known to be involved in motivation and decision-making processes. Consistent with these SSy regional correlations with brain metabolic dysfunction, the connectivity analysis showed increases in the aSN and decreases in the DMN. Behavioral abnormalities in EOAD are associated with specific dysfunctional changes in brain metabolic activity, in particular in the aSN that seems to play a crucial role in NPSs in EOAD. PMID:27412866

  19. Altered Brain Response to Drinking Glucose and Fructose in Obese Adolescents

    PubMed Central

    Sinha, Rajita; Arora, Jagriti; Giannini, Cosimo; Kubat, Jessica; Malik, Saima; Van Name, Michelle A.; Santoro, Nicola; Savoye, Mary; Duran, Elvira J.; Pierpont, Bridget; Cline, Gary; Constable, R. Todd; Sherwin, Robert S.

    2016-01-01

    Increased sugar-sweetened beverage consumption has been linked to higher rates of obesity. Using functional MRI, we assessed brain perfusion responses to drinking two commonly consumed monosaccharides, glucose and fructose, in obese and lean adolescents. Marked differences were observed. In response to drinking glucose, obese adolescents exhibited decreased brain perfusion in brain regions involved in executive function (prefrontal cortex [PFC]) and increased perfusion in homeostatic appetite regions of the brain (hypothalamus). Conversely, in response to drinking glucose, lean adolescents demonstrated increased PFC brain perfusion and no change in perfusion in the hypothalamus. In addition, obese adolescents demonstrated attenuated suppression of serum acyl-ghrelin and increased circulating insulin level after glucose ingestion; furthermore, the change in acyl-ghrelin and insulin levels after both glucose and fructose ingestion was associated with increased hypothalamic, thalamic, and hippocampal blood flow in obese relative to lean adolescents. Additionally, in all subjects there was greater perfusion in the ventral striatum with fructose relative to glucose ingestion. Finally, reduced connectivity between executive, homeostatic, and hedonic brain regions was observed in obese adolescents. These data demonstrate that obese adolescents have impaired prefrontal executive control responses to drinking glucose and fructose, while their homeostatic and hedonic responses appear to be heightened. Thus, obesity-related brain adaptations to glucose and fructose consumption in obese adolescents may contribute to excessive consumption of glucose and fructose, thereby promoting further weight gain. PMID:27207544

  20. How healthcare provider talk with parents of children following severe traumatic brain injury is perceived in early acute care.

    PubMed

    Roscigno, Cecelia I; Savage, Teresa A; Grant, Gerald; Philipsen, Gerry

    2013-08-01

    Healthcare provider talk with parents in early acute care following children's severe traumatic brain injury (TBI) affects parents' orientations to these locales, but this connection has been minimally studied. This lack of attention to this topic in previous research may reflect providers' and researchers' views that these locales are generally neutral or supportive to parents' subsequent needs. This secondary analysis used data from a larger descriptive phenomenological study (2005-2007) with parents of children following moderate to severe TBI recruited from across the United States. Parents of children with severe TBI consistently had strong negative responses to the early acute care talk processes they experienced with providers, while parents of children with moderate TBI did not. Transcript data were independently coded using discourse analysis in the framework of ethnography of speaking. The purpose was to understand the linguistic and paralinguistic talk factors parents used in their meta-communications that could give a preliminary understanding of their cultural expectations for early acute care talk in these settings. Final participants included 27 parents of children with severe TBI from 23 families. We found the human constructed talk factors that parents reacted to were: a) access to the child, which is where information was; b) regular discussions with key personnel; c) updated information that is explained; d) differing expectations for talk in this context; and, e) perceived parental involvement in decisions. We found that the organization and nature of providers' talk with parents was perceived by parents to positively or negatively shape their early acute care identities in these locales, which influenced how they viewed these locales as places that either supported them and decreased their workload or discounted them and increased their workload for getting what they needed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. How Healthcare Provider Talk with Parents of Children Following Severe Traumatic Brain Injury is Perceived in Early Acute Care

    PubMed Central

    Savage, Teresa A.; Grant, Gerald; Philipsen, Gerry

    2013-01-01

    Healthcare provider talk with parents in early acute care following children’s severe traumatic brain injury (TBI) affects parents’ orientations to these locales, but this connection has been minimally studied. This lack of attention to this topic in previous research may reflect providers’ and researchers’ views that these locales are generally neutral or supportive to parents’ subsequent needs. This secondary analysis used data from a larger descriptive phenomenological study (2005 – 2007) with parents of children following moderate to severe TBI recruited from across the United States. Parents of children with severe TBI consistently had strong negative responses to the early acute care talk processes they experienced with providers, while parents of children with moderate TBI did not. Transcript data were independently coded using discourse analysis in the framework of ethnography of speaking. The purpose was to understand the linguistic and paralinguistic talk factors parents used in their meta-communications that could give a preliminary understanding of their cultural expectations for early acute care talk in these settings. Final participants included 27 parents of children with severe TBI from 23 families. We found the human constructed talk factors that parents reacted to were: a) access to the child, which is where information was; b) regular discussions with key personnel; c) updated information that is explained; d) differing expectations for talk in this context; and, e) perceived parental involvement in decisions. We found that the organization and nature of providers’ talk with parents was perceived by parents to positively or negatively shape their early acute care identities in these locales, which influenced how they viewed these locales as places that either supported them and decreased their workload or discounted them and increased their workload for getting what they needed. PMID:23746606

  2. Blood–Brain Barrier Leakage during Early Epileptogenesis Is Associated with Rapid Remodeling of the Neurovascular Unit

    PubMed Central

    Breuer, Heike; Leiter, Ina; Märkel, Martin; Bascuñana, Pablo; Michalski, Dominik; Bengel, Frank M.; Löscher, Wolfgang; Meier, Martin; Bankstahl, Jens P.; Härtig, Wolfgang

    2018-01-01

    Abstract Increased permeability of the blood–brain barrier (BBB) following cerebral injury results in regional extravasation of plasma proteins and can critically contribute to the pathogenesis of epilepsy. Here, we comprehensively explore the spatiotemporal evolution of a main extravasation component, albumin, and illuminate associated responses of the neurovascular unit (NVU) contributing to early epileptogenic neuropathology. We applied translational in vivo MR imaging and complementary immunohistochemical analyses in the widely used rat pilocarpine post–status epilepticus (SE) model. The observed rapid BBB leakage affected major epileptogenesis-associated brain regions, peaked between 1 and 2 d post-SE, and rapidly declined thereafter, accompanied by cerebral edema generally following the same time course. At peak of BBB leakage, serum albumin colocalized with NVU constituents, such as vascular components, neurons, and brain immune cells. Surprisingly, astroglial markers did not colocalize with albumin, and aquaporin-4 (AQP4) was clearly reduced in areas of leaky BBB, indicating a severe disturbance of astrocyte-mediated endothelial-neuronal coupling. In addition, a distinct adaptive reorganization process of the NVU vasculature apparently takes place at sites of albumin presence, substantiated by reduced immunoreactivity of endothelial and changes in vascular basement membrane markers. Taken together, degenerative events at the level of the NVU, affecting vessels, astrocytes, and neurons, seem to outweigh reconstructive processes. Considering the rapidly occurring BBB leakage and subsequent impairment of the NVU, our data support the necessity of a prompt BBB-restoring treatment as one component of rational therapeutic intervention to prevent epileptogenesis and the development of other detrimental sequelae of SE. PMID:29854942

  3. Effects of experimental suppression of active (REM) sleep during early development upon adult brain and behavior in the rat.

    PubMed

    Mirmiran, M; Scholtens, J; van de Poll, N E; Uylings, H B; van der Gugten, J; Boer, G J

    1983-04-01

    In order to test the hypothesis that active sleep (AS) is important for the normal development of the central nervous system, 3 different deprivation methods were applied to male Wistar rat pups during the first month of life. Daily injection of clomipramine from 8 to 21 days of age reduced the high level of AS to less than the adult value throughout most of the experimental period. Administration of clonidine from 8 to 21 days of life induced an almost total suppression of AS. Instrumental deprivation, using the 'pendulum' method, led to a significant (but less severe) AS reduction during 2-4 weeks of postnatal age. Open-field behavior testing in adulthood revealed a higher than normal level of ambulation in all 3 experimental groups. Masculine sexual responses were deficient, due to a low level of both mounts and ejaculations, in both clomipramine- and clonidine-treated animals. Neither passive avoidance learning nor dark preference tests revealed any differences between the experimental and control rats. Sleep observations showed that there was an abnormally high incidence of large myoclonic jerks during AS in both clomipramine- and clonidine-treated rats. Subsequent measurement of regional brain weights showed a significant reduction in the cerebral cortex and medulla oblongata, as compared with the respective control groups, in both the clomipramine- and the clonidine-treated rats. In addition, DNA and protein determination in the affected brain areas showed a proportional reduction in the cortex and in the medulla. These results demonstrate that interference with normal functioning either of AS per se or of specific monoaminergic transmitter systems during early development can produce long-lasting behavioral as well as brain morphological and biochemical abnormalities in later life.

  4. Modeling and simulation of blast-induced, early-time intracranial wave physics leading to traumatic brain injury.

    SciTech Connect

    Ford, Corey C.; Taylor, Paul Allen

    The objective of this modeling and simulation study was to establish the role of stress wave interactions in the genesis of traumatic brain injury (TBI) from exposure to explosive blast. A high resolution (1 mm{sup 3} voxels), 5 material model of the human head was created by segmentation of color cryosections from the Visible Human Female dataset. Tissue material properties were assigned from literature values. The model was inserted into the shock physics wave code, CTH, and subjected to a simulated blast wave of 1.3 MPa (13 bars) peak pressure from anterior, posterior and lateral directions. Three dimensional plots ofmore » maximum pressure, volumetric tension, and deviatoric (shear) stress demonstrated significant differences related to the incident blast geometry. In particular, the calculations revealed focal brain regions of elevated pressure and deviatoric (shear) stress within the first 2 milliseconds of blast exposure. Calculated maximum levels of 15 KPa deviatoric, 3.3 MPa pressure, and 0.8 MPa volumetric tension were observed before the onset of significant head accelerations. Over a 2 msec time course, the head model moved only 1 mm in response to the blast loading. Doubling the blast strength changed the resulting intracranial stress magnitudes but not their distribution. We conclude that stress localization, due to early time wave interactions, may contribute to the development of multifocal axonal injury underlying TBI. We propose that a contribution to traumatic brain injury from blast exposure, and most likely blunt impact, can occur on a time scale shorter than previous model predictions and before the onset of linear or rotational accelerations traditionally associated with the development of TBI.« less

  5. Inadequate Antioxidative Responses in Kidneys of Brain-Dead Rats.

    PubMed

    Hoeksma, Dane; Rebolledo, Rolando A; Hottenrott, Maximilia; Bodar, Yves S; Wiersema-Buist, Janneke J; Van Goor, Harry; Leuvenink, Henri G D

    2017-04-01

    Brain death (BD)-related lipid peroxidation, measured as serum malondialdehyde (MDA) levels, correlates with delayed graft function in renal transplant recipients. How BD affects lipid peroxidation is not known. The extent of BD-induced organ damage is influenced by the speed at which intracranial pressure increases. To determine possible underlying causes of lipid peroxidation, we investigated the renal redox balance by assessing oxidative and antioxidative processes in kidneys of brain-dead rats after fast and slow BD induction. Brain death was induced in 64 ventilated male Fisher rats by inflating a 4.0F Fogarty catheter in the epidural space. Fast and slow inductions were achieved by an inflation speed of 0.45 and 0.015 mL/min, respectively, until BD confirmation. Healthy non-brain-dead rats served as reference values. Brain-dead rats were monitored for 0.5, 1, 2, or 4 hours, after which organs and blood were collected. Increased MDA levels became evident at 2 hours of slow BD induction at which increased superoxide levels, decreased glutathione peroxidase (GPx) activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased plasma creatinine levels were evident. At 4 hours after slow BD induction, superoxide, MDA, and plasma creatinine levels increased further, whereas GPx activity remained decreased. Increased MDA and plasma creatinine levels also became evident after 4 hours fast BD induction. Brain death leads to increased superoxide production, decreased GPx activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased MDA and plasma creatinine levels. These effects were more pronounced after slow BD induction. Modulation of these processes could lead to decreased incidence of delayed graft function.

  6. Post-treatment Vascular Leakage and Inflammatory Responses around Brain Cysts in Porcine Neurocysticercosis

    PubMed Central

    Mahanty, Siddhartha; Orrego, Miguel Angel; Mayta, Holger; Marzal, Miguel; Cangalaya, Carla; Paredes, Adriana; Gonzales-Gustavson, Eloy; Arroyo, Gianfranco; Gonzalez, Armando E.; Guerra-Giraldez, Cristina; García, Hector H.; Nash, Theodore E.

    2015-01-01

    Cysticidal treatment of neurocysticercosis, an infection of humans and pig brains with Taenia solium, results in an early inflammatory response directed to cysts causing seizures and focal neurological manifestations. Treatment-induced pericystic inflammation and its association with blood brain barrier (BBB) dysfunction, as determined by Evans blue (EB) extravasation, was studied in infected untreated and anthelmintic-treated pigs. We compared the magnitude and extent of the pericystic inflammation, presence of EB-stained capsules, the level of damage to the parasite, expression of genes for proinflammatory and regulatory cytokines, chemokines, and tissue remodeling by quantitative PCR assays between treated and untreated infected pigs and between EB-stained (blue) and non stained (clear) cysts. Inflammatory scores were higher in pericystic tissues from EB-stained cysts compared to clear cysts from untreated pigs and also from anthelmintic-treated pigs 48 hr and 120 hr after treatment. The degree of inflammation correlated with the severity of cyst wall damage and both increased significantly at 120 hours. Expression levels of the proinflammatory genes for IL-6, IFN-γ, TNF-α were higher in EB-stained cysts compared to clear cysts and unaffected brain tissues, and were generally highest at 120 hr. Additionally, expression of some markers of immunoregulatory activity (IL-10, IL-2Rα) were decreased in EB-stained capsules. An increase in other markers for regulatory T cells (CTLA4, FoxP3) was found, as well as significant increases in expression of two metalloproteases, MMP1 and MMP2 at 48 hr and 120 hr post-treatment. We conclude that the increase in severity of the inflammation caused by treatment is accompanied by both a proinflammatory and a complex regulatory response, largely limited to pericystic tissues with compromised vascular integrity. Because treatment induced inflammation occurs in porcine NCC similar to that in human cases, this model can be used to

  7. Short-Term Memory: The "Storage" Component of Human Brain Responses Predicts Recall.

    ERIC Educational Resources Information Center

    Chapman, Robert M.; And Others

    1978-01-01

    Presents electrophysiological and behavioral evidence for a neural process related to storage in short-term memory. Predicting recall performance on the basis of the storage component of brain responses is presented. A list of references is also included. (HM)

  8. Brain basis of early parent–infant interactions: psychology, physiology, and in vivo functional neuroimaging studies

    PubMed Central

    Swain, James E.; Lorberbaum, Jeffrey P.; Kose, Samet; Strathearn, Lane

    2015-01-01

    Parenting behavior critically shapes human infants’ current and future behavior. The parent–infant relationship provides infants with their first social experiences, forming templates of what they can expect from others and how to best meet others’ expectations. In this review, we focus on the neurobiology of parenting behavior, including our own functional magnetic resonance imaging (fMRI) brain imaging experiments of parents. We begin with a discussion of background, perspectives and caveats for considering the neurobiology of parent–infant relationships. Then, we discuss aspects of the psychology of parenting that are significantly motivating some of the more basic neuroscience research. Following that, we discuss some of the neurohormones that are important for the regulation of social bonding, and the dysregulation of parenting with cocaine abuse. Then, we review the brain circuitry underlying parenting, proceeding from relevant rodent and nonhuman primate research to human work. Finally, we focus on a study-by-study review of functional neuroimaging studies in humans. Taken together, this research suggests that networks of highly conserved hypothalamic–midbrain–limbic–paralimbic–cortical circuits act in concert to support aspects of parent response to infants, including the emotion, attention, motivation, empathy, decision-making and other thinking that are required to navigate the complexities of parenting. Specifically, infant stimuli activate basal forebrain regions, which regulate brain circuits that handle specific nurturing and caregiving responses and activate the brain’s more general circuitry for handling emotions, motivation, attention, and empathy – all of which are crucial for effective parenting. We argue that an integrated understanding of the brain basis of parenting has profound implications for mental health. PMID:17355399

  9. Outlier Responses Reflect Sensitivity to Statistical Structure in the Human Brain

    PubMed Central

    Garrido, Marta I.

    2013-01-01

    We constantly look for patterns in the environment that allow us to learn its key regularities. These regularities are fundamental in enabling us to make predictions about what is likely to happen next. The physiological study of regularity extraction has focused primarily on repetitive sequence-based rules within the sensory environment, or on stimulus-outcome associations in the context of reward-based decision-making. Here we ask whether we implicitly encode non-sequential stochastic regularities, and detect violations therein. We addressed this question using a novel experimental design and both behavioural and magnetoencephalographic (MEG) metrics associated with responses to pure-tone sounds with frequencies sampled from a Gaussian distribution. We observed that sounds in the tail of the distribution evoked a larger response than those that fell at the centre. This response resembled the mismatch negativity (MMN) evoked by surprising or unlikely events in traditional oddball paradigms. Crucially, responses to physically identical outliers were greater when the distribution was narrower. These results show that humans implicitly keep track of the uncertainty induced by apparently random distributions of sensory events. Source reconstruction suggested that the statistical-context-sensitive responses arose in a temporo-parietal network, areas that have been associated with attention orientation to unexpected events. Our results demonstrate a very early neurophysiological marker of the brain's ability to implicitly encode complex statistical structure in the environment. We suggest that this sensitivity provides a computational basis for our ability to make perceptual inferences in noisy environments and to make decisions in an uncertain world. PMID:23555230

  10. Late intellectual and academic outcomes following traumatic brain injury sustained during early childhood.

    PubMed

    Ewing-Cobbs, Linda; Prasad, Mary R; Kramer, Larry; Cox, Charles S; Baumgartner, James; Fletcher, Stephen; Mendez, Donna; Barnes, Marcia; Zhang, Xiaoling; Swank, Paul

    2006-10-01

    Although long-term neurological outcomes after traumatic brain injury (TBI) sustained early in life are generally unfavorable, the effect of TBI on the development of academic competencies is unknown. The present study characterizes intelligence quotient (IQ) and academic outcomes an average of 5.7 years after injury in children who sustained moderate to severe TBI prior to 6 years of age. Twenty-three children who suffered inflicted or noninflicted TBI between the ages of 4 and 71 months were enrolled in a prospective, longitudinal cohort study. Their mean age at injury was 21 months; their mean age at assessment was 89 months. The authors used general linear modeling approaches to compare IQ and standardized academic achievement test scores from the TBI group and a community comparison group (21 children). Children who sustained early TBI scored significantly lower than children in the comparison group on intelligence tests and in the reading, mathematical, and language domains of achievement tests. Forty-eight percent of the TBI group had IQs below the 10th percentile. During the approximately 5-year follow-up period, longitudinal IQ testing revealed continuing deficits and no recovery of function. Both IQ and academic achievement test scores were significantly related to the number of intracranial lesions and the lowest postresuscitation Glasgow Coma Scale score but not to age at the time of injury. Nearly 50% of the TBI group failed a school grade and/or required placement in self-contained special education classrooms; the odds of unfavorable academic performance were 18 times higher for the TBI group than the comparison group. Traumatic brain injury sustained early in life has significant and persistent consequences for the development of intellectual and academic functions and deleterious effects on academic performance.

  11. Predictive value of early near-infrared spectroscopy monitoring of patients with traumatic brain injury.

    PubMed

    Vilkė, Alina; Bilskienė, Diana; Šaferis, Viktoras; Gedminas, Martynas; Bieliauskaitė, Dalia; Tamašauskas, Arimantas; Macas, Andrius

    2014-01-01

    Traumatic brain injury (TBI) is the leading cause of death and disability in young adults. Study aimed to define the predictive value of early near-infrared spectroscopy (NIRS) monitoring of TBI patients in a Lithuanian clinical setting. Data of 61 patients was analyzed. Predictive value of early NIRS monitoring, computed tomography data and regular intensive care unit (ICU) parameters was investigated. Twenty-six patients expressed clinically severe TBI; 14 patients deceased. Patients who survived expressed higher NIRS values at the periods of admission to operative room (75.4%±9.8% vs. 71.0%±20.5%; P=0.013) and 1h after admission to ICU (74.7%±1.5% vs. 61.9%±19.4%; P=0.029). The NIRS values discriminated hospital mortality groups more accurately than admission GCS score, blood sugar or hemoglobin levels. Admission INR value and NIRS value at 1h after admission to ICU were selected by discriminant analysis into the optimal set of features when classifying hospital mortality groups. Average efficiency of classification using this method was 88.9%. When rsO2 values at 1h after admission to ICU did not exceed 68.0% in the left hemisphere and 68.3% in the right hemisphere, the hazard ratio for death increased by 17.7 times (P<0.01) and 5.1 times (P<0.05), respectively. NIRS plays an important role in the clinical care of TBI patients. Regional brain saturation monitoring provides accurate predictive data, which can improve the allocation of scarce medical resources, set the treatment goals and alleviate the early communication with patients' relatives. Copyright © 2014 Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  12. Long-term alterations in vulnerability to addiction to drugs of abuse and in brain gene expression after early life ethanol exposure.

    PubMed

    Barbier, Estelle; Pierrefiche, Olivier; Vaudry, David; Vaudry, Hubert; Daoust, Martine; Naassila, Mickaël

    2008-12-01

    Exposure to ethanol early in life can have long-lasting implications on brain function and drug of abuse response later in life. The present study investigated in rats, the long-term consequences of pre- and postnatal (early life) ethanol exposure on drug consumption/reward and the molecular targets potentially associated with these behavioral alterations. Since a relationship has been demonstrated between heightened drugs intake and susceptibility to drugs-induced locomotor activity/sensitization, anxiolysis, we tested these behavioral responses, depending on the drug, in control and early life ethanol-exposed animals. Our results show that progeny exposed to early life ethanol displayed increased consumption of ethanol solutions and increased sensitivity to cocaine rewarding effects assessed in the conditioned place preference test. Offspring exposed to ethanol were more sensitive to the anxiolytic effect of ethanol and the increased sensitivity could, at least in part, explain the alteration in the consumption of ethanol for its anxiolytic effects. In addition, the sensitivity to hypothermic effects of ethanol and ethanol metabolism were not altered by early life ethanol exposure. The sensitization to cocaine (20 mg/kg) and to amphetamine (1.2 mg/kg) was increased after early life ethanol exposure and, could partly explain, an increase in the rewarding properties of psychostimulants. Gene expression analysis revealed that expression of a large number of genes was altered in brain regions involved in the reinforcing effects of drugs of abuse. Dopaminergic receptors and transporter binding sites were also down-regulated in the striatum of ethanol-exposed offspring. Such long-term neurochemical alterations in transmitter systems and in the behavioral responses to ethanol and other drugs of abuse may confer an increased liability for addiction in exposed offspring.

  13. Transcriptional regulation of brain gene expression in response to a territorial intrusion

    PubMed Central

    Sanogo, Yibayiri O.; Band, Mark; Blatti, Charles; Sinha, Saurabh; Bell, Alison M.

    2012-01-01

    Aggressive behaviour associated with territorial defence is widespread and has fitness consequences. However, excess aggression can interfere with other important biological functions such as immunity and energy homeostasis. How the expression of complex behaviours such as aggression is regulated in the brain has long intrigued ethologists, but has only recently become amenable for molecular dissection in non-model organisms. We investigated the transcriptomic response to territorial intrusion in four brain regions in breeding male threespined sticklebacks using expression microarrays and quantitative polymerase chain reaction (qPCR). Each region of the brain had a distinct genomic response to a territorial challenge. We identified a set of genes that were upregulated in the diencephalon and downregulated in the cerebellum and the brain stem. Cis-regulatory network analysis suggested transcription factors that regulated or co-regulated genes that were consistently regulated in all brain regions and others that regulated gene expression in opposing directions across brain regions. Our results support the hypothesis that territorial animals respond to social challenges via transcriptional regulation of genes in different brain regions. Finally, we found a remarkably close association between gene expression and aggressive behaviour at the individual level. This study sheds light on the molecular mechanisms in the brain that underlie the response to social challenges. PMID:23097509

  14. Complement mRNA in the mammalian brain: responses to Alzheimer's disease and experimental brain lesioning.

    PubMed

    Johnson, S A; Lampert-Etchells, M; Pasinetti, G M; Rozovsky, I; Finch, C E

    1992-01-01

    This study describes evidence in the adult human and rat brain for mRNAs that encode two complement (C) proteins, C1qB and C4. C proteins are important effectors of humoral immunity and inflammation in peripheral tissues but have not been considered as normally present in brain. Previous immunocytochemical studies showed that C proteins are associated with plaques, tangles, and dystrophic neurites in Alzheimer's disease (AD), but their source is unknown. Combined immunocytochemistry and in situ hybridization techniques show C4 mRNA in pyramidal neurons and C1qB mRNA in microglia. Primary rat neuron cultures also show C1qB mRNA. In the cortex from AD brains, there were two- to threefold increases of C1qB mRNA and C4 mRNA, and increased C1qB mRNA prevalence was in part associated with microglia. As a model for AD, we examined entorhinal cortex perforant path transection in the rat brain, which caused rapid increases of C1qB mRNA in the ipsilateral, but not contralateral, hippocampus and entorhinal cortex. The role of brain-derived acute and chronic C induction during AD and experimental lesions can now be considered in relation to functions of C proteins that pertain to cell degeneration and/or cell preservation and synaptic plasticity.

  15. Evaluation of auditory brain stems evoked response in newborns with pathologic hyperbilirubinemia in mashhad, iran.

    PubMed

    Okhravi, Tooba; Tarvij Eslami, Saeedeh; Hushyar Ahmadi, Ali; Nassirian, Hossain; Najibpour, Reza

    2015-02-01

    Neonatal jaundice is a common cause of sensorneural hearing loss in children. We aimed to detect the neurotoxic effects of pathologic hyperbilirubinemia on brain stem and auditory tract by auditory brain stem evoked response (ABR) which could predict early effects of hyperbilirubinemia. This case-control study was performed on newborns with pathologic hyperbilirubinemia. The inclusion criteria were healthy term and near term (35 - 37 weeks) newborns with pathologic hyperbilirubinemia with serum bilirubin values of ≥ 7 mg/dL, ≥ 10 mg/dL and ≥14 mg/dL at the first, second and third-day of life, respectively, and with bilirubin concentration ≥ 18 mg/dL at over 72 hours of life. The exclusion criteria included family history and diseases causing sensorineural hearing loss, use of auto-toxic medications within the preceding five days, convulsion, congenital craniofacial anomalies, birth trauma, preterm newborns < 35 weeks old, birth weight < 1500 g, asphyxia, and mechanical ventilations for five days or more. A total of 48 newborns with hyperbilirubinemia met the enrolment criteria as the case group and 49 healthy newborns as the control group, who were hospitalized in a university educational hospital (22 Bahaman), in a north-eastern city of Iran, Mashhad. ABR was performed on both groups. The evaluated variable factors were latency time, inter peak intervals time, and loss of waves. The mean latencies of waves I, III and V of ABR were significantly higher in the pathologic hyperbilirubinemia group compared with the controls (P < 0.001). In addition, the mean interpeak intervals (IPI) of waves I-III, I-V and III-V of ABR were significantly higher in the pathologic hyperbilirubinemia group compared with the controls (P < 0.001). For example, the mean latencies time of wave I was significantly higher in right ear of the case group than in controls (2.16 ± 0.26 vs. 1.77 ± 0.15 milliseconds, respectively) (P < 0.001). Pathologic hyperbilirubinemia causes acute

  16. Effects of deep brain stimulation on rest tremor progression in early stage Parkinson disease.

    PubMed

    Hacker, Mallory L; DeLong, Mahlon R; Turchan, Maxim; Heusinkveld, Lauren E; Ostrem, Jill L; Molinari, Anna L; Currie, Amanda D; Konrad, Peter E; Davis, Thomas L; Phibbs, Fenna T; Hedera, Peter; Cannard, Kevin R; Drye, Lea T; Sternberg, Alice L; Shade, David M; Tonascia, James; Charles, David

    2018-06-29

    To evaluate whether the progression of individual motor features was influenced by early deep brain stimulation (DBS), a post hoc analysis of Unified Parkinson's Disease Rating Scale-III (UPDRS-III) score (after a 7-day washout) was conducted from the 2-year DBS in early Parkinson disease (PD) pilot trial dataset. The prospective pilot trial enrolled patients with PD aged 50-75 years, treated with PD medications for 6 months-4 years, and no history of dyskinesia or other motor fluctuations, who were randomized to receive optimal drug therapy (ODT) or DBS plus ODT (DBS + ODT). At baseline and 6, 12, 18, and 24 months, all patients stopped all PD therapy for 1 week (medication and stimulation, if applicable). UPDRS-III "off" item scores were compared between the ODT and DBS + ODT groups (n = 28); items with significant between-group differences were analyzed further. UPDRS-III "off" rest tremor score change from baseline to 24 months was worse in patients receiving ODT vs DBS + ODT ( p = 0.002). Rest tremor slopes from baseline to 24 months favored DBS + ODT both "off" and "on" therapy ( p < 0.001, p = 0.003, respectively). More ODT patients developed new rest tremor in previously unaffected limbs than those receiving DBS + ODT ( p = 0.001). These results suggest the possibility that DBS in early PD may slow rest tremor progression. Future investigation in a larger cohort is needed, and these findings will be tested in the Food and Drug Administration-approved, phase III, pivotal, multicenter clinical trial evaluating DBS in early PD. This study provides Class II evidence that for patients with early PD, DBS may slow the progression of rest tremor. © 2018 American Academy of Neurology.

  17. The early epigenetic response to ozone: impacts on DNA ...

    EPA Pesticide Factsheets

    Epigenetics have been increasingly recognized as a mechanism linking environment and gene expression. Despite awareness of the role of DNA methylation and hydroxymethylation as potential drivers of the response to air pollutants, very little work has been performed investigating the direct epigenetic effects following exposure to ambient air pollution. Thus the purpose of this study was to investigate the early epigenetic response to ozone in comparison to the epigenetic modifier 5-aza-2'-deoxycytidine (5-Aza) in rats. 12 week old, male Long-Evans rats (n=16) were exposed to 4 hours of whole-body 1.0 ppm ozone or air and immediately euthanized. A subset of animals were additionally treated with 5-Aza (n=16) to serve as an epigenetic control to ozone exposure. Neither 5-Aza nor ozone by itself induced changes to the global methylome or hydroxmethylome of the lung measured by ELISA. Despite this finding, ozone exposure induced a significant increase in the activity of the DNA methyltransferase enzymes in the lung which was reversed with 5-Aza treatment. Interestingly, a significant interaction between 5-Aza treatment and ozone exposure was found in a large array of data. The interaction between 5-Aza and ozone produced indicators of pulmonary edema and elevated lung damage. Along with these adverse changes, expression of major epigenetic enzymes (Tet 1-3, Dnmt3 a-b) were found to be perturbed in both the lung and hepatic tissues. While ozone exposure appears to in

  18. Early response to therapy and survival in multiple myeloma.

    PubMed

    Schaar, C G; Kluin-Nelemans, J C; le Cessie, S; Franck, P F H; te Marvelde, M C; Wijermans, P W

    2004-04-01

    Whether the response to chemotherapy is a prognosticator in multiple myeloma (MM) is still not known. Therefore, the relationship between survival and the rate of monoclonal protein (M-protein) decrement during the first cycles of therapy was prospectively assessed in 262 patients with newly diagnosed MM that were included in a phase III trial (HOVON-16). M-proteins were collected monthly during melphalan-prednisone therapy (MP: melphalan 0.25 mg/kg, prednisone 1.0 mg/kg orally for 5 d every 4 weeks). Patients with light chain disease (n = 18), immunoglobulin M (IgM)-MM (n = 1) and no immunotyping (n = 1) were excluded. Of the 242 patients studied, 75% had IgG M-protein and 25% IgA; MM stages: I: 1%, II: 35% and III: 64%. The median M-protein decrease after the first cycle of MP was 21% for IgG and 27% for IgA, and declined to < 5% after four cycles. An obvious survival advantage was seen for patients who had an M-protein decrease of at least 30% after the first MP cycle, which became significant when an M-protein decrease of 40% or more was reached. As established prognostic parameters (Salmon & Durie stage, serum creatinine, and haemoglobin) also remained prognostically significant, we concluded that early response to MP predicts for survival in MM.

  19. To Stroop or Not to Stroop: Sex-Related Differences in Brain-Behavior Associations During Early Childhood

    PubMed Central

    Cuevas, Kimberly; Calkins, Susan D.; Bell, Martha Ann

    2015-01-01

    Executive functions (EFs) are linked with optimal cognitive and social-emotional development. Despite behavioral evidence of sex differences in early childhood EF, little is known about potential sex differences in corresponding brain-behavior associations. The present study examined changes in 4-year-olds’ 6–9 Hz EEG power in response to increased executive processing demands (i.e., “Stroop-like” vs. “non-Stroop” day-night tasks). Although there were no sex differences in task performance, an examination of multiple scalp electrode sites revealed that boys exhibited more widespread changes in EEG power as compared to girls. Further, multiple regression analyses controlling for maternal education and non-EF performance indicated that individual differences in boys’ and girls’ EF performance were associated with different frontal neural correlates (i.e., different frontal scalp sites and different measures of EEG power). These data reveal valuable information concerning sex differences in the neural systems underlying executive processing during early childhood. PMID:26681615

  20. Early Life Socioeconomic Circumstance and Late Life Brain Hyperintensities – A Population Based Cohort Study

    PubMed Central

    Murray, Alison D.; McNeil, Christopher J.; Salarirad, Sima; Whalley, Lawrence J.; Staff, Roger T.

    2014-01-01

    Context There have been many reports confirming the association between lower childhood socioeconomic circumstance and cardiovascular disease but evidence for links with cerebrovascular disease is contradictory. Hyperintensities on brain magnetic resonance imaging are associated with vascular risk factors, cognitive decline, dementia and death. However, the relationship between childhood socioeconomic circumstance and these lesions is unclear. Objective To test the hypothesis that childhood socioeconomic circumstance is associated with late life hyperintensity burden and that neither adult socioeconomic circumstance nor change in socioeconomic circumstance during life influence this effect. Design Cohort study Setting Community Participants 227 community dwelling members of the 1936 Aberdeen Birth Cohort aged 68 years, who were free from dementia. Main Outcome Measures Relationship between early life socioeconomic circumstance (paternal occupation) and abundance of late life brain hyperintensities. Results We find significant negative correlations between childhood socioeconomic circumstance and white matter hyperintensities (ρ = −0.18, P<0.01), and periventricular hyperintensities (ρ = −0.15, P<0.05), between educational attainment and white matter hyperintensities (ρ = −0.15, P<0.05) and periventricular hyperintensities (ρ = −0.17, P<0.05), and between childhood intelligence and periventricular hyperintensities (ρ = −0.14, P<0.05). The relationship is strongest for childhood socioeconomic circumstance and regional white matter hyperintensities, where there is a step change in increased burden from paternal occupation grades equivalent to a shift from “white collar” to “blue collar” paternal occupation. Significant correlations were also found between hypertension and hyperintensity burden in all brain regions (ρ = 0.15–0.24, P<0.05). In models that include hypertension, the magnitude of the effect of childhood

  1. Diagnostic tools of early brain disturbances in an asymptomatic neonate with maple syrup urine disease.

    PubMed

    Terek, Demet; Koroglu, Ozge; Yalaz, Mehmet; Gokben, Sarenur; Calli, Cem; Coker, Mahmut; Kultursay, Nilgun

    2013-08-01

    Maple syrup urine disease (MSUD) is a rare inherited metabolic disorder resulting from the defective activity of branched-chain 2-ketoacid dehydrogenase complex. Routine screening of newborn with tandem mass spectroscopy on the third day of life may detect elevated branched-chain amino acids in blood before the appearance of encephalopathic symptoms in MSUD cases. If undiagnosed by such a routine screening test, patients often present with encephalopathy and seizures. Clinical neurologic examination is supplemented by electroencephalography and imaging. Here, we report abnormal amplitude-integrated electroencephalography, electroencephalography, magnetic resonance imaging, and magnetic resonance imaging spectroscopy findings in a neurologically asymptomatic male newborn who was diagnosed with MSUD at the third week of life. These neurologic disturbances disappeared at the fourth month of life with appropriate special diet. Therefore, even in already asymptomatic cases, early neurologic deterioration of brain metabolism and structure can be detected with these early laboratory findings, indicating the importance of early diagnosis and management. Patients may also benefit from these investigations during the follow-up period. Georg Thieme Verlag KG Stuttgart · New York.

  2. Deep Brain Stimulation for Early Stage Parkinson's Disease: An Illustrative Case

    PubMed Central

    Gill, Chandler E.; Allen, Laura A.; Konrad, Peter E.; Davis, Thomas L.; Bliton, Mark J.; Finder, Stuart G.; Tramontana, Michael G.; Kao, C. Chris; Remple, Michael S.; Bradenham, Courtney H.; Charles, P. David

    2011-01-01

    Objectives Subthalamic nucleus (STN) deep brain stimulation (DBS) is an effective intervention in advanced Parkinson's Disease (PD), but its efficacy and safety in early PD are unknown. Our team is conducting a randomized pilot trial investigating DBS in early PD. This report describes one participant who received bilateral STN-DBS. Materials/Methods Thirty subjects have been randomized to either optimal drug therapy (ODT) or DBS + ODT. Microelectrode recordings from the STN and substantia nigra (SN) are collected at implantation. The Unified Parkinson's Disease Rating Scale Motor Subscale (UPDRS-III) is administered in the ON and OFF states semi-annually and neuropsychological function and quality of life are assessed annually. We describe a 54-year-old man with a two-year history of PD who was randomized to DBS + ODT and followed for two years. Results The subject showed a lower STN to SN ratio of neuronal activity than advanced PD patients, and higher firing rate than non-PD patients. The subject's ON total UPDRS and UPDRS-III scores improved during the two-year follow-up, while his OFF UPDRS-III score and levodopa equivalent daily dose (LEDD) increased. Quality of life, verbal fluency and verbal learning improved. He did not experience any serious adverse events. Conclusions This report details the first successful application of bilateral STN DBS for early stage PD during a clinical trial. PMID:21939467

  3. Early neurorehabilitation in a patient with severe traumatic brain injury to the frontal lobes.

    PubMed

    Pachalska, Maria; Moskała, Marek; MacQueen, Bruce Duncan; Polak, Jarosław; Wilk-Frańczuk, Magdalena

    2010-12-01

    It seems to be generally believed that early neurostimulation after severe TBI is useless or even harmful, and neuropsychological intervention should not be initiated until the patient is medically stable. On the other hand, the unstimulated brain can incur irreversible damage. The purpose of the present study is to assess the impact of early neuropsychological rehabilitation on a patient with an extremely severe TBI. The patient, a 32-year old male, suffered a massive cranio-facial injury with significant loss of tissue in the right frontal lobes after being struck by a tram. Beginning two weeks after injury, after pharmacological coma, he was attended on a daily basis by a neuropsychologist and a neurolinguist, with the active assistance of his family, when he was still in critical condition and essentially without logical contact. By the time he returned to Scotland 4 weeks later, he was sitting up, writing complete, sensible and grammatical sentences, and making rapid progress every day despite the development of hydrocephalus. Over the course of neurorehabilitation, most of MF's cognitive dysfunctions resolved. Six months later, however, hydrocephalus was increasing and the patient was showing severe frontal syndrome. A personalized version of Community Based Rehabilitation was applied. After two weeks of intensive treatment considerable improvement was achieved and frontal syndrome was reduced. The present case suggests that the prevailing views regarding the inadvisability of early neurorehabilitation in the acute phase after TBI should be reconsidered.

  4. Early Alzheimer's and Parkinson's disease pathology in urban children: Friend versus Foe responses--it is time to face the evidence.

    PubMed

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Mora-Tiscareño, Antonieta; Medina-Cortina, Humberto; Torres-Jardón, Ricardo; Kavanaugh, Michael

    2013-01-01

    Chronic exposure to particulate matter air pollution is known to cause inflammation leading to respiratory- and cardiovascular-related sickness and death. Mexico City Metropolitan Area children exhibit an early brain imbalance in genes involved in oxidative stress, inflammation, and innate and adaptive immune responses. Early dysregulated neuroinflammation, brain microvascular damage, production of potent vasoconstrictors, and perturbations in the integrity of the neurovascular unit likely contribute to progressive neurodegenerative processes. The accumulation of misfolded proteins coincides with the anatomical distribution observed in the early stages of both Alzheimer's and Parkinson's diseases. We contend misfolding of hyperphosphorylated tau (HPπ), alpha-synuclein, and beta-amyloid could represent a compensatory early protective response to the sustained systemic and brain inflammation. However, we favor the view that the chronic systemic and brain dysregulated inflammation and the diffuse vascular damage contribute to the establishment of neurodegenerative processes with childhood clinical manifestations. Friend turns Foe early; therefore, implementation of neuroprotective measures to ameliorate or stop the inflammatory and neurodegenerative processes is warranted in exposed children. Epidemiological, cognitive, structural, and functional neuroimaging and mechanistic studies into the association between air pollution exposures and the development of neuroinflammation and neurodegeneration in children are of pressing importance for public health.

  5. Effects of maternal separation, early handling, and gonadal sex on regional metabolic capacity of the preweanling rat brain

    PubMed Central

    Spivey, Jaclyn M.; Padilla, Eimeira; Shumake, Jason D.; Gonzalez-Lima, F.

    2010-01-01

    This is the first study to assess the effects of mother-infant separation on regional metabolic capacity in the preweanling rat brain. Mother-infant separation is generally known to be stressful for rat pups. Holtzman adolescent rats show a depressive-like behavioral phenotype after maternal separation during the preweanling period. However, information is lacking on the effects of maternal separation on the brains of rat pups. We addressed this issue by mapping the brains of preweanling Holtzman rat pups using cytochrome oxidase histochemistry, which reflects long-term changes in brain metabolic capacity, following two weeks of repeated, prolonged maternal separation, and compared this to both early handled and non-handled pups. Quantitative image analysis revealed that maternal separation reduced cytochrome oxidase activity in the medial prefrontal cortex and nucleus accumbens shell. Maternal separation reduced prefrontal cytochrome oxidase to a greater degree in female pups than in males. Early handling reduced cytochrome oxidase activity in the posterior parietal cortex, ventral tegmental area, and subiculum, but increased cytochrome oxidase activity in the lateral frontal cortex. The sex-dependent effects of early handling on cytochrome oxidase activity were limited to the medial prefrontal cortex. Regardless of separation group, females had greater cytochrome oxidase activity in the habenula and ventral tegmental area compared to males. These findings suggest that early life mother-infant separation results in dysfunction of prefrontal and mesolimbic regions in the preweanling rat brain that may contribute to behavioral changes later in life. PMID:20969837

  6. New perspectives on central and peripheral immune responses to acute traumatic brain injury

    PubMed Central

    2012-01-01

    Traumatic injury to the brain (TBI) results in a complex set of responses involving various symptoms and long-term consequences. TBI of any form can cause cognitive, behavioral and immunologic changes in later life, which underscores the problem of underdiagnosis of mild TBI that can cause long-term neurological deficits. TBI disrupts the blood–brain barrier (BBB) leading to infiltration of immune cells into the brain and subsequent inflammation and neurodegeneration. TBI-induced peripheral immune responses can also result in multiorgan damage. Despite worldwide research efforts, the methods of diagnosis, monitoring and treatment for TBI are still relatively ineffective. In this review, we delve into the mechanism of how TBI-induced central and peripheral immune responses affect the disease outcome and discuss recent developments in the continuing effort to combat the consequences of TBI and new ways to enhance repair of the damaged brain. PMID:23061919

  7. The impact of early repeated pain experiences on stress responsiveness and emotionality at maturity in rats.

    PubMed

    Page, Gayle G; Blakely, Wendy P; Kim, Miyong

    2005-01-01

    The intensive care necessary for premature newborns is characterized by multiple procedures, many of which are painful. Given emerging evidence that such early pain during this time of high brain plasticity may affect long-term neurodevelopmental and social-emotional functioning, this study explored the impact of early repeated pain on emotionality and stress responsivity at maturity. From birth through postnatal day 7, Fischer 344 pups underwent either paw needle prick every day versus every other day or daily paw touch, or were left unperturbed. Each paw received the designated perturbation once per day. At maturity, some animals underwent emotionality testing: either a 4-day series of open field exposures or a single elevated plus-maze (EPM) exposure. The paw prick groups exhibited less open field habituation and occupied the EPM open arms more. Two weeks later, all animals were either subjected to forced swim or not. At 1h post-swim, animals underwent either blood withdrawal for plasma corticosterone (CS) levels and ex vivo natural killer cell activity (NKCA) or were injected intravenously with radiolabeled NK-sensitive syngeneic MADB106 tumor cells and assessed for lung tumor retention. Sex was a major factor in the manifestation of perturbation-related differences in the biologic outcomes. Whereas postnatal pain differentially affected baseline tumor retention between males and females, only males exhibited perturbation-related differences in swim stress-induced increases in tumor retention and CS. Finally, male-female differences were evident in CS, NKCA, and tumor responses to swim stress. These findings suggest that early pain affects neurodevelopmental function in the mature organism; however, these relationships are complicated by sex differences, the postnatal pain schedule, and the outcome measured.

  8. Brain response to visual sexual stimuli in homosexual pedophiles

    PubMed Central

    Schiffer, Boris; Krueger, Tillmann; Paul, Thomas; de Greiff, Armin; Forsting, Michael; Leygraf, Norbert; Schedlowski, Manfred; Gizewski, Elke

    2008-01-01

    Objective The neurobiological mechanisms of deviant sexual preferences such as pedophilia are largely unknown. The objective of this study was to analyze whether brain activation patterns of homosexual pedophiles differed from those of a nonpedophile homosexual control group during visual sexual stimulation. Method A consecutive sample of 11 pedophile forensic inpatients exclusively attracted to boys and 12 age-matched homosexual control participants from a comparable socioeconomic stratum underwent functional magnetic resonance imaging during a visual sexual stimulation procedure that used sexually stimulating and emotionally neutral photographs. Sexual arousal was assessed according to a subjective rating scale. Results In contrast to sexually neutral pictures, in both groups sexually arousing pictures having both homosexual and pedophile content activated brain areas known to be involved in processing visual stimuli containing emotional content, including the occipitotemporal and prefrontal cortices. However, during presentation of the respective sexual stimuli, the thalamus, globus pallidus and striatum, which correspond to the key areas of the brain involved in sexual arousal and behaviour, showed significant activation in pedophiles, but not in control subjects. Conclusions Central processing of visual sexual stimuli in homosexual pedophiles seems to be comparable to that in nonpedophile control subjects. However, compared with homosexual control subjects, activation patterns in pedophiles refer more strongly to subcortical regions, which have previously been discussed in the context of processing reward signals and also play an important role in addictive and stimulus-controlled behaviour. Thus future studies should further elucidate the specificity of these brain regions for the processing of sexual stimuli in pedophilia and should address the generally weaker activation pattern in homosexual men. PMID:18197269

  9. Brain response to visual sexual stimuli in homosexual pedophiles.

    PubMed

    Schiffer, Boris; Krueger, Tillmann; Paul, Thomas; de Greiff, Armin; Forsting, Michael; Leygraf, Norbert; Schedlowski, Manfred; Gizewski, Elke

    2008-01-01

    The neurobiological mechanisms of deviant sexual preferences such as pedophilia are largely unknown. The objective of this study was to analyze whether brain activation patterns of homosexual pedophiles differed from those of a nonpedophile homosexual control group during visual sexual stimulation. A consecutive sample of 11 pedophile forensic inpatients exclusively attracted to boys and 12 age-matched homosexual control participants from a comparable socioeconomic stratum underwent functional magnetic resonance imaging during a visual sexual stimulation procedure that used sexually stimulating and emotionally neutral photographs. Sexual arousal was assessed according to a subjective rating scale. In contrast to sexually neutral pictures, in both groups sexually arousing pictures having both homosexual and pedophile content activated brain areas known to be involved in processing visual stimuli containing emotional content, including the occipitotemporal and prefrontal cortices. However, during presentation of the respective sexual stimuli, the thalamus, globus pallidus and striatum, which correspond to the key areas of the brain involved in sexual arousal and behaviour, showed significant activation in pedophiles, but not in control subjects. Central processing of visual sexual stimuli in homosexual pedophiles seems to be comparable to that in nonpedophile control subjects. However, compared with homosexual control subjects, activation patterns in pedophiles refer more strongly to subcortical regions, which have previously been discussed in the context of processing reward signals and also play an important role in addictive and stimulus-controlled behaviour. Thus future studies should further elucidate the specificity of these brain regions for the processing of sexual stimuli in pedophilia and should address the generally weaker activation pattern in homosexual men.

  10. Multiscale energy reallocation during low-frequency steady-state brain response.

    PubMed

    Wang, Yifeng; Chen, Wang; Ye, Liangkai; Biswal, Bharat B; Yang, Xuezhi; Zou, Qijun; Yang, Pu; Yang, Qi; Wang, Xinqi; Cui, Qian; Duan, Xujun; Liao, Wei; Chen, Huafu

    2018-05-01

    Traditional task-evoked brain activations are based on detection and estimation of signal change from the mean signal. By contrast, the low-frequency steady-state brain response (lfSSBR) reflects frequency-tagging activity at the fundamental frequency of the task presentation and its harmonics. Compared to the activity at these resonant frequencies, brain responses at nonresonant frequencies are largely unknown. Additionally, because the lfSSBR is defined by power change, we hypothesize using Parseval's theorem that the power change reflects brain signal variability rather than the change of mean signal. Using a face recognition task, we observed power increase at the fundamental frequency (0.05 Hz) and two harmonics (0.1 and 0.15 Hz) and power decrease within the infra-slow frequency band (<0.1 Hz), suggesting a multifrequency energy reallocation. The consistency of power and variability was demonstrated by the high correlation (r > .955) of their spatial distribution and brain-behavior relationship at all frequency bands. Additionally, the reallocation of finite energy was observed across various brain regions and frequency bands, forming a particular spatiotemporal pattern. Overall, results from this study strongly suggest that frequency-specific power and variability may measure the same underlying brain activity and that these results may shed light on different mechanisms between lfSSBR and brain activation, and spatiotemporal characteristics of energy reallocation induced by cognitive tasks. © 2018 Wiley Periodicals, Inc.

  11. Juvenile Traumatic Brain Injury Results in Cognitive Deficits Associated with Impaired Endoplasmic Reticulum Stress and Early Tauopathy.

    PubMed

    Hylin, Michael J; Holden, Ryan C; Smith, Aidan C; Logsdon, Aric F; Qaiser, Rabia; Lucke-Wold, Brandon P

    2018-05-22

    The leading cause of death in the juvenile population is trauma, and in particular neurotrauma. The juvenile brain response to neurotrauma is not completely understood. Endoplasmic reticulum (ER) stress has been shown to contribute to injury expansion and behavioral deficits in adult rodents and furthermore has been seen in adult postmortem human brains diagnosed with chronic traumatic encephalopathy. Whether endoplasmic reticulum stress is increased in juveniles with traumatic brain injury (TBI) is poorly delineated. We investigated this important topic using a juvenile rat controlled cortical impact (CCI) model. We proposed that ER stress would be significantly increased in juvenile rats following TBI and that this would correlate with behavioral deficits using a juvenile rat model. A juvenile rat (postnatal day 28) CCI model was used. Binding immunoglobulin protein (BiP) and C/EBP homologous protein (CHOP) were measured at 4 h in the ipsilateral pericontusion cortex. Hypoxia-inducible factor (HIF)-1α was measured at 48 h and tau kinase measured at 1 week and 30 days. At 4 h following injury, BiP and CHOP (markers of ER stress) were significantly elevated in rats exposed to TBI. We also found that HIF-1α was significantly upregulated 48 h following TBI showing delayed hypoxia. The early ER stress activation was additionally asso-ciated with the activation of a known tau kinase, glycogen synthase kinase-3β (GSK-3β), by 1 week. Tau oligomers measured by R23 were significantly increased by 30 days following TBI. The biochemical changes following TBI were associated with increased impulsive-like or anti-anxiety behavior measured with the elevated plus maze, deficits in short-term memory measured with novel object recognition, and deficits in spatial memory measured with the Morris water maze in juvenile rats exposed to TBI. These results show that ER stress was increased early in juvenile rats exposed to TBI, that these rats developed tau oligomers over the

  12. Early rehabilitation for severe acquired brain injury in intensive care unit: multicenter observational study.

    PubMed

    Bartolo, Michelangelo; Bargellesi, Stefano; Castioni, Carlo A; Bonaiuti, Donatella; Antenucci, Roberto; Benedetti, Angelo; Capuzzo, Valeria; Gamna, Federica; Radeschi, Giulio; Citerio, Giuseppe; Colombo, Carolina; Del Casale, Laura; Recubini, Elena; Toska, Saimir; Zanello, Marco; D'Aurizio, Carlo; Spina, Tullio; Del Gaudio, Alredo; Di Rienzo, Filomena; Intiso, Domenico; Dallocchio, Giulia; Felisatti, Giovanna; Lavezzi, Susanna; Zoppellari, Roberto; Gariboldi, Valentina; Lorini, Luca; Melizza, Giovanni; Molinero, Guido; Mandalà, Giorgio; Pignataro, Amedeo; Montis, Andrea; Napoleone, Alessandro; Pilia, Felicita; Pisu, Marina; Semerjian, Monica; Pagliaro, Giuseppina; Nardin, Lorella; Scarponi, Federico; Zampolini, Mauro; Zava, Raffaele; Massetti, Maria A; Piccolini, Carlo; Aloj, Fulvio; Antonelli, Sergio; Zucchella, Chiara

    2016-02-01

    The increased survival after a severe acquired brain injury (sABI) raise the problem of making most effective the treatments in Intensive Care Unit (ICU)/Neurointensive Care Unit (NICU), also integrating rehabilitation care. Despite previous studies reported that early mobilization in ICU was effective in preventing complications and reducing hospital stay, few studies addressed the rehabilitative management of sABI patients in ICU/NICU. To collect clinical and functional data about the early rehabilitative management of sABI patients during ICU/NICU stay. Prospective, observational, multicenter study. Fourteen facilities supplied by intensive neurorehabilitation units and ICU/NICUs. Consecutive sABI patients admitted to ICU/NICU. Patients were evaluated at admission and then every 3-5 days. Clinical, functional and rehabilitative data, including Glasgow Coma Scale (GCS), Disability Rating Scale (DRS), The Rancho Los Amigos Levels of Cognitive Functioning Scale (LCF), Early Rehabilitation Barthel Index (ERBI), Glasgow Outcome scale (GOS) and Functional Independence Measure (FIM) were collected. One hundred and two patients (F/M 44/58) were enrolled. The mean duration of ICU stay was 24.7±13.9 days and the first rehabilitative evaluation occurred after 8.7±8.8 days. Regular postural changes and multijoint mobilization were prescribed in 63.7% and 64.7% cases, respectively. The mean session duration was 38±11.5 minutes. Swallowing evaluation was performed in 14.7% patients, psychological support was provided to 12.7% of patients' caregivers, while 17.6% received a psycho-educational intervention, and 28.4% were involved in interdisciplinary team meetings. The main discharge destinations were Severe Acquired Brain Injury rehabilitation units for 43.7%, intensive neurorehabilitation units for 20.7%. Data showed that early rehabilitation was not diffusely performed in sABI subjects in ICU/NICU and rehabilitative interventions were variable; one-third of subjects were

  13. Subthalamic Nucleus Deep Brain Stimulation in Early Stage Parkinson’s Disease

    PubMed Central

    Charles, David; Konrad, Peter E.; Neimat, Joseph S.; Molinari, Anna L.; Tramontana, Michael G.; Finder, Stuart G.; Gill, Chandler E.; Bliton, Mark J.; Kao, Chris C.; Phibbs, Fenna T.; Hedera, Peter; Salomon, Ronald M.; Cannard, Kevin R.; Wang, Lily; Song, Yanna; Davis, Thomas L.

    2014-01-01

    Background Deep brain stimulation (DBS) is an effective and approved therapy for advanced Parkinson’s disease (PD), and a recent study suggests efficacy in mid-stage disease. This manuscript reports the results of a pilot trial investigating preliminary safety and tolerability of DBS in early PD. Methods Thirty subjects with idiopathic PD (Hoehn & Yahr Stage II off medication), age 50–75, on medication ≥ 6 months but < 4 years, and without motor fluctuations or dyskinesias were randomized to optimal drug therapy (ODT) (n=15) or DBS+ODT (n=15). Co-primary endpoints were the time to reach a 4-point worsening from baseline in the UPDRS-III off therapy and the change in levodopa equivalent daily dose from baseline to 24 months. Results As hypothesized, the mean UPDRS total and part III scores were not significantly different on or off therapy at 24 months. The DBS+ODT group took less medication at all time points, and this reached maximum difference at 18 months. With a few exceptions, differences in neuropsychological functioning were not significant. Two subjects in the DBS+ODT group suffered serious adverse events; remaining adverse events were mild or transient. Conclusions This study demonstrates that subjects with early stage PD will enroll in and complete trials testing invasive therapies and provides preliminary evidence that DBS is well tolerated in early PD. The results of this trial provide the data necessary to design a large, phase III, double-blind, multicenter trial investigating the safety and efficacy of DBS in early PD. PMID:24768120

  14. Speech disorders in Parkinson's disease: early diagnostics and effects of medication and brain stimulation.

    PubMed

    Brabenec, L; Mekyska, J; Galaz, Z; Rektorova, Irena

    2017-03-01

    Hypokinetic dysarthria (HD) occurs in 90% of Parkinson's disease (PD) patients. It manifests specifically in the areas of articulation, phonation, prosody, speech fluency, and faciokinesis. We aimed to systematically review papers on HD in PD with a special focus on (1) early PD diagnosis and monitoring of the disease progression using acoustic voice and speech analysis, and (2) functional imaging studies exploring neural correlates of HD in PD, and (3) clinical studies using acoustic analysis to evaluate effects of dopaminergic medication and brain stimulation. A systematic literature search of articles written in English before March 2016 was conducted in the Web of Science, PubMed, SpringerLink, and IEEE Xplore databases using and combining specific relevant keywords. Articles were categorized into three groups: (1) articles focused on neural correlates of HD in PD using functional imaging (n = 13); (2) articles dealing with the acoustic analysis of HD in PD (n = 52); and (3) articles concerning specifically dopaminergic and brain stimulation-related effects as assessed by acoustic analysis (n = 31); the groups were then reviewed. We identified 14 combinations of speech tasks and acoustic features that can be recommended for use in describing the main features of HD in PD. While only a few acoustic parameters correlate with limb motor symptoms and can be partially relieved by dopaminergic medication, HD in PD seems to be mainly related to non-dopaminergic deficits and associated particularly with non-motor symptoms. Future studies should combine non-invasive brain stimulation with voice behavior approaches to achieve the best treatment effects by enhancing auditory-motor integration.

  15. Early care of acute hyperglycemia benefits the outcome of traumatic brain injury in rats.

    PubMed

    Kang, Xin; Liu, Yuepeng; Yuan, Tao; Jiang, Na-Na; Dong, Yan-Bin; Wang, Jian-Wei; Fu, Guang-Hui; Liu, Yu-Liang; Wang, Wen-Xue

    2016-11-01

    Previous animal studies showed contradictory clinical observations on whether acute hyperglycemia contributes to poor outcome in traumatic brain injury (TBI). Herein, we tried to clarify this issue. Striking with depths of 3.0-4.25mm at right occipitoparietal brain region and with depth of 3.75mm at right/left occipitoparietal or right/left frontoparietal brain region were performed, respectively. Blood glucose and insulin levels were traced every four hours from 1 to 72h after striking. HOMA2-%S and HOMA2-%β were calculated. Modified neurological severity scores (mNSS) were used to evaluate neurological deficit within 72h. Striking with depths of 3.5-4.25mm induced increase in blood glucose lasting up to 24h after striking. The levels of blood glucose after striking with depths of 3.75-4.25mm were significantly different from that of striking with the depth of 3.0mm. Striking with depth of 3.75mm at right/left occipitoparietal region induced higher blood glucose in 24h than that at right/left frontoparietal region. Insulin concentration increased slowly during 72h after striking. Striking also induced decrease in insulin sensitivity and secretion lasting 72h. Evaluation of mNSS revealed that severe striking (beyond 3.75mm) worsened nerve function than slight striking (<3.0mm). Intervention of acute hyperglycemia could decrease the mNSS from 2 to 7 days after TBI. Our results suggested that only severe TBI could induce acute hyperglycemia by itself, and early care of acute hyperglycemia could benefit the outcome of TBI patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Regional brain activity during early visual perception in unaffected siblings of schizophrenia patients.

    PubMed

    Lee, Junghee; Cohen, Mark S; Engel, Stephen A; Glahn, David; Nuechterlein, Keith H; Wynn, Jonathan K; Green, Michael F

    2010-07-01

    Visual masking paradigms assess the early part of visual information processing, which may reflect vulnerability measures for schizophrenia. We examined the neural substrates of visual backward performance in unaffected sibling of schizophrenia patients using functional magnetic resonance imaging (fMRI). Twenty-one unaffected siblings of schizophrenia patients and 19 healthy controls performed a backward masking task and three functional localizer tasks to identify three visual processing regions of interest (ROI): lateral occipital complex (LO), the motion-sensitive area, and retinotopic areas. In the masking task, we systematically manipulated stimulus onset asynchronies (SOAs). We analyzed fMRI data in two complementary ways: 1) an ROI approach for three visual areas, and 2) a whole-brain analysis. The groups did not differ in behavioral performance. For ROI analysis, both groups increased activation as SOAs increased in LO. Groups did not differ in activation levels of the three ROIs. For whole-brain analysis, controls increased activation as a function of SOAs, compared with siblings in several regions (i.e., anterior cingulate cortex, posterior cingulate cortex, inferior prefrontal cortex, inferior parietal lobule). The study found: 1) area LO showed sensitivity to the masking effect in both groups; 2) siblings did not differ from controls in activation of LO; and 3) groups differed significantly in several brain regions outside visual processing areas that have been related to attentional or re-entrant processes. These findings suggest that LO dysfunction may be a disease indicator rather than a risk indicator for schizophrenia. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Development of the brain's structural network efficiency in early adolescence: A longitudinal DTI twin study.

    PubMed

    Koenis, Marinka M G; Brouwer, Rachel M; van den Heuvel, Martijn P; Mandl, René C W; van Soelen, Inge L C; Kahn, René S; Boomsma, Dorret I; Hulshoff Pol, Hilleke E

    2015-12-01

    The brain is a network and our intelligence depends in part on the efficiency of this network. The network of adolescents differs from that of adults suggesting developmental changes. However, whether the network changes over time at the individual level and, if so, how this relates to intelligence, is unresolved in adolescence. In addition, the influence of genetic factors in the developing network is not known. Therefore, in a longitudinal study of 162 healthy adolescent twins and their siblings (mean age at baseline 9.9 [range 9.0-15.0] years), we mapped local and global structural network efficiency of cerebral fiber pathways (weighted with mean FA and streamline count) and assessed intelligence over a three-year interval. We find that the efficiency of the brain's structural network is highly heritable (locally up to 74%). FA-based local and global efficiency increases during early adolescence. Streamline count based local efficiency both increases and decreases, and global efficiency reorganizes to a net decrease. Local FA-based efficiency was correlated to IQ. Moreover, increases in FA-based network efficiency (global and local) and decreases in streamline count based local efficiency are related to increases in intellectual functioning. Individual changes in intelligence and local FA-based efficiency appear to go hand in hand in frontal and temporal areas. More widespread local decreases in streamline count based efficiency (frontal cingulate and occipital) are correlated with increases in intelligence. We conclude that the teenage brain is a network in progress in which individual differences in maturation relate to level of intellectual functioning. © 2015 Wiley Periodicals, Inc.

  18. Early and late brain signatures of emotional prosody among individuals with high versus low power.

    PubMed

    Paulmann, Silke; Uskul, Ayse K

    2017-04-01

    Using ERPs, we explored the relationship between social power and emotional prosody processing. In particular, we investigated differences at early and late processing stages between individuals primed with high or low power. Comparable to previously published findings from nonprimed participants, individuals primed with low power displayed differentially modulated P2 amplitudes in response to different emotional prosodies, whereas participants primed with high power failed to do so. Similarly, participants primed with low power showed differentially modulated amplitudes in response to different emotional prosodies at a later processing stage (late ERP component), whereas participants primed with high power did not. These ERP results suggest that high versus low power leads to emotional prosody processing differences at the early stage associated with emotional salience detection and at a later stage associated with more in-depth processing of emotional stimuli. © 2016 Society for Psychophysiological Research.

  19. Longitudinal functional brain imaging study in early course schizophrenia before and after cognitive enhancement therapy.

    PubMed

    Keshavan, Matcheri S; Eack, Shaun M; Prasad, Konasale M; Haller, Chiara S; Cho, Raymond Y

    2017-05-01

    Schizophrenia is characterized by impaired -social and non social cognition both of which lead to functional deficits. These deficits may benefit from cognitive remediation, but the neural underpinnings of such improvements have not been clearly delineated. We conducted a functional magnetic resonance (fMRI) study in early course schizophrenia patients randomly assigned to cognitive enhancement therapy (CET) or enriched supportive therapy (EST) and treated for two years. Imaging data over three time points including fMRI blood oxygen level dependent (BOLD) data were acquired during performance of a cognitive control paradigm, the Preparing to Overcome Prepotency (POP) task, and functional connectivity data, were analyzed. During the two years of treatment, CET patients showed a continual increase in BOLD activity in the right dorsolateral prefrontal cortex (DLPFC), whereas EST patients tended to show no change in prefrontal brain function throughout treatment. Increases in right DLPFC activity were modestly associated with improved neurocognition (β = .14, p = .041), but not social cognition. Functional connectivity analyses showed reduced connectivity between the DLPFC and the anterior cingulate cortex (ACC) in CET compared to EST over the two years of treatment, which was associated with neurocognitive improvement. These findings suggest that CET leads to enhanced neural activity in brain regions mediating cognitive control and increased efficiency in prefrontal circuits; such changes may be related to the observed therapeutic effects of CET on neurocognitive function. Copyright © 2017. Published by Elsevier Inc.

  20. Virtual endocranial cast of earliest Eocene Diacodexis (Artiodactyla, Mammalia) and morphological diversity of early artiodactyl brains

    PubMed Central

    Orliac, M. J.; Gilissen, E.

    2012-01-01

    The study of brain evolution, particularly that of the neocortex, is of primary interest because it directly relates to how behavioural variations arose both between and within mammalian groups. Artiodactyla is one of the most diverse mammalian clades. However, the first 10 Myr of their brain evolution has remained undocumented so far. Here, we used high-resolution X-ray computed tomography to investigate the endocranial cast of Diacodexis ilicis of earliest Eocene age. Its virtual reconstruction provides unprecedented access to both metric parameters and fine anatomy of the most complete endocast of the earliest artiodactyl. This picture is assessed in a broad comparative context by reconstructing endocasts of 14 other Early and Middle Eocene representatives of basal artiodactyls, allowing the tracking of the neocortical structure of artiodactyls back to its simplest pattern. We show that the earliest artiodactyls share a simple neocortical pattern, so far never observed in other ungulates, with an almond-shaped gyrus instead of parallel sulci as previously hypothesized. Our results demonstrate that artiodactyls experienced a tardy pulse of encephalization during the Late Neogene, well after the onset of cortical complexity increase. Comparisons with Eocene perissodactyls show that the latter reached a high level of cortical complexity earlier than the artiodactyls. PMID:22764165

  1. Early neuromodulation prevents the development of brain and behavioral abnormalities in a rodent model of schizophrenia.

    PubMed

    Hadar, R; Bikovski, L; Soto-Montenegro, M L; Schimke, J; Maier, P; Ewing, S; Voget, M; Wieske, F; Götz, T; Desco, M; Hamani, C; Pascau, J; Weiner, I; Winter, C

    2018-04-01

    The notion that schizophrenia is a neurodevelopmental disorder in which neuropathologies evolve gradually over the developmental course indicates a potential therapeutic window during which pathophysiological processes may be modified to halt disease progression or reduce its severity. Here we used a neurodevelopmental maternal immune stimulation (MIS) rat model of schizophrenia to test whether early targeted modulatory intervention would affect schizophrenia's neurodevelopmental course. We applied deep brain stimulation (DBS) or sham stimulation to the medial prefrontal cortex (mPFC) of adolescent MIS rats and respective controls, and investigated its behavioral, biochemical, brain-structural and -metabolic effects in adulthood. We found that mPFC-DBS successfully prevented the emergence of deficits in sensorimotor gating, attentional selectivity and executive function in adulthood, as well as the enlargement of lateral ventricle volumes and mal-development of dopaminergic and serotonergic transmission. These data suggest that the mPFC may be a valuable target for effective preventive treatments. This may have significant translational value, suggesting that targeting the mPFC before the onset of psychosis via less invasive neuromodulation approaches may be a viable preventive strategy.

  2. Anaemia worsens early functional outcome after traumatic brain injury: a preliminary study.

    PubMed

    Litofsky, N Scott; Miller, Douglas C; Chen, Zhenzhou; Simonyi, Agnes; Klakotskaia, Diana; Giritharan, Andrew; Feng, Qi; McConnell, Diane; Cui, Jiankun; Gu, Zezong

    2018-01-01

    To determine early effects on outcome from traumatic brain injury (TBI) induced by controlled cortical impact (CCI) associated with anaemia in mice. Outcome from TBI with concomitant anaemia would be worse than TBI without anaemia. CCI was induced with electromagnetic impaction in four groups of C57BL/6J mice: sham, sham+anaemia; TBI; and TBI+anaemia. Anaemia was created by withdrawal of 30% of calculated intravascular blood volume and saline replacement of equal volume. Functional outcome was assessed by beam-walking test and open field test (after pre-injury training) on post-injury days 3 and 7. After functional assessment, brains removed from sacrificed animals were pathological reviewed with haematoxylin and eosin, cresyl violet, Luxol Fast Blue, and IBA-1 immunostains. Beam-walking was similar between animals with TBI and TBI+anaemia (p = 0.9). In open field test, animals with TBI+anaemia walked less distance than TBI alone or sham animals on days 3 (p < 0.001) and 7 (p < 0.05), indicating less exploratory and locomotion behaviours. No specific pathologic differences could be identified. Anaemia associated with TBI from CCI is associated with worse outcome as measured by less distance travelled in the open field test at three days than if anaemia is not present.

  3. Signaling Pathway in Early Brain Injury after Subarachnoid Hemorrhage: News Update.

    PubMed

    Ji, Chengyuan; Chen, Gang

    2016-01-01

    The annual incidence of subarachnoid hemorrhage (SAH) caused by intracranial aneurysm rupture is approximately 10.5/10 million people in China, making SAH the third most frequently occurring hemorrhage of the intracranial type after cerebral embolism and hypertensive intracerebral hemorrhage. SAH caused by ruptured aneurysm leads to a mortality rate as high as 67 %, and, because of the sudden onset of this disease, approximately 12-15 % of patients die before they can receive effective treatment. Early brain injury (EBI) is the brain damage occurring within the first 72 h after SAH. Two-thirds of mortality caused by SAH occurs within 48 h, mainly as a result of EBI. With the development of molecular biology and medicine microscopy techniques, various signaling pathways involved in EBI after SAH have been revealed. Understanding these signaling pathways may help clinicians treat EBI after SAH and improve long-term prognosis of SAH patients. This chapter summarizes several important signaling pathways implicated in EBI caused by SAH.

  4. COMPARED TO WHAT? EARLY BRAIN OVERGROWTH IN AUTISM AND THE PERILS OF POPULATION NORMS

    PubMed Central

    Raznahan, Armin; Wallace, Gregory L; Antezana, Ligia; Greenstein, Dede; Lenroot, Rhoshel; Thurm, Audrey; Gozzi, Marta; Spence, Sarah; Martin, Alex; Swedo, Susan E; Giedd, Jay N

    2013-01-01

    Background Early brain overgrowth (EBO) in autism spectrum disorder (ASD) is amongst the best-replicated biological associations in psychiatry. Most positive reports have compared head circumference (HC) in ASD (an excellent proxy for early brain size) with well-known reference norms. We sought to reappraise evidence for the EBO hypothesis given (i) the recent proliferation of longitudinal HC studies in ASD, and (ii) emerging reports that several of the reference norms used to define EBO in ASD may be biased towards detecting HC overgrowth in contemporary samples of healthy children. Methods (1)Systematic review of all published HC studies in children with ASD. (2)Comparison of 330 longitudinally gathered HC measures between birth and 18 months from male children with autism(n=35) and typically developing controls(n=22). Results In systematic review, comparisons with locally recruited controls were significantly less likely to identify EBO in ASD than norm-based studies(p<0.006). Through systematic review and analysis of new data we replicate seminal reports of EBO in ASD relative to classical HC norms, but show that this overgrowth relative to norms is mimicked by patterns of HC growth age in a large contemporary community-based sample of US children(n~75,000). Controlling for known HC norm biases leaves inconsistent support for a subtle, later-emerging and sub-group specific pattern of EBO in clinically-ascertained ASD vs. community controls. Conclusions The best-replicated aspects of EBO reflect generalizable HC norm biases rather than disease-specific biomarkers. The potential HC norm biases we detail are not specific to ASD research, but apply throughout clinical and academic medicine. PMID:23706681

  5. Advanced fiber tracking in early acquired brain injury causing cerebral palsy.

    PubMed

    Lennartsson, F; Holmström, L; Eliasson, A-C; Flodmark, O; Forssberg, H; Tournier, J-D; Vollmer, B

    2015-01-01

    Diffusion-weighted MR imaging and fiber tractography can be used to investigate alterations in white matter tracts in patients with early acquired brain lesions and cerebral palsy. Most existing studies have used diffusion tensor tractography, which is limited in areas of complex fiber structures or pathologic processes. We explored a combined normalization and probabilistic fiber-tracking method for more realistic fiber tractography in this patient group. This cross-sectional study included 17 children with unilateral cerebral palsy and 24 typically developing controls. DWI data were collected at 1.5T (45 directions, b=1000 s/mm(2)). Regions of interest were defined on a study-specific fractional anisotropy template and mapped onto subjects for fiber tracking. Probabilistic fiber tracking of the corticospinal tract and thalamic projections to the somatosensory cortex was performed by using constrained spherical deconvolution. Tracts were qualitatively assessed, and DTI parameters were extracted close to and distant from lesions and compared between groups. The corticospinal tract and thalamic projections to the somatosensory cortex were realistically reconstructed in both groups. Structural changes to tracts were seen in the cerebral palsy group and included splits, dislocations, compaction of the tracts, or failure to delineate the tract and were associated with underlying pathology seen on conventional MR imaging. Comparisons of DTI parameters indicated primary and secondary neurodegeneration along the corticospinal tract. Corticospinal tract and thalamic projections to the somatosensory cortex showed dissimilarities in both structural changes and DTI parameters. Our proposed method offers a sensitive means to explore alterations in WM tracts to further understand pathophysiologic changes following early acquired brain injury. © 2015 by American Journal of Neuroradiology.

  6. Duration of untreated psychosis/illness and brain volume changes in early psychosis.

    PubMed

    Rapp, Charlotte; Canela, Carlos; Studerus, Erich; Walter, Anna; Aston, Jacqueline; Borgwardt, Stefan; Riecher-Rössler, Anita

    2017-09-01

    The time period during which patients manifest psychotic or unspecific symptoms prior to treatment (duration of untreated psychosis, DUP, and the duration of untreated illness, DUI) has been found to be moderately associated with poor clinical and social outcome. Equivocal evidence exists of an association between DUP/DUI and structural brain abnormalities, such as reduced hippocampus volume (HV), pituitary volume (PV) and grey matter volume (GMV). Thus, the goal of the present work was to examine if DUP and DUI are associated with abnormalities in HV, PV and GMV. Using a region of interest (ROI) based approach, we present data of 39 patients from the Basel FePsy (Früherkennung von Psychosen, early detection of psychosis) study for which information about DUP, DUI and HV, PV and GMV data could be obtained. Twenty-three of them were first episode psychosis (FEP) and 16 at-risk mental state (ARMS) patients who later made the transition to frank psychosis. In unadjusted analyses, we found a significant positive correlation between DUP and PV in FEP patients. However, when adjusted for covariates, we found no significant correlation between DUP or DUI and HV, PV or GMV anymore. There only was a trend for decreasing GMV with increasing DUI in FEP. Our results do not comprehensively support the hypothesis of a "toxic" effect of the pathogenic mechanism underlying untreated psychosis on brain structure. If there is any effect, it might rather occur very early in the disease process, during which patients experience only unspecific symptoms. Copyright © 2017. Published by Elsevier B.V.

  7. Modeling Early Postnatal Brain Growth and Development with CT: Changes in the Brain Radiodensity Histogram from Birth to 2 Years.

    PubMed

    Cauley, K A; Hu, Y; Och, J; Yorks, P J; Fielden, S W

    2018-04-01

    The majority of brain growth and development occur in the first 2 years of life. This study investigated these changes by analysis of the brain radiodensity histogram of head CT scans from the clinical population, 0-2 years of age. One hundred twenty consecutive head CTs with normal findings meeting the inclusion criteria from children from birth to 2 years were retrospectively identified from 3 different CT scan platforms. Histogram analysis was performed on brain-extracted images, and histogram mean, mode, full width at half maximum, skewness, kurtosis, and SD were correlated with subject age. The effects of scan platform were investigated. Normative curves were fitted by polynomial regression analysis. Average total brain volume was 360 cm 3 at birth, 948 cm 3 at 1 year, and 1072 cm 3 at 2 years. Total brain tissue density showed an 11% increase in mean density at 1 year and 19% at 2 years. Brain radiodensity histogram skewness was positive at birth, declining logarithmically in the first 200 days of life. The histogram kurtosis also decreased in the first 200 days to approach a normal distribution. Direct segmentation of CT images showed that changes in brain radiodensity histogram skewness correlated with, and can be explained by, a relative increase in gray matter volume and an increase in gray and white matter tissue density that occurs during this period of brain maturation. Normative metrics of the brain radiodensity histogram derived from routine clinical head CT images can be used to develop a model of normal brain development. © 2018 by American Journal of Neuroradiology.

  8. Fuel not fun: Reinterpreting attenuated brain responses to reward in obesity.

    PubMed

    Kroemer, Nils B; Small, Dana M

    2016-08-01

    There is a well-established literature linking obesity to altered dopamine signaling and brain response to food-related stimuli. Neuroimaging studies frequently report enhanced responses in dopaminergic regions during food anticipation and decreased responses during reward receipt. This has been interpreted as reflecting anticipatory "reward surfeit", and consummatory "reward deficiency". In particular, attenuated response in the dorsal striatum to primary food rewards is proposed to reflect anhedonia, which leads to overeating in an attempt to compensate for the reward deficit. In this paper, we propose an alternative view. We consider brain response to food-related stimuli in a reinforcement-learning framework, which can be employed to separate the contributions of reward sensitivity and reward-related learning that are typically entangled in the brain response to reward. Consequently, we posit that decreased striatal responses to milkshake receipt reflect reduced reward-related learning rather than reward deficiency or anhedonia because reduced reward sensitivity would translate uniformly into reduced anticipatory and consummatory responses to reward. By re-conceptualizing reward deficiency as a shift in learning about subjective value of rewards, we attempt to reconcile neuroimaging findings with the putative role of dopamine in effort, energy expenditure and exploration and suggest that attenuated brain responses to energy dense foods reflect the "fuel", not the fun entailed by the reward. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Face the hierarchy: ERP and oscillatory brain responses in social rank processing.

    PubMed

    Breton, Audrey; Jerbi, Karim; Henaff, Marie-Anne; Cheylus, Anne; Baudouin, Jean-Yves; Schmitz, Christina; Krolak-Salmon, Pierre; Van der Henst, Jean-Baptiste

    2014-01-01

    Recognition of social hierarchy is a key feature that helps us navigate through our complex social environment. Neuroimaging studies have identified brain structures involved in the processing of hierarchical stimuli but the precise temporal dynamics of brain activity associated with such processing remains largely unknown. Here, we used electroencephalography to examine the effect of social hierarchy on neural responses elicited by faces. In contrast to previous studies, the key manipulation was that a hierarchical context was constructed, not by varying facial expressions, but by presenting neutral-expression faces in a game setting. Once the performance-based hierarchy was established, participants were presented with high-rank, middle-rank and low-rank player faces and had to evaluate the rank of each face with respect to their own position. Both event-related potentials and task-related oscillatory activity were investigated. Three main findings emerge from the study. First, the experimental manipulation had no effect on the early N170 component, which may suggest that hierarchy did not modulate the structural encoding of neutral-expression faces. Second, hierarchy significantly modulated the amplitude of the late positive potential (LPP) within a 400-700 ms time-window, with more a prominent LPP occurring when the participants processed the face of the highest-rank player. Third, high-rank faces were associated with the highest reduction of alpha power. Taken together these findings provide novel electrophysiological evidence for enhanced allocation of attentional resource in the presence of high-rank faces. At a broader level, this study brings new insights into the neural processing underlying social categorization.

  10. Mycobacterium tuberculosis manipulates pulmonary APCs subverting early immune responses.

    PubMed

    Garcia-Romo, Gina S; Pedroza-Gonzalez, Alexander; Lambrecht, Bart N; Aguilar-Leon, Diana; Estrada-Garcia, Iris; Hernandez-Pando, Rogelio; Flores-Romo, Leopoldo

    2013-03-01

    Alveolar macrophages (AM) and dendritic cells (DCs) are the main antigen presenting cells (APCs) in the respiratory tract. Whereas macrophages have been extensively studied in tuberculosis, in situ interactions of DC with Mycobacterium tuberculosis (Mtb) are poorly explored. We aimed to characterize lung APCs during pulmonary tuberculosis in Balb/C mice infected with Mtb H37Rv. Mtb-infection via the airways induced a delayed and continuous accumulation of DCs and AM in the lungs. While lung DCs increased after day 3 post-infection, macrophages increased after 2-3 weeks. Although both populations accumulated in lungs during the infection, DCs decreased in the late stages. Infection induced differential expression of co-stimulatory molecules in these lung APCs, decreasing to basal levels in both APCs in the late stages. A remarkable segregation was found regarding bacillary burden. Many macrophages contained numerous bacilli, but DC contained scarce mycobacteria or none. Mtb-infection also induced delayed accumulation of DC in draining lymph nodes. This delayed recruitment was not associated with a lack of IL-12p40, which was detected from day 3 post-infection. Although AM and lung DCs behave differently during pulmonary tuberculosis, Mtb apparently manipulates both lung APCs subverting early protective responses resulting in disease progression. Copyright © 2012 Elsevier GmbH. All rights reserved.

  11. Language experience enhances early cortical pitch-dependent responses

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Ananthakrishnan, Saradha; Vijayaraghavan, Venkatakrishnan

    2014-01-01

    Pitch processing at cortical and subcortical stages of processing is shaped by language experience. We recently demonstrated that specific components of the cortical pitch response (CPR) index the more rapidly-changing portions of the high rising Tone 2 of Mandarin Chinese, in addition to marking pitch onset and sound offset. In this study, we examine how language experience (Mandarin vs. English) shapes the processing of different temporal attributes of pitch reflected in the CPR components using stimuli representative of within-category variants of Tone 2. Results showed that the magnitude of CPR components (Na-Pb and Pb-Nb) and the correlation between these two components and pitch acceleration were stronger for the Chinese listeners compared to English listeners for stimuli that fell within the range of Tone 2 citation forms. Discriminant function analysis revealed that the Na-Pb component was more than twice as important as Pb-Nb in grouping listeners by language affiliation. In addition, a stronger stimulus-dependent, rightward asymmetry was observed for the Chinese group at the temporal, but not frontal, electrode sites. This finding may reflect selective recruitment of experience-dependent, pitch-specific mechanisms in right auditory cortex to extract more complex, time-varying pitch patterns. Taken together, these findings suggest that long-term language experience shapes early sensory level processing of pitch in the auditory cortex, and that the sensitivity of the CPR may vary depending on the relative linguistic importance of specific temporal attributes of dynamic pitch. PMID:25506127

  12. Quantitative MRI reveals the elderly ischemic brain is susceptible to increased early blood–brain barrier permeability following tissue plasminogen activator related to claudin 5 and occludin disassembly

    PubMed Central

    Kaur, Jaspreet; Tuor, Ursula I; Zhao, Zonghang; Barber, Philip A

    2011-01-01

    Great uncertainty exists as to whether aging enhances the detrimental effects of tissue plasminogen activator (tPA) on vascular integrity of the ischemic brain. We hypothesized that tPA treatment would augment ischemic injury by causing increased blood–brain barrier (BBB) breakdown as determined by quantitative serial T1 and T2 magnetic resonance imaging (MRI), and the transfer constant for gadolinium-diethylenetriamine penta-acetic acid (Gd-DTPA) from blood to brain in aged (18 to 20 months) compared with young (3 to 4 months) Wistar rats after middle cerebral artery occlusion, mediated through the acute disassembly of claudin 5 and occludin. Increased T2 values over the first hour of postreperfusion were independently augmented following treatment with tPA (P<0.001) and aging (P<0.01), supporting a synergistic effect of tPA on the aged ischemic brain. Blood–brain barrier permeability for Gd-DTPA (KGd) was substantial following reperfusion in all animal groups and was exacerbated by tPA treatment in the elderly rat (P<0.001). The frequency of hematoma formation was proportionately increased in the elderly ischemic brain (P<0.05). Both tPA and age independently increased claudin 5 and occludin phosphorylation during ischemia. Early BBB permeability detected by quantitative MRI following ischemic stroke is enhanced by increased age and tPA and is related to claudin 5 and occludin phosphorylation. PMID:21610723

  13. Early Cannabis Use, Polygenic Risk Score for Schizophrenia and Brain Maturation in Adolescence.

    PubMed

    French, Leon; Gray, Courtney; Leonard, Gabriel; Perron, Michel; Pike, G Bruce; Richer, Louis; Séguin, Jean R; Veillette, Suzanne; Evans, C John; Artiges, Eric; Banaschewski, Tobias; Bokde, Arun W L; Bromberg, Uli; Bruehl, Ruediger; Buchel, Christian; Cattrell, Anna; Conrod, Patricia J; Flor, Herta; Frouin, Vincent; Gallinat, Jurgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaitre, Herve; Martinot, Jean-Luc; Nees, Frauke; Orfanos, Dimitri Papadopoulos; Pangelinan, Melissa Marie; Poustka, Luise; Rietschel, Marcella; Smolka, Michael N; Walter, Henrik; Whelan, Robert; Timpson, Nic J; Schumann, Gunter; Smith, George Davey; Pausova, Zdenka; Paus, Tomáš

    2015-10-01

    Cannabis use during adolescence is known to increase the risk for schizophrenia in men. Sex differences in the dynamics of brain maturation during adolescence may be of particular importance with regard to vulnerability of the male brain to cannabis exposure. To evaluate whether the association between cannabis use and cortical maturation in adolescents is moderated by a polygenic risk score for schizophrenia. Observation of 3 population-based samples included initial analysis in 1024 adolescents of both sexes from the Canadian Saguenay Youth Study (SYS) and follow-up in 426 adolescents of both sexes from the IMAGEN Study from 8 European cities and 504 male youth from the Avon Longitudinal Study of Parents and Children (ALSPAC) based in England. A total of 1577 participants (aged 12-21 years; 899 [57.0%] male) had (1) information about cannabis use; (2) imaging studies of the brain; and (3) a polygenic risk score for schizophrenia across 108 genetic loci identified by the Psychiatric Genomics Consortium. Data analysis was performed from March 1 through December 31, 2014. Cortical thickness derived from T1-weighted magnetic resonance images. Linear regression tests were used to assess the relationships between cannabis use, cortical thickness, and risk score. Across the 3 samples of 1574 participants, a negative association was observed between cannabis use in early adolescence and cortical thickness in male participants with a high polygenic risk score. This observation was not the case for low-risk male participants or for the low- or high-risk female participants. Thus, in SYS male participants, cannabis use interacted with risk score vis-à-vis cortical thickness (P = .009); higher scores were associated with lower thickness only in males who used cannabis. Similarly, in the IMAGEN male participants, cannabis use interacted with increased risk score vis-à-vis a change in decreasing cortical thickness from 14.5 to 18.5 years of age (t137 = -2.36; P

  14. Investigating Neuromagnetic Brain Responses against Chromatic Flickering Stimuli by Wavelet Entropies

    PubMed Central

    Bhagat, Mayank; Bhushan, Chitresh; Saha, Goutam; Shimjo, Shinsuke; Watanabe, Katsumi; Bhattacharya, Joydeep

    2009-01-01

    Background Photosensitive epilepsy is a type of reflexive epilepsy triggered by various visual stimuli including colourful ones. Despite the ubiquitous presence of colorful displays, brain responses against different colour combinations are not properly studied. Methodology/Principal Findings Here, we studied the photosensitivity of the human brain against three types of chromatic flickering stimuli by recording neuromagnetic brain responses (magnetoencephalogram, MEG) from nine adult controls, an unmedicated patient, a medicated patient, and two controls age-matched with patients. Dynamical complexities of MEG signals were investigated by a family of wavelet entropies. Wavelet entropy is a newly proposed measure to characterize large scale brain responses, which quantifies the degree of order/disorder associated with a multi-frequency signal response. In particular, we found that as compared to the unmedicated patient, controls showed significantly larger wavelet entropy values. We also found that Renyi entropy is the most powerful feature for the participant classification. Finally, we also demonstrated the effect of combinational chromatic sensitivity on the underlying order/disorder in MEG signals. Conclusions/Significance Our results suggest that when perturbed by potentially epileptic-triggering stimulus, healthy human brain manages to maintain a non-deterministic, possibly nonlinear state, with high degree of disorder, but an epileptic brain represents a highly ordered state which making it prone to hyper-excitation. Further, certain colour combination was found to be more threatening than other combinations. PMID:19779630

  15. Investigating neuromagnetic brain responses against chromatic flickering stimuli by wavelet entropies.

    PubMed

    Bhagat, Mayank; Bhushan, Chitresh; Saha, Goutam; Shimjo, Shinsuke; Watanabe, Katsumi; Bhattacharya, Joydeep

    2009-09-25

    Photosensitive epilepsy is a type of reflexive epilepsy triggered by various visual stimuli including colourful ones. Despite the ubiquitous presence of colorful displays, brain responses against different colour combinations are not properly studied. Here, we studied the photosensitivity of the human brain against three types of chromatic flickering stimuli by recording neuromagnetic brain responses (magnetoencephalogram, MEG) from nine adult controls, an unmedicated patient, a medicated patient, and two controls age-matched with patients. Dynamical complexities of MEG signals were investigated by a family of wavelet entropies. Wavelet entropy is a newly proposed measure to characterize large scale brain responses, which quantifies the degree of order/disorder associated with a multi-frequency signal response. In particular, we found that as compared to the unmedicated patient, controls showed significantly larger wavelet entropy values. We also found that Renyi entropy is the most powerful feature for the participant classification. Finally, we also demonstrated the effect of combinational chromatic sensitivity on the underlying order/disorder in MEG signals. Our results suggest that when perturbed by potentially epileptic-triggering stimulus, healthy human brain manages to maintain a non-deterministic, possibly nonlinear state, with high degree of disorder, but an epileptic brain represents a highly ordered state which making it prone to hyper-excitation. Further, certain colour combination was found to be more threatening than other combinations.

  16. Brain reward system's alterations in response to food and monetary stimuli in overweight and obese individuals.

    PubMed

    Verdejo-Román, Juan; Vilar-López, Raquel; Navas, Juan F; Soriano-Mas, Carles; Verdejo-García, Antonio

    2017-02-01

    The brain's reward system is crucial to understand obesity in modern society, as increased neural responsivity to reward can fuel the unhealthy food choices that are driving the growing obesity epidemic. Brain's reward system responsivity to food and monetary rewards in individuals with excessive weight (overweight and obese) versus normal weight controls, along with the relationship between this responsivity and body mass index (BMI) were tested. The sample comprised 21 adults with obesity (BMI > 30), 21 with overweight (BMI between 25 and 30), and 39 with normal weight (BMI < 25). Participants underwent a functional magnetic resonance imaging (fMRI) session while performing two tasks that involve the processing of food (Willing to Pay) and monetary rewards (Monetary Incentive Delay). Neural activations within the brain reward system were compared across the three groups. Curve fit analyses were conducted to establish the association between BMI and brain reward system's response. Individuals with obesity had greater food-evoked responsivity in the dorsal and ventral striatum compared with overweight and normal weight groups. There was an inverted U-shape association between BMI and monetary-evoked responsivity in the ventral striatum, medial frontal cortex, and amygdala; that is, individuals with BMIs between 27 and 32 had greater responsivity to monetary stimuli. Obesity is associated with greater food-evoked responsivity in the ventral and dorsal striatum, and overweight is associated with greater monetary-evoked responsivity in the ventral striatum, the amygdala, and the medial frontal cortex. Findings suggest differential reactivity of the brain's reward system to food versus monetary rewards in obesity and overweight. Hum Brain Mapp 38:666-677, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Is Depression Simply a Nonspecific Response to Brain Injury?

    PubMed Central

    Strakowski, Stephen M.; Adler, Caleb M.; DelBello, Melissa P.

    2013-01-01

    Depressive disorders are among the most common ailments affecting humankind and some of the world’s leading causes of medical disability. Despite being common, disabling and a major public health problem, the etiology of depression is unknown. Indeed, investigators have suggested that the causes of depression are multiple and multi-factorial. With these considerations in mind, in this article we examine the hypothesis that our inability to identify the causes of depressive disorders is because depression is a nonspecific epiphenomenon of brain injury or insult arising through multiple pathways. PMID:23943470

  18. Virtual endocast of the early Oligocene Cedromus wilsoni (Cedromurinae) and brain evolution in squirrels.

    PubMed

    Bertrand, Ornella C; Amador-Mughal, Farrah; Silcox, Mary T

    2017-01-01

    available evidence suggests that early squirrels were more agile and visually oriented animals compared with more primitive rodents, which may relate to the process of becoming arboreal. Extant sciurids have an even more expanded neocortical surface area, while exhibiting proportionally smaller paraflocculi, compared with C. wilsoni. This suggests that the neocortex may continue increasing in size in more recent sciurid rodents in relation to other factors than arboreality. Despite the fact that both Primates and Rodentia exhibit neocortical expansion through time, since the adoption of arboreality preceded major increases in the neocortex in Primates, those neurological changes may be related to different ecological factors, underlining the complexity of the inter-relationship between time and ecology in shaping the brain in even closely related clades. © 2016 Anatomical Society.

  19. Brain and Adrenal Metabolic Responses to Stress (The Role of Brain Catecholamines in Regulation of Response to Stress).

    DTIC Science & Technology

    1982-03-15

    gland was studied in stress states with the finding that there were delayed effects of cold stress*1 on key enzymes effecting the ability to form...phosphorylation. A series of studies were conducted of the effects of various drugs on aggressive behavior. Isolation housing was shown to alter cyclic AMP...mechanisms in the brain. Social behavior was studied in relation to drugs and the effects of amphetamine in relation to paranoid behavior demonstrated using a

  20. Chasing Tics in the Human Brain: Development of Open, Scheduled and Closed Loop Responsive Approaches to Deep Brain Stimulation for Tourette Syndrome

    PubMed Central

    Martinez-Ramirez, Daniel; Rossi, Peter J.; Peng, Zhongxing; Gunduz, Aysegul; Okun, Michael S.

    2015-01-01

    Tourette syndrome is a childhood-onset disorder characterized by a combination of motor and vocal tics, often associated with psychiatric comorbidities including attention deficit and hyperactivity disorder and obsessive-compulsive disorder. Despite an onset early in life, half of patients may present symptoms in adulthood, with variable degrees of severity. In select cases, the syndrome may lead to significant physical and social impairment, and a worrisome risk for self injury. Evolving research has provided evidence supporting the idea that the pathophysiology of Tourette syndrome is directly related to a disrupted circuit involving the cortex and subcortical structures, including the basal ganglia, nucleus accumbens, and the amygdala. There has also been a notion that a dysfunctional group of neurons in the putamen contributes to an abnormal facilitation of competing motor responses in basal ganglia structures ultimately underpinning the generation of tics. Surgical therapies for Tourette syndrome have been reserved for a small group of patients not responding to behavioral and pharmacological therapies, and these therapies have been directed at modulating the underlying pathophysiology. Lesion therapy as well as deep brain stimulation has been observed to suppress tics in at least some of these cases. In this article, we will review the clinical aspects of Tourette syndrome, as well as the evolution of surgical approaches and we will discuss the evidence and clinical responses to deep brain stimulation in various brain targets. We will also discuss ongoing research and future directions as well as approaches for open, scheduled and closed loop feedback-driven electrical stimulation for the treatment of Tourette syndrome. PMID:25851890

  1. Histamine Induces Alzheimer's Disease-Like Blood Brain Barrier Breach and Local Cellular Responses in Mouse Brain Organotypic Cultures

    PubMed Central

    Sedeyn, Jonathan C.; Wu, Hao; Hobbs, Reilly D.; Levin, Eli C.; Nagele, Robert G.; Venkataraman, Venkat

    2015-01-01

    Among the top ten causes of death in the United States, Alzheimer's disease (AD) is the only one that cannot be cured, prevented, or even slowed down at present. Significant efforts have been exerted in generating model systems to delineate the mechanism as well as establishing platforms for drug screening. In this study, a promising candidate model utilizing primary mouse brain organotypic (MBO) cultures is reported. For the first time, we have demonstrated that the MBO cultures exhibit increased blood brain barrier (BBB) permeability as shown by IgG leakage into the brain parenchyma, astrocyte activation as evidenced by increased expression of glial fibrillary acidic protein (GFAP), and neuronal damage-response as suggested by increased vimentin-positive neurons occur upon histamine treatment. Identical responses—a breakdown of the BBB, astrocyte activation, and neuronal expression of vimentin—were then demonstrated in brains from AD patients compared to age-matched controls, consistent with other reports. Thus, the histamine-treated MBO culture system may provide a valuable tool in combating AD. PMID:26697497

  2. Early environmental therapy rescues brain development in a mouse model of Down syndrome.

    PubMed

    Begenisic, Tatjana; Sansevero, Gabriele; Baroncelli, Laura; Cioni, Giovanni; Sale, Alessandro

    2015-10-01

    Down syndrome (DS), the most common genetic disorder associated with intellectual disabilities, is an untreatable condition characterized by a number of developmental defects and permanent deficits in the adulthood. Ts65Dn mice, the major animal model for DS, display severe cognitive and synaptic plasticity defects closely resembling the human phenotype. Here, we employed a multidisciplinary approach to investigate, for the first time in developing Ts65Dn mice, the effects elicited by early environmental enrichment (EE) on brain maturation and function. We report that exposure to EE resulted in a robust increase in maternal care levels displayed by Ts65Dn mothers and led to a normalization of declarative memory abilities and hippocampal plasticity in trisomic offspring. The positive effects of EE on Ts65Dn phenotype were not limited to the cognitive domain, but also included a rescue of visual system maturation. The beneficial EE effects were accompanied by increased BDNF and correction of over-expression of the GABA vesicular transporter vGAT. These findings highlight the beneficial impact of early environmental stimuli and their potential for application in the treatment of major functional deficits in children with DS. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Early auditory processing in area V5/MT+ of the congenitally blind brain.

    PubMed

    Watkins, Kate E; Shakespeare, Timothy J; O'Donoghue, M Clare; Alexander, Iona; Ragge, Nicola; Cowey, Alan; Bridge, Holly

    2013-11-13

    Previous imaging studies of congenital blindness have studied individuals with heterogeneous causes of blindness, which may influence the nature and extent of cross-modal plasticity. Here, we scanned a homogeneous group of blind people with bilateral congenital anophthalmia, a condition in which both eyes fail to develop, and, as a result, the visual pathway is not stimulated by either light or retinal waves. This model of congenital blindness presents an opportunity to investigate the effects of very early visual deafferentation on the functional organization of the brain. In anophthalmic animals, the occipital cortex receives direct subcortical auditory input. We hypothesized that this pattern of subcortical reorganization ought to result in a topographic mapping of auditory frequency information in the occipital cortex of anophthalmic people. Using functional MRI, we examined auditory-evoked activity to pure tones of high, medium, and low frequencies. Activity in the superior temporal cortex was significantly reduced in anophthalmic compared with sighted participants. In the occipital cortex, a region corresponding to the cytoarchitectural area V5/MT+ was activated in the anophthalmic participants but not in sighted controls. Whereas previous studies in the blind indicate that this cortical area is activated to auditory motion, our data show it is also active for trains of pure tone stimuli and in some anophthalmic participants shows a topographic mapping (tonotopy). Therefore, this region appears to be performing early sensory processing, possibly served by direct subcortical input from the pulvinar to V5/MT+.

  4. Early behavioral intervention is associated with normalized brain activity in young children with autism.

    PubMed

    Dawson, Geraldine; Jones, Emily J H; Merkle, Kristen; Venema, Kaitlin; Lowy, Rachel; Faja, Susan; Kamara, Dana; Murias, Michael; Greenson, Jessica; Winter, Jamie; Smith, Milani; Rogers, Sally J; Webb, Sara J

    2012-11-01

    A previously published randomized clinical trial indicated that a developmental behavioral intervention, the Early Start Denver Model (ESDM), resulted in gains in IQ, language, and adaptive behavior of children with autism spectrum disorder. This report describes a secondary outcome measurement from this trial, EEG activity. Forty-eight 18- to 30-month-old children with autism spectrum disorder were randomized to receive the ESDM or referral to community intervention for 2 years. After the intervention (age 48 to 77 months), EEG activity (event-related potentials and spectral power) was measured during the presentation of faces versus objects. Age-matched typical children were also assessed. The ESDM group exhibited greater improvements in autism symptoms, IQ, language, and adaptive and social behaviors than the community intervention group. The ESDM group and typical children showed a shorter Nc latency and increased cortical activation (decreased α power and increased θ power) when viewing faces, whereas the community intervention group showed the opposite pattern (shorter latency event-related potential [ERP] and greater cortical activation when viewing objects). Greater cortical activation while viewing faces was associated with improved social behavior. This was the first trial to demonstrate that early behavioral intervention is associated with normalized patterns of brain activity, which is associated with improvements in social behavior, in young children with autism spectrum disorder. Copyright © 2012 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Early Behavioral Intervention Is Associated With Normalized Brain Activity in Young Children With Autism

    PubMed Central

    Dawson, Geraldine; Jones, Emily J.H.; Merkle, Kristen; Venema, Kaitlin; Lowy, Rachel; Faja, Susan; Kamara, Dana; Murias, Michael; Greenson, Jessica; Winter, Jamie; Smith, Milani; Rogers, Sally J.; Webb, Sara J.

    2013-01-01

    Objective A previously published randomized clinical trial indicated that a developmental behavioral intervention, the Early Start Denver Model (ESDM), resulted in gains in IQ, language, and adaptive behavior of children with autism spectrum disorder. This report describes a secondary outcome measurement from this trial, EEG activity. Method Forty-eight 18- to 30-month-old children with autism spectrum disorder were randomized to receive the ESDM or referral to community intervention for 2 years. After the intervention (age 48 to 77 months), EEG activity (event-related potentials and spectral power) was measured during the presentation of faces versus objects. Age-matched typical children were also assessed. Results The ESDM group exhibited greater improvements in autism symptoms, IQ, language, and adaptive and social behaviors than the community intervention group. The ESDM group and typical children showed a shorter Nc latency and increased cortical activation (decreased α power and increased θ power) when viewing faces, whereas the community intervention group showed the opposite pattern (shorter latency event-related potential [ERP] and greater cortical activation when viewing objects). Greater cortical activation while viewing faces was associated with improved social behavior. Conclusions This was the first trial to demonstrate that early behavioral intervention is associated with normalized patterns of brain activity, which is associated with improvements in social behavior, in young children with autism spectrum disorder. PMID:23101741

  6. STATISTICAL GROWTH MODELING OF LONGITUDINAL DT-MRI FOR REGIONAL CHARACTERIZATION OF EARLY BRAIN DEVELOPMENT.

    PubMed

    Sadeghi, Neda; Prastawa, Marcel; Fletcher, P Thomas; Gilmore, John H; Lin, Weili; Gerig, Guido

    2012-01-01

    A population growth model that represents the growth trajectories of individual subjects is critical to study and understand neurodevelopment. This paper presents a framework for jointly estimating and modeling individual and population growth trajectories, and determining significant regional differences in growth pattern characteristics applied to longitudinal neuroimaging data. We use non-linear mixed effect modeling where temporal change is modeled by the Gompertz function. The Gompertz function uses intuitive parameters related to delay, rate of change, and expected asymptotic value; all descriptive measures which can answer clinical questions related to growth. Our proposed framework combines nonlinear modeling of individual trajectories, population analysis, and testing for regional differences. We apply this framework to the study of early maturation in white matter regions as measured with diffusion tensor imaging (DTI). Regional differences between anatomical regions of interest that are known to mature differently are analyzed and quantified. Experiments with image data from a large ongoing clinical study show that our framework provides descriptive, quantitative information on growth trajectories that can be directly interpreted by clinicians. To our knowledge, this is the first longitudinal analysis of growth functions to explain the trajectory of early brain maturation as it is represented in DTI.

  7. cis p-tau: early driver of brain injury and tauopathy blocked by antibody

    PubMed Central

    Mannix, Rebekah; Qiu, Jianhua; Moncaster, Juliet; Chen, Chun-Hau; Yao, Yandan; Lin, Yu-Min; Driver, Jane A; Sun, Yan; Wei, Shuo; Luo, Man-Li; Albayram, Onder; Huang, Pengyu; Rotenberg, Alexander; Ryo, Akihide; Goldstein, Lee E; Pascual-Leone, Alvaro; McKee, Ann C.; Meehan, William; Zhou, Xiao Zhen; Lu, Kun Ping

    2015-01-01

    Traumatic brain injury (TBI), characterized by acute neurological dysfunction, is one of the best known environmental risk factors for chronic traumatic encephalopathy (CTE) and Alzheimer's disease (AD), whose defining pathologic features include tauopathy made of phosphorylated tau (p-tau). However, tauopathy has not been detected in early stages after TBI and how TBI leads to tauopathy is unknown. Here we find robust cis p-tau pathology after sport- and military-related TBI in humans and mice. Acutely after TBI in mice and stress in vitro, neurons prominently produce cis p-tau, which disrupts axonal microtubule network and mitochondrial transport, spreads to other neurons, and leads to apoptosis. This process, termed “cistauosis”, appears long before other tauopathy. Treating TBI mice with cis antibody blocks cistauosis, prevents tauopathy development and spread, and restores many TBI-related structural and functional sequelae. Thus, cis p-tau is a major early driver after TBI and leads to tauopathy in CTE and AD, and cis antibody may be further developed to detect and treat TBI, and prevent progressive neurodegeneration after injury. PMID:26176913

  8. The impact of early hyperglycaemia on children with traumatic brain injury.

    PubMed

    Fu, Yue-Qiang; Chong, Shu-Ling; Lee, Jan Hau; Liu, Cheng-Jun; Fu, Sheng; Loh, Tsee Foong; Ng, Kee Chong; Xu, Feng

    2017-01-01

    Hyperglycaemia is common amongst children with traumatic brain injury (TBI). We aim to investigate the association between early hyperglycaemia and poor clinical outcomes in children with moderate to severe TBI. We performed a retrospective study in a tertiary paediatric hospital between May 2012 and October 2014 of all patients with TBI who were aged <16 years with a Glasgow Coma Scale (GCS) of ≤13. The primary outcome was death. Secondary outcomes were 14 ventilation-free, 14 paediatric intensive care unit (PICU)-free and 28 hospital-free days. We defined hyperglycaemia as glucose >11.1 mmol/L (200 mg/dL). There were 109 patients with a median age of 54 months [inter-quartile range (IQR): 17-82]. Median glucose on arrival was 6.1 mmol/L (IQR: 5.2-9.8). Median GCS in our cohort was 8 (IQR: 6-12). Multivariate logistic regression demonstrated that initial hyperglycaemia [odds ratio (OR): 15.23; 95% confidence interval (CI): 3.74-62.00; P < 0.001], and GCS <8 (OR: 13.02; 95% CI: 2.31-73.33; P = 0.004) were risk factors for mortality. Multivariate linear regression showed that initial hyperglycaemia was a risk factor for reduced ventilation-free, PICU-free and hospital-free days. Early hyperglycaemia predicts for in-hospital mortality, reduced ventilation-free, PICU-free and hospital-free days in children with moderate to severe TBI.

  9. Affective-Motivational Brain Responses to Direct Gaze in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Kylliainen, Anneli; Wallace, Simon; Coutanche, Marc N.; Leppanen, Jukka M.; Cusack, James; Bailey, Anthony J.; Hietanen, Jari K.

    2012-01-01

    Background: It is unclear why children with autism spectrum disorders (ASD) tend to be inattentive to, or even avoid eye contact. The goal of this study was to investigate affective-motivational brain responses to direct gaze in children with ASD. To this end, we combined two measurements: skin conductance responses (SCR), a robust arousal…

  10. PITUITARY DEFICIENCY FOLLOWING TRAUMATIC BRAIN INJURY IN EARLY CHILDHOOD: A REVIEW OF THE LITERATURE.

    PubMed

    Soliman, A T; Adel, A; Soliman, N A; Elalaily, R; De Sanctis, V

    2015-01-01

    AIMS OF REVIEW: the intent of the current manuscript is to critically review the studies on pituitary gland dysfunction in early childhood following traumatic brain injury (TBI), in comparison with those in adults. Search of the literature: The MEDLINE database was accessed through PubMed in April 2015. Results were restricted to the past 15 years and English language of articles. Both transient and permanent hypopituitarisms are not uncommon after TBI. Early after the TBI, pituitary dysfunction/s differ than those occurring after few weeks and months. Growth hormone deficiency (GHD) and alterations in puberty are the most common. After the one to more years of TBI, pituitary dysfunction tends to improve in some patients but may deteriorate in others. GH deficiency as well as Hypogonadism and thyroid dysfunction are the most common permanent lesions. Many of the symptoms of these endocrine defects can pass unnoticed because of the psychomotor defects associated with the TBI like depression and apathy. Unfortunately pituitary dysfunction appear to negatively affect psycho-neuro-motor recovery as well as growth and pubertal development of children and adolescents after TBI. Therefore, the current review highlights the importance of closely following patients, especially children and adolescents for growth and other symptoms and signs suggestive of endocrine dysfunction. In addition, all should be screened serially for possible endocrine disturbances early after the TBI as well as few months to a year after the injury. Risk factors for pituitary dysfunction after TBI include relatively serious TBI (Glasgow Coma Scale score < 10 and MRI showing damage to the hypothalamic pituitary area), diffuse brain swelling and the occurrence of hypotensive and/or hypoxic episodes. There is a considerable risk of developing pituitary dysfunction after TBI in children and adolescents. These patients should be clinically followed and screened for these abnormalities according to an

  11. Consciousness Regained: Disentangling Mechanisms, Brain Systems, and Behavioral Responses

    PubMed Central

    2017-01-01

    How consciousness (experience) arises from and relates to material brain processes (the “mind-body problem”) has been pondered by thinkers for centuries, and is regarded as among the deepest unsolved problems in science, with wide-ranging theoretical, clinical, and ethical implications. Until the last few decades, this was largely seen as a philosophical topic, but not widely accepted in mainstream neuroscience. Since the 1980s, however, novel methods and theoretical advances have yielded remarkable results, opening up the field for scientific and clinical progress. Since a seminal paper by Crick and Koch (1998) claimed that a science of consciousness should first search for its neural correlates (NCC), a variety of correlates have been suggested, including both content-specific NCCs, determining particular phenomenal components within an experience, and the full NCC, the neural substrates supporting entire conscious experiences. In this review, we present recent progress on theoretical, experimental, and clinical issues. Specifically, we (1) review methodological advances that are important for dissociating conscious experience from related enabling and executive functions, (2) suggest how critically reconsidering the rol