Sample records for early cartilage damage

  1. Diffusion tensor imaging can detect the early stages of cartilage damage: a comparison study.

    PubMed

    Ukai, Taku; Sato, Masato; Yamashita, Tomohiro; Imai, Yutaka; Mitani, Genya; Takagaki, Tomonori; Serigano, Kenji; Mochida, Joji

    2015-02-21

    In the present study, we measured damaged areas of cartilage with diffusion tensor (DT) imaging and T2 mapping, and investigated the extent to which cartilage damage could be determined using these techniques. Forty-one patients underwent arthroscopic knee surgery for osteoarthritis of the knee, a meniscus injury, or an anterior cruciate ligament injury. Preoperative magnetic resonance imaging of the knee was performed, including T2 mapping and diffusion tensor imaging. The presence of cartilage injury involving the medial and lateral femoral condyles and tibia plateau was assessed during surgery using the Outerbridge scale. The ADC, T2 values and fractional anisotropy of areas of cartilage injury were then retrospectively analysed. The ADC results identified significant differences between Outerbridge grades 0 and 2 (P = 0.041); 0 and 3 (P < 0.001); 1 and 2 (P = 0.045); 1 and 3 (P < 0.001); and 2 and 3 (P = 0.028). The FA results identified significant differences between grades 0 and 1 (P < 0.001); 0 and 2 (P < 0.001); and 0 and 3 (P < 0.001). T2 mapping identified significant differences between Outerbridge grades 0 and 2 (P = 0.032); 0 and 3 (P < 0.001); 1 and 3 (P < 0.001); and 2 and 3 (P < 0.001). Both the T2 mapping (R(2) = 0.7883) and the ADC (R(2) = 0.9184) correlated significantly with the Outerbridge grade. The FA (R(2) = 0.6616) correlated slightly with the Outerbridge grade. T2 mapping can be useful for detecting moderate or severe cartilage damage, and the ADC can be used to detect early stage cartilage damage. The FA can also distinguish normal from damaged cartilage.

  2. Cartilage and bone damage in rheumatoid arthritis

    PubMed Central

    Maśliński, Włodzimierz; Prochorec-Sobieszek, Monika; Nieciecki, Michał; Sudoł-Szopińska, Iwona

    2018-01-01

    Rheumatoid arthritis (RA), which is a chronic inflammatory disease with a multifactorial aetiology, leads to partial or permanent disability in the majority of patients. It is characterised by persistent synovitis and formation of pannus, i.e. invasive synovial tissue, which ultimately leads to destruction of the cartilage, subchondral bone, and soft tissues of the affected joint. Moreover, inflammatory infiltrates in the subchondral bone, which can lead to inflammatory cysts and later erosions, play an important role in the pathogenesis of RA. These inflammatory infiltrates can be seen in magnetic resonance imaging (MRI) as bone marrow oedema (BME). BME is observed in 68–75% of patients in early stages of RA and is considered a precursor of rapid disease progression. The clinical significance of synovitis and bone marrow oedema as precursors of erosions is well established in daily practice, and synovitis, BME, cysts, hyaline cartilage defects and bone erosions can be detected by ultrasonography (US) and MRI. A less explored subject is the inflammatory and destructive potential of intra- and extra-articular fat tissue, which can also be evaluated in US and MRI. Finally, according to certain hypotheses, hyaline cartilage damage may trigger synovitis and lead to irreversible joint damage, and MRI may be used for preclinical detection of cartilage biochemical abnormalities. This review discusses the pathomechanisms that lead to articular cartilage and bone damage in RA, including erosion precursors such as synovitis and osteitis and panniculitis, as well as the role of imaging techniques employed to detect early cartilage damage and bone erosions. PMID:29853727

  3. Resurfacing Damaged Articular Cartilage to Restore Compressive Properties

    PubMed Central

    Grenier, Stephanie; Donnelly, Patrick E.; Gittens, Jamila; Torzilli, Peter A.

    2014-01-01

    Surface damage to articular cartilage is recognized as the initial underlying process causing the loss of mechanical function in early-stage osteoarthritis. In this study, we developed structure-modifying treatments to potentially prevent, stabilize or reverse the loss in mechanical function. Various polymers (chondroitin sulfate, carboxymethylcellulose, sodium hyaluronate) and photoinitiators (riboflavin, irgacure 2959) were applied to the surface of collagenase-degraded cartilage and crosslinked in situ using UV light irradiation. While matrix permeability and deformation significantly increased following collagenase-induced degradation of the superficial zone, resurfacing using tyramine-substituted sodium hyaluronate and riboflavin decreased both values to a level comparable to that of intact cartilage. Repetitive loading of resurfaced cartilage showed minimal variation in the mechanical response over a 7 day period. Cartilage resurfaced using a low concentration of riboflavin had viable cells in all zones while a higher concentration resulted in a thin layer of cell death in the uppermost superficial zone. Our approach to repair surface damage initiates a new therapeutic advance in the treatment of injured articular cartilage with potential benefits that include enhanced mechanical properties, reduced susceptibility to enzymatic degradation and reduced adhesion of macrophages. PMID:25468298

  4. High-Resolution Methods for Diagnosing Cartilage Damage In Vivo

    PubMed Central

    Novakofski, Kira D.; Pownder, Sarah L.; Koff, Matthew F.; Williams, Rebecca M.; Potter, Hollis G.; Fortier, Lisa A.

    2016-01-01

    Advances in current clinical modalities, including magnetic resonance imaging and computed tomography, allow for earlier diagnoses of cartilage damage that could mitigate progression to osteoarthritis. However, current imaging modalities do not detect submicrometer damage. Developments in in vivo or arthroscopic techniques, including optical coherence tomography, ultrasonography, bioelectricity including streaming potential measurement, noninvasive electroarthrography, and multiphoton microscopy can detect damage at an earlier time point, but they are limited by a lack of penetration and the ability to assess an entire joint. This article reviews current advancements in clinical and developing modalities that can aid in the early diagnosis of cartilage injury and facilitate studies of interventional therapeutics. PMID:26958316

  5. On mechanical mechanism of damage evolution in articular cartilage.

    PubMed

    Men, Yu-Tao; Jiang, Yan-Long; Chen, Ling; Zhang, Chun-Qiu; Ye, Jin-Duo

    2017-09-01

    Superficial lesions of cartilage are the direct indication of osteoarthritis. To investigate the mechanical mechanism of cartilage with micro-defect under external loading, a new plain strain numerical model with micro-defect was proposed and damage evolution progression in cartilage over time has been simulated, the parameter were studied including load style, velocity of load and degree of damage. The new model consists of the hierarchical structure of cartilage and depth-dependent arched fibers. The numerical results have shown that not only damage of the cartilage altered the distribution of the stress but also matrix and fiber had distinct roles in affecting cartilage damage, and damage in either matrix or fiber could promote each other. It has been found that the superficial cracks in cartilage spread preferentially along the tangent direction of the fibers. It is the arched distribution form of fibers that affects the crack spread of cartilage, which has been verified by experiment. During the process of damage evolution, its extension direction and velocity varied constantly with the damage degree. The rolling load could cause larger stress and strain than sliding load. Strain values of the matrix initially increased and then decreased gradually with the increase of velocity, and velocity had a greater effect on matrix than fibers. Damage increased steadily before reaching 50%, sharply within 50 to 85%, and smoothly and slowly after 85%. The finding of the paper may help to understand the mechanical mechanism why the cracks in cartilage spread preferentially along the tangent direction of the fibers. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. T1ρ MRI detects cartilage damage in asymptomatic individuals with a cam deformity.

    PubMed

    Anwander, Helen; Melkus, Gerd; Rakhra, Kawan S; Beaulé, Paul E

    2016-06-01

    Hips with a cam deformity are at risk for early cartilage degeneration, mainly in the anterolateral region of the joint. T1ρ MRI is a described technique for assessment of proteoglycan content in hyaline cartilage and subsequently early cartilage damage. In this study, 1.5 Tesla T1ρ MRI was performed on 20 asymptomatic hips with a cam deformity and compared to 16 healthy control hips. Cam deformity was defined as an alpha angle at 1:30 o'clock position over 60° and/or at 3:00 o'clock position over 50.5°. Hip cartilage was segmented and divided into four regions of interest (ROIs): anterolateral, anteromedial, posterolateral, and posteromedial quadrants. Mean T1ρ value of the entire weight bearing cartilage in hips with a cam deformity (34.0 ± 4.6 ms) was significantly higher compared to control hips (31.3 ± 3.2 ms, p = 0.050). This difference reached significance in the anterolateral (p = 0.042) and posteromedial quadrants (p = 0.041). No significant correlation between the alpha angle and T1ρ values was detected. The results indicate cartilage damage occurs in hips with a cam deformity before symptoms occur. A significant difference in T1ρ values was found in the anterolateral quadrant, the area of direct engagement of the deformity, and in the posteromedial quadrant. To conclude, T1ρ MRI can detect early chondral damage in asymptomatic hips with a cam deformity. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1004-1009, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Articulation of Native Cartilage Against Different Femoral Component Materials. Oxidized Zirconium Damages Cartilage Less Than Cobalt-Chrome.

    PubMed

    Vanlommel, Jan; De Corte, Ronny; Luyckx, Jean Philippe; Anderson, Melissa; Labey, Luc; Bellemans, Johan

    2017-01-01

    Oxidized zirconium (OxZr) is produced by thermally driven oxidization creating an oxidized surface with the properties of a ceramic at the top of the Zr metal substrate. OxZr is much harder and has a lower coefficient of friction than cobalt-chrome (CoCr), both leading to better wear characteristics. We evaluated and compared damage to the cartilage of porcine patella plugs, articulating against OxZr vs CoCr. Our hypothesis was that, owing to its better wear properties, OxZr would damage cartilage less than CoCr. If this is true, OxZr might be a better material for the femoral component during total knee arthroplasty if the patella is not resurfaced. Twenty-one plugs from porcine patellae were prepared and tested in a reciprocating pin-on-disk machine while lubricated with bovine serum and under a constant load. Three different configurations were tested: cartilage-cartilage as the control group, cartilage-OxZr, and cartilage-CoCr. Macroscopic appearance, cartilage thickness, and the modified Mankin score were evaluated after 400,000 wear cycles. The control group showed statistically significant less damage than plugs articulating against both other materials. Cartilage plugs articulating against OxZr were statistically significantly less damaged than those articulating against CoCr. Although replacing cartilage by an implant always leads to deterioration of the cartilage counterface, OxZr results in less damage than CoCr. The use of OxZr might thus be preferable to CoCr in case of total knee arthroplasty without patella resurfacing. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A comparative MRI study of cartilage damage in gout versus rheumatoid arthritis.

    PubMed

    Popovich, Ivor; Lee, Arier C L; Doyle, Anthony; McHaffie, Alexandra; Clarke, Andrew; Reeves, Quentin; Dalbeth, Nicola; McQueen, Fiona M

    2015-08-01

    Magnetic resonance imaging (MRI) is useful for detecting joint inflammation and damage in the inflammatory arthropathies. This study aimed to investigate MRI cartilage damage and its associations with joint inflammation in patients with gout compared with a group with rheumatoid arthritis (RA). Forty patients with gout and 38 with seropositive RA underwent 3T-MRI of the wrist with assessment of cartilage damage at six carpal sites, using established scoring systems. Synovitis and bone oedema (BME) were graded according to Rheumatoid Arthritis MRI Scoring System criteria. Cartilage damage was compared between the groups adjusting for synovitis and disease duration using logistic regression analysis. Compared with RA, there were fewer sites of cartilage damage and lower total damage scores in the gout group (P = 0.02 and 0.003), adjusting for their longer disease duration and lesser degree of synovitis. Cartilage damage was strongly associated with synovitis in both conditions (R = 0.59, P < 0.0001 and R = 0.52, P = 0.0045 respectively) and highly correlated with BME in RA (R = 0.69, P < 0.0001) but not in gout (R = 0.095, P = 0.56). Cartilage damage is less severe in gout than in RA, with fewer sites affected and lower overall scores. It is associated with synovitis in both diseases, likely indicating an effect of pro-inflammatory cytokine production on cartilage integrity. However, the strong association between cartilage damage and BME observed in RA was not identified in gout. This emphasizes differences in the underlying pathophysiology of joint damage in these two conditions. © 2015 The Royal Australian and New Zealand College of Radiologists.

  9. Using Cartilage MRI T2-Mapping to Analyze Early Cartilage Degeneration in the Knee Joint of Young Professional Soccer Players.

    PubMed

    Waldenmeier, Leonie; Evers, Christoph; Uder, Michael; Janka, Rolf; Hennig, Frank Friedrich; Pachowsky, Milena Liese; Welsch, Götz Hannes

    2018-02-01

    Objective To evaluate and characterize the appearance of articular cartilage in the tibiofemoral joint of young professional soccer players using T2-relaxation time evaluation on magnetic resonance imaging (MRI). Design In this study, we included 57 male adolescents from the youth academy of a professional soccer team. The MRI scans were acquired of the knee joint of the supporting leg. An "early unloading" (minute 0) and "late unloading" (minute 28) T2-sequence was included in the set of images. Quantitative T2-analysis was performed in the femorotibial joint cartilage in 4 slices with each 10 regions of interest (ROIs). Statistical evaluation, using Wilcoxon signed-rank tests, was primarily performed to compare the T2 values of the "early unloading" and "late unloading." Results When comparing "early unloading" with "late unloading," our findings showed a significant increase of T2-relaxation times in the weightbearing femoral cartilage of the medial ( P < 0.001) and lateral ( P < 0.001) compartment of the knee and in the tibial cartilage of the medial compartment ( P < 0.001). Conclusion In this study, alterations of the cartilage were found with a maximum in the medial condyle where the biomechanical load of the knee joint is highest, as well as where most of the chronic cartilage lesions occur. To avoid chronic damage, special focus should be laid on this region.

  10. Prevalent cartilage damage and cartilage loss over time are associated with incident bone marrow lesions in the tibiofemoral compartments: the MOST Study

    PubMed Central

    Crema, Michel D.; Felson, David T.; Roemer, Frank W.; Wang, Ke; Marra, Monica D.; Nevitt, Michael C.; Lynch, John A.; Torner, James; Lewis, Cora E.; Guermazi, Ali

    2012-01-01

    Objective To assess the association of prevalent cartilage damage and cartilage loss over time with incident bone marrow lesions (BMLs) in the same subregion of the tibiofemoral compartments as detected on magnetic resonance imaging (MRI). Methods The Multicenter Osteoarthritis Study is an observational study of individuals with or at risk for knee osteoarthritis (OA). Subjects whose baseline and 30-month follow-up MRIs were read for findings of OA were included. MRI was performed with a 1.0T extremity system. Tibiofemoral compartments were divided into 10 subregions. Cartilage morphology was scored from 0 to 6 and BMLs were scored from 0 to 3. Prevalent cartilage damage and cartilage loss over time were considered predictors of incident BMLs. Associations were assessed using logistic regression, with adjustments for potential confounders. Results Medially, incident BMLs were associated with baseline cartilage damage (adjusted odds ratio (OR) 3.9 [95% CI 3.0, 5.1]), incident cartilage loss (7.3 [95% CI 5.0, 10.7]) and progression of cartilage loss (7.6 [95% CI 5.1, 11.3]) Laterally, incident BMLs were associated with baseline cartilage damage (4.1 [95% CI 2.6, 6.3]), incident cartilage loss (6.0 [95% CI 3.1, 11.8]), and progression of cartilage loss (11.9 [95% CI 6.2, 23.0]). Conclusion Prevalent cartilage damage and cartilage loss over time are strongly associated with incident BMLs in the same subregion, supporting the significance of the close interrelation of the osteochondral unit in the progression of knee OA. PMID:23178289

  11. Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Stolz, Martin; Gottardi, Riccardo; Raiteri, Roberto; Miot, Sylvie; Martin, Ivan; Imer, Raphaël; Staufer, Urs; Raducanu, Aurelia; Düggelin, Marcel; Baschong, Werner; Daniels, A. U.; Friederich, Niklaus F.; Aszodi, Attila; Aebi, Ueli

    2009-03-01

    The pathological changes in osteoarthritis-a degenerative joint disease prevalent among older people-start at the molecular scale and spread to the higher levels of the architecture of articular cartilage to cause progressive and irreversible structural and functional damage. At present, there are no treatments to cure or attenuate the degradation of cartilage. Early detection and the ability to monitor the progression of osteoarthritis are therefore important for developing effective therapies. Here, we show that indentation-type atomic force microscopy can monitor age-related morphological and biomechanical changes in the hips of normal and osteoarthritic mice. Early damage in the cartilage of osteoarthritic patients undergoing hip or knee replacements could similarly be detected using this method. Changes due to aging and osteoarthritis are clearly depicted at the nanometre scale well before morphological changes can be observed using current diagnostic methods. Indentation-type atomic force microscopy may potentially be developed into a minimally invasive arthroscopic tool to diagnose the early onset of osteoarthritis in situ.

  12. Prevalent cartilage damage and cartilage loss over time are associated with incident bone marrow lesions in the tibiofemoral compartments: the MOST study.

    PubMed

    Crema, M D; Felson, D T; Roemer, F W; Wang, K; Marra, M D; Nevitt, M C; Lynch, J A; Torner, J; Lewis, C E; Guermazi, A

    2013-02-01

    To assess the association of prevalent cartilage damage and cartilage loss over time with incident bone marrow lesions (BMLs) in the same subregion of the tibiofemoral compartments as detected on magnetic resonance imaging (MRI). The Multicenter Osteoarthritis Study is an observational study of individuals with or at risk for knee osteoarthritis (OA). Subjects whose baseline and 30-month follow-up MRIs were read for findings of OA were included. MRI was performed with a 1.0 T extremity system. Tibiofemoral compartments were divided into 10 subregions. Cartilage morphology was scored from 0 to 6 and BMLs were scored from 0 to 3. Prevalent cartilage damage and cartilage loss over time were considered predictors of incident BMLs. Associations were assessed using logistic regression, with adjustments for potential confounders. Medially, incident BMLs were associated with baseline cartilage damage (adjusted odds ratio (OR) 3.9 [95% confidence interval (CI) 3.0, 5.1]), incident cartilage loss (7.3 [95% CI 5.0, 10.7]) and progression of cartilage loss (7.6 [95% CI 5.1, 11.3]) Laterally, incident BMLs were associated with baseline cartilage damage (4.1 [95% CI 2.6, 6.3]), incident cartilage loss (6.0 [95% CI 3.1, 11.8]), and progression of cartilage loss (11.9 [95% CI 6.2, 23.0]). Prevalent cartilage damage and cartilage loss over time are strongly associated with incident BMLs in the same subregion, supporting the significance of the close interrelation of the osteochondral unit in the progression of knee OA. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  13. Effects of Fiber Orientation on the Frictional Properties and Damage of Regenerative Articular Cartilage Surfaces

    PubMed Central

    Accardi, Mario Alberto; McCullen, Seth D.; Callanan, Anthony; Chung, Sangwon; Cann, Philippa M.

    2013-01-01

    Articular cartilage provides a low-friction, wear-resistant surface for diarthrodial joints. Due to overloading and overuse, articular cartilage is known to undergo significant wear and degeneration potentially resulting in osteoarthritis (OA). Regenerative medicine strategies offer a promising solution for the treatment of articular cartilage defects and potentially localized early OA. Such strategies rely on the development of materials to restore some aspects of cartilage. In this study, microfibrous poly(ɛ-caprolactone) scaffolds of varying fiber orientations (random and aligned) were cultured with bovine chondrocytes for 4 weeks in vitro, and the mechanical and frictional properties were evaluated. Mechanical properties were quantified using unconfined compression and tensile testing techniques. Frictional properties were investigated at physiological compressive strains occurring in native articular cartilage. Scaffolds were sheared along the fiber direction, perpendicular to the fiber direction and in random orientation. The evolution of damage as a result of shear was evaluated via white light interferometry and scanning electron microscopy. As expected, the fiber orientation strongly affected the tensile properties as well as the compressive modulus of the scaffolds. Fiber orientation did not significantly affect the equilibrium frictional coefficient, but it was, however, a key factor in dictating the evolution of surface damage on the surface. Scaffolds shear tested perpendicular to the fiber orientation displayed the highest surface damage. Our results suggest that the fiber orientation of the scaffold implanted in the joint could strongly affect its resistance to damage due to shear. Scaffold fiber orientation should thus be carefully considered when using microfibrous scaffolds. PMID:23688110

  14. The initial repair response of articular cartilage after mechanically induced damage.

    PubMed

    van Haaften, Eline E; Ito, Keita; van Donkelaar, Corrinus C

    2017-06-01

    The regenerative potential of articular cartilage (AC) defects is limited and depends on defect size, biomechanical conditions, and age. Early events after overloading might be predictive for cartilage degeneration in the long term. Therefore, the present aim is to investigate the temporal response of cartilage to overloading at cell, matrix, and tissue level during the first period after mechanical overloading. In the present study, the effect of high loading (∼8 MPa) at a high rate (∼14 MPa/s) at day 0 during a 9 day period on collagen damage, gene expression, cell death, and biochemical composition in AC was investigated. A model system was developed which enabled culturing osteochondral explants after loading. Proteoglycan content was repeatedly monitored over time using μCT, whereas other evaluations required destructive measurements. Changes in matrix related gene expressions indicated a degenerative response during the first 6 h after loading. After 24 h, this was restored and data suggested an initial repair response. Cell death and microscopic damage increased after 24 h following loading. These degradative changes were not restored within the 9 day culture period, and were accompanied by a slight loss of proteoglycans at the articular surface that extended into the middle zones. The combined findings indicate that high magnitude loading of articular cartilage at a high rate induces an initial damage that later initiates a healing response that can probably not be retained due to loss of cell viability. Consequently, the matrix cannot be restored in the short term. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1265-1273, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. FREQUENCY CONTENT OF CARTILAGE IMPACT FORCE SIGNAL REFLECTS ACUTE HISTOLOGIC STRUCTURAL DAMAGE.

    PubMed

    Heiner, Anneliese D; Martin, James A; McKinley, Todd O; Goetz, Jessica E; Thedens, Daniel R; Brown, Thomas D

    2012-10-01

    The objective of this study was to determine if acute cartilage impact damage could be predicted by a quantification of the frequency content of the impact force signal. Osteochondral specimens excised from bovine lateral tibial plateaus were impacted with one of six impact energies. Each impact force signal underwent frequency analysis, with the amount of higher-frequency content (percent of frequency spectrum above 1 KHz) being registered. Specimens were histologically evaluated to assess acute structural damage (articular surface cracking and cartilage crushing) resulting from the impact. Acute histologic structural damage to the cartilage had higher concordance with the high-frequency content measure than with other mechanical impact measures (delivered impact energy, impact maximum stress, and impact maximum stress rate of change). This result suggests that the frequency content of an impact force signal, specifically the proportion of higher-frequency components, can be used as a quick surrogate measure for acute structural cartilage injury. Taking advantage of this relationship could reduce the time and expense of histological processing needed to morphologically assess cartilage damage, especially for purposes of initial screening when evaluating new impaction protocols.

  16. Noninvasive assessment of articular cartilage surface damage using reflected polarized light microscopy

    NASA Astrophysics Data System (ADS)

    Huynh, Ruby N.; Nehmetallah, George; Raub, Christopher B.

    2017-06-01

    Articular surface damage occurs to cartilage during normal aging, osteoarthritis, and in trauma. A noninvasive assessment of cartilage microstructural alterations is useful for studies involving cartilage explants. This study evaluates polarized reflectance microscopy as a tool to assess surface damage to cartilage explants caused by mechanical scraping and enzymatic degradation. Adult bovine articular cartilage explants were scraped, incubated in collagenase, or underwent scrape and collagenase treatments. In an additional experiment, cartilage explants were subject to scrapes at graduated levels of severity. Polarized reflectance parameters were compared with India ink surface staining, features of histological sections, changes in explant wet weight and thickness, and chondrocyte viability. The polarized reflectance signal was sensitive to surface scrape damage and revealed individual scrape features consistent with India ink marks. Following surface treatments, the reflectance contrast parameter was elevated and correlated with image area fraction of India ink. After extensive scraping, polarized reflectance contrast and chondrocyte viability were lower than that from untreated explants. As part of this work, a mathematical model was developed and confirmed the trend in the reflectance signal due to changes in surface scattering and subsurface birefringence. These results demonstrate the effectiveness of polarized reflectance microscopy to sensitively assess surface microstructural alterations in articular cartilage explants.

  17. Wear and Damage of Articular Cartilage with Friction Against Orthopaedic Implant Materials

    PubMed Central

    Oungoulian, Sevan R.; Durney, Krista M.; Jones, Brian K.; Ahmad, Christopher S.; Hung, Clark T.; Ateshian, Gerard A.

    2015-01-01

    The objective of this study was to measure the wear response of immature bovine articular cartilage tested against glass or alloys used in hemiarthroplasties. Two cobalt chromium alloys and a stainless steel alloy were selected for these investigations. The surface roughness of one of the cobalt chromium alloys was also varied within the range considered acceptable by regulatory agencies. Cartilage disks were tested in a configuration that promoted loss of interstitial fluid pressurization to accelerate conditions believed to occur in hemiarthroplasties. Results showed that considerably more damage occurred in cartilage samples tested against stainless steel (10 nm roughness) and low carbon cobalt chromium alloy (27 nm roughness) compared to glass (10 nm) and smoother low or high carbon cobalt chromium (10 nm). The two materials producing the greatest damage also exhibited higher equilibrium friction coefficients. Cartilage damage occurred primarily in the form of delamination at the interface between the superficial tangential zone and the transitional middle zone, with much less evidence of abrasive wear at the articular surface. These results suggest that cartilage damage from frictional loading occurs as a result of subsurface fatigue failure leading to the delamination. Surface chemistry and surface roughness of implant materials can have a significant influence on tissue damage, even when using materials and roughness values that satisfy regulatory requirements. PMID:25912663

  18. Planar dGEMRIC Maps May Aid Imaging Assessment of Cartilage Damage in Femoroacetabular Impingement.

    PubMed

    Bulat, Evgeny; Bixby, Sarah D; Siversson, Carl; Kalish, Leslie A; Warfield, Simon K; Kim, Young-Jo

    2016-02-01

    Three-dimensional (3-D) delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) helps quantify biochemical changes in articular cartilage that correlate with early-stage osteoarthritis. However, dGEMRIC analysis is performed slice by slice, limiting the potential of 3-D data to give an overall impression of cartilage biochemistry. We previously developed a computational algorithm to produce unfolded, or "planar," dGEMRIC maps of acetabular cartilage, but have neither assessed their application nor determined whether MRI-based grading of cartilage damage or dGEMRIC measurements predict intraoperative findings in hips with symptomatic femoroacetabular impingement (FAI). (1) Does imaging-based assessment of acetabular cartilage damage correlate with intraoperative findings in hips with symptomatic FAI? (2) Does the planar dGEMRIC map improve this correlation? (3) Does the planar map improve the correlation between the dGEMRIC index and MRI-based grading of cartilage damage in hips with symptomatic FAI? (4) Does the planar map improve imaging-based evaluation time for hips with symptomatic FAI? We retrospectively studied 47 hips of 45 patients with symptomatic FAI who underwent hip surgery between 2009 and 2013 and had a 1.5-T 3-D dGEMRIC scan within 6 months preoperatively. Our cohort included 25 males and 20 females with a mean ± SD age at surgery of 29 ± 11 years. Planar dGEMRIC maps were generated from isotropic, sagittal oblique TrueFISP and T1 sequences. A pediatric musculoskeletal radiologist with experience in hip MRI evaluated studies using radially reformatted sequences. For six acetabular subregions (anterior-peripheral [AP]; anterior-central [AC]; superior-peripheral [SP]; superior-central [SC]; posterior-peripheral [PP]; posterior-central [PC]), modified Outerbridge cartilage damage grades were recorded and region-of-interest T1 averages (the dGEMRIC index) were measured. Beck's intraoperative cartilage damage grades were compared with the Outerbridge

  19. Cartilage collagen damage in hip osteoarthritis similar to that seen in knee osteoarthritis; a case-control study of relationship between collagen, glycosaminoglycan and cartilage swelling.

    PubMed

    Hosseininia, Shahrzad; Lindberg, Lisbeth R; Dahlberg, Leif E

    2013-01-09

    It remains to be shown whether OA shares molecular similarities between different joints in humans. This study provides evidence for similarities in cartilage molecular damage in osteoarthritic (OA) joints. Articular cartilage from osteoarthritic hip joints were analysed and compared to non-OA controls regarding collagen, glycosaminoglycan and water content. Femoral heads from 16 osteoarthritic (OA) and 20 reference patients were obtained from hip replacement surgery due to OA and femoral neck fracture, respectively. Cartilage histological changes were assessed by Mankin grading and denatured collagen type II immunostaining and cartilage was extracted by α-chymotrypsin. Hydroxyproline and Alcian blue binding assays were used to measure collagen and glycosaminoglycan (GAG) content, respectively. Mankin and immunohistology scores were significantly higher in hip OA samples than in reference samples. Cartilage water content was 6% higher in OA samples than in references. 2.5 times more collagen was extracted from OA than from reference samples. There was a positive association between water content and percentage of extractable collagen pool (ECP) in both groups. The amounts of collagen per wet and dry weights did not differ statistically between OA and reference cartilage. % Extractable collagen was not related to collagen per dry weight in either group. However when collagen was expressed by wet weight there was a negative correlation between % extractable and collagen in OA cartilage. The amount of GAG per wet weight was similar in both groups but the amount of GAG per dry weight was higher in OA samples compared to reference samples, which suggests a capacity for GAG biosynthesis in hip OA cartilage. Neither of the studied parameters was related to age in either group. Increased collagen extractability and water content in human hip cartilage is associated with OA pathology and can be observed at early stages of the degenerative hip OA process. Our results

  20. Preliminayr Study on Diffraction Enhanced Radiographic Imaging for a Canine Model of Cartilage Damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muehleman,C.; Li, J.; Zhong, Z.

    2006-01-01

    Objective: To demonstrate the ability of a novel radiographic technique, Diffraction Enhanced Radiographic Imaging (DEI), to render high contrast images of canine knee joints for identification of cartilage lesions in situ. Methods: DEI was carried out at the X-15A beamline at Brookhaven National Laboratory on intact canine knee joints with varying levels of cartilage damage. Two independent observers graded the DE images for lesions and these grades were correlated to the gross morphological grade. Results: The correlation of gross visual grades with DEI grades for the 18 canine knee joints as determined by observer 1 (r2=0.8856, P=0.001) and observer 2more » (r2=0.8818, P=0.001) was high. The overall weighted ? value for inter-observer agreement was 0.93, thus considered high agreement. Conclusion: The present study is the first study for the efficacy of DEI for cartilage lesions in an animal joint, from very early signs through erosion down to subchondral bone, representing the spectrum of cartilage changes occurring in human osteoarthritis (OA). Here we show that DEI allows the visualization of cartilage lesions in intact canine knee joints with good accuracy. Hence, DEI may be applicable for following joint degeneration in animal models of OA.« less

  1. Patellofemoral Instability in Children: Correlation Between Risk Factors, Injury Patterns, and Severity of Cartilage Damage.

    PubMed

    Kim, Hee Kyung; Shiraj, Sahar; Kang, Chang Ho; Anton, Christopher; Kim, Dong Hoon; Horn, Paul S

    2016-06-01

    The purpose of this study was to compare MRI findings between groups with and without patellofemoral instability and to correlate the MRI findings with the severity of patellar cartilage damage. Fifty-three children with patellofemoral instability and 53 age- and sex-matched children without patellofemoral instability (15.9 ± 2.4 years) were included. Knee MRI with T2-weighted mapping was performed. On MR images, femoral trochlear dysplasia, patellofemoral malalignment, medial retinaculum injury, and bone marrow edema were documented. The degree of patellar cartilage damage was evaluated on MR images by use of a morphologic grading scale (0-4) and on T2 maps with mean T2 values at the medial, central, and lateral facets. MRI findings were compared between the two groups. In cases of patellofemoral instability, MRI findings were correlated with the severity of cartilage damage at each region. Trochlear structure and alignment were significantly different between the two groups (Wilcoxon p < 0.0001). In patellofemoral instability, a high-riding patella was associated with central patellar cartilage damage with a higher morphologic grade and T2 value (Spearman p < 0.05). The severity of medial retinacular injury and presence of bone marrow edema at either the medial patella or the lateral femoral condyle were associated with a higher grade of medial patellar cartilage damage (Wilcoxon p < 0.05). None of the other findings correlated with the severity of patellar cartilage damage. Patients with patellofemoral instability have significantly different trochlear structure and alignment than those who do not, and these differences are known risk factors for patellofemoral instability. However, the only risk factors or injury patterns that directly correlated with the severity of patellar cartilage damage were patella alta, medial stabilizer injury, and bone marrow edema.

  2. Hydrogels as a Replacement Material for Damaged Articular Hyaline Cartilage

    PubMed Central

    Beddoes, Charlotte M.; Whitehouse, Michael R.; Briscoe, Wuge H.; Su, Bo

    2016-01-01

    Hyaline cartilage is a strong durable material that lubricates joint movement. Due to its avascular structure, cartilage has a poor self-healing ability, thus, a challenge in joint recovery. When severely damaged, cartilage may need to be replaced. However, currently we are unable to replicate the hyaline cartilage, and as such, alternative materials with considerably different properties are used. This results in undesirable side effects, including inadequate lubrication, wear debris, wear of the opposing articular cartilage, and weakening of the surrounding tissue. With the number of surgeries for cartilage repair increasing, a need for materials that can better mimic cartilage, and support the surrounding material in its typical function, is becoming evident. Here, we present a brief overview of the structure and properties of the hyaline cartilage and the current methods for cartilage repair. We then highlight some of the alternative materials under development as potential methods of repair; this is followed by an overview of the development of tough hydrogels. In particular, double network (DN) hydrogels are a promising replacement material, with continually improving physical properties. These hydrogels are coming closer to replicating the strength and toughness of the hyaline cartilage, while offering excellent lubrication. We conclude by highlighting several different methods of integrating replacement materials with the native joint to ensure stability and optimal behaviour. PMID:28773566

  3. Hydrogels as a Replacement Material for Damaged Articular Hyaline Cartilage.

    PubMed

    Beddoes, Charlotte M; Whitehouse, Michael R; Briscoe, Wuge H; Su, Bo

    2016-06-03

    Hyaline cartilage is a strong durable material that lubricates joint movement. Due to its avascular structure, cartilage has a poor self-healing ability, thus, a challenge in joint recovery. When severely damaged, cartilage may need to be replaced. However, currently we are unable to replicate the hyaline cartilage, and as such, alternative materials with considerably different properties are used. This results in undesirable side effects, including inadequate lubrication, wear debris, wear of the opposing articular cartilage, and weakening of the surrounding tissue. With the number of surgeries for cartilage repair increasing, a need for materials that can better mimic cartilage, and support the surrounding material in its typical function, is becoming evident. Here, we present a brief overview of the structure and properties of the hyaline cartilage and the current methods for cartilage repair. We then highlight some of the alternative materials under development as potential methods of repair; this is followed by an overview of the development of tough hydrogels. In particular, double network (DN) hydrogels are a promising replacement material, with continually improving physical properties. These hydrogels are coming closer to replicating the strength and toughness of the hyaline cartilage, while offering excellent lubrication. We conclude by highlighting several different methods of integrating replacement materials with the native joint to ensure stability and optimal behaviour.

  4. Structural and Anatomic Restoration of the Anterior Cruciate Ligament Is Associated With Less Cartilage Damage 1 Year After Surgery: Healing Ligament Properties Affect Cartilage Damage

    PubMed Central

    Kiapour, Ata M.; Fleming, Braden C.; Murray, Martha M.

    2017-01-01

    healing ACLs or grafts and AP knee laxity in reconstructed knees were associated with the extent of tibiofemoral cartilage damage after ACL surgery. Clinical Relevance: These data highlight the need for novel ACL injury treatments that can restore the structural and anatomic properties of the torn ACL to those of the native ACL in an effort to minimize the risk of early-onset posttraumatic osteoarthritis. PMID:28875154

  5. Exploring cartilage damage in gout using 3-T MRI: distribution and associations with joint inflammation and tophus deposition.

    PubMed

    Popovich, I; Dalbeth, N; Doyle, A; Reeves, Q; McQueen, F M

    2014-07-01

    Few imaging studies have investigated cartilage in gout. Magnetic resonance imaging (MRI) can image cartilage damage and also reveals other features of gouty arthropathy. The objective was to develop and validate a system for quantifying cartilage damage in gout. 3-T MRI scans of the wrist were obtained in 40 gout patients. MRI cartilage damage was quantified using an adaptation of the radiographic Sharp van der Heijde score. Two readers scored cartilage loss at 7 wrist joints: 0 (normal), 1 (partial narrowing), 2 (complete narrowing) and concomitant osteoarthritis was recorded. Bone erosion, bone oedema and synovitis were scored (RAMRIS) and tophi were assessed. Correlations between radiographic and MRI cartilage scores were investigated, as was the reliability of the MRI cartilage score and its associations. The GOut MRI Cartilage Score (GOMRICS) was highly correlated with the total Sharp van der Heijde (SvdH) score and the joint space narrowing component (R = 0.8 and 0.71 respectively, p < 0.001). Reliability was high (intraobserver, interobserver ICCs = 0.87 [0.57-0.97], 0.64 [0.41-0.79] respectively), and improved on unenhanced scans; interobserver ICC = 0.82 [0.49-0.95]. Cartilage damage was predominantly focal (82% of lesions) and identified in 40 out of 280 (14%) of joints. Cartilage scores correlated with bone erosion (R = 0.57), tophus size (R = 0.52), and synovitis (R = 0.55), but not bone oedema scores. Magnetic resonance imaging can be used to investigate cartilage in gout. Cartilage damage was relatively uncommon, focal, and associated with bone erosions, tophi and synovitis, but not bone oedema. This emphasises the unique pathophysiology of gout.

  6. Patellofemoral instability in children: T2 relaxation times of the patellar cartilage in patients with and without patellofemoral instability and correlation with morphological grading of cartilage damage.

    PubMed

    Kang, Chang Ho; Kim, Hee Kyung; Shiraj, Sahar; Anton, Christopher; Kim, Dong Hoon; Horn, Paul S

    2016-07-01

    Patellofemoral instability is one of the most common causes of cartilage damage in teenagers. To quantitatively evaluate the patellar cartilage in patients with patellofemoral instability using T2 relaxation time maps (T2 maps), compare the values to those in patients without patellofemoral instability and correlate them with morphological grades in patients with patellofemoral instability. Fifty-three patients with patellofemoral instability (mean age: 15.9 ± 2.4 years) and 53 age- and gender-matched patients without patellofemoral instability were included. Knee MR with axial T2 map was performed. Mean T2 relaxation times were obtained at the medial, central and lateral zones of the patellar cartilage and compared between the two groups. In the patellofemoral instability group, morphological grading of the patellar cartilage (0-4) was performed and correlated with T2 relaxation times. Mean T2 relaxation times were significantly longer in the group with patellofemoral instability as compared to those of the control group across the patellar cartilage (Student's t-test, P<0.05) with the longest time at the central area. Positive correlation was seen between mean T2 relaxation time and morphological grading (Pearson correlation coefficiency, P<0.001). T2 increased with severity of morphological grading from 0 to 3 (mixed model, P<0.001), but no statistical difference was seen between grades 3 and 4. In patellofemoral instability, patellar cartilage damage occurs across the entire cartilage with the highest T2 values at the apex. T2 relaxation times directly reflect the severity in low-grade cartilage damage, which implies an important role for T2 maps in differentiating between normal and low-grade cartilage damage.

  7. A Review of Current Regenerative Medicine Strategies that Utilize Nanotechnology to Treat Cartilage Damage

    PubMed Central

    Kumar, R.; Griffin, M.; Butler, P.E.

    2016-01-01

    Background: Cartilage is an important tissue found in a variety of anatomical locations. Damage to cartilage is particularly detrimental, owing to its intrinsically poor healing capacity. Current reconstructive options for cartilage repair are limited, and alternative approaches are required. Biomaterial science and Tissue engineering are multidisciplinary areas of research that integrate biological and engineering principles for the purpose of restoring premorbid tissue function. Biomaterial science traditionally focuses on the replacement of diseased or damaged tissue with implants. Conversely, tissue engineering utilizes porous biomimetic scaffolds, containing cells and bioactive molecules, to regenerate functional tissue. However, both paradigms feature several disadvantages. Faced with the increasing clinical burden of cartilage defects, attention has shifted towards the incorporation of Nanotechnology into these areas of regenerative medicine. Methods: Searches were conducted on Pubmed using the terms “cartilage”, “reconstruction”, “nanotechnology”, “nanomaterials”, “tissue engineering” and “biomaterials”. Abstracts were examined to identify articles of relevance, and further papers were obtained from the citations within. Results: The content of 96 articles was ultimately reviewed. The literature yielded no studies that have progressed beyond in vitro and in vivo experimentation. Several limitations to the use of nanomaterials to reconstruct damaged cartilage were identified in both the tissue engineering and biomaterial fields. Conclusion: Nanomaterials have unique physicochemical properties that interact with biological systems in novel ways, potentially opening new avenues for the advancement of constructs used to repair cartilage. However, research into these technologies is in its infancy, and clinical translation remains elusive. PMID:28217211

  8. Deficiency of Hyaluronan Synthase 1 (Has1) Results in Chronic Joint Inflammation and Widespread Intra-Articular Fibrosis in a Murine Model of Knee Joint Cartilage Damage

    PubMed Central

    Chan, Deva D.; Xiao, Wenfeng; Li, Jun; de la Motte, Carol A.; Sandy, John D.; Plaas, Anna

    2015-01-01

    Objective Articular cartilage defects commonly result from traumatic injury and predispose to degenerative joint diseases. To test the hypothesis that aberrant healing responses and chronic inflammation lead to osteoarthritis, we examined spatiotemporal changes in joint tissues after cartilage injury in murine knees. Since intra-articular injection of hyaluronan (HA) can attenuate injury-induced osteoarthritis in wild-type (WT) mice, we investigated a role for HA in the response to cartilage injury in mice lacking HA synthase 1 (Has1−/−). Design Femoral groove cartilage of WT and Has1−/− mice was debrided to generate a non-bleeding wound. Macroscopic imaging, histology, and gene expression were used to evaluate naïve, sham-operated, and injured joints. Results Acute responses (1–2 weeks) in injured joints from WT mice included synovial hyperplasia with HA deposition and joint-wide increases in expression of genes associated with inflammation, fibrosis, and extracellular matrix (ECM) production. By 4 weeks, some resurfacing of damaged cartilage occurred, and early cell responses were normalized. Cartilage damage in Has1−/− mice also induced early responses; however, at 4 weeks, inflammation and fibrosis genes remained elevated with widespread cartilage degeneration and fibrotic scarring in the synovium and joint capsule. Conclusions We conclude that the ineffective repair of injured cartilage in Has1−/− joints can be at least partly explained by the markedly enhanced expression of particular genes in pathways linked to ECM turnover, IL-17/IL-6 cytokine signaling, and apoptosis. Notably, Has1 ablation does not alter gross HA content in the ECM, suggesting that HAS1 has a unique function in the metabolism of inflammatory HA matrices. PMID:26521733

  9. [Infrared radiation and magnetic field therapy ameliorates cartilage damage in rabbits with knee osteoarthritis].

    PubMed

    Sun, Jia-li; Fan, Jian-zhong; Song, Gui-zhi; Tan, Xiao-ming; Peng, Nan

    2007-12-01

    To evaluate the effect of infrared radiation and magnetic field therapy on cartilage damage in rabbits with knee osteoarthritis. Knee osteoarthritis was induced in 24 adult New Zealand rabbits by prolonged fixation of the knee joint in extension for 6 weeks. The rabbits were subsequently randomized into control group (without treatment), infrared therapy group, magnetic field therapy group and the combined infrared and magnetic field therapy group. At the end of the first, second and third weeks of the therapy, respectively, 2 rabbits from each group were sacrificed to observe the general changes and histopathology of the condylar cartilage of the femur, and the findings were assessed using Mankin scores. Compared with other groups, the rabbits in the combined therapy group showed significantly milder cartilage damage (including injury of the cartilage surface and chondrocyte's proliferation and disarrangement) with significantly lower Mankin scores (P<0.05). No significant differences were found in the findings between the two groups with exclusive infrared or magnetic field therapy (P>0.1). Combined infrared and magnetic field therapy can effectively alleviate cartilage destruction, shortens the disease course and enhance the therapeutic effects in rabbits with knee osteoarthritis.

  10. New Frontiers for Cartilage Repair and Protection.

    PubMed

    Zaslav, Kenneth; McAdams, Timothy; Scopp, Jason; Theosadakis, Jason; Mahajan, Vivek; Gobbi, Alberto

    2012-01-01

    Articular cartilage injury is common after athletic injury and remains a difficult treatment conundrum both for the surgeon and athlete. Although recent treatments for damage to articular cartilage have been successful in alleviating symptoms, more durable and complete, long-term articular surface restoration remains the unattained goal. In this article, we look at both new ways to prevent damage to articular surfaces as well as new techniques to recreate biomechanically sound and biochemically true articular surfaces once an athlete injures this surface. This goal should include reproducing hyaline cartilage with a well-integrated and flexible subchondral base and the normal zonal variability in the articular matrix. A number of nonoperative interventions have shown early promise in mitigating cartilage symptoms and in preclinical studies have shown evidence of chondroprotection. These include the use of glucosamine, chondroitin, and other neutraceuticals, viscosupplementation with hyaluronic acid, platelet-rich plasma, and pulsed electromagnetic fields. Newer surgical techniques, some already in clinical study, and others on the horizon offer opportunities to improve the surgical restoration of the hyaline matrix often disrupted in athletic injury. These include new scaffolds, single-stage cell techniques, the use of mesenchymal stem cells, and gene therapy. Although many of these treatments are in the preclinical and early clinical study phase, they offer the promise of better options to mitigate the sequelae of athletically induced cartilage.

  11. Laser-induced cartilage damage: an ex-vivo model using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Frenz, Martin; Zueger, Benno J.; Monin, D.; Weiler, C.; Mainil-Varlet, P. M.; Weber, Heinz P.; Schaffner, Thomas

    1999-06-01

    Although there is an increasing popularity of lasers in orthopedic surgery, there is a growing concern about negative side effects of this therapy e.g. prolonged restitution time, radiation damage to adjacent cartilage or depth effects like bone necrosis. Despite case reports and experimental investigations over the last few years little is known about the extent of acute cartilage damage induced by different lasers types and energies. Histological examination offers only limited insights in cell viability and metabolism. Ho:YAG and Er:YAG lasers emitting at 2.1 micrometer and 2.94 micrometer, respectively, are ideally suited for tissue treatment because these wavelengths are strongly absorbed in water. The Purpose of the present study is to evaluate the effect of laser type and energy on chondrocyte viability in an ex vivo model. Free running Er:YAG (E equals 100 and 150 mJ) and Ho:YAG (E equals 500 and 800 mJ) lasers were used at different energy levels using a fixed pulse length of 400 microseconds. The energy was delivered at 8 Hz through optical fibers. Fresh bovine hyaline cartilage samples were mounted in a water bath at room temperature and the fiber was positioned at 30 degree and 180 degree angles relative to the tissue surface. After laser irradiation the samples were assessed by a life-dead cell viability test using a confocal microscope and by standard histology. Thermal damage was much deeper with Ho:YAG (up to 1800 micrometer) than with the Er:YAG laser (up to 70 micrometer). The cell viability test revealed a damage zone about twice the one determined by standard histology. Confocal microscopy is a powerful tool for assessing changes in tissue structure after laser treatment. In addition this technique allows to quantify these alterations without necessitating time consuming and expensive animal experiments.

  12. Matriptase Induction of Metalloproteinase‐Dependent Aggrecanolysis In Vitro and In Vivo: Promotion of Osteoarthritic Cartilage Damage by Multiple Mechanisms

    PubMed Central

    Wilkinson, David J.; Habgood, Angela; Lamb, Heather K.; Thompson, Paul; Hawkins, Alastair R.; Désilets, Antoine; Leduc, Richard; Steinmetzer, Torsten; Hammami, Maya; Lee, Melody S.; Craik, Charles S.; Watson, Sharon; Lin, Hua; Milner, Jennifer M.

    2017-01-01

    Objective To assess the ability of matriptase, a type II transmembrane serine proteinase, to promote aggrecan loss from the cartilage of patients with osteoarthritis (OA) and to determine whether its inhibition can prevent aggrecan loss and cartilage damage in experimental OA. Methods Aggrecan release from human OA cartilage explants and human stem cell–derived cartilage discs was evaluated, and cartilage‐conditioned media were used for Western blotting. Gene expression was analyzed by real‐time polymerase chain reaction. Murine OA was induced by surgical destabilization of the medial meniscus, and matriptase inhibitors were administered via osmotic minipump or intraarticular injection. Cartilage damage was scored histologically and aggrecan cleavage was visualized immunohistochemically using specific neoepitope antibodies. Results The addition of soluble recombinant matriptase promoted a time‐dependent release of aggrecan (and collagen) from OA cartilage, which was sensitive to metalloproteinase inhibition and protease‐activated receptor 2 antagonism. Although engineered human (normal) cartilage discs failed to release aggrecan following matriptase addition, both matrix metalloproteinase– and aggrecanase‐mediated cleavages of aggrecan were detected in human OA cartilage. Additionally, while matriptase did not directly degrade aggrecan, it promoted the accumulation of low‐density lipoprotein receptor–related protein 1 (LRP‐1) in conditioned media of the OA cartilage explants. Matriptase inhibition via neutralizing antibody or small molecule inhibitor significantly reduced cartilage damage scores in murine OA, which was associated with reduced generation of metalloproteinase‐mediated aggrecan cleavage. Conclusion Matriptase potently induces the release of metalloproteinase‐generated aggrecan fragments as well as soluble LRP‐1 from OA cartilage. Therapeutic targeting of matriptase proteolytic activity reduces metalloproteinase activity

  13. Triamcinolone hexacetonide protects against fibrillation and osteophyte formation following chemically induced articular cartilage damage.

    PubMed

    Williams, J M; Brandt, K D

    1985-11-01

    Although corticosteroids have been shown to cause articular cartilage degeneration, recent studies of experimentally induced osteoarthritis indicate that under certain conditions they may protect against cartilage damage and osteophyte formation. The present study examines the in vivo effect of triamcinolone hexacetonide on the degeneration of articular cartilage which occurs following intraarticular injection of sodium iodoacetate. Three weeks after a single injection of iodoacetate into the knees of guinea pigs, ipsilateral femoral condylar cartilage exhibited fibrillation, loss of staining with Safranin O, depletion of chondrocytes, and prominent osteophytes. In striking contrast, when triamcinolone hexacetonide was injected into the ipsilateral knee 24 hours after the intraarticular injection of iodoacetate, fibrillation was noted in only 1 of 6 samples, osteophytes were much less prominent, pericellular staining with Safranin O persisted, and cell loss was less extensive. Knees of animals which received only one-tenth as much intraarticular triamcinolone hexacetonide after the iodoacetate injection also exhibited marked reduction in size and extent of osteophytes. However, the degree of fibrillation, loss of Safranin O staining, and chondrocyte depletion was similar to that observed in animals injected with iodoacetate but not treated with intraarticular steroid. No apparent morphologic or histochemical changes were observed after intraarticular injection of the steroid preparation alone. Thus, triamcinolone hexacetonide produced a marked, dose-dependent protective effect in this model of chemically induced articular cartilage damage.

  14. Utility of circulating serum miRNAs as biomarkers of early cartilage degeneration in animal models of post-traumatic osteoarthritis and inflammatory arthritis.

    PubMed

    Kung, L H W; Zaki, S; Ravi, V; Rowley, L; Smith, M M; Bell, K M; Bateman, J F; Little, C B

    2017-03-01

    The purpose of this study was to determine if serum microRNA (miRNA) signatures were biomarkers of early cartilage degeneration in preclinical mouse models of post-traumatic osteoarthritis (OA) and inflammatory arthritis. Cartilage degeneration was induced in 10-12 week old male C57BL6 mice by destabilization of the medial meniscus (DMM) or intra-articular injection of methylated-bovine-serum-albumin (AIA), with sham-operated or saline-injected control animals (n = 6/treatment/time). Total serum RNA and knee joints were isolated at 1, 4 and 16 weeks post-induction. Cartilage degeneration was scored histologically. Serum miRNA expression profiling was performed using Agilent microarrays and validated by qPCR. DMM-operated and AIA mice had characteristic cartilage degeneration (proteoglycan loss, chondrocyte hypertrophy, structural damage), that increased significantly with time compared with controls, and with distinct temporal differences between arthritis models. However, expression profiling revealed no statistically significant dysregulation of serum miRNAs between AIA vs saline-injected or DMM vs sham-operated control mice at the critical early disease stages. The inability to detect DMM or AIA serum miRNA signatures compared with controls was not due to the insensitivity of the expression profiling approach since significant changes were observed in miRNA expression between the arthritis models and between time points. While distinct patterns of progressive cartilage degradation were induced in the arthritis models, we were unable to identify any serum miRNAs that were significantly dysregulated in early stages of disease compared with controls. This suggests circulating serum miRNAs may not be useful as cartilage biomarkers in distinguishing the early or progressive stages of arthritis cartilage degeneration. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  15. Electromechanical properties of human osteoarthritic and asymptomatic articular cartilage are sensitive and early detectors of degeneration.

    PubMed

    Hadjab, I; Sim, S; Karhula, S S; Kauppinen, S; Garon, M; Quenneville, E; Lavigne, P; Lehenkari, P P; Saarakkala, S; Buschmann, M D

    2018-03-01

    To evaluate cross-correlations of ex vivo electromechanical properties with cartilage and subchondral bone plate thickness, as well as their sensitivity and specificity regarding early cartilage degeneration in human tibial plateau. Six pairs of tibial plateaus were assessed ex vivo using an electromechanical probe (Arthro-BST) which measures a quantitative parameter (QP) reflecting articular cartilage compression-induced streaming potentials. Cartilage thickness was then measured with an automated thickness mapping technique using Mach-1 multiaxial mechanical tester. Subsequently, a visual assessment was performed by an experienced orthopedic surgeon using the International Cartilage Repair Society (ICRS) grading system. Each tibial plateau was finally evaluated with μCT scanner to determine the subchondral-bone plate thickness over the entire surface. Cross-correlations between assessments decreased with increasing degeneration level. Moreover, electromechanical QP and subchondral-bone plate thickness increased strongly with ICRS grade (ρ = 0.86 and ρ = 0.54 respectively), while cartilage thickness slightly increased (ρ = 0.27). Sensitivity and specificity analysis revealed that the electromechanical QP is the most performant to distinguish between different early degeneration stages, followed by subchondral-bone plate thickness and then cartilage thickness. Lastly, effect sizes of cartilage and subchondral-bone properties were established to evaluate whether cartilage or bone showed the most noticeable changes between normal (ICRS 0) and each early degenerative stage. Thus, the effect sizes of cartilage electromechanical QP were almost twice those of the subchondral-bone plate thickness, indicating greater sensitivity of electromechanical measurements to detect early osteoarthritis. The potential of electromechanical properties for the diagnosis of early human cartilage degeneration was highlighted and supported by cartilage thickness and

  16. Prospective In Vivo Comparison of Damaged and Healthy-Appearing Articular Cartilage Specimens in Patients With Femoroacetabular Impingement: Comparison of T2 Mapping, Histologic Endpoints, and Arthroscopic Grading.

    PubMed

    Ho, Charles P; Surowiec, Rachel K; Frisbie, David D; Ferro, Fernando P; Wilson, Katharine J; Saroki, Adriana J; Fitzcharles, Eric K; Dornan, Grant J; Philippon, Marc J

    2016-08-01

    To describe T2 mapping values in arthroscopically determined International Cartilage Repair Society (ICRS) grades in damaged and healthy-appearing articular cartilage waste specimens from arthroscopic femoroacetabular impingement (FAI) treatment. Furthermore, we sought to compare ICRS grades of the specimens with biochemical, immunohistochemistry and histologic endpoints and assess correlations with T2 mapping. Twenty-four patients were prospectively enrolled, consecutively, between December 2011 and August 2012. Patients were included if they were aged 18 years or older and met criteria that followed the clinical indications for arthroscopy to treat FAI. Patients with prior hip trauma including fracture or dislocation or who have undergone prior hip surgery were excluded. All patients received a preoperative sagittal T2 mapping scan of the hip joint. Cartilage was graded intraoperatively using the ICRS grading system, and graded specimens were collected as cartilage waste for histologic, biochemical, and immunohistochemistry analysis. Forty-four cartilage specimens (22 healthy-appearing, 22 damaged) were analyzed. Median T2 values were significantly higher among damaged specimens (55.7 ± 14.9 ms) than healthy-appearing specimens (49.3 ± 12.3 ms; P = .043), which was most exaggerated among mild (grade 1 or 2) defects where the damaged specimens (58.1 ± 16.4 ms) were significantly higher than their paired healthy-appearing specimens (48.7 ± 15.4 ms; P = .026). Severely damaged specimens (grade 3 or 4) had significantly lower cumulative H&E than their paired healthy-appearing counterparts (P = .02) but was not statistically significant among damaged specimens with mild (grade 1 or 2) defects (P = .198). Among healthy-appearing specimens, median T2 and the percentage of collagen fibers oriented parallel were significantly correlated (rho = 0.425, P = .048). This study outlines the potential for T2 mapping to identify early cartilage degeneration in

  17. Photodynamic damage to cartilage and synovial tissue grafted on a chick's chorioallantoic membrane

    NASA Astrophysics Data System (ADS)

    Fisher, M.; Nahir, A. M.; Kimel, Sol

    1997-09-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease of the synovial joints causing pain deformities and disability. The highly vascular inflamed synovium has aggressive and destructive characteristics, it invades, erodes and gradually destroys cartilage and underlying bone. Photodynamic therapy (PDT) was performed using the chick chorioallantoic membrane (CAM) model to investigate the vitality of synovium and cartilage implanted on the CAM. Synovium, obtained from human patients, was grafted onto the CAM; gross microscopy and histology proved its vitality 7 days post grafting. Cartilage obtained from rabbit knee joint was also maintained on the CAM for 7 days. Its vitality was demonstrated by histology and by measuring metabolic and enzymatic activity of cartilage cells (chondrocytes) as well as the collagen and proteoglycans content. Selective PDT was performed using aluminum phthalocyanine tetrasulfonate (AlPcS4), a hydrophilic compound, soluble in biological solutions, as a photosensitizer. After irradiation with a diode laser (lambda equals 670 nm, 10 mW) damage was observed in vascularized synovium grafts, whereas avascular cartilage remained intact.

  18. Partial meniscectomy is associated with increased risk of incident radiographic osteoarthritis and worsening cartilage damage in the following year.

    PubMed

    Roemer, Frank W; Kwoh, C Kent; Hannon, Michael J; Hunter, David J; Eckstein, Felix; Grago, Jason; Boudreau, Robert M; Englund, Martin; Guermazi, Ali

    2017-01-01

    To assess whether partial meniscectomy is associated with increased risk of radiographic osteoarthritis (ROA) and worsening cartilage damage in the following year. We studied 355 knees from the Osteoarthritis Initiative that developed ROA (Kellgren-Lawrence grade ≥ 2), which were matched with control knees. The MR images were assessed using the semi-quantitative MOAKS system. Conditional logistic regression was applied to estimate risk of incident ROA. Logistic regression was used to assess the risk of worsening cartilage damage in knees with partial meniscectomy that developed ROA. In the group with incident ROA, 4.4 % underwent partial meniscectomy during the year prior to the case-defining visit, compared with none of the knees that did not develop ROA. All (n = 31) knees that had partial meniscectomy and 58.9 % (n = 165) of the knees with prevalent meniscal damage developed ROA (OR = 2.51, 95 % CI [1.73, 3.64]). In knees that developed ROA, partial meniscectomy was associated with an increased risk of worsening cartilage damage (OR = 4.51, 95 % CI [1.53, 13.33]). The probability of having had partial meniscectomy was higher in knees that developed ROA. When looking only at knees that developed ROA, partial meniscectomy was associated with greater risk of worsening cartilage damage. • Partial meniscectomy is a controversial treatment option for degenerative meniscal tears. • Partial meniscectomy is strongly associated with incident osteoarthritis within 1 year. • Partial meniscectomy is associated with increased risk of worsening cartilage damage.

  19. IL-1β, in contrast to TNFα, is pivotal in blood-induced cartilage damage and is a potential target for therapy.

    PubMed

    van Vulpen, Lize F D; Schutgens, Roger E G; Coeleveld, Katja; Alsema, Els C; Roosendaal, Goris; Mastbergen, Simon C; Lafeber, Floris P J G

    2015-11-05

    Joint bleeding after (sports) trauma, after major joint surgery, or as seen in hemophilia in general leads to arthropathy. Joint degeneration is considered to result from the direct effects of blood components on cartilage and indirectly from synovial inflammation. Blood-provided proinflammatory cytokines trigger chondrocytes and induce the production of cartilage-degrading proteases. In the presence of erythrocyte-derived iron, cytokines stimulate radical formation in the vicinity of chondrocytes inducing apoptosis. To unravel the role of interleukin (IL) 1β and tumor necrosis factor (TNF) α in the pathogenesis of this blood-induced cartilage damage, the effect of antagonizing these cytokines was examined in human in vitro cultures. Addition of recombinant human IL-1β monoclonal antibody or IL-1 receptor antagonist resulted in a dose- and time-dependent protection of cartilage from blood-induced damage. In higher concentrations, almost complete normalization of cartilage matrix proteoglycan turnover was achieved. This was accompanied by a reduction in IL-1β and IL-6 production in whole blood cultures, whereas TNFα production remained unaffected. Interestingly, addition of a TNFα monoclonal antibody, although demonstrated to inhibit the direct (transient) effects of TNFα on cartilage, exhibited no effect on blood-induced (prolonged) cartilage damage. It is demonstrated that IL-1β is crucial in the development of blood-induced joint damage, whereas TNFα is not. This hierarchical position of IL-1β in blood-induced joint damage warrants studies on targeting IL-1β to potentially prevent joint degeneration after a joint bleed. © 2015 by The American Society of Hematology.

  20. Coefficient of Friction Patterns Can Identify Damage in Native and Engineered Cartilage Subjected to Frictional-Shear Stress

    PubMed Central

    Whitney, G. A.; Mansour, J. M.; Dennis, J. E.

    2015-01-01

    The mechanical loading environment encountered by articular cartilage in situ makes frictional-shear testing an invaluable technique for assessing engineered cartilage. Despite the important information that is gained from this testing, it remains under-utilized, especially for determining damage behavior. Currently, extensive visual inspection is required to assess damage; this is cumbersome and subjective. Tools to simplify, automate, and remove subjectivity from the analysis may increase the accessibility and usefulness of frictional-shear testing as an evaluation method. The objective of this study was to determine if the friction signal could be used to detect damage that occurred during the testing. This study proceeded in two phases: first, a simplified model of biphasic lubrication that does not require knowledge of interstitial fluid pressure was developed. In the second phase, frictional-shear tests were performed on 74 cartilage samples, and the simplified model was used to extract characteristic features from the friction signals. Using support vector machine classifiers, the extracted features were able to detect damage with a median accuracy of approximately 90%. The accuracy remained high even in samples with minimal damage. In conclusion, the friction signal acquired during frictional-shear testing can be used to detect resultant damage to a high level of accuracy. PMID:25691395

  1. Partial meniscectomy is associated with increased risk of incident radiographic osteoarthritis and worsening cartilage damage in the following year

    PubMed Central

    Roemer, Frank W.; Kwoh, C. Kent; Hannon, Michael J.; Hunter, David J.; Eckstein, Felix; Grago, Jason; Boudreau, Robert M.; Englund, Martin; Guermazi, Ali

    2016-01-01

    Objectives To assess whether partial meniscectomy is associated with increased risk of radiographic osteoarthritis (ROA) and worsening cartilage damage in the following year. Methods We studied 355 knees from the Osteoarthritis Initiative that developed ROA (Kellgren-Lawrence grade ≥ 2), which were matched with control knees. The MR images were assessed using the semi-quantitative MOAKS system. Conditional logistic regression was applied to estimate risk of incident ROA. Logistic regression was used to assess the risk of worsening cartilage damage in knees with partial meniscectomy that developed ROA. Results In the group with incident ROA, 4.4% underwent partial meniscectomy during the year prior to the case-defining visit, compared with none of the knees that did not develop ROA. All (n=31) knees that had partial meniscectomy and 58.9% (n=165) of the knees with prevalent meniscal damage developed ROA (OR=2.51, 95% CI [1.73, 3.64]). In knees that developed ROA, partial meniscectomy was associated with an increased risk of worsening cartilage damage (OR=4.51, 95% CI [1.53, 13.33]). Conclusions The probability of having had partial meniscectomy was higher in knees that developed ROA. When looking only at knees that developed ROA, partial meniscectomy was associated with greater risk of worsening cartilage damage. PMID:27121931

  2. Risk factors for cartilage damage and osteoarthritis of the elbow joint: case-control study and systematic literature review.

    PubMed

    Spahn, Gunter; Lipfert, Jens Uwe; Maurer, Constance; Hartmann, Bernd; Schiele, Rainer; Klemm, Holm-Torsten; Grifka, Joachim; Hofmann, Gunther O

    2017-04-01

    This case-control study compares patients with healthy elbows to a group of symptomatic patients with cartilage damage/osteoarthritis. The control group (n = 126) was recruited during routine medical examinations of patients (general medical offices). Included in the case group were a total of 92 patients who were undergoing arthroscopy as a result of chronic elbow discomfort. All patients were questioned with regard to occupational stress and athletic stress. A significantly increased risk of cartilage damage/osteoarthritis was found with subjectively perceived increased stress in occupational settings: OR = 3.8 (95% CI 2.1-6.7); p < 0.001; for the individual stresses of the elbow joint in occupational settings, the following severities in effects were found: Exposure to heavy work OR = 3.9 (95% CI 2.2-6.8); Force OR = 3.7 (95% CI 2.1-6.5); Vibration OR = 4.6 (95% CI 2.5-8.5); Repetition OR = 9.2 (95% CI 3.6-23.3); p < 0.001. Elbow-stressing sport types represent a potential risk factor for the development of cartilage damage/osteoarthritis of the elbow joint: OR = 2.5 (95% CI 1.3-4.7); p = 0.003. Cartilage damage/radiographic osteoarthritis of the elbow joint are rare with respect to the overall prevalence of osteoarthritis. In the large number of patients with cartilage damage/radiographic osteoarthritis of the elbow joint, occupational or athletic stress factors and injuries sustained, in addition to other causes (rheumatism, gout), can prove as possible causes of these as secondary to symptomatic forms of osteoarthritis.

  3. Meniscus Induced Cartilaginous Damage and Non-linear Gross Anatomical Progression of Early-stage Osteoarthritis in a Canine Model

    PubMed Central

    Kahn, David; Mittelstaedt, Daniel; Matyas, John; Qu, Xiangui; Lee, Ji Hyun; Badar, Farid; Les, Clifford; Zhuang, Zhiguo; Xia, Yang

    2016-01-01

    Background: The predictable outcome of the anterior cruciate ligament transection (ACLT) canine model, and the similarity to naturally occurring osteoarthritis (OA) in humans, provide a translatable method for studying OA. Still, evidence of direct meniscus-induced cartilaginous damage has not been identified, and gross-anatomical blinded scoring of early-stage OA has not been performed. Objective: A gross anatomical observation and statistical analysis of OA progression to determine meniscus induced cartilaginous damage, to measure the macroscopic progression of OA, and to address matters involving arthroscopic and surgical procedures of the knee. Method: Unblinded assessment and blinded scoring of meniscal, tibial, femoral, and patellar damage were performed for control and at four time points following unilateral ACLT: 3-week (N=4), 8-week (N=4), 12-week (N=5), and 25-week (N=4). Mixed-model statistics illustrates damage (score) progression; Wilcoxon rank-sum tests compared time-point scores; and Wilcoxon signed-rank tests compared ACLT and contralateral scores, and meniscus and tibia scores. Result: Damage was manifest first on the posterior aspect of the medial meniscus and subsequently on the tibia and femur, implying meniscal damage can precede, coincide with, and aggravate cartilage damage. Damage extent varied chronologically and was dependent upon the joint component. Meniscal damage was evident at 3 weeks and progressed through 25-weeks. Meniscal loose bodies corresponded to tibial cartilage damage location and extent through 12 weeks, followed by cartilage repair activity after complete meniscal degeneration. Conclusion: This study provides additional information for understanding OA progression, identifying OA biomarkers, and arthroscopic and meniscectomy procedures. PMID:28144379

  4. The effects of monosodium urate monohydrate crystals on chondrocyte viability and function: implications for development of cartilage damage in gout.

    PubMed

    Chhana, Ashika; Callon, Karen E; Pool, Bregina; Naot, Dorit; Gamble, Gregory D; Dray, Michael; Pitto, Rocco; Bentley, Jarome; McQueen, Fiona M; Cornish, Jillian; Dalbeth, Nicola

    2013-12-01

    Cartilage damage is frequently observed in advanced destructive gout. The aim of our study was to investigate the effects of monosodium urate monohydrate (MSU) crystals on chondrocyte viability and function. The alamarBlue assay and flow cytometry were used to assess the viability of primary human chondrocytes and cartilage explants following culture with MSU crystals. The number of dead chondrocytes in cartilage explants cultured with MSU crystals was quantified. Real-time PCR was used to determine changes in the relative mRNA expression levels of chondrocytic genes. The histological appearance of cartilage in joints affected by gout was also examined. MSU crystals rapidly reduced primary human chondrocyte and cartilage explant viability in a dose-dependent manner (p < 0.01 for both). Cartilage explants cultured with MSU crystals had a greater percentage of dead chondrocytes at the articular surface compared to untreated cartilage (p = 0.004). Relative mRNA expression of type II collagen and the cartilage matrix proteins aggrecan and versican was decreased in chondrocytes following culture with MSU crystals (p < 0.05 for all). However, expression of the degradative enzymes ADAMTS4 and ADAMTS5 was increased (p < 0.05 for both). In joints affected by gout, normal cartilage architecture was lost, with empty chondrocyte lacunae observed. MSU crystals have profound inhibitory effects on chondrocyte viability and function. Interactions between MSU crystals and chondrocytes may contribute to cartilage damage in gout through reduction of chondrocyte viability and promotion of a catabolic state.

  5. Early Articular Cartilage MRI T2 Changes After Anterior Cruciate Ligament Reconstruction Correlate With Later Changes in T2 and Cartilage Thickness

    PubMed Central

    Williams, Ashley; Winalski, Carl S.; Chu, Constance R.

    2018-01-01

    Anterior cruciate ligament (ACL) injury is a known risk factor for future development of osteoarthritis (OA). This human clinical study seeks to determine if early changes to cartilage MRI T2 maps between baseline and 6 months following ACL reconstruction (ACLR) are associated with changes to cartilage T2 and cartilage thickness between baseline and 2 years after ACLR. Changes to T2 texture metrics and T2 mean values in medial knee cartilage of 17 human subjects 6 months after ACLR were compared to 2-year changes in T2 and in cartilage thickness of the same areas. T2 texture and mean assessments were also compared to that of 11 uninjured controls. In ACLR subjects, six-month changes in mean T2 correlated to 2-year changes in mean T2 (R = 0.80, p = 0.0001), and 6-month changes to T2 texture metrics, but not T2 mean, correlated with 2-year changes in medial femoral cartilage thickness in 9 of the 20 texture features assessed (R = 0.48–0.72, p ≤ 0.05). Both mean T2 and texture differed (p < 0.05) between ALCR subjects and uninjured controls. Clinical Significance These results show that short-term longitudinal evaluation of T2 map and textural changes may provide early warning of cartilage at risk for progressive degeneration after ACL injury and reconstruction. PMID:27381512

  6. T2* mapping and delayed gadolinium-enhanced magnetic resonance imaging in cartilage (dGEMRIC) of humeral articular cartilage--a histologically controlled study.

    PubMed

    Bittersohl, Bernd; Kircher, Jörn; Miese, Falk R; Dekkers, Christin; Habermeyer, Peter; Fröbel, Julia; Antoch, Gerald; Krauspe, Rüdiger; Zilkens, Christoph

    2015-10-01

    Cartilage biochemical imaging modalities that include the magnetic resonance imaging (MRI) techniques of T2* mapping (sensitive to water content and collagen fiber network) and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC, sensitive to the glycosaminoglycan content) can be effective instruments for early diagnosis and reliable follow-up of cartilage damage. The purpose of this study was to provide T2* mapping and dGEMRIC values in various histologic grades of cartilage degeneration in humeral articular cartilage. A histologically controlled in vitro study was conducted that included human humeral head cartilage specimens with various histologic grades of cartilage degeneration. High-resolution, 3-dimensional (3D) T2* mapping and dGEMRIC were performed that enabled the correlation of MRI and histology data. Cartilage degeneration was graded according to the Mankin score, which evaluates surface morphology, cellularity, toluidine blue staining, and tidemark integrity. SPSS software was used for statistical analyses. Both MRI mapping values decreased significantly (P < .001) with increasing cartilage degeneration. Spearman rank analysis revealed a significant correlation (correlation coefficients ranging from -0.315 to 0.784; P < .001) between the various histologic parameters and the T2* and T1Gd mapping values. This study demonstrates the feasibility of 3D T2* and dGEMRIC to identify various histologic grades of cartilage damage of humeral articular cartilage. With regard to the advantages of these mapping techniques with high image resolution and the ability to accomplish a 3D biochemically sensitive imaging, we consider that these imaging techniques can make a positive contribution to the currently evolving science and practice of cartilage biochemical imaging. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  7. Intra-articular Recombinant Human Proteoglycan 4 Mitigates Cartilage Damage Following Destabilization of the Medial Meniscus in the Yucatan Minipig

    PubMed Central

    Waller, Kimberly A.; Chin, Kaitlyn E.; Jay, Gregory D.; Zhang, Ling X.; Teeple, Erin; McAllister, Scott; Badger, Gary J.; Schmidt, Tannin A.; Fleming, Braden C.

    2016-01-01

    Background Lubricin, or proteoglycan 4 (PRG4), is a glycoprotein responsible for joint boundary lubrication. PRG4 has been previously shown to be down-regulated following traumatic joint injury such as a meniscal tear. There is preliminary evidence suggesting that intra-articular injection of PRG4 post-injury will reduce cartilage damage in rat models of surgically-induced post-traumatic osteoarthritis. Objective To determine the efficacy of intra-articular injection of full length recombinant human lubricin (rhPRG4) for reducing cartilage damage after medial meniscus destabilization (DMM) in a pre-clinical large animal model. Study Design Controlled laboratory study Methods Unilateral DMM was performed in 29 Yucutan minipigs. One week post-DMM, animals received 3 weekly intra-articular injections (3cc/injection): 1) rhPRG4 [1.3mg/ml; n=10], 2) rhPRG4+hyaluronan [1.3mg/ml rhPRG4 and 3mg/ml hyaluronan (~950 kDA); n=10], and 3) phosphate buffered saline [PBS; n=9]. Hind limbs were harvested 26 weeks post-surgery. Cartilage integrity was evaluated using macroscopic (India Ink) and microscopic (Safranin O-fast green and hematoxylin & eosin) scoring systems. Secondary outcomes evaluated using ELISA included PRG4 levels in synovial fluid, CTX-II concentrations in urine and serum, and IL-1β levels in synovial fluid and serum. Results The rhPRG4 group had significantly less macroscopic cartilage damage in the medial tibial plateau compared to the PBS group (p=.002). No difference was found between the rhPRG4+hyaluronan and PBS groups (p=.23). However, no differences in microscopic damage scores were observed between the three groups (p=.70). PRG4 production was elevated in the rhPRG4 group synovial fluid compared to the PBS group (p=.033). The rhPRG4 group presented significantly lower urinary CTX-II levels, but not serum levels, when compared to the PBS (p=.013) and rhPRG4+hyaluronan (p=.011) groups. In serum and synovial fluid, both rhPRG4 (p=.006; p=.017) and rhPRG4

  8. Mesenchymal stem-cell potential in cartilage repair: an update

    PubMed Central

    Mazor, M; Lespessailles, E; Coursier, R; Daniellou, R; Best, T M; Toumi, H

    2014-01-01

    Articular cartilage damage and subsequent degeneration are a frequent occurrence in synovial joints. Treatment of these lesions is a challenge because this tissue is incapable of quality repair and/or regeneration to its native state. Non-operative treatments endeavour to control symptoms and include anti-inflammatory medications, viscosupplementation, bracing, orthotics and activity modification. Classical surgical techniques for articular cartilage lesions are frequently insufficient in restoring normal anatomy and function and in many cases, it has not been possible to achieve the desired results. Consequently, researchers and clinicians are focusing on alternative methods for cartilage preservation and repair. Recently, cell-based therapy has become a key focus of tissue engineering research to achieve functional replacement of articular cartilage. The present manuscript is a brief review of stem cells and their potential in the treatment of early OA (i.e. articular cartilage pathology) and recent progress in the field. PMID:25353372

  9. Magnetic resonance imaging with gadolinium arthrography to assess acetabular cartilage delamination.

    PubMed

    Zaragoza, Edward; Lattanzio, Pierre-Jean; Beaule, Paul E

    2009-01-01

    Recent reports have demonstrated magnetic resonance imaging (MRI) as a promising technique in detecting articular cartilage lesions of the hip joint. The purpose of our study was to evaluate the diagnostic performance of MRI with gadolinium arthrography in detecting acetabular cartilage delamination in patients with pre-arthritic hip pain. 46 patients (48 hips) underwent surgical dislocation of the hip. Mean age was 38.8 (range 17-56). There were 26 males and 20 females. All patients had Magnetic Resonance Imaging with gadolinium arthrography (MRA) before undergoing open hip surgery where the acetabular cartilage was inspected. Acetabular cartilage delamination on MRA was seen on sagittal images as a linear intra-articular filling defect of low signal intensity >1mm in thickness on T1 weighted images and surrounded by contrast. On MRA all hips had a labral tear confirmed at surgery. At surgery 30 hips had evidence of acetabular cartilage delamination, 4 hips had ulceration and 14 had no articular cartilage damage. The majority of labral tears and cartilage damage were located in the antero-superior quadrant. The sensitivity and specificity of MRA detection of cartilage delamination confirmed at surgery were 97% and 84%, respectively. The positive and negative predictive values of the MRA finding were 90% and 94%, respectively. The presence of the acetabular cartilage delamination represents an early stage of articular cartilage degeneration. When evaluating a young adult with hip pain, labral tears in association with cartilage delamination should be considered. MRA represents an effective diagnostic tool.

  10. Decrease in local volumetric bone mineral density (vBMD) in osteoarthritic joints is associated with the increase in cartilage damage: a pQCT study

    NASA Astrophysics Data System (ADS)

    Tamaddon, Maryam; Chen, Shen Mao; Vanaclocha, Leyre; Hart, Alister; El-Husseiny, Moataz; Henckel, Johann; Liu, Chaozong

    2017-11-01

    Osteoarthritis (OA) is the most common type of arthritis and a major cause of disability in the adult population. It affects both cartilage and subchondral bone in the joints. There has been some progress in understanding the changes in subchondral bone with progression of osteoarthritis. However, local changes in subchondral bone such as microstructure or volumetric bone mineral density in connection with the defect in cartilage are relatively unexplored. To develop an effective treatment for progression of OA, it is important to understand how the physical environment provided by the subchondral bone affects the overlying cartilage. In this study we examined the volumetric bone mineral density (vBMD) distribution in the osteoarthritic joint tissues obtained from total hip replacement surgeries due to osteoarthritis, using peripheral quantitative CT (pQCT). It was found that there is a significant decrease in volumetric bone mineral density, which co-localises with the damage in the overlying cartilage. This was not limited to the subchondral bone immediately adjacent to the cartilage defect but continued in the layers below. Bone resorption and cyst formation in the OA tissues were also detected. We observed that the bone surrounding subchondral bone cysts exhibited much higher volumetric bone mineral density than that of the surrounding bones. PQCT was able to detect significant changes in vBMD between OA and non-OA samples, as well as between areas of different cartilage degeneration, which points to its potential as a technique for detection of early OA.

  11. Astaxanthin ameliorates cartilage damage in experimental osteoarthritis.

    PubMed

    Huang, Li-juan; Chen, Wei-Ping

    2015-09-01

    Astaxanthin is a red-pigment carotenoid found in certain marine animals and plants. Astaxanthin has been shown to inhibit matrix metalloproteinases (MMPs) expression in vitro. However, the effect of astaxanthin on cartilage is still unclear. The aim of this study was to investigate the effects of astaxanthin on cartilage in experimental osteoarthritis (OA). New Zealand rabbits underwent anterior cruciate ligament transection to induce OA in right knee. Rabbits received intra-articular injection containing 0.3 ml of vehicle (dimethyl sulfoxide) or astaxanthin (50 μM). Injection was started on the day of operation, and the injection were performed once weekly for six consecutive weeks. Then, rabbits were sacrificed and the right knees were harvested for study. Cartilage degradation was reduced by astaxanthin, as assessed by morphological and histological examination. Astaxanthin inhibited the gene expression of MMP-1, MMP-3, and MMP-13 in cartilage as compared with the vehicle group. The results suggest that astaxanthin may be considered as pharmaceutical agent in OA treatment.

  12. Progression of cartilage damage and meniscal pathology over 30 months is associated with an increase in radiographic tibiofemoral joint space narrowing in persons with knee OA--the MOST study.

    PubMed

    Crema, M D; Nevitt, M C; Guermazi, A; Felson, D T; Wang, K; Lynch, J A; Marra, M D; Torner, J; Lewis, C E; Roemer, F W

    2014-10-01

    To determine the association of MRI-assessed worsening of tibiofemoral cartilage damage, meniscal damage, meniscal extrusion, separately and together, with progression of radiographic joint space narrowing (JSN). The Multicenter Osteoarthitis Study (MOST) Study is a cohort study of subjects with or at risk for knee osteoarthritis (OA). Knees with radiographic OA Kellgren-Lawrence grade 2 at baseline and with baseline and 30-month 1.0 T MRIs were selected for reading using the WORMS system for cartilage damage, meniscal damage, and meniscal extrusion. The association of worsening of cartilage damage, meniscal damage, and/or meniscal extrusion with increases in the JSN was performed using logistic regression. A total of 276 knees (one per subject) were included (women 68.5%, mean age 62.9 ± 7.8, mean body mass index (BMI) 30.2 ± 5.0). Worsening of each MRI feature was associated with any increase in JSN (P < 0.01). Worsening of cartilage damage was more frequently observed than worsening of meniscal damage and extrusion, and was significantly associated with both slow and fast progression of JSN. An increasing risk of JSN worsening was associated with increasing number of worsening MRI features (P for trend < 0.0001). Worsening of tibiofemoral cartilage damage, meniscal damage, and meniscal extrusion are independent predictors of JSN progression in the same compartment. Worsening of cartilage damage is more frequently observed in JSN when compared to meniscal worsening. A strong cumulative effect on JSN progression is observed for worsening of more than one MRI feature. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  13. Autofluorescence lifetime metrology for label-free detection of cartilage matrix degradation

    NASA Astrophysics Data System (ADS)

    Nickdel, Mohammad B.; Lagarto, João. L.; Kelly, Douglas J.; Manning, Hugh B.; Yamamoto, Kazuhiro; Talbot, Clifford B.; Dunsby, Christopher; French, Paul; Itoh, Yoshifumi

    2014-03-01

    Degradation of articular cartilage extracellular matrix (ECM) by proteolytic enzyme is the hallmark of arthritis that leads to joint destruction. Detection of early biochemical changes in cartilage before irreversible structural damages become apparent is highly desirable. Here we report that the autofluorescence decay profile of cartilage is significantly affected by proteolytic degradation of cartilage ECM and can be characterised by measurements of the autofluorescence lifetime (AFL). A multidimensional fluorometer utilizing ultraviolet excitation at 355 nm or 375 nm coupled to a fibreoptic probe was developed for single point time-resolved AFL measurements of porcine articular cartilage explants treated with different proteinases. Degradation of cartilage matrix components by treating with bacterial collagenase, matrix metalloproteinase 1, or trypsin resulted in significant reduction of AFL of the cartilage in both a dose and time dependent manner. Differences in cartilage AFL were also confirmed by fluorescence lifetime imaging microscopy (FLIM). Our data suggest that AFL of cartilage tissue is a potential non-invasive readout to monitor cartilage matrix integrity that may be utilized for diagnosis of arthritis as well as monitoring the efficacy of anti-arthritic therapeutic agents.

  14. Cartilage repair in the degenerative ageing knee

    PubMed Central

    Brittberg, Mats; Gomoll, Andreas H; Canseco, José A; Far, Jack; Lind, Martin; Hui, James

    2016-01-01

    Background and purpose Cartilage damage can develop due to trauma, resulting in focal chondral or osteochondral defects, or as more diffuse loss of cartilage in a generalized organ disease such as osteoarthritis. A loss of cartilage function and quality is also seen with increasing age. There is a spectrum of diseases ranging from focal cartilage defects with healthy surrounding cartilage to focal lesions in degenerative cartilage, to multiple and diffuse lesions in osteoarthritic cartilage. At the recent Aarhus Regenerative Orthopaedics Symposium (AROS) 2015, regenerative challenges in an ageing population were discussed by clinicians and basic scientists. A group of clinicians was given the task of discussing the role of tissue engineering in the treatment of degenerative cartilage lesions in ageing patients. We present the outcomes of our discussions on current treatment options for such lesions, with particular emphasis on different biological repair techniques and their supporting level of evidence. Results and interpretation Based on the studies on treatment of degenerative lesions and early OA, there is low-level evidence to suggest that cartilage repair is a possible treatment for such lesions, but there are conflicting results regarding the effect of advanced age on the outcome. We concluded that further improvements are needed for direct repair of focal, purely traumatic defects before we can routinely use such repair techniques for the more challenging degenerative lesions. Furthermore, we need to identify trigger mechanisms that start generalized loss of cartilage matrix, and induce subchondral bone changes and concomitant synovial pathology, to maximize our treatment methods for biological repair in degenerative ageing joints. PMID:27910738

  15. Impact insertion of osteochondral grafts: Interference fit and central graft reduction affect biomechanics and cartilage damage.

    PubMed

    Su, Alvin W; Chen, Yunchan; Wailes, Dustin H; Wong, Van W; Cai, Shengqiang; Chen, Albert C; Bugbee, William D; Sah, Robert L

    2018-01-01

    An osteochondral graft (OCG) is an effective treatment for articular cartilage and osteochondral defects. Impact of an OCG during insertion into the osteochondral recipient site (OCR) can cause chondrocyte death and matrix damage. The aim of the present study was to analyze the effects of graft-host interference fit and a modified OCG geometry on OCG insertion biomechanics and cartilage damage. The effects of interference fit (radius of OCG - radius of OCR), loose (0.00 mm), moderate (0.05 mm), tight (0.10 mm), and of a tight fit with OCG geometry modification (central region of decreased radius), were analyzed for OCG cylinders and OCR blocks from adult bovine knee joints with an instrumented drop tower apparatus. An increasingly tight (OCG - OCR) interference fit led to increased taps for insertion, peak axial force, graft cartilage axial compression, cumulative and total energy delivery to cartilage, lower time of peak axial force, lesser graft advancement during each tap, higher total crack length in the cartilage surface, and lower chondrocyte viability. The modified OCG, with reduction of diameter in the central area, altered the biomechanical insertion variables and biological consequences to be similar to those of the moderate interference fit scenario. Micro-computed tomography confirmed structural interference between the OCR bone and both the proximal and distal bone segments of the OCGs, with the central regions being slightly separated for the modified OCGs. These results clarify OCG insertion biomechanics and mechanobiology, and introduce a simple modification of OCGs that facilitates insertion with reduced energy while maintaining a structural interference fit. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:377-386, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Analysis of friction between articular cartilage and polyvinyl alcohol hydrogel artificial cartilage.

    PubMed

    Li, Feng; Wang, Anmin; Wang, Chengtao

    2016-05-01

    Many biomaterials are being used to repair damaged articular cartilage. In particular, poly vinyl alcohol hydrogel has similar mechanical properties to natural cartilage under compressive and shearing loading. Here, three-factor and two-level friction experiments and long-term tests were conducted to better evaluate its tribological properties. The friction coefficient between articular cartilage and the poly vinyl alcohol hydrogel depended primarily on the three factors of load, speed, and lubrication. When the speed increased from 10 to 20 mm/s under a load of 10 N, the friction coefficient increased from 0.12 to 0.147. When the lubricant was changed from Ringer's solution to a hyaluronic acid solution, the friction coefficient decreased to 0.084 with loads as high as 22 N. The poly vinyl alcohol hydrogel was severely damaged and lost its top surface layers, which were transferred to the articular cartilage surface. Wear was observed in the surface morphologies, which indicated the occurrence of surface adhesion of bovine cartilage. Surface fatigue and adhesive wear was the dominant wear mechanism.

  17. Assessing the effect of football play on knee articular cartilage using delayed gadolinium-enhanced MRI of cartilage (dGEMRIC).

    PubMed

    Wei, Wenbo; Lambach, Becky; Jia, Guang; Flanigan, David; Chaudhari, Ajit M W; Wei, Lai; Rogers, Alan; Payne, Jason; Siston, Robert A; Knopp, Michael V

    2017-06-01

    The prevalence of cartilage lesions is much higher in football athletes than in the general population. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) has been shown to quantify regional variations of glycosaminoglycan (GAG) concentrations which is an indicator of early cartilage degeneration. The goal of this study is to determine whether dGEMRIC can be used to assess the influence in cartilage GAG concentration due to college level football play. Thirteen collegiate football players with one to four years of collegiate football play experience were recruited and both knee joints were scanned using a dedicated 8-channel phased array knee coil on a 3T MRI system. The contrast concentrations within cartilage were calculated based on the T 1 values from dGEMRIC scans. No substantial differences were found in the contrast concentrations between the pre- and post-season across all the cartilage compartments. One year collegiate football players presented an average contrast concentration at the pre-season of 0.116±0.011mM and post-season of 0.116±0.011mM. In players with multiple years of football play, contrast uptake was elevated to 0.141±0.012mM at the pre-season and 0.139±0.012mM at the post-season. The pre-season 0.023±0.016mM and post-season 0.025±0.016mM increase in contrast concentration within the group with multiple years of experience presented with a >20% increase in contrast uptake. This may indicate the gradual, cumulative damage of football play to the articular cartilage over years, even though the effect may not be noticeable after a season of play. Playing collegiate football for a longer period of time may lead to cartilage microstructural alterations, which may be linked to early knee cartilage degeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The degeneration and destruction of femoral articular cartilage shows a greater degree of deterioration than that of the tibial and patellar articular cartilage in early stage knee osteoarthritis: a cross-sectional study.

    PubMed

    Hada, S; Kaneko, H; Sadatsuki, R; Liu, L; Futami, I; Kinoshita, M; Yusup, A; Saita, Y; Takazawa, Y; Ikeda, H; Kaneko, K; Ishijima, M

    2014-10-01

    The aim of the present study was to examine whether the degenerative and morphological changes of articular cartilage in early stage knee osteoarthritis (OA) occurred equally for both femoral- and tibial- or patellar- articular cartilage using magnetic resonance imaging (MRI)-based analyses. This cross-sectional study was approved by the ethics committee of our university. Fifty patients with early stage painful knee OA were enrolled. The patients underwent 3.0 T MRI on the affected knee joint. Healthy volunteers who did not show MRI-based OA changes were also recruited as controls (n = 19). The degenerative changes of the articular cartilage were quantified by a T2 mapping analysis, and any structural changes were conducted using Whole Organ Magnetic Resonance Imaging Score (WORMS) technique. All patients showed MRI-detected OA morphological changes. The T2 values of femoral condyle (FC) (P < 0.0001) and groove (P = 0.0001) in patients with early stage knee OA were significantly increased in comparison to those in the control, while no significant differences in the T2 values of patellar and tibial plateau (TP) were observed between the patients and the control. The WORMS cartilage and osteophyte scores of the femoral articular cartilage were significantly higher than those in the patellar- (P = 0.001 and P = 0.007, respectively) and tibial- (P = 0.0001 and P < 0.0001, respectively) articular cartilage in the patients with early stage knee OA. The degradation and destruction of the femoral articular cartilage demonstrated a greater degree of deterioration than those of the tibial- and patellar- articular cartilage in patients with early stage knee OA. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  19. Articular cartilage. Part II. The osteoarthritic joint.

    PubMed

    Muehleman, C; Arsenis, C H

    1995-05-01

    Articular hyaline cartilage, though a metabolically active tissue, has limited capacity for repair. Though the integrity of the cartilage is dependent upon a certain level of force placed upon it, excessive force leads to damage. It is when the breakdown of the cartilage exceeds the capacity of the cartilage for repair that osteoarthritis results. At present, pharmacologic treatment of osteoarthritis is focused toward the control of pain and stiffness. This treatment, however, masks the symptoms of the disease and effectively allows the patient to do further damage to the joint.

  20. Functional ankle instability as a risk factor for osteoarthritis: using T2-mapping to analyze early cartilage degeneration in the ankle joint of young athletes.

    PubMed

    Golditz, T; Steib, S; Pfeifer, K; Uder, M; Gelse, K; Janka, R; Hennig, F F; Welsch, G H

    2014-10-01

    The aim of this study was to investigate, using T2-mapping, the impact of functional instability in the ankle joint on the development of early cartilage damage. Ethical approval for this study was provided. Thirty-six volunteers from the university sports program were divided into three groups according to their ankle status: functional ankle instability (FAI, initial ankle sprain with residual instability); ankle sprain Copers (initial sprain, without residual instability); and controls (without a history of ankle injuries). Quantitative T2-mapping magnetic resonance imaging (MRI) was performed at the beginning ('early-unloading') and at the end ('late-unloading') of the MR-examination, with a mean time span of 27 min. Zonal region-of-interest T2-mapping was performed on the talar and tibial cartilage in the deep and superficial layers. The inter-group comparisons of T2-values were analyzed using paired and unpaired t-tests. Statistical analysis of variance was performed. T2-values showed significant to highly significant differences in 11 of 12 regions throughout the groups. In early-unloading, the FAI-group showed a significant increase in quantitative T2-values in the medial, talar regions (P = 0.008, P = 0.027), whereas the Coper-group showed this enhancement in the central-lateral regions (P = 0.05). Especially the comparison of early-loading to late-unloading values revealed significantly decreasing T2-values over time laterally and significantly increasing T2-values medially in the FAI-group, which were not present in the Coper- or control-group. Functional instability causes unbalanced loading in the ankle joint, resulting in cartilage alterations as assessed by quantitative T2-mapping. This approach can visualize and localize early cartilage abnormalities, possibly enabling specific treatment options to prevent osteoarthritis in young athletes. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  1. A multi-directional in vitro investigation into friction, damage and wear of innovative chondroplasty materials against articular cartilage.

    PubMed

    Northwood, Ewen; Fisher, John

    2007-08-01

    The wear of the biomaterial/cartilage interface is vital for the development of innovative chondroplasty therapies. The aim of this study was to investigate potential chondroplasty biomaterials when sliding against natural articular cartilage under uniaxial reciprocating and multi-directional rotation/reciprocating motions. Three biphasic hydrogels were compared to articular cartilage (negative control) and stainless steel (positive control). Friction was measured by means of a simple geometry friction and wear simulator. All tests were completed in 25% bovine serum at 20 degrees C. Mechanical alterations to the surface structure were quantified using surface topography. Articular cartilage produced a constant friction value of 0.05 (confidence interval=0.015) with and without rotation. Stainless steel against articular cartilage produced an increase in friction over time resulting in a peak value of 0.7 (confidence interval=0.02) without rotation, increasing to 0.88 (confidence interval=0.03) with rotation. All biphasic hydrogels produced peak friction values lower than the positive control and demonstrated no difference between uni- and multi-directional motion. Degradation of the opposing cartilage surface showed a significant difference between the positive and negative controls, with the greater cartilage damage when sliding against stainless steel under uni-directional motion. The lower friction and reduction of opposing cartilage surface degradation with the potential chondroplasty biomaterials can be attributed to their biphasic properties. This study illustrated the importance of biphasic properties within the tribology of cartilage substitution materials and future work will focus on the optimisation of biphasic properties such that materials more closely mimic natural cartilage.

  2. Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis.

    PubMed

    Hayami, Tadashi; Pickarski, Maureen; Zhuo, Ya; Wesolowski, Gregg A; Rodan, Gideon A; Duong, Le T

    2006-02-01

    Osteoarthritis (OA) is a chronic joint disease characterized by cartilage destruction, subchondral bone sclerosis, and osteophyte formation. Subchondral bone stiffness has been proposed to initiate and/or contribute to cartilage deterioration in OA. The purpose of this study was to characterize subchondral bone remodeling, cartilage damage, and osteophytosis during the disease progression in two models of surgically induced OA. Rat knee joints were subjected either to anterior cruciate ligament transection (ACLT) alone or in combination with resection of medial menisci (ACLT + MMx). Histopathological changes in the surgical joints were compared with sham at 1, 2, 4, 6, and 10 weeks post-surgery. Using a modified Mankin scoring system, we demonstrate that articular cartilage damage occurs within 2 weeks post-surgery in both surgical models. Detectable cartilage surface damage and proteoglycan loss were observed as early as 1 week post-surgery. These were followed by the increases in vascular invasion into cartilage, in loss of chondrocyte number and in cell clustering. Histomorphometric analysis revealed subchondral bone loss in both models within 2 weeks post-surgery followed by significant increases in subchondral bone volume relative to sham up to 10 weeks post-surgery. Incidence of osteophyte formation was optimally observed in ACLT joints at 10 weeks and in ACLT + MMx joints at 6 weeks post-surgery. In summary, the two surgically induced rat OA models share many characteristics seen in human and other animal models of OA, including progressive articular cartilage degradation, subchondral bone sclerosis, and osteophyte formation. Moreover, increased subchondral bone resorption is associated with early development of cartilage lesions, which precedes significant cartilage thinning and subchondral bone sclerosis. Together, these findings support a role for bone remodeling in OA pathogenesis and suggest that these rat models are suitable for evaluating bone

  3. Cartilage Health in Knees Treated with Metal Resurfacing Implants or Untreated Focal Cartilage Lesions: A Preclinical Study in Sheep.

    PubMed

    Martinez-Carranza, Nicolas; Hultenby, Kjell; Lagerstedt, Anne Sofie; Schupbach, Peter; Berg, Hans E

    2017-07-01

    Background Full-depth cartilage lesions do not heal and the long-term clinical outcome is uncertain. In the symptomatic middle-aged (35-60 years) patient, treatment with metal implants has been proposed. However, the cartilage health surrounding these implants has not been thoroughly studied. Our objective was to evaluate the health of cartilage opposing and adjacent to metal resurfacing implants. Methods The medial femoral condyle was operated in 9 sheep bilaterally. A metallic resurfacing metallic implant was immediately inserted into an artificially created 7.5 mm defect while on the contralateral knee the defect was left untreated. Euthanasia was performed at 6 months. Six animals, of similar age and study duration, from a previous study were used for comparison in the evaluation of cartilage health adjacent to the implant. Cartilage damage to joint surfaces within the knee, cartilage repair of the defect, and cartilage adjacent to the implant was evaluated macroscopically and microscopically. Results Six animals available for evaluation of cartilage health within the knee showed a varying degree of cartilage damage with no statistical difference between defects treated with implants or left untreated ( P = 0.51; 95% CI -3.7 to 6.5). The cartilage adjacent to the implant (score 0-14; where 14 indicates no damage) remained healthy in these 6 animals showing promising results (averaged 10.5; range 9-11.5, SD 0.95). Cartilage defects did not heal in any case. Conclusion Treatment of a critical size focal lesion with a metal implant is a viable alternative treatment.

  4. Preliminary investigation of intrinsic UV fluorescence spectroscopic changes associated with proteolytic digestion of bovine articular cartilage

    NASA Astrophysics Data System (ADS)

    Lewis, William; Padilla-Martinez, Juan-Pablo; Ortega-Martinez, Antonio; Franco, Walfre

    2016-03-01

    Degradation and destruction of articular cartilage is the etiology of osteoarthritis (OA), an entity second only to cardiovascular disease as a cause of disability in the United States. Joint mechanics and cartilage biochemistry are believed to play a role in OA; an optical tool to detect structural and chemical changes in articular cartilage might offer benefit for its early detection and treatment. The objective of the present study was to identify the spectral changes in intrinsic ultraviolet (UV) fluorescence of cartilage that occur after proteolytic digestion of cartilage. Bovine articular cartilage samples were incubated in varying concentrations of collagenase ranging from 10ug/mL up to 5mg/mL for 18 hours at 37°C, a model of OA. Pre- and post-incubation measurements were taken of the UV excitation-emission spectrum of each cartilage sample. Mechanical tests were performed to determine the pre- and post-digestion force/displacement ratio associated with indentation of each sample. Spectral changes in intrinsic cartilage fluorescence and stiffness of the cartilage were associated with proteolytic digestion. In particular, changes in the relative intensity of fluorescence peaks associated with pentosidine crosslinks (330 nm excitation, 390 nm emission) and tryptophan (290 nm excitation, 340 nm emission) were found to correlate with different degrees of cartilage digestion and cartilage stiffness. In principle, it may be possible to use UV fluorescence spectral data for early detection of damage to articular cartilage, and as a surrogate measure for cartilage stiffness.

  5. Nanoparticles for diagnostics and laser medical treatment of cartilage in orthopaedics

    NASA Astrophysics Data System (ADS)

    Baum, O. I.; Soshnikova, Yu. M.; Omelchenko, A. I.; Sobol, Emil

    2013-02-01

    Laser reconstruction of intervertebral disc (LRD) is a new technique which uses local, non-destructive laser irradiation for the controlled activation of regenerative processes in a targeted zone of damaged disc cartilage. Despite pronounced advancements of LRD, existing treatments may be substantially improved if laser radiation is absorbed near diseased and/or damaged regions in cartilage so that required thermomechanical stress and strain at chondrocytes may be generated and non-specific injury reduced or eliminated. The aims of the work are to study possibility to use nanoparticles (NPs) to provide spatial specificity for laser regeneration of cartilage. Two types of porcine joint cartilage have been impregnated with magnetite NPs: 1) fresh cartilage; 2) mechanically damaged cartilage. NPs distribution was studied using transition electron microscopy, dynamic light scattering and analytical ultracentrifugation techniques. Laser radiation and magnetic field have been applied to accelerate NPs impregnation. It was shown that NPs penetrate by diffusion into the mechanically damaged cartilage, but do not infiltrate healthy cartilage. Temperature dynamics in cartilage impregnated with NPs have been theoretically calculated and measurements using an IR thermo vision system have been performed. Laser-induced alterations of cartilage structure and cellular surviving have been studied for cartilage impregnated with NPs using histological and histochemical techniques. Results of our study suggest that magnetite NPs might be used to provide spatial specificity of laser regeneration. When damaged, the regions of cartilage impreganted with NPs have higher absorption of laser radiation than that for healthy areas. Regions containing NPs form target sites that can be used to generate laser-induced thermo mechanical stress leading to regeneration of cartilage of hyaline type.

  6. Continuum theory of fibrous tissue damage mechanics using bond kinetics: application to cartilage tissue engineering.

    PubMed

    Nims, Robert J; Durney, Krista M; Cigan, Alexander D; Dusséaux, Antoine; Hung, Clark T; Ateshian, Gerard A

    2016-02-06

    This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process.

  7. Effects of moving training on histology and biomarkers levels of articular cartilage.

    PubMed

    Qi, Chang; Changlin, Huang

    2006-10-01

    To study the adaptation process and extent of articular cartilage in the canine knee joint to different modes of movements and to investigate if levels of cartilage oligomeric matrix protein (COMP), matrix metalloproteinases-1 (MMP-1), matrix metalloproteinases-3 (MMP-3), and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) in serum and synovial fluid can be used to predict effectively early sports injury and remolding degree of articular cartilage in the canine knee. Twenty adult dogs divided randomly into three groups (eight in the common training group, Training Group; eight in the intensified training group, Intensified Group; and four in the Control Group) were trained daily at different intensities. Magnetic resonance imaging (MRI) examinations were performed regularly (0, 2, 4, 6, 8, 10 weeks) to investigate changes of articular cartilage in the canine knee, while concentrations of COMP, MMP-1, MMP-3, and TIMP-1 in serum and synovial fluid were measured by ELISA assays. All of the dogs were euthanized after training for 10 weeks, and all of the knee joints were taken out to be examined histologically. We could find imaging changes of early sport injury of articular cartilage in the Training Group and Intensified Group by MRI examination after 2 weeks of training; the damage images were most severe in 4-6 weeks, and then lightened gradually. We could not find the difference of cartilage injury and repair degree in MRI images between these two groups at different time points. Elevations of levels of COMP, MMP-1, MMP-3, TIMP-1, and MMP-3/TIMP-1 in serum and synovial fluid were seen during the training period, and their levels changed remarkably at different times. Levels of MMP-1, MMP-3, and MMP-3/TIMP-1 in the Intensified Group were lower than that in the Training Group in general, and levels of COMP were higher, which hinted that the injury trend of articular cartilage in the Intensified Group was lower than that in the Training group, and the repair

  8. Cartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatments.

    PubMed

    Vinatier, C; Guicheux, J

    2016-06-01

    Articular cartilage is a non-vascularized and poorly cellularized connective tissue that is frequently damaged as a result of trauma and degenerative joint diseases such as osteoarthrtis. Because of the absence of vascularization, articular cartilage has low capacity for spontaneous repair. Today, and despite a large number of preclinical data, no therapy capable of restoring the healthy structure and function of damaged articular cartilage is clinically available. Tissue-engineering strategies involving the combination of cells, scaffolding biomaterials and bioactive agents have been of interest notably for the repair of damaged articular cartilage. During the last 30 years, cartilage tissue engineering has evolved from the treatment of focal lesions of articular cartilage to the development of strategies targeting the osteoarthritis process. In this review, we focus on the different aspects of tissue engineering applied to cartilage engineering. We first discuss cells, biomaterials and biological or environmental factors instrumental to the development of cartilage tissue engineering, then review the potential development of cartilage engineering strategies targeting new emerging pathogenic mechanisms of osteoarthritis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Early osteoarthritis of the patellofemoral joint.

    PubMed

    Arendt, Elizabeth A; Berruto, Massimo; Filardo, Giuseppe; Ronga, Mario; Zaffagnini, Stefano; Farr, Jack; Ferrua, Paolo; Grassi, Alberto; Condello, Vincenzo

    2016-06-01

    Patellofemoral joint cartilage lesions are associated with a variety of clinical situations including blunt trauma, lateral patella dislocations, or as a secondary development in the setting of abnormal joint loading. There is a need for more clarity on how to best address these lesions. Most specifically, when is it necessary to surgically treat these lesions of the patella and trochlea and which technique to use? This review will focus on the spectrum of patellofemoral disease/injury and their treatment strategies, with special emphasis on cartilage damage and early osteoarthritis. Chapter sections will review the most common scenarios of cartilage damage in the patellofemoral joint, with an attempt to summarize current treatment, their outcomes, remaining challenges and unanswered questions.

  10. Continuum theory of fibrous tissue damage mechanics using bond kinetics: application to cartilage tissue engineering

    PubMed Central

    Nims, Robert J.; Durney, Krista M.; Cigan, Alexander D.; Hung, Clark T.; Ateshian, Gerard A.

    2016-01-01

    This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process. PMID:26855751

  11. Autologous engineering of cartilage

    PubMed Central

    Emans, Pieter J.; van Rhijn, Lodewijk W.; Welting, Tim J. M.; Cremers, Andy; Wijnands, Nina; Spaapen, Frank; Voncken, J. Willem; Shastri, V. Prasad

    2010-01-01

    Treatment of full-thickness damage to hyaline cartilage is hampered by the limited availability of autologous healthy cartilage and the lengthy, cost-prohibitive cell isolation and expansion steps associated with autologous cartilage implantation (ACI). Here we report a strategy for de novo engineering of ectopic autologous cartilage (EAC) within the subperiosteal space (in vivo bioreactor), through the mere introduction of a biocompatible gel that might promote hypoxia-mediated chondrogenesis, thereby effectively overcoming the aforementioned limitations. The EAC is obtained within 3 wk post injection of the gel, and can be press-fit into an osteochondral defect where it undergoes remodeling with good lateral and subchondral integration. The implanted EAC showed no calcification even after 9 mo and attained an average O’Driscoll score of 11 (versus 4 for controls). An “on demand” autologous source of autologous cartilage with remodeling capacity is expected to significantly impact the clinical options in repair of trauma to articular cartilage. PMID:20133690

  12. Gene Therapy for Cartilage Repair

    PubMed Central

    Madry, Henning; Orth, Patrick; Cucchiarini, Magali

    2011-01-01

    The concept of using gene transfer strategies for cartilage repair originates from the idea of transferring genes encoding therapeutic factors into the repair tissue, resulting in a temporarily and spatially defined delivery of therapeutic molecules to sites of cartilage damage. This review focuses on the potential benefits of using gene therapy approaches for the repair of articular cartilage and meniscal fibrocartilage, including articular cartilage defects resulting from acute trauma, osteochondritis dissecans, osteonecrosis, and osteoarthritis. Possible applications for meniscal repair comprise meniscal lesions, meniscal sutures, and meniscal transplantation. Recent studies in both small and large animal models have demonstrated the applicability of gene-based approaches for cartilage repair. Chondrogenic pathways were stimulated in the repair tissue and in osteoarthritic cartilage using genes for polypeptide growth factors and transcription factors. Although encouraging data have been generated, a successful translation of gene therapy for cartilage repair will require an ongoing combined effort of orthopedic surgeons and of basic scientists. PMID:26069580

  13. Brief report: reconstruction of joint hyaline cartilage by autologous progenitor cells derived from ear elastic cartilage.

    PubMed

    Mizuno, Mitsuru; Kobayashi, Shinji; Takebe, Takanori; Kan, Hiroomi; Yabuki, Yuichiro; Matsuzaki, Takahisa; Yoshikawa, Hiroshi Y; Nakabayashi, Seiichiro; Ik, Lee Jeong; Maegawa, Jiro; Taniguchi, Hideki

    2014-03-01

    In healthy joints, hyaline cartilage covering the joint surfaces of bones provides cushioning due to its unique mechanical properties. However, because of its limited regenerative capacity, age- and sports-related injuries to this tissue may lead to degenerative arthropathies, prompting researchers to investigate a variety of cell sources. We recently succeeded in isolating human cartilage progenitor cells from ear elastic cartilage. Human cartilage progenitor cells have high chondrogenic and proliferative potential to form elastic cartilage with long-term tissue maintenance. However, it is unknown whether ear-derived cartilage progenitor cells can be used to reconstruct hyaline cartilage, which has different mechanical and histological properties from elastic cartilage. In our efforts to develop foundational technologies for joint hyaline cartilage repair and reconstruction, we conducted this study to obtain an answer to this question. We created an experimental canine model of knee joint cartilage damage, transplanted ear-derived autologous cartilage progenitor cells. The reconstructed cartilage was rich in proteoglycans and showed unique histological characteristics similar to joint hyaline cartilage. In addition, mechanical properties of the reconstructed tissues were higher than those of ear cartilage and equal to those of joint hyaline cartilage. This study suggested that joint hyaline cartilage was reconstructed from ear-derived cartilage progenitor cells. It also demonstrated that ear-derived cartilage progenitor cells, which can be harvested by a minimally invasive method, would be useful for reconstructing joint hyaline cartilage in patients with degenerative arthropathies. © AlphaMed Press.

  14. Characterization of cartilage defects detected by MRI in Kellgren-Lawrence grade 0 or 1 knees.

    PubMed

    Taguchi, Kenji; Chiba, Ko; Okazaki, Narihiro; Kido, Yasuo; Miyamoto, Takashi; Yonekura, Akihiko; Tomita, Masato; Uetani, Masataka; Osaki, Makoto

    2017-09-01

    Osteoarthritis of the knee is generally evaluated by plain X-rays, which are incapable of detecting small cartilage damage. There are some patients who have small cartilage defects on MRI with no abnormal findings on plain X-rays. In this study, the prevalence and regional characteristics of cartilage defects detected by MRI were studied in cases with normal X-ray findings (Kellgren-Lawrence grade 0 and 1). Relationships between the cartilage defects and OA risk factors such as obesity and leg alignment were also investigated. A total of 51 knees of Kellgren-Lawrence grade 0 or 1 without knee joint pain were included. Fat-suppressed spoiled-gradient recalled (SPGR) sagittal images were scanned by 3 T MRI, and the presence of cartilage damage was confirmed. Cartilage damage was visualized three-dimensionally, and its location and morphology were analyzed. On a full length standing radiograph of the lower extremities, leg alignment and other parameters were measured, and their associations with cartilage damage were analyzed. Cartilage defects were detected in 26% of women aged >50 years. Cartilage damage was located on the medial femoral condyle near the intercondylar notch, and was mostly elliptically shaped in the anteroposterior direction. Subjects with damaged cartilage were not obese and did not have abnormal leg alignment. It should be borne in mind that some elderly women may have damaged cartilage on the intercondylar notch side of the medial joint, even though plain X-rays appear normal, and this cannot be predicted by obesity or leg alignment. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  15. Laser solder welding of articular cartilage: tensile strength and chondrocyte viability.

    PubMed

    Züger, B J; Ott, B; Mainil-Varlet, P; Schaffner, T; Clémence, J F; Weber, H P; Frenz, M

    2001-01-01

    The surgical treatment of full-thickness cartilage defects in the knee joint remains a therapeutic challenge. Recently, new techniques for articular cartilage transplantation, such as mosaicplasty, have become available for cartilage repair. The long-term success of these techniques, however, depends not only on the chondrocyte viability but also on a lateral integration of the implant. The goal of this study was to evaluate the feasibility of cartilage welding by using albumin solder that was dye-enhanced to allow coagulation with 808-nm laser diode irradiation. Conventional histology of light microscopy was compared with a viability staining to precisely determine the extent of thermal damage after laser welding. Indocyanine green (ICG) enhanced albumin solder (25% albumin, 0.5% HA, 0.1% ICG) was used for articular cartilage welding. For coagulation, the solder was irradiated through the cartilage implant by 808-nm laser light and the tensile strength of the weld was measured. Viability staining revealed a thermal damage of typically 500 m in depth at an irradiance of approximately 10 W/cm(2) for 8 seconds, whereas conventional histologies showed only half of the extent found by the viability test. Heat-bath investigations revealed a threshold temperature of minimum 54 degrees C for thermal damage of chondrocytes. Efficient cartilage bonding was obtained by using bovine albumin solder as adhesive. Maximum tensile strength of more than 10 N/cm(2) was achieved. Viability tests revealed that the thermal damage is much greater (up to twice) than expected after light microscopic characterization. This study shows the feasibility to strongly laser weld cartilage on cartilage by use of a dye-enhanced albumin solder. Possibilities to reduce the range of damage are suggested. Copyright 2001 Wiley-Liss, Inc.

  16. Thermal energy effects on articular cartilage: a multidisciplinary evaluation

    NASA Astrophysics Data System (ADS)

    Kaplan, Lee D.; Ernsthausen, John; Ionescu, Dan S.; Studer, Rebecca K.; Bradley, James P.; Chu, Constance R.; Fu, Freddie H.; Farkas, Daniel L.

    2002-05-01

    Partial thickness articular cartilage lesions are commonly encountered in orthopedic surgery. These lesions do not have the ability to heal by themselves, due to lack of vascular supply. Several types of treatment have addressed this problem, including mechanical debridement and thermal chondroplasty. The goal of these treatments is to provide a smooth cartilage surface and prevent propagation of the lesions. Early thermal chondroplasty was performed using lasers, and yielded very mixed results, including severe damage to the cartilage, due to poor control of the induced thermal effects. This led to the development (including commercial) of probes using radiofrequency to generate the thermal effects desired for chondroplasty. Similar concerns over the quantitative aspects and control ability of the induced thermal effects in these treatments led us to test the whole range of complex issues and parameters involved. Our investigations are designed to simultaneously evaluate clinical conditions, instrument variables for existing radiofrequency probes (pressure, speed, distance, dose) as well as the associated basic science issues such as damage temperature and controllability (down to the subcellular level), damage geometry, and effects of surrounding conditions (medium, temperature, flow, pressure). The overall goals of this work are (1) to establish whether thermal chondroplasty can be used in a safe and efficacious manner, and (2) provide a prescription for multi-variable optimization of the way treatments are delivered, based on quantitative analysis. The methods used form an interdisciplinary set, to include precise mechanical actuation, high accuracy temperature and temperature gradient control and measurement, advanced imaging approaches and mathematical modeling.

  17. Current state of cartilage tissue engineering

    PubMed Central

    Tuli, Richard; Li, Wan-Ju; Tuan, Rocky S

    2003-01-01

    Damage to cartilage is of great clinical consequence given the tissue's limited intrinsic potential for healing. Current treatments for cartilage repair are less than satisfactory, and rarely restore full function or return the tissue to its native normal state. The rapidly emerging field of tissue engineering holds great promise for the generation of functional cartilage tissue substitutes. The general approach involves a biocompatible, structurally and mechanically sound scaffold, with an appropriate cell source, which is loaded with bioactive molecules that promote cellular differentiation and/or maturation. This review highlights aspects of current progress in cartilage tissue engineering. PMID:12932283

  18. ESTABLISHING A LIVE CARTILAGE-ON-CARTILAGE INTERFACE FOR TRIBOLOGICAL TESTING.

    PubMed

    Trevino, Robert L; Stoia, Jonathan; Laurent, Michel P; Pacione, Carol A; Chubinskaya, Susan; Wimmer, Markus A

    2017-03-01

    Mechano-biochemical wear encompasses the tribological interplay between biological and mechanical mechanisms responsible for cartilage wear and degradation. The aim of this study was to develop and start validating a novel tribological testing system, which better resembles the natural joint environment through incorporating a live cartilage-on-cartilage articulating interface, joint specific kinematics, and the application of controlled mechanical stimuli for the measurement of biological responses in order to study the mechano-biochemical wear of cartilage. The study entailed two parts. In Part 1, the novel testing rig was used to compare two bearing systems: (a) cartilage articulating against cartilage (CoC) and (b) metal articulating against cartilage (MoC). The clinically relevant MoC, which is also a common tribological interface for evaluating cartilage wear, should produce more wear to agree with clinical observations. In Part II, the novel testing system was used to determine how wear is affected by tissue viability in live and dead CoC articulations. For both parts, bovine cartilage explants were harvested and tribologically tested for three consecutive days. Wear was defined as release of glycosaminoglycans into the media and as evaluation of the tissue structure. For Part I, we found that the live CoC articulation did not cause damage to the cartilage, to the extent of being comparable to the free swelling controls, whereas the MoC articulation caused decreased cell viability, extracellular matrix disruption, and increased wear when compared to CoC, and consistent with clinical data. These results provided confidence that this novel testing system will be adequate to screen new biomaterials for articulation against cartilage, such as in hemiarthroplasty. For Part II, the live and dead cartilage articulation yielded similar wear as determined by the release of proteoglycans and aggrecan fragments, suggesting that keeping the cartilage alive may not be

  19. [Morphological and functional cartilage imaging].

    PubMed

    Rehnitz, C; Weber, M-A

    2014-06-01

    Excellent morphological imaging of cartilage is now possible and allows the detection of subtle cartilage pathologies. Besides the standard 2D sequences, a multitude of 3D sequences are available for high-resolution cartilage imaging. The first part therefore deals with modern possibilities of morphological imaging. The second part deals with functional cartilage imaging with which it is possible to detect changes in cartilage composition and thus early osteoarthritis as well as to monitor biochemical changes after therapeutic interventions. Validated techniques such as delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) and T2 mapping as well the latest techniques, such as the glycosaminoglycan chemical exchange-dependent saturation transfer (gagCEST) technique will be discussed.

  20. [Morphological and functional cartilage imaging].

    PubMed

    Rehnitz, C; Weber, M-A

    2015-04-01

    Excellent morphological imaging of cartilage is now possible and allows the detection of subtle cartilage pathologies. Besides the standard 2D sequences, a multitude of 3D sequences are available for high-resolution cartilage imaging. The first part therefore deals with modern possibilities of morphological imaging. The second part deals with functional cartilage imaging with which it is possible to detect changes in cartilage composition and thus early osteoarthritis as well as to monitor biochemical changes after therapeutic interventions. Validated techniques such as delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) and T2 mapping as well the latest techniques, such as the glycosaminoglycan chemical exchange-dependent saturation transfer (gagCEST) technique will be discussed.

  1. Surgical induction, histological evaluation, and MRI identification of cartilage necrosis in the distal femur in goats to model early lesions of osteochondrosis.

    PubMed

    Tóth, F; Nissi, M J; Wang, L; Ellermann, J M; Carlson, C S

    2015-02-01

    Identify and interrupt the vascular supply to portions of the distal femoral articular-epiphyseal cartilage complex (AECC) in goat kids to induce cartilage necrosis, characteristic of early lesions of osteochondrosis (OC); then utilize magnetic resonance imaging (MRI) to identify necrotic areas of cartilage. Distal femora were perfused and cleared in goat kids of various ages to visualize the vascular supply to the distal femoral AECC. Vessels located on the axial aspect of the medial femoral condyle (MFC) and on the abaxial side of the lateral trochlear ridge were transected in eight 4- to 5-day-old goats to induce cartilage necrosis. Goats were euthanized 1, 2, 3, 4, 5, 6, 9, and 10 weeks post operatively and operated stifles were harvested. Adiabatic T1ρ relaxation time maps of the harvested distal femora were generated using a 9.4 T MR scanner, after which samples were evaluated histologically. Interruption of the vascular supply to the MFC caused lesions of cartilage necrosis in 6/8 goat kids that were demonstrated histologically. Adiabatic T1ρ relaxation time mapping identified these areas of cartilage necrosis in 5/6 cases. No significant findings were detected after transection of perichondrial vessels supplying the lateral trochlear ridge. Cartilage necrosis, characteristic of early OC, can be induced by interrupting the vascular supply to the distal femoral AECC in goat kids. The ability of high field MRI to identify these areas of cartilage necrosis in the AECC using the adiabatic T1ρ sequence suggests that this technique may be useful in the future for the early diagnosis of OC. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  2. Automatic detection of diseased regions in knee cartilage

    NASA Astrophysics Data System (ADS)

    Qazi, Arish A.; Dam, Erik B.; Olsen, Ole F.; Nielsen, Mads; Christiansen, Claus

    2007-03-01

    Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degradation. A central problem in clinical trials is quantification of progression and early detection of the disease. The accepted standard for evaluating OA progression is to measure the joint space width from radiographs however; there the cartilage is not visible. Recently cartilage volume and thickness measures from MRI are becoming popular, but these measures don't account for the biochemical changes undergoing in the cartilage before cartilage loss even occurs and therefore are not optimal for early detection of OA. As a first step, we quantify cartilage homogeneity (computed as the entropy of the MR intensities) from 114 automatically segmented medial compartments of tibial cartilage sheets from Turbo 3D T 1 sequences, from subjects with no, mild or severe OA symptoms. We show that homogeneity is a more sensitive technique than volume quantification for detecting early OA and for separating healthy individuals from diseased. During OA certain areas of the cartilage are affected more and it is believed that these are the load-bearing regions located at the center of the cartilage. Based on the homogeneity framework we present an automatic technique that partitions the region on the cartilage that contributes to maximum homogeneity discrimination. These regions however, are more towards the noncentral regions of the cartilage. Our observation will provide valuable clues to OA research and may lead to improving treatment efficacy.

  3. Association of Baseline Knee Sagittal Dynamic Joint Stiffness during Gait and 2-year Patellofemoral Cartilage Damage Worsening in Knee Osteoarthritis

    PubMed Central

    Chang, Alison H.; Chmiel, Joan S.; Almagor, Orit; Guermazi, Ali; Prasad, Pottumarthi V.; Moisio, Kirsten C.; Belisle, Laura; Zhang, Yunhui; Hayes, Karen; Sharma, Leena

    2016-01-01

    Objective Knee sagittal dynamic joint stiffness (DJS) describes the biomechanical interaction between change in external knee flexion moment and flexion angular excursion during gait. In theory, greater DJS may particularly stress the patellofemoral (PF) compartment and thereby contribute to PF osteoarthritis (OA) worsening. We hypothesized that greater baseline knee sagittal DJS is associated with PF cartilage damage worsening 2 years later. Methods Participants all had OA in at least one knee. Knee kinematics and kinetics during gait were recorded using motion capture systems and force plates. Knee sagittal DJS was computed as the slope of the linear regression line for knee flexion moments vs. angles during the loading response phase. Knee MRI scans were obtained at baseline and 2 years later. We assessed the association between baseline DJS and baseline-to-2-year PF cartilage damage worsening using logistic regression with generalized estimating equations. Results Our sample had 391 knees (204 persons): mean age 64.2 years (SD 10.0); BMI 28.4 kg/m2 (5.7); 76.5% women. Baseline knee sagittal DJS was associated with baseline-to-2-year cartilage damage worsening in the lateral (OR=5.35, 95% CI: 2.37–12.05) and any PF (OR=2.99, 95% CI: 1.27–7.04) compartment. Individual components of baseline DJS (i.e., change in knee moment or angle) were not associated with subsequent PF disease worsening. Conclusion Capturing the concomitant effect of knee kinetics and kinematics during gait, knee sagittal DJS is a potentially modifiable risk factor for PF disease worsening. PMID:27729289

  4. The effect of forced exercise on knee joints in Dio2(-/-) mice: type II iodothyronine deiodinase-deficient mice are less prone to develop OA-like cartilage damage upon excessive mechanical stress.

    PubMed

    Bomer, Nils; Cornelis, Frederique M F; Ramos, Yolande F M; den Hollander, Wouter; Storms, Lies; van der Breggen, Ruud; Lakenberg, Nico; Slagboom, P Eline; Meulenbelt, Ingrid; Lories, Rik J L

    2016-03-01

    To further explore deiodinase iodothyronine type 2 (DIO2) as a therapeutic target in osteoarthritis (OA) by studying the effects of forced mechanical loading on in vivo joint cartilage tissue homeostasis and the modulating effect herein of Dio2 deficiency. Wild-type and C57BL/6-Dio2(-/-) -mice were subjected to a forced running regime for 1 h per day for 3 weeks. Severity of OA was assessed by histological scoring for cartilage damage and synovitis. Genome-wide gene expression was determined in knee cartilage by microarray analysis (Illumina MouseWG-6 v2). STRING-db analyses were applied to determine enrichment for specific pathways and to visualise protein-protein interactions. In total, 158 probes representing 147 unique genes showed significantly differential expression with a fold-change ≥1.5 upon forced exercise. Among these are genes known for their association with OA (eg, Mef2c, Egfr, Ctgf, Prg4 and Ctnnb1), supporting the use of forced running as an OA model in mice. Dio2-deficient mice showed significantly less cartilage damage and signs of synovitis. Gene expression response upon exercise between wild-type and knockout mice was significantly different for 29 genes. Mice subjected to a running regime have significant increased cartilage damage and synovitis scores. Lack of Dio2 protected against cartilage damage in this model and was reflected in a specific gene expression profile, and either mark a favourable effect in the Dio2 knockout (eg, Gnas) or an unfavourable effect in wild-type cartilage homeostasis (eg, Hmbg2 and Calr). These data further support DIO2 activity as a therapeutic target in OA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Mesenchymal stem cells in cartilage regeneration.

    PubMed

    Savkovic, Vuk; Li, Hanluo; Seon, Jong-Keun; Hacker, Michael; Franz, Sandra; Simon, Jan-Christoph

    2014-01-01

    Articular cartilage provides life-long weight-bearing and mechanical lubrication with extraordinary biomechanical performance and simple structure. However, articular cartilage is apparently vulnerable to multifactorial damage and insufficient to self-repair, isolated in articular capsule without nerves or blood vessels. Osteoarthritis (OA) is known as a degenerative articular cartilage deficiency progressively affecting large proportion of the world population, and restoration of hyaline cartilage is clinical challenge to repair articular cartilage lesion and recreate normal functionality over long period. Mesenchymal stem cells (MSC) are highly proliferative and multipotent somatic cells that are able to differentiate mesoderm-derived cells including chondrocytes and osteoblasts. Continuous endeavors in basic research and preclinical trial have achieved promising outcomes in cartilage regeneration using MSCs. This review focuses on rationale and technologies of MSC-based hyaline cartilage repair involving tissue engineering, 3D biomaterials and growth factors. By comparing conventional treatment and current research progress, we describe insights of advantage and challenge in translation and application of MSC-based chondrogenesis for OA treatment.

  6. Recent advances in hydrogels for cartilage tissue engineering.

    PubMed

    Vega, S L; Kwon, M Y; Burdick, J A

    2017-01-30

    Articular cartilage is a load-bearing tissue that lines the surface of bones in diarthrodial joints. Unfortunately, this avascular tissue has a limited capacity for intrinsic repair. Treatment options for articular cartilage defects include microfracture and arthroplasty; however, these strategies fail to generate tissue that adequately restores damaged cartilage. Limitations of current treatments for cartilage defects have prompted the field of cartilage tissue engineering, which seeks to integrate engineering and biological principles to promote the growth of new cartilage to replace damaged tissue. To date, a wide range of scaffolds and cell sources have emerged with a focus on recapitulating the microenvironments present during development or in adult tissue, in order to induce the formation of cartilaginous constructs with biochemical and mechanical properties of native tissue. Hydrogels have emerged as a promising scaffold due to the wide range of possible properties and the ability to entrap cells within the material. Towards improving cartilage repair, hydrogel design has advanced in recent years to improve their utility. Some of these advances include the development of improved network crosslinking (e.g. double-networks), new techniques to process hydrogels (e.g. 3D printing) and better incorporation of biological signals (e.g. controlled release). This review summarises these innovative approaches to engineer hydrogels towards cartilage repair, with an eye towards eventual clinical translation.

  7. New trends in articular cartilage repair.

    PubMed

    Cucchiarini, Magali; Henrionnet, Christel; Mainard, Didier; Pinzano, Astrid; Madry, Henning

    2015-12-01

    Damage to the articular cartilage is an important, prevalent, and unsolved clinical issue for the orthopaedic surgeon. This review summarizes innovative basic research approaches that may improve the current understanding of cartilage repair processes and lead to novel therapeutic options. In this regard, new aspects of cartilage tissue engineering with a focus on the choice of the best-suited cell source are presented. The importance of non-destructive cartilage imaging is highlighted with the recent availability of adapted experimental tools such as Second Harmonic Generation (SHG) imaging. Novel insights into cartilage pathophysiology based on the involvement of the infrapatellar fat pad in osteoarthritis are also described. Also, recombinant adeno-associated viral vectors are discussed as clinically adapted, efficient tools for potential gene-based medicines in a variety of articular cartilage disorders. Taken as a whole, such advances in basic research in diverse fields of articular cartilage repair may lead to the development of improved therapies in the clinics for an improved, effective treatment of cartilage lesions in a close future.

  8. Genipin crosslinking decreases the mechanical wear and biochemical degradation of impacted cartilage in vitro.

    PubMed

    Bonitsky, Craig M; McGann, Megan E; Selep, Michael J; Ovaert, Timothy C; Trippel, Stephen B; Wagner, Diane R

    2017-03-01

    High energy trauma to cartilage causes surface fissures and microstructural damage, but the degree to which this damage renders the tissue more susceptible to wear and contributes to the progression of post-traumatic osteoarthritis (PTOA) is unknown. Additionally, no treatments are currently available to strengthen cartilage after joint trauma and to protect the tissue from subsequent degradation and wear. The purposes of this study were to investigate the role of mechanical damage in the degradation and wear of cartilage, to evaluate the effects of impact and subsequent genipin crosslinking on the changes in the viscoelastic parameters of articular cartilage, and to test the hypothesis that genipin crosslinking is an effective treatment to enhance the resistance to biochemical degradation and mechanical wear. Results demonstrate that cartilage stiffness decreases after impact loading, likely due to the formation of fissures and microarchitectural damage, and is partially or fully restored by crosslinking. The wear resistance of impacted articular cartilage was diminished compared to undamaged cartilage, suggesting that mechanical damage that is directly induced by the impact may contribute to the progression of PTOA. However, the decrease in wear resistance was completely reversed by the crosslinking treatments. Additionally, the crosslinking treatments improved the resistance to collagenase digestion at the impact-damaged articular surface. These results highlight the potential therapeutic value of collagen crosslinking via genipin in the prevention of cartilage degeneration after traumatic injury. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:558-565, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. Concepts and challenges in the use of mesenchymal stem cells as a treatment for cartilage damage in the horse.

    PubMed

    Zayed, Mohammed; Adair, Steve; Ursini, Tena; Schumacher, James; Misk, Nabil; Dhar, Madhu

    2018-03-20

    Osteoarthritis (OA), the most common form of joint disease affecting humans and horses, is characterized by the advance and decline of cartilage and loss of function of the affected joint. The progression of OA is steadily accompanied with biochemical events, which interfere with the cytokines and proteolytic enzymes responsible for progress of the disease. Recently, regenerative therapies have been used with an assumption that mesenchymal stem cells (MSCs) possess the potential to prevent the advancement of cartilage damage and potentially regenerate the injured tissue with an ultimate goal of preventing OA. We believe that despite various challenges, the use of allogenic versus autologous MSCs in cartilage regeneration, is a major issue which can directly or indirectly affect the other factors including, the timing of implantation, dose or cell numbers for implantation, and the source of MSCs. Current knowledge reporting some of these challenges that the clinicians might face in the treatment of cartilage damage in horses are presented. In this regard we conducted two independent studies. In the first study we compared donor matched bone marrow and synovial fluid - derived equine MSCs in vitro, and showed that the SFMSCs were similar to the BMMSCs in their proliferation, expression of CD29, CD44 and CD90, but, exhibited a significantly different chondrogenesis. Additionally, 3.2-21% of all SFMSCs were positive for MHC II, whereas, BMMSCs were negative. In the second study we observed that injection of both the autologous and allogenic SFMSCs into the tarsocrural joint resulted in elevated levels of total protein and total nucleated cell counts. Further experiments to evaluate the in vivo acute or chronic response to allogenic or autologous MSCs are imperative. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Towards Regeneration of Articular Cartilage

    PubMed Central

    Iwamoto, Masahiro; Ohta, Yoichi; Larmour, Colleen; Enomoto-Iwamoto, Motomi

    2014-01-01

    Articular cartilage is classified into permanent hyaline cartilage and has significant differences in structure, extracelluar matrix components, gene expression profile, and mechanical property from transient hyaline cartilage found in growth plate. In the process of synovial joint development, articular cartilage is originated from the interzone, developing at the edge of the cartilaginous anlagen, it establishes zonal structure over time and supports smooth movement of the synovial joint through life. The cascade actions of key regulators such as Wnts, GDF5, Erg, and PTHLH coordinate sequential steps of articular cartilage formation. Articular chondrocytes are restrictedly controlled not to differentiate into a hypertrophic stage by autocrine and paracrine factors and extracerllular matrix microenvironment, but retain potential to undergo hypertrophy. The basal calcified zone of articular cartilage is connected with subchondral bone, but not invaded by blood vessels nor replaced by bone, which is highly contrasted with the growth plate. Articular cartilage has limited regenerative capacity, but likely possesses and potentially uses intrinsic stem cell source in the superficial layer, Ranvier’s groove, the intra-articular tissues such as synovium and fat pad, and marrow below the subchondral bone. Considering the biological views on articular cartilage, several important points are raised for regeneration of articular cartilage. We should evaluate the nature of regenerated cartilage as permanent hyaline cartilage and not just hyaline cartilage. We should study how a hypertrophic phenotype of transplanted cells can be lastingly suppressed in regenerating tissue. Further, we should develop the methods and reagents to activate recruitment of intrinsic stem/progenitor cells into the damaged site. PMID:24078496

  11. Growing Three-Dimensional Cartilage-Cell Cultures

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F.; Prewett, Tacey L.; Goodwin, Thomas J.

    1995-01-01

    Process for growing three-dimensional cultures of mammalian cartilage from normal mammalian cells devised. Effected using horizontal rotating bioreactor described in companion article, "Simplified Bioreactor for Growing Mammalian Cells" (MSC-22060). Bioreactor provides quiescent environment with generous supplies of nutrient and oxygen. Initiated with noncartilage cells. Artificially grown tissue resembles that in mammalian cartilage. Potential use in developing therapies for damage to cartilage by joint and back injuries and by such inflammatory diseases as arthritis and temporal-mandibular joint disease. Also used to test nonsteroid anti-inflammation medicines.

  12. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial.

    PubMed

    Mumme, Marcus; Barbero, Andrea; Miot, Sylvie; Wixmerten, Anke; Feliciano, Sandra; Wolf, Francine; Asnaghi, Adelaide M; Baumhoer, Daniel; Bieri, Oliver; Kretzschmar, Martin; Pagenstert, Geert; Haug, Martin; Schaefer, Dirk J; Martin, Ivan; Jakob, Marcel

    2016-10-22

    Articular cartilage injuries have poor repair capacity, leading to progressive joint damage, and cannot be restored predictably by either conventional treatments or advanced therapies based on implantation of articular chondrocytes. Compared with articular chondrocytes, chondrocytes derived from the nasal septum have superior and more reproducible capacity to generate hyaline-like cartilage tissues, with the plasticity to adapt to a joint environment. We aimed to assess whether engineered autologous nasal chondrocyte-based cartilage grafts allow safe and functional restoration of knee cartilage defects. In a first-in-human trial, ten patients with symptomatic, post-traumatic, full-thickness cartilage lesions (2-6 cm 2 ) on the femoral condyle or trochlea were treated at University Hospital Basel in Switzerland. Chondrocytes isolated from a 6 mm nasal septum biopsy specimen were expanded and cultured onto collagen membranes to engineer cartilage grafts (30 × 40 × 2 mm). The engineered tissues were implanted into the femoral defects via mini-arthrotomy and assessed up to 24 months after surgery. Primary outcomes were feasibility and safety of the procedure. Secondary outcomes included self-assessed clinical scores and MRI-based estimation of morphological and compositional quality of the repair tissue. This study is registered with ClinicalTrials.gov, number NCT01605201. The study is ongoing, with an approved extension to 25 patients. For every patient, it was feasible to manufacture cartilaginous grafts with nasal chondrocytes embedded in an extracellular matrix rich in glycosaminoglycan and type II collagen. Engineered tissues were stable through handling with forceps and could be secured in the injured joints. No adverse reactions were recorded and self-assessed clinical scores for pain, knee function, and quality of life were improved significantly from before surgery to 24 months after surgery. Radiological assessments indicated variable degrees of

  13. Association of baseline knee sagittal dynamic joint stiffness during gait and 2-year patellofemoral cartilage damage worsening in knee osteoarthritis.

    PubMed

    Chang, A H; Chmiel, J S; Almagor, O; Guermazi, A; Prasad, P V; Moisio, K C; Belisle, L; Zhang, Y; Hayes, K; Sharma, L

    2017-02-01

    Knee sagittal dynamic joint stiffness (DJS) describes the biomechanical interaction between change in external knee flexion moment and flexion angular excursion during gait. In theory, greater DJS may particularly stress the patellofemoral (PF) compartment and thereby contribute to PF osteoarthritis (OA) worsening. We hypothesized that greater baseline knee sagittal DJS is associated with PF cartilage damage worsening 2 years later. Participants all had OA in at least one knee. Knee kinematics and kinetics during gait were recorded using motion capture systems and force plates. Knee sagittal DJS was computed as the slope of the linear regression line for knee flexion moments vs angles during the loading response phase. Knee magnetic resonance imaging (MRI) scans were obtained at baseline and 2 years later. We assessed the association between baseline DJS and baseline-to-2-year PF cartilage damage worsening using logistic regression with generalized estimating equations (GEE). Our sample had 391 knees (204 persons): mean age 64.2 years (SD 10.0); body mass index (BMI) 28.4 kg/m 2 (5.7); 76.5% women. Baseline knee sagittal DJS was associated with baseline-to-2-year cartilage damage worsening in the lateral (OR = 5.35, 95% CI: 2.37-12.05) and any PF (OR = 2.99, 95% CI: 1.27-7.04) compartment. Individual components of baseline DJS (i.e., change in knee moment or angle) were not associated with subsequent PF disease worsening. Capturing the concomitant effect of knee kinetics and kinematics during gait, knee sagittal DJS is a potentially modifiable risk factor for PF disease worsening. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  14. Arthroscopic repair of delaminated acetabular articular cartilage using fibrin adhesive. Results at one to three years.

    PubMed

    Stafford, Giles H; Bunn, Jonathan R; Villar, Richard N

    2011-01-01

    We describe one- to three-year results of a novel use of fibrin glue in the treatment of cartilage damage by arthroscopy in the hip. This technique uses the microfracture technique and fibrin adhesive to bond delaminated articular cartilage to the underlying subchondral bone. This is generally performed in conjunction with treatment of underlying pathology such as femoroacetabular impingement. Patients were assessed using the modified Harris Hip Score (MHHS) pre- and post-operatively, and statistical significance determined by Student's t-test. We report the mid-term results of 43 patients with femoroacetabular impingement who have undergone this technique for re-attachment of delaminated chondral flaps. There was a statistically significant improvement in MHHS at a mean of 28 months (16 to 42 months) after surgery (p<0.0001). The MHHS for pain improved significantly from 21.8 (95% CI 19.0 to 24.7) pre-operatively to 35.8 (95% CI 32.6 to 38.9) post-operatively (p<0.0001). The MHHS for function also showed significant, although more modest, improvements from 40.0 (95% CI 37.7 to 42.3) pre-operatively to 43.6 (95% CI 41.4 to 45.8) post-operatively (p=0.0006). There were three patients who had early (within 12 months of the index procedure) revision arthroscopy for iliopsoas pathology. Arthroscopic repair of delaminated acetabular articular cartilage using fibrin adhesive is a useful technique in the treatment of early cartilage damage. We have seen encouraging mid-term results, although further studies are warranted.

  15. Cartilage Thickening in Early Radiographic Human Knee Osteoarthritis –Within-Person, Between-Knee Comparison

    PubMed Central

    Cotofana, Sebastian; Buck, Robert; Wirth, Wolfgang; Roemer, Frank; Duryea, Jeff; Nevitt, Michael; Eckstein, Felix

    2012-01-01

    Objective To determine whether the presence of definite osteophytes (in absence of joint space narrowing [JSN]) by radiograph is associated with (subregional) increases in cartilage thickness, in a within-person, between-knee cross-sectional comparison of participants in the Osteoarthritis Initiative (OAI). Based on previous results, external medial (ecMF) and external lateral weight-bearing femoral (ecLF) subregions were selected as primary endpoints. Methods Both knees of 61 (of 4798) OAI participants displayed definite tibial or femoral marginal osteophytes and no JSN in one knee, and no signs of radiographic OA in the contra-lateral knee; this being confirmed by an expert central reader. In these participants, cartilage thickness was measured in 16 femorotibial subregions of each knee, based on sagittal DESSwe magnetic resonance images. Location-specific joint space width from fixed flexion radiographs was determined using dedicated software. Location-specific associations of osteophytes with cartilage thickness were evaluated using paired t-tests and mixed effect models. Results Of the 61 participants, 48% had only medial, 36% only lateral, and 16% bi-compartmental osteophytes. Osteophyte knees had significantly thicker cartilage than contra-lateral non-osteophyte knees in the ecMF (+71±223μm, equivalent to +5.5%, p=0.015) and ecLF (+64±195μm, +4.1%, p=0.013). No significant differences between knees were noted in other subregions, nor in joint space width. Cartilage thickness in ecMF and ecLF was significantly associated with tibial osteophytes in the same (medial or lateral) compartment (p=0.003). Conclusion Knees with early radiographic OA display thicker cartilage than (contra-lateral) knees without radiographic findings of OA, specifically in the external femoral subregions of compartments with marginal osteophytes. PMID:22556039

  16. Avidin as a Model for Charge Driven Transport into Cartilage and Drug Delivery for treating Early Stage Post-traumatic Osteoarthritis

    PubMed Central

    Bajpayee, Ambika G.; Wong, Cliff R.; Bawendi, Moungi G.; Frank, Eliot H.; Grodzinsky, Alan J.

    2013-01-01

    Local drug delivery into cartilage remains a challenge due to its dense extracellular matrix of negatively charged proteoglycans enmeshed within a collagen fibril network. The high negative fixed charge density of cartilage offers the unique opportunity to utilize electrostatic interactions to augment transport, binding and retention of drug carriers. With the goal of developing particle-based drug delivery mechanisms for treating post-traumatic osteoarthritis, our objectives were, first, to determine the size range of a variety of solutes that could penetrate and diffuse through normal cartilage and enzymatically treated cartilage to mimic early stages of OA, and second, to investigate the effects of electrostatic interactions on particle partitioning, uptake and binding within cartilage using the highly positively charged protein, Avidin, as a model. Results showed that solutes having a hydrodynamic diameter ≤ 10 nm can penetrate into the full thickness of cartilage explants while larger sized solutes were trapped in the tissue’s superficial zone. Avidin had a 400-fold higher uptake than its neutral same-sized counterpart, NeutrAvidin, and >90% of the absorbed Avidin remained within cartilage explants for at least 15 days. We report reversible, weak binding (KD ~150 μM) of Avidin to intratissue sites in cartilage. The large effective binding site density (NT ~ 2920 μM) within cartilage matrix facilitates Avidin’s retention, making its structure suitable for particle based drug delivery into cartilage. PMID:24120044

  17. Gene Expression in Human Meniscal Tears has Limited Association with Early Degenerative Changes in Knee Articular Cartilage

    PubMed Central

    Brophy, Robert H.; Sandell, Linda J.; Cheverud, James M.; Rai, Muhammad Farooq

    2018-01-01

    Purpose/Aim Meniscus tears are a common injury to the knee associated with the development of osteoarthritis. Gene expression in the injured meniscus may be associated with early degeneration in the articular cartilage. The purpose of this study was to test the hypothesis that gene expression in meniscus tears is associated with early degenerative changes in the articular cartilage at the time of partial meniscectomy. Materials and Methods Torn meniscus was removed at the time of partial meniscectomy in 63 patients without radiographic osteoarthritis. Meniscal mRNA expression was measured by quantitative PCR for multiple molecular markers of osteoarthritis and cartilage homeostasis. The presence of early degenerative changes in the knee was recorded by X-ray (N=63), magnetic resonance imaging (MRI, N=48) and arthroscopy (N=63). Gene expression was tested for correlation with the presence/absence of degenerative changes after adjusting for age, sex and body mass index. Results Overall gene expression varied significantly with degenerative changes based on X-ray (P=0.047) and MRI (P=0.018). The linear combination of gene variation was also significant. However, only adiponectin (ADIPOQ) (P=0.015) was expressed at a significantly lower level in patients with chondrosis on MRI while the expression of ADIPOQ (P=0.035) and resistin (RETN) (P=0.017) was higher in patients with early degenerative changes on X-ray. Conclusions There is an overall association of gene expression in meniscal tears to early degenerative changes in the knee, but only a limited number of specific genes demonstrate this relationship. The roles of adiponectin and resistin in knee injury and osteoarthritis deserve further study. PMID:27435997

  18. MRI based knee cartilage assessment

    NASA Astrophysics Data System (ADS)

    Kroon, Dirk-Jan; Kowalski, Przemyslaw; Tekieli, Wojciech; Reeuwijk, Els; Saris, Daniel; Slump, Cornelis H.

    2012-03-01

    Osteoarthritis is one of the leading causes of pain and disability worldwide and a major health problem in developed countries due to the gradually aging population. Though the symptoms are easily recognized and described by a patient, it is difficult to assess the level of damage or loss of articular cartilage quantitatively. We present a novel method for fully automated knee cartilage thickness measurement and subsequent assessment of the knee joint. First, the point correspondence between a pre-segmented training bone model is obtained with use of Shape Context based non-rigid surface registration. Then, a single Active Shape Model (ASM) is used to segment both Femur and Tibia bone. The surfaces obtained are processed to extract the Bone-Cartilage Interface (BCI) points, where the proper segmentation of cartilage begins. For this purpose, the cartilage ASM is trained with cartilage edge positions expressed in 1D coordinates at the normals in the BCI points. The whole cartilage model is then constructed from the segmentations obtained in the previous step. An absolute thickness of the segmented cartilage is measured and compared to the mean of all training datasets, giving as a result the relative thickness value. The resulting cartilage structure is visualized and related to the segmented bone. In this way the condition of the cartilage is assessed over the surface. The quality of bone and cartilage segmentation is validated and the Dice's coefficients 0.92 and 0.86 for Femur and Tibia bones and 0.45 and 0.34 for respective cartilages are obtained. The clinical diagnostic relevance of the obtained thickness mapping is being evaluated retrospectively. We hope to validate it prospectively for prediction of clinical outcome the methods require improvements in accuracy and robustness.

  19. Tenascin-C Prevents Articular Cartilage Degeneration in Murine Osteoarthritis Models.

    PubMed

    Matsui, Yuriyo; Hasegawa, Masahiro; Iino, Takahiro; Imanaka-Yoshida, Kyoko; Yoshida, Toshimichi; Sudo, Akihiro

    2018-01-01

    Objective The objective of this study was to determine whether intra-articular injections of tenascin-C (TNC) could prevent cartilage damage in murine models of osteoarthritis (OA). Design Fluorescently labeled TNC was injected into knee joints and its distribution was examined at 1 day, 4 days, 1 week, 2 weeks, and 4 weeks postinjection. To investigate the effects of TNC on cartilage degeneration after surgery to knee joints, articular spaces were filled with 100 μg/mL (group I), 10 μg/mL (group II) of TNC solution, or control (group III). TNC solution of 10 μg/mL was additionally injected twice after 3 weeks (group IV) or weekly after 1 week, 2 weeks, and 3 weeks (group V). Joint tissues were histologically assessed using the Mankin score and the modified Chambers system at 2 to 8 weeks after surgery. Results Exogenous TNC was maintained in the cartilage and synovium for 1 week after administration. Histological scores in groups I and II were better than scores in group III at 4 and 6 weeks, but progressive cartilage damage was seen in all groups 8 weeks postoperatively. Sequential TNC injections (groups IV and V) showed significantly better Mankin score than single injection (group II) at 8 weeks. Conclusion TNC administered exogenously remained in the cartilage of knee joints for 1 week, and could decelerate articular cartilage degeneration in murine models of OA. We also showed that sequential administration of TNC was more effective than a single injection. TNC could be an important molecule for prevention of articular cartilage damage.

  20. Magnetic resonance imaging for diagnosis and assessment of cartilage defect repairs.

    PubMed

    Marlovits, Stefan; Mamisch, Tallal Charles; Vekszler, György; Resinger, Christoph; Trattnig, Siegfried

    2008-04-01

    Clinical magnetic resonance imaging (MRI) is the method of choice for the non-invasive evaluation of articular cartilage defects and the follow-up of cartilage repair procedures. The use of cartilage-sensitive sequences and a high spatial-resolution technique enables the evaluation of cartilage morphology even in the early stages of disease, as well as assessment of cartilage repair. Sequences that offer high contrast between articular cartilage and adjacent structures, such as the fat-suppressed, 3-dimensional, spoiled gradient-echo sequence and the fast spin-echo sequence, are accurate and reliable for evaluating intrachondral lesions and surface defects of articular cartilage. These sequences can also be performed together in reasonable examination times. In addition to morphology, new MRI techniques provide insight into the biochemical composition of articular cartilage and cartilage repair tissue. These techniques enable the diagnosis of early cartilage degeneration and help to monitor the effect and outcome of various surgical and non-surgical cartilage repair therapies.

  1. Proteinase-activated receptor 2 modulates OA-related pain, cartilage and bone pathology.

    PubMed

    Huesa, Carmen; Ortiz, Ana C; Dunning, Lynette; McGavin, Laura; Bennett, Louise; McIntosh, Kathryn; Crilly, Anne; Kurowska-Stolarska, Mariola; Plevin, Robin; van 't Hof, Rob J; Rowan, Andrew D; McInnes, Iain B; Goodyear, Carl S; Lockhart, John C; Ferrell, William R

    2016-11-01

    Proteinase-activated receptor 2 (PAR2) deficiency protects against cartilage degradation in experimental osteoarthritis (OA). The wider impact of this pathway upon OA-associated pathologies such as osteophyte formation and pain is unknown. Herein, we investigated early temporal bone and cartilage changes in experimental OA in order to further elucidate the role of PAR2 in OA pathogenesis. OA was induced in wild-type (WT) and PAR2-deficient (PAR2 -/- ) mice by destabilisation of the medial meniscus (DMM). Inflammation, cartilage degradation and bone changes were monitored using histology and microCT. In gene rescue experiments, PAR2 -/- mice were intra-articularly injected with human PAR2 (hPAR2)-expressing adenovirus. Dynamic weight bearing was used as a surrogate of OA-related pain. Osteophytes formed within 7 days post-DMM in WT mice but osteosclerosis was only evident from 14 days post induction. Importantly, PAR2 was expressed in the proliferative/hypertrophic chondrocytes present within osteophytes. In PAR2 -/- mice, osteophytes developed significantly less frequently but, when present, were smaller and of greater density; no osteosclerosis was observed in these mice up to day 28. The pattern of weight bearing was altered in PAR2 -/- mice, suggesting reduced pain perception. The expression of hPAR2 in PAR2 -/- mice recapitulated osteophyte formation and cartilage damage similar to that observed in WT mice. However, osteosclerosis was absent, consistent with lack of hPAR2 expression in subchondral bone. This study clearly demonstrates PAR2 plays a critical role, via chondrocytes, in osteophyte development and subchondral bone changes, which occur prior to PAR2-mediated cartilage damage. The latter likely occurs independently of OA-related bone changes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Proteinase-activated receptor 2 modulates OA-related pain, cartilage and bone pathology

    PubMed Central

    Huesa, Carmen; Ortiz, Ana C; Dunning, Lynette; McGavin, Laura; Bennett, Louise; McIntosh, Kathryn; Crilly, Anne; Kurowska-Stolarska, Mariola; Plevin, Robin; van ‘t Hof, Rob J; Rowan, Andrew D; McInnes, Iain B; Goodyear, Carl S; Lockhart, John C; Ferrell, William R

    2016-01-01

    Objective Proteinase-activated receptor 2 (PAR2) deficiency protects against cartilage degradation in experimental osteoarthritis (OA). The wider impact of this pathway upon OA-associated pathologies such as osteophyte formation and pain is unknown. Herein, we investigated early temporal bone and cartilage changes in experimental OA in order to further elucidate the role of PAR2 in OA pathogenesis. Methods OA was induced in wild-type (WT) and PAR2-deficient (PAR2−/−) mice by destabilisation of the medial meniscus (DMM). Inflammation, cartilage degradation and bone changes were monitored using histology and microCT. In gene rescue experiments, PAR2−/− mice were intra-articularly injected with human PAR2 (hPAR2)-expressing adenovirus. Dynamic weight bearing was used as a surrogate of OA-related pain. Results Osteophytes formed within 7 days post-DMM in WT mice but osteosclerosis was only evident from 14 days post induction. Importantly, PAR2 was expressed in the proliferative/hypertrophic chondrocytes present within osteophytes. In PAR2−/− mice, osteophytes developed significantly less frequently but, when present, were smaller and of greater density; no osteosclerosis was observed in these mice up to day 28. The pattern of weight bearing was altered in PAR2−/− mice, suggesting reduced pain perception. The expression of hPAR2 in PAR2−/− mice recapitulated osteophyte formation and cartilage damage similar to that observed in WT mice. However, osteosclerosis was absent, consistent with lack of hPAR2 expression in subchondral bone. Conclusions This study clearly demonstrates PAR2 plays a critical role, via chondrocytes, in osteophyte development and subchondral bone changes, which occur prior to PAR2-mediated cartilage damage. The latter likely occurs independently of OA-related bone changes. PMID:26698846

  3. Mesenchymal stem cells for cartilage repair in osteoarthritis

    PubMed Central

    2012-01-01

    Osteoarthritis (OA) is a degenerative disease of the connective tissue and progresses with age in the older population or develops in young athletes following sports-related injury. The articular cartilage is especially vulnerable to damage and has poor potential for regeneration because of the absence of vasculature within the tissue. Normal load-bearing capacity and biomechanical properties of thinning cartilage are severely compromised during the course of disease progression. Although surgical and pharmaceutical interventions are currently available for treating OA, restoration of normal cartilage function has been difficult to achieve. Since the tissue is composed primarily of chondrocytes distributed in a specialized extracellular matrix bed, bone marrow stromal cells (BMSCs), also known as bone marrow-derived 'mesenchymal stem cells' or 'mesenchymal stromal cells', with inherent chondrogenic differentiation potential appear to be ideally suited for therapeutic use in cartilage regeneration. BMSCs can be easily isolated and massively expanded in culture in an undifferentiated state for therapeutic use. Owing to their potential to modulate local microenvironment via anti-inflammatory and immunosuppressive functions, BMSCs have an additional advantage for allogeneic application. Moreover, by secreting various bioactive soluble factors, BMSCs can protect the cartilage from further tissue destruction and facilitate regeneration of the remaining progenitor cells in situ. This review broadly describes the advances made during the last several years in BMSCs and their therapeutic potential for repairing cartilage damage in OA. PMID:22776206

  4. Lineage plasticity and cell biology of fibrocartilage and hyaline cartilage: its significance in cartilage repair and replacement.

    PubMed

    Freemont, Anthony J; Hoyland, Judith

    2006-01-01

    Cartilage repair is a major goal of modern tissue engineering. To produce novel engineered implants requires a knowledge of the basic biology of the tissues that are to be replaced or reproduced. Hyaline articular cartilage and meniscal fibrocartilage are two tissues that have excited attention because of the frequency with which they are damaged. A basic strategy is to re-engineer these tissues ex vivo by stimulating stem cells to differentiate into the cells of the mature tissue capable of producing an intact functional matrix. In this brief review, the sources of cells for tissue engineering cartilage and the culture conditions that have promoted differentiation are discussed within the context of natural cartilage repair. In particular, the role of cell density, cytokines, load, matrices and oxygen tension are discussed.

  5. Injectable hydrogels for cartilage and bone tissue engineering

    PubMed Central

    Liu, Mei; Zeng, Xin; Ma, Chao; Yi, Huan; Ali, Zeeshan; Mou, Xianbo; Li, Song; Deng, Yan; He, Nongyue

    2017-01-01

    Tissue engineering has become a promising strategy for repairing damaged cartilage and bone tissue. Among the scaffolds for tissue-engineering applications, injectable hydrogels have demonstrated great potential for use as three-dimensional cell culture scaffolds in cartilage and bone tissue engineering, owing to their high water content, similarity to the natural extracellular matrix (ECM), porous framework for cell transplantation and proliferation, minimal invasive properties, and ability to match irregular defects. In this review, we describe the selection of appropriate biomaterials and fabrication methods to prepare novel injectable hydrogels for cartilage and bone tissue engineering. In addition, the biology of cartilage and the bony ECM is also summarized. Finally, future perspectives for injectable hydrogels in cartilage and bone tissue engineering are discussed. PMID:28584674

  6. Changes of articular cartilage and subchondral bone after extracorporeal shockwave therapy in osteoarthritis of the knee

    PubMed Central

    Wang, Ching-Jen; Cheng, Jai-Hong; Chou, Wen-Yi; Hsu, Shan-Ling; Chen, Jen-Hung; Huang, Chien-Yiu

    2017-01-01

    We assessed the pathological changes of articular cartilage and subchondral bone on different locations of the knee after extracorporeal shockwave therapy (ESWT) in early osteoarthritis (OA). Rat knees under OA model by anterior cruciate ligament transaction (ACLT) and medial meniscectomy (MM) to induce OA changes. Among ESWT groups, ESWT were applied to medial (M) femur (F) and tibia (T) condyles was better than medial tibia condyle, medial femur condyle as well as medial and lateral (L) tibia condyles in gross osteoarthritic areas (p<0.05), osteophyte formation and subchondral sclerotic bone (p<0.05). Using sectional cartilage area, modified Mankin scoring system as well as thickness of calcified and un-calcified cartilage analysis, the results showed that articular cartilage damage was ameliorated and T+F(M) group had the most protection as compared with other locations (p<0.05). Detectable cartilage surface damage and proteoglycan loss were measured and T+F(M) group showed the smallest lesion score among other groups (p<0.05). Micro-CT revealed significantly improved in subchondral bone repair in all ESWT groups compared to OA group (p<0.05). There were no significantly differences in bone remodeling after ESWT groups except F(M) group. In the immunohistochemical analysis, T+F(M) group significant reduced TUNEL activity, promoted cartilage proliferation by observation of PCNA marker and reduced vascular invasion through observation of CD31 marker for angiogenesis compared to OA group (P<0.001). Overall the data suggested that the order of the effective site of ESWT was T+F(M) ≧ T(M) > T(M+L) > F(M) in OA rat knees. PMID:28367081

  7. Changes of articular cartilage and subchondral bone after extracorporeal shockwave therapy in osteoarthritis of the knee.

    PubMed

    Wang, Ching-Jen; Cheng, Jai-Hong; Chou, Wen-Yi; Hsu, Shan-Ling; Chen, Jen-Hung; Huang, Chien-Yiu

    2017-01-01

    We assessed the pathological changes of articular cartilage and subchondral bone on different locations of the knee after extracorporeal shockwave therapy (ESWT) in early osteoarthritis (OA). Rat knees under OA model by anterior cruciate ligament transaction (ACLT) and medial meniscectomy (MM) to induce OA changes. Among ESWT groups, ESWT were applied to medial (M) femur (F) and tibia (T) condyles was better than medial tibia condyle, medial femur condyle as well as medial and lateral (L) tibia condyles in gross osteoarthritic areas (p<0.05), osteophyte formation and subchondral sclerotic bone (p<0.05). Using sectional cartilage area, modified Mankin scoring system as well as thickness of calcified and un-calcified cartilage analysis, the results showed that articular cartilage damage was ameliorated and T+F(M) group had the most protection as compared with other locations (p<0.05). Detectable cartilage surface damage and proteoglycan loss were measured and T+F(M) group showed the smallest lesion score among other groups (p<0.05). Micro-CT revealed significantly improved in subchondral bone repair in all ESWT groups compared to OA group (p<0.05). There were no significantly differences in bone remodeling after ESWT groups except F(M) group. In the immunohistochemical analysis, T+F(M) group significant reduced TUNEL activity, promoted cartilage proliferation by observation of PCNA marker and reduced vascular invasion through observation of CD31 marker for angiogenesis compared to OA group (P<0.001). Overall the data suggested that the order of the effective site of ESWT was T+F(M) ≧ T(M) > T(M+L) > F(M) in OA rat knees.

  8. Collagen Type IV and Laminin Expressions during Cartilage Repair and in Late Clinically Failed Repair Tissues from Human Subjects

    PubMed Central

    Foldager, Casper Bindzus; Toh, Wei Seong; Christensen, Bjørn Borsøe; Lind, Martin; Gomoll, Andreas H.; Spector, Myron

    2016-01-01

    Objective To identify the collagen type IV (Col4) isoform in articular cartilage and to evaluate the expressions of Col4 and laminin in the pericellular matrix (PCM) in damaged cartilage and during cartilage repair. Design The Col4 isoform was determined in chondrocytes isolated from 6 patients cultured up to 6 days and in 21% O2 or 1% O2, and the gene expression of Col4 α-chains was investigated. The distribution of Col4 and laminin in traumatically damaged cartilage (n = 7) and clinically failed cartilage repair (microfracture, TruFit, autologous chondrocyte implantation; n = 11) were investigated using immunohistochemistry. Normal human cartilage was used as control (n = 8). The distribution during clinical cartilage repair procedures was investigated in a minipig model with 6-month follow-up (untreated chondral, untreated osteochondral, microfracture, autologous chondrocyte implantation; n = 10). Results The Col4 isoform in articular cartilage was characterized as α1α1α2, which is an isoform containing antiangiogenic domains in the NC1-terminals (arresten and canstatin). In normal cartilage, laminin and Col4 was exclusively found in the PCM. High amounts (>50%) of Col4 in the PCM significantly decreased in damaged cartilage (P = 0.004) and clinically failed repair tissue (P < 0.001). Laminin was only found with high expression (>50%) in 4/8 of the normal samples, which was not statistically significantly different from damaged cartilage (P = 0.15) or failed cartilage repair (P = 0.054). Conclusions Col4 in cartilage contain antiangiogenic domains and may play a role in the hypoxic environment in articular cartilage. Col4 and laminin was not found in the PCM of damaged and clinically failed repair. PMID:26958317

  9. Chondroitin Sulfate-Rich Extract of Skate Cartilage Attenuates Lipopolysaccharide-Induced Liver Damage in Mice.

    PubMed

    Song, Yeong Ok; Kim, Mijeong; Woo, Minji; Baek, Jang-Mi; Kang, Keon-Hee; Kim, Sang-Ho; Roh, Seong-Soo; Park, Chan Hum; Jeong, Kap-Seop; Noh, Jeong-Sook

    2017-06-15

    The protective effects of a chondroitin sulfate-rich extract (CSE) from skate cartilage against lipopolysaccharide (LPS)-induced hepatic damage were investigated, and its mechanism of action was compared with that of chondroitin sulfate (CS) from shark cartilage. ICR mice were orally administrated 200 mg/kg body weight (BW) of CS or 400 mg/kg BW of CSE for 3 consecutive days, followed by a one-time intraperitoneal injection of LPS (20 mg/kg BW). The experimental groups were vehicle treatment without LPS injection (NC group), vehicle treatment with LPS injection (LPS group), CS pretreatment with LPS injection (CS group), and CSE pretreatment with LPS injection (CSE group). Hepatic antioxidant enzyme expression levels in the CS and CSE groups were increased relative to those in the LPS group. In LPS-insulted hepatic tissue, inflammatory factors were augmented relative to those in the NC group, but were significantly suppressed by pretreatment with CS or CSE. Moreover, CS and CSE alleviated the LPS-induced apoptotic factors and mitogen-activated protein kinase (MAPK). In addition, CS and CSE effectively decreased the serum lipid concentrations and downregulated hepatic sterol regulatory element-binding proteins expression. In conclusion, the skate CSE could protect against LPS-induced hepatic dyslipidemia, oxidative stress, inflammation, and apoptosis, probably through the regulation of MAPK signaling.

  10. Chondroitin Sulfate-Rich Extract of Skate Cartilage Attenuates Lipopolysaccharide-Induced Liver Damage in Mice

    PubMed Central

    Song, Yeong Ok; Kim, Mijeong; Woo, Minji; Baek, Jang-Mi; Kang, Keon-Hee; Kim, Sang-Ho; Roh, Seong-Soo; Park, Chan Hum; Jeong, Kap-Seop; Noh, Jeong-Sook

    2017-01-01

    The protective effects of a chondroitin sulfate-rich extract (CSE) from skate cartilage against lipopolysaccharide (LPS)-induced hepatic damage were investigated, and its mechanism of action was compared with that of chondroitin sulfate (CS) from shark cartilage. ICR mice were orally administrated 200 mg/kg body weight (BW) of CS or 400 mg/kg BW of CSE for 3 consecutive days, followed by a one-time intraperitoneal injection of LPS (20 mg/kg BW). The experimental groups were vehicle treatment without LPS injection (NC group), vehicle treatment with LPS injection (LPS group), CS pretreatment with LPS injection (CS group), and CSE pretreatment with LPS injection (CSE group). Hepatic antioxidant enzyme expression levels in the CS and CSE groups were increased relative to those in the LPS group. In LPS-insulted hepatic tissue, inflammatory factors were augmented relative to those in the NC group, but were significantly suppressed by pretreatment with CS or CSE. Moreover, CS and CSE alleviated the LPS-induced apoptotic factors and mitogen-activated protein kinase (MAPK). In addition, CS and CSE effectively decreased the serum lipid concentrations and downregulated hepatic sterol regulatory element-binding proteins expression. In conclusion, the skate CSE could protect against LPS-induced hepatic dyslipidemia, oxidative stress, inflammation, and apoptosis, probably through the regulation of MAPK signaling. PMID:28617322

  11. Evidence of cartilage repair by joint distraction in a canine model of osteoarthritis.

    PubMed

    Wiegant, Karen; Intema, Femke; van Roermund, Peter M; Barten-van Rijbroek, Angelique D; Doornebal, Arie; Hazewinkel, Herman A W; Lafeber, Floris P J G; Mastbergen, Simon C

    2015-02-01

    Knee osteoarthritis (OA) is a degenerative joint disorder characterized by cartilage, bone, and synovial tissue changes that lead to pain and functional impairment. Joint distraction is a treatment that provides long-term improvement in pain and function accompanied by cartilage repair, as evaluated indirectly by imaging studies and measurement of biochemical markers. The purpose of this study was to evaluate cartilage tissue repair directly by histologic and biochemical assessments after joint distraction treatment. In 27 dogs, OA was induced in the right knee joint (groove model; surgical damage to the femoral cartilage). After 10 weeks of OA development, the animals were randomized to 1 of 3 groups. Two groups were fitted with an external fixator, which they wore for a subsequent 10 weeks (one group with and one without joint distraction), and the third group had no external fixation (OA control group). Pain/function was studied by force plate analysis. Cartilage integrity and chondrocyte activity of the surgically untouched tibial plateaus were analyzed 25 weeks after removal of the fixator. Changes in force plate analysis values between the different treatment groups were not conclusive. Features of OA were present in the OA control group, in contrast to the generally less severe damage after joint distraction. Those treated with joint distraction had lower macroscopic and histologic damage scores, higher proteoglycan content, better retention of newly formed proteoglycans, and less collagen damage. In the fixator group without distraction, similarly diminished joint damage was found, although it was less pronounced. Joint distraction as a treatment of experimentally induced OA results in cartilage repair activity, which corroborates the structural observations of cartilage repair indicated by surrogate markers in humans. Copyright © 2015 by the American College of Rheumatology.

  12. A controlled double-duration inducible gene expression system for cartilage tissue engineering.

    PubMed

    Ma, Ying; Li, Junxiang; Yao, Yi; Wei, Daixu; Wang, Rui; Wu, Qiong

    2016-05-25

    Cartilage engineering that combines competent seeding cells and a compatible scaffold is increasingly gaining popularity and is potentially useful for the treatment of various bone and cartilage diseases. Intensive efforts have been made by researchers to improve the viability and functionality of seeding cells of engineered constructs that are implanted into damaged cartilage. Here, we designed an integrative system combining gene engineering and the controlled-release concept to solve the problems of both seeding cell viability and functionality through precisely regulating the anti-apoptotic gene bcl-2 in the short-term and the chondrogenic master regulator Sox9 in the long-term. Both in vitro and in vivo experiments demonstrated that our system enhances the cell viability and chondrogenic effects of the engineered scaffold after introduction of the system while restricting anti-apoptotic gene expression to only the early stage, thereby preventing potential oncogenic and overdose effects. Our system was designed to be modular and can also be readily adapted to other tissue engineering applications with minor modification.

  13. Importance of Patella, Quadriceps Forces, and Depthwise Cartilage Structure on Knee Joint Motion and Cartilage Response During Gait.

    PubMed

    Halonen, K S; Mononen, M E; Jurvelin, J S; Töyräs, J; Klodowski, A; Kulmala, J-P; Korhonen, R K

    2016-07-01

    In finite-element (FE) models of the knee joint, patella is often omitted. We investigated the importance of patella and quadriceps forces on the knee joint motion by creating an FE model of the subject's knee. In addition, depthwise strains and stresses in patellar cartilage with different tissue properties were determined. An FE model was created from subject's magnetic resonance images. Knee rotations, moments, and translational forces during gait were recorded in a motion laboratory and used as an input for the model. Three material models were implemented into the patellar cartilage: (1) homogeneous model, (2) inhomogeneous (arcadelike fibrils), and (3) random fibrils at the superficial zone, mimicking early stages of osteoarthritis (OA). Implementation of patella and quadriceps forces into the model substantially reduced the internal-external femoral rotations (versus without patella). The simulated rotations in the model with the patella matched the measured rotations at its best. In the inhomogeneous model, maximum principal stresses increased substantially in the middle zone of the cartilage. The early OA model showed increased compressive strains in the superficial and middle zones of the cartilage and decreased stresses and fibril strains especially in the middle zone. The results suggest that patella and quadriceps forces should be included in moment- and force-driven FE knee joint models. The results indicate that the middle zone has a major role in resisting shear forces in the patellar cartilage. Also, early degenerative changes in the collagen network substantially affect the cartilage depthwise response in the patella during walking.

  14. Advances and Prospects in Stem Cells for Cartilage Regeneration

    PubMed Central

    Wang, Mingjie; Yuan, Zhiguo; Ma, Ning; Hao, Chunxiang; Guo, Weimin; Zou, Gengyi; Zhang, Yu; Chen, Mingxue; Gao, Shuang; Wang, Aiyuan; Wang, Yu; Sui, Xiang; Xu, Wenjing; Lu, Shibi

    2017-01-01

    The histological features of cartilage call attention to the fact that cartilage has a little capacity to repair itself owing to the lack of a blood supply, nerves, or lymphangion. Stem cells have emerged as a promising option in the field of cartilage tissue engineering and regenerative medicine and could lead to cartilage repair. Much research has examined cartilage regeneration utilizing stem cells. However, both the potential and the limitations of this procedure remain controversial. This review presents a summary of emerging trends with regard to using stem cells in cartilage tissue engineering and regenerative medicine. In particular, it focuses on the characterization of cartilage stem cells, the chondrogenic differentiation of stem cells, and the various strategies and approaches involving stem cells that have been used in cartilage repair and clinical studies. Based on the research into chondrocyte and stem cell technologies, this review discusses the damage and repair of cartilage and the clinical application of stem cells, with a view to increasing our systematic understanding of the application of stem cells in cartilage regeneration; additionally, several advanced strategies for cartilage repair are discussed. PMID:28246531

  15. The chondrocyte clock gene Bmal1 controls cartilage homeostasis and integrity.

    PubMed

    Dudek, Michal; Gossan, Nicole; Yang, Nan; Im, Hee-Jeong; Ruckshanthi, Jayalath P D; Yoshitane, Hikari; Li, Xin; Jin, Ding; Wang, Ping; Boudiffa, Maya; Bellantuono, Ilaria; Fukada, Yoshitaka; Boot-Handford, Ray P; Meng, Qing-Jun

    2016-01-01

    Osteoarthritis (OA) is the most prevalent and debilitating joint disease, and there are currently no effective disease-modifying treatments available. Multiple risk factors for OA, such as aging, result in progressive damage and loss of articular cartilage. Autonomous circadian clocks have been identified in mouse cartilage, and environmental disruption of circadian rhythms in mice predisposes animals to OA-like damage. However, the contribution of the cartilage clock mechanisms to the maintenance of tissue homeostasis is still unclear. Here, we have shown that expression of the core clock transcription factor BMAL1 is disrupted in human OA cartilage and in aged mouse cartilage. Furthermore, targeted Bmal1 ablation in mouse chondrocytes abolished their circadian rhythm and caused progressive degeneration of articular cartilage. We determined that BMAL1 directs the circadian expression of many genes implicated in cartilage homeostasis, including those involved in catabolic, anabolic, and apoptotic pathways. Loss of BMAL1 reduced the levels of phosphorylated SMAD2/3 (p-SMAD2/3) and NFATC2 and decreased expression of the major matrix-related genes Sox9, Acan, and Col2a1, but increased p-SMAD1/5 levels. Together, these results define a regulatory mechanism that links chondrocyte BMAL1 to the maintenance and repair of cartilage and suggest that circadian rhythm disruption is a risk factor for joint diseases such as OA.

  16. The chondrocyte clock gene Bmal1 controls cartilage homeostasis and integrity

    PubMed Central

    Dudek, Michal; Gossan, Nicole; Yang, Nan; Im, Hee-Jeong; Ruckshanthi, Jayalath P.D.; Yoshitane, Hikari; Li, Xin; Jin, Ding; Wang, Ping; Boudiffa, Maya; Bellantuono, Ilaria; Fukada, Yoshitaka; Boot-Handford, Ray P.; Meng, Qing-Jun

    2015-01-01

    Osteoarthritis (OA) is the most prevalent and debilitating joint disease, and there are currently no effective disease-modifying treatments available. Multiple risk factors for OA, such as aging, result in progressive damage and loss of articular cartilage. Autonomous circadian clocks have been identified in mouse cartilage, and environmental disruption of circadian rhythms in mice predisposes animals to OA-like damage. However, the contribution of the cartilage clock mechanisms to the maintenance of tissue homeostasis is still unclear. Here, we have shown that expression of the core clock transcription factor BMAL1 is disrupted in human OA cartilage and in aged mouse cartilage. Furthermore, targeted Bmal1 ablation in mouse chondrocytes abolished their circadian rhythm and caused progressive degeneration of articular cartilage. We determined that BMAL1 directs the circadian expression of many genes implicated in cartilage homeostasis, including those involved in catabolic, anabolic, and apoptotic pathways. Loss of BMAL1 reduced the levels of phosphorylated SMAD2/3 (p-SMAD2/3) and NFATC2 and decreased expression of the major matrix-related genes Sox9, Acan, and Col2a1, but increased p-SMAD1/5 levels. Together, these results define a regulatory mechanism that links chondrocyte BMAL1 to the maintenance and repair of cartilage and suggest that circadian rhythm disruption is a risk factor for joint diseases such as OA. PMID:26657859

  17. A New Technique for Conchal Cartilage Harvest.

    PubMed

    Kim, Joon Young; Yang, Ho Jik; Jeong, Ji Won

    2017-03-01

    The goal of auricular cartilage harvest is to obtain a sufficient amount for reconstruction and to minimize the change in ear shape. The cartilage can be harvested by a posterior or anterior approach, and each method has advantages and disadvantages. The posterior approach presents the advantage of scar concealment, but there are limits to the amount of cymba cartilage that may be harvested. In contrast, the anterior approach may cause a noticeable scar. However, as cartilage is collected, the anterior approach provides a view that facilitates the preservation ear structure. In addition, it is possible to obtain a greater amount of cartilage. From January 2014 to December 2015, we harvested auricular cartilage graft material in 17 patients. To prevent the development of trapdoor scars or linear scar contracture, short incisions were made on the superior border of the cymba and cavum. Two small and narrow incisions were made, resulting in suboptimal exposure of the surgical site, which heightens the potential for damaging the cartilage when using existing tools. To minimize this, the authors used a newly invented ball-type elevator. All patients recovered without complications after surgery and reported satisfaction with the shape of the ear.

  18. A New Technique for Conchal Cartilage Harvest

    PubMed Central

    Kim, Joon Young; Jeong, Ji Won

    2017-01-01

    The goal of auricular cartilage harvest is to obtain a sufficient amount for reconstruction and to minimize the change in ear shape. The cartilage can be harvested by a posterior or anterior approach, and each method has advantages and disadvantages. The posterior approach presents the advantage of scar concealment, but there are limits to the amount of cymba cartilage that may be harvested. In contrast, the anterior approach may cause a noticeable scar. However, as cartilage is collected, the anterior approach provides a view that facilitates the preservation ear structure. In addition, it is possible to obtain a greater amount of cartilage. From January 2014 to December 2015, we harvested auricular cartilage graft material in 17 patients. To prevent the development of trapdoor scars or linear scar contracture, short incisions were made on the superior border of the cymba and cavum. Two small and narrow incisions were made, resulting in suboptimal exposure of the surgical site, which heightens the potential for damaging the cartilage when using existing tools. To minimize this, the authors used a newly invented ball-type elevator. All patients recovered without complications after surgery and reported satisfaction with the shape of the ear. PMID:28352607

  19. Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?

    PubMed Central

    Jungmann, Pia M.; Baum, Thomas; Bauer, Jan S.; Karampinos, Dimitrios C.; Link, Thomas M.; Li, Xiaojuan; Trattnig, Siegfried; Rummeny, Ernst J.; Woertler, Klaus; Welsch, Goetz H.

    2014-01-01

    Background. New quantitative magnetic resonance imaging (MRI) techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), and diffusion weighted imaging (DWI) are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair. PMID:24877139

  20. Expression of Keratinocyte Growth Factor and Its Receptor in Rat Tracheal Cartilage: Possible Involvement in Wound Healing of the Damaged Cartilage

    PubMed Central

    Abo, Takafumi; Nagayasu, Takeshi; Hishikawa, Yoshitaka; Tagawa, Tsutomu; Nanashima, Atsushi; Yamayoshi, Takatomo; Matsumoto, Keitaro; An, Shucai; Koji, Takehiko

    2010-01-01

    Keratinocyte growth factor (KGF) is involved in the development and regeneration of a variety of tissues. To clarify the role of KGF in cartilage wound healing, we examined the expression of KGF and its receptor (KGFR) immunohistochemically in the wound healing area of rat tracheal cartilage, and the direct effect of recombinant KGF on the proliferation and differentiation of primary cultures of rat chondrocytes. KGF was found in the cytoplasm of both chondrocytes and perichondrial cells. On the other hand, KGFR was detected only in the plasma membrane of chondrocytes. Although the expression of KGF was similar in the cartilage and perichondrial area before and after injury, KGFR expression was induced after injury and limited to proliferating chondrocytes. The staining pattern of KGF and KGFR was same in the mature and the immature rat tracheal cartilage. Moreover, in vitro experiments using primary cultured chondrocytes revealed that KGF at 200 ng/ml significantly increased the number of chondrocytes (~1.5-fold), and significantly reduced acid mucopolysaccharide production. These results indicate that KGF stimulates chondrocyte proliferation, suggesting that KGF could therapeutically modulate the wound healing process in the tracheal cartilage. PMID:20628626

  1. Expression of keratinocyte growth factor and its receptor in rat tracheal cartilage: possible involvement in wound healing of the damaged cartilage.

    PubMed

    Abo, Takafumi; Nagayasu, Takeshi; Hishikawa, Yoshitaka; Tagawa, Tsutomu; Nanashima, Atsushi; Yamayoshi, Takatomo; Matsumoto, Keitaro; An, Shucai; Koji, Takehiko

    2010-06-28

    Keratinocyte growth factor (KGF) is involved in the development and regeneration of a variety of tissues. To clarify the role of KGF in cartilage wound healing, we examined the expression of KGF and its receptor (KGFR) immunohistochemically in the wound healing area of rat tracheal cartilage, and the direct effect of recombinant KGF on the proliferation and differentiation of primary cultures of rat chondrocytes. KGF was found in the cytoplasm of both chondrocytes and perichondrial cells. On the other hand, KGFR was detected only in the plasma membrane of chondrocytes. Although the expression of KGF was similar in the cartilage and perichondrial area before and after injury, KGFR expression was induced after injury and limited to proliferating chondrocytes. The staining pattern of KGF and KGFR was same in the mature and the immature rat tracheal cartilage. Moreover, in vitro experiments using primary cultured chondrocytes revealed that KGF at 200 ng/ml significantly increased the number of chondrocytes (~1.5-fold), and significantly reduced acid mucopolysaccharide production. These results indicate that KGF stimulates chondrocyte proliferation, suggesting that KGF could therapeutically modulate the wound healing process in the tracheal cartilage.

  2. Mechanical confinement regulates cartilage matrix formation by chondrocytes

    NASA Astrophysics Data System (ADS)

    Lee, Hong-Pyo; Gu, Luo; Mooney, David J.; Levenston, Marc E.; Chaudhuri, Ovijit

    2017-12-01

    Cartilage tissue equivalents formed from hydrogels containing chondrocytes could provide a solution for replacing damaged cartilage. Previous approaches have often utilized elastic hydrogels. However, elastic stresses may restrict cartilage matrix formation and alter the chondrocyte phenotype. Here we investigated the use of viscoelastic hydrogels, in which stresses are relaxed over time and which exhibit creep, for three-dimensional (3D) culture of chondrocytes. We found that faster relaxation promoted a striking increase in the volume of interconnected cartilage matrix formed by chondrocytes. In slower relaxing gels, restriction of cell volume expansion by elastic stresses led to increased secretion of IL-1β, which in turn drove strong up-regulation of genes associated with cartilage degradation and cell death. As no cell-adhesion ligands are presented by the hydrogels, these results reveal cell sensing of cell volume confinement as an adhesion-independent mechanism of mechanotransduction in 3D culture, and highlight stress relaxation as a key design parameter for cartilage tissue engineering.

  3. Cell-based cartilage repair strategies in the horse.

    PubMed

    Ortved, Kyla F; Nixon, Alan J

    2016-02-01

    Damage to the articular cartilage surface is common in the equine athlete and, due to the poor intrinsic healing capabilities of cartilage, can lead to osteoarthritis (OA). Joint disease and OA are the leading cause of retirement in equine athletes and currently there are no effective treatments to stop the progression of OA. Several different cell-based strategies have been investigated to bolster the weak regenerative response of chondrocytes. Such techniques aim to restore the articular surface and prevent further joint degradation. Cell-based cartilage repair strategies include enhancement of endogenous repair mechanisms by recruitment of stem cells from the bone marrow following perforation of the subchondral bone plate; osteochondral implantation; implantation of chondrocytes that are maintained in defects by either a membrane cover or scaffold, and transplantation of mesenchymal stem cells into cartilage lesions. More recently, bioengineered cartilage and scaffoldless cartilage have been investigated for enhancing repair. This review article focuses on the multitude of cell-based repair techniques for cartilage repair across several species, with special attention paid to the horse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Extension of knee immobilization delays recovery of histological damages in the anterior cruciate ligament insertion and articular cartilage in rabbits.

    PubMed

    Mutsuzaki, Hirotaka; Nakajima, Hiromi; Sakane, Masataka

    2018-01-01

    [Purpose] To investigate the influence of knee immobilization period on recovery of histological damages in the anterior cruciate ligament (ACL) insertion and articular cartilage in rabbits. This knowledge is important for determining the appropriate rehabilitation approach for patients with ligament injuries, fracture, disuse atrophy, and degenerative joint disease. [Materials and Methods] Forty-eight male Japanese white rabbits were divided equally into the remobilization and control groups. The remobilization group had the right knee surgically immobilized, and was divided equally into four subgroups according to the duration of immobilization (1, 2, 4 and 8 weeks). After the immobilization was removed, the rabbits moved freely for 8 weeks. The control group underwent sham operation and followed the same time course as the remobilization group. The chondrocyte apoptosis rate and chondrocyte proliferation rate in the ACL insertion and articular cartilage were analyzed after remobilization. [Results] In the ACL insertion, the remobilization group had a higher chondrocyte apoptosis rate than the control group after 8 weeks of immobilization, and a lower chondrocyte proliferation rate than the control group after 4 and 8 weeks of immobilization. In the articular cartilage, the remobilization group had a lower chondrocyte proliferation rate than the control group after 8 weeks of immobilization. After 8 weeks of remobilization, the ACL insertion and articular cartilage are not completely recovered after 4 and 8 weeks of immobilization, respectively. [Conclusion] Our results suggest that 8 weeks of remobilization will result in recovery of the ACL insertion after 2 weeks of knee immobilization, and recovery of the articular cartilage after 4 weeks of knee immobilization. If 8 weeks of immobilization occurs, a remobilization duration of more than 8 weeks may be necessary.

  5. Articular cartilage changes in chondromalacia patellae.

    PubMed

    Bentley, G

    1985-11-01

    Full thickness samples of articular cartilage were removed from areas of chondromalacia on the medial and "odd" facets of the patellae of 21 adults and examined by histology, autoradiography and electron microscopy. Surface fibrillation, loss of superficial matrix staining and reduced 35SO4 labelling was seen, with little change in the deep zone. Ten cases showed "fibrous metaplasia" of the superficial cartilage with definite evidence of cell division and apparent smoothing of the surface. Scattered chondrocyte replication appeared to occur in the surrounding intact cartilage. The findings suggest that early lesions in chondromalacia patellae may heal either by cartilage or fibrous metaplasia and that this may account for the resolution of clinical symptoms.

  6. Animal models of cartilage repair

    PubMed Central

    Cook, J. L.; Hung, C. T.; Kuroki, K.; Stoker, A. M.; Cook, C. R.; Pfeiffer, F. M.; Sherman, S. L.; Stannard, J. P.

    2014-01-01

    Cartilage repair in terms of replacement, or regeneration of damaged or diseased articular cartilage with functional tissue, is the ‘holy grail’ of joint surgery. A wide spectrum of strategies for cartilage repair currently exists and several of these techniques have been reported to be associated with successful clinical outcomes for appropriately selected indications. However, based on respective advantages, disadvantages, and limitations, no single strategy, or even combination of strategies, provides surgeons with viable options for attaining successful long-term outcomes in the majority of patients. As such, development of novel techniques and optimisation of current techniques need to be, and are, the focus of a great deal of research from the basic science level to clinical trials. Translational research that bridges scientific discoveries to clinical application involves the use of animal models in order to assess safety and efficacy for regulatory approval for human use. This review article provides an overview of animal models for cartilage repair. Cite this article: Bone Joint Res 2014;4:89–94. PMID:24695750

  7. [Current status of bone/cartilage tissue engineering towards clinical applications].

    PubMed

    Ohgushi, Hajime

    2014-10-01

    Osteo/chondrogenic differentiation capabilities are seen after in vivo implantation of mesenchymal stem cells (MSCs), which are currently used for the patients having bone/cartilage defects. Importantly, the differentiation capabilities are induced by culturing technology, resulting in in vitro bone/cartilage formation. Especially, the in vitro bone tissue is useful for bone tissue regeneration. For cartilage regeneration, culture expanded chondrocytes derived from patient's normal cartilage are also used for the patients having cartilage damages. Recently, the cultured chondrocytes embedded in atelocollagen gel are obtainable as tissue engineered products distributed by Japan Tissue Engineering Co. Ltd. The products are available in the well-regulated hospitals by qualified orthopedic surgeons. The criteria for these hospitals/surgeons have been established. This review paper focuses on current status of bone/cartilage tissue engineering towards clinical applications in Japan.

  8. Assessing Cartilage Biomechanical Properties: Techniques for Evaluating the Functional Performance of Cartilage in Health and Disease.

    PubMed

    Lakin, Benjamin A; Snyder, Brian D; Grinstaff, Mark W

    2017-06-21

    Osteoarthritis (OA) affects millions of people and results in weakened hyaline cartilage due to overloading. During joint articulation, hyaline cartilage must withstand high loads while maintaining low friction to prevent wear and tissue loss. Thus, cartilage compressive stiffness and the coefficient of friction are important indicators of the tissue's functional performance. These mechanical properties are often measured ex vivo using mechanical testing regimens, but arthroscopic handheld probes (e.g., for indentation testing, ultrasound, and optical coherence tomography) and noninvasive imaging modalities (e.g., magnetic resonance imaging and computed tomography) provide opportunities for either direct or indirect in vivo assessment of cartilage mechanical properties. In this review, we examine the application of these techniques for evaluating cartilage, with a focus on measuring mechanical properties for early-stage OA diagnosis. For each approach, we discuss the advantages, disadvantages, current and potential clinical utility, and promising technological improvement.

  9. Cell Therapy and Tissue Engineering Approaches for Cartilage Repair and/or Regeneration

    PubMed Central

    Mardones, Rodrigo; Jofré, Claudio M.; Minguell, José J.

    2015-01-01

    Articular cartilage injuries caused by traumatic, mechanical and/or by progressive degeneration result in pain, swelling, subsequent loss of joint function and finally osteoarthritis. Due to the peculiar structure of the tissue (no blood supply), chondrocytes, the unique cellular phenotype in cartilage, receive their nutrition through diffusion from the synovial fluid and this limits their intrinsic capacity for healing. The first cellular avenue explored for cartilage repair involved the in situ transplantation of isolated chondrocytes. Latterly, an improved alternative for the above reparative strategy involved the infusion of mesenchymal stem cells (MSC), which in addition to a self-renewal capacity exhibit a differentiation potential to chondrocytes, as well as a capability to produce a vast array of growth factors, cytokines and extracellular matrix compounds involved in cartilage development. In addition to the above and foremost reparative options up till now in use, other therapeutic options have been developed, comprising the design of biomaterial substrates (scaffolds) capable of sustaining MSC attachment, proliferation and differentiation. The implantation of these engineered platforms, closely to the site of cartilage damage, may well facilitate the initiation of an ‘in situ’ cartilage reparation process. In this mini-review, we examined the timely and conceptual development of several cell-based methods, designed to repair/regenerate a damaged cartilage. In addition to the above described cartilage reparative options, other therapeutic alternatives still in progress are portrayed. PMID:26019754

  10. Cell Therapy and Tissue Engineering Approaches for Cartilage Repair and/or Regeneration.

    PubMed

    Mardones, Rodrigo; Jofré, Claudio M; Minguell, José J

    2015-05-01

    Articular cartilage injuries caused by traumatic, mechanical and/or by progressive degeneration result in pain, swelling, subsequent loss of joint function and finally osteoarthritis. Due to the peculiar structure of the tissue (no blood supply), chondrocytes, the unique cellular phenotype in cartilage, receive their nutrition through diffusion from the synovial fluid and this limits their intrinsic capacity for healing. The first cellular avenue explored for cartilage repair involved the in situ transplantation of isolated chondrocytes. Latterly, an improved alternative for the above reparative strategy involved the infusion of mesenchymal stem cells (MSC), which in addition to a self-renewal capacity exhibit a differentiation potential to chondrocytes, as well as a capability to produce a vast array of growth factors, cytokines and extracellular matrix compounds involved in cartilage development. In addition to the above and foremost reparative options up till now in use, other therapeutic options have been developed, comprising the design of biomaterial substrates (scaffolds) capable of sustaining MSC attachment, proliferation and differentiation. The implantation of these engineered platforms, closely to the site of cartilage damage, may well facilitate the initiation of an 'in situ' cartilage reparation process. In this mini-review, we examined the timely and conceptual development of several cell-based methods, designed to repair/regenerate a damaged cartilage. In addition to the above described cartilage reparative options, other therapeutic alternatives still in progress are portrayed.

  11. Accuracy of magnetic resonance imaging to detect cartilage loss in severe osteoarthritis of the first carpometacarpal joint: comparison with histological evaluation.

    PubMed

    Saltzherr, Michael S; Coert, J Henk; Selles, Ruud W; van Neck, Johan W; Jaquet, Jean-Bart; van Osch, Gerjo J V M; Oei, Edwin H G; Luime, Jolanda J; Muradin, Galied S R

    2017-03-14

    Magnetic resonance imaging (MRI) is increasingly used for research in hand osteoarthritis, but imaging the thin cartilage layers in the hand joints remains challenging. We therefore assessed the accuracy of MRI in detecting cartilage loss in patients with symptomatic osteoarthritis of the first carpometacarpal (CMC1) joint. Twelve patients scheduled for trapeziectomy to treat severe symptomatic osteoarthritis of the CMC1 joint underwent a preoperative high resolution 3D spoiled gradient (SPGR) MRI scan. Subsequently, the resected trapezium was evaluated histologically. The sections were scored for cartilage damage severity (Osteoarthritis Research Society International (OARSI) score), and extent of damage (percentage surface area). Each MRI scan was scored for the area of normal cartilage, partial cartilage loss and full cartilage loss. The percentages of the total surface area with any cartilage loss and full-thickness cartilage loss were calculated using MRI and histological evaluation. MRI and histological evaluation both identified large areas of overall cartilage loss. The median (IQR) surface area of any cartilage loss on MRI was 98% (82-100%), and on histological assessment 96% (87-98%). However, MRI underestimated the extent of full-thickness cartilage loss. The median (IQR) surface area of full-thickness cartilage loss on MRI was 43% (22-70%), and on histological evaluation 79% (67-85%). The difference was caused by a thin layer of high signal on the articulating surface, which was interpreted as damaged cartilage on MRI but which was not identified on histological evaluation. Three-dimensional SPGR MRI of the CMC1 joint demonstrates overall cartilage damage, but underestimates full-thickness cartilage loss in patients with advanced osteoarthritis.

  12. Techniques and Applications of in vivo Diffusion Imaging of Articular Cartilage

    PubMed Central

    Raya, José G.

    2014-01-01

    Early in the process of osteoarthritis (OA) the composition (water, proteoglycan [PG], and collagen) and structure of articular cartilage is altered leading to changes in its mechanical properties. A technique that can assess the composition and structure of the cartilage in vivo can provide insight in the mechanical integrity of articular cartilage and become a powerful tool for the early diagnosis of OA. Diffusion tensor imaging (DTI) has been proposed as a biomarker for cartilage composition and structure. DTI is sensitive to the PG content through the mean diffusivity (MD) and to the collagen architecture through the fractional anisotropy (FA). However, the acquisition of DTI of articular cartilage in vivo is challenging due to the short T2 of articular cartilage (~40 ms at 3 T) and the high resolution needed (0.5–0.7 mm in plane) to depict the cartilage anatomy. We describe the pulse sequences used for in vivo DTI of articular cartilage and discus general strategies for protocol optimization. We provide a comprehensive review of measurements of DTI of articular cartilage from ex vivo validation experiments to its recent clinical applications. PMID:25865215

  13. A retinaculum-sparing surgical approach preserves porcine stifle joint cartilage in an experimental animal model of cartilage repair.

    PubMed

    Bonadio, Marcelo B; Friedman, James M; Sennett, Mackenzie L; Mauck, Robert L; Dodge, George R; Madry, Henning

    2017-12-01

    This study compares a traditional parapatellar retinaculum-sacrificing arthrotomy to a retinaculum-sparing arthrotomy in a porcine stifle joint as a cartilage repair model. Surgical exposure of the femoral trochlea of ten Yucatan pigs stifle joint was performed using either a traditional medial parapatellar approach with retinaculum incision and luxation of the patella (n = 5) or a minimally invasive (MIS) approach which spared the patellar retinaculum (n = 5). Both classical and MIS approaches provided adequate access to the trochlea, enabling the creation of cartilage defects without difficulties. Four full thickness, 4 mm circular full-thickness cartilage defects were created in each trochlea. There were no intraoperative complications observed in either surgical approach. All pigs were allowed full weight-bearing and full range of motion immediately postoperatively and were euthanized between 2 and 3 weeks. The traditional approach was associated with increased cartilage wear compared to the MIS approach. Two blinded raters performed gross evaluation of the trochlea cartilage surrounding the defects according to the modified ICRS cartilage injury classification. The traditional approach cartilage received a significantly worse score than the MIS approach group from both scorers (3.2 vs 0.8, p = 0.01 and 2.8 vs 0, p = 0.005 respectively). The MIS approach results in less damage to the trochlear cartilage and faster return to load bearing activities. As an arthrotomy approach in the porcine model, MIS is superior to the traditional approach.

  14. Co-culture systems-based strategies for articular cartilage tissue engineering.

    PubMed

    Zhang, Yu; Guo, Weimin; Wang, Mingjie; Hao, Chunxiang; Lu, Liang; Gao, Shuang; Zhang, Xueliang; Li, Xu; Chen, Mingxue; Li, Penghao; Jiang, Peng; Lu, Shibi; Liu, Shuyun; Guo, Quanyi

    2018-03-01

    Cartilage engineering facilitates repair and regeneration of damaged cartilage using engineered tissue that restores the functional properties of the impaired joint. The seed cells used most frequently in tissue engineering, are chondrocytes and mesenchymal stem cells. Seed cells activity plays a key role in the regeneration of functional cartilage tissue. However, seed cells undergo undesirable changes after in vitro processing procedures, such as degeneration of cartilage cells and induced hypertrophy of mesenchymal stem cells, which hinder cartilage tissue engineering. Compared to monoculture, which does not mimic the in vivo cellular environment, co-culture technology provides a more realistic microenvironment in terms of various physical, chemical, and biological factors. Co-culture technology is used in cartilage tissue engineering to overcome obstacles related to the degeneration of seed cells, and shows promise for cartilage regeneration and repair. In this review, we focus first on existing co-culture systems for cartilage tissue engineering and related fields, and discuss the conditions and mechanisms thereof. This is followed by methods for optimizing seed cell co-culture conditions to generate functional neo-cartilage tissue, which will lead to a new era in cartilage tissue engineering. © 2017 Wiley Periodicals, Inc.

  15. Articular cartilage tissue engineering: the role of signaling molecules

    PubMed Central

    Kwon, Heenam; Paschos, Nikolaos K.; Hu, Jerry C.; Athanasiou, Kyriacos

    2017-01-01

    Effective early disease modifying options for osteoarthritis remain lacking. Tissue engineering approach to generate cartilage in vitro has emerged as a promising option for articular cartilage repair and regeneration. Signaling molecules and matrix modifying agents, derived from knowledge of cartilage development and homeostasis, have been used as biochemical stimuli toward cartilage tissue engineering and have led to improvements in the functionality of engineered cartilage. Clinical translation of neocartilage faces challenges, such as phenotypic instability of the engineered cartilage, poor integration, inflammation, and catabolic factors in the arthritic environment; these can all contribute to failure of implanted neocartilage. A comprehensive understanding of signaling molecules involved in osteoarthritis pathogenesis and their actions on engineered cartilage will be crucial. Thus, while it is important to continue deriving inspiration from cartilage development and homeostasis, it has become increasing necessary to incorporate knowledge from osteoarthritis pathogenesis into cartilage tissue engineering. PMID:26811234

  16. Histochemistry as a Unique Approach for Investigating Normal and Osteoarthritic Cartilage

    PubMed Central

    Musumeci, G.; Castrogiovanni, P.; Mazzone, V.; Szychlinska, M. A.; Castorina, S.; Loreto, C.

    2014-01-01

    In this review article, we describe benefits and disadvantages of the established histochemical methods for studying articular cartilage tissue under normal, pathological and experimental conditions. We illustrate the current knowledge on cartilage tissue based on histological and immunohistochemical aspects, and in conclusion we provide a short overview on the degeneration of cartilage, such as osteoarthritis. Adult articular cartilage has low capacity to repair itself, and thus even minor injuries may lead to progressive damage and osteoarthritic joint degeneration, resulting in significant pain and disability. Numerous efforts have been made to implement the knowledge in the study of cartilage in the last years, and histochemistry proved to be an especially powerful tool to this aim. PMID:24998926

  17. Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures

    PubMed Central

    Baum, T.; Joseph, G.B.; Karampinos, D.C.; Jungmann, P.M.; Link, T.M.; Bauer, J.S.

    2014-01-01

    SUMMARY Objective The purpose of this work was to review the current literature on cartilage and meniscal T2 relaxation time. Methods Electronic searches in PubMed were performed to identify relevant studies about T2 relaxation time measurements as non-invasive biomarker for knee osteoarthritis (OA) and cartilage repair procedures. Results Initial osteoarthritic changes include proteoglycan loss, deterioration of the collagen network, and increased water content within the articular cartilage and menisci. T2 relaxation time measurements are affected by these pathophysiological processes. It was demonstrated that cartilage and meniscal T2 relaxation time values were significantly increased in subjects with compared to those without radiographic OA and focal knee lesions, respectively. Subjects with OA risk factors such as overweight/obesity showed significantly greater cartilage T2 values than normal controls. Elevated cartilage and meniscal T2 relaxation times were found in subjects with vs without knee pain. Increased cartilage T2 at baseline predicted morphologic degeneration in the cartilage, meniscus, and bone marrow over 3 years. Furthermore, cartilage repair tissue could be non-invasively assessed by using T2 mapping. Reproducibility errors for T2 measurements were reported to be smaller than the T2 differences in healthy and diseased cartilage indicating that T2 relaxation time may be a reliable discriminatory biomarker. Conclusions Cartilage and meniscal T2 mapping may be suitable as non-invasive biomarker to diagnose early stages of knee OA and to monitor therapy of OA. PMID:23896316

  18. Concepts in Gene Therapy for Cartilage Repair

    PubMed Central

    Steinert, Andre F.; Nöth, Ulrich; Tuan, Rocky S.

    2009-01-01

    Summary Once articular cartilage is injured, it has a very limited capacity for self-repair. Although current surgical therapeutic procedures to cartilage repair are clinically useful, they cannot restore a normal articular surface. Current research offers a growing number of bioactive reagents, including proteins and nucleic acids, that may be used to augment different aspects of the repair process. As these agents are difficult to administer effectively, gene transfer approaches are being developed to provide their sustained synthesis at sites of repair. To augment regeneration of articular cartilage, therapeutic genes can be delivered to the synovium, or directly to the cartilage lesion. Gene delivery to the cells of the synovial lining is generally considered more suitable for chondroprotective approaches, based on the expression of anti-inflammatory mediators. Gene transfer targeted to cartilage defects can be achieved by either direct vector administration to cells located at or surrounding the defects, or by transplantation of genetically modified chondrogenic cells into the defect. Several studies have shown that exogenous cDNAs encoding growth factors can be delivered locally to sites of cartilage damage, where they are expressed at therapeutically relevant levels. Furthermore, data is beginning to emerge indicating, that efficient delivery and expression of these genes is capable of influencing a repair response toward the synthesis of a more hyaline cartilage repair tissue in vivo. This review presents the current status of gene therapy for cartilage healing and highlights some of the remaining challenges. PMID:18313477

  19. NMR Studies of Cartilage Dynamics, Diffusion, Degradation

    NASA Astrophysics Data System (ADS)

    Huster, Daniel; Schiller, Jurgen; Naji, Lama; Kaufmann Jorn; Arnold, Klaus

    An increasing number of people is suffering from rheumatic diseases, and, therefore, methods of early diagnosis of joint degeneration are urgently required. For their establishment, however, an improved knowledge about the molecular organisation of cartilage would be helpful. Cartilage consists of three main components: Water, collagen and chondroitin sulfate (CS) that is (together with further polysaccharides and proteins) a major constituent of the proteoglycans of cartilage. 1H and 13C MAS (magic-angle spinning) NMR (nuclear magnetic resonance) opened new perspectives for the study of the macromolecular components in cartilage. We have primarily studied the mobilities of CS and collagen in bovine nasal and pig articular cartilage (that differ significantly in their collagen/polysaccharide content) by measuring 13C NMR relaxation times as well as the corresponding 13C CP (cross polarisation) MAS NMR spectra. These data clearly indicate that the mobility of cartilage macromolecules is broadly distributed from almost completely rigid (collagen) to highly mobile (polysaccharides), which lends cartilage its mechanical strength and shock-absorbing properties.

  20. Earlier anterior cruciate ligament reconstruction is associated with a decreased risk of medial meniscal and articular cartilage damage in children and adolescents: a systematic review and meta-analysis.

    PubMed

    Kay, Jeffrey; Memon, Muzammil; Shah, Ajay; Yen, Yi-Meng; Samuelsson, Kristian; Peterson, Devin; Simunovic, Nicole; Flageole, Helene; Ayeni, Olufemi R

    2018-06-06

    To evaluate the association between surgical timing and the incidence of secondary meniscal or chondral damage in children and adolescents with anterior cruciate ligament (ACL) ruptures. Three electronic databases, PubMed, MEDLINE, and EMBASE, were systematically searched from database inception until October 16, 2017 by two reviewers independently and in duplicate. The inclusion criteria were English language studies that reported the incidence of meniscal and articular cartilage damage in children or adolescent athletes with ACL injuries as well as the timing of their ACL reconstruction (ACLR). Risk ratios were combined in a meta-analysis using a random effects model. A total of nine studies including 1353 children and adolescents met the inclusion criteria. The mean age of patients included was 14.2 years (range 6-19), and 45% were female. There was a significantly decreased risk of concomitant medial meniscal injury in those reconstructed early (26%) compared to those with delayed reconstruction (47%) [pooled risk ratio (RR) = 0.49, 95% CI 0.36-0.65, p < 0.00001]. There was also a significantly reduced risk of medial femoral chondral (RR = 0.48, 95% CI 0.31-0.75, p = 0.001), lateral femoral chondral (RR = 0.38, 95% CI 0.20-0.75, p = 0.005), tibial chondral (RR = 0.45, 95% CI 0.27-0.75, p = 0.002), and patellofemoral chondral (RR = 0.41, 95% CI 0.20-0.82, p = 0.01) damage in the early reconstruction group in comparison to the delayed group. Pooled results from observational studies suggest that early ACLR results in a significantly decreased risk of secondary medial meniscal injury, as well as secondary medial, lateral, and patellofemoral compartment chondral damage in children and adolescents. This study provides clinicians with valuable information regarding the benefits of early ACL reconstruction in children and adolescents, and can be used in the decision making for athletes in this population. IV.

  1. Reconstruction of cartilage with clonal mesenchymal stem cell-acellular dermal matrix in cartilage defect model in nonhuman primates.

    PubMed

    Ma, Anlun; Jiang, Li; Song, Lijun; Hu, Yanxin; Dun, Hao; Daloze, Pierre; Yu, Yonglin; Jiang, Jianyuan; Zafarullah, Muhammad; Chen, Huifang

    2013-07-01

    Articular cartilage defects are commonly associated with trauma, inflammation and osteoarthritis. Mesenchymal stem cell (MSC)-based therapy is a promising novel approach for repairing articular cartilage. Direct intra-articular injection of uncommitted MSCs does not regenerate high-quality cartilage. This study explored utilization of a new three-dimensional, selected chondrogenic clonal MSC-loaded monkey acellular dermal matrix (MSC-ADM) scaffold to repair damaged cartilage in an experimental model of knee joint cartilage defect in Cynomolgus monkeys. MSCs were characterized for cell size, cell yield, phenotypes, proliferation and chondrogenic differentiation capacity. Chondrogenic differentiation assays were performed at different MSC passages by sulfated glycosaminoglycans (sGAG), collagen, and fluorescence activated cell sorter (FACS) analysis. Selected chondrogenic clonal MSCs were seeded onto ADM scaffold with the sandwich model and MSC-loaded ADM grafts were analyzed by confocal microscopy and scanning electron microscopy. Cartilage defects were treated with normal saline, clonal MSCs and clonal MSC-ADM grafts, respectively. The clinical parameters, and histological and immunohistochemical examinations were evaluated at weeks 8, 16, 24 post-treatment, respectively. Polyclonal and clonal MSCs could differentiate into the chondrogenic lineage after stimulation with suitable chondrogenic factors. They expressed mesenchymal markers and were negative for hematopoietic markers. Articular cartilage defects were considerably improved and repaired by selected chondrogenic clonal MSC-based treatment, particularly, in MSC-ADM-treated group. The histological scores in MSC-ADM-treated group were consistently higher than those of other groups. Our results suggest that selected chondrogenic clonal MSC-loaded ADM grafts could improve the cartilage lesions in Cynomolgus monkey model, which may be applicable for repairing similar human cartilage defects. Copyright © 2013

  2. Positive effects of cell-free porous PLGA implants and early loading exercise on hyaline cartilage regeneration in rabbits.

    PubMed

    Chang, Nai-Jen; Lin, Chih-Chan; Shie, Ming-You; Yeh, Ming-Long; Li, Chien-Feng; Liang, Peir-In; Lee, Kuan-Wei; Shen, Pei-Hsun; Chu, Chih-Jou

    2015-12-01

    The regeneration of hyaline cartilage remains clinically challenging. Here, we evaluated the therapeutic effects of using cell-free porous poly(lactic-co-glycolic acid) (PLGA) graft implants (PGIs) along with early loading exercise to repair a full-thickness osteochondral defect. Rabbits were randomly allocated to a treadmill exercise (TRE) group or a sedentary (SED) group and were prepared as either a PGI model or an empty defect (ED) model. TRE was performed as a short-term loading exercise; SED was physical inactivity in a free cage. The knees were evaluated at 6 and 12 weeks after surgery. At the end of testing, none of the knees developed synovitis, formed osteophytes, or became infected. Macroscopically, the PGI-TRE group regenerated a smooth articular surface, with transparent new hyaline-like tissue soundly integrated with the neighboring cartilage, but the other groups remained distinct at the margins with fibrous or opaque tissues. In a micro-CT analysis, the synthesized bone volume/tissue volume (BV/TV) was significantly higher in the PGI-TRE group, which also had integrating architecture in the regeneration site. The thickness of the trabecular (subchondral) bone was improved in all groups from 6 to 12 weeks. Histologically, remarkable differences in the cartilage regeneration were visible. At week 6, compared with SED groups, the TRE groups manifested modest inflammatory cells with pro-inflammatory cytokines (i.e., TNF-α and IL-6), improved collagen alignment and higher glycosaminoglycan (GAG) content, particularly in the PGI-TRE group. At week 12, the PGI-TRE group had the best regeneration outcomes, showing the formation of hyaline-like cartilage, the development of columnar rounded chondrocytes that expressed enriched levels of collagen type II and GAG, and functionalized trabecular bone with osteocytes. In summary, the combination of implanting cell-free PLGA and performing an early loading exercise can significantly promote the full

  3. Multi-echo GRE imaging of knee cartilage.

    PubMed

    Yuen, Joanna; Hung, Jachin; Wiggermann, Vanessa; Robinson, Simon D; McCormack, Robert; d'Entremont, Agnes G; Rauscher, Alexander

    2017-05-01

    To visualize healthy and abnormal articular cartilage, we investigated the potential of using the 3D multi-echo gradient echo (GRE) signal's magnitude and frequency and maps of T2* relaxation. After optimizing imaging parameters in five healthy volunteers, 3D multi-echo GRE magnetic resonance (MR) images were acquired at 3T in four patients with chondral damage prior to their arthroscopic surgery. Average magnitude and frequency information was extracted from the GRE images, and T2* maps were generated. Cartilage abnormalities were confirmed after arthroscopy and were graded using the Outerbridge classification scheme. Regions of interest were identified on average magnitude GRE images and compared to arthroscopy. All four patients presented with regions of Outerbridge Grade I and II cartilage damage on arthroscopy. One patient had Grade III changes. Grade I, II, and III changes were detectable on average magnitude and T2* maps, while Grade II and higher changes were also observable on MR frequency maps. For average magnitude images of healthy volunteers, the signal-to-noise ratio of the magnitude image averaged over three echoes was 4.26 ± 0.32, 12.26 ± 1.09, 14.31 ± 1.93, and 13.36 ± 1.13 in bone, femoral, tibial, and patellar cartilage, respectively. This proof-of-principle study demonstrates the feasibility of using different imaging contrasts from the 3D multi-echo GRE scan to visualize abnormalities of the articular cartilage. © 2016 International Society for Magnetic Resonance in Medicine Level of Evidence: 1 J. MAGN. RESON. IMAGING 2017;45:1502-1513. © 2016 International Society for Magnetic Resonance in Medicine.

  4. Expansion and redifferentiation of chondrocytes from osteoarthritic cartilage: cells for human cartilage tissue engineering.

    PubMed

    Hsieh-Bonassera, Nancy D; Wu, Iwen; Lin, Jonathan K; Schumacher, Barbara L; Chen, Albert C; Masuda, Koichi; Bugbee, William D; Sah, Robert L

    2009-11-01

    To determine if selected culture conditions enhance the expansion and redifferentiation of chondrocytes isolated from human osteoarthritic cartilage with yields appropriate for creation of constructs for treatment of joint-scale cartilage defects, damage, or osteoarthritis. Chondrocytes isolated from osteoarthritic cartilage were analyzed to determine the effects of medium supplement on cell expansion in monolayer and then cell redifferentiation in alginate beads. Expansion was assessed as cell number estimated from DNA, growth rate, and day of maximal growth. Redifferentiation was evaluated quantitatively from proteoglycan and collagen type II content, and qualitatively by histology and immunohistochemistry. Using either serum or a growth factor cocktail (TFP: transforming growth factor beta1, fibroblast growth factor 2, and platelet-derived growth factor type bb), cell growth rate in monolayer was increased to 5.5x that of corresponding conditions without TFP, and cell number increased 100-fold within 17 days. In subsequent alginate bead culture with human serum or transforming growth factor beta1 and insulin-transferrin-selenium-linoleic acid-bovine serum albumin, redifferentiation was enhanced with increased proteoglycan and collagen type II production. Effects of human serum were dose dependent, and 5% or higher induced formation of chondron-like structures with abundant proteoglycan-rich matrix. Chondrocytes from osteoarthritic cartilage can be stimulated to undergo 100-fold expansion and then redifferentiation, suggesting that they may be useful as a cell source for joint-scale cartilage tissue engineering.

  5. Chondrogenesis and cartilage tissue engineering: the longer road to technology development.

    PubMed

    Mahmoudifar, Nastaran; Doran, Pauline M

    2012-03-01

    Joint injury and disease are painful and debilitating conditions affecting a substantial proportion of the population. The idea that damaged cartilage in articulating joints might be replaced seamlessly with tissue-engineered cartilage is of obvious commercial interest because the market for such treatments is large. Recently, a wealth of new information about the complex biology of chondrogenesis and cartilage has emerged from stem cell research, including increasing evidence of the role of physical stimuli in directing differentiation. The challenge for the next generation of tissue engineers is to identify the key elements in this new body of knowledge that can be applied to overcome current limitations affecting cartilage synthesis in vitro. Here we review the status of cartilage tissue engineering and examine the contribution of stem cell research to technology development for cartilage production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Blends and Nanocomposite Biomaterials for Articular Cartilage Tissue Engineering

    PubMed Central

    Doulabi, Azadehsadat Hashemi; Mequanint, Kibret; Mohammadi, Hadi

    2014-01-01

    This review provides a comprehensive assessment on polymer blends and nanocomposite systems for articular cartilage tissue engineering applications. Classification of various types of blends including natural/natural, synthetic/synthetic systems, their combination and nanocomposite biomaterials are studied. Additionally, an inclusive study on their characteristics, cell responses ability to mimic tissue and regenerate damaged articular cartilage with respect to have functionality and composition needed for native tissue, are also provided. PMID:28788131

  7. [3D bioprinting of cartilage: challenges concerning the reconstruction of a burned ear].

    PubMed

    Visscher, Dafydd O; Bos, Ernst J; van Zuijlen, Paul P M

    2015-01-01

    Reconstruction of a severely maimed ear is a major challenge. The ear is highly flexible yet tough, and has a very complex three-dimensional shape. Reconstruction of a patient's burned ear is even more complex due to surrounding tissue damage. Not only does this hamper reconstruction options, it also increases the likelihood of issues when using synthetic implant materials. In such cases, rib cartilage is the preferred option, but this tissue has practical limitations too. For these reasons, tissue engineering and 3D bioprinting may have the potential to create personalized cartilage implants for burns patients. However, 3D bioprinting is a tool to facilitate the reconstruction, and not by itself the Holy Grail. The clinical application of this technique is still at a very early stage. Nevertheless, we expect that 3D bioprinting can be utilised for facial reconstruction following burns come 2020.

  8. Age-related differences in articular cartilage wound healing: a potential role for transforming growth factor beta1 in adult cartilage repair.

    PubMed

    Bos, P K; Verhaar, J A N; van Osch, G J V M

    2006-01-01

    Objective of this study was to investigate the early wound healing reactions of immature and mature articular cartilage on experimental wound healing in the New Zealand White rabbit. The proliferation potential and glycosaminoglycan production of isolated chondrocytes of these animals was studied in an alginate culture system. A band of tissue with death chondrocytes was observed at wound edges of immature articular cartilage, whereas mature cartilage showed a significant smaller amount of dead chondrocytes. A general increase in TGFbeta1, FGF2 and IGF1 was observed throughout cartilage tissue with the exception of lesion edges. The observed immunonegative area appeared to correlate with the observed cell death in lesion edges. Repair in immature cartilage was indicated by chondrocyte proliferation in clusters and a decrease in defect size. No repair response was observed in mature articular cartilage defects. The alginate culture experiment demonstrated a higher proliferation rate of immature chondrocytes. Addition of recombinant TGFbeta1 increased proliferation rate and GAG production of mature chondrocytes. We were not able to further stimulate immature chondrocytes. These results indicate that TGFbeta1 addition may contribute to induce cartilage repair responses in mature cartilage as observed in immature, developing cartilage.

  9. The effect of fixed charge density and cartilage swelling on mechanics of knee joint cartilage during simulated gait.

    PubMed

    Räsänen, Lasse P; Tanska, Petri; Zbýň, Štefan; van Donkelaar, Corrinus C; Trattnig, Siegfried; Nieminen, Miika T; Korhonen, Rami K

    2017-08-16

    The effect of swelling of articular cartilage, caused by the fixed charge density (FCD) of proteoglycans, has not been demonstrated on knee joint mechanics during simulated walking before. In this study, the influence of the depth-wise variation of FCD was investigated on the internal collagen fibril strains and the mechanical response of the knee joint cartilage during gait using finite element (FE) analysis. The FCD distribution of tibial cartilage was implemented from sodium ( 23 Na) MRI into a 3-D FE-model of the knee joint ("Healthy model"). For comparison, models with decreased FCD values were created according to the decrease in FCD associated with the progression of osteoarthritis (OA) ("Early OA" and "Advanced OA" models). In addition, a model without FCD was created ("No FCD" model). The effect of FCD was studied with five different collagen fibril network moduli of cartilage. Using the reference fibril network moduli, the decrease in FCD from "Healthy model" to "Early OA" and "Advanced OA" models resulted in increased axial strains (by +2 and +6%) and decreased fibril strains (by -3 and -13%) throughout the stance, respectively, calculated as mean values through cartilage depth in the tibiofemoral contact regions. Correspondingly, compared to the "Healthy model", the removal of the FCD altogether in "NoFCD model" resulted in increased mean axial strains by +16% and decreased mean fibril strains by -24%. This effect was amplified as the fibril network moduli were decreased by 80% from the reference. Then mean axial strains increased by +6, +19 and +49% and mean fibril strains decreased by -9, -20 and -32%, respectively. Our results suggest that the FCD in articular cartilage has influence on cartilage responses in the knee during walking. Furthermore, the FCD is suggested to have larger impact on cartilage function as the collagen network degenerates e.g. in OA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Strategic Design and Fabrication of Engineered Scaffolds for Articular Cartilage Repair

    PubMed Central

    Izadifar, Zohreh; Chen, Xiongbiao; Kulyk, William

    2012-01-01

    Damage to articular cartilage can eventually lead to osteoarthritis (OA), a debilitating, degenerative joint disease that affects millions of people around the world. The limited natural healing ability of cartilage and the limitations of currently available therapies make treatment of cartilage defects a challenging clinical issue. Hopes have been raised for the repair of articular cartilage with the help of supportive structures, called scaffolds, created through tissue engineering (TE). Over the past two decades, different designs and fabrication techniques have been investigated for developing TE scaffolds suitable for the construction of transplantable artificial cartilage tissue substitutes. Advances in fabrication technologies now enable the strategic design of scaffolds with complex, biomimetic structures and properties. In particular, scaffolds with hybrid and/or biomimetic zonal designs have recently been developed for cartilage tissue engineering applications. This paper reviews critical aspects of the design of engineered scaffolds for articular cartilage repair as well as the available advanced fabrication techniques. In addition, recent studies on the design of hybrid and zonal scaffolds for use in cartilage tissue repair are highlighted. PMID:24955748

  11. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors.

    PubMed

    Bhardwaj, Nandana; Devi, Dipali; Mandal, Biman B

    2015-02-01

    Damage to cartilage represents one of the most challenging tasks of musculoskeletal therapeutics due to its limited propensity for healing and regenerative capabilities. Lack of current treatments to restore cartilage tissue function has prompted research in this rapidly emerging field of tissue regeneration of functional cartilage tissue substitutes. The development of cartilaginous tissue largely depends on the combination of appropriate biomaterials, cell source, and stimulating factors. Over the years, various biomaterials have been utilized for cartilage repair, but outcomes are far from achieving native cartilage architecture and function. This highlights the need for exploration of suitable biomaterials and stimulating factors for cartilage regeneration. With these perspectives, we aim to present an overview of cartilage tissue engineering with recent progress, development, and major steps taken toward the generation of functional cartilage tissue. In this review, we have discussed the advances and problems in tissue engineering of cartilage with strong emphasis on the utilization of natural polymeric biomaterials, various cell sources, and stimulating factors such as biophysical stimuli, mechanical stimuli, dynamic culture, and growth factors used so far in cartilage regeneration. Finally, we have focused on clinical trials, recent innovations, and future prospects related to cartilage engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. MRI EVALUATION OF KNEE CARTILAGE

    PubMed Central

    Rodrigues, Marcelo Bordalo; Camanho, Gilberto Luís

    2015-01-01

    Through the ability of magnetic resonance imaging (MRI) to characterize soft tissue noninvasively, it has become an excellent method for evaluating cartilage. The development of new and faster methods allowed increased resolution and contrast in evaluating chondral structure, with greater diagnostic accuracy. In addition, physiological techniques for cartilage assessment that can detect early changes before the appearance of cracks and erosion have been developed. In this updating article, the various techniques for chondral assessment using knee MRI will be discussed and demonstrated. PMID:27022562

  13. Diffusion tensor imaging of articular cartilage at 3T correlates with histology and biomechanics in a mechanical injury model.

    PubMed

    Ferizi, Uran; Rossi, Ignacio; Lee, Youjin; Lendhey, Matin; Teplensky, Jason; Kennedy, Oran D; Kirsch, Thorsten; Bencardino, Jenny; Raya, José G

    2017-07-01

    We establish a mechanical injury model for articular cartilage to assess the sensitivity of diffusion tensor imaging (DTI) in detecting cartilage damage early in time. Mechanical injury provides a more realistic model of cartilage degradation compared with commonly used enzymatic degradation. Nine cartilage-on-bone samples were obtained from patients undergoing knee replacement. The 3 Tesla DTI (0.18 × 0.18 × 1 mm 3 ) was performed before, 1 week, and 2 weeks after (zero, mild, and severe) injury, with a clinical radial spin-echo DTI (RAISED) sequence used in our hospital. We performed stress-relaxation tests and used a quasilinear-viscoelastic (QLV) model to characterize cartilage mechanical properties. Serial histology sections were dyed with Safranin-O and given an OARSI grade. We then correlated the changes in DTI parameters with the changes in QLV-parameters and OARSI grades. After severe injury the mean diffusivity increased after 1 and 2 weeks, whereas the fractional anisotropy decreased after 2 weeks (P < 0.05). The QLV-parameters and OARSI grades of the severe injury group differed from the baseline with statistical significance. The changes in mean diffusivity across all the samples correlated with the changes in the OARSI grade (r = 0.72) and QLV-parameters (r = -0.75). DTI is sensitive in tracking early changes after mechanical injury, and its changes correlate with changes in biomechanics and histology. Magn Reson Med 78:69-78, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Synthesis and Characterization of a Lubricin Mimic (mLub) To Reduce Friction and Adhesion on the Articular Cartilage Surface

    PubMed Central

    Lawrence, Alexandra; Xu, Xin; Bible, Melissa D.; Calve, Sarah; Neu, Corey P.; Panitch, Alyssa

    2015-01-01

    The lubricating proteoglycan, lubricin, facilitates the remarkable low friction and wear properties of articular cartilage in the synovial joints of the body. Lubricin lines the joint surfaces and plays a protective role as a boundary lubricant in sliding contact; decreased expression of lubricin is associated with cartilage degradation and the pathogenesis of osteoarthritis. An unmet need for early osteoarthritis treatment is the development of therapeutic molecules that mimic lubricin function and yet are also resistant to enzymatic degradation common in the damaged joint. Here, we engineered a lubricin mimic (mLub) that is less susceptible to enzymatic degradation and binds to the articular surface to reduce friction. mLub was synthesized using a chondroitin sulfate backbone with type II collagen and hyaluronic acid (HA) binding peptides to promote interaction with the articular surface and synovial fluid constituents. In vitro and in vivo characterization confirmed the binding ability of mLub to isolated type II collagen and HA, and to the cartilage surface. Following trypsin treatment to the cartilage surface, application of mLub, in combination with purified or commercially available hyaluronan, reduced the coefficient of friction, and adhesion, to control levels as assessed over macro- to micro-scales by rheometry and atomic force microscopy. In vivo studies demonstrate an mLub residency time of less than 1 week. Enhanced lubrication by mLub reduces surface friction and adhesion, which may suppress the progression of degradation and cartilage loss in the joint. mLub therefore shows potential for treatment in early osteoarthritis following injury. PMID:26398308

  15. Effects of Er:YAG laser irradiation on human cartilage

    NASA Astrophysics Data System (ADS)

    Glinkowski, Wojciech; Brzozowska, Malgorzata; Ciszek, Bogdan; Rowinski, Jan; Strek, Wieslaw

    1996-03-01

    Irradiation of the hyaline or fibrous cartilage excised from the body of a human cadaver with Er:YAG laser beam, single pulse with a dose of 1 J, produces a crater with a depth of approximately 500 micrometers and a diameter varying from 5 to 300 micrometers. Histological examination has revealed that the laser-made craters were surrounded by a thin rim (2-10 micrometer) of charred and coagulated tissue. No damage was observed in the cartilage surrounding the rim. The presence of sharp demarcation between the tissue areas ablated by laser energy and the undamaged areas argues for the potential usefulness of the Er:YAG laser in surgery of cartilages.

  16. Quasi-static elastography comparison of hyaline cartilage structures

    NASA Astrophysics Data System (ADS)

    McCredie, A. J.; Stride, E.; Saffari, N.

    2009-11-01

    Joint cartilage, a load bearing structure in mammals, has only limited ability for regeneration after damage. For tissue engineers to design functional constructs, better understanding of the properties of healthy tissue is required. Joint cartilage is a specialised structure of hyaline cartilage; a poroviscoelastic solid containing fibril matrix reinforcements. Healthy joint cartilage is layered, which is thought to be important for correct tissue function. However, the behaviour of each layer during loading is poorly understood. Ultrasound elastography provides access to depth-dependent information in real-time for a sample during loading. A 15 MHz focussed transducer provided details from scatterers within a small fixed region in each sample. Quasi-static loading was applied to cartilage samples while ultrasonic signals before and during compressions were recorded. Ultrasonic signals were processed to provide time-shift profiles using a sum-squared difference method and cross-correlation. Two structures of hyaline cartilage have been tested ultrasonically and mechanically to determine method suitability for monitoring internal deformation differences under load and the effect of the layers on the global mechanical material behaviour. Results show differences in both the global mechanical properties and the ultrasonically tested strain distributions between the two structures tested. It was concluded that these differences are caused primarily by the fibril orientations.

  17. Photoactivated methods for enabling cartilage-to-cartilage tissue fixation

    NASA Astrophysics Data System (ADS)

    Sitterle, Valerie B.; Roberts, David W.

    2003-06-01

    The present study investigates whether photoactivated attachment of cartilage can provide a viable method for more effective repair of damaged articular surfaces by providing an alternative to sutures, barbs, or fibrin glues for initial fixation. Unlike artificial materials, biological constructs do not possess the initial strength for press-fitting and are instead sutured or pinned in place, typically inducing even more tissue trauma. A possible alternative involves the application of a photosensitive material, which is then photoactivated with a laser source to attach the implant and host tissues together in either a photothermal or photochemical process. The photothermal version of this method shows potential, but has been almost entirely applied to vascularized tissues. Cartilage, however, exhibits several characteristics that produce appreciable differences between applying and refining these techniques when compared to previous efforts involving vascularized tissues. Preliminary investigations involving photochemical photosensitizers based on singlet oxygen and electron transfer mechanisms are discussed, and characterization of the photodynamic effects on bulk collagen gels as a simplified model system using FTIR is performed. Previous efforts using photothermal welding applied to cartilaginous tissues are reviewed.

  18. Fractional calculus model of articular cartilage based on experimental stress-relaxation

    NASA Astrophysics Data System (ADS)

    Smyth, P. A.; Green, I.

    2015-05-01

    Articular cartilage is a unique substance that protects joints from damage and wear. Many decades of research have led to detailed biphasic and triphasic models for the intricate structure and behavior of cartilage. However, the models contain many assumptions on boundary conditions, permeability, viscosity, model size, loading, etc., that complicate the description of cartilage. For impact studies or biomimetic applications, cartilage can be studied phenomenologically to reduce modeling complexity. This work reports experimental results on the stress-relaxation of equine articular cartilage in unconfined loading. The response is described by a fractional calculus viscoelastic model, which gives storage and loss moduli as functions of frequency, rendering multiple advantages: (1) the fractional calculus model is robust, meaning that fewer constants are needed to accurately capture a wide spectrum of viscoelastic behavior compared to other viscoelastic models (e.g., Prony series), (2) in the special case where the fractional derivative is 1/2, it is shown that there is a straightforward time-domain representation, (3) the eigenvalue problem is simplified in subsequent dynamic studies, and (4) cartilage stress-relaxation can be described with as few as three constants, giving an advantage for large-scale dynamic studies that account for joint motion or impact. Moreover, the resulting storage and loss moduli can quantify healthy, damaged, or cultured cartilage, as well as artificial joints. The proposed characterization is suited for high-level analysis of multiphase materials, where the separate contribution of each phase is not desired. Potential uses of this analysis include biomimetic dampers and bearings, or artificial joints where the effective stiffness and damping are fundamental parameters.

  19. Relationships between biomarkers of cartilage, bone, synovial metabolism and knee pain provide insights into the origins of pain in early knee osteoarthritis.

    PubMed

    Ishijima, Muneaki; Watari, Taiji; Naito, Kiyohito; Kaneko, Haruka; Futami, Ippei; Yoshimura-Ishida, Kaori; Tomonaga, Akihito; Yamaguchi, Hideyo; Yamamoto, Tetsuro; Nagaoka, Isao; Kurosawa, Hisashi; Poole, Robin A; Kaneko, Kazuo

    2011-02-14

    We tested the hypothesis that there exist relationships between the onset of early stage radiographically defined knee osteoarthritis (OA), pain and changes in biomarkers of joint metabolism. Using Kellgren-Lawrence (K/L) grading early radiographic knee OA (K/L 2) was detected in 16 of 46 patients. These grades (K/L 1 is no OA and K/L 2 is early OA) were divided into two groups according to the presence or absence of persistent knee pain. Sera (s) and urines (u) were analysed with biomarkers for cartilage collagen cleavage (sC2C and uCTX-II) and synthesis (sCPII), bone resorption (uNTx) and synovitis (hyaluronic acid: sHA). sCPII decreased and sC2C/sCPII, uCTX-II/sCPII and sHA increased with onset of OA (K/L 2 versus K/L 1) irrespective of joint pain. In contrast, sC2C and uCTX-II remained unchanged in early OA patients. Of the patients with K/L grades 1 and 2 sC2C, sCPII, sHA, uNTX and uCTX-II were all significantly increased in patients with knee pain independent of grade. Among the K/L grade 2 subjects, only uCTX-II and uCTX-II/sCPII were increased in those with knee pain. In grade 1 patients both sC2C and sCPII were increased in those with knee pain. No such grade specific changes were seen for the other biomarkers including sHA. These results suggest that changes in cartilage matrix turnover detected by molecular biomarkers may reflect early changes in cartilage structure that account directly or indirectly for knee pain. Also K/L grade 1 patients with knee pain exhibit biomarker features of early OA.

  20. The Effect of Intra-articular Corticosteroids on Articular Cartilage

    PubMed Central

    Wernecke, Chloe; Braun, Hillary J.; Dragoo, Jason L.

    2015-01-01

    Background: Intra-articular (IA) corticosteroid therapy has been used for the treatment of inflammation and pain in the knee since the 1950s. Purpose: To review the current literature on the effects of IA corticosteroids on articular cartilage. Study Design: Systematic review. Methods: A MEDLINE and SCOPUS database search was performed, and studies were selected for basic science and clinical trial research on corticosteroids with direct outcome measures of cartilage health. Preliminary searches yielded 1929 articles, and final analysis includes 40 studies. Results: Methylprednisolone, dexamethasone, hydrocortisone, betamethasone, prednisolone, and triamcinolone were reported to display dose-dependent deleterious effects on cartilage morphology, histology, and viability in both in vitro and in vivo models. The beneficial animal in vivo effects of methylprednisolone, hydrocortisone, and triamcinolone occurred at low doses (usually <2-3 mg/dose or 8-12 mg/cumulative total dose in vivo), at which increased cell growth and recovery from damage was observed; the single human clinical trial indicated a beneficial effect of triamcinolone. However, at higher doses (>3 mg/dose or 18-24 mg/cumulative total dose in vivo), corticosteroids were associated with significant gross cartilage damage and chondrocyte toxicity. Dose and time dependency of corticosteroid chondrotoxicity was supported in the in vitro results, however, without clear dose thresholds. Conclusion: Corticosteroids have a time- and dose-dependent effect on articular cartilage, with beneficial effects occurring at low doses and durations and detrimental effects at high doses and durations. Clinically, beneficial effects are supported for IA administration, but the lowest efficacious dose should be used. PMID:26674652

  1. Chondroptosis in Alkaptonuric Cartilage

    PubMed Central

    Millucci, Lia; Giorgetti, Giovanna; Viti, Cecilia; Ghezzi, Lorenzo; Gambassi, Silvia; Braconi, Daniela; Marzocchi, Barbara; Paffetti, Alessandro; Lupetti, Pietro; Bernardini, Giulia; Orlandini, Maurizio

    2015-01-01

    Alkaptonuria (AKU) is a rare genetic disease that affects the entire joint. Current standard of treatment is palliative and little is known about AKU physiopathology. Chondroptosis, a peculiar type of cell death in cartilage, has been so far reported to occur in osteoarthritis, a rheumatic disease that shares some features with AKU. In the present work, we wanted to assess if chondroptosis might also occur in AKU. Electron microscopy was used to detect the morphological changes of chondrocytes in damaged cartilage distinguishing apoptosis from its variant termed chondroptosis. We adopted histological observation together with Scanning Electron Microscopy and Transmission Electron Microscopy to evaluate morphological cell changes in AKU chondrocytes. Lipid peroxidation in AKU cartilage was detected by fluorescence microscopy. Using the above‐mentioned techniques, we performed a morphological analysis and assessed that AKU chondrocytes undergo phenotypic changes and lipid oxidation, resulting in a progressive loss of articular cartilage structure and function, showing typical features of chondroptosis. To the best of our knowledge, AKU is the second chronic pathology, following osteoarthritis, where chondroptosis has been documented. Our results indicate that Golgi complex plays an important role in the apoptotic process of AKU chondrocytes and suggest a contribution of chondroptosis in AKU pathogenesis. These findings also confirm a similarity between osteoarthritis and AKU. J. Cell. Physiol. 230: 1148–1157, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:25336110

  2. Mesenchymal Stem Cells for Cartilage Regeneration of TMJ Osteoarthritis

    PubMed Central

    Li, Hongyu; Xu, Xin; Ye, Ling; Zhou, Xuedong

    2017-01-01

    Temporomandibular joint osteoarthritis (TMJ OA) is a degenerative disease, characterized by progressive cartilage degradation, subchondral bone remodeling, synovitis, and chronic pain. Due to the limited self-healing capacity in condylar cartilage, traditional clinical treatments have limited symptom-modifying and structure-modifying effects to restore impaired cartilage as well as other TMJ tissues. In recent years, stem cell-based therapy has raised much attention as an alternative approach towards tissue repair and regeneration. Mesenchymal stem cells (MSCs), derived from the bone marrow, synovium, and even umbilical cord, play a role as seed cells for the cartilage regeneration of TMJ OA. MSCs possess multilineage differentiation potential, including chondrogenic differentiation as well as osteogenic differentiation. In addition, the trophic modulations of MSCs exert anti-inflammatory and immunomodulatory effects under aberrant conditions. Furthermore, MSCs combined with appropriate scaffolds can form cartilaginous or even osseous compartments to repair damaged tissue and impaired function of TMJ. In this review, we will briefly discuss the pathogenesis of cartilage degeneration in TMJ OA and emphasize the potential sources of MSCs and novel approaches for the cartilage regeneration of TMJ OA, particularly focusing on the MSC-based therapy and tissue engineering. PMID:29123550

  3. Use magnetic resonance imaging to assess articular cartilage

    PubMed Central

    Wang, Yuanyuan; Wluka, Anita E.; Jones, Graeme; Ding, Changhai

    2012-01-01

    Magnetic resonance imaging (MRI) enables a noninvasive, three-dimensional assessment of the entire joint, simultaneously allowing the direct visualization of articular cartilage. Thus, MRI has become the imaging modality of choice in both clinical and research settings of musculoskeletal diseases, particular for osteoarthritis (OA). Although radiography, the current gold standard for the assessment of OA, has had recent significant technical advances, radiographic methods have significant limitations when used to measure disease progression. MRI allows accurate and reliable assessment of articular cartilage which is sensitive to change, providing the opportunity to better examine and understand preclinical and very subtle early abnormalities in articular cartilage, prior to the onset of radiographic disease. MRI enables quantitative (cartilage volume and thickness) and semiquantitative assessment of articular cartilage morphology, and quantitative assessment of cartilage matrix composition. Cartilage volume and defects have demonstrated adequate validity, accuracy, reliability and sensitivity to change. They are correlated to radiographic changes and clinical outcomes such as pain and joint replacement. Measures of cartilage matrix composition show promise as they seem to relate to cartilage morphology and symptoms. MRI-derived cartilage measurements provide a useful tool for exploring the effect of modifiable factors on articular cartilage prior to clinical disease and identifying the potential preventive strategies. MRI represents a useful approach to monitoring the natural history of OA and evaluating the effect of therapeutic agents. MRI assessment of articular cartilage has tremendous potential for large-scale epidemiological studies of OA progression, and for clinical trials of treatment response to disease-modifying OA drugs. PMID:22870497

  4. Comparison of biochemical cartilage imaging techniques at 3 T MRI.

    PubMed

    Rehnitz, C; Kupfer, J; Streich, N A; Burkholder, I; Schmitt, B; Lauer, L; Kauczor, H-U; Weber, M-A

    2014-10-01

    To prospectively compare chemical-exchange saturation-transfer (CEST) with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping to assess the biochemical cartilage properties of the knee. Sixty-nine subjects were prospectively included (median age, 42 years; male/female = 32/37) in three cohorts: 10 healthy volunteers, 40 patients with clinically suspected cartilage lesions, and 19 patients about 1 year after microfracture therapy. T2 mapping, dGEMRIC, and CEST were performed at a 3 T MRI unit using a 15-channel knee coil. Parameter maps were evaluated using region-of-interest analysis of healthy cartilage, areas of chondromalacia and repair tissue. Differentiation of damaged from healthy cartilage was assessed using receiver-operating characteristic (ROC) analysis. Chondromalacia grade 2-3 had significantly higher CEST values (P = 0.001), lower dGEMRIC (T1-) values (P < 0.001) and higher T2 values (P < 0.001) when compared to the normal appearing cartilage. dGEMRIC and T2 mapping correlated moderately negative (Spearman coefficient r = -0.56, P = 0.0018) and T2 mapping and CEST moderately positive (r = 0.5, P = 0.007), while dGEMRIC and CEST did not significantly correlate (r = -0.311, P = 0.07). The repair tissue revealed lower dGEMRIC values (P < 0.001) and higher CEST values (P < 0.001) with a significant negative correlation (r = -0.589, P = 0.01), whereas T2 values were not different (P = 0.54). In healthy volunteers' cartilage, CEST and dGEMRIC showed moderate positive correlation (r = 0.56), however not reaching significance (P = 0.09). ROC-analysis demonstrated non-significant differences of T2 mapping vs CEST (P = 0.14), CEST vs dGEMRIC (P = 0.89), and T2 mapping vs dGEMRIC (P = 0.12). CEST is able to detect normal and damaged cartilage and is non-inferior in distinguishing both when compared to dGEMRIC and T2 mapping. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  5. Cartilage tissue engineering approaches applicable in orthopaedic surgery: the past, the present, and the future.

    PubMed

    Khan, Wasim S; Hardingham, Timothy E

    2012-01-01

    Tissue is frequently damaged or lost in injury and disease. There has been an increasing interest in stem cell applications and tissue engineering approaches in surgical practice to deal with damaged or lost tissue. Although there have been developments in almost all surgical disciplines, the greatest advances are being made in orthopaedics, especially in cartilage repair. This is due to many factors including the familiarity with bone marrow derived mesenchymal stem cells and cartilage being a relatively simpler tissue to engineer. Unfortunately significant hurdles remain to be overcome in many areas before tissue engineering becomes more routinely used in clinical practice. In this paper we discuss the structure, function and embryology of cartilage and osteoarthritis. This is followed by a review of current treatment strategies for the repair of cartilage and the use of tissue engineering.

  6. Articular cartilage: from formation to tissue engineering.

    PubMed

    Camarero-Espinosa, Sandra; Rothen-Rutishauser, Barbara; Foster, E Johan; Weder, Christoph

    2016-05-26

    Hyaline cartilage is the nonlinear, inhomogeneous, anisotropic, poro-viscoelastic connective tissue that serves as friction-reducing and load-bearing cushion in synovial joints and is vital for mammalian skeletal movements. Due to its avascular nature, low cell density, low proliferative activity and the tendency of chondrocytes to de-differentiate, cartilage cannot regenerate after injury, wear and tear, or degeneration through common diseases such as osteoarthritis. Therefore severe damage usually requires surgical intervention. Current clinical strategies to generate new tissue include debridement, microfracture, autologous chondrocyte transplantation, and mosaicplasty. While articular cartilage was predicted to be one of the first tissues to be successfully engineered, it proved to be challenging to reproduce the complex architecture and biomechanical properties of the native tissue. Despite significant research efforts, only a limited number of studies have evolved up to the clinical trial stage. This review article summarizes the current state of cartilage tissue engineering in the context of relevant biological aspects, such as the formation and growth of hyaline cartilage, its composition, structure and biomechanical properties. Special attention is given to materials development, scaffold designs, fabrication methods, and template-cell interactions, which are of great importance to the structure and functionality of the engineered tissue.

  7. Correlation study between facet joint cartilage and intervertebral discs in early lumbar vertebral degeneration using T2, T2* and T1ρ mapping

    PubMed Central

    Zhang, Yi; Hu, Jianzhong; Duan, Chunyue; Hu, Ping; Lu, Hongbin; Peng, Xianjing

    2017-01-01

    Recent advancements in magnetic resonance imaging have allowed for the early detection of biochemical changes in intervertebral discs and articular cartilage. Here, we assessed the feasibility of axial T2, T2* and T1ρ mapping of the lumbar facet joints (LFJs) to determine correlations between cartilage and intervertebral discs (IVDs) in early lumbar vertebral degeneration. We recruited 22 volunteers and examined 202 LFJs and 101 IVDs with morphological (sagittal and axial FSE T2-weighted imaging) and axial biochemical (T2, T2* and T1ρ mapping) sequences using a 3.0T MRI scanner. IVDs were graded using the Pfirrmann system. Mapping values of LFJs were recorded according to the degeneration grades of IVDs at the same level. The feasibility of T2, T2* and T1ρ in IVDs and LFJs were analyzed by comparing these mapping values across subjects with different rates of degeneration using Kruskal-Wallis tests. A Pearson’s correlation analysis was used to compare T2, T2* and T1ρ values of discs and LFJs. We found excellent reproducibility in the T2, T2* and T1ρ values for the nucleus pulposus (NP), anterior and posterior annulus fibrosus (PAF), and LFJ cartilage (intraclass correlation coefficients 0.806–0.955). T2, T2* and T1ρ mapping (all P<0.01) had good Pfirrmann grade performances in the NP with IVD degeneration. LFJ T2* values were significantly different between grades I and IV (PL = 0.032, PR = 0.026), as were T1ρ values between grades II and III (PL = 0.002, PR = 0.006) and grades III and IV (PL = 0.006, PR = 0.001). Correlations were moderately negative for T1ρ values between LFJ cartilage and NP (rL = −0.574, rR = −0.551), and between LFJ cartilage and PAF (rL = −0.551, rR = −0.499). T1ρ values of LFJ cartilage was weakly correlated with T2 (r = 0.007) and T2* (r = −0.158) values. Overall, we show that axial T1ρ effectively assesses early LFJ cartilage degeneration. Using T1ρ analysis, we propose a link between LFJ degeneration and IVD NP or

  8. Morus alba L. Stem Extract Attenuates Pain and Articular Cartilage Damage in the Anterior Cruciate Ligament Transection-Induced Rat Model of Osteoarthritis.

    PubMed

    Khunakornvichaya, Arada; Lekmeechai, Sujinna; Pham, Phi Phuong; Himakoun, Wanwisa; Pitaksuteepong, Tasana; Morales, Noppawan Phumala; Hemstapat, Warinkarn

    2016-01-01

    This study was designed to investigate the anti-nociceptive effect of Morus alba stem extract as well as its cartilage protective effect in the anterior cruciate ligament transection (ACLT)-induced rat model of osteoarthritis (OA). The anti-nociceptive effect of this plant extract was determined by measuring hind limb weight bearing, while the severity of cartilage damage to the knee joints was evaluated using the modified Mankin grading system. Oral administration of M. alba stem extract (56 and 560 mg/kg) significantly attenuated joint pain as indicated by a significant (p < 0.05) increase in the values of percent weight borne on the operated hind limb for the OA-induced groups that received M. alba stem extract at 56 and 560 mg/kg when compared to those of the vehicle-treated OA-induced group. In addition, a significant improvement in the Mankin score was also observed in rats treated with 560 mg/kg M. alba stem extract, which was in agreement with its pain-relieving effect. The results showed that M. alba stem extract exhibited an anti-nociceptive effect as well as cartilage protection in the ACLT-induced rat model of OA, supporting its potential use as a therapeutic treatment for OA. © 2016 S. Karger AG, Basel.

  9. An Experimental and Finite Element Protocol to Investigate the Transport of Neutral and Charged Solutes across Articular Cartilage.

    PubMed

    Arbabi, Vahid; Pouran, Behdad; Zadpoor, Amir A; Weinans, Harrie

    2017-04-23

    Osteoarthritis (OA) is a debilitating disease that is associated with degeneration of articular cartilage and subchondral bone. Degeneration of articular cartilage impairs its load-bearing function substantially as it experiences tremendous chemical degradation, i.e. proteoglycan loss and collagen fibril disruption. One promising way to investigate chemical damage mechanisms during OA is to expose the cartilage specimens to an external solute and monitor the diffusion of the molecules. The degree of cartilage damage (i.e. concentration and configuration of essential macromolecules) is associated with collisional energy loss of external solutes while moving across articular cartilage creates different diffusion characteristics compared to healthy cartilage. In this study, we introduce a protocol, which consists of several steps and is based on previously developed experimental micro-Computed Tomography (micro-CT) and finite element modeling. The transport of charged and uncharged iodinated molecules is first recorded using micro-CT, which is followed by applying biphasic-solute and multiphasic finite element models to obtain diffusion coefficients and fixed charge densities across cartilage zones.

  10. The development of hyaline-cell cartilage in the head of the black molly, Poecilia sphenops. Evidence for secondary cartilage in a teleost.

    PubMed Central

    Benjamin, M

    1989-01-01

    The development of hyaline-cell cartilage attached to membrane (dentary, maxilla, nasal, lacrimal and cleithrum) and cartilage (basioccipital) bones has been studied in the viviparous black molly, Poecilia sphenops. Intramembranous ossification commences before the first appearance of hyaline cells. As hyaline-cell cartilage is densely cellular and as that attached to the dentary, maxilla and cleithrum develops from the periosteum of these membrane bones, it must be regarded as secondary cartilage according to current concepts. It is also argued that the hyaline-cell cartilage attached to the perichondral bone of the basioccipital (a cartilage bone), could also be viewed as secondary. The status of the cartilage on the nasal and lacrimal bones is less clear, for it develops, at least in part, from mucochondroid (mucous connective) tissue. This is the first definitive report of secondary cartilage in any lower vertebrate. The tissue is therefore not restricted to birds and mammals as hitherto believed, and a multipotential periosteum must have arisen early in vertebrate evolution. Images Fig. 1 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 PMID:2481666

  11. Synthesis and characterization of a lubricin mimic (mLub) to reduce friction and adhesion on the articular cartilage surface.

    PubMed

    Lawrence, Alexandra; Xu, Xin; Bible, Melissa D; Calve, Sarah; Neu, Corey P; Panitch, Alyssa

    2015-12-01

    The lubricating proteoglycan, lubricin, facilitates the remarkable low friction and wear properties of articular cartilage in the synovial joints of the body. Lubricin lines the joint surfaces and plays a protective role as a boundary lubricant in sliding contact; decreased expression of lubricin is associated with cartilage degradation and the pathogenesis of osteoarthritis. An unmet need for early osteoarthritis treatment is the development of therapeutic molecules that mimic lubricin function and yet are also resistant to enzymatic degradation common in the damaged joint. Here, we engineered a lubricin mimic (mLub) that is less susceptible to enzymatic degradation and binds to the articular surface to reduce friction. mLub was synthesized using a chondroitin sulfate backbone with type II collagen and hyaluronic acid (HA) binding peptides to promote interaction with the articular surface and synovial fluid constituents. In vitro and in vivo characterization confirmed the binding ability of mLub to isolated type II collagen and HA, and to the cartilage surface. Following trypsin treatment to the cartilage surface, application of mLub, in combination with purified or commercially available hyaluronan, reduced the coefficient of friction, and adhesion, to control levels as assessed over macro-to micro-scales by rheometry and atomic force microscopy. In vivo studies demonstrate an mLub residency time of less than 1 week. Enhanced lubrication by mLub reduces surface friction and adhesion, which may suppress the progression of degradation and cartilage loss in the joint. mLub therefore shows potential for treatment in early osteoarthritis following injury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Optical imaging of articular cartilage degeneration using near-infrared dipicolylamine probes.

    PubMed

    Hu, Xiang; Wang, Qian; Liu, Yang; Liu, Hongguang; Qin, Chunxia; Cheng, Kai; Robinson, William; Gray, Brian D; Pak, Koon Y; Yu, Aixi; Cheng, Zhen

    2014-08-01

    Articular cartilage is the hydrated tissue that lines the ends of long bones in load bearing joints and provides joints with a smooth, nearly frictionless gliding surface. However, the deterioration of articular cartilage occurs in the early stages of osteoarthritis (OA) and is clinically and radiographically silent. Here two cationic near infrared fluorescent (NIRF) dipicolylamine (DPA) probes, Cy5-DPA-Zn and Cy7-DPA-Zn, were prepared for cartilage degeneration imaging and OA early detection through binding to the anionic glycosaminoglycans (GAGs). The feasibility of NIRF dye labeled DPA-Zn probes for cartilage degeneration imaging was examined ex vivo and in vivo. The ex vivo studies showed that Cy5-DPA-Zn and Cy7-DPA-Zn not only showed the high uptake and electrostatic attractive binding to cartilage, but also sensitively reflected the change of GAGs contents. In vivo imaging study further indicated that Cy5-DPA-Zn demonstrated higher uptake and retention in young mice (high GAGs) than old mice (low GAGs) when administrated via local injection in mouse knee joints. More importantly, Cy5-DPA-Zn showed dramatic higher signals in sham joint (high GAGs) than OA side (low GAGs), through sensitive reflecting the change of GAGs in the surgical induced OA models. In summary, Cy5-DPA-Zn provides promising visual detection for early cartilage pathological degeneration in living subjects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Evaluation of focal cartilage lesions of the knee using MRI T2 mapping and delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC).

    PubMed

    Årøen, Asbjørn; Brøgger, Helga; Røtterud, Jan Harald; Sivertsen, Einar Andreas; Engebretsen, Lars; Risberg, May Arna

    2016-02-11

    Assessment of degenerative changes of the cartilage is important in knee cartilage repair surgery. Magnetic Resonance Imaging (MRI) T2 mapping and delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) are able to detect early degenerative changes. The hypothesis of the study was that cartilage surrounding a focal cartilage lesion in the knee does not possess degenerative changes. Twenty-eight consecutive patients included in a randomized controlled trial on cartilage repair were evaluated using MRI T2 mapping and dGEMRIC before cartilage treatment was initiated. Inclusion was based on disabling knee problems (Lysholm score of ≤ 75) due to an arthroscopically verified focal femoral condyle cartilage lesion. Furthermore, no major malalignments or knee ligament injuries were accepted. Mean patient age was 33 ± 9.6 years, and the mean duration of knee symptoms was 49 ± 60 months. The MRI T2 mapping and the dGEMRIC measurements were performed at three standardized regions of interest (ROIs) at the medial and lateral femoral condyle, avoiding the cartilage lesion The MRI T2 mapping of the cartilage did not demonstrate significant differences between condyles with or without cartilage lesions. The dGEMRIC results did not show significantly lower values of the affected condyle compared with the opposite condyle and the contra-lateral knee in any of the ROIs. The intraclass correlation coefficient (ICC) of the dGEMRIC readings was 0.882. The MRI T2 mapping and the dGEMRIC confirmed the arthroscopic findings that normal articular cartilage surrounded the cartilage lesion, reflecting normal variation in articular cartilage quality. NCT00885729 , registered April 17 2009.

  14. Animal models used for testing hydrogels in cartilage regeneration.

    PubMed

    Zhu, Chuntie; Wu, Qiong; Zhang, Xu; Chen, Fubo; Liu, Xiyang; Yang, Qixiang; Zhu, Lei

    2018-05-14

    Focal cartilage or osteochondral lesions can be painful and detrimental. Besides pain and limited function of joints, cartilage defect is considered as one of the leading extrinsic risk factors for osteoarthritis (OA). Thus, clinicians and scientists have paid great attention to regenerative therapeutic methods for the early treatment of cartilaginous defects. Regenerative medicine, showing great hope for regenerating cartilage tissue, rely on the combination of biodegradable scaffolds and specific biological cues, such as growth factors, adhesive factors and genetic materials. Among all biomaterials, hydrogels have emerged as promising cartilage tissue engineering scaffolds for simultaneous cell growth and drug delivery. A wide range of animal models have been applied in testing repair with hydrogels in cartilage defects. This review summarized the current animal models used to test hydrogels technologies for the regeneration of cartilage. Advantages and disadvantages in the establishment of the cartilage defect animal models among different species were emphasized, as well as feasibility of replication of diseases in animals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Cell and matrix modulation in prenatal and postnatal equine growth cartilage, zones of Ranvier and articular cartilage

    PubMed Central

    Löfgren, Maria; Ekman, Stina; Svala, Emilia; Lindahl, Anders; Ley, Cecilia; Skiöldebrand, Eva

    2014-01-01

    Formation of synovial joints includes phenotypic changes of the chondrocytes and the organisation of their extracellular matrix is regulated by different factors and signalling pathways. Increased knowledge of the normal processes involved in joint development may be used to identify similar regulatory mechanisms during pathological conditions in the joint. Samples of the distal radius were collected from prenatal and postnatal equine growth plates, zones of Ranvier and articular cartilage with the aim of identifying Notch signalling components and cells with stem cell-like characteristics and to follow changes in matrix protein localisation during joint development. The localisation of the Notch signalling components Notch1, Delta4, Hes1, Notch dysregulating protein epidermal growth factor-like domain 7 (EGFL7), the stem cell-indicating factor Stro-1 and the matrix molecules cartilage oligomeric matrix protein (COMP), fibromodulin, matrilin-1 and chondroadherin were studied using immunohistochemistry. Spatial changes in protein localisations during cartilage maturation were observed for Notch signalling components and matrix molecules, with increased pericellular localisation indicating new synthesis and involvement of these proteins in the formation of the joint. However, it was not possible to characterise the phenotype of the chondrocytes based on their surrounding matrix during normal chondrogenesis. The zone of Ranvier was identified in all horses and characterised as an area expressing Stro-1, EGFL7 and chondroadherin with an absence of COMP and Notch signalling. Stro-1 was also present in cells close to the perichondrium, in the articular cartilage and in the fetal resting zone, indicating stem cell-like characteristics of these cells. The presence of stem cells in the articular cartilage will be of importance for the repair of damaged cartilage. Perivascular chondrocytes and hypertrophic cells of the cartilage bone interface displayed positive staining for

  16. Human umbilical cord-derived mesenchymal stem cells reduce monosodium iodoacetate-induced apoptosis in cartilage

    PubMed Central

    Chang, Yu-Hsun; Wu, Kun-Chi; Liu, Hwan-Wun; Chu, Tang-Yuan; Ding, Dah-Ching

    2018-01-01

    Objective: The present study investigated the therapeutic potential and underlying mechanisms of human umbilical cord mesenchymal stem cells (HUCMSCs) on joint cartilage destruction induced by monosodium iodoacetate (MIA) in mice. Materials and Methods: HUCMSCs were tested for mesenchymal stem cell (MSC) characteristics including surface markers by flow cytometry and mesoderm differentiation (adipogenesis, osteogenesis, and chondrogenesis). Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and Western blot assay were used to evaluate MIA-induced chondrocyte apoptosis. In the in vivo study, 18 mice were divided into three groups (n = 6 each); normal saline (control), MIA-treated, and MIA-treated/HUCMSC-transplantation. Rota-Rods tests were used to evaluate MIA-induced cartilage destruction behaviors in mice. Histological changes in the mice cartilage were examined by immunohistochemistry. Results: HUCMSCs had an immunophenotype similar to bone marrow-derived MSCs and were able to differentiate into adipocytes, osteocytes, and chondrocytes. Conditioned medium of the HUCMSCs exhibited an anti-apoptotic effect and inhibited expression of caspase 3 in MIA-treated chondrocytes. HUCMSC transplantation assisted in recovery from movement impairment (from 30% on day 7 to 115% on day 14) and in regeneration and repair of cartilage damaged by MIA. (International Cartilage Repair Society score: 3.8 in the MIA group vs. 10.2 in the HUCMSC-treated group); HUCMSC transplantation ameliorated cartilage apoptosis through the caspase 3 pathway in MIA-induced cartilage destruction in mice. Conclusion: Taken together, these observations suggest that HUCMSC transplantation appears to be effective in protecting cartilage from MIA damage. PMID:29875586

  17. In situ handheld three-dimensional bioprinting for cartilage regeneration.

    PubMed

    Di Bella, Claudia; Duchi, Serena; O'Connell, Cathal D; Blanchard, Romane; Augustine, Cheryl; Yue, Zhilian; Thompson, Fletcher; Richards, Christopher; Beirne, Stephen; Onofrillo, Carmine; Bauquier, Sebastien H; Ryan, Stewart D; Pivonka, Peter; Wallace, Gordon G; Choong, Peter F

    2018-03-01

    Articular cartilage injuries experienced at an early age can lead to the development of osteoarthritis later in life. In situ three-dimensional (3D) printing is an exciting and innovative biofabrication technology that enables the surgeon to deliver tissue-engineering techniques at the time and location of need. We have created a hand-held 3D printing device (biopen) that allows the simultaneous coaxial extrusion of bioscaffold and cultured cells directly into the cartilage defect in vivo in a single-session surgery. This pilot study assessed the ability of the biopen to repair a full-thickness chondral defect and the early outcomes in cartilage regeneration, and compared these results with other treatments in a large animal model. A standardized critical-sized full-thickness chondral defect was created in the weight-bearing surface of the lateral and medial condyles of both femurs of six sheep. Each defect was treated with one of the following treatments: (i) hand-held in situ 3D printed bioscaffold using the biopen (HH group), (ii) preconstructed bench-based printed bioscaffolds (BB group), (iii) microfractures (MF group) or (iv) untreated (control, C group). At 8 weeks after surgery, macroscopic, microscopic and biomechanical tests were performed. Surgical 3D bioprinting was performed in all animals without any intra- or postoperative complication. The HH biopen allowed early cartilage regeneration. The results of this study show that real-time, in vivo bioprinting with cells and scaffold is a feasible means of delivering a regenerative medicine strategy in a large animal model to regenerate articular cartilage. Copyright © 2017 John Wiley & Sons, Ltd.

  18. T1ρ Dispersion in Articular Cartilage

    PubMed Central

    Besier, Thor F.; Pauly, John M.; Smith, R. Lane; Delp, Scott L.; Beaupre, Gary S.; Gold, Garry E.

    2015-01-01

    Objective This study assessed T1ρ relaxation dispersion, measured by magnetic resonance imaging (MRI), as a tool to noninvasively evaluate cartilage material and biochemical properties. The specific objective was to answer two questions: (1) does cartilage initial elastic modulus (E0) correlate with T1ρ dispersion effects and (2) does collagen or proteoglycan content correlate with T1ρ dispersion effects? Design Cadaveric patellae with and without visible cartilage damage on conventional MR were included. T2 and T1ρ relaxation times at 500 and 1000 Hz spin-lock field amplitudes were measured. We estimated T1ρ dispersion effects by measuring T1ρ relaxation time at 500 and 1000 Hz and T2 relaxation time and using a new tool, the ratio T1ρ/T2. Cartilage initial elastic modulus, E0, was measured from initial response of mechanical indentation creep tests. Collagen and proteoglycan contents were measured at the indentation test sites; proteoglycan content was measured by their covalently linked sulfated glycosaminoglycans (sGAG). Pearson correlation coefficients were determined, taking into account the clustering of multiple samples within a single patella specimen. Results Cartilage initial elastic modulus, E0, increased with decreasing values of T1ρ/T2 measurements at both 500 Hz (P = 0.034) and 1000 Hz (P = 0.022). 1/T1ρ relaxation time (500 Hz) increased with increasing sGAG content (P = 0.041). Conclusions T1ρ/T2 ratio, a new tool, and cartilage initial elastic modulus are both measures of water–protein interactions, are dependent on the cartilage structure, and were correlated in this study. PMID:26069714

  19. The Role of Inorganic Polyphosphates in the Formation of Bioengineered Cartilage Incorporating a Zone of Calcified Cartilage In Vitro

    NASA Astrophysics Data System (ADS)

    St-Pierre, Jean-Philippe

    The development of bioengineered cartilage for replacement of damaged articular cartilage has gained momentum in recent years. One such approach has been developed in the Kandel lab, whereby cartilage is formed by seeding primary articular chondrocytes on the top surface of a porous biodegradable calcium polyphosphate (CPP) bone substitute, permitting anchorage of the tissue within the pores of the substrate; however, the interfacial shear properties of the tissue-substrate interface of these biphasic constructs are 1 to 2 orders of magnitude lower than the native cartilage-subchondral bone interface. To overcome this limitation, a strategy was devised to generate a zone of calcified cartilage (ZCC), thereby mimicking the native architecture of the osteochondral junction; however, the ZCC was located slightly above the cartilage-CPP interface. Thus, it was hypothesized that polyphosphate released from the CPP substrate and accumulating in the tissue inhibits the formation of the ZCC at the tissue-substrate interface. Based on this information, a strategy was devised to generate biphasic constructs incorporating a properly located ZCC. This approach involved the application of a thin calcium phosphate film to the surfaces of porous CPP via a sol-gel procedure, thereby limiting the accumulation of polyphosphate in the cartilaginous tissue. This modification to the substrate surface did not negatively impact the quality of the in vitro-formed cartilage tissue or the ZCC. Interfacial shear testing of biphasic constructs demonstrated significantly improved interfacial shear properties in the presence of a properly located ZCC. These studies also led to the observation that chondrocytes produce endogenous polyphosphate and that its levels in deep zone cartilage appear inversely related to mineral deposition within the tissue. Using an in vitro model of cartilage calcification, it was demonstrated that polyphosphate levels are modulated in part by the inhibitory effects

  20. Articular Cartilage Repair of the Knee in Children and Adolescents

    PubMed Central

    Salzmann, Gian M.; Niemeyer, Philipp; Hochrein, Alfred; Stoddart, Martin J.; Angele, Peter

    2018-01-01

    Articular cartilage predominantly serves a biomechanical function, which begins in utero and further develops during growth and locomotion. With regard to its 2-tissue structure (chondrocytes and matrix), the regenerative potential of hyaline cartilage defects is limited. Children and adolescents are increasingly suffering from articular cartilage and osteochondral deficiencies. Traumatic incidents often result in damage to the joint surfaces, while repetitive microtrauma may cause osteochondritis dissecans. When compared with their adult counterparts, children and adolescents have a greater capacity to regenerate articular cartilage defects. Even so, articular cartilage injuries in this age group may predispose them to premature osteoarthritis. Consequently, surgery is indicated in young patients when conservative measures fail. The operative techniques for articular cartilage injuries traditionally performed in adults may be performed in children, although an individualized approach must be tailored according to patient and defect characteristics. Clear guidelines for defect dimension–associated techniques have not been reported. Knee joint dimensions must be considered and correlated with respect to the cartilage defect size. Particular attention must be given to the subchondral bone, which is frequently affected in children and adolescents. Articular cartilage repair techniques appear to be safe in this cohort of patients, and no differences in complication rates have been reported when compared with adult patients. Particularly, autologous chondrocyte implantation has good biological potential, especially for large-diameter joint surface defects. PMID:29568785

  1. [Cartilage regeneration surgery on the hip : What is feasible?

    PubMed

    Landgraeber, Stefan; Jäger, Marcus; Fickert, Stefan

    2017-11-01

    Localized cartilage defects at the hip are mainly caused by pre-arthritic deformities, particularly by cam-type femoroacetabular impingement (FAI). Timely elimination of symptomatic deformities can prevent further progression such as cartilage defects. As the defects mostly occur in the anterolateral part of the acetabulum, they can be easily treated either by open surgery or by arthroscopy. To date the most effective methods of treatment are bone marrow stimulation, with or without a covering of biomaterials, and autologous chondrocyte transplantation. In selected cases, readaptation of the damaged cartilage can be attempted by biological procedures. In the present article, the findings reported in current studies on these procedures are summarized and discussed in detail. An outlook is given regarding possible future treatment concepts.

  2. Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobol, Emil; Baum, Olga; Shekhter, Anatoly

    Pores are vital for functioning of avascular tissues. Laser-induced pores play an important role in the process of cartilage regeneration. The aim of any treatment for osteoarthritis is to repair hyaline-type cartilage. The aims of this study are to answer two questions: (1) How do laser-assisted pores affect the cartilaginous cells to synthesize hyaline cartilage (HC)? and (2) How can the size distribution of pores arising in the course of laser radiation be controlled? We have shown that in cartilage, the pores arise predominately near chondrocytes, which promote nutrition of cells and signal molecular transfer that activates regeneration of cartilage.more » In vivo laser treatment of damaged cartilage of miniature pig joints provides cellular transformation and formation of HC. We propose a simple model of pore formation in biopolymers that paves the way for going beyond the trial-anderror approach when choosing an optimal laser treatment regime. Our findings support the approach toward laser healing of osteoarthritis.« less

  3. Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing.

    PubMed

    Sobol, Emil; Baum, Olga; Shekhter, Anatoly; Wachsmann-Hogiu, Sebastian; Shnirelman, Alexander; Alexandrovskaya, Yulia; Sadovskyy, Ivan; Vinokur, Valerii

    2017-09-01

    Pores are vital for functioning of avascular tissues. Laser-induced pores play an important role in the process of cartilage regeneration. The aim of any treatment for osteoarthritis is to repair hyaline-type cartilage. The aims of this study are to answer two questions: (1) How do laser-assisted pores affect the cartilaginous cells to synthesize hyaline cartilage (HC)? and (2) How can the size distribution of pores arising in the course of laser radiation be controlled? We have shown that in cartilage, the pores arise predominately near chondrocytes, which promote nutrition of cells and signal molecular transfer that activates regeneration of cartilage. In vivo laser treatment of damaged cartilage of miniature pig joints provides cellular transformation and formation of HC. We propose a simple model of pore formation in biopolymers that paves the way for going beyond the trial-and-error approach when choosing an optimal laser treatment regime. Our findings support the approach toward laser healing of osteoarthritis.

  4. Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing

    NASA Astrophysics Data System (ADS)

    Sobol, Emil; Baum, Olga; Shekhter, Anatoly; Wachsmann-Hogiu, Sebastian; Shnirelman, Alexander; Alexandrovskaya, Yulia; Sadovskyy, Ivan; Vinokur, Valerii

    2017-09-01

    Pores are vital for functioning of avascular tissues. Laser-induced pores play an important role in the process of cartilage regeneration. The aim of any treatment for osteoarthritis is to repair hyaline-type cartilage. The aims of this study are to answer two questions: (1) How do laser-assisted pores affect the cartilaginous cells to synthesize hyaline cartilage (HC)? and (2) How can the size distribution of pores arising in the course of laser radiation be controlled? We have shown that in cartilage, the pores arise predominately near chondrocytes, which promote nutrition of cells and signal molecular transfer that activates regeneration of cartilage. In vivo laser treatment of damaged cartilage of miniature pig joints provides cellular transformation and formation of HC. We propose a simple model of pore formation in biopolymers that paves the way for going beyond the trial-and-error approach when choosing an optimal laser treatment regime. Our findings support the approach toward laser healing of osteoarthritis.

  5. Developmental outcomes after early prefrontal cortex damage.

    PubMed

    Eslinger, Paul J; Flaherty-Craig, Claire V; Benton, Arthur L

    2004-06-01

    The neuropsychological bases of cognitive, social, and moral development are minimally understood, with a seemingly wide chasm between developmental theories and brain maturation models. As one approach to bridging ideas in these areas, we review 10 cases of early prefrontal cortex damage from the clinical literature, highlighting overall clinical profiles and real life developmental outcomes. Based on these cases, there is preliminary evidence to support distinctive developmental differences after: (1) dorsolateral, (2) mesial, and (3) orbital-polar prefrontal lesions, for more profound impairments after bilateral damage, and possibly for recovery differences after very early vs. later childhood lesion onset. Further case and group studies are needed to confirm reliable effects of specific lesion locations, the influence of age of lesion onset, and related experiential and treatment variables in determining adult outcomes. Rather than a single underlying deficit associated with early prefrontal cortex damage, we interpret the findings to suggest that it is the altered integration and interplay of cognitive, emotional, self-regulatory, and executive/metacognitive deficits that contribute to diverse developmental frontal lobe syndromes. The findings support the fundamental importance of prefrontal cortex maturation in protracted cognitive, social-emotional, and moral development.

  6. High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential

    PubMed Central

    2014-01-01

    Current musculoskeletal imaging techniques usually target the macro-morphology of articular cartilage or use histological analysis. These techniques are able to reveal advanced osteoarthritic changes in articular cartilage but fail to give detailed information to distinguish early osteoarthritis from healthy cartilage, and this necessitates high-resolution imaging techniques measuring cells and the extracellular matrix within the multilayer structure of articular cartilage. This review provides a comprehensive exploration of the cellular components and extracellular matrix of articular cartilage as well as high-resolution imaging techniques, including magnetic resonance image, electron microscopy, confocal laser scanning microscopy, second harmonic generation microscopy, and laser scanning confocal arthroscopy, in the measurement of multilayer ultra-structures of articular cartilage. This review also provides an overview for micro-structural analysis of the main components of normal or osteoarthritic cartilage and discusses the potential and challenges associated with developing non-invasive high-resolution imaging techniques for both research and clinical diagnosis of early to late osteoarthritis. PMID:24946278

  7. Regulatory Challenges for Cartilage Repair Technologies.

    PubMed

    McGowan, Kevin B; Stiegman, Glenn

    2013-01-01

    In the United States, few Food and Drug Administration (FDA)-approved options exist for the treatment of focal cartilage and osteochondral lesions. Developers of products for cartilage repair face many challenges to obtain marketing approval from the FDA. The objective of this review is to discuss the necessary steps for FDA application and approval for a new cartilage repair product. FDA Guidance Documents, FDA Panel Meetings, scientific organization recommendations, and clinicaltrials.gov were reviewed to demonstrate the current thinking of FDA and the scientific community on the regulatory process for cartilage repair therapies. Cartilage repair therapies can receive market approval from FDA as medical devices, drugs, or biologics, and the specific classification of product can affect the nonclinical, clinical, and regulatory strategy to bring the product to market. Recent FDA guidance gives an outline of the required elements to bring a cartilage repair product to market, although these standards are often very general. As a result, companies have to carefully craft their study patient population, comparator group, and clinical endpoint to best showcase their product's attributes. In addition, regulatory strategy and manufacturing process validation need to be considered early in the clinical study process to allow for timely product approval following the completion of clinical study. Although the path to regulatory approval for a cartilage repair therapy is challenging and time-consuming, proper clinical trial planning and attention to the details can eventually save companies time and money by bringing a product to the market in the most expeditious process possible.

  8. Regulatory Challenges for Cartilage Repair Technologies

    PubMed Central

    Stiegman, Glenn

    2013-01-01

    In the United States, few Food and Drug Administration (FDA)–approved options exist for the treatment of focal cartilage and osteochondral lesions. Developers of products for cartilage repair face many challenges to obtain marketing approval from the FDA. The objective of this review is to discuss the necessary steps for FDA application and approval for a new cartilage repair product. FDA Guidance Documents, FDA Panel Meetings, scientific organization recommendations, and clinicaltrials.gov were reviewed to demonstrate the current thinking of FDA and the scientific community on the regulatory process for cartilage repair therapies. Cartilage repair therapies can receive market approval from FDA as medical devices, drugs, or biologics, and the specific classification of product can affect the nonclinical, clinical, and regulatory strategy to bring the product to market. Recent FDA guidance gives an outline of the required elements to bring a cartilage repair product to market, although these standards are often very general. As a result, companies have to carefully craft their study patient population, comparator group, and clinical endpoint to best showcase their product’s attributes. In addition, regulatory strategy and manufacturing process validation need to be considered early in the clinical study process to allow for timely product approval following the completion of clinical study. Although the path to regulatory approval for a cartilage repair therapy is challenging and time-consuming, proper clinical trial planning and attention to the details can eventually save companies time and money by bringing a product to the market in the most expeditious process possible. PMID:26069647

  9. Biophysical Stimuli: A Review of Electrical and Mechanical Stimulation in Hyaline Cartilage.

    PubMed

    Vaca-González, Juan J; Guevara, Johana M; Moncayo, Miguel A; Castro-Abril, Hector; Hata, Yoshie; Garzón-Alvarado, Diego A

    2017-09-01

    Objective Hyaline cartilage degenerative pathologies induce morphologic and biomechanical changes resulting in cartilage tissue damage. In pursuit of therapeutic options, electrical and mechanical stimulation have been proposed for improving tissue engineering approaches for cartilage repair. The purpose of this review was to highlight the effect of electrical stimulation and mechanical stimuli in chondrocyte behavior. Design Different information sources and the MEDLINE database were systematically revised to summarize the different contributions for the past 40 years. Results It has been shown that electric stimulation may increase cell proliferation and stimulate the synthesis of molecules associated with the extracellular matrix of the articular cartilage, such as collagen type II, aggrecan and glycosaminoglycans, while mechanical loads trigger anabolic and catabolic responses in chondrocytes. Conclusion The biophysical stimuli can increase cell proliferation and stimulate molecules associated with hyaline cartilage extracellular matrix maintenance.

  10. Quantitative T2(*) assessment of knee joint cartilage after running a marathon.

    PubMed

    Hesper, Tobias; Miese, Falk R; Hosalkar, Harish S; Behringer, Michael; Zilkens, Christoph; Antoch, Gerald; Krauspe, Rüdiger; Bittersohl, Bernd

    2015-02-01

    To study the effect of repetitive joint loading on the T2(*) assessment of knee joint cartilage. T2(*) mapping was performed in 10 non-professional marathon runners (mean age: 28.7±3.97 years) with no morphologically evident cartilage damage within 48h prior to and following the marathon and after a period of approximately four weeks. Bulk and zonal T2(*) values at the medial and lateral tibiofemoral compartment and the patellofemoral compartment were assessed by means of region of interest analysis. Pre- and post-marathon values were compared. There was a small increase in the T2(*) after running the marathon (30.47±5.16ms versus 29.84±4.97ms, P<0.05) while the T2(*) values before the marathon and those after the period of convalescence were similar (29.84±4.97ms versus 29.81±5.17ms, P=0.855). Regional analyses revealed lower T2(*) values in the medial tibial plateau (P<0.001). It appears that repetitive joint loading has a transient influence on the T2(*) values. However, this effect is small and probably not clinically relevant. The low T2(*) values in the medial tibial plateau may be related to functional demand or early cartilage degeneration. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Automated classification of articular cartilage surfaces based on surface texture.

    PubMed

    Stachowiak, G P; Stachowiak, G W; Podsiadlo, P

    2006-11-01

    In this study the automated classification system previously developed by the authors was used to classify articular cartilage surfaces with different degrees of wear. This automated system classifies surfaces based on their texture. Plug samples of sheep cartilage (pins) were run on stainless steel discs under various conditions using a pin-on-disc tribometer. Testing conditions were specifically designed to produce different severities of cartilage damage due to wear. Environmental scanning electron microscope (SEM) (ESEM) images of cartilage surfaces, that formed a database for pattern recognition analysis, were acquired. The ESEM images of cartilage were divided into five groups (classes), each class representing different wear conditions or wear severity. Each class was first examined and assessed visually. Next, the automated classification system (pattern recognition) was applied to all classes. The results of the automated surface texture classification were compared to those based on visual assessment of surface morphology. It was shown that the texture-based automated classification system was an efficient and accurate method of distinguishing between various cartilage surfaces generated under different wear conditions. It appears that the texture-based classification method has potential to become a useful tool in medical diagnostics.

  12. Quantitative versus semiquantitative MR imaging of cartilage in blood-induced arthritic ankles: preliminary findings.

    PubMed

    Doria, Andrea S; Zhang, Ningning; Lundin, Bjorn; Hilliard, Pamela; Man, Carina; Weiss, Ruth; Detzler, Gary; Blanchette, Victor; Moineddin, Rahim; Eckstein, Felix; Sussman, Marshall S

    2014-05-01

    Recent advances in hemophilia prophylaxis have raised the need for accurate noninvasive methods for assessment of early cartilage damage in maturing joints to guide initiation of prophylaxis. Such methods can either be semiquantitative or quantitative. Whereas semiquantitative scores are less time-consuming to be performed than quantitative methods, they are prone to subjective interpretation. To test the feasibility of a manual segmentation and a quantitative methodology for cross-sectional evaluation of articular cartilage status in growing ankles of children with blood-induced arthritis, as compared with a semiquantitative scoring system and clinical-radiographic constructs. Twelve boys, 11 with hemophilia (A, n = 9; B, n = 2) and 1 with von Willebrand disease (median age: 13; range: 6-17), underwent physical examination and MRI at 1.5 T. Two radiologists semiquantitatively scored the MRIs for cartilage pathology (surface erosions, cartilage loss) with blinding to clinical information. An experienced operator applied a validated quantitative 3-D MRI method to determine the percentage area of denuded bone (dAB) and the cartilage thickness (ThCtAB) in the joints' MRIs. Quantitative and semiquantitative MRI methods and clinical-radiographic constructs (Hemophilia Joint Health Score [HJHS], Pettersson radiograph scores) were compared. Moderate correlations were noted between erosions and dAB (r = 0.62, P = 0.03) in the talus but not in the distal tibia (P > 0.05). Whereas substantial to high correlations (r range: 0.70-0.94, P < 0.05) were observed between erosions, cartilage loss, HJHS and Pettersson scores both at the distal tibia and talus levels, moderate/borderline substantial (r range: 0.55-0.61, P < 0.05) correlations were noted between dAB/ThCtAB and clinical-radiographic constructs. Whereas the semiquantitative method of assessing cartilage status is closely associated with clinical-radiographic scores in cross-sectional studies

  13. The Effect of Exercise on the Early Stages of Mesenchymal Stromal Cell-Induced Cartilage Repair in a Rat Osteochondral Defect Model.

    PubMed

    Yamaguchi, Shoki; Aoyama, Tomoki; Ito, Akira; Nagai, Momoko; Iijima, Hirotaka; Tajino, Junichi; Zhang, Xiangkai; Kiyan, Wataru; Kuroki, Hiroshi

    2016-01-01

    The repair of articular cartilage is challenging owing to the restriction in the ability of articular cartilage to repair itself. Therefore, cell supplementation therapy is possible cartilage repair method. However, few studies have verified the efficacy and safety of cell supplementation therapy. The current study assessed the effect of exercise on early the phase of cartilage repair following cell supplementation utilizing mesenchymal stromal cell (MSC) intra-articular injection. An osteochondral defect was created on the femoral grooves bilaterally of Wistar rats. Mesenchymal stromal cells that were obtained from male Wistar rats were cultured in monolayer. After 4 weeks, MSCs were injected into the right knee joint and the rats were randomized into an exercise or no-exercise intervention group. The femurs were divided as follows: C group (no exercise without MSC injection); E group (exercise without MSC injection); M group (no exercise with MSC injection); and ME group (exercise with MSC injection). At 2, 4, and 8 weeks after the injection, the femurs were sectioned and histologically graded using the Wakitani cartilage repair scoring system. At 2 weeks after the injection, the total histological scores of the M and ME groups improved significantly compared with those of the C group. Four weeks after the injection, the scores of both the M and ME groups improved significantly. Additionally, the scores in the ME group showed a significant improvement compared to those in the M group. The improvement in the scores of the E, M, and ME groups at 8 weeks were not significantly different. The findings indicate that exercise may enhance cartilage repair after an MSC intra-articular injection. This study highlights the importance of exercise following cell transplantation therapy.

  14. Biologic injections for osteoarthritis and articular cartilage damage: can we modify disease?

    PubMed

    Shi, Weilong J; Tjoumakaris, Fotios P; Lendner, Mayan; Freedman, Kevin B

    2017-09-01

    The purpose of the present investigation is to conduct a systematic review of the literature to review the clinical results of platelet rich plasma (PRP) and mesenchymal stem cell treatments (MSC) (biologics) for articular cartilage lesions and osteoarthritis of the knee. A search of the PubMed, EMBASE, and Cochrane databases was performed to identify studies involving biologic therapy for osteoarthritis or osteochondral defects. Only Level I-III clinical trials with at least 3-month follow-up were included. Outcome data was gathered on any patient-completed surveys, 2nd look arthroscopy, follow-up imaging, biopsy/histology results, and any adverse effects of treatment. Thirty-three articles met our inclusion criteria. There was a total of 21 PRP studies in the study. All PRP studies showed clinical improvement with PRP therapies in outcomes surveys measuring patient satisfaction, pain, and function. Two studies reported no significant difference in improvement compared to hyaluronic acid (HA). Similarly, the 7/9 MSC studies showed improvement. One study found BM-MSC implantation was not significantly superior to matrix assisted chondrocyte implantation (MACI), while one reported peripheral blood stem cells (PBSC) did not significantly improve outcomes over HA. Of the three studies looking at a combination of MSC/PRP, two found MSC/PRP combination did not improve outcomes compared to MSC or PRP therapy alone. The one PRP study that had a 2nd look arthroscopy reported increases cartilage regeneration with PRP. All 8 MSC studies with follow-up MRI and all 7 MSC studies with 2nd look arthroscopy showed improvement in cartilage regeneration in terms of coverage, fill of the defect, and/or firmness of the new cartilage. Current data suggests that, of the two treatments, MSC provides more significant disease modifying effect; however, further research needs to be done to compare these two treatments and determine if there is a synergetic effect when combined.

  15. Cartilage extracellular matrix as a biomaterial for cartilage regeneration.

    PubMed

    Kiyotake, Emi A; Beck, Emily C; Detamore, Michael S

    2016-11-01

    The extracellular matrix (ECM) of various tissues possesses the model characteristics that biomaterials for tissue engineering strive to mimic; however, owing to the intricate hierarchical nature of the ECM, it has yet to be fully characterized and synthetically fabricated. Cartilage repair remains a challenge because the intrinsic properties that enable its durability and long-lasting function also impede regeneration. In the last decade, cartilage ECM has emerged as a promising biomaterial for regenerating cartilage, partly because of its potentially chondroinductive nature. As this research area of cartilage matrix-based biomaterials emerged, investigators facing similar challenges consequently developed convergent solutions in constructing robust and bioactive scaffolds. This review discusses the challenges, emerging trends, and future directions of cartilage ECM scaffolds, including a comparison between two different forms of cartilage matrix: decellularized cartilage (DCC) and devitalized cartilage (DVC). To overcome the low permeability of cartilage matrix, physical fragmentation greatly enhances decellularization, although the process itself may reduce the chondroinductivity of fabricated scaffolds. The less complex processing of a scaffold composed of DVC, which has not been decellularized, appears to have translational advantages and potential chondroinductive and mechanical advantages over DCC, without detrimental immunogenicity, to ultimately enhance cartilage repair in a clinically relevant way. © 2016 New York Academy of Sciences.

  16. Spaceflight-Relevant Challenges of Radiation and/or Reduced Weight Bearing Cause Arthritic Responses in Knee Articular Cartilage.

    PubMed

    Willey, J S; Kwok, A T; Moore, J E; Payne, V; Lindburg, C A; Balk, S A; Olson, J; Black, P J; Walb, M C; Yammani, R R; Munley, M T

    2016-10-01

    There is little known about the effect of both reduced weight bearing and exposure to radiation during spaceflight on the mechanically-sensitive cartilage lining the knee joint. In this study, we characterized cartilage damage in rat knees after periods of reduced weight bearing with/without exposure to solar-flare-relevant radiation, then cartilage recovery after return to weight bearing. Male Sprague Dawley rats (n = 120) were either hindlimb unloaded (HLU) via tail suspension or remained weight bearing in cages (GROUND). On day 5, half of the HLU and GROUND rats were 1 Gy total-body X-ray irradiated during HLU, and half were sham irradiated (SHAM), yielding 4 groups: GROUND-SHAM; GROUND-IR; HLU-SHAM; and HLU-IR. Hindlimbs were collected from half of each group of rats on day 13. The remaining rats were then removed from HLU or remained weight bearing, and hindlimbs from these rats were collected on day 62. On day 13, glycosaminoglycan (GAG) content in cartilage lining the tibial plateau and femoral condyles of HLU rats was lower than that of the GROUND animals. Likewise, on day 13, immunoreactivity of the collagen type II-degrading matrix metalloproteinase-13 (MMP-13) and of a resultant metalloproteinase-generated neoepitope VDIPEN was increased in all groups versus GROUND-SHAM. Clustering of chondrocytes indicating cartilage damage was present in all HLU and IR groups versus GROUND-SHAM on day 13. On day 62, after 49 days of reloading, the loss of GAG content was attenuated in the HLU-SHAM and HLU-IR groups, and the increased VDIPEN staining in all treatment groups was attenuated. However, the increased chondrocyte clustering remained in all treatment groups on day 62. MMP-13 activity also remained elevated in the GROUND-IR and HLU-IR groups. Increased T2 relaxation times, measured on day 62 using 7T MRI, were greater in GROUND-IR and HLU-IR knees, indicating persistent cartilage damage in the irradiated groups. Both HLU and total-body irradiation resulted in

  17. Potential for thermal damage to articular cartilage by PMMA reconstruction of a bone cavity following tumor excision: A finite element study.

    PubMed

    Radev, Boyko R; Kase, Jonathan A; Askew, Michael J; Weiner, Scott D

    2009-05-29

    Benign, giant cell tumors are often treated by intralesional excision and reconstruction with polymethylmethacrylate (PMMA) bone cement. The exothermic reaction of the in-situ polymerizing PMMA is believed to beneficially kill remaining tumor cells. However, at issue is the extent of this necrotic effect into the surrounding normal bone and the adjacent articular cartilage. Finite element analysis (ABAQUS 6.4-1) was used to determine the extent of possible thermal necrosis around prismatically shaped, PMMA implants (8-24cc in volume), placed into a peripheral, sagittally symmetric, metaphyseal defect in the proximal tibia. Temperature/exposure time conditions indicating necrotic potential during the exotherm of the polymerizing bone cement were found in regions of the cancellous bone within 3mm of the superior surface of the PMMA implant. If less than 3mm of cancellous bone existed between the PMMA implant and the subchondral bone layer, regions of the subchondral bone were also exposed to thermally necrotic conditions. However, as long as there were at least 2mm of uniform subchondral bone above the PMMA implant, the necrotic regions did not extend into the overlying articular cartilage. This was the case even when the PMMA was in direct contact with the subchondral bone. If the subchondral bone is not of sufficient thickness, or is not continuous, then care should be taken to protect the articular cartilage from thermal damage as a result of the reconstruction of the tumor cavity with PMMA bone cement.

  18. Pulsed CO2 laser for intra-articular cartilage vaporization and subchondral bone perforation in horses

    NASA Astrophysics Data System (ADS)

    Nixon, Alan J.; Roth, Jerry E.; Krook, Lennart P.

    1991-05-01

    A pulsed carbon dioxide laser was used to vaporize articular cartilage in four horses, and perforate the cartilage and subchondral bone in four horses. Both intercarpal joints were examined arthroscopically and either a 1 cm cartilage crater or a series of holes was created in the third carpal bone of one joint. The contralateral carpus served as a control. The horses were evaluated clinically for 8 weeks, euthanatized and the joints examined radiographically, grossly, and histologically. Pulsed carbon dioxide laser vaporized cartilage readily but penetrated bone poorly. Cartilage vaporization resulted in no greater swelling, heat, pain on flexion, lameness, or synovial fluid reaction than the sham procedure. Laser drilling resulted in a shallow, charred hole with a tenacious carbon residue, and in combination with the thermal damage to deeper bone, resulted in increased swelling, mild lameness and a low-grade, but persistent synovitis. Cartilage removal by laser vaporization resulted in rapid regrowth with fibrous and fibrovascular tissue and occasional regions of fibrocartilage at week 8. The subchondral bone, synovial membrane, and draining lymph nodes appeared essentially unaffected by the laser cartilage vaporization procedure. Conversely, carbon dioxide laser drilling of subchondral bone resulted in poor penetration, extensive areas of thermal necrosis of bone, and significant secondary damage to the apposing articular surface of the radial carpal bone. The carbon dioxide laser is a useful intraarticular instrument for removal of cartilage and has potential application in inaccessible regions of diarthrodial joints. It does not penetrate bone sufficiently to have application in subchondral drilling.

  19. Cell-laden hydrogels for osteochondral and cartilage tissue engineering.

    PubMed

    Yang, Jingzhou; Zhang, Yu Shrike; Yue, Kan; Khademhosseini, Ali

    2017-07-15

    Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered artificial matrices that can replace the damaged regions and promote tissue regeneration. Hydrogels are emerging as a promising class of biomaterials for both soft and hard tissue regeneration. Many critical properties of hydrogels, such as mechanical stiffness, elasticity, water content, bioactivity, and degradation, can be rationally designed and conveniently tuned by proper selection of the material and chemistry. Particularly, advances in the development of cell-laden hydrogels have opened up new possibilities for cell therapy. In this article, we describe the problems encountered in this field and review recent progress in designing cell-hydrogel hybrid constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel type, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation matrices with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing technologies (e.g. molding, bioprinting, and assembly) for fabrication of hydrogel-based osteochondral and cartilage constructs with complex compositions and microarchitectures to mimic their native counterparts. Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered biomaterials that replace the damaged regions and promote tissue regeneration. Cell-laden hydrogel systems have emerged as a promising tissue

  20. Airflow accelerates bovine and human articular cartilage drying and chondrocyte death.

    PubMed

    Paterson, S I; Amin, A K; Hall, A C

    2015-02-01

    Exposure of articular cartilage to static air results in changes to the extracellular matrix (ECM) and stimulates chondrocyte death, which may cause joint degeneration. However during open orthopaedic surgery, cartilage is often exposed to laminar airflow, which may exacerbate these damaging effects. We compared drying in static and moving air in terms of cartilage appearance, hydration and chondrocyte viability, and tested the ability of saline-saturated gauze to limit the detrimental effects of air exposure. Articular cartilage from bovine metatarsophalangeal joints (N = 50) and human femoral heads (N = 6) was exposed for 90 min to (1) static air (2) airflow (up to 0.34 m/s), or (3) airflow (0.18 m/s), covered with gauze. Following air exposure, cartilage was also rehydrated (0.9% saline; 120 min) to determine the reversibility of drying effects. The influence of airflow was assessed by studying macroscopic appearance, and quantifying superficial zone (SZ) chondrocyte viability and cartilage hydration. Airflow caused advanced changes to cartilage appearance, accelerated chondrocyte death, and increased dehydration compared to static air. These effects were prevented if cartilage was covered by saline-saturated gauze. Cartilage rehydration reversed macroscopic changes associated with drying but the chondrocyte death was not altered. Chondrocytes at the cut edge of cartilage were more sensitive to drying compared to cells distant from the edge. Airflow significantly increased articular cartilage dehydration and chondrocyte death compared to static air. As laminar airflow is routinely utilised in operating theatres, it is essential that articular cartilage is kept wet via irrigation or by covering with saline-saturated gauze to prevent chondrocyte death. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  1. BioCartilage Improves Cartilage Repair Compared With Microfracture Alone in an Equine Model of Full-Thickness Cartilage Loss.

    PubMed

    Fortier, Lisa A; Chapman, Hannah S; Pownder, Sarah L; Roller, Brandon L; Cross, Jessica A; Cook, James L; Cole, Brian J

    2016-09-01

    Microfracture (MFx) remains a dominant treatment strategy for symptomatic articular cartilage defects. Biologic scaffold adjuncts, such as particulated allograft articular cartilage (BioCartilage) combined with platelet-rich plasma (PRP), offer promise in improving clinical outcomes as an adjunct to MFx. To evaluate the safety, biocompatibility, and efficacy of BioCartilage and PRP for cartilage repair in a preclinical equine model of full-thickness articular cartilage loss. Controlled laboratory study. Two 10-mm-diameter full-thickness cartilage defects were created in 5 horses in the trochlear ridge of both knees: one proximal (high load) and another distal (low load). Complete blood counts were performed on each peripheral blood and resultant PRP sample. In each horse, one knee received MFx with BioCartilage + PRP, and the other knee received MFx alone. Horses were euthanized at 13 months. Outcomes were assessed with serial arthroscopy, magnetic resonance imaging (MRI), micro-computed tomography (micro-CT), and histology. Statistics were performed using a mixed-effects model with response variable contrasts. No complications occurred. PRP generated in all subjects yielded an increase in platelet fold of 3.8 ± 4.7. Leukocyte concentration decreased in PRP samples by an average fold change of 5 ± 0.1. The overall International Cartilage Repair Society repair score in both the proximal and distal defects was significantly higher (better) in the BioCartilage group compared with MFx (proximal BioCartilage: 7.4 ± 0.51, MFx 4.8 ± 0.1, P = .041; distal BioCartilage: 5.6 ± 0.98, MFx 2.6 ± 1.5, P = .022). BioCartilage-treated proximal defects demonstrated improved histologic scores for repair-host integration (BioCartilage, 96 ± 9; MFx, 68 ± 18; P = .02), base integration (BioCartilage, 100 ± 0; MFx, 70 ± 37; P = .04), and formation of collagen type II (BioCartilage, 82 ± 8; MFx, 58 ± 11; P = .05) compared with the positive control. On MRI, T2 relaxation time

  2. Hydrostatic Pressure in Articular Cartilage Tissue Engineering: From Chondrocytes to Tissue Regeneration

    PubMed Central

    Elder, Benjamin D.

    2009-01-01

    Cartilage has a poor intrinsic healing response, and neither the innate healing response nor current clinical treatments can restore its function. Therefore, articular cartilage tissue engineering is a promising approach for the regeneration of damaged tissue. Because cartilage is exposed to mechanical forces during joint loading, many tissue engineering strategies use exogenous stimuli to enhance the biochemical or biomechanical properties of the engineered tissue. Hydrostatic pressure (HP) is emerging as arguably one of the most important mechanical stimuli for cartilage, although no optimal treatment has been established across all culture systems. Therefore, this review evaluates prior studies on articular cartilage involving the use of HP, with a particular emphasis on the treatments that appear promising for use in future studies. Additionally, this review addresses HP bioreactor design, chondroprotective effects of HP, the use of HP for chondrogenic differentiation, the effects of high pressures, and HP mechanotransduction. PMID:19196119

  3. Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration.

    PubMed

    Elder, Benjamin D; Athanasiou, Kyriacos A

    2009-03-01

    Cartilage has a poor intrinsic healing response, and neither the innate healing response nor current clinical treatments can restore its function. Therefore, articular cartilage tissue engineering is a promising approach for the regeneration of damaged tissue. Because cartilage is exposed to mechanical forces during joint loading, many tissue engineering strategies use exogenous stimuli to enhance the biochemical or biomechanical properties of the engineered tissue. Hydrostatic pressure (HP) is emerging as arguably one of the most important mechanical stimuli for cartilage, although no optimal treatment has been established across all culture systems. Therefore, this review evaluates prior studies on articular cartilage involving the use of HP, with a particular emphasis on the treatments that appear promising for use in future studies. Additionally, this review addresses HP bioreactor design, chondroprotective effects of HP, the use of HP for chondrogenic differentiation, the effects of high pressures, and HP mechanotransduction.

  4. The junction between hyaline cartilage and engineered cartilage in rabbits.

    PubMed

    Komura, Makoto; Komura, Hiroko; Otani, Yushi; Kanamori, Yutaka; Iwanaka, Tadashi; Hoshi, Kazuto; Tsuyoshi, Takato; Tabata, Yasuhiko

    2013-06-01

    Tracheoplasty using costal cartilage grafts to enlarge the tracheal lumen was performed to treat congenital tracheal stenosis. Fibrotic granulomatous tissue was observed at the edge of grafted costal cartilage. We investigated the junction between the native hyaline cartilage and the engineered cartilage plates that were generated by auricular chondrocytes for fabricating the airway. Controlled, prospecive study. In group 1, costal cartilage from New Zealand white rabbits was collected and implanted into a space created in the cervical trachea. In group 2, chondrocytes from auricular cartilages were seeded on absorbable scaffolds. These constructs were implanted in the subcutaneous space. Engineered cartilage plates were then implanted into the trachea after 3 weeks of implantation of the constructs. The grafts in group 1 and 2 were retrieved after 4 weeks. In group 1, histological studies of the junction between the native hyaline cartilage and the implanted costal cartilage demonstrated chondrogenic tissue in four anastomoses sides out of the 10 examined. In group 2, the junction between the native trachea and the engineered cartilage showed neocartilage tissue in nine anastomoses sides out of 10. Engineered cartilage may be beneficial for engineered airways, based on the findings of the junction between the native and engineered grafts. Copyright © 2012 The American Laryngological, Rhinological and Otological Society, Inc.

  5. Magnetic resonance imaging of articular cartilage: trauma, degeneration, and repair.

    PubMed

    Potter, Hollis G; Foo, Li F

    2006-04-01

    The assessment of articular cartilage using magnetic resonance imaging has seen considerable advances in recent years. Cartilage morphologic characteristics can now be evaluated with a high degree of accuracy and reproducibility using dedicated pulse sequences, which are becoming standard at many institutions. These techniques detect clinically unsuspected traumatic cartilage lesions, allowing the physician to study their natural history with longitudinal evaluation and also to assess disease status in degenerative osteoarthritis. Magnetic resonance imaging also provides a more objective assessment of cartilage repair to augment the information obtained from more subjective clinical outcome instruments. Newly developed methods that provide detail at an ultrastructural level offer an important addition to cartilage evaluation, particularly in the detection of early alterations in the extracellular matrix. These methods have created an undeniably important role for magnetic resonance imaging in the reproducible, noninvasive, and objective evaluation and monitoring of cartilage. An overview of the advances, current techniques, and impact of magnetic resonance imaging in the setting of trauma, degenerative arthritides, and surgical treatment for cartilage injury is presented.

  6. The interaction between physical activity and amount of baseline knee cartilage.

    PubMed

    Teichtahl, Andrew J; Wang, Yuanyuan; Heritier, Stephane; Wluka, Anita E; Strauss, Boyd J; Proietto, Joseph; Dixon, John B; Jones, Graeme; Cicuttini, Flavia M

    2016-07-01

    Conflicting reports of the effect of physical activity on knee cartilage may be due to the heterogeneity of populations examined and, in particular, the underlying health of the knee joint. This study examined the influence of recreational and occupational physical activity on cartilage volume loss. A total of 250 participants with no significant musculoskeletal disease were recruited. A gender-specific median cartilage volume split was used to define people in the lowest and highest 50% of baseline cartilage volume. Baseline recreational and occupational activity was examined by questionnaire, while cartilage volume was assessed by MRI at baseline and 2.4 years later. Significant interactions were demonstrable between physical activity and cartilage volume loss based on stratification of baseline cartilage volume (all P ⩽ 0.03). There was a dose-response relationship between frequently performed baseline occupational activities and medial cartilage volume loss in both the low (B = 0.2% per annum, 95% CI: 0.0, 0.04% per annum) and high (B = -0.2% per annum, 95% CI: -0.4, 0.0% per annum) baseline cartilage volume groups (P = 0.001 for interaction). Individuals with low baseline cartilage volume who were active in their occupation and/or recreational activity had greater medial cartilage volume loss than their more inactive counterparts (2.4% per annum vs 1.5% per annum, P = 0.02). Whereas people with less baseline cartilage volume are more at risk of structural knee damage with either heavy occupational or recreational workloads or both, individuals with high baseline cartilage volume may advantageously modify their risk for knee OA by participating in more frequent occupational physical activities. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Radiocarbon dating reveals minimal collagen turnover in both healthy and osteoarthritic human cartilage.

    PubMed

    Heinemeier, Katja M; Schjerling, Peter; Heinemeier, Jan; Møller, Mathias B; Krogsgaard, Michael R; Grum-Schwensen, Tomas; Petersen, Michael M; Kjaer, Michael

    2016-07-06

    The poor regenerative capacity of articular cartilage presents a major clinical challenge and may relate to a limited turnover of the cartilage collagen matrix. However, the collagen turnover rate during life is not clear, and it is debated whether osteoarthritis (OA) can influence it. Using the carbon-14 ((14)C) bomb-pulse method, life-long replacement rates of collagen were measured in tibial plateau cartilage from 23 persons born between 1935 and1997 (15 and 8 persons with OA and healthy cartilage, respectively). The (14)C levels observed in cartilage collagen showed that, virtually, no replacement of the collagen matrix happened after skeletal maturity and that neither OA nor tissue damage, per se, influenced collagen turnover. Regional differences in (14)C content across the joint surface showed that cartilage collagen located centrally on the joint surface is formed several years earlier than collagen located peripherally. The collagen matrix of human articular cartilage is an essentially permanent structure that has no significant turnover in adults, even with the occurrence of disease. Copyright © 2016, American Association for the Advancement of Science.

  8. Chemical changes demonstrated in cartilage by synchrotron infrared microspectroscopy in an antibody-induced murine model of rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Croxford, Allyson M.; Selva Nandakumar, Kutty; Holmdahl, Rikard; Tobin, Mark J.; McNaughton, Don; Rowley, Merrill J.

    2011-06-01

    Collagen antibody-induced arthritis develops in mice following passive transfer of monoclonal antibodies (mAbs) to type II collagen (CII) and is attributed to effects of proinflammatory immune complexes, but transferred mAbs may react directly and damagingly with CII. To determine whether such mAbs cause cartilage damage in vivo in the absence of inflammation, mice lacking complement factor 5 that do not develop joint inflammation were injected intravenously with two arthritogenic mAbs to CII, M2139 and CIIC1. Paws were collected at day 3, decalcified, paraffin embedded, and 5-μm sections were examined using standard histology and synchrotron Fourier-transform infrared microspectroscopy (FTIRM). None of the mice injected with mAb showed visual or histological evidence of inflammation but there were histological changes in the articular cartilage including loss of proteoglycan and altered chondrocyte morphology. Findings using FTIRM at high lateral resolution revealed loss of collagen and the appearance of a new peak at 1635 cm-1 at the surface of the cartilage interpreted as cellular activation. Thus, we demonstrate the utility of synchrotron FTIRM for examining chemical changes in diseased cartilage at the microscopic level and establish that arthritogenic mAbs to CII do cause cartilage damage in vivo in the absence of inflammation.

  9. Which cartilage is regenerated, hyaline cartilage or fibrocartilage? Non-invasive ultrasonic evaluation of tissue-engineered cartilage.

    PubMed

    Hattori, K; Takakura, Y; Ohgushi, H; Habata, T; Uematsu, K; Takenaka, M; Ikeuchi, K

    2004-09-01

    To investigate ultrasonic evaluation methods for detecting whether the repair tissue is hyaline cartilage or fibrocartilage in new cartilage regeneration therapy. We examined four experimental rabbit models: a spontaneous repair model (group S), a large cartilage defect model (group L), a periosteal graft model (group P) and a tissue-engineered cartilage regeneration model (group T). From the resulting ultrasonic evaluation, we used %MM (the maximum magnitude of the measurement area divided by that of the intact cartilage) as a quantitative index of cartilage regeneration. The results of the ultrasonic evaluation were compared with the histological findings and histological score. The %MM values were 61.1 +/- 16.5% in group S, 29.8 +/- 15.1% in group L, 36.3 +/- 18.3% in group P and 76.5 +/- 18.7% in group T. The results showed a strong similarity to the histological scoring. The ultrasonic examination showed that all the hyaline-like cartilage in groups S and T had a high %MM (more than 60%). Therefore, we could define the borderline between the two types of regenerated cartilage by the %MM.

  10. Measuring joint cartilage thickness using reflectance spectroscopy non-invasively and in real-time

    NASA Astrophysics Data System (ADS)

    Canpolat, Murat; Denkceken, Tuba; Karagol, Cosar; Aydin, Ahmet T.

    2011-03-01

    Joint cartilage thickness has been estimated using spatially resolved steady-state reflectance spectroscopy noninvasively and in-real time. The system consists of a miniature UV-VIS spectrometer, a halogen tungsten light source, and an optical fiber probe with six 400 um diameter fibers. The first fiber was used to deliver the light to the cartilage and the other five were used to detect back-reflected diffused light. Distances from the detector fibers to the source fiber were 0.8 mm, 1.6 mm, 2.4 mm, 3.2 mm and 4 mm. Spectra of back-reflected diffused light were taken on 40 bovine patella cartilages. The samples were grouped into four; the first group was the control group with undamaged cartilages, in the 2nd, 3rd and 4th groups cartilage thickness was reduced approximately 25%, 50% and 100%, respectively. A correlation between cartilage thicknesses and hemoglobin absorption of light in the wavelength range of 500 nm- 600 nm for source-detector pairs was found. The proposed system with an optical fiber probe less than 4 mm in diameter has the potential for cartilage thickness assessment through an arthroscopy channel in real-time without damaging the cartilage.

  11. Prestructural cartilage assessment using MRI.

    PubMed

    Link, Thomas M; Neumann, Jan; Li, Xiaojuan

    2017-04-01

    Cartilage loss is irreversible, and to date, no effective pharmacotherapies are available to protect or regenerate cartilage. Quantitative prestructural/compositional MR imaging techniques have been developed to characterize the cartilage matrix quality at a stage where abnormal findings are early and potentially reversible, allowing intervention to halt disease progression. The goal of this article is to critically review currently available technologies, present the basic concept behind these techniques, but also to investigate their suitability as imaging biomarkers including their validity, reproducibility, risk prediction and monitoring of therapy. Moreover, we highlighted important clinical applications. This review article focuses on the currently most relevant and clinically applicable technologies, such as T2 mapping, T2*, T1ρ, delayed gadolinium enhanced MRI of cartilage (dGEMRIC), sodium imaging and glycosaminoglycan chemical exchange saturation transfer (gagCEST). To date, most information is available for T2 and T1ρ mapping. dGEMRIC has also been used in multiple clinical studies, although it requires Gd contrast administration. Sodium imaging and gagCEST are promising technologies but are dependent on high field strength and sophisticated software and hardware. 5 J. Magn. Reson. Imaging 2017;45:949-965. © 2016 International Society for Magnetic Resonance in Medicine.

  12. The Effect of Exercise on the Early Stages of Mesenchymal Stromal Cell-Induced Cartilage Repair in a Rat Osteochondral Defect Model

    PubMed Central

    Yamaguchi, Shoki; Aoyama, Tomoki; Ito, Akira; Nagai, Momoko; Iijima, Hirotaka; Tajino, Junichi; Zhang, Xiangkai; Kiyan, Wataru; Kuroki, Hiroshi

    2016-01-01

    The repair of articular cartilage is challenging owing to the restriction in the ability of articular cartilage to repair itself. Therefore, cell supplementation therapy is possible cartilage repair method. However, few studies have verified the efficacy and safety of cell supplementation therapy. The current study assessed the effect of exercise on early the phase of cartilage repair following cell supplementation utilizing mesenchymal stromal cell (MSC) intra-articular injection. An osteochondral defect was created on the femoral grooves bilaterally of Wistar rats. Mesenchymal stromal cells that were obtained from male Wistar rats were cultured in monolayer. After 4 weeks, MSCs were injected into the right knee joint and the rats were randomized into an exercise or no-exercise intervention group. The femurs were divided as follows: C group (no exercise without MSC injection); E group (exercise without MSC injection); M group (no exercise with MSC injection); and ME group (exercise with MSC injection). At 2, 4, and 8 weeks after the injection, the femurs were sectioned and histologically graded using the Wakitani cartilage repair scoring system. At 2 weeks after the injection, the total histological scores of the M and ME groups improved significantly compared with those of the C group. Four weeks after the injection, the scores of both the M and ME groups improved significantly. Additionally, the scores in the ME group showed a significant improvement compared to those in the M group. The improvement in the scores of the E, M, and ME groups at 8 weeks were not significantly different. The findings indicate that exercise may enhance cartilage repair after an MSC intra-articular injection. This study highlights the importance of exercise following cell transplantation therapy. PMID:26968036

  13. Relationships Between Quantitative Pulse-Echo Ultrasound Parameters from the Superficial Zone of the Human Articular Cartilage and Changes in Surface Roughness, Collagen Content or Collagen Orientation Caused by Early Degeneration.

    PubMed

    Kiyan, Wataru; Ito, Akira; Nakagawa, Yasuaki; Mukai, Shogo; Mori, Koji; Arai, Tatsuo; Uchino, Eiichiro; Okuno, Yasushi; Kuroki, Hiroshi

    2017-08-01

    We aimed to quantitatively investigate the relationship between amplitude-based pulse-echo ultrasound parameters and early degeneration of the knee articular cartilage. Twenty samples from six human femoral condyles judged as grade 0 or 1 according to International Cartilage Repair Society grading were assessed using a 15-MHz pulsed-ultrasound 3-D scanning system ex vivo. Surface roughness (R q ), average collagen content (A 1 ) and collagen orientation (A 12 ) in the superficial zone of the cartilage were measured via laser microscopy and Fourier transform infrared imaging spectroscopy. Multiple regression analysis with a linear mixed-effects model (LMM) revealed that a time-domain reflection coefficient at the cartilage surface (R c ) had a significant coefficient of determination with R q and A 12 (R LMMm 2 =0.79); however, R c did not correlate with A 1 . Concerning the collagen characteristic in the superficial zone, R c was found to be a sensitive indicator reflecting collagen disorganization, not collagen content, for the early degeneration samples. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. CORRELATION OF ARTICULAR CARTILAGE THICKNESS MEASUREMENTS MADE WITH MAGNETIC RESONANCE IMAGING, MAGNETIC RESONANCE ARTHROGRAPHY, AND COMPUTED TOMOGRAPHIC ARTHROGRAPHY WITH GROSS ARTICULAR CARTILAGE THICKNESS IN THE EQUINE METACARPOPHALANGEAL JOINT.

    PubMed

    Porter, Erin G; Winter, Matthew D; Sheppard, Barbara J; Berry, Clifford R; Hernandez, Jorge A

    2016-09-01

    Osteoarthritis of the metacarpophalangeal joint is common cause of lameness in equine athletes, and is hallmarked by articular cartilage damage. An accurate, noninvasive method for measuring cartilage thickness would be beneficial to screen for cartilage injury and allow for prompt initiation of interventional therapy. The objective of this methods comparison study was to compare computed tomographic arthrography (CTA), magnetic resonance imaging (MRI), and magnetic resonance arthrography (MRA) measurements of articular cartilage thickness with gross measurements in the metacarpophalangeal joint of Thoroughbred horses. Fourteen cadaveric, equine thoracic limbs were included. Limbs were excluded from the study if pathology of the metacarpophalangeal articular cartilage was observed with any imaging modality. Articular cartilage thickness was measured in nine regions of the third metacarpal bone and proximal phalanx on sagittal plane MRI sequences. After intra-articular contrast administration, the measurements were repeated on sagittal plane MRA and sagittal CTA reformations. In an effort to increase cartilage conspicuity, the volume of intra-articular contrast was increased from 14.5 ml, to maximal distention for the second set of seven limbs. Mean and standard deviation values were calculated, and linear regression analysis was used to determine correlations between gross and imaging measurements of cartilage thickness. This study failed to identify one imaging test that consistently yielded measurements correlating with gross cartilage thickness. Even with the use of intra-articular contrast, cartilage surfaces were difficult to differentiate in regions where the cartilage surfaces of the proximal phalanx and third metacarpal bone were in close contact with each other. © 2016 American College of Veterinary Radiology.

  15. Rebamipide attenuates pain severity and cartilage degeneration in a rat model of osteoarthritis by downregulating oxidative damage and catabolic activity in chondrocytes.

    PubMed

    Moon, S-J; Woo, Y-J; Jeong, J-H; Park, M-K; Oh, H-J; Park, J-S; Kim, E-K; Cho, M-L; Park, S-H; Kim, H-Y; Min, J-K

    2012-11-01

    The objectives were to investigate the in vivo effects of treatment with rebamipide on pain severity and cartilage degeneration in an experimental model of rat osteoarthritis (OA) and to explore its mode of action. OA was induced in rats by intra-articular injection of monosodium iodoacetate (MIA). Oral administration of rebamipide was initiated on the day of MIA injection, 3 or 7 days after. Limb nociception was assessed by measuring the paw withdrawal latency and threshold. We analyzed the samples macroscopically and histomorphologically, and used immunohistochemistry to investigate the expression of matrix metalloproteinase-13 (MMP-13), interleukin-1β (IL-1β), hypoxia-inducible factor-2α (HIF-2α), inducible nitric oxide synthase (iNOS), and nitrotyrosine in knee joints. Real-time quantitative reverse transcription-polymerase chain reaction was used to quantify the mRNA for catabolic and anticatabolic factors in human OA chondrocytes. Rebamipide showed an antinociceptive property and attenuated cartilage degeneration. Rebamipide reduced the expression of MMP-13, IL-1β, HIF-2α, iNOS, and nitrotyrosine in OA cartilage in a dose-dependent manner. Nitrotyrosine expression in the subchondral bone region was decreased in the rebamipide-treated joints. mRNA expression of MMP-1, -3, and -13, and ADAMTS5 was attenuated in IL-1β-stimulated human OA chondrocytes. By contrast, rebamipide induced the mRNA expression of tissue inhibitor of metalloproteinase-1 and -3. The results show the inhibitory effects of rebamipide on pain production and cartilage degeneration in experimentally induced OA. The suppression of oxidative damage and the restoration of extracellular matrix homeostasis of articular chondrocyte suggest that rebamipide is a potential therapeutic strategy for OA. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  16. Three-Dimensional Printing Articular Cartilage: Recapitulating the Complexity of Native Tissue.

    PubMed

    Guo, Ting; Lembong, Josephine; Zhang, Lijie Grace; Fisher, John P

    2017-06-01

    In the past few decades, the field of tissue engineering combined with rapid prototyping (RP) techniques has been successful in creating biological substitutes that mimic tissues. Its applications in regenerative medicine have drawn efforts in research from various scientific fields, diagnostics, and clinical translation to therapies. While some areas of therapeutics are well developed, such as skin replacement, many others such as cartilage repair can still greatly benefit from tissue engineering and RP due to the low success and/or inefficiency of current existing, often surgical treatments. Through fabrication of complex scaffolds and development of advanced materials, RP provides a new avenue for cartilage repair. Computer-aided design and three-dimensional (3D) printing allow the fabrication of modeled cartilage scaffolds for repair and regeneration of damaged cartilage tissues. Specifically, the various processes of 3D printing will be discussed in details, both cellular and acellular techniques, covering the different materials, geometries, and operational printing conditions for the development of tissue-engineered articular cartilage. Finally, we conclude with some insights on future applications and challenges related to this technology, especially using 3D printing techniques to recapitulate the complexity of native structure for advanced cartilage regeneration.

  17. Pannus inflammation in sacroiliitis following immune pathological injury and radiological structural damage: a study of 193 patients with spondyloarthritis.

    PubMed

    Wang, Dan Min; Lin, Ling; Peng, Jian Hua; Gong, Yao; Hou, Zhi Duo; Chen, Su Biao; Xiao, Zheng Yu

    2018-06-08

    The pathogenesis of sacroiliitis is unclear; therefore, we aimed to systematically study the immunopathology of sacroiliitis in patients with axial spondyloarthritis (axSpA), and explore the relationship between pannus formation, inflammation, and the structural damage caused by sacroiliitis. Fine needle aspiration biopsy of the sacroiliac joint (SIJ) was performed in 193 patients with axSpA. Clinical, laboratory, and imaging data were collected at baseline and during the follow up. Immunohistochemistry analysis was performed to detect CD34+ microvessels, CD68+ osteoclasts/macrophages, vascular endothelial growth factor (VEGF), metalloproteinase-3 (MMP-3), tumor necrosis factor-α (TNF-α), and caspase-3. Autopsy subjects were used as controls. In early sacroiliitis (grade 0-1) all pathological features could be observed, with the most common being subchondral pannus formation. Among the 193 patients, 98 were followed up for 1-13 years (mean 3.6 years); 63.3% had radiological progression at the endpoint. Multiple regression analysis showed that cartilage pannus invasion (OR 2.99, P = 0.010) and endochondral ossification (OR 3.97, P = 0.049) at baseline were risk factors for radiological structural damage. Compared to SIJ controls, the subchondral microvessel density, number of CD68+ multinuclear osteoclasts, and the levels of VEGF, caspase-3, MMP-3, and TNF-α expressed at the interface of the bone and cartilage were significantly higher in patients with sacroiliitis. Subchondral fibrovascular tissue formation is the most important pathological feature in early sacroiliitis. The existence of cartilage pannus invasion or endochondral ossification at baseline can predict radiological structural damage during the follow up.

  18. Intra-articular TSG-6 delivery from heparin-based microparticles reduces cartilage damage in a rat model of osteoarthritis.

    PubMed

    Tellier, Liane E; Treviño, Elda A; Brimeyer, Alexandra L; Reece, David S; Willett, Nick J; Guldberg, Robert E; Temenoff, Johnna S

    2018-05-01

    As a potential treatment for osteoarthritis (OA), we have developed injectable and hydrolytically degradable heparin-based biomaterials with tunable sulfation for the intra-articular delivery of tumor necrosis factor-alpha stimulated gene-6 (TSG-6), a protein known to inhibit plasmin which may degrade extracellular matrix within OA joints. We first assessed the effect of heparin sulfation on TSG-6 anti-plasmin activity and found that while fully sulfated (Hep) and heparin desulfated at only the N position (Hep-N) significantly enhanced TSG-6 bioactivity in vitro, fully desulfated heparin (Hep-) had no effect, indicating that heparin sulfation plays a significant role in modulating TSG-6 bioactivity. Next, TSG-6 loaded, degradable 10 wt% Hep-N microparticles (MPs) were delivered via intra-articular injection into the knee at 1, 7, and 15 days following medial meniscal transection (MMT) injury in a rat model. After 21 days, cartilage thickness, volume, and attenuation were significantly increased with soluble TSG-6, indicating degenerative changes. In contrast, no significant differences were observed with TSG-6 loaded MP treatment, demonstrating that TSG-6 loaded MPs reduced cartilage damage following MMT injury. Ultimately, our results indicate that Hep-N can enhance TSG-6 anti-plasmin activity and that Hep-N-based biomaterials may be an effective method for TSG-6 delivery to treat OA.

  19. A novel in vitro bovine cartilage punch model for assessing the regeneration of focal cartilage defects with biocompatible bacterial nanocellulose.

    PubMed

    Pretzel, David; Linss, Stefanie; Ahrem, Hannes; Endres, Michaela; Kaps, Christian; Klemm, Dieter; Kinne, Raimund W

    2013-01-01

    protective effects on matrix integrity, effects on other parameters were limited. The present bovine cartilage punch model represents a robust, reproducible and highly suitable tool for the long-term culture of cartilage, maintaining matrix integrity and homoeostasis. As an alternative to animal studies, this model may closely reflect early stages of cartilage regeneration, allowing the evaluation of promising biomaterials with/without chondrogenic factors.

  20. Quantitative Mapping of Human Cartilage at 3.0T

    PubMed Central

    Wang, Ligong; Regatte, Ravinder R.

    2014-01-01

    Rationale and Objectives The objectives of this study were to measure the parallel changes of transverse relaxation times (T2), spin-lattice relaxation time in the rotating frame (T1ρ), and the delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC)-T1 mapping of human knee cartilage in detecting cartilage degeneration at 3.0T. Materials and Methods Healthy volunteers (n = 10, mean age 35.6 years) and patients (n = 10, mean age 65 years) with early knee osteoarthritis (OA) were scanned at 3.0T MR using an 8-channel phased array knee coil (transmit–receive). Quantitative assessment of T2, T1ρ, and dGEMRIC-T1 values (global and regional) were correlated between asymptomatic subjects and patients with OA. Results The average T2 (39 ± 2 milliseconds [mean ± standard deviation] vs. 47 ± 6 milliseconds, P < .0007) and T1ρ (48 ± 3 vs. 62 ± 8 milliseconds, P < .0002) values were all markedly increased in all patients with OA when compared to healthy volunteers. The average dGEMRIC-T1 (1244 ± 134 vs. 643 ± 227 milliseconds, P < .000002) value was sharply decreased after intravenous administration of gadolinium contrast agent in all patients with OA. Conclusions The research results showed that all the T2, T1ρ, and dGEMRIC-T1 relaxation times varied with the cartilage degeneration. The dGEMRIC-T1 and T1ρ relaxation times seem to be more sensitive than T2 in detecting early cartilage degeneration. The preliminary study demonstrated that the early biochemical changes in knee osteoarthritic patients could be detected noninvasively in in vivo using T1ρ and dGEMRIC-T1 mapping. PMID:24594416

  1. The Bioactivity of Cartilage Extracellular Matrix in Articular Cartilage Regeneration

    PubMed Central

    Sutherland, Amanda J.; Converse, Gabriel L.; Hopkins, Richard A.; Detamore, Michael S.

    2014-01-01

    Cartilage matrix is a particularly promising acellular material for cartilage regeneration given the evidence supporting its chondroinductive character. The ‘raw materials’ of cartilage matrix can serve as building blocks and signals for enhanced tissue regeneration. These matrices can be created by chemical or physical methods: physical methods disrupt cellular membranes and nuclei but may not fully remove all cell components and DNA, whereas chemical methods when combined with physical methods are particularly effective in fully decellularizing such materials. Critical endpoints include no detectable residual DNA or immunogenic antigens. It is important to first delineate between the sources of the cartilage matrix, i.e., derived from matrix produced by cells in vitro or from native tissue, and then to further characterize the cartilage matrix based on the processing method, i.e., decellularization or devitalization. With these distinctions, four types of cartilage matrices exist: decellularized native cartilage (DCC), devitalized native cartilage (DVC), decellularized cell derived matrix (DCCM), and devitalized cell derived matrix (DVCM). Delivery of cartilage matrix may be a straightforward approach without the need for additional cells or growth factors. Without additional biological additives, cartilage matrix may be attractive from a regulatory and commercialization standpoint. Source and delivery method are important considerations for clinical translation. Only one currently marketed cartilage matrix medical device is decellularized, although trends in filed patents suggest additional decellularized products may be available in the future. To choose the most relevant source and processing for cartilage matrix, qualifying testing needs to include targeting the desired application, optimizing delivery of the material, identify relevant FDA regulations, assess availability of raw materials, and immunogenic properties of the product. PMID:25044502

  2. Osteoarthritic bone marrow lesions almost exclusively colocate with denuded cartilage: a 3D study using data from the Osteoarthritis Initiative.

    PubMed

    Bowes, Michael A; McLure, Stewart Wd; Wolstenholme, Christopher Bh; Vincent, Graham R; Williams, Sophie; Grainger, Andrew; Conaghan, Philip G

    2016-10-01

    The aetiology of bone marrow lesions (BMLs) in knee osteoarthritis (OA) is poorly understood. We employed three-dimensional (3D) active appearance modelling (AAM) to study the spatial distribution of BMLs in an OA cohort and compare this with the distribution of denuded cartilage. Participants were selected from the Osteoarthritis Initiative progressor cohort with Kellgren-Lawrence scores ≥2, medial joint space narrowing and osteophytes. OA and ligamentous BMLs and articular cartilage were manually segmented. Bone surfaces were automatically segmented by AAM. Cartilage thickness of <0.5 mm was defined as denuded and ≥0.5-1.5 mm as severely damaged. Non-quantitative assessment and 3D population maps were used for analysing the comparative position of BMLs and damaged cartilage. 88 participants were included, 45 men, mean age (SD) was 61.3 (9.9) years and mean body mass index was 31.1 (4.6) kg/m(2). 227 OA and 107 ligamentous BMLs were identified in 86.4% and 73.8% of participants; OA BMLs were larger. Denuded cartilage was predominantly confined to a central region on the medial femur and tibia, and the lateral facet of the trochlear femur. 67% of BMLs were colocated with denuded cartilage and a further 21% with severe cartilage damage. In the remaining 12%, 25/28 were associated with cartilage defects. 74% of all BMLs were directly opposing (kissing) another BML across the joint. There was an almost exclusive relationship between the location of OA BML and cartilage denudation, which itself had a clear spatial pattern. We propose that OA, ligamentous and traumatic BMLs represent a bone response to abnormal loading. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  3. The biospeckle method for early damage detection of fruits

    NASA Astrophysics Data System (ADS)

    Yan, Lei; Liu, Jiaxin; Men, Sen

    2017-07-01

    In the field of fruits damage assessment, biospeckle activity is considered relevant to quality properties of plants, such us damage, aging, or diseases. In this paper, biospeckle technique was applied to identify the early bruising of apples. Then a total of 50 undamaged apples were determined to be artificially bruised as samples. Three methods (Fujii, GD, and LSTCA) were used to extract effective information from these speckle images for measuring the intensity of biospeckle activity. The results showed that for all of three methods, the biospeckle activities of the undamaged areas in apple were similar; after the hit, the damaged area showed a lower biospeckle activity. It can be concluded that early bruising can be identified by biospeckle technique.

  4. Cartilage immunoprivilege depends on donor source and lesion location.

    PubMed

    Arzi, B; DuRaine, G D; Lee, C A; Huey, D J; Borjesson, D L; Murphy, B G; Hu, J C Y; Baumgarth, N; Athanasiou, K A

    2015-09-01

    The ability to repair damaged cartilage is a major goal of musculoskeletal tissue engineering. Allogeneic (same species, different individual) or xenogeneic (different species) sources can provide an attractive source of chondrocytes for cartilage tissue engineering, since autologous (same individual) cells are scarce. Immune rejection of non-autologous hyaline articular cartilage has seldom been considered due to the popular notion of "cartilage immunoprivilege". The objective of this study was to determine the suitability of allogeneic and xenogeneic engineered neocartilage tissue for cartilage repair. To address this, scaffold-free tissue engineered articular cartilage of syngeneic (same genetic background), allogeneic, and xenogeneic origin were implanted into two different locations of the rabbit knee (n=3 per group/location). Xenogeneic engineered cartilage and control xenogeneic chondral explants provoked profound innate inflammatory and adaptive cellular responses, regardless of transplant location. Cytological quantification of immune cells showed that, while allogeneic neocartilage elicited an immune response in the patella, negligible responses were observed when implanted into the trochlea; instead the responses were comparable to microfracture-treated empty defect controls. Allogeneic neocartilage survived within the trochlea implant site and demonstrated graft integration into the underlying bone. In conclusion, the knee joint cartilage does not represent an immune privileged site, strongly rejecting xenogeneic but not allogeneic chondrocytes in a location-dependent fashion. This difference in location-dependent survival of allogeneic tissue may be associated with proximity to the synovium. Through a series of in vivo studies this research demonstrates that articular cartilage is not fully immunoprivileged. In addition, we now show that anatomical location of the defect, even within the same joint compartment, strongly influences the degree of the

  5. Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering.

    PubMed

    Choi, Jane Ru; Yong, Kar Wey; Choi, Jean Yu

    2018-03-01

    Today, articular cartilage damage is a major health problem, affecting people of all ages. The existing conventional articular cartilage repair techniques, such as autologous chondrocyte implantation (ACI), microfracture, and mosaicplasty, have many shortcomings which negatively affect their clinical outcomes. Therefore, it is essential to develop an alternative and efficient articular repair technique that can address those shortcomings. Cartilage tissue engineering, which aims to create a tissue-engineered cartilage derived from human mesenchymal stem cells (MSCs), shows great promise for improving articular cartilage defect therapy. However, the use of tissue-engineered cartilage for the clinical therapy of articular cartilage defect still remains challenging. Despite the importance of mechanical loading to create a functional cartilage has been well demonstrated, the specific type of mechanical loading and its optimal loading regime is still under investigation. This review summarizes the most recent advances in the effects of mechanical loading on human MSCs. First, the existing conventional articular repair techniques and their shortcomings are highlighted. The important parameters for the evaluation of the tissue-engineered cartilage, including chondrogenic and hypertrophic differentiation of human MSCs are briefly discussed. The influence of mechanical loading on human MSCs is subsequently reviewed and the possible mechanotransduction signaling is highlighted. The development of non-hypertrophic chondrogenesis in response to the changing mechanical microenvironment will aid in the establishment of a tissue-engineered cartilage for efficient articular cartilage repair. © 2017 Wiley Periodicals, Inc.

  6. CARTILAGE OLIGOMERIC MATRIX PROTEIN ENHANCES MATRIX ASSEMBLY DURING CHONDROGENESIS OF HUMAN MESENCHYMAL STEM CELLS

    PubMed Central

    Haleem-Smith, Hana; Calderon, Raul; Song, Yingjie; Tuan, Rocky S.; Chen, Faye H.

    2011-01-01

    Cartilage oligomeric matrix protein/thrombospondin-5 (COMP/TSP5) is an abundant cartilage extracellular matrix (ECM) protein that interacts with major cartilage ECM components, including aggrecan and collagens. To test our hypothesis that COMP/TSP5 functions in the assembly of the ECM during cartilage morphogenesis, we have employed mesenchymal stem cell (MSC) chondrogenesis in vitro as a model to examine the effects of COMP over-expression on neo-cartilage formation. Human bone marrow-derived MSCs were transfected with either full-length COMP cDNA or control plasmid, followed by chondrogenic induction in three-dimensional pellet or alginate-hydrogel culture. MSC chondrogenesis and ECM production was estimated based on quantitation of sulfated glycosaminoglycan (sGAG) accumulation, immunohistochemistry of the presence and distribution of cartilage ECM proteins, and real-time RT-PCR analyis of mRNA expression of cartilage markers. Our results showed that COMP over-expression resulted in increased total sGAG content during the early phase of MSC chondrogenesis, and increased immuno-detectable levels of aggrecan and collagen type II in the ECM of COMP-transfected pellet and alginate cultures, indicating more abundant cartilaginous matrix. COMP transfection did not significantly increase the transcript levels of the early chondrogenic marker, Sox9, or aggrecan, suggesting that enhancement of MSC cartilage ECM was effected at post-transcriptional levels. These findings strongly suggest that COMP functions in mesenchymal chondrogenesis by enhancing cartilage ECM organization and assembly. The action of COMP is most likely mediated not via direct changes in cartilage matrix gene expression but via interactions of COMP with other cartilage ECM proteins, such as aggrecan and collagens, that result in enhanced assembly and retention. PMID:22095699

  7. In situ hybridization and immunohistochemistry of bone sialoprotein and secreted phosphoprotein 1 (osteopontin) in the developing mouse mandibular condylar cartilage compared with limb bud cartilage

    PubMed Central

    Shibata, Shunichi; Fukada, Kenji; Suzuki, Shoichi; Ogawa, Takuya; Yamashita, Yasuo

    2002-01-01

    Mandibular condylar cartilage is often classified as a secondary cartilage, differing from the primary cartilaginous skeleton in its rapid progress from progenitor cells to hypertrophic chondrocytes. In this study we used in situ hybridization and immunohistochemistry to investigate whether the formation of primary (tibial) and secondary (condylar) cartilage also differs with respect to the expression of two major non-collagenous glycoproteins of bone matrix, bone sialoprotein (BSP) and secreted phosphoprotein 1 (Spp1, osteopontin). The mRNAs for both molecules were never expressed until hypertrophic chondrocytes appeared. In the tibial cartilage, hypertrophic chondrocytes first appeared at E14 and the expression of BSP and Spp1 mRNAs was detected in the lower hypertrophic cell zone, but the expression of BSP mRNA was very weak. In the condylar cartilage, hypertrophic chondrocytes appeared at E15 as soon as cartilage tissue appeared. The mRNAs for both molecules were expressed in the newly formed condylar cartilage, although the proteins were not detected by immunostaining; BSP mRNA in the condylar cartilage was more extensively expressed than that in the tibial cartilage at the corresponding stage (first appearance of hypertrophic cell zone). Endochondral bone formation started at E15 in the tibial cartilage and at E16 in the condylar cartilage. At this stage (first appearance of endochondral bone formation), BSP mRNA was also more extensively expressed in the condylar cartilage than in the tibial cartilage. The hypertrophic cell zone in the condylar cartilage rapidly extended during E15–16. These results indicate that the formation process of the mandibular condylar cartilage differs from that of limb bud cartilage with respect to the extensive expression of BSP mRNA and the rapid extension of the hypertrophic cell zone at early stages of cartilage formation. Furthermore, these results support the hypothesis that, in vivo, BSP promotes the initiation of

  8. Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering.

    PubMed

    Fahy, Niamh; Alini, Mauro; Stoddart, Martin J

    2018-01-01

    Articular cartilage is a load-bearing tissue playing a crucial mechanical role in diarthrodial joints, facilitating joint articulation, and minimizing wear. The significance of biomechanical stimuli in the development of cartilage and maintenance of chondrocyte phenotype in adult tissues has been well documented. Furthermore, dysregulated loading is associated with cartilage pathology highlighting the importance of mechanical cues in cartilage homeostasis. The repair of damaged articular cartilage resulting from trauma or degenerative joint disease poses a major challenge due to a low intrinsic capacity of cartilage for self-renewal, attributable to its avascular nature. Bone marrow-derived mesenchymal stem cells (MSCs) are considered a promising cell type for cartilage replacement strategies due to their chondrogenic differentiation potential. Chondrogenesis of MSCs is influenced not only by biological factors but also by the environment itself, and various efforts to date have focused on harnessing biomechanics to enhance chondrogenic differentiation of MSCs. Furthermore, recapitulating mechanical cues associated with cartilage development and homeostasis in vivo, may facilitate the development of a cellular phenotype resembling native articular cartilage. The goal of this review is to summarize current literature examining the effect of mechanical cues on cartilage homeostasis, disease, and MSC chondrogenesis. The role of biological factors produced by MSCs in response to mechanical loading will also be examined. An in-depth understanding of the impact of mechanical stimulation on the chondrogenic differentiation of MSCs in terms of endogenous bioactive factor production and signaling pathways involved, may identify therapeutic targets and facilitate the development of more robust strategies for cartilage replacement using MSCs. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:52-63, 2018. © 2017 Orthopaedic Research

  9. Elastic cartilage reconstruction by transplantation of cultured hyaline cartilage-derived chondrocytes.

    PubMed

    Mizuno, M; Takebe, T; Kobayashi, S; Kimura, S; Masutani, M; Lee, S; Jo, Y H; Lee, J I; Taniguchi, H

    2014-05-01

    Current surgical intervention of craniofacial defects caused by injuries or abnormalities uses reconstructive materials, such as autologous cartilage grafts. Transplantation of autologous tissues, however, places a significant invasiveness on patients, and many efforts have been made for establishing an alternative graft. Recently, we and others have shown the potential use of reconstructed elastic cartilage from ear-derived chondrocytes or progenitors with the unique elastic properties. Here, we examined the differentiation potential of canine joint cartilage-derived chondrocytes into elastic cartilage for expanding the cell sources, such as hyaline cartilage. Articular chondrocytes are isolated from canine joint, cultivated, and compared regarding characteristic differences with auricular chondrocytes, including proliferation rates, gene expression, extracellular matrix production, and cartilage reconstruction capability after transplantation. Canine articular chondrocytes proliferated less robustly than auricular chondrocytes, but there was no significant difference in the amount of sulfated glycosaminoglycan produced from redifferentiated chondrocytes. Furthermore, in vitro expanded and redifferentiated articular chondrocytes have been shown to reconstruct elastic cartilage on transplantation that has histologic characteristics distinct from hyaline cartilage. Taken together, cultured hyaline cartilage-derived chondrocytes are a possible cell source for elastic cartilage reconstruction. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  10. Chondrogenic Differentiation of Defined Equine Mesenchymal Stem Cells Derived from Umbilical Cord Blood for Use in Cartilage Repair Therapy

    PubMed Central

    Desancé, Mélanie; Contentin, Romain; Bertoni, Lélia; Gomez-Leduc, Tangni; Branly, Thomas; Jacquet, Sandrine; Betsch, Jean-Marc; Batho, Agnès; Legendre, Florence; Audigié, Fabrice

    2018-01-01

    Cartilage engineering is a new strategy for the treatment of cartilage damage due to osteoarthritis or trauma in humans. Racehorses are exposed to the same type of cartilage damage and the anatomical, cellular, and biochemical properties of their cartilage are comparable to those of human cartilage, making the horse an excellent model for the development of cartilage engineering. Human mesenchymal stem cells (MSCs) differentiated into chondrocytes with chondrogenic factors in a biomaterial appears to be a promising therapeutic approach for direct implantation and cartilage repair. Here, we characterized equine umbilical cord blood-derived MSCs (eUCB-MSCs) and evaluated their potential for chondrocyte differentiation for use in cartilage repair therapy. Our results show that isolated eUCB-MSCs had high proliferative capacity and differentiated easily into osteoblasts and chondrocytes, but not into adipocytes. A three-dimensional (3D) culture approach with the chondrogenic factors BMP-2 and TGF-β1 potentiated chondrogenic differentiation with a significant increase in cartilage-specific markers at the mRNA level (Col2a1, Acan, Snorc) and the protein level (type II and IIB collagen) without an increase in hypertrophic chondrocyte markers (Col10a1 and Mmp13) in normoxia and in hypoxia. However, these chondrogenic factors caused an increase in type I collagen, which can be reduced using small interfering RNA targeting Col1a2. This study provides robust data on MSCs characterization and demonstrates that eUCB-MSCs have a great potential for cartilage tissue engineering. PMID:29439436

  11. Evaluation of degenerative changes in articular cartilage of osteoarthritis by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Oshima, Yusuke; Ishimaru, Yasumitsu; Kiyomatsu, Hiroshi; Hino, Kazunori; Miura, Hiromasa

    2018-02-01

    Osteoarthritis (OA) is a very common joint disease in the aging population. Main symptom of OA is accompanied by degenerative changes of articular cartilage. Cartilage contains mostly type II collagen and proteoglycans, so it is difficult to access the quality and morphology of cartilage tissue in situ by conventional diagnostic tools (X-ray, MRI and echography) directly or indirectly. Raman spectroscopy is a label-free technique which enables to analyze molecular composition in degenerative cartilage. In this proposal, we aim to develop Raman spectroscopic system for the quality assessment of articular cartilage during arthroscopic surgery. Toward this goal, we are focusing on the proteoglycan content and collagen fiber alignment in cartilage matrix which may be associated with degenerative changes in OA, and we designed an original Raman device for remote sensing during arthroscopic surgery. In this project, we define the grading system for cartilage defect based on Raman spectroscopy, and we complete the evaluation of the Raman probing system which makes it possible to detect early stage of degenerative cartilage as a novel tool for OA diagnosis using human subject.

  12. Overview of existing cartilage repair technology.

    PubMed

    McNickle, Allison G; Provencher, Matthew T; Cole, Brian J

    2008-12-01

    Currently, autologous chondrocyte implantation and osteochondral grafting bridge the gap between palliation of cartilage injury and resurfacing via arthroplasty. Emerging technologies seek to advance first generation techniques and accomplish several goals including predictable outcomes, cost-effective technology, single-stage procedures, and creation of durable repair tissue. The biologic pipeline represents a variety of technologies including synthetics, scaffolds, cell therapy, and cell-infused matrices. Synthetic constructs, an alternative to biologic repair, resurface a focal chondral defect rather than the entire joint surface. Scaffolds are cell-free constructs designed as a biologic "net" to augment marrow stimulation techniques. Minced cartilage technology uses stabilized autologous or allogeneic fragments in 1-stage transplantation. Second and third generation cell-based methods include alternative membranes, chondrocyte seeding, and culturing onto scaffolds. Despite the promising early results of these products, significant technical obstacles remain along with unknown long-term durability. The vast array of developing technologies has exceptional promise and the potential to revolutionize the cartilage treatment algorithm within the next decade.

  13. QUANTITATIVE MAGNETIC RESONANCE IMAGING OF ARTICULAR CARTILAGE AND ITS CLINICAL APPLICATIONS

    PubMed Central

    Li, Xiaojuan; Majumdar, Sharmila

    2013-01-01

    Cartilage is one of the most essential tissues for healthy joint function and is compromised in degenerative and traumatic joint diseases. There have been tremendous advances during the past decade using quantitative MRI techniques as a non-invasive tool for evaluating cartilage, with a focus on assessing cartilage degeneration during osteoarthritis (OA). In this review, after a brief overview of cartilage composition and degeneration, we discuss techniques that grade and quantify morphologic changes as well as the techniques that quantify changes in the extracellular matrix. The basic principles, in vivo applications, advantages and challenges for each technique are discussed. Recent studies using the OA Initiative (OAI) data are also summarized. Quantitative MRI provides non-invasive measures of cartilage degeneration at the earliest stages of joint degeneration, which is essential for efforts towards prevention and early intervention in OA. PMID:24115571

  14. Early Changes of Articular Cartilage and Subchondral Bone in The DMM Mouse Model of Osteoarthritis.

    PubMed

    Fang, Hang; Huang, Lisi; Welch, Ian; Norley, Chris; Holdsworth, David W; Beier, Frank; Cai, Daozhang

    2018-02-12

    To examine the early changes of articular cartilage and subchondral bone in the DMM mouse model of osteoarthritis, mice were subjected to DMM or SHAM surgery and sacrificed at 2-, 5- and 10-week post-surgery. Catwalk gait analyses, Micro-Computed Tomography, Toluidine Blue, Picrosirius Red and Tartrate-Resistant Acid Phosphatase (TRAP) staining were used to investigate gait patterns, joint morphology, subchondral bone, cartilage, collagen organization and osteoclasts activity, respectively. Results showed OA progressed over 10-week time-course. Gait disparity occurred only at 10-week post-surgery. Osteophyte formed at 2-week post-surgery. BMDs of DMM showed no statistical differences comparing to SHAM at 2 weeks, but BV/TV is much higher in DMM mice. Increased BMD was clearly found at 5- and 10-week post-surgery in DMM mice. TRAP staining showed increased osteoclast activity at the site of osteophyte formation of DMM joints at 5- and 10-week time points. These results showed that subchondral bone turnover might occurred earlier than 2 weeks in this mouse DMM model. Gait disparity only occurred at later stage of OA in DMM mice. Notably, patella dislocation could occur in some of the DMM mice and cause a different pattern of OA in affected knee.

  15. Regeneration of hyaline cartilage by cell-mediated gene therapy using transforming growth factor beta 1-producing fibroblasts.

    PubMed

    Lee, K H; Song, S U; Hwang, T S; Yi, Y; Oh, I S; Lee, J Y; Choi, K B; Choi, M S; Kim, S J

    2001-09-20

    Transforming growth factor beta (TGF-beta) has been considered as a candidate for gene therapy of orthopedic diseases. The possible application of cell-mediated TGF-beta gene therapy as a new treatment regimen for degenerative arthritis was investigated. In this study, fibroblasts expressing active TGF-beta 1 were injected into the knee joints of rabbits with artificially made cartilage defects to evaluate the feasibility of this therapy for orthopedic diseases. Two to 3 weeks after the injection there was evidence of cartilage regeneration, and at 4 to 6 weeks the cartilage defect was completely filled with newly grown hyaline cartilage. Histological analyses of the regenerated cartilage suggested that it was well integrated with the adjacent normal cartilage at the sides of the defect and that the newly formed tissue was indeed hyaline cartilage. Our findings suggest that cell-mediated TGF-beta 1 gene therapy may be a novel treatment for orthopedic diseases in which hyaline cartilage damage has occurred.

  16. Cartilage oligomeric matrix protein-deficient mice have normal skeletal development.

    PubMed

    Svensson, Liz; Aszódi, Attila; Heinegård, Dick; Hunziker, Ernst B; Reinholt, Finn P; Fässler, Reinhard; Oldberg, Ake

    2002-06-01

    Cartilage oligomeric matrix protein (COMP) belongs to the thrombospondin family and is a homopentamer primarily expressed in cartilage. Mutations in the COMP gene result in the autosomal dominant chondrodysplasias pseudoachondroplasia (PSACH) and some types of multiple epiphyseal dysplasia (MED), which are characterized by mild to severe short-limb dwarfism and early-onset osteoarthritis. We have generated COMP-null mice to study the role of COMP in vivo. These mice show no anatomical, histological, or ultrastructural abnormalities and show none of the clinical signs of PSACH or MED. Northern blot analysis and immunohistochemical analysis of cartilage indicate that the lack of COMP is not compensated for by any other member of the thrombospondin family. The results also show that the phenotype in PSACH/MED cartilage disorders is not caused by the reduced amount of COMP.

  17. Cartilage magnetic resonance imaging techniques at 3 T: current status and future directions.

    PubMed

    Thakkar, Rashmi S; Subhawong, Ty; Carrino, John A; Chhabra, Avneesh

    2011-04-01

    Magnetic resonance imaging (MRI) remains the imaging modality of choice for morphological and compositional evaluation of the articular cartilage. Accurate detection and characterization of cartilage lesions are necessary to guide the medical and surgical therapy and are also critical for longitudinal studies of the cartilage. Recent work using 3.0-T MRI systems shows promise in improving detection and characterization of the cartilage lesions, particularly with increasing use of high-resolution and high-contrast 3-dimensional sequences, which allow detailed morphological assessment of cartilage in arbitrary imaging planes. In addition, implementation of biochemical sequences in clinically feasible scan times has a potential in the early detection of cartilage lesions before they become morphologically apparent. This article discusses relative advantages and disadvantages of various commonly used as well as experimental MRI techniques to directly assess the morphology and indirectly evaluate the biochemical composition of the articular cartilage.

  18. Adipose Tissue-Derived Pericytes for Cartilage Tissue Engineering.

    PubMed

    Zhang, Jinxin; Du, Chunyan; Guo, Weimin; Li, Pan; Liu, Shuyun; Yuan, Zhiguo; Yang, Jianhua; Sun, Xun; Yin, Heyong; Guo, Quanyi; Zhou, Chenfu

    2017-01-01

    Mesenchymal stem cells (MSCs) represent a promising alternative source for cartilage tissue engineering. However, MSC culture is labor-intensive, so these cells cannot be applied immediately to regenerate cartilage for clinical purposes. Risks during the ex vivo expansion of MSCs, such as infection and immunogenicity, can be a bottleneck in their use in clinical tissue engineering. As a novel stem cell source, pericytes are generally considered to be the origin of MSCs. Pericytes do not have to undergo time-consuming ex vivo expansion because they are uncultured cells. Adipose tissue is another optimal stem cell reservoir. Because adipose tissue is well vascularized, a considerable number of pericytes are located around blood vessels in this accessible and dispensable tissue, and autologous pericytes can be applied immediately for cartilage regeneration. Thus, we suggest that adipose tissue-derived pericytes are promising seed cells for cartilage regeneration. Many studies have been performed to develop isolation methods for the adipose tissuederived stromal vascular fraction (AT-SVF) using lipoaspiration and sorting pericytes from AT-SVF. These methods are useful for sorting a large number of viable pericytes for clinical therapy after being combined with automatic isolation using an SVF device and automatic magnetic-activated cell sorting. These tools should help to develop one-step surgery for repairing cartilage damage. However, the use of adipose tissue-derived pericytes as a cell source for cartilage tissue engineering has not drawn sufficient attention and preclinical studies are needed to improve cell purity, to increase sorting efficiency, and to assess safety issues of clinical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. [Cartilage tissue reconstruction by the polymer biomaterials--early macroscopic and histological results].

    PubMed

    Scierski, Wojciech; Polok, Aleksandra; Namysłowski, Grzegorz; Nozyński, Jerzy; Turecka, Lucyna; Urbaniec, Natalia; Pamuła, Elzbieta

    2009-09-01

    The surgical treatment of large cartilage defects in the region of head and neck is often impossible because of the atrophy of surrounding tissues and lack of suitable material for reconstruction. In the surgical treatment many of methods and reconstructive materials have been used. For many years the suitable synthetic material for the cartilage defects reconstruction has been searched for. Was to evaluate two different biomaterials with proper mechanical and biological features for the cartilage replacement. Two type of biomaterials in this study were used: resorbable polymer - poly(L-lactide-co-glycolide) (PLG) acting as a supportive matrix. A thin layer of sodium hyaluronate (Hyal) was also deposited on the surface as well in the pore walls of PLG scaffolds in order to provide biologically active molecules promoting differentiation and regeneration of the tissue. The studies were performed on the 50 animals--rabbits divided into 2 groups. The animals were operated in the general anaesthesia. The incision was done along the edge of the rabbit's auricle. Perichondrium and cartilage of the auricle on the surface 4 x 3 cm were prepared. Subperichondrically 1 x 1 cm fragment of the cartilage was removed by the scissors. This fragment was then replaced by the biomaterials: PLG in first group of 25 rabbits and PLG-Hyal in second group 25 rabbits. The tissues were sutured with polyglycolide Safil 3-0. The animals obtained Enrofloxacin for three days after the operation. Then 1, 4 and 12 weeks after the surgery the animals were painlessly euthanized by an overdose of Morbital. Implants and surrounding tissues were excised and observed macroscopically and using an optical microscope. In all the observation periods we observed proper macroscopic healing process of biomaterials. We didn't stated strong inflammatory process and necrosis around the implanted biomaterials. The histological and macroscopic examinations indicated that both materials developed in this study have

  20. Does metaphyseal cement augmentation in fracture management influence the adjacent subchondral bone and joint cartilage?: an in vivo study in sheep stifle joints.

    PubMed

    Goetzen, Michael; Hofmann-Fliri, Ladina; Arens, Daniel; Zeiter, Stephan; Stadelmann, Vincent; Nehrbass, Dirk; Richards, R Geoff; Blauth, Michael

    2015-01-01

    Augmentation of implants with polymethylmethacrylate (PMMA) bone cement in osteoporotic fractures is a promising approach to increase implant purchase. Side effects of PMMA for the metaphyseal bone, particularly for the adjacent subchondral bone plate and joint cartilage, have not yet been studied. The following experimental study investigates whether subchondral PMMA injection compromises the homeostasis of the subchondral bone and/or the joint cartilage.Ten mature sheep were used to simulate subchondral PMMA injection. Follow-ups of 2 (4 animals) and 4 (6 animals) months were chosen to investigate possible cartilage damage and subchondral plate alterations in the knee. Evaluation was completed by means of high-resolution peripheral quantitative computed tomography (HRpQCT) imaging, histopathological osteoarthritis scoring, and determination of glycosaminoglycan content in the joint cartilage. Results were compared with the untreated contralateral knee and statistically analyzed using nonparametric tests.Evaluation of the histological osteoarthritis score revealed no obvious cartilage damage for the treated knee; median histological score after 2 months 0 (range 4), after 4 months 1 (range 5). There was no significant difference when compared with the untreated control site after 2 and 4 months (P = 0.23 and 0.76, respectively). HRpQCT imaging showed no damage to the metaphyseal trabeculae. Glycosaminoglycan measurements of the treated joint cartilage after 4 months revealed no significant difference compared with the untreated cartilage (P = 0.24).The findings of this study support initial clinical observation that PMMA implant augmentation of metaphyseal fractures appears to be a safe procedure for fixation without harming the subchondral bone plate and adjacent joint cartilage.

  1. The beneficial effects of exercise on cartilage are lost in mice with reduced levels of ECSOD in tissues.

    PubMed

    Pate, Kathryn M; Sherk, Vanessa D; Carpenter, R Dana; Weaver, Michael; Crapo, Silvia; Gally, Fabienne; Chatham, Lillian S; Goldstrohm, David A; Crapo, James D; Kohrt, Wendy M; Bowler, Russell P; Oberley-Deegan, Rebecca E; Regan, Elizabeth A

    2015-03-15

    Osteoarthritis (OA) is associated with increased mechanical damage to joint cartilage. We have previously found that extracellular superoxide dismutase (ECSOD) is decreased in OA joint fluid and cartilage, suggesting oxidant damage may play a role in OA. We explored the effect of forced running as a surrogate for mechanical damage in a transgenic mouse with reduced ECSOD tissue binding. Transgenic mice heterozygous (Het) for the human ECSOD R213G polymorphism and 129-SvEv (wild-type, WT) mice were exposed to forced running on a treadmill for 45 min/day, 5 days/wk, over 8 wk. At the end of the running protocol, knee joint tissue was obtained for histology, immunohistochemistry, and protein analysis. Sedentary Het and WT mice were maintained for comparison. Whole tibias were studied for bone morphometry, finite element analysis, and mechanical testing. Forced running improved joint histology in WT mice. However, when ECSOD levels were reduced, this beneficial effect with running was lost. Het ECSOD runner mice had significantly worse histology scores compared with WT runner mice. Runner mice for both strains had increased bone strength in response to the running protocol, while Het mice showed evidence of a less robust bone structure in both runners and untrained mice. Reduced levels of ECSOD in cartilage produced joint damage when joints were stressed by forced running. The bone tissues responded to increased loading with hypertrophy, regardless of mouse strain. We conclude that ECSOD plays an important role in protecting cartilage from damage caused by mechanical loading. Copyright © 2015 the American Physiological Society.

  2. Auricular Cartilage Regeneration with Adipose-Derived Stem Cells in Rabbits

    PubMed Central

    Park, Hee-Young; Choi, Kyung-Un; Kim, Sung-Dong; Kong, Soo-Keun

    2018-01-01

    Tissue engineering cell-based therapy using induced pluripotent stem cells and adipose-derived stem cells (ASCs) may be promising tools for therapeutic applications in tissue engineering because of their abundance, relatively easy harvesting, and high proliferation potential. The purpose of this study was to investigate whether ASCs can promote the auricular cartilage regeneration in the rabbit. In order to assess their differentiation ability, ASCs were injected into the midportion of a surgically created auricular cartilage defect in the rabbit. Control group was injected with normal saline. After 1 month, the resected auricles were examined histopathologically and immunohistochemically. The expression of collagen type II and transforming growth factor-β1 (TGF-β1) were analyzed by quantitative polymerase chain reaction. Histopathology showed islands of new cartilage formation at the site of the surgically induced defect in the ASC group. Furthermore, Masson's trichrome staining and immunohistochemistry for S-100 showed numerous positive chondroblasts. The expression of collagen type II and TGF-β1 were significantly higher in the ASCs than in the control group. In conclusion, ASCs have regenerative effects on the auricular cartilage defect of the rabbit. These effects would be expected to contribute significantly to the regeneration of damaged cartilage tissue in vivo. PMID:29743810

  3. Microstructural changes in cartilage and bone related to repetitive overloading in an equine athlete model

    PubMed Central

    Turley, Sean M; Thambyah, Ashvin; Riggs, Christopher M; Firth, Elwyn C; Broom, Neil D

    2014-01-01

    The palmar aspect of the third metacarpal (MC3) condyle of equine athletes is known to be subjected to repetitive overloading that can lead to the accumulation of joint tissue damage, degeneration, and stress fractures, some of which result in catastrophic failure. However, there is still a need to understand at a detailed microstructural level how this damage progresses in the context of the wider joint tissue complex, i.e. the articular surface, the hyaline and calcified cartilage, and the subchondral bone. MC3 bones from non-fractured joints were obtained from the right forelimbs of 16 Thoroughbred racehorses varying in age between 3 and 8 years, with documented histories of active race training. Detailed microstructural analysis of two clinically important sites, the parasagittal grooves and the mid-condylar regions, identified extensive levels of microdamage in the calcified cartilage and subchondral bone concealed beneath outwardly intact hyaline cartilage. The study shows a progression in microdamage severity, commencing with mild hard-tissue microcracking in younger animals and escalating to severe subchondral bone collapse and lesion formation in the hyaline cartilage with increasing age and thus athletic activity. The presence of a clearly distinguishable fibrous tissue layer at the articular surface immediately above sites of severe subchondral collapse suggested a limited reparative response in the hyaline cartilage. PMID:24689513

  4. Vulnerability of the Superficial Zone of Immature Articular Cartilage to Compressive Injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rolauffs, R.; Muehleman, C; Li, J

    The zonal composition and functioning of adult articular cartilage causes depth-dependent responses to compressive injury. In immature cartilage, shear and compressive moduli as well as collagen and sulfated glycosaminoglycan (sGAG) content also vary with depth. However, there is little understanding of the depth-dependent damage caused by injury. Since injury to immature knee joints most often causes articular cartilage lesions, this study was undertaken to characterize the zonal dependence of biomechanical, biochemical, and matrix-associated changes caused by compressive injury. Disks from the superficial and deeper zones of bovine calves were biomechanically characterized. Injury to the disks was achieved by applying amore » final strain of 50% compression at 100%/second, followed by biomechanical recharacterization. Tissue compaction upon injury as well as sGAG density, sGAG loss, and biosynthesis were measured. Collagen fiber orientation and matrix damage were assessed using histology, diffraction-enhanced x-ray imaging, and texture analysis. Injured superficial zone disks showed surface disruption, tissue compaction by 20.3 {+-} 4.3% (mean {+-} SEM), and immediate biomechanical impairment that was revealed by a mean {+-} SEM decrease in dynamic stiffness to 7.1 {+-} 3.3% of the value before injury and equilibrium moduli that were below the level of detection. Tissue areas that appeared intact on histology showed clear textural alterations. Injured deeper zone disks showed collagen crimping but remained undamaged and biomechanically intact. Superficial zone disks did not lose sGAG immediately after injury, but lost 17.8 {+-} 1.4% of sGAG after 48 hours; deeper zone disks lost only 2.8 {+-} 0.3% of sGAG content. Biomechanical impairment was associated primarily with structural damage. The soft superficial zone of immature cartilage is vulnerable to compressive injury, causing superficial matrix disruption, extensive compaction, and textural alteration, which

  5. Chronic Changes in the Articular Cartilage and Meniscus Following Traumatic Impact to the Lapine Knee

    PubMed Central

    Fischenich, Kristine M.; Button, Keith D.; Coatney, Garrett A.; Fajardo, Ryan S.; Leikert, Kevin M.; Haut, Roger C.; Haut Donahue, Tammy L.

    2014-01-01

    The objective of this study was to induce anterior cruciate ligament (ACL) and meniscal damage, via a single tibiofemoral compressive impact, in order to document articular cartilage and meniscal changes post impact. Tibiofemoral joints of Flemish Giant rabbits were subjected to a single blunt impact that ruptured the ACL and produced acute meniscal damage. Animals were allowed unrestricted cage activity for 12 weeks before euthanasia. India ink analysis of the articular cartilage revealed higher degrees of surface damage on the impacted tibias (p=0.018) and femurs (p<0.0001) compared to controls. Chronic meniscal damage was most prevalent in the medial central and medial posterior regions. Mechanical tests revealed an overall 19.4% increase in tibial plateau cartilage thickness (p=0.026), 34.8% increase in tibial plateau permeability (p=0.054), 40.8% increase in femoral condyle permeability (p=0.029), and 20.1% decrease in femoral condyle matrix modulus (p=0.012) in impacted joints compared to controls. Both the instantaneous and equilibrium moduli of the lateral and medial menisci were decreased compared to control (p<0.02). Histological analyses revealed significantly increased presence of fissures in the medial femur (p = 0.036). In both the meniscus and cartilage there was a significant decrease in GAG coverage for the impacted limbs. Based on these results it is clear that an unattended combined meniscal and ACL injury results in significant changes to the soft tissues in this experimental joint 12 weeks post injury. Such changes are consistent with a clinical description of mid to late stage PTOA of the knee. PMID:25523754

  6. Near infrared spectroscopic evaluation of water in hyaline cartilage.

    PubMed

    Padalkar, M V; Spencer, R G; Pleshko, N

    2013-11-01

    In diseased conditions of cartilage such as osteoarthritis, there is typically an increase in water content from the average normal of 60-85% to greater than 90%. As cartilage has very little capability for self-repair, methods of early detection of degeneration are required, and assessment of water could prove to be a useful diagnostic method. Current assessment methods are either destructive, time consuming, or have limited sensitivity. Here, we investigated the hypotheses that non-destructive near infrared spectroscopy (NIRS) of articular cartilage can be used to differentiate between free and bound water, and to quantitatively assess water content. The absorbances centered at 5200 and 6890 cm(-1) were attributed to a combination of free and bound water, and to free water only, respectively. The integrated areas of both absorbance bands were found to correlate linearly with the absolute water content (R = 0.87 and 0.86) and with percent water content (R = 0.97 and 0.96) of the tissue. Partial least square models were also successfully developed and were used to predict water content, and percent free water. These data demonstrate that NIRS can be utilized to quantitatively determine water content in articular cartilage, and may aid in early detection of degenerative tissue changes in a laboratory setting, and with additional validations, possibly in a clinical setting.

  7. Comparative analysis of gene expression profiles of hip articular cartilage between non-traumatic necrosis and osteoarthritis.

    PubMed

    Wang, Wenyu; Liu, Yang; Hao, Jingcan; Zheng, Shuyu; Wen, Yan; Xiao, Xiao; He, Awen; Fan, Qianrui; Zhang, Feng; Liu, Ruiyu

    2016-10-10

    Hip cartilage destruction is consistently observed in the non-traumatic osteonecrosis of femoral head (NOFH) and accelerates its bone necrosis. The molecular mechanism underlying the cartilage damage of NOFH remains elusive. In this study, we conducted a systematically comparative study of gene expression profiles between NOFH and osteoarthritis (OA). Hip articular cartilage specimens were collected from 12 NOFH patients and 12 controls with traumatic femoral neck fracture for microarray (n=4) and quantitative real-time PCR validation experiments (n=8). Gene expression profiling of articular cartilage was performed using Agilent Human 4×44K Microarray chip. The accuracy of microarray experiment was further validated by qRT-PCR. Gene expression results of OA hip cartilage were derived from previously published study. Significance Analysis of Microarrays (SAM) software was applied for identifying differently expressed genes. Gene ontology (GO) and pathway enrichment analysis were conducted by Gene Set Enrichment Analysis software and DAVID tool, respectively. Totally, 27 differently expressed genes were identified for NOFH. Comparing the gene expression profiles of NOFH cartilage and OA cartilage detected 8 common differently expressed genes, including COL5A1, OGN, ANGPTL4, CRIP1, NFIL3, METRNL, ID2 and STEAP1. GO comparative analysis identified 10 common significant GO terms, mainly implicated in apoptosis and development process. Pathway comparative analysis observed that ECM-receptor interaction pathway and focal adhesion pathway were enriched in the differently expressed genes of both NOFH and hip OA. In conclusion, we identified a set of differently expressed genes, GO and pathways for NOFH articular destruction, some of which were also involved in the hip OA. Our study results may help to reveal the pathogenetic similarities and differences of cartilage damage of NOFH and hip OA. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A case report on a burned ear: Elastic memory of cartilage following temporary burial in a skin pocket.

    PubMed

    Visscher, D O; van Zuijlen, P P M

    2017-05-01

    Preserving exposed ear cartilage following a facial burn remains a major challenge. Normally, burned ear cartilage cannot be preserved in case of a full thickness burn of the overlying skin, and the cartilage has to be surgically removed. Sometimes, reconstructions can be performed at a later stage. We report a case where burned ear cartilage was directly surgically buried in a retroauricular skin pocket showing remarkable elastic memory: the buried ear cartilage, in this case the antihelix, regenerated over time and regained its original position protruding from the facial area. This case illustrates that ear cartilage is highly resilient, even when it has sustained significant thermal damage, and can be buried in a retroauricular skin pocket to avoid radical excision of the framework. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  9. Cartilage Injuries in the Adult Knee

    PubMed Central

    Moyad, Thomas F.

    2011-01-01

    Cartilage injuries are frequently recognized as a source of significant morbidity and pain in patients with previous knee injuries. The majority of patients who undergo routine knee arthroscopy have evidence of a chondral defect. These injuries represent a continuum of pathology from small, asymptomatic lesions to large, disabling defects affecting a major portion of one or more compartments within the knee joint. In comparison to patients with osteoarthritis, individuals with isolated chondral surface damage are often younger, significantly more active, and usually less willing to accept limitations in activities that require higher impact. At the present time, a variety of surgical procedures exist, each with their unique indications. This heterogeneity of treatment options frequently leads to uncertainty regarding which techniques, if any, are most appropriate for patients. The purpose of this review is to describe the workup and discuss the management techniques for cartilage injuries within the adult knee. PMID:26069581

  10. In vivo cyclic compression causes cartilage degeneration and subchondral bone changes in mouse tibiae

    PubMed Central

    Ko, Frank C.; Dragomir, Cecilia; Plumb, Darren A.; Goldring, Steven R.; Wright, Timothy M.; Goldring, Mary B.; van der Meulen, Marjolein C.H.

    2013-01-01

    Objectives Alterations in the mechanical loading environment in joints may have both beneficial and detrimental effects on articular cartilage and subchondral bone and subsequently influence the development of osteoarthritis (OA). We used an in vivo tibial loading model to investigate the adaptive responses of cartilage and bone to mechanical loading and to assess the influence of load level and duration. Methods We applied cyclic compression of 4.5 and 9.0N peak loads to the left tibia via the knee joint of adult (26-week-old) C57Bl/6 male mice for 1, 2, and 6 weeks. Only 9.0N loading was utilized in young (10-week-old) mice. The changes in articular cartilage and subchondral bone were analyzed by histology and microcomputed tomography. Results Loading promoted cartilage damage in both age groups, with increased damage severity dependent upon the duration of loading. Metaphyseal bone mass increased in the young mice, but not in the adult mice, whereas epiphyseal cancellous bone mass decreased with loading in both young and adult mice. Articular cartilage thickness decreased, and subchondral cortical bone thickness increased in the posterior tibial plateau in both age groups. Both age groups developed periarticular osteophytes at the tibial plateau in response to the 9.0N load, but no osteophyte formation occurred in adult mice subjected to 4.5N peak loading. Conclusion This non-invasive loading model permits dissection of temporal and topographical changes in cartilage and bone and will enable investigation of the efficacy of treatment interventions targeting joint biomechanics or biological events that promote OA onset and progression. PMID:23436303

  11. Cartilage repair and joint preservation: medical and surgical treatment options.

    PubMed

    Madry, Henning; Grün, Ulrich Wolfgang; Knutsen, Gunnar

    2011-10-01

    Articular cartilage defects are most often caused by trauma and osteoarthritis and less commonly by metabolic disorders of the subchondral bone, such as osteonecrosis and osteochondritis dissecans. Such defects do not heal spontaneously in adults and can lead to secondary osteoarthritis. Medications are indicated for symptomatic relief. Slow-acting drugs in osteoarthritis (SADOA), such as glucosamine and chondroitin, are thought to prevent cartilage degeneration. Reconstructive surgical treatment strategies aim to form a repair tissue or to unload compartments of the joint with articular cartilage damage. In this article, we selectively review the pertinent literature, focusing on original publications of the past 5 years and older standard texts. Particular attention is paid to guidelines and clinical studies with a high level of evidence, along with review articles, clinical trials, and book chapters. There have been only a few randomized trials of medical versus surgical treatments. Pharmacological therapies are now available that are intended to treat the cartilage defect per se, rather than the associated symptoms, yet none of them has yet been shown to slow or reverse the progression of cartilage destruction. Surgical débridement of cartilage does not prevent the progression of osteoarthritis and is thus not recommended as the sole treatment. Marrow-stimulating procedures and osteochondral grafts are indicated for small focal articular cartilage defects, while autologous chondrocyte implantationis mainly indicated for larger cartilage defects. These surgical reconstructive techniques play a lesser role in the treatment of osteoarthritis. Osteotomy near the knee joint is indicated for axial realignment when unilateral osteoarthritis of the knee causes axis deviation. Surgical reconstructive techniques can improve joint function and thereby postpone the need for replacement of the articular surface with an artificial joint.

  12. Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography

    NASA Astrophysics Data System (ADS)

    Ravanfar, Mohammadreza; Pfeiffer, Ferris M.; Bozynski, Chantelle C.; Wang, Yuanbo; Yao, Gang

    2017-12-01

    Collagen degeneration is an important pathological feature of osteoarthritis. The purpose of this study is to investigate whether the polarization-sensitive optical coherence tomography (PSOCT)-based optical polarization tractography (OPT) can be useful in imaging collagen structural changes in human osteoarthritic cartilage samples. OPT eliminated the banding artifacts in conventional PSOCT by calculating the depth-resolved local birefringence and fiber orientation. A close comparison between OPT and PSOCT showed that OPT provided improved visualization and characterization of the zonal structure in human cartilage. Experimental results obtained in this study also underlined the importance of knowing the collagen fiber orientation in conventional polarized light microscopy assessment. In addition, parametric OPT imaging was achieved by quantifying the surface roughness, birefringence, and fiber dispersion in the superficial zone of the cartilage. These quantitative parametric images provided complementary information on the structural changes in cartilage, which can be useful for a comprehensive evaluation of collagen damage in osteoarthritic cartilage.

  13. In vivo transport of Gd-DTPA2- into human meniscus and cartilage assessed with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC)

    PubMed Central

    2014-01-01

    Background Impaired stability is a risk factor in knee osteoarthritis (OA), where the whole joint and not only the joint cartilage is affected. The meniscus provides joint stability and is involved in the early pathological progress of OA. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) has been used to identify pre-radiographic changes in the cartilage in OA, but has been used less commonly to examine the meniscus, and then using only a double dose of the contrast agent. The purpose of this study was to enable improved early OA diagnosis by investigate the temporal contrast agent distribution in the meniscus and femoral cartilage simultaneously, in healthy volunteers, using 3D dGEMRIC at two different doses of the contrast agent Gd-DTPA2-. Methods The right knee in 12 asymptomatic volunteers was examined using a 3D Look-Locker sequence on two occasions after an intravenous injection of a double or triple dose of Gd-DTPA2- (0.2 or 0.3 mmol/kg body weight). The relaxation time (T1) and relaxation rate (R1 = 1/T1) were measured in the meniscus and femoral cartilage before, and 60, 90, 120 and 180 minutes after injection, and the change in relaxation rate (ΔR1) was calculated. Paired t-test and Analysis of Variance (ANOVA) were used for statistical evaluation. Results The triple dose yielded higher concentrations of Gd-DTPA2- in the meniscus and cartilage than the double dose, but provided no additional information. The observed patterns of ΔR1 were similar for double and triple doses of the contrast agent. ΔR1 was higher in the meniscus than in femoral cartilage in the corresponding compartments at all time points after injection. ΔR1 increased until 90-180 minutes in both the cartilage and the meniscus (p < 0.05), and was lower in the medial than in the lateral meniscus at all time points (p < 0.05). A faster increase in ΔR1 was observed in the vascularized peripheral region of the posterior medial meniscus, than in the avascular central

  14. 308-nm excimer laser ablation of human cartilage

    NASA Astrophysics Data System (ADS)

    Prodoehl, John A.; Rhodes, Anthony L.; Meller, Menachem M.; Sherk, Henry H.

    1993-07-01

    The XeCl excimer laser was investigated as an ablating tool for human fibrocartilage and hyaline cartilage. Quantitative measurements were made of tissue ablation rates as a function of fluence in meniscal fibrocartilage and articular hyaline cartilage. A force of 1.47 Newtons was applied to an 800 micrometers fiber with the laser delivering a range of fluences (40 to 190 mj/mm2) firing at a frequency of 5 Hz. To assess the effect of repetition rate on ablation rate, a set of measurements was made at a constant fluence of 60 mj/mm2, with the repetition rate varying from 10 to 40 Hz. Histologic and morphometric analysis was performed using light microscopy. The results of these studies revealed that the ablation rate was directly proportional to fluence over the range tested. Fibrocartilage was ablated at a rate 2.56 times faster than hyaline cartilage at the maximum fluence tested. Repetition rate had no effect on the penetration per pulse. Adjacent tissue damage was noted to be minimal (10 - 70 micrometers ).

  15. Using magnetic resonance imaging to determine the compartmental prevalence of knee joint structural damage.

    PubMed

    Stefanik, J J; Niu, J; Gross, K D; Roemer, F W; Guermazi, A; Felson, D T

    2013-05-01

    To describe the prevalence of magnetic resonance imaging (MRI) detected structural damage in the patellofemoral joint (PFJ) and tibiofemoral joint (TFJ) in a population-based cohort. A secondary aim was to evaluate the patterns of compartmental involvement in knees with pain, between men and women, and in different age and body mass index (BMI) categories. We studied 970 knees, one knee per subject, from the Framingham Osteoarthritis Study, a population-based cohort study of persons 51-92 years old. Cartilage damage and bone marrow lesions (BMLs) were assessed using the Whole Organ Magnetic Resonance Imaging Score (WORMS). The prevalence of isolated PFJ, isolated TFJ, and mixed structural damage was determined using the following definitions: any cartilage damage, full thickness cartilage loss, any BML, and the combination of full thickness cartilage loss with any BML. The mean age and BMI was 63.4 years and 28.6 m/kg(2), respectively; 57% were female. Isolated PFJ damage occurred in 15-20% of knees and isolated TFJ damage occurred in 8-17% of knees depending on the definition used. The prevalence of isolated PFJ damage was greater than isolated TFJ damage using all definitions except the any BML definition. This pattern was similar between genders and among age and BMI categories. In those with knee pain, isolated PFJ was at least as common as TFJ damage depending on the definition used. Using MRI to assess knee joint structural damage, isolated PFJ damage was at least as common as, if not more common than, isolated TFJ damage. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. Aquaporin-1 and aquaporin-3 expressions in the temporo-mandibular joint condylar cartilage after an experimentally induced osteoarthritis.

    PubMed

    Meng, Juan-hong; Ma, Xu-chen; Li, Zhi-min; Wu, Deng-cheng

    2007-12-20

    Over 70% of the total tissue weight in the cartilage matrix consists of water, and the early-stage osteoarthritic cartilage is characterized by swelling. Water transport in the cartilage matrix and across the membranes of chondrocytes may be important in normal and pathological conditions of cartilage. The purpose of this study was to identify aquaporin-1 (AQP1) and aquaporin-3 (AQP3) expressions in the mandibular condylar cartilage after experimentally induced osteoarthritis (OA) in rats. An experimental temporomandibular joint OA was induced by partial discectomy in rats. The pathological characteristics of the normal, early-stage, and late-stage osteoarthritic TMJ cartilages were verified by histological techniques. The AQP1 and AQP3 gene expressions in the normal and osteoarthritic cartilages were measured using quantitative real-time reverse-transcription PCR analysis. The cartilage sections were incubated in primary polyclonal antibodies to AQP3; immunofluorescent microscopy was used to examine the AQP3 expression shown by its protein level. The mRNA expression levels of AQP1 and AQP3, analyzed using quantitative PCR, revealed that AQP3 mRNA was highly up-regulated in the OA cartilage, which was considered significant. There was no notable difference in the expression of AQP1 mRNA between OA and normal controls. With the progressing of the OA, the localization of the AQP3 protein was quite different from that of the normal cartilage. Compared to the normal cartilage, the expressions of AQP3 protein were observed mainly in the proliferative zone and the upper mid-zone chondrocytes at the early-stage of OA, and were observed to appear frequently throughout the mid- and deep zone during the late-stage of OA. The high expression of AQP3 mRNA in the OA cartilage and the different localization of the AQP3 protein suggest that it may play a particular role in OA pathogenesis. Further study of AQP3 function may provide new insight into the understanding of the

  17. Developmental Outcomes after Early Prefrontal Cortex Damage

    ERIC Educational Resources Information Center

    Eslinger, Paul J.; Flaherty-Craig, Claire V.; Benton, Arthur L.

    2004-01-01

    The neuropsychological bases of cognitive, social, and moral development are minimally understood, with a seemingly wide chasm between developmental theories and brain maturation models. As one approach to bridging ideas in these areas, we review 10 cases of early prefrontal cortex damage from the clinical literature, highlighting overall clinical…

  18. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly (ethylene glycol) diacrylate scaffold

    PubMed Central

    Musumeci, G.; Loreto, C.; Carnazza, M.L.; Coppolino, F.; Cardile, V.; Leonardi, R.

    2011-01-01

    Osteoarthritis (OA) is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol) (PEG) based hydrogels (PEG-DA) encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i) in tissue explanted from OA and normal human cartilage; ii) in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA) showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease. PMID:22073377

  19. Characterization of enzymatically induced degradation of articular cartilage using high frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Töyräs, J.; Rieppo, J.; Nieminen, M. T.; Helminen, H. J.; Jurvelin, J. S.

    1999-11-01

    Ultrasound may provide a quantitative technique for the characterization of cartilage changes typical of early osteoarthrosis. In this study, specific changes in bovine articular cartilage were induced using collagenase and chondroitinase ABC, enzymes that selectively degrade collagen fibril network and digest proteoglycans, respectively. Changes in cartilage structure and properties were quantified using high frequency ultrasound, microscopic analyses and mechanical indentation tests. The ultrasound reflection coefficient of the physiological saline-cartilage interface (R1) decreased significantly (-96.4%, p<0.01) in the collagenase digested cartilage compared to controls. Also a significantly lower ultrasound velocity (-6.2%, p<0.01) was revealed after collagenase digestion. After chondroitinase ABC digestion, a new acoustic interface at the depth of the enzyme penetration front was detected. Cartilage thickness, as determined with ultrasound, showed a high, linear correlation (R = 0.943, n = 60, average difference 0.073 mm (4.0%)) with the thickness measured by the needle-probe method. Both enzymes induced a significant decrease in the Young's modulus of cartilage (p<0.01). Our results indicate that high frequency ultrasound provides a sensitive technique for the analysis of cartilage structure and properties. Possibly ultrasound may be utilized in vivo as a quantitative probe during arthroscopy.

  20. In Vitro Mimetic Models for the Bone-Cartilage Interface Regeneration.

    PubMed

    Bicho, Diana; Pina, Sandra; Oliveira, J Miguel; Reis, Rui L

    2018-01-01

    In embryonic development, pure cartilage structures are in the basis of bone-cartilage interfaces. Despite this fact, the mature bone and cartilage structures can vary greatly in composition and function. Nevertheless, they collaborate in the osteochondral region to create a smooth transition zone that supports the movements and forces resulting from the daily activities. In this sense, all the hierarchical organization is involved in the maintenance and reestablishment of the equilibrium in case of damage. Therefore, this interface has attracted a great deal of interest in order to understand the mechanisms of regeneration or disease progression in osteoarthritis. With that purpose, in vitro tissue models (either static or dynamic) have been studied. Static in vitro tissue models include monocultures, co-cultures, 3D cultures, and ex vivo cultures, mostly cultivated in flat surfaces, while dynamic models involve the use of bioreactors and microfluidic systems. The latter have emerged as alternatives to study the cellular interactions in a more authentic manner over some disadvantages of the static models. The current alternatives of in vitro mimetic models for bone-cartilage interface regeneration are overviewed and discussed herein.

  1. No Difference on Quantitative Magnetic Resonance Imaging in Patellofemoral Cartilage Composition Between Patients With Patellofemoral Pain and Healthy Controls.

    PubMed

    van der Heijden, Rianne A; Oei, Edwin H G; Bron, Esther E; van Tiel, Jasper; van Veldhoven, Peter L J; Klein, Stefan; Verhaar, Jan A N; Krestin, Gabriel P; Bierma-Zeinstra, Sita M A; van Middelkoop, Marienke

    2016-05-01

    Retropatellar cartilage damage has been suggested as an etiological factor for patellofemoral pain (PFP), a common knee condition among young and physically active individuals. To date, there is no conclusive evidence for an association between cartilage defects and PFP. Nowadays, advanced quantitative magnetic resonance imaging (MRI) techniques enable estimation of cartilage composition. To investigate differences in patellofemoral cartilage composition between patients with PFP and healthy control subjects using quantitative MRI. Cross-sectional study; Level of evidence, 3. Patients with PFP and healthy control subjects underwent 3.0-T MRI including delayed gadolinium-enhanced MRI of cartilage and T1ρ and T2 mapping. Differences in relaxation times of patellofemoral cartilage were compared between groups by linear regression analyses, adjusted for age, body mass index, sex, sports participation, and time of image acquisition. This case-control study included 64 patients and 70 controls. The mean (±SD) age was 23.2 ± 6.4 years and the mean body mass index was 22.9 ± 3.4 kg/m(2); 56.7% were female. For delayed gadolinium-enhanced MRI of cartilage, the mean T1GD relaxation times of patellar (657.8 vs 669.4 ms) and femoral cartilage (661.6 vs 659.8 ms) did not significantly differ between patients and controls. In addition, no significant difference was found in mean T1ρ relaxation times of patellar (46.9 vs 46.0 ms) and femoral cartilage (50.8 vs 50.2 ms) and mean T2 relaxation times of patellar (33.2 vs 32.9 ms) and femoral cartilage (36.7 vs 36.6 ms) between patients and controls. Analysis of prespecified medial and lateral subregions within the patellofemoral cartilage also revealed no significant differences. There was no difference in composition of the patellofemoral cartilage, estimated with multiple quantitative MRI techniques, between patients with PFP and healthy control subjects. However, clinically relevant differences could not be ruled out for T1

  2. Viscoelastic modeling and quantitative experimental characterization of normal and osteoarthritic human articular cartilage using indentation.

    PubMed

    Richard, F; Villars, M; Thibaud, S

    2013-08-01

    The viscoelastic behavior of articular cartilage changes with progression of osteoarthritis. The objective of this study is to quantify this progression and to propose a viscoelastic model of articular cartilage taking into account the degree of osteoarthritis that which be easily used in predictive numerical simulations of the hip joint behavior. To quantify the effects of osteoarthritis (OA) on the viscoelastic behavior of human articular cartilage, samples were obtained from the hip arthroplasty due to femoral neck fracture (normal cartilage) or advanced coxarthrosis (OA cartilage). Experimental data were obtained from instrumented indentation tests on unfrozen femoral cartilage collected and studied in the day following the prosthetic hip surgery pose. By using an inverse method coupled with a numerical modeling (FEM) of all experimental data of the indentation tests, the viscoelastic properties of the two states were quantified. Mean values of viscoelastic parameters were significantly lower for OA cartilage than normal (instantaneous and relaxed tension moduli, viscosity coefficient). Based on the results and in the thermodynamic framework, a constitutive viscoelastic model taking into account the degree of osteoarthritis as an internal variable of damage is proposed. The isotropic phenomenological viscoelastic model including degradation provides an accurate prediction of the mechanical response of the normal human cartilage and OA cartilage with advanced coxarthrosis but should be further validated for intermediate degrees of osteoarthritis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Scaffold-assisted cartilage tissue engineering using infant chondrocytes from human hip cartilage.

    PubMed

    Kreuz, P C; Gentili, C; Samans, B; Martinelli, D; Krüger, J P; Mittelmeier, W; Endres, M; Cancedda, R; Kaps, C

    2013-12-01

    Studies about cartilage repair in the hip and infant chondrocytes are rare. The aim of our study was to evaluate the use of infant articular hip chondrocytes for tissue engineering of scaffold-assisted cartilage grafts. Hip cartilage was obtained from five human donors (age 1-10 years). Expanded chondrocytes were cultured in polyglycolic acid (PGA)-fibrin scaffolds. De- and re-differentiation of chondrocytes were assessed by histological staining and gene expression analysis of typical chondrocytic marker genes. In vivo, cartilage matrix formation was assessed by histology after subcutaneous transplantation of chondrocyte-seeded PGA-fibrin scaffolds in immunocompromised mice. The donor tissue was heterogenous showing differentiated articular cartilage and non-differentiated tissue and considerable expression of type I and II collagens. Gene expression analysis showed repression of typical chondrocyte and/or mesenchymal marker genes during cell expansion, while markers were re-induced when expanded cells were cultured in PGA-fibrin scaffolds. Cartilage formation after subcutaneous transplantation of chondrocyte loaded PGA-fibrin scaffolds in nude mice was variable, with grafts showing resorption and host cell infiltration or formation of hyaline cartilage rich in type II collagen. Addition of human platelet rich plasma (PRP) to cartilage grafts resulted robustly in formation of hyaline-like cartilage that showed type II collagen and regions with type X collagen. These results suggest that culture of expanded and/or de-differentiated infant hip cartilage cells in PGA-fibrin scaffolds initiates chondrocyte re-differentiation. The heterogenous donor tissue containing immature chondrocytes bears the risk of cartilage repair failure in vivo, which may be possibly overcome by the addition of PRP. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  4. Biological aspects of early osteoarthritis.

    PubMed

    Madry, Henning; Luyten, Frank P; Facchini, Andrea

    2012-03-01

    Early OA primarily affects articular cartilage and involves the entire joint, including the subchondral bone, synovial membrane, menisci and periarticular structures. The aim of this review is to highlight the molecular basis and histopathological features of early OA. Selective review of literature. Risk factors for developing early OA include, but are not limited to, a genetic predisposition, mechanical factors such as axial malalignment, and aging. In early OA, the articular cartilage surface is progressively becoming discontinuous, showing fibrillation and vertical fissures that extend not deeper than into the mid-zone of the articular cartilage, reflective of OARSI grades 1.0-3.0. Early changes in the subchondral bone comprise a progressive increase in subchondral plate and subarticular spongiosa thickness. Early OA affects not only the articular cartilage and the subchondral bone but also other structures of the joint, such as the menisci, the synovial membrane, the joint capsule, ligaments, muscles and the infrapatellar fat pad. Genetic markers or marker combinations may become useful in the future to identify early OA and patients at risk. The high socioeconomic impact of OA suggests that a better insight into the mechanisms of early OA may be a key to develop more targeted reconstructive therapies at this first stage of the disease. Systematic review, Level II.

  5. Solute Transport of Negatively Charged Contrast Agents Across Articular Surface of Injured Cartilage.

    PubMed

    Kokkonen, H T; Chin, H C; Töyräs, J; Jurvelin, J S; Quinn, T M

    2017-04-01

    Solute transport through the extracellular matrix (ECM) is crucial to chondrocyte metabolism. Cartilage injury affects solute transport in cartilage due to alterations in ECM structure and solute-matrix interactions. Therefore, cartilage injury may be detected by using contrast agent-based clinical imaging. In the present study, effects of mechanical injury on transport of negatively charged contrast agents in cartilage were characterized. Using cartilage plugs injured by mechanical compression protocol, effective partition coefficients and diffusion fluxes of iodine- and gadolinium-based contrast agents were measured using high resolution microCT imaging. For all contrast agents studied, effective diffusion fluxes increased significantly, particularly at early times during the diffusion process (38 and 33% increase after 4 min, P < 0.05 for iodine and Gd-DTPA; and 76% increase after 10 min for diatrizoate, P < 0.05). Effective partition coefficients were unaffected in mechanically injured cartilage. Mechanical injury reduced PG content and collagen integrity in cartilage superficial zone. This study suggests that alterations in contrast agent diffusion flux, a non-equilibrium transport parameter, provides a more sensitive indicator for assessment of cartilage matrix integrity than partition coefficient and the equilibrium distribution of solute. These findings may help in developing clinical methods of contrast agent-based imaging to detect cartilage injury.

  6. In vivo cyclic compression causes cartilage degeneration and subchondral bone changes in mouse tibiae.

    PubMed

    Ko, Frank C; Dragomir, Cecilia; Plumb, Darren A; Goldring, Steven R; Wright, Timothy M; Goldring, Mary B; van der Meulen, Marjolein C H

    2013-06-01

    Alterations in the mechanical loading environment in joints may have both beneficial and detrimental effects on articular cartilage and subchondral bone, and may subsequently influence the development of osteoarthritis (OA). Using an in vivo tibial loading model, the aim of this study was to investigate the adaptive responses of cartilage and bone to mechanical loading and to assess the influence of load level and duration. Cyclic compression at peak loads of 4.5N and 9.0N was applied to the left tibial knee joint of adult (26-week-old) C57BL/6 male mice for 1, 2, and 6 weeks. Only 9.0N loading was utilized in young (10-week-old) mice. Changes in articular cartilage and subchondral bone were analyzed by histology and micro-computed tomography. Mechanical loading promoted cartilage damage in both age groups of mice, and the severity of joint damage increased with longer duration of loading. Metaphyseal bone mass increased with loading in young mice, but not in adult mice, whereas epiphyseal cancellous bone mass decreased with loading in both young and adult mice. In both age groups, articular cartilage thickness decreased, and subchondral cortical bone thickness increased in the posterior tibial plateau. Mice in both age groups developed periarticular osteophytes at the tibial plateau in response to the 9.0N load, but no osteophyte formation occurred in adult mice subjected to 4.5N peak loading. This noninvasive loading model permits dissection of temporal and topographic changes in cartilage and bone and will enable investigation of the efficacy of treatment interventions targeting joint biomechanics or biologic events that promote OA onset and progression. Copyright © 2013 by the American College of Rheumatology.

  7. Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects.

    PubMed

    White, Lawrence M; Sussman, Marshall S; Hurtig, Mark; Probyn, Linda; Tomlinson, George; Kandel, Rita

    2006-11-01

    To prospectively assess T2 mapping characteristics of normal articular cartilage and of cartilage at sites of arthroscopic repair, including comparison with histologic results and collagen organization assessed at polarized light microscopy (PLM). Study protocol was compliant with the Canadian Council on Animal Care Guidelines and approved by the institutional animal care committee. Arthroscopic osteochondral autograft transplantation (OAT) and microfracture arthroplasty (MFx) were performed in knees of 10 equine subjects (seven female, three male; age range, 3-5 years). A site of arthroscopically normal cartilage was documented in each joint as a control site. Joints were harvested at 12 (n = 5) and 24 (n = 5) weeks postoperatively and were imaged at 1.5-T magnetic resonance (MR) with a 10-echo sagittal fast spin-echo acquisition. T2 maps of each site (21 OAT harvest, 10 MFx, 12 OAT plug, and 10 control sites) were calculated with linear least-squares curve fitting. Cartilage T2 maps were qualitatively graded as "organized" (normal transition of low-to-high T2 signal from deep to superficial cartilage zones) or "disorganized." Quantitative mean T2 values were calculated for deep, middle, and superficial cartilage at each location. Results were compared with histologic and PLM assessments by using kappa analysis. T2 maps were qualitatively graded as organized at 20 of 53 sites and as disorganized at 33 sites. Perfect agreement was seen between organized T2 and histologic findings of hyaline cartilage and between disorganized T2 and histologic findings of fibrous reparative tissue (kappa = 1.0). Strong agreement was seen between organized T2 and normal PLM findings and between disorganized T2 and abnormal PLM findings (kappa = .92). Quantitative assessment of the deep, middle, and superficial cartilage, respectively, showed mean T2 values of 53.3, 58.6, and 54.9 msec at reparative fibrous tissue sites and 40.7, 53.6, and 61.6 msec at hyaline cartilage sites. A

  8. Experimental validation of arthroscopic cartilage stiffness measurement using enzymatically degraded cartilage samples

    NASA Astrophysics Data System (ADS)

    Lyyra, T.; Arokoski, J. P. A.; Oksala, N.; Vihko, A.; Hyttinen, M.; Jurvelin, J. S.; Kiviranta, I.

    1999-02-01

    detecting early structural and compositional changes related to cartilage degeneration.

  9. Preclinical Studies for Cartilage Repair

    PubMed Central

    Hurtig, Mark B.; Buschmann, Michael D.; Fortier, Lisa A.; Hoemann, Caroline D.; Hunziker, Ernst B.; Jurvelin, Jukka S.; Mainil-Varlet, Pierre; McIlwraith, C. Wayne; Sah, Robert L.; Whiteside, Robert A.

    2011-01-01

    Investigational devices for articular cartilage repair or replacement are considered to be significant risk devices by regulatory bodies. Therefore animal models are needed to provide proof of efficacy and safety prior to clinical testing. The financial commitment and regulatory steps needed to bring a new technology to clinical use can be major obstacles, so the implementation of highly predictive animal models is a pressing issue. Until recently, a reductionist approach using acute chondral defects in immature laboratory species, particularly the rabbit, was considered adequate; however, if successful and timely translation from animal models to regulatory approval and clinical use is the goal, a step-wise development using laboratory animals for screening and early development work followed by larger species such as the goat, sheep and horse for late development and pivotal studies is recommended. Such animals must have fully organized and mature cartilage. Both acute and chronic chondral defects can be used but the later are more like the lesions found in patients and may be more predictive. Quantitative and qualitative outcome measures such as macroscopic appearance, histology, biochemistry, functional imaging, and biomechanical testing of cartilage, provide reliable data to support investment decisions and subsequent applications to regulatory bodies for clinical trials. No one model or species can be considered ideal for pivotal studies, but the larger animal species are recommended for pivotal studies. Larger species such as the horse, goat and pig also allow arthroscopic delivery, and press-fit or sutured implant fixation in thick cartilage as well as second look arthroscopies and biopsy procedures. PMID:26069576

  10. Quantitative assessment of hyaline cartilage elasticity during optical clearing using optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Liu, Chih-Hao; Singh, Manmohan; Li, Jiasong; Han, Zhaolong; Wu, Chen; Wang, Shang; Idugboe, Rita; Raghunathan, Raksha; Zakharov, Valery P.; Sobol, Emil N.; Tuchin, Valery V.; Twa, Michael; Larin, Kirill V.

    2015-03-01

    We report the first study on using optical coherence elastography (OCE) to quantitatively monitor the elasticity change of the hyaline cartilage during the optical clearing administrated by glucose solution. The measurement of the elasticity is verified using uniaxial compression test, demonstrating the feasibility of using OCE to quantify the Young's modulus of the cartilage tissue. As the results, we found that the stiffness of the hyaline cartilage increases during the optical clearing of the tissue. This study might be potentially useful for the early detection of osteoarthritis disease.

  11. Quantification of collagen distributions in rat hyaline and fibro cartilages based on second harmonic generation imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoqin; Liao, Chenxi; Wang, Zhenyu; Zhuo, Shuangmu; Liu, Wenge; Chen, Jianxin

    2016-10-01

    Hyaline cartilage is a semitransparent tissue composed of proteoglycan and thicker type II collagen fibers, while fibro cartilage large bundles of type I collagen besides other territorial matrix and chondrocytes. It is reported that the meniscus (fibro cartilage) has a greater capacity to regenerate and close a wound compared to articular cartilage (hyaline cartilage). And fibro cartilage often replaces the type II collagen-rich hyaline following trauma, leading to scar tissue that is composed of rigid type I collagen. The visualization and quantification of the collagen fibrillar meshwork is important for understanding the role of fibril reorganization during the healing process and how different types of cartilage contribute to wound closure. In this study, second harmonic generation (SHG) microscope was applied to image the articular and meniscus cartilage, and textural analysis were developed to quantify the collagen distribution. High-resolution images were achieved based on the SHG signal from collagen within fresh specimens, and detailed observations of tissue morphology and microstructural distribution were obtained without shrinkage or distortion. Textural analysis of SHG images was performed to confirm that collagen in fibrocartilage showed significantly coarser compared to collagen in hyaline cartilage (p < 0.01). Our results show that each type of cartilage has different structural features, which may significantly contribute to pathology when damaged. Our findings demonstrate that SHG microscopy holds potential as a clinically relevant diagnostic tool for imaging degenerative tissues or assessing wound repair following cartilage injury.

  12. Optimization of the arthroscopic indentation instrument for the measurement of thin cartilage stiffness

    NASA Astrophysics Data System (ADS)

    Lyyra-Laitinen, Tiina; Niinimäki, Mia; Töyräs, Juha; Lindgren, Reijo; Kiviranta, Ilkka; Jurvelin, Jukka S.

    1999-10-01

    Structural alterations associated with early, mostly reversible, degeneration of articular cartilage induce tissue softening, generally preceding fibrillation and, thus, visible changes of the cartilage surface. We have already developed an indentation instrument for measuring arthroscopic stiffness of cartilage with typical thickness >2 mm. The aim of this study was to extend the applicability of the instrument for the measurement of thin (<2 mm) cartilage stiffness. Variations in cartilage thickness, which will not be known during arthroscopy, can nonetheless affect the indentation measurement, and therefore optimization of the indenter dimensions is necessary. First, we used theoretical and finite element models to compare plane-ended and spherical-ended indenters and, then, altered the dimensions to determine the optimal indenter for thin cartilage measurements. Finally, we experimentally validated the optimized indenter using bovine humeral head cartilage. Reference unconfined compression measurements were carried out with a material testing device. The spherical-ended indenter was more insensitive to the alterations in cartilage thickness (20% versus 39% in the thickness range 1.5-5 mm) than the plane-ended indenter. For thin cartilage, the optimal dimensions for the spherical-ended indenter were 0.5 mm for diameter and 0.1 mm for height. The experimental stiffness measurements with this indenter correlated well with the reference measurements (r = 0.811, n = 31, p<0.0001) in the cartilage thickness range 0.7-1.8 mm. We conclude that the optimized indenter is reliable and well suited for the measurement of thin cartilage stiffness.

  13. Segmentation of knee cartilage by using a hierarchical active shape model based on multi-resolution transforms in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    León, Madeleine; Escalante-Ramirez, Boris

    2013-11-01

    Knee osteoarthritis (OA) is characterized by the morphological degeneration of cartilage. Efficient segmentation of cartilage is important for cartilage damage diagnosis and to support therapeutic responses. We present a method for knee cartilage segmentation in magnetic resonance images (MRI). Our method incorporates the Hermite Transform to obtain a hierarchical decomposition of contours which describe knee cartilage shapes. Then, we compute a statistical model of the contour of interest from a set of training images. Thereby, our Hierarchical Active Shape Model (HASM) captures a large range of shape variability even from a small group of training samples, improving segmentation accuracy. The method was trained with a training set of 16- MRI of knee and tested with leave-one-out method.

  14. Engineering Cartilage

    MedlinePlus

    ... Research Matters NIH Research Matters March 3, 2014 Engineering Cartilage Artistic rendering of human stem cells on ... situations has been a major goal in tissue engineering. Cartilage contains water, collagen, proteoglycans, and chondrocytes. Collagens ...

  15. Bone Marrow Concentrate Improves Early Cartilage Phase Maturation of a Scaffold Plug in the Knee: A Comparative Magnetic Resonance Imaging Analysis to Platelet-Rich Plasma and Control.

    PubMed

    Krych, Aaron J; Nawabi, Danyal H; Farshad-Amacker, Nadja A; Jones, Kristofer J; Maak, Travis G; Potter, Hollis G; Williams, Riley J

    2016-01-01

    Limited information exists on the clinical use of a synthetic osteochondral scaffold plug for cartilage restoration in the knee. The purpose of this study was to compare the early magnetic resonance imaging (MRI) appearance, including quantitative T2 values, between cartilage defects treated with a scaffold versus a scaffold with platelet-rich plasma (PRP) or bone marrow aspirate concentrate (BMAC). The hypothesis was that the addition of PRP or BMAC would result in an improved cartilage appearance. Cohort study; Level of evidence, 3. Forty-six patients with full-thickness cartilage defects of the femur were surgically treated with a control scaffold (n = 11), scaffold with PRP (n = 23), or scaffold with BMAC (n = 12) and were followed prospectively. Patients underwent MRI with a qualitative assessment and quantitative T2 mapping at 12 months after surgery. An image assessment was performed retrospectively by a blinded musculoskeletal radiologist. The cartilage phase was measured by cartilage fill and quantitative T2 values on MRI. A comparison between groups after cartilage repair was performed. The control scaffold group consisted of 8 male and 3 female patients (mean age, 38 years; mean body mass index [BMI], 25 kg/m(2)), the PRP group had 15 male and 8 female patients (mean age, 39 years; mean BMI, 26 kg/m(2)), and the BMAC group consisted of 8 male and 4 female patients (mean age, 36 years; mean BMI, 26 kg/m(2)). The PRP-treated (P = .002) and BMAC-treated (P = .03) scaffolds had superior cartilage fill compared with the control group. With quantitative methods, the PRP group demonstrated a mean T2 value (49.1 ms) that was similar to that of the control scaffold group (42.7 ms; P = .07), but the BMAC group demonstrated a mean T2 value (60.5 ms) closer to that of superficial hyaline cartilage (P = .01). The stratification of T2 values between the deep and superficial zones was not observed in any of the groups. In this comparative study, patients treated with

  16. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images.

    PubMed

    Neubert, A; Yang, Z; Engstrom, C; Xia, Y; Strudwick, M W; Chandra, S S; Fripp, J; Crozier, S

    2016-10-01

    Magnetic resonance (MR) imaging plays a key role in investigating early degenerative disorders and traumatic injuries of the glenohumeral cartilages. Subtle morphometric and biochemical changes of potential relevance to clinical diagnosis, treatment planning, and evaluation can be assessed from measurements derived from in vivo MR segmentation of the cartilages. However, segmentation of the glenohumeral cartilages, using approaches spanning manual to automated methods, is technically challenging, due to their thin, curved structure and overlapping intensities of surrounding tissues. Automatic segmentation of the glenohumeral cartilages from MR imaging is not at the same level compared to the weight-bearing knee and hip joint cartilages despite the potential applications with respect to clinical investigation of shoulder disorders. In this work, the authors present a fully automated segmentation method for the glenohumeral cartilages using MR images of healthy shoulders. The method involves automated segmentation of the humerus and scapula bones using 3D active shape models, the extraction of the expected bone-cartilage interface, and cartilage segmentation using a graph-based method. The cartilage segmentation uses localization, patient specific tissue estimation, and a model of the cartilage thickness variation. The accuracy of this method was experimentally validated using a leave-one-out scheme on a database of MR images acquired from 44 asymptomatic subjects with a true fast imaging with steady state precession sequence on a 3 T scanner (Siemens Trio) using a dedicated shoulder coil. The automated results were compared to manual segmentations from two experts (an experienced radiographer and an experienced musculoskeletal anatomist) using the Dice similarity coefficient (DSC) and mean absolute surface distance (MASD) metrics. Accurate and precise bone segmentations were achieved with mean DSC of 0.98 and 0.93 for the humeral head and glenoid fossa, respectively

  17. Shortwave-infrared Raman spectroscopic classification of water fractions in articular cartilage ex vivo

    NASA Astrophysics Data System (ADS)

    Unal, Mustafa; Akkus, Ozan

    2018-01-01

    Water loss is an early onset indicator of osteoarthritis. Although Raman spectroscopy (RS) holds the potential for measurement of cartilage hydration, the knowledge of Raman OH-stretch bands of biological tissue is very limited. We assesed here the sensitivity of RS to identify and classify water types in the cartilage. Raman spectrum measurements over the high wavenumber range were employed to identify different water fractions in articular cartilage. Raman spectra were collected from wet and sequentially dehydrated cartilage along with pure collagen type II and chondroitin sulfate standards. OH-stretch band of cartilage is dominated by mobile water, up to 95% of total intensities. We identified six peaks in cartilage spectrum using second-derivative analysis: peaks at 3200 and 3650 cm-1 are associated with organic matrix (both collagen and proteglycan) and matrix-bound water molecules. Peaks at 3250, 3453, and 3630 cm-1 are associated with collagen and collagen-related water molecules, whereas the peak at 3520 cm-1 is associated with proteoglycan (PG) and PG-related water molecules. The current work is the first thorough analysis of the Raman OH-stretch band of the cartilage and with the knowledge generated by this study, it may now be possible to study on cartilage hydration by RS.

  18. The diced cartilage glue graft for nasal augmentation. Morphometric evidence of longevity.

    PubMed

    Tasman, Abel-Jan; Diener, Pierre-André; Litschel, Ralph

    2013-03-01

    A grafting technique that uses diced cartilage without fascia, which improves formability while maintaining long-term stability, would be a welcome addition to the rhinoplasty armamentarium. A diced cartilage glue graft was recently introduced as the Tasman technique. The technique has been used by one of us (A.-J.T.) in 28 patients who were monitored clinically for 4 to 26 months. Sonographic morphometry of the graft was used in 10 patients with a maximum follow-up of 15 months, and 2 biopsies were obtained for histologic examination. Fashioning the diced cartilage glue graft reduced operating time compared with the diced cartilage fascia graft and allowed for a wide variety of transplant shapes and sizes, depending on the mold used. All grafts were used for augmentation of the nasal dorsum or radix and healed uneventfully. Sonographic cross-section measures of the grafts changed between 6% and –29%(median, –5%) in the early postoperative phase and 8%and –7% (median, –2%) between 3 and 15 months after insertion. Histologic examination of the graft biopsies revealed viable cartilage with signs of regeneration. The diced cartilage glue graft may become an attractive alternative to accepted methods for dorsal augmentation, the diced cartilage fascia graft in particular.

  19. Near field effect on elasticity measurement for cartilage-bone structure using Lamb wave method.

    PubMed

    Xu, Hao; Chen, Shigao; An, Kai-Nan; Luo, Zong-Ping

    2017-10-30

    Cartilage elasticity changes with cartilage degeneration. Hence, cartilage elasticity detection might be an alternative to traditional imaging methods for the early diagnosis of osteoarthritis. Based on the wave propagation measurement, Shear wave elastography (SWE) become an emerging non-invasive elasticity detection method. The wave propagation model, which is affected by tissue shapes, is crucial for elasticity estimating in SWE. However, wave propagation model for cartilage was unclear. This study aimed to establish a wave propagation model for the cartilage-bone structure. We fabricated a cartilage-bone structure, and studied the elasticity measurement and wave propagation by experimental and numerical Lamb wave method (LWM). Results indicated the wave propagation model satisfied the lamb wave theory for two-layered structure. Moreover, a near field region, which affects wave speed measurements and whose occurrence can be prevented if the wave frequency is larger than one critical frequency, was observed. Our findings would provide a theoretical foundation for further application of LWM in elasticity measurement of cartilage in vivo. It can help the application of LWM to the diagnosis of osteoarthritis.

  20. How does tibial cartilage volume relate to symptoms in subjects with knee osteoarthritis?

    PubMed Central

    Wluka, A; Wolfe, R; Stuckey, S; Cicuttini, F

    2004-01-01

    Background: No consistent relationship between the severity of symptoms of knee osteoarthritis (OA) and radiographic change has been demonstrated. Objectives: To determine the relationship between symptoms of knee OA and tibial cartilage volume, whether pain predicts loss of cartilage in knee OA, and whether change in cartilage volume over time relates to change in symptoms over the same period. Method: 132 subjects with symptomatic, early (mild to moderate) knee OA were studied. At baseline and 2 years later, participants had MRI scans of their knee and completed questionnaires quantifying symptoms of knee OA (knee-specific WOMAC: pain, stiffness, function) and general physical and mental health (SF-36). Tibial cartilage volume was determined from the MRI images. Results: Complete data were available for 117 (89%) subjects. A weak association was found between tibial cartilage volume and symptoms at baseline. The severity of the symptoms of knee OA at baseline did not predict subsequent tibial cartilage loss. However, weak associations were seen between worsening of symptoms of OA and increased cartilage loss: pain (rs = 0.28, p = 0.002), stiffness (rs = 0.17, p = 0.07), and deterioration in function (rs = 0.21, p = 0.02). Conclusion: Tibial cartilage volume is weakly associated with symptoms in knee OA. There is a weak association between loss of tibial cartilage and worsening of symptoms. This suggests that although cartilage is not a major determinant of symptoms in knee OA, it does relate to symptoms. PMID:14962960

  1. Early-state damage detection, characterization, and evolution using high-resolution computed tomography

    NASA Astrophysics Data System (ADS)

    Grandin, Robert John

    Safely using materials in high performance applications requires adequately understanding the mechanisms which control the nucleation and evolution of damage. Most of a material's operational life is spent in a state with noncritical damage, and, for example in metals only a small portion of its life falls within the classical Paris Law regime of crack growth. Developing proper structural health and prognosis models requires understanding the behavior of damage in these early stages within the material's life, and this early-stage damage occurs on length scales at which the material may be considered "granular'' in the sense that the discrete regions which comprise the whole are large enough to require special consideration. Material performance depends upon the characteristics of the granules themselves as well as the interfaces between granules. As a result, properly studying early-stage damage in complex, granular materials requires a means to characterize changes in the granules and interfaces. The granular-scale can range from tenths of microns in ceramics, to single microns in fiber-reinforced composites, to tens of millimeters in concrete. The difficulty of direct-study is often overcome by exhaustive testing of macro-scale damage caused by gross material loads and abuse. Such testing, for example optical or electron microscopy, destructive and further, is costly when used to study the evolution of damage within a material and often limits the study to a few snapshots. New developments in high-resolution computed tomography (HRCT) provide the necessary spatial resolution to directly image the granule length-scale of many materials. Successful application of HRCT with fiber-reinforced composites, however, requires extending the HRCT performance beyond current limits. This dissertation will discuss improvements made in the field of CT reconstruction which enable resolutions to be pushed to the point of being able to image the fiber-scale damage structures and

  2. Changes of rabbit meniscus influenced by hyaline cartilage injury of osteoarthritis.

    PubMed

    Zhao, Jiajun; Huang, Suizhu; Zheng, Jia; Zhong, Chunan; Tang, Chao; Zheng, Lei; Zhang, Zhen; Xu, Jianzhong

    2014-01-01

    Osteoarthritis (OA) is a common disease in the elderly population. Most of the previous OA-related researches focused on articular cartilage degeneration, osteophyte formation and synovitis etc. However, the role of the meniscus in these pathological changes has not been given enough attention. The goal of our study was to find the pathological changes of the meniscus in OA knee and determine their relationship. 20 months old female Chinese rabbits received either knee damaging operations with articular cartilage scratch method or sham operation randomly on one of their knees. They were sacrificed after 1-6 weeks post-operation. Medial Displacement Index (MDI) for meniscus dislocation, hematoxylin and eosin (HE) for routine histological evaluation, Toluidine blue (TB) stains for evaluating proteoglycans were carried out. Immunohistochemical (IHC) staining was performed with a two-step detection kit. Histological analysis showed chondrocyte clusters around cartilage lesions and moderate loss of proteoglycans in the operation model, as well as MDI increase and all characteristics of OA. High expression of MMP-3 and TIMP-1 also were found in both hyaline cartilage and meniscus. Biomechanical and biochemistry environment around the meniscus is altered when OA occur. If meniscus showed degeneration, subluxation and dysfunction, OA would be more severe. Prompt repair or reconstruction of hyaline cartilage in weight bearing area when it injured could prevent meniscus degeneration and subluxation, then prevent the development of OA.

  3. Biochemical magnetic resonance imaging of knee articular cartilage: T1rho and T2 mapping as cartilage degeneration biomarkers.

    PubMed

    Le, Jenna; Peng, Qi; Sperling, Karen

    2016-11-01

    Osteoarthritis (OA) is a disease whose hallmark is the degeneration of articular cartilage. There is a worsening epidemic of OA in the United States today, with considerable economic costs. In order to develop more effective treatments for OA, noninvasive biomarkers that permit early diagnosis and treatment monitoring are necessary. T1rho and T2 mapping are two magnetic resonance imaging techniques that have shown great promise as noninvasive biomarkers of cartilage degeneration. Each of the two techniques is endowed with advantages and disadvantages: T1rho can discern earlier biochemical changes of OA than T2 mapping, while T2 mapping is more widely available and can be incorporated into existing imaging protocols in a more time-efficient manner than T1rho. Both techniques have been applied in numerous instances to study how cartilage is affected by OA risk factors, such as age and exercise. Additionally, both techniques have been repeatedly applied to the study of posttraumatic OA in patients with torn anterior cruciate ligaments. © 2016 New York Academy of Sciences.

  4. Superolateral Hoffa's fat pad (SHFP) oedema and patellar cartilage volume loss: quantitative analysis using longitudinal data from the Foundation for the National Institute of Health (FNIH) Osteoarthritis Biomarkers Consortium.

    PubMed

    Haj-Mirzaian, Arya; Guermazi, Ali; Hafezi-Nejad, Nima; Sereni, Christopher; Hakky, Michael; Hunter, David J; Zikria, Bashir; Roemer, Frank W; Demehri, Shadpour

    2018-04-12

    To determine the association of superolateral Hoffa's fat pad (SHFP) oedema and patellofemoral joint structural damage in participants of Foundation for the National Institute of Health Osteoarthritis Biomarkers Consortium study. Baseline and 24-month MRIs of 600 subjects were assessed. The presence of SHFP oedema (using 0-3 grading scale) and patellar morphology metrics were determined using baseline MRI. Quantitative patellar cartilage volume and semi-quantitative MRI osteoarthritis knee score (MOAKS) variables were extracted. The associations between SHFP oedema and patellar cartilage damage, bone marrow lesion (BML), osteophyte and morphology were evaluated in cross-sectional model. In longitudinal analysis, the associations between oedema and cartilage volume loss (defined using reliable change index) and MOAKS worsening were evaluated. In cross-sectional evaluations, the presence of SHFP oedema was associated with simultaneous lateral patellar cartilage/BML defects and inferior-medial patellar osteophyte size. A significant positive correlation between the degree of patella alta and SHFP oedema was detected (r = 0.259, p < 0.001). The presence of oedema was associated with 24-month cartilage volume loss (odds ratio (OR) 2.11, 95% confidence interval 1.46-3.06) and medial patellar BML size (OR 1.92 (1.15-3.21)) and number (OR 2.50 (1.29-4.88)) worsening. The optimal cut-off value for the grade of baseline SHFP oedema regarding both presence and worsening of patellar structural damage was ≥ 1 (presence of any SHFP hyperintensity). The presence of SHFP oedema could be considered as a predictor of future patellar cartilage loss and BML worsening, and an indicator of simultaneous cartilage, BML and osteophyte defects. • SHFP oedema was associated with simultaneous lateral patellar OA-related structural damage. • SHFP oedema was associated with longitudinal patellar cartilage loss over 24 months. • SHFP oedema could be considered as indicator and predictor

  5. Carnosic acid attenuates cartilage degeneration through induction of heme oxygenase-1 in human articular chondrocytes.

    PubMed

    Ishitobi, Hiroyuki; Sanada, Yohei; Kato, Yoshio; Ikuta, Yasunari; Shibata, Sachi; Yamasaki, Satoshi; Lotz, Martin K; Matsubara, Kiminori; Miyaki, Shigeru; Adachi, Nobuo

    2018-04-17

    Osteoarthritis (OA) is common age-associated disease, and associated with joint pain, mobility limitations and compromised overall quality of life. OA treatment is currently limited to pain management and joint arthroplasty at end stage disease. Oxidative damage to cartilage extracellular matrix and cells is an important mechanism in joint aging and OA pathogenesis. Evidence from in vitro and in vivo models of OA suggests that pharmaceuticals and natural compounds with antioxidant properties reduce expression of mediators of OA pathogenesis and OA severity in animal models. Among the signaling pathways that control cellular protective mechanisms against oxygen radical damage is heme oxygenase-1 (HO-1). We recently report HO-1 reduced OA severity in a mouse model. This led to the hypothesis that compounds that increase HO-1 expression have therapeutic potential in OA. Carnosic acid (CA), a natural diterpene with oxidant activity, is prevents cartilage degeneration though induction of HO-1. CA induced HO-1 and miR-140 expression in human articular chondrocytes, and cartilage degeneration was attenuated by CA treatment. Induced HO-1 by CA was in part associated with downregulation via miR-140 binding to 3'UTR of BTB and CNC homology 1 (BACH1). These findings suggest that CA attenuates cartilage degradation through HO-1 upregulation and has potential as a supplement for OA prevention. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. [MRI monitoring of autologous hyaline cartilage grafts in the knee joint: a follow-up study over 12 months].

    PubMed

    Müller-Horvat, C; Schick, F; Claussen, C D; Grönewäller, E

    2004-12-01

    To evaluate the suitability of different MR sequences for monitoring the stage of maturation of hyaline cartilage grafts in the knee joint and the early detection of complications like hypertrophy. In addition, it was analyzed whether indirect MR arthrography can indicate debonding of the graft. MRI examinations were performed in 19 patients, aged 17 - 48 years, with autologous transplantation of a hyaline cartilage tissue graft after knee trauma. Examination dates were prior to transplantation to localize the defect, and 6 weeks, 3, 6 and 12 months after transplantation to control morphology and maturation of the autologous graft. Standard T2- and proton-density-weighted turbo spin echo (TSE) sequences and T1-weighted spin echo (SE) sequences were used, as well as gradient echo (GRE) sequences with and without magnetization transfer (MT) prepulses. In some cases, indirect MR arthrography was performed. Cartilage defect and the hyaline cartilage graft could be detected in all 19 patients. Hypertrophy of the graft could be found early in 3 patients and debonding in 1 patient. For depicting the graft a short time after surgery, T2-weighted TSE-sequences showed the best results. Six and 12 months after transplantation, spoiled 3D-GRE-sequences like FLASH3D (fast low angle shot) showed reduced artifacts due to magnetic residues from the surgery. Difference images from GRE-sequences with and without MT pulse provided high contrast between cartilage and surrounding tissue. The quantification of the MT effect showed an assimilation of the graft to the original cartilage within 12 months. Indirect MR arthrography showed subchondral contrast medium even 12 months after transplantation in 3 patients. MRI allows a reliable depiction of the hyaline graft and provides very early detection of complications like hypertrophy. The MT effect seems to be correlated with maturation of the graft and allows selective depiction of normal cartilage and engrafted cartilage.

  7. Bone marrow stimulation of the medial femoral condyle produces inferior cartilage and bone repair compared to the trochlea in a rabbit surgical model.

    PubMed

    Chen, Hongmei; Chevrier, Anik; Hoemann, Caroline D; Sun, Jun; Picard, Genevieve; Buschmann, Michael D

    2013-11-01

    The influence of the location of cartilage lesions on cartilage repair outcome is incompletely understood. This study compared cartilage and bone repair in medial femoral condylar (MFC) versus femoral trochlear (TR) defects 3 months after bone marrow stimulation in mature rabbits. Intact femurs from adult rabbits served as controls. Results from quantitative histomorphometry and histological scoring showed that bone marrow stimulation produced inferior soft tissue repair in MFC versus TR defects, as indicated by significantly lower % Fill (p = 0.03), a significant increase in collagen type I immunostaining (p < 0.00001) and lower O'Driscoll scores (p < 0.05). 3D micro-CT analysis showed that repaired TR defects regained normal un-operated values of bone volume fraction, trabecular thickness, and trabecular number, whereas in MFC defects the repaired bone architecture appeared immature and less dense compared to intact un-operated MFC controls (p < 0.0001). Severe medial meniscal damage was found in 28% of operated animals and was strongly correlated with (i) low cartilage defect fill, (ii) incomplete bone repair in MFC, and (iii) with a more posterior defect placement in the weight-bearing region. We conclude that the location of cartilage lesions influences cartilage repair, with better outcome in TR versus MFC defects in rabbits. Meniscal degeneration is associated with cartilage damage. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Knee cartilage extraction and bone-cartilage interface analysis from 3D MRI data sets

    NASA Astrophysics Data System (ADS)

    Tamez-Pena, Jose G.; Barbu-McInnis, Monica; Totterman, Saara

    2004-05-01

    This works presents a robust methodology for the analysis of the knee joint cartilage and the knee bone-cartilage interface from fused MRI sets. The proposed approach starts by fusing a set of two 3D MR images the knee. Although the proposed method is not pulse sequence dependent, the first sequence should be programmed to achieve good contrast between bone and cartilage. The recommended second pulse sequence is one that maximizes the contrast between cartilage and surrounding soft tissues. Once both pulse sequences are fused, the proposed bone-cartilage analysis is done in four major steps. First, an unsupervised segmentation algorithm is used to extract the femur, the tibia, and the patella. Second, a knowledge based feature extraction algorithm is used to extract the femoral, tibia and patellar cartilages. Third, a trained user corrects cartilage miss-classifications done by the automated extracted cartilage. Finally, the final segmentation is the revisited using an unsupervised MAP voxel relaxation algorithm. This final segmentation has the property that includes the extracted bone tissue as well as all the cartilage tissue. This is an improvement over previous approaches where only the cartilage was segmented. Furthermore, this approach yields very reproducible segmentation results in a set of scan-rescan experiments. When these segmentations were coupled with a partial volume compensated surface extraction algorithm the volume, area, thickness measurements shows precisions around 2.6%

  9. The effects of high-dose methotrexate on the development of cartilage lesions in a lapine model of osteoarthrosis.

    PubMed

    Neidel, J; Schroers, B; Sintermann, F

    1998-01-01

    To determine whether systemic administration of methotrexate (MTX) can prevent joint destruction in experimental osteoarthrosis (OA) in rabbits, the disorder was induced unilaterally in the knee joints of 40 rabbits by partial medial meniscectomy and sectioning of the medial collateral and both cruciate ligaments. A sham operation (arthrotomy only) was performed in another four animals. Effects on the cartilage of the femoral condyles were studied after 6 and 12 weeks. Twelve weeks after induction, femoral and tibial osteophyte formation was demonstrated on radiographs in all cases. Marked cartilage damage was found histologically (median Mankin score 10 vs 1 for non-operated controls; P < 0.05, Wilcoxon test). Cartilage proteoglycan (GAG) content (dye binding assay) was reduced in operated joints [63 +/- 8 (mean +/- SEM) vs 75 +/- 6 micrograms chondroitin sulfate/mg cartilage wet weight], and the leukocyte count in the joints was elevated (226 +/- 14 vs 7 +/- 3 leukocytes per microliter joint aspirate after injection of 0.5 ml saline solution; both P < 0.05, Wilcoxon test). The rate of GAG synthesis was unchanged (ex vivo labelling with 35S-sulfate). Treatment with MTX (30 mg x kg body weight-1 x week-1 i.m., starting 12 h postoperatively) reduced cartilage damage (median Mankin score 8 vs 10 for placebo, P < 0.05, Mann-Whitney U-test), but had no significant effect on the other parameters tested. No significant MTX effects were observed on cartilage from nonoperated joints. Our data indicate that MTX may have a limited therapeutic effect in experimental OA in the rabbit.

  10. On the detection of early osteoarthritis by quantitative microscopic imaging

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Daniel John

    measurements. These studies demonstrate the ability to use two quantitative microscopic imaging techniques, microCT and microMRI, to detect microscopic changes in collagen and GAG from healthy, biochemically degraded, and early OA cartilage. The capability for microscopic imaging to detect alterations at the earliest stages of OA will ultimately improve the understanding of degradation and may help aid in the detection for the prevention of disease and repair of damaged cartilage.

  11. Joint cartilage thickness and automated determination of bone age and bone health in juvenile idiopathic arthritis.

    PubMed

    Twilt, Marinka; Pradsgaard, Dan; Spannow, Anne Helene; Horlyck, Arne; Heuck, Carsten; Herlin, Troels

    2017-08-10

    BoneXpert is an automated method to calculate bone maturation and bone health index (BHI) in children with juvenile idiopathic arthritis (JIA). Cartilage thickness can also be seen as an indicator for bone health and arthritis damage. The objective of this study was to evaluate the relation between cartilage thickness, bone maturation and bone health in patients with JIA. Patients with JIA diagnosed according ILAR criteria included in a previous ultrasonography (US) study were eligible if hand radiographs were taken at the same time as the US examination. Of the 95 patients 67 met the inclusion criteria. Decreased cartilage thickness was seen in 27% of the examined joints. Decreased BHI was seen in half of the JIA patient, and delayed bone maturation was seen in 33% of patients. A combination of decreased BHI and bone age was seen in 1 out of 5 JIA patients. Decreased cartilage thickness in the knee, wrist and MCP joint was negatively correlated with delayed bone maturation but not with bone health index. Delayed bone maturation and decreased BHI were not related to a thinner cartilage, but a thicker cartilage. No relation with JADAS 10 was found. The rheumatologist should remain aware of delayed bone maturation and BHI in JIA patients with cartilage changes, even in the biologic era.

  12. Engineering Lubrication in Articular Cartilage

    PubMed Central

    McNary, Sean M.; Athanasiou, Kyriacos A.

    2012-01-01

    Despite continuous progress toward tissue engineering of functional articular cartilage, significant challenges still remain. Advances in morphogens, stem cells, and scaffolds have resulted in enhancement of the bulk mechanical properties of engineered constructs, but little attention has been paid to the surface mechanical properties. In the near future, engineered tissues will be able to withstand and support the physiological compressive and tensile forces in weight-bearing synovial joints such as the knee. However, there is an increasing realization that these tissue-engineered cartilage constructs will fail without the optimal frictional and wear properties present in native articular cartilage. These characteristics are critical to smooth, pain-free joint articulation and a long-lasting, durable cartilage surface. To achieve optimal tribological properties, engineered cartilage therapies will need to incorporate approaches and methods for functional lubrication. Steady progress in cartilage lubrication in native tissues has pushed the pendulum and warranted a shift in the articular cartilage tissue-engineering paradigm. Engineered tissues should be designed and developed to possess both tribological and mechanical properties mirroring natural cartilage. In this article, an overview of the biology and engineering of articular cartilage structure and cartilage lubrication will be presented. Salient progress in lubrication treatments such as tribosupplementation, pharmacological, and cell-based therapies will be covered. Finally, frictional assays such as the pin-on-disk tribometer will be addressed. Knowledge related to the elements of cartilage lubrication has progressed and, thus, an opportune moment is provided to leverage these advances at a critical step in the development of mechanically and tribologically robust, biomimetic tissue-engineered cartilage. This article is intended to serve as the first stepping stone toward future studies in functional

  13. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neubert, A., E-mail: ales.neubert@csiro.au

    Purpose: Magnetic resonance (MR) imaging plays a key role in investigating early degenerative disorders and traumatic injuries of the glenohumeral cartilages. Subtle morphometric and biochemical changes of potential relevance to clinical diagnosis, treatment planning, and evaluation can be assessed from measurements derived from in vivo MR segmentation of the cartilages. However, segmentation of the glenohumeral cartilages, using approaches spanning manual to automated methods, is technically challenging, due to their thin, curved structure and overlapping intensities of surrounding tissues. Automatic segmentation of the glenohumeral cartilages from MR imaging is not at the same level compared to the weight-bearing knee and hipmore » joint cartilages despite the potential applications with respect to clinical investigation of shoulder disorders. In this work, the authors present a fully automated segmentation method for the glenohumeral cartilages using MR images of healthy shoulders. Methods: The method involves automated segmentation of the humerus and scapula bones using 3D active shape models, the extraction of the expected bone–cartilage interface, and cartilage segmentation using a graph-based method. The cartilage segmentation uses localization, patient specific tissue estimation, and a model of the cartilage thickness variation. The accuracy of this method was experimentally validated using a leave-one-out scheme on a database of MR images acquired from 44 asymptomatic subjects with a true fast imaging with steady state precession sequence on a 3 T scanner (Siemens Trio) using a dedicated shoulder coil. The automated results were compared to manual segmentations from two experts (an experienced radiographer and an experienced musculoskeletal anatomist) using the Dice similarity coefficient (DSC) and mean absolute surface distance (MASD) metrics. Results: Accurate and precise bone segmentations were achieved with mean DSC of 0.98 and 0.93 for the humeral

  14. Cartilage biomarkers in the osteoarthropathy of alkaptonuria reveal low turnover and accelerated ageing

    PubMed Central

    Hsueh, Ming-Feng; Ranganath, Lakshminarayan R.; Gallagher, James A.; Dillon, Jane P.; Huebner, Janet L.; Catterall, Jon B.; Kraus, Virginia B.

    2017-01-01

    Objective. Alkaptonuria (AKU) is a rare autosomal recessive disease resulting from a single enzyme deficiency in tyrosine metabolism. As a result, homogentisic acid cannot be metabolized, causing systemic increases. Over time, homogentisic acid polymerizes and deposits in collagenous tissues, leading to ochronosis. Typically, this occurs in joint cartilages, leading to an early onset, rapidly progressing osteoarthropathy. The aim of this study was to examine tissue turnover in cartilage affected by ochronosis and its role in disease initiation and progression. Methods. With informed patient consent, hip and knee cartilages were obtained at surgery for arthropathy due to AKU (n = 6; 2 knees/4 hips) and OA (n = 12; 5 knees/7 hips); healthy non-arthritic (non-OA n = 6; 1 knee/5 hips) cartilages were obtained as waste from trauma surgery. We measured cartilage concentrations (normalized to dry weight) of racemized aspartate, GAG, COMP and deamidated COMP (D-COMP). Unpaired AKU, OA and non-OA samples were compared by non-parametric Mann–Whitney U test. Results. Despite more extractable total protein being obtained from AKU cartilage than from OA or non-OA cartilage, there was significantly less extractable GAG, COMP and D-COMP in AKU samples compared with OA and non-OA comparators. Racemized Asx (aspartate and asparagine) was significantly enriched in AKU cartilage compared with in OA cartilage. Conclusions. These novel data represent the first examination of cartilage matrix components in a sample of patients with AKU, representing almost 10% of the known UK alkaptonuric population. Compared with OA and non-OA, AKU cartilage demonstrates a very low turnover state and has low levels of extractable matrix proteins. PMID:28028161

  15. A subdivision-based parametric deformable model for surface extraction and statistical shape modeling of the knee cartilages

    NASA Astrophysics Data System (ADS)

    Fripp, Jurgen; Crozier, Stuart; Warfield, Simon K.; Ourselin, Sébastien

    2006-03-01

    Subdivision surfaces and parameterization are desirable for many algorithms that are commonly used in Medical Image Analysis. However, extracting an accurate surface and parameterization can be difficult for many anatomical objects of interest, due to noisy segmentations and the inherent variability of the object. The thin cartilages of the knee are an example of this, especially after damage is incurred from injuries or conditions like osteoarthritis. As a result, the cartilages can have different topologies or exist in multiple pieces. In this paper we present a topology preserving (genus 0) subdivision-based parametric deformable model that is used to extract the surfaces of the patella and tibial cartilages in the knee. These surfaces have minimal thickness in areas without cartilage. The algorithm inherently incorporates several desirable properties, including: shape based interpolation, sub-division remeshing and parameterization. To illustrate the usefulness of this approach, the surfaces and parameterizations of the patella cartilage are used to generate a 3D statistical shape model.

  16. COMPARISON OF THE EFFECTS OF PAPAIN AND VITAMIN A ON CARTILAGE

    PubMed Central

    Thomas, Lewis; McCluskey, Robert T.; Potter, Jacobus L.; Weissmann, Gerald

    1960-01-01

    The administration of large amounts of vitamin A to rabbits has been shown to result in depletion of cartilage matrix. The normal basophilic, metachromatic, and Alcian blue staining properties of the matrix are lost, especially in articular and epiphyseal cartilage. The cartilage cells remain intact, but are reduced in size. These changes sometimes appeared as early as 48 hours after the initiation of daily injection of 1 million units of vitamin A, and were usually well established by 5 days. Some rabbits failed to show changes in cartilage, even after 5 daily injections. Increased amounts of material presumed to be chondroitin sulfate were present in the sera of vitamin A-treated rabbits, usually by 72 hours after the first injection. This was demonstrated by a turbidimetric procedure using hexamminecobaltic chloride. In rabbits given sulfur-35 (Na2S35O4) 5 days before the initiation of vitamin A treatment, it was shown that sulfur-35 was lost from articular and epiphyseal cartilage. This was associated with an increase in the non-dialyzable sulfur-35 in both serum and in the cobalt-precipitable material. These rabbits also excreted more sulfur-35 than rabbits not given vitamin A. There was a reduction in sulfur-35 activity in chondromucoprotein extracted from the ear cartilage of vitamin A-treated rabbits. The changes are interpreted as indicating that the administration of large amounts of vitamin A to rabbits results in removal of chondroitin sulfate from cartilage matrix. The administration of small amounts of crude papain causes histologic changes in cartilage that are remarkably similar to those seen in vitamin A-treated rabbits. The possibility is suggested that the changes in cartilage produced by administration of vitamin A to rabbits may be the result of activation of a proteolytic enzyme or enzymes, with properties similar to those of papain. PMID:13776507

  17. Advances of human bone marrow-derived mesenchymal stem cells in the treatment of cartilage defects: a systematic review.

    PubMed

    Gopal, Kaliappan; Amirhamed, Haji Alizadeh; Kamarul, Tunku

    2014-06-01

    Mesenchymal stem cell (MSC)-based therapies represent a new option for treating damaged cartilage. However, the outcomes following its clinical application have seldom been previously compared. The present paper presents the systematic review of current literatures on MSC-based therapy for cartilage repair in clinical applications. Ovid, Scopus, PubMed, ISI Web of Knowledge and Google Scholar online databases were searched using several keywords, which include "cartilage" and "stem cells". Only studies using bone marrow-derived MSC (BM-MSC) to treat cartilage defects clinically were included in this review. The clinical outcomes were compared, and the quality of the tissue repair was analysed where possible. Of the 996 articles, only six (n = 6) clinical studies have described the use of BM-MSC in clinical applications. Two studies were cohort observational trials, three were case series, and one was a case report. In the two comparative trials, BM-MSCs produced superior repair to cartilage treatment without cells and have comparable outcomes to autologous chondrocyte implantation. The case series and case-control studies have demonstrated that use of BM-MSCs resulted in better short- to long-term clinical outcomes with minimal complications. In addition, histological analyses in two studies have resulted in good repair tissue formation at the damaged site, composed mainly of hyaline-like cartilage. Although results of the respective studies are highly indicative that BM-MSC-based therapy is superior, due to the differences in methods and selection criteria used, it was not possible to make direct comparison between the studies. In conclusion, published studies do suggest that BM-MSCs could provide superior cartilage repair. However, due to limited number of reports, more robust studies might be required before a definitive conclusion can be drawn.

  18. Osteoarthritis-derived chondrocytes are a potential source of multipotent progenitor cells for cartilage tissue engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oda, Tomoyuki; Sakai, Tadahiro; Hiraiwa, Hideki

    The natural healing capacity of damaged articular cartilage is poor, rendering joint surface injuries a prime target for regenerative medicine. While autologous chondrocyte or mesenchymal stem cell (MSC) implantation can be applied to repair cartilage defects in young patients, no appropriate long-lasting treatment alternative is available for elderly patients with osteoarthritis (OA). Multipotent progenitor cells are reported to present in adult human articular cartilage, with a preponderance in OA cartilage. These facts led us to hypothesize the possible use of osteoarthritis-derived chondrocytes as a cell source for cartilage tissue engineering. We therefore analyzed chondrocyte- and stem cell-related markers, cell growthmore » rate, and multipotency in OA chondrocytes (OACs) and bone marrow-derived MSCs, along with normal articular chondrocytes (ACs) as a control. OACs demonstrated similar phenotype and proliferation rate to MSCs. Furthermore, OACs exhibited multilineage differentiation ability with a greater chondrogenic differentiation ability than MSCs, which was equivalent to ACs. We conclude that chondrogenic capacity is not significantly affected by OA, and OACs could be a potential source of multipotent progenitor cells for cartilage tissue engineering. - Highlights: • Osteoarthritis chondrocytes (OACs) have multilineage differentiation capacity. • Articular chondrocytes (ACs) and OACs have similar gene expression profiles. • OACs have high chondrogenic potential. • OACs could be a cell resource for cartilage tissue engineering.« less

  19. Estimation of Articular Cartilage Surface Roughness Using Gray-Level Co-Occurrence Matrix of Laser Speckle Image.

    PubMed

    Youssef, Doaa; El-Ghandoor, Hatem; Kandel, Hamed; El-Azab, Jala; Hassab-Elnaby, Salah

    2017-06-28

    The application of He-Ne laser technologies for description of articular cartilage degeneration, one of the most common diseases worldwide, is an innovative usage of these technologies used primarily in material engineering. Plain radiography and magnetic resonance imaging are insufficient to allow the early assessment of the disease. As surface roughness of articular cartilage is an important indicator of articular cartilage degeneration progress, a safe and noncontact technique based on laser speckle image to estimate the surface roughness is provided. This speckle image from the articular cartilage surface, when illuminated by laser beam, gives very important information about the physical properties of the surface. An experimental setup using a low power He-Ne laser and a high-resolution digital camera was implemented to obtain speckle images of ten bovine articular cartilage specimens prepared for different average roughness values. Texture analysis method based on gray-level co-occurrence matrix (GLCM) analyzed on the captured speckle images is used to characterize the surface roughness of the specimens depending on the computation of Haralick's texture features. In conclusion, this promising method can accurately estimate the surface roughness of articular cartilage even for early signs of degeneration. The method is effective for estimation of average surface roughness values ranging from 0.09 µm to 2.51 µm with an accuracy of 0.03 µm.

  20. Estimation of Articular Cartilage Surface Roughness Using Gray-Level Co-Occurrence Matrix of Laser Speckle Image

    PubMed Central

    El-Ghandoor, Hatem; Kandel, Hamed; El-Azab, Jala; Hassab-Elnaby, Salah

    2017-01-01

    The application of He-Ne laser technologies for description of articular cartilage degeneration, one of the most common diseases worldwide, is an innovative usage of these technologies used primarily in material engineering. Plain radiography and magnetic resonance imaging are insufficient to allow the early assessment of the disease. As surface roughness of articular cartilage is an important indicator of articular cartilage degeneration progress, a safe and noncontact technique based on laser speckle image to estimate the surface roughness is provided. This speckle image from the articular cartilage surface, when illuminated by laser beam, gives very important information about the physical properties of the surface. An experimental setup using a low power He-Ne laser and a high-resolution digital camera was implemented to obtain speckle images of ten bovine articular cartilage specimens prepared for different average roughness values. Texture analysis method based on gray-level co-occurrence matrix (GLCM) analyzed on the captured speckle images is used to characterize the surface roughness of the specimens depending on the computation of Haralick’s texture features. In conclusion, this promising method can accurately estimate the surface roughness of articular cartilage even for early signs of degeneration. The method is effective for estimation of average surface roughness values ranging from 0.09 µm to 2.51 µm with an accuracy of 0.03 µm. PMID:28773080

  1. A zebrafish sox9 gene required for cartilage morphogenesis.

    PubMed

    Yan, Yi-Lin; Miller, Craig T; Nissen, Robert M; Singer, Amy; Liu, Dong; Kirn, Anette; Draper, Bruce; Willoughby, John; Morcos, Paul A; Amsterdam, Adam; Chung, Bon-Chu; Westerfield, Monte; Haffter, Pascal; Hopkins, Nancy; Kimmel, Charles; Postlethwait, John H; Nissen, Robert

    2002-11-01

    revealed that early bone formation was largely unaffected in jef (sox9a) mutants. These studies show that jef (sox9a) is essential for both morphogenesis of condensations and overt cartilage differentiation.

  2. Effect of exercise on thicknesses of mature hyaline cartilage, calcified cartilage, and subchondral bone of equine tarsi.

    PubMed

    Tranquille, Carolyne A; Blunden, Antony S; Dyson, Sue J; Parkin, Tim D H; Goodship, Allen E; Murray, Rachel C

    2009-12-01

    OBJECTIVE-To investigate effects of exercise on hyaline cartilage (HC), calcified cartilage (CC), and subchondral bone (SCB) thickness patterns of equine tarsi. SAMPLE POPULATION-30 tarsi from cadavers of horses with known exercise history. PROCEDURES-Tarsi were assigned to 3 groups according to known exercise history as follows: pasture exercise only (PE tarsi), low-intensity general-purpose riding exercise (LE tarsi), and high-intensity elite competition riding exercise (EE tarsi). Osteochondral tissue from distal tarsal joints underwent histologic preparation. Hyaline cartilage, CC, and SCB thickness were measured at standard sites at medial, midline, and lateral locations across joints with a histomorphometric technique. RESULTS-HC, CC, and SCB thickness were significantly greater at all sites in EE tarsi, compared with PE tarsi; this was also true when LE tarsi were compared with PE tarsi. At specific sites, HC, CC, and SCB were significantly thicker in EE tarsi, compared with LE tarsi. Along the articular surface of the proximal aspect of the third metatarsal bone, SCB was thickest in EE tarsi and thinnest in LE tarsi; increases were greatest at sites previously reported to undergo peak strains and osteochondral damage. CONCLUSIONS AND CLINICAL RELEVANCE-Increased exercise was associated with increased HC, CC, and SCB thickness in mature horses. At sites that undergo high compressive strains, with a reported predisposition to osteoarthritic change, there was increased CC and SCB thickness. These results may provide insight into the interaction between adaptive response to exercise and pathological change.

  3. Hyaline cartilage cells outperform mandibular condylar cartilage cells in a TMJ fibrocartilage tissue engineering application.

    PubMed

    Wang, L; Lazebnik, M; Detamore, M S

    2009-03-01

    To compare temporomandibular joint (TMJ) condylar cartilage cells in vitro to hyaline cartilage cells cultured in a three-dimensional (3D) environment for tissue engineering of mandibular condylar cartilage. Mandibular condylar cartilage and hyaline cartilage cells were harvested from pigs and cultured for 6 weeks in polyglycolic acid (PGA) scaffolds. Both types of cells were treated with glucosamine sulfate (0.4 mM), insulin-like growth factor-I (IGF-I) (100 ng/ml) and their combination. At weeks 0 and 6, cell number, glycosaminoglycan (GAG) and collagen content were determined, types I and II collagen were visualized by immunohistochemistry and GAGs were visualized by histology. Hyaline cartilage cells produced from half an order to a full order of magnitude more GAGs and collagen than mandibular condylar cartilage cells in 3D culture. IGF-I was a highly effective signal for biosynthesis with hyaline cartilage cells, while glucosamine sulfate decreased cell proliferation and biosynthesis with both types of cells. In vitro culture of TMJ condylar cartilage cells produced a fibrous tissue with predominantly type I collagen, while hyaline cartilage cells formed a fibrocartilage-like tissue with types I and II collagen. The combination of IGF and glucosamine had a synergistic effect on maintaining the phenotype of TMJ condylar cells to generate both types I and II collagen. Given the superior biosynthetic activity by hyaline cartilage cells and the practical surgical limitations of harvesting cells from the TMJ of a patient requiring TMJ reconstruction, cartilage cells from elsewhere in the body may be a potentially better alternative to cells harvested from the TMJ for TMJ tissue engineering. This finding may also apply to other fibrocartilages such as the intervertebral disc and knee meniscus in applications where a mature cartilage cell source is desired.

  4. Improvement of arthroscopic cartilage stiffness probe using amorphous diamond coating.

    PubMed

    Töyräs, Juha; Korhonen, Rami K; Voutilainen, Tanja; Jurvelin, Jukka S; Lappalainen, Reijo

    2005-04-01

    During arthroscopic evaluation of articular cartilage unstable contact and even slipping of the measurement instrument on the tissue surface may degrade the reproducibility of the measurement. The main aim of the present study was to achieve more stable contact by controlling the friction between articular cartilage surface and the arthroscopic cartilage stiffness probe (Artscan 200, Artscan Oy, Helsinki, Finland) using amorphous diamond (AD) coating. In order to obtain surfaces with different average roughnesses (R(a)), polished stainless steel disks were coated with AD by using the filtered pulsed arc-discharge (FPAD) method. Dynamic coefficient of friction (mu) between the articular cartilage (n = 8) and the coated plates along one non-coated plate was then determined. The friction between AD and cartilage could be controlled over a wide range (mu = 0.027-0.728, p < 0.05, Wilcoxon test) by altering the roughness. Possible deterioration of cartilage was investigated by measuring surface roughness after friction tests and comparing it with the roughness of the adjacent, untested samples (n = 8). Importantly, even testing with the roughest AD (R(a) = 1250 nm) did not damage articular surface. On the basis of the friction measurements, a proper AD coating was selected for the stiffness probe. The performance of coated and non-coated probe was compared by measuring bovine osteochondral samples (n = 22) with both instruments. The reproducibility of the stiffness measurements was significantly better with the AD-coated probe (CV% = 4.7) than with the uncoated probe (CV% = 8.2). To conclude, AD coating can be used to safely control dynamic friction with articular surface. Sufficient friction between articular surface and reference plate of the arthroscopic probe improves significantly reproducibility of the stiffness measurements. (c) 2005 Wiley Periodicals, Inc.

  5. First and second order stereology of hyaline cartilage: Application on mice femoral cartilage.

    PubMed

    Noorafshan, Ali; Niazi, Behnam; Mohamadpour, Masoomeh; Hoseini, Leila; Hoseini, Najmeh; Owji, Ali Akbar; Rafati, Ali; Sadeghi, Yasaman; Karbalay-Doust, Saied

    2016-11-01

    Stereological techniques could be considered in research on cartilage to obtain quantitative data. The present study aimed to explain application of the first- and second-order stereological methods on articular cartilage of mice and the methods applied on the mice exposed to cadmium (Cd). The distal femoral articular cartilage of BALB/c mice (control and Cd-treated) was removed. Then, volume and surface area of the cartilage and number of chondrocytes were estimated using Cavalieri and optical dissector techniques on isotropic uniform random sections. Pair-correlation function [g(r)] and cross-correlation function were calculated to express the spatial arrangement of chondrocytes-chondrocytes and chondrocytes-matrix (chondrocyte clustering/dispersing), respectively. The mean±standard deviation of the cartilage volume, surface area, and thickness were 1.4±0.1mm 3 , 26.2±5.4mm 2 , and 52.8±6.7μm, respectively. Besides, the mean number of chondrocytes was 680±200 (×10 3 ). The cartilage volume, cartilage surface area, and number of chondrocytes were respectively reduced by 25%, 27%, and 27% in the Cd-treated mice in comparison to the control animals (p<0.03). Estimates of g(r) for the cells and matrix against the dipole distances, r, have been plotted. This plot showed that the chondrocytes and the matrix were neither dispersed nor clustered in the two study groups. Application of design-based stereological methods and also evaluation of spatial arrangement of the cartilage components carried potential advantages for investigating the cartilage in different joint conditions. Chondrocyte clustering/dispersing and cellularity can be evaluated in cartilage assessment in normal or abnormal situations. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Medial meniscal posterior root/horn radial tears correlate with cartilage degeneration detected by T1ρ relaxation mapping.

    PubMed

    Takahashi, Kenji; Hashimoto, Sanshiro; Nakamura, Hiroshi; Mori, Atsushi; Sato, Akiko; Majima, Tokifumi; Takai, Shinro

    2015-06-01

    This study aimed to identify factors on routine pulse sequence MRI associated with cartilage degeneration observed on T1ρ relaxation mapping. This study included 137 subjects with knee pain. T1ρ values were measured in the regions of interest on the surface layer of the cartilage on mid-coronal images of the femorotibial joint. Assessment of cartilage, subchondral bone, meniscus and ligaments was performed using routine pulse sequence MRI. Radiographic evaluation for osteoarthritis was also performed. Multiple regression analysis revealed posterior root/horn tears to be independent factors increasing the T1ρ values of the cartilage in the medial compartment of the femorotibial joint. Even when adjusted for radiographically defined early-stage osteoarthritis, medial posterior meniscal radial tears significantly increased the T1ρ values. This study showed that posterior root/horn radial tears in the medial meniscus are particularly important MRI findings associated with cartilage degeneration observed on T1ρ relaxation mapping. Morphological factors of the medial meniscus on MRI provide findings useful for screening early-stage osteoarthritis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. A high throughput mechanical screening device for cartilage tissue engineering.

    PubMed

    Mohanraj, Bhavana; Hou, Chieh; Meloni, Gregory R; Cosgrove, Brian D; Dodge, George R; Mauck, Robert L

    2014-06-27

    Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome, given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying 'hits', or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput. © 2013 Published by Elsevier Ltd.

  8. A Microstructurally Inspired Damage Model for Early Venous Thrombus

    PubMed Central

    Rausch, Manuel K.; Humphrey, Jay D.

    2015-01-01

    Accumulative damage may be an important contributor to many cases of thrombotic disease progression. Thus, a complete understanding of the pathological role of thrombus requires an understanding of its mechanics and in particular mechanical consequences of damage. In the current study, we introduce a novel microstructurally inspired constitutive model for thrombus that considers a non-uniform distribution of microstructural fibers at various crimp levels and employs one of the distribution parameters to incorporate stretch-driven damage on the microscopic level. To demonstrate its ability to represent the mechanical behavior of thrombus, including a recently reported Mullins type damage phenomenon, we fit our model to uniaxial tensile test data of early venous thrombus. Our model shows an agreement with these data comparable to previous models for damage in elastomers with the added advantages of a microstructural basis and fewer model parameters. We submit that our novel approach marks another important step toward modeling the evolving mechanics of intraluminal thrombus, specifically its damage, and hope it will aid in the study of physiological and pathological thrombotic events. PMID:26523784

  9. Induction of an antiinflammatory effect and prevention of cartilage damage in rat knee osteoarthritis by CF101 treatment.

    PubMed

    Bar-Yehuda, S; Rath-Wolfson, L; Del Valle, L; Ochaion, A; Cohen, S; Patoka, R; Zozulya, G; Barer, F; Atar, E; Piña-Oviedo, S; Perez-Liz, G; Castel, D; Fishman, P

    2009-10-01

    Studies have suggested that rheumatoid arthritis (RA) and osteoarthritis (OA) share common characteristics. The highly selective A(3) adenosine receptor agonist CF101 was recently defined as a potent antiinflammatory agent for the treatment of RA. The purpose of this study was to examine the effects of CF101 on the clinical and pathologic manifestations of OA in an experimental animal model. OA was induced in rats by monosodium iodoacetate, and upon disease onset, oral treatment with CF101 (100 microg/kg given twice daily) was initiated. The A(3) adenosine receptor antagonist MRS1220 (100 microg/kg given twice daily) was administered orally, 30 minutes before CF101 treatment. The OA clinical score was monitored by knee diameter measurements and by radiographic analyses. Histologic analyses were performed following staining with hematoxylin and eosin, Safranin O-fast green, or toluidine blue, and histologic changes were scored according to a modified Mankin system. Signaling proteins were assayed by Western blotting; apoptosis was detected via immunohistochemistry and TUNEL analyses. CF101 induced a marked decrease in knee diameter and improved the changes noted on radiographs. Administration of MRS1220 counteracted the effects of CF101. CF101 prevented cartilage damage, osteoclast/osteophyte formation, and bone destruction. In addition, CF101 markedly reduced pannus formation and lymphocyte infiltration. Mechanistically, CF101 induced deregulation of the NF-kappaB signaling pathway, resulting in down-regulation of tumor necrosis factor alpha. Consequently, CF101 induced apoptosis of inflammatory cells that had infiltrated the knee joints; however, it prevented apoptosis of chondrocytes. CF101 deregulated the NF-kappaB signaling pathway involved in the pathogenesis of OA. CF101 induced apoptosis of inflammatory cells and acted as a cartilage protective agent, which suggests that it would be a suitable candidate drug for the treatment of OA.

  10. Polar extract of Curcuma longa protects cartilage homeostasis: possible mechanism of action.

    PubMed

    Velusami, Chandrasekaran Chinampudur; Richard, Edwin Jothie; Bethapudi, Bharathi

    2018-01-08

    Curcuma longa has been well documented for managing joint inflammation and pain. The present study investigated the effect of polar extract of C. longa (NR-INF-02) on cartilage homeostasis in human articular chondrocytes knee (NHAC-kn) cells to understand its plausible mechanism of action. Dysregulation of cartilage homeostasis was induced by IL-1β and H 2 O 2 . Modulating effects of NR-INF-02 on degradation markers viz., chondrocyte apoptosis, senescence, cytokine, eicosanoids, and cartilage synthesis markers viz., glycosaminoglycans and type II collagen degradation was evaluated in human articular chondrocytes knee (NHAC-kn) cells. Further, the effect of NR-INF-02 on lipopolysaccharide (LPS)-induced expression of NF-kB in RAW264.7 macrophages was investigated. NR-INF-02 significantly attenuated IL-1β-induced chondrocyte cytotoxicity, apoptosis and release of chondrocyte degradation markers such as IL-6, IL-8, COX-2, PGE 2 , TNF-α, ICAM-1 in NHAC-kn cells. Also, NR-INF-02 protected IL-1β-induced damage to synthesis markers such as glycosaminoglycans, type II collagen and further attenuated H 2 O 2 -induced chondrocyte senescence. In addition NR-INF-02 suppressed LPS-induced NF-kB expression in RAW264.7 cells. NR-INF-02 protects cartilage homeostasis by maintaining the balance between synthesis and degradation of cartilage matrix.

  11. A Dual Role for NOTCH Signaling in Joint Cartilage Maintenance and Osteoarthritis

    PubMed Central

    Liu, Zhaoyang; Chen, Jianquan; Mirando, Anthony; Wang, Cuicui; Zuscik, Michael J.; O’Keefe, Regis J.; Hilton, Matthew J.

    2015-01-01

    Loss of NOTCH signaling in postnatal murine joints results in osteoarthritis (OA), indicating a requirement for NOTCH during joint cartilage maintenance. Unexpectedly, NOTCH components are significantly up-regulated in human and murine post-traumatic OA, suggesting either a reparative or pathological role for NOTCH activation in OA. Here we investigated the potential dual role for NOTCH in joint maintenance and OA by generating two mouse models overexpressing the NOTCH1 intracellular domain within postnatal joint cartilage; one with sustained NOTCH activation that likely resembles pathological NOTCH signaling and one with transient NOTCH activation that more closely reflects physiological NOTCH signaling. Sustained NOTCH signaling in joint cartilage leads to an early and progressive OA pathology, while on the contrary, transient NOTCH activation enhances cartilage matrix synthesis and promotes joint maintenance under normal physiological conditions. Using RNA-seq, immunohistochemical, and biochemical approaches we identified several novel targets potentially responsible for NOTCH-mediated cartilage degradation, fibrosis, and OA progression, including components of the IL6/STAT3 and ERK/p38 MAPK pathways; factors that may also contribute to post-traumatic OA development. Collectively, these data demonstrate a dual role for the NOTCH pathway in joint cartilage and identify important downstream NOTCH effectors as potential targets for disease modifying osteoarthritis drugs (DMOADs). PMID:26198357

  12. A Semi-Degradable Composite Scaffold for Articular Cartilage Defects

    PubMed Central

    Scholten, Paul M.; Ng, Kenneth W.; Joh, Kiwon; Serino, Lorenzo P.; Warren, Russell F.; Torzilli, Peter A.; Maher, Suzanne A.

    2010-01-01

    Few options exist to replace or repair damaged articular cartilage. The optimal solution that has been suggested is a scaffold that can carry load and integrate with surrounding tissues; but such a construct has thus far been elusive. The objectives of this study were to manufacture and characterize a non-degradable hydrated scaffold. Our hypothesis was that the polymer content of the scaffold can be used to control its mechanical properties, while an internal porous network augmented with biological agents can facilitate integration with the host tissue. Using a two-step water-in-oil emulsion process a porous poly-vinyl alcohol (PVA) hydrogel scaffold combined with alginate microspheres was manufactured. The scaffold had a porosity of 11–30% with pore diameters of 107–187 μm, which readily allowed for movement of cells through the scaffold. Alginate microparticles were evenly distributed through the scaffold and allowed for the slow release of biological factors. The elastic modulus (Es) and Poisson’s ratio (υ), Aggregate modulus (Ha) and dynamic modulus (ED) of the scaffold were significantly affected by % PVA, as it varied from 10% to 20% wt/vol. Es and υ were similar to that of articular cartilage for both polymer concentrations, while Ha and ED were similar to that of cartilage only at 20% PVA. The ability to control scaffold mechanical properties, while facilitating cellular migration suggest that this scaffold is a potentially viable candidate for the functional replacement of cartilage defects. PMID:21308980

  13. Combating Osteoarthritis through Stem Cell Therapies by Rejuvenating Cartilage: A Review

    PubMed Central

    Dubey, Navneet Kumar; Mishra, Viraj Krishna; Dubey, Rajni; Syed-Abdul, Shabbir; Wang, Joseph R.; Wang, Peter D.

    2018-01-01

    Knee osteoarthritis (OA) is a chronic degenerative disorder which could be distinguished by erosion of articular cartilage, pain, stiffness, and crepitus. Not only aging-associated alterations but also the metabolic factors such as hyperglycemia, dyslipidemia, and obesity affect articular tissues and may initiate or exacerbate the OA. The poor self-healing ability of articular cartilage due to limited regeneration in chondrocytes further adversely affects the osteoarthritic microenvironment. Traditional and current surgical treatment procedures for OA are limited and incapable to reverse the damage of articular cartilage. To overcome these limitations, cell-based therapies are currently being employed to repair and regenerate the structure and function of articular tissues. These therapies not only depend upon source and type of stem cells but also on environmental conditions, growth factors, and chemical and mechanical stimuli. Recently, the pluripotent and various multipotent mesenchymal stem cells have been employed for OA therapy, due to their differentiation potential towards chondrogenic lineage. Additionally, the stem cells have also been supplemented with growth factors to achieve higher healing response in osteoarthritic cartilage. In this review, we summarized the current status of stem cell therapies in OA pathophysiology and also highlighted the potential areas of further research needed in regenerative medicine. PMID:29765416

  14. Locating articular cartilage in MR images

    NASA Astrophysics Data System (ADS)

    Folkesson, Jenny; Dam, Erik; Pettersen, Paola; Olsen, Ole F.; Nielsen, Mads; Christiansen, Claus

    2005-04-01

    Accurate computation of the thickness of the articular cartilage is of great importance when diagnosing and monitoring the progress of joint diseases such as osteoarthritis. A fully automated cartilage assessment method is preferable compared to methods using manual interaction in order to avoid inter- and intra-observer variability. As a first step in the cartilage assessment, we present an automatic method for locating articular cartilage in knee MRI using supervised learning. The next step will be to fit a variable shape model to the cartilage, initiated at the location found using the method presented in this paper. From the model, disease markers will be extracted for the quantitative evaluation of the cartilage. The cartilage is located using an ANN-classifier, where every voxel is classified as cartilage or non-cartilage based on prior knowledge of the cartilage structure. The classifier is tested using leave-one-out-evaluation, and we found the average sensitivity and specificity to be 91.0% and 99.4%, respectively. The center of mass calculated from voxels classified as cartilage are similar to the corresponding values calculated from manual segmentations, which confirms that this method can find a good initial position for a shape model.

  15. Cartilage biomarkers in the osteoarthropathy of alkaptonuria reveal low turnover and accelerated ageing.

    PubMed

    Taylor, Adam M; Hsueh, Ming-Feng; Ranganath, Lakshminarayan R; Gallagher, James A; Dillon, Jane P; Huebner, Janet L; Catterall, Jon B; Kraus, Virginia B

    2017-01-01

    Alkaptonuria (AKU) is a rare autosomal recessive disease resulting from a single enzyme deficiency in tyrosine metabolism. As a result, homogentisic acid cannot be metabolized, causing systemic increases. Over time, homogentisic acid polymerizes and deposits in collagenous tissues, leading to ochronosis. Typically, this occurs in joint cartilages, leading to an early onset, rapidly progressing osteoarthropathy. The aim of this study was to examine tissue turnover in cartilage affected by ochronosis and its role in disease initiation and progression. With informed patient consent, hip and knee cartilages were obtained at surgery for arthropathy due to AKU (n = 6; 2 knees/4 hips) and OA (n = 12; 5 knees/7 hips); healthy non-arthritic (non-OA n = 6; 1 knee/5 hips) cartilages were obtained as waste from trauma surgery. We measured cartilage concentrations (normalized to dry weight) of racemized aspartate, GAG, COMP and deamidated COMP (D-COMP). Unpaired AKU, OA and non-OA samples were compared by non-parametric Mann-Whitney U test. Despite more extractable total protein being obtained from AKU cartilage than from OA or non-OA cartilage, there was significantly less extractable GAG, COMP and D-COMP in AKU samples compared with OA and non-OA comparators. Racemized Asx (aspartate and asparagine) was significantly enriched in AKU cartilage compared with in OA cartilage. These novel data represent the first examination of cartilage matrix components in a sample of patients with AKU, representing almost 10% of the known UK alkaptonuric population. Compared with OA and non-OA, AKU cartilage demonstrates a very low turnover state and has low levels of extractable matrix proteins. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Aberrant Calreticulin Expression in Articular Cartilage of Dio2 Deficient Mice

    PubMed Central

    Bomer, Nils; Cornelis, Frederique M. F.; Ramos, Yolande F. M.; den Hollander, Wouter; Lakenberg, Nico; van der Breggen, Ruud; Storms, Lies; Slagboom, P. Eline; Lories, Rik J. U.; Meulenbelt, Ingrid

    2016-01-01

    Objective To identify intrinsic differences in cartilage gene expression profiles between wild-type- and Dio2-/--mice, as a mechanism to investigate factors that contribute to prolonged healthy tissue homeostasis. Methods Previously generated microarray-data (Illumina MouseWG-6 v2) of knee cartilage of wild-type and Dio2 -/- -mice were re-analyzed to identify differential expressed genes independent of mechanical loading conditions by forced treadmill-running. RT-qPCR and western blot analyses of overexpression and knockdown of Calr in mouse chondro-progenitor cells (ATDC5) were applied to assess the direct effect of differential Calr expression on cartilage deposition. Results Differential expression analyses of articular cartilage of Dio2-/- (N = 9) and wild-type-mice (N = 11) while applying a cutoff threshold (P < 0.05 (FDR) and FC > |1,5|) resulted in 1 probe located in Calreticulin (Calr) that was found significantly downregulated in Dio2-/- mice (FC = -1.731; P = 0.044). Furthermore, overexpression of Calr during early chondrogenesis in ATDC5 cells leads to decreased proteoglycan deposition and corresponding lower Aggrecan expression, whereas knocking down Calr expression does not lead to histological differences of matrix composition. Conclusion We here demonstrate that the beneficial homeostatic state of articular cartilage in Dio2-/- mice is accompanied with significant lower expression of Calr. Functional analyses further showed that upregulation of Calr expression could act as an initiator of cartilage destruction. The consistent association between Calr and Dio2 expression suggests that enhanced expression of these genes facilitate detrimental effects on cartilage integrity. PMID:27163789

  17. In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee

    NASA Astrophysics Data System (ADS)

    Chan, Deva D.; Cai, Luyao; Butz, Kent D.; Trippel, Stephen B.; Nauman, Eric A.; Neu, Corey P.

    2016-01-01

    The in vivo measurement of articular cartilage deformation is essential to understand how mechanical forces distribute throughout the healthy tissue and change over time in the pathologic joint. Displacements or strain may serve as a functional imaging biomarker for healthy, diseased, and repaired tissues, but unfortunately intratissue cartilage deformation in vivo is largely unknown. Here, we directly quantified for the first time deformation patterns through the thickness of tibiofemoral articular cartilage in healthy human volunteers. Magnetic resonance imaging acquisitions were synchronized with physiologically relevant compressive loading and used to visualize and measure regional displacement and strain of tibiofemoral articular cartilage in a sagittal plane. We found that compression (of 1/2 body weight) applied at the foot produced a sliding, rigid-body displacement at the tibiofemoral cartilage interface, that loading generated subject- and gender-specific and regionally complex patterns of intratissue strains, and that dominant cartilage strains (approaching 12%) were in shear. Maximum principle and shear strain measures in the tibia were correlated with body mass index. Our MRI-based approach may accelerate the development of regenerative therapies for diseased or damaged cartilage, which is currently limited by the lack of reliable in vivo methods for noninvasive assessment of functional changes following treatment.

  18. Cartilage analysis by reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Laun, T.; Muenzer, M.; Wenzel, U.; Princz, S.; Hessling, M.

    2015-07-01

    A cartilage bioreactor with analytical functions for cartilage quality monitoring is being developed. For determining cartilage composition, reflection spectroscopy in the visible (VIS) and near infrared (NIR) spectral region is evaluated. Main goal is the determination of the most abundant cartilage compounds water, collagen I and collagen II. Therefore VIS and NIR reflection spectra of different cartilage samples of cow, pig and lamb are recorded. Due to missing analytical instrumentation for identifying the cartilage composition of these samples, typical literature concentration values are used for the development of chemometric models. In spite of these limitations the chemometric models provide good cross correlation results for the prediction of collagen I and II and water concentration based on the visible and the NIR reflection spectra.

  19. Zn deposition at the bone cartilage interface in equine articular cartilage

    NASA Astrophysics Data System (ADS)

    Bradley, D. A.; Moger, C. J.; Winlove, C. P.

    2007-09-01

    In articular cartilage metalloproteinases, a family of enzymes whose function relies on the presence of divalent cations such as Zn and Ca plays a central role in the normal processes of growth and remodelling and in the degenerative and inflammatory processes of arthritis. Another important enzyme, alkaline phosphatase, involved in cartilage mineralisation also relies on metallic cofactors. The local concentration of divalent cations is therefore of considerable interest in cartilage pathophysiology and several authors have used synchrotron X-ray fluorescence (XRF) to map metal ion distributions in bone and cartilage. We report use of a bench-top XRF analytical microscope, providing spatial resolution of 10 μm and applicable to histological sections, facilitating correlation of the distribution with structural features. The study seeks to establish the elemental distribution in normal tissue as a precursor to investigation of changes in disease. For six samples prepared from equine metacarpophalangeal joint, we observed increased concentration of Zn and Sr ions around the tidemark between normal and mineralised cartilage. This is believed to be an active site of remodelling but its composition has hitherto lacked detailed characterization. We also report preliminary results on two of the samples using Proton-Induced X-ray Emission (PIXE). This confirms our previous observations using synchrotron-based XRF of enhanced deposition of Sr and Zn at the surface of the subchondral bone and in articular cartilage.

  20. Mechanical stimulation enhances integration in an in vitro model of cartilage repair.

    PubMed

    Theodoropoulos, John S; DeCroos, Amritha J N; Petrera, Massimo; Park, Sam; Kandel, Rita A

    2016-06-01

    (1) To characterize the effects of mechanical stimulation on the integration of a tissue-engineered construct in terms of histology, biochemistry and biomechanical properties; (2) to identify whether cells of the implant or host tissue were critical to implant integration; and (3) to study cells believed to be involved in lateral integration of tissue-engineered cartilage to host cartilage. We hypothesized that mechanical stimulation would enhance the integration of the repair implant with host cartilage in an in vitro integration model. Articular cartilage was harvested from 6- to 9-month-old bovine metacarpal-phalangeal joints. Constructs composed of tissue-engineered cartilage implanted into host cartilage were placed in spinner bioreactors and maintained on a magnetic stir plate at either 0 (static control) or 90 (experimental) rotations per minute (RPM). The constructs from both the static and spinner bioreactors were harvested after either 2 or 4 weeks of culture and evaluated histologically, biochemically, biomechanically and for gene expression. The extent and strength of integration between tissue-engineered cartilage and native cartilage improved significantly with both time and mechanical stimulation. Integration did not occur if the implant was not viable. The presence of stimulation led to a significant increase in collagen content in the integration zone between host and implant at 2 weeks. The gene profile of cells in the integration zone differs from host cartilage demonstrating an increase in the expression of membrane type 1 matrix metalloproteinase (MT1-MMP), aggrecan and type II collagen. This study shows that the integration of in vitro tissue-engineered implants with host tissue improves with mechanical stimulation. The findings of this study suggests that consideration should be given to implementing early loading (mechanical stimulation) into future in vivo studies investigating the long-term viability and integration of tissue

  1. Magnetically targeted delivery through cartilage

    NASA Astrophysics Data System (ADS)

    Jafari, Sahar; Mair, Lamar O.; Chowdhury, Sagar; Nacev, Alek; Hilaman, Ryan; Stepanov, Pavel; Baker-McKee, James; Ijanaten, Said; Koudelka, Christian; English, Bradley; Malik, Pulkit; Weinberg, Irving N.

    2018-05-01

    In this study, we have invented a method of delivering drugs deep into articular cartilage with shaped dynamic magnetic fields acting on small metallic magnetic nanoparticles with polyethylene glycol coating and average diameter of 30 nm. It was shown that transport of magnetic nanoparticles through the entire thickness of bovine articular cartilage can be controlled by a combined alternating magnetic field at 100 Hz frequency and static magnetic field of 0.8 tesla (T) generated by 1" dia. x 2" thick permanent magnet. Magnetic nanoparticles transport through bovine articular cartilage samples was investigated at various settings of magnetic field and time durations. Combined application of an alternating magnetic field and the static field gradient resulted in a nearly 50 times increase in magnetic nanoparticles transport in bovine articular cartilage tissue as compared with static field conditions. This method can be applied to locally deliver therapeutic-loaded magnetic nanoparticles deep into articular cartilage to prevent cartilage degeneration and promote cartilage repair in osteoarthritis.

  2. In Vivo Patellar Tracking and Patellofemoral Cartilage Contacts during Dynamic Stair Ascending

    PubMed Central

    Suzuki, Takashi; Hosseini, Ali; Li, Jing-Sheng; Gill, Thomas J; Li, Guoan

    2012-01-01

    The knowledge of normal patellar tracking is essential for understanding of the knee joint function and for diagnosis of patellar instabilities. This paper investigated the patellar tracking and patellofemoral joint contact locations during a stair ascending activity using a validated dual-fluoroscopic imaging system. The results showed that the patellar flexion angle decreased from 41.9° to 7.5° with the knee extension during stair ascending. During first 80% of the activity, the patella shifted medially about 3.9 mm and then slightly shifted laterally during the last 20% of the ascending activity. Anterior translation of 13 mm of the patella was measured at the early 80% of the activity and then slightly moved posteriorly by about 2 mm at the last 20% of the activity. The path of the cartilage contact points was slightly lateral on the cartilage surfaces of patella and femur. On the patellar cartilage surface, the cartilage contact locations were about 2 mm laterally from heel strike to 60% of the stair ascending activity and moved laterally and reached 5.3 mm at full extension. However, the cartilage contact locations were relatively constant on the femoral cartilage surface (~5 mm lateral). The patellar tracking pattern was consistent with the patellofemoral cartilage contact location pattern. These data could provide baseline knowledge for understanding of normal physiology of the patellofemoral joint and can be used as a reference for clinical evaluation of patellofemoral disorder symptoms. PMID:22840488

  3. Development of Mechanochemically Active Polymers for Early Damage Detection

    NASA Astrophysics Data System (ADS)

    Zou, Jin

    Identification of early damage in polymer composite materials is of significant importance so that preventative measures can be taken before the materials reach catastrophic failure. Scientists have been developing damage detection technologies over many years and recently, mechanophore-based polymers, in which mechanical energy is translated to activate a chemical transformation, have received increasing attention. More specifically, the damage can be made detectable by mechanochromic polymers, which provide a visible color change upon the scission of covalent bonds under stress. This dissertation focuses on the study of a novel self-sensing framework for identifying early and in-situ damage by employing unique stress-sensing mechanophores. Two types of mechanophores, cyclobutane and cyclooctane, were utilized, and the former formed from cinnamoyl moeities and the latter formed from anthracene upon photodimerization. The effects on the thermal and mechanical properties with the addition of the cyclobutane-based polymers into epoxy matrices were investigated. The emergence of cracks was detected by fluorescent signals at a strain level right after the yield point of the polymer blends, and the fluorescence intensified with the accumulation of strain. Similar to the mechanism of fluorescence emission from the cleavage of cyclobutane, the cyclooctane moiety generated fluorescent emission with a higher quantum yield upon cleavage. The experimental results also demonstrated the success of employing the cyclooctane type mechanophore as a potential force sensor, as the fluorescence intensification was correlated with the strain increase.

  4. The response of bone, articular cartilage and tendon to exercise in the horse

    PubMed Central

    Firth, Elwyn C

    2006-01-01

    Horses can gallop within hours of birth, and may begin training for athletic competition while still growing. This review cites studies on the effects of exercise on bone, tendon and articular cartilage, as detected by clinical and research imaging techniques, tissue biochemical analysis and microscopy of various kinds. For bone, alterations in bone mineral content, mineral density and the morphology of the mineralized tissue are the most common end-points. Apparent bone density increases slightly after athletic training in the cortex, but substantially in the major load paths of the epiphyses and cuboidal bones, despite the lower material density of the new bone, which is deposited subperiosteally and on internal surfaces without prior osteoclastic resorption. With training of greater intensity, adaptive change is supervened by patho-anatomical change in the form of microdamage and frank lesions. In tendon, collagen fibril diameter distribution changes significantly during growth, but not after early training. The exact amount and type of protracted training that does cause reduction in mass average diameter (an early sign of progressive microdamage) have not been defined. Training is associated with an increase in the cross-sectional area of some tendons, possibly owing to slightly greater water content of non-collagenous or newly synthesized matrix. Early training may be associated with greater thickness of hyaline but not calcified articular cartilage, at least in some sites. The age at which adaptation of cartilage to biomechanical influences can occur may thus extend beyond very early life. However, cartilage appears to be the most susceptible of the three tissues to pathological alteration. The effect of training exercise on the anatomical or patho-anatomical features of connective tissue structures is affected by the timing, type and amount of natural or imposed exercise during growth and development which precedes the training. PMID:16637875

  5. Decreasing cartilage damage in a rat model of osteoarthritis by intra-articular injection of deoxycholic acid

    PubMed Central

    Yan, Zhaowei; Xiong, Jianbin; Zhao, Chunyang; Qin, Chenhao; He, Chunyan

    2015-01-01

    Background: The aim of this experimental study was to evaluate the effect of intra-articular injection of Deoxycholic acid (DCA) on articular cartilage and subchondral bone following induction of knee Osteoarthritis (OA) in a rat model. Methods: Twenty-four Sprague Dawley rats were randomized divided into 4 groups (n = 6). Eighteen of the 24 rats underwent surgical destabilization of the medial meniscus on the right knee joints to induce OA, were divided into 3 groups: DCA 30 mg/kg group, DCA 120 mg/kg group and OA group. The rats in DCA-treated groups were given intra-articular injections of DCA (30 mg/kg or 120 mg/kg) in the operated knees once per 3 days for 42 days. The rats in OA group given intra-articular injections of vehicle alone in the operated knees under the same conditions. The remaining 6 rats (sham-operation group) received sham operations on the right knee joints. 45 days postoperatively, all of the animals were euthanized for macroscopic, histological and radiographic analysis to evaluate the effect of DCA on OA and to determine its potential mechanisms. Results: The results showed that DCA attenuated the severity of OA by reducing macroscopic observation sores for femoral condyles and histological sores for articular cartilage. DCA also significantly decreased bone destruction and erosion of joint evaluated by radiographic examination. Furthermore, DCA could markedly reduce the release of MMP-1, MMP-3 and IL-1β in serum. Conclusions: Intra-articular injection of DCA is beneficial for knee OA. It might repair and protect OA cartilage by delaying cartilage degeneration and impairing the function of inflammatory mediators. These findings highlight DCA might be a useful therapeutic agent for OA. PMID:26309557

  6. EGFR signaling is critical for maintaining the superficial layer of articular cartilage and preventing osteoarthritis initiation

    PubMed Central

    Jia, Haoruo; Ma, Xiaoyuan; Tong, Wei; Doyran, Basak; Sun, Zeyang; Wang, Luqiang; Zhang, Xianrong; Zhou, Yilu; Badar, Farid; Chandra, Abhishek; Lu, X. Lucas; Xia, Yang; Han, Lin; Enomoto-Iwamoto, Motomi; Qin, Ling

    2016-01-01

    Osteoarthritis (OA) is the most common joint disease, characterized by progressive destruction of the articular cartilage. The surface of joint cartilage is the first defensive and affected site of OA, but our knowledge of genesis and homeostasis of this superficial zone is scarce. EGFR signaling is important for tissue homeostasis. Immunostaining revealed that its activity is mostly dominant in the superficial layer of healthy cartilage but greatly diminished when OA initiates. To evaluate the role of EGFR signaling in the articular cartilage, we studied a cartilage-specific Egfr-deficient (CKO) mouse model (Col2-Cre EgfrWa5/flox). These mice developed early cartilage degeneration at 6 mo of age. By 2 mo of age, although their gross cartilage morphology appears normal, CKO mice had a drastically reduced number of superficial chondrocytes and decreased lubricant secretion at the surface. Using superficial chondrocyte and cartilage explant cultures, we demonstrated that EGFR signaling is critical for maintaining the number and properties of superficial chondrocytes, promoting chondrogenic proteoglycan 4 (Prg4) expression, and stimulating the lubrication function of the cartilage surface. In addition, EGFR deficiency greatly disorganized collagen fibrils in articular cartilage and strikingly reduced cartilage surface modulus. After surgical induction of OA at 3 mo of age, CKO mice quickly developed the most severe OA phenotype, including a complete loss of cartilage, extremely high surface modulus, subchondral bone plate thickening, and elevated joint pain. Taken together, our studies establish EGFR signaling as an important regulator of the superficial layer during articular cartilage development and OA initiation. PMID:27911782

  7. A variational method for automatic localization of the most pathological ROI in the knee cartilage

    NASA Astrophysics Data System (ADS)

    Qazi, Arish A.; Dam, Erik B.; Loog, Marco; Nielsen, Mads; Lauze, Francois; Christiansen, Claus

    2008-03-01

    Osteoarthritis (OA) is a degenerative joint disease characterized by degradation of the articular cartilage, and is a major cause of disability. At present, there is no cure for OA and currently available treatments are directed towards relief of symptoms. Recently it was shown that cartilage homogeneity visualized by MRI and representing the biochemical changes undergoing in the cartilage is a potential marker for early detection of knee OA. In this paper based on homogeneity we present an automatic technique, embedded in a variational framework, for localization of a region of interest in the knee cartilage that best indicates where the pathology of the disease is dominant. The technique is evaluated on 283 knee MR scans. We show that OA affects certain areas of the cartilage more distinctly, and these are more towards the peripheral region of the cartilage. We propose that this region in the cartilage corresponds anatomically to the area covered by the meniscus in healthy subjects. This finding may provide valuable clues in the pathology and the etiology of OA and thereby may improve treatment efficacy. Moreover our method is generic and may be applied to other organs as well.

  8. Human Cartilage-Derived Progenitor Cells From Committed Chondrocytes for Efficient Cartilage Repair and Regeneration

    PubMed Central

    Jiang, Yangzi; Cai, Youzhi; Zhang, Wei; Yin, Zi; Hu, Changchang; Tong, Tong; Lu, Ping; Zhang, Shufang; Neculai, Dante

    2016-01-01

    Articular cartilage is not a physiologically self-renewing tissue. Injury of cartilage often progresses from the articular surface to the subchondral bone, leading to pathogenesis of tissue degenerative diseases, such as osteoarthritis. Therapies to treat cartilage defects using autologous chondrocyte-based tissue engineering have been developed and used for more than 20 years; however, the challenge of chondrocyte expansion in vitro remains. A promising cell source, cartilage stem/progenitor cells (CSPCs), has attracted recent attention. Because their origin and identity are still unclear, the application potential of CSPCs is under active investigation. Here we have captured the emergence of a group of stem/progenitor cells derived from adult human chondrocytes, highlighted by dynamic changes in expression of the mature chondrocyte marker, COL2, and mesenchymal stromal/stem cell (MSC) marker, CD146. These cells are termed chondrocyte-derived progenitor cells (CDPCs). The stem cell-like potency and differentiation status of CDPCs were determined by physical and biochemical cues during culture. A low-density, low-glucose 2-dimensional culture condition (2DLL) was critical for the emergence and proliferation enhancement of CDPCs. CDPCs showed similar phenotype as bone marrow mesenchymal stromal/stem cells but exhibited greater chondrogenic potential. Moreover, the 2DLL-cultured CDPCs proved efficient in cartilage formation both in vitro and in vivo and in repairing large knee cartilage defects (6–13 cm2) in 15 patients. These findings suggest a phenotype conversion between chondrocytes and CDPCs and provide conditions that promote the conversion. These insights expand our understanding of cartilage biology and may enhance the success of chondrocyte-based therapies. Significance Injury of cartilage, a non-self-repairing tissue, often progresses to pathogenesis of degenerative joint diseases, such as osteoarthritis. Although tissue-derived stem cells have been shown

  9. Human Cartilage-Derived Progenitor Cells From Committed Chondrocytes for Efficient Cartilage Repair and Regeneration.

    PubMed

    Jiang, Yangzi; Cai, Youzhi; Zhang, Wei; Yin, Zi; Hu, Changchang; Tong, Tong; Lu, Ping; Zhang, Shufang; Neculai, Dante; Tuan, Rocky S; Ouyang, Hong Wei

    2016-06-01

    Articular cartilage is not a physiologically self-renewing tissue. Injury of cartilage often progresses from the articular surface to the subchondral bone, leading to pathogenesis of tissue degenerative diseases, such as osteoarthritis. Therapies to treat cartilage defects using autologous chondrocyte-based tissue engineering have been developed and used for more than 20 years; however, the challenge of chondrocyte expansion in vitro remains. A promising cell source, cartilage stem/progenitor cells (CSPCs), has attracted recent attention. Because their origin and identity are still unclear, the application potential of CSPCs is under active investigation. Here we have captured the emergence of a group of stem/progenitor cells derived from adult human chondrocytes, highlighted by dynamic changes in expression of the mature chondrocyte marker, COL2, and mesenchymal stromal/stem cell (MSC) marker, CD146. These cells are termed chondrocyte-derived progenitor cells (CDPCs). The stem cell-like potency and differentiation status of CDPCs were determined by physical and biochemical cues during culture. A low-density, low-glucose 2-dimensional culture condition (2DLL) was critical for the emergence and proliferation enhancement of CDPCs. CDPCs showed similar phenotype as bone marrow mesenchymal stromal/stem cells but exhibited greater chondrogenic potential. Moreover, the 2DLL-cultured CDPCs proved efficient in cartilage formation both in vitro and in vivo and in repairing large knee cartilage defects (6-13 cm(2)) in 15 patients. These findings suggest a phenotype conversion between chondrocytes and CDPCs and provide conditions that promote the conversion. These insights expand our understanding of cartilage biology and may enhance the success of chondrocyte-based therapies. Injury of cartilage, a non-self-repairing tissue, often progresses to pathogenesis of degenerative joint diseases, such as osteoarthritis. Although tissue-derived stem cells have been shown to

  10. [The optimization of chondromalacia patellae diagnosis by NMR tomography. The use of an apparatus for cartilage compression].

    PubMed

    König, H; Dinkelaker, F; Wolf, K J

    1991-08-01

    The aim of this study was to improve the MRI diagnosis of CMP, with special reference to the early stages and accurate staging. For this purpose, the retropatellar cartilage was examined by MRI while compression was carried out, using 21 patients and five normal controls. The compression was applied by means of a specially constructed device. Changes in cartilage thickness and signal intensity were evaluated quantitatively during FLASH and FISP sequences. In all patients the results of arthroscopies were available and in 12 patients, cartilage biopsies had been obtained. CMP stage I could be distinguished from normal cartilage by reduction in cartilage thickness and signal increase from the oedematous cartilage during compression. In CMP stages II/III, abnormal protein deposition of collagen type I could be demonstrated by its compressibility. In stages III and IV, the method does not add any significant additional information.

  11. Cartilage regeneration by selected chondrogenic clonal mesenchymal stem cells in the collagenase-induced monkey osteoarthritis model.

    PubMed

    Jiang, Li; Ma, Anlun; Song, Lijun; Hu, Yanxin; Dun, Hao; Daloze, Pierre; Yu, Yonglin; Jiang, Jianyuan; Zafarullah, Muhammad; Chen, Huifang

    2014-11-01

    Osteoarthritis (OA) is the most common form of arthritis, in which cartilage is irreversibly degraded, causing severe pain and disability. Current therapeutic strategies cannot repair damaged cartilage. We evaluated the repair potential of selected chondrogenic clonal MSCs (sC-MSCs) by delivering them into the injured cartilage site in a collagenase-induced OA model in Cynomolgus monkeys. In vitro characterization showed that the isolated monkey sC-MSCs and polyclonal MSCs (P-MSCs) expressed mesenchymal stem cell markers and could differentiate into chondrocytes. The articular cartilage lesions in animals were treated with normal saline (NS), autologous P-MSCs and sC-MSCs, respectively, by direct delivery. The clinical parameters, radiographic images, histological and immunohistochemical examinations at weeks 8, 16 and 24 post-treatment demonstrated that the abrasions of articular cartilage were significantly improved and repaired by MSC-based treatment, particularly in the sC-MSC-treated group, which displayed consistently higher histological scores than those of other groups. In summary, treatment with sC-MSCs can effectively improve the healing of cartilage lesions in the Cynomolgus monkey collagenase-induced OA model. Due to the genetic proximity of monkey and human, the therapeutic strategy presented in this study will have broad applications in clinical practice. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine.

    PubMed

    Wu, Ling; Cai, Xiaoxiao; Zhang, Shu; Karperien, Marcel; Lin, Yunfeng

    2013-05-01

    Adipose-derived stem cells (ASCs) have been discovered for more than a decade. Due to the large numbers of cells that can be harvested with relatively little donor morbidity, they are considered to be an attractive alternative to bone marrow derived mesenchymal stem cells. Consequently, isolation and differentiation of ASCs draw great attention in the research of tissue engineering and regenerative medicine. Cartilage defects cause big therapeutic problems because of their low self-repair capacity. Application of ASCs in cartilage regeneration gives hope to treat cartilage defects with autologous stem cells. In recent years, a lot of studies have been performed to test the possibility of using ASCs to re-construct damaged cartilage tissue. In this article, we have reviewed the most up-to-date articles utilizing ASCs for cartilage regeneration in basic and translational research. Our topic covers differentiation of adipose tissue derived mesenchymal stem cells into chondrocytes, increased cartilage formation by co-culture of ASCs with chondrocytes and enhancing chondrogenic differentiation of ASCs by gene manipulation. Copyright © 2012 Wiley Periodicals, Inc.

  13. Acute and chronic response of articular cartilage to Ho:YAG laser irradiation

    NASA Astrophysics Data System (ADS)

    Trauner, Kenneth B.; Nishioka, Norman S.; Flotte, Thomas J.; Patel, Dinesh K.

    1992-06-01

    A Ho:YAG laser system operating at a wavelength of 2.1 microns has recently been introduced for use in arthroscopic surgery. The acceptability of this new tool will be determined not only by its ability to resect tissue, but also by its long term effects on articular surfaces. In order to investigate these issues further, we performed two studies to evaluate the acute and chronic effects of the laser on cartilaginous tissue. We evaluated the acute, in vitro effects of 2.1 micron laser irradiation on articular and fibrocartilage. This included the measurement of ablation efficiency, ablation threshold and thermal damage in both meniscus and articular cartilage. To document the chronic effects on articular cartilage in vivo, we next performed a ten week healing study. Eight sheep weighing 30 - 40 kg underwent bilateral arthrotomy procedures. Multiple full thickness and partial thickness defects were created. Animals were sacrificed at 0, 2, 4, and 10 weeks. The healing study demonstrated: (1) no healing of full or partial thickness defects at 10 weeks with hyaline cartilage; (2) fibrocartilaginous granulation tissue filling full thickness defects at two and four weeks, but no longer evident at ten weeks; (3) chondrocyte necrosis extending to greater than 900 microns distal to ablation craters at four weeks with no evidence of repair at later dates; and (4) chondrocyte hyperplasia at the borders of the damage zone at two weeks but no longer evident at later sacrifice dates.

  14. An in vitro study of cartilage-meniscus tribology to understand the changes caused by a meniscus implant.

    PubMed

    Majd, Sara Ehsani; Rizqy, Aditya Iman; Kaper, Hans J; Schmidt, Tannin A; Kuijer, Roel; Sharma, Prashant K

    2017-07-01

    Active lifestyles increase the risk of meniscal injury. A permanent meniscus implant of polycarbonate urethane (PCU) is a promising treatment to postpone/prevent total knee arthroplasty. Study of the changes in articular cartilage tribology in the presence of PCU is essential in developing the optimum meniscus implant. Therefore, a cartilage-meniscus reciprocating, sliding model was developed in vitro, mimicking the stance and swing phases of the gait cycle. The meniscus was further replaced with PCU and surface-modified PCUs (with C18 chains, mono-functional polydimethylsiloxane groups and mono-functional polytetrafluoroethylene groups) to study the changes. The coefficient of friction (COF) was calculated, and cartilage wear was determined and quantified histologically. The cartilage-meniscus sliding resulted in low COF during both stance and swing (0.01< COF <0.12) and low wear of cartilage (scores <1). The cartilage-PCU sliding, during stance, revealed similar low COFs. But during swing, the COFs were high (average ∼1, maximum 1.6), indicating a breakdown in interstitial fluid pressurization lubrication and non-effective activation of the boundary lubrication. This may lead to wear of cartilage in long term. However, under the tested conditions the wear of cartilage against PCUs was not higher than its wear against meniscus, and the cartilage was occasionally damaged. The COF decreased with increasing the contact pressure (as-per a power equation) up to 1MPa. The changes in the surface modification of PCU did not affect PCU's tribological performance. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  15. Fabrication of porous scaffolds with decellularized cartilage matrix for tissue engineering application.

    PubMed

    Nasiri, Bita; Mashayekhan, Shohreh

    2017-07-01

    Due to the avascular nature of articular cartilage, damaged tissue has little capacity for spontaneous healing. Three-dimensional scaffolds have potential for use in tissue engineering approach for cartilage repair. In this study, bovine cartilage tissue was decellularized and chemically crosslinked hybrid chitosan/extracellular matrix (ECM) scaffolds were fabricated with different ECM weight ratios by simple freeze drying method. Various properties of chitosan/ECM scaffolds such as microstructure, mechanical strength, swelling ratio, and biodegradability rate were investigated to confirm improved structural and biological characteristics of chitosan scaffolds in the presence of ECM. The results indicated that by introducing ECM to chitosan, pore sizes in scaffolds with 1% and 2% ECM decreased and thus the mechanical properties were improved. The presence of ECM in the same scaffolds also improved the swelling ratio and biodegradation rate in the hybrid scaffolds. MTT cytotoxicity assays performed on chondrocyte cells cultured on chitosan/ECM scaffolds having various amounts of ECM showed that the greatest cell attachment belongs to the sample with intermediate ECM content (2% ECM). Overall, it can be concluded from all obtained results that the prepared scaffold with intermediate concentration of ECM could be a proper candidate for use in cartilage tissue engineering. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  16. Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: effects on chondrocyte differentiation and function.

    PubMed

    Schwarz, Silke; Elsaesser, Alexander F; Koerber, Ludwig; Goldberg-Bockhorn, Eva; Seitz, Andreas M; Bermueller, Christian; Dürselen, Lutz; Ignatius, Anita; Breiter, Roman; Rotter, Nicole

    2015-12-01

    One key point in the development of new bioimplant matrices for the reconstruction and replacement of cartilage defects is to provide an adequate microenvironment to ensure chondrocyte migration and de novo synthesis of cartilage-specific extracellular matrix (ECM). A recently developed decellularization and sterilization process maintains the three-dimensional (3D) collagen structure of native septal cartilage while increasing matrix porosity, which is considered to be crucial for cartilage tissue engineering. Human primary nasal septal chondrocytes were amplified in monolayer culture and 3D-cultured on processed porcine nasal septal cartilage scaffolds. The influence of chondrogenic growth factors on neosynthesis of ECM proteins was examined at the protein and gene expression levels. Seeding experiments demonstrated that processed xenogenic cartilage matrices provide excellent environmental properties for human nasal septal chondrocytes with respect to cell adhesion, migration into the matrix and neosynthesis of cartilage-specific ECM proteins, such as collagen type II and aggrecan. Matrix biomechanical stability indicated that the constructs retrieve full stability and function during 3D culture for up to 42 days, proportional to collagen type II and GAG production. Thus, processed xenogenic cartilage offers a suitable environment for human nasal chondrocytes and has promising potential for cartilage tissue engineering in the head and neck region. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Magnetic Resonance Imaging of Cartilage Repair

    PubMed Central

    Trattnig, Siegfried; Winalski, Carl S.; Marlovits, Stephan; Jurvelin, Jukka S.; Welsch, Goetz H.; Potter, Hollis G.

    2011-01-01

    Articular cartilage lesions are a common pathology of the knee joint, and many patients may benefit from cartilage repair surgeries that offer the chance to avoid the development of osteoarthritis or delay its progression. Cartilage repair surgery, no matter the technique, requires a noninvasive, standardized, and high-quality longitudinal method to assess the structure of the repair tissue. This goal is best fulfilled by magnetic resonance imaging (MRI). The present article provides an overview of the current state of the art of MRI of cartilage repair. In the first 2 sections, preclinical and clinical MRI of cartilage repair tissue are described with a focus on morphological depiction of cartilage and the use of functional (biochemical) MR methodologies for the visualization of the ultrastructure of cartilage repair. In the third section, a short overview is provided on the regulatory issues of the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) regarding MR follow-up studies of patients after cartilage repair surgeries. PMID:26069565

  18. Repair of articular cartilage defects in the knee with autologous iliac crest cartilage in a rabbit model.

    PubMed

    Jing, Lizhong; Zhang, Jiying; Leng, Huijie; Guo, Qinwei; Hu, Yuelin

    2015-04-01

    To demonstrate that iliac crest cartilage may be used to repair articular cartilage defects in the knees of rabbits. Full-thickness cartilage defects were created in the medial femoral condyle on both knees of 36 New Zealand white rabbits. The 72 defects were randomly assigned to be repaired with ipsilateral iliac crest cartilage (Group I), osteochondral tissues removed at defect creation (Group II), or no treatment (negative control, Group III). Animals were killed at 6, 12, and 24 weeks post-operatively. The repaired tissues were harvested for magnetic resonance imaging (MRI), histological studies (haematoxylin and eosin and immunohistochemical staining), and mechanical testing. At 6 weeks, the iliac crest cartilage graft was not yet well integrated with the surrounding articular cartilage, but at 12 weeks, the graft deep zone had partial ossification. By 24 weeks, the hyaline cartilage-like tissue was completely integrated with the surrounding articular cartilage. Osteochondral autografts showed more rapid healing than Group I at 6 weeks and complete healing at 12 weeks. Untreated defects were concave or partly filled with fibrous tissue throughout the study. MRI showed that Group I had slower integration with surrounding normal cartilage compared with Group II. The mechanical properties of Group I were significantly lower than those of Group II at 12 weeks, but this difference was not significant at 24 weeks. Iliac crest cartilage autografts were able to repair knee cartilage defects with hyaline cartilage and showed comparable results with osteochondral autografts in the rabbit model.

  19. Increased physical activity severely induces osteoarthritic changes in knee joints with papain induced sulfate-glycosaminoglycan depleted cartilage.

    PubMed

    Siebelt, Michiel; Groen, Harald C; Koelewijn, Stuart J; de Blois, Erik; Sandker, Marjan; Waarsing, Jan H; Müller, Cristina; van Osch, Gerjo J V M; de Jong, Marion; Weinans, Harrie

    2014-01-29

    Articular cartilage needs sulfated-glycosaminoglycans (sGAGs) to withstand high pressures while mechanically loaded. Chondrocyte sGAG synthesis is regulated by exposure to compressive forces. Moderate physical exercise is known to improve cartilage sGAG content and might protect against osteoarthritis (OA). This study investigated whether rat knee joints with sGAG depleted articular cartilage through papain injections might benefit from moderate exercise, or whether this increases the susceptibility for cartilage degeneration. sGAGs were depleted from cartilage through intraarticular papain injections in the left knee joints of 40 Wistar rats; their contralateral joints served as healthy controls. Of the 40 rats included in the study, 20 rats remained sedentary, and the other 20 were subjected to a moderately intense running protocol. Animals were longitudinally monitored for 12 weeks with in vivo micro-computed tomography (μCT) to measure subchondral bone changes and single-photon emission computed tomography (SPECT)/CT to determine synovial macrophage activation. Articular cartilage was analyzed at 6 and 12 weeks with ex vivo contrast-enhanced μCT and histology to measure sGAG content and cartilage thickness. All outcome measures were unaffected by moderate exercise in healthy control joints of running animals compared with healthy control joints of sedentary animals. Papain injections in sedentary animals resulted in severe sGAG-depleted cartilage, slight loss of subchondral cortical bone, increased macrophage activation, and osteophyte formation. In running animals, papain-induced sGAG-depleted cartilage showed increased cartilage matrix degradation, sclerotic bone formation, increased macrophage activation, and more osteophyte formation. Moderate exercise enhanced OA progression in papain-injected joints and did not protect against development of the disease. This was not restricted to more-extensive cartilage damage, but also resulted in pronounced

  20. Increased physical activity severely induces osteoarthritic changes in knee joints with papain induced sulfate-glycosaminoglycan depleted cartilage

    PubMed Central

    2014-01-01

    Introduction Articular cartilage needs sulfated-glycosaminoglycans (sGAGs) to withstand high pressures while mechanically loaded. Chondrocyte sGAG synthesis is regulated by exposure to compressive forces. Moderate physical exercise is known to improve cartilage sGAG content and might protect against osteoarthritis (OA). This study investigated whether rat knee joints with sGAG depleted articular cartilage through papain injections might benefit from moderate exercise, or whether this increases the susceptibility for cartilage degeneration. Methods sGAGs were depleted from cartilage through intraarticular papain injections in the left knee joints of 40 Wistar rats; their contralateral joints served as healthy controls. Of the 40 rats included in the study, 20 rats remained sedentary, and the other 20 were subjected to a moderately intense running protocol. Animals were longitudinally monitored for 12 weeks with in vivo micro-computed tomography (μCT) to measure subchondral bone changes and single-photon emission computed tomography (SPECT)/CT to determine synovial macrophage activation. Articular cartilage was analyzed at 6 and 12 weeks with ex vivo contrast-enhanced μCT and histology to measure sGAG content and cartilage thickness. Results All outcome measures were unaffected by moderate exercise in healthy control joints of running animals compared with healthy control joints of sedentary animals. Papain injections in sedentary animals resulted in severe sGAG-depleted cartilage, slight loss of subchondral cortical bone, increased macrophage activation, and osteophyte formation. In running animals, papain-induced sGAG-depleted cartilage showed increased cartilage matrix degradation, sclerotic bone formation, increased macrophage activation, and more osteophyte formation. Conclusions Moderate exercise enhanced OA progression in papain-injected joints and did not protect against development of the disease. This was not restricted to more-extensive cartilage

  1. [Current overview of cartilage regeneration procedures].

    PubMed

    Schenker, H; Wild, M; Rath, B; Tingart, M; Driessen, A; Quack, V; Betsch, M

    2017-11-01

    Cartilage is an avascular, alymphatic and non-innervated tissue with limited intrinsic repair potential. The high prevalence of cartilage defects and their tremendous clinical importance are a challenge for all treating physicians. This article provides the reader with an overview about current cartilage treatment options and their clinical outcome. Microfracture is still considered the gold standard in the treatment of small cartilage lesions. Small osteochondral defects can be effectively treated with the autologous osteochondral transplantation system. Larger cartilage defects are successfully treated by autologous membrane-induced chondrogenesis (AMIC) or by membrane-assisted autologous chondrocyte implantation (MACI). Despite limitations of current cartilage repair strategies, such procedures can result in short- and mid-term clinical improvement of the patients. Further developments and clinical studies are necessary to improve the long-term outcome following cartilage repair.

  2. Laser-induced regeneration of cartilage

    NASA Astrophysics Data System (ADS)

    Sobol, Emil; Shekhter, Anatoly; Guller, Anna; Baum, Olga; Baskov, Andrey

    2011-08-01

    Laser radiation provides a means to control the fields of temperature and thermo mechanical stress, mass transfer, and modification of fine structure of the cartilage matrix. The aim of this outlook paper is to review physical and biological aspects of laser-induced regeneration of cartilage and to discuss the possibilities and prospects of its clinical applications. The problems and the pathways of tissue regeneration, the types and features of cartilage will be introduced first. Then we will review various actual and prospective approaches for cartilage repair; consider possible mechanisms of laser-induced regeneration. Finally, we present the results in laser regeneration of joints and spine disks cartilages and discuss some future applications of lasers in regenerative medicine.

  3. Cartilage-Repair Innovation at a Standstill: Methodologic and Regulatory Pathways to Breaking Free.

    PubMed

    Lyman, Stephen; Nakamura, Norimasa; Cole, Brian J; Erggelet, Christoph; Gomoll, Andreas H; Farr, Jack

    2016-08-03

    Articular cartilage defects strongly predispose patients to developing early joint degeneration and osteoarthritis, but for more than 15 years, no new cartilage-repair technologies that we know of have been approved by the U.S. Food and Drug Administration. Many studies examining novel approaches to cartilage repair, including cell, tissue, or matrix-based techniques, have shown great promise, but completing randomized controlled trials (RCTs) to establish safety and efficacy has been challenging, providing a major barrier to bringing these innovations into clinical use. In this article, we review reasons that surgical innovations are not well-suited for testing through RCTs. We also discuss how analytical methods for reducing bias, such as propensity scoring, make prospective observational studies a potentially viable alternative for testing the safety and efficacy of cartilage-repair and other novel therapies, offering the real possibility of therapeutic innovation. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.

  4. Evaluation of Single-Impact-Induced Cartilage Degeneration by Optical Coherence Tomography

    PubMed Central

    de Bont, Florence; Brill, Nicolai; Schmitt, Robert; Tingart, Markus; Pufe, Thomas; Jahr, Holger; Nebelung, Sven

    2015-01-01

    Posttraumatic osteoarthritis constitutes a major cause of disability in our increasingly elderly population. Unfortunately, current imaging modalities are too insensitive to detect early degenerative changes of this disease. Optical coherence tomography (OCT) is a promising nondestructive imaging technique that allows surface and subsurface imaging of cartilage, at near-histological resolution, and is principally applicable in vivo during arthroscopy. Thirty-four macroscopically normal human cartilage-bone samples obtained from total joint replacements were subjected to standardized single impacts in vitro (range: 0.25 J to 0.98 J). 3D OCT measurements of impact area and adjacent tissue were performed prior to impaction, directly after impaction, and 1, 4, and 8 days later. OCT images were assessed qualitatively (DJD classification) and quantitatively using established parameters (OII, Optical Irregularity Index; OHI, Optical Homogeneity Index; OAI, Optical Attenuation Index) and compared to corresponding histological sections. While OAI and OHI scores were not significantly changed in response to low- or moderate-impact energies, high-impact energies significantly increased mean DJD grades (histology and OCT) and OII scores. In conclusion, OCT-based parameterization and quantification are able to reliably detect loss of cartilage surface integrity after high-energy traumatic insults and hold potential to be used for clinical screening of early osteoarthritis. PMID:26229959

  5. Spatio-temporal expression patterns of Wnt signaling pathway during the development of temporomandibular condylar cartilage.

    PubMed

    Chen, Kan; Quan, Huixin; Chen, Gang; Xiao, Di

    2017-11-01

    There is a growing body of evidence supporting the involvement of the Wnt signaling pathway in various aspects of skeletal and joint development; however, it is unclear whether it is involved in the process of temporomandibular joint development. In order to clarify this issue, we examined the spatio-temporal distribution of mRNAs and proteins of the Wnt family during the formation of the mandibular condylar cartilage at the prenatal and postnatal stages. An in situ hybridization test revealed no mRNAs of β-catenin and Axin2 during early mesenchymal condensation; the ligands surveyed in this study (including Wnt-4, 5a, and 9a) were clearly detected at various ranges of expression, mainly in the condylar blastema and later distinct cartilaginous layers. Apart from β-catenin and Axin2, the Wnt family members surveyed in this study, including Lef-1, were found to be immunopositive during early chondrogenesis in the condylar cartilage at E14.5. After distinct chondrocyte layers were identified within the cartilage at E16.5, the expression of the Wnt signaling members was different and mainly restricted to proliferating cells and mineralized hypertrophic chondrocytes. In the adult mandibular condylar cartilage, the Wnt-4 mRNA, as well as the Wnt-4 and Wnt-9a proteins, was not observed. Our findings demonstrated that the Wnt signaling pathway was associated with the development of mandibular condylar cartilage. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. In Vivo Identification and Induction of Articular Cartilage Stem Cells by Inhibiting NF-κB Signaling in Osteoarthritis.

    PubMed

    Tong, Wenxue; Geng, Yiyun; Huang, Yan; Shi, Yu; Xiang, Shengnan; Zhang, Ning; Qin, Ling; Shi, Qin; Chen, Qian; Dai, Kerong; Zhang, Xiaoling

    2015-10-01

    Osteoarthritis (OA) is a highly prevalent and debilitating joint disorder characterized by the degeneration of articular cartilage. However, no effective medical therapy has been found yet for such condition. In this study, we directly confirmed the existence of articular cartilage stem cells (ACSCs) in vivo and in situ for the first time both in normal and OA articular cartilage, and explored their chondrogenesis in Interleukin-1β (IL-1β) induced inflammation environment and disclose whether the inhibition of NF-κB signaling can induce ACSCs activation thus improve the progression of experimental OA. We found an interesting phenomenon that ACSCs were activated and exhibited a transient proliferative response in early OA as an initial attempt for self-repair. During the in vitro mechanism study, we discovered IL-1β can efficiently activate the NF-κB pathway and potently impair the responsiveness of ACSCs, whereas the NF-κB pathway inhibitor rescued the ACSCs chondrogenesis. The final in vivo experiments further confirmed ACSCs' activation were maintained by NF-κB pathway inhibitor, which induced cartilage regeneration, and protected articular cartilage from injury in an OA animal model. Our results provided in vivo evidence of the presence of ACSCs, and disclosed their action in the early OA stage and gradual quiet as OA process, presented a potential mechanism for both cartilage intrinsic repair and its final degradation, and demonstrated the feasibility of inducing endogenous adult tissue-specific mesenchymal stem cells for articular cartilage repair and OA therapy. © 2015 AlphaMed Press.

  7. Cartilage loss patterns within femorotibial contact regions during deep knee bend.

    PubMed

    Michael Johnson, J; Mahfouz, Mohamed R

    2016-06-14

    Osteoarthritis (OA) can alter knee kinematics and stresses. The relationship between cartilage loss in OA and kinematics is unclear, with existing work focusing on static wear and morphology. In this work, femorotibial cartilage maps were coupled with kinematics to investigate the relationship between kinematics and cartilage loss, allowing for more precise treatment and intervention. Cartilage thickness maps were created from healthy and OA subgroups (varus, valgus, and neutral) and mapped to a statistical bone atlas. Video fluoroscopy determined contact regions from 0° to 120° flexion. Varus and valgus subgroups displayed different wear patterns across the range of flexion, with varus knees showing more loss in early flexion and valgus in deeper flexion. For the femur, varus knees had more wear in the medial compartment than neutral or valgus and most wear at both 0° and 20° flexion. In the lateral femoral compartment, the valgus subgroup showed significantly more wear from 20° to 60° flexion as compared to other angles, though varus knees displayed highest magnitude of wear. For the tibia, most medial wear occurred at 0-40° flexion and most lateral occurred after 60° flexion. Knowing more about cartilage changes in OA knees provides insight as to expected wear or stresses on implanted components after arthroplasty. Combining cartilage loss patterns with kinematics allows for pre-surgical intervention and treatments tailored to the patient׳s alignment and kinematics. Reported wear patterns may also serve as a gauge for post-operative loading to be considered when placing implant components. Copyright © 2016. Published by Elsevier Ltd.

  8. The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ugryumova, Nadya; Attenburrow, Don P.; Winlove, C. Peter; Matcher, Stephen J.

    2005-08-01

    Optical coherence tomography and polarization-sensitive optical coherence tomography images of equine articular cartilage are presented. Measurements were made on intact joint surfaces. Significant (e.g. × 2) variations in the intrinsic birefringence were found over spatial scales of a few millimetres, even on samples taken from young (18 month) animals that appeared visually homogeneous. A comparison of data obtained on a control tissue (equine flexor tendon) further suggests that significant variations in the orientation of the collagen fibres relative to the plane of the joint surface exist. Images of visually damaged cartilage tissue show characteristic features both in terms of the distribution of optical scatterers and of the birefringent components.

  9. The cranial cartilages of teleosts and their classification.

    PubMed

    Benjamin, M

    1990-04-01

    The structure and distribution of cartilages has been studied in 45 species from 24 families. The resulting data have been used as a basis for establishing a new classification. A cartilage is regarded as 'cell-rich' if its cells or their lacunae occupy more than half of the tissue volume. Five classes of cell-rich cartilage are recognised (a) hyaline-cell cartilage (common in the lips of bottom-dwelling cyprinids) and its subtypes fibro/hyaline-cell cartilage, elastic/hyaline-cell cartilage and lipo/hyaline-cell cartilage, (b) Schaffer's Zellknorpel, typified by the cartilage in the gill filaments of most teleosts examined, (c) elastic/cell-rich cartilage, such as that which supports the barbels and oral valves of catfish, e.g. Corydoras metae, (d) fibro/cell-rich cartilage, as in the submaxillary meniscus of Sphaerichthys osphromenoides, (e) cell-rich hyaline and (f) matrix-rich hyaline cartilage--both of which are common in the neurocranium and gill arches of most teleosts. The range of cartilages seen, and the predominant cartilage type, is recorded for each species and a list is provided of the tissues that most typify different organs or regions of the head. As a preliminary pointer to developmental relationships between the cartilages, note was taken of gradual transitions between one cartilage and another. It is suggested that hyaline-cell cartilage occupies a key position in teleosts as the most labile of the supporting tissues and is highly characteristic of Cypriniformes. The cartilage that best resembles mammalian hyaline cartilage (matrix-rich hyaline cartilage) has a very conservative distribution in different skeletal elements and the least number of associations with other tissues. It is well represented in Siluriformes.

  10. Course-, dose-, and stage-dependent toxic effects of prenatal dexamethasone exposure on fetal articular cartilage development.

    PubMed

    Chen, Ze; Zhao, Zhe; Li, Yunzepeng; Zhang, Xingyu; Li, Bin; Chen, Liaobin; Wang, Hui

    2018-04-01

    Dexamethasone, a synthetic long-acting glucocorticoid, is routinely used for treating mothers at risk for preterm delivery. However, intrauterine overexposure to glucocorticoids induces low birth weight and cartilage dysplasia in offspring. Also, the "critical window" and safe dose of this treatment are largely unknown. This study investigated the course-, dose-, and stage-dependent toxic effects and the possible mechanisms of prenatal dexamethasone exposure (PDE) on fetal development and articular cartilage development. Pregnant mice (C57BL/6) received subcutaneous injection of dexamethasone (0.8 mg/kg d) once on gestational day (GD) 15 or once a day from GD 15 to 17, or received various doses of dexamethasone (0, 0.2, 0.8, and 1.2 mg/kg d) on GD 15-17, or received dexamethasone (0.8 mg/kg d) at early stage (GD 12-14) or late stage of pregnancy (GD 15-17). Offspring's knee joints were harvested at birth for morphological analyses and detection of gene expression. Repeated PDE significantly suppressed fetal and articular cartilage development, which were characterized by decreased body weight and body length, coarse articular cartilage surfaces, and reduced gene and protein expression of Col2a1 and aggrecan. For those newborns treated with repeated PDE at different doses, the toxic effects on fetal and articular cartilage development were observed at doses of 0.8 and 1.2 mg/kg d, whereas no obvious toxic effects were observed at the dose of 0.2 mg/kg d. Moreover, PDE at 0.8 mg/kg d during the early embryonic stage induced stronger toxic effects on fetal and articular cartilage development, compared with PDE during the late embryonic stage. Detection of gene expression showed that the TGFβ signaling pathway in the articular cartilage was down-regulated after PDE. Taken together, PDE induces fetal developmental toxicity and articular cartilage developmental toxicity in a course-, dose-, and stage-dependent manner. Copyright © 2018 Elsevier B

  11. Targeting of viral interleukin-10 with an antibody fragment specific to damaged arthritic cartilage improves its therapeutic potency

    PubMed Central

    2014-01-01

    Introduction We previously demonstrated that a single-chain fragment variable (scFv) specific to collagen type II (CII) posttranslationally modified by reactive oxygen species (ROS) can be used to target anti-inflammatory therapeutics specifically to inflamed arthritic joints. The objective of the present study was to demonstrate the superior efficacy of anti-inflammatory cytokines when targeted to inflamed arthritic joints by the anti-ROS modified CII (anti-ROS-CII) scFv in a mouse model of arthritis. Methods Viral interleukin-10 (vIL-10) was fused to anti-ROS-CII scFv (1-11E) with a matrix-metalloproteinase (MMP) cleavable linker to create 1-11E/vIL-10 fusion. Binding of 1-11E/vIL-10 to ROS-CII was determined by enzyme-linked immunosorbent assay (ELISA), Western blotting, and immune-staining of arthritic cartilage, whereas vIL-10 bioactivity was evaluated in vitro by using an MC-9 cell-proliferation assay. Specific in vivo localization and therapeutic efficacy of 1-11E/vIL-10 was tested in the mouse model of antigen-induced arthritis. Results 1-11E/vIL-10 bound specifically to ROS-CII and to damaged arthritic cartilage. Interestingly, the in vitro vIL-10 activity in the fusion protein was observed only after cleavage with MMP-1. When systemically administered to arthritic mice, 1-11E/vIL-10 localized specifically to the arthritic knee, with peak accumulation observed after 3 days. Moreover, 1-11E/vIL-10 reduced inflammation significantly quicker than vIL-10 fused to the control anti-hen egg lysozyme scFv (C7/vIL10). Conclusions Targeted delivery of anti-inflammatory cytokines potentiates their anti-arthritic action in a mouse model of arthritis. Our results further support the hypothesis that targeting biotherapeutics to arthritic joints may be extended to include anti-inflammatory cytokines that lack efficacy when administered systemically. PMID:25029910

  12. Articular cartilage degeneration classification by means of high-frequency ultrasound.

    PubMed

    Männicke, N; Schöne, M; Oelze, M; Raum, K

    2014-10-01

    To date only single ultrasound parameters were regarded in statistical analyses to characterize osteoarthritic changes in articular cartilage and the potential benefit of using parameter combinations for characterization remains unclear. Therefore, the aim of this work was to utilize feature selection and classification of a Mankin subset score (i.e., cartilage surface and cell sub-scores) using ultrasound-based parameter pairs and investigate both classification accuracy and the sensitivity towards different degeneration stages. 40 punch biopsies of human cartilage were previously scanned ex vivo with a 40-MHz transducer. Ultrasound-based surface parameters, as well as backscatter and envelope statistics parameters were available. Logistic regression was performed with each unique US parameter pair as predictor and different degeneration stages as response variables. The best ultrasound-based parameter pair for each Mankin subset score value was assessed by highest classification accuracy and utilized in receiver operating characteristics (ROC) analysis. The classifications discriminating between early degenerations yielded area under the ROC curve (AUC) values of 0.94-0.99 (mean ± SD: 0.97 ± 0.03). In contrast, classifications among higher Mankin subset scores resulted in lower AUC values: 0.75-0.91 (mean ± SD: 0.84 ± 0.08). Variable sensitivities of the different ultrasound features were observed with respect to different degeneration stages. Our results strongly suggest that combinations of high-frequency ultrasound-based parameters exhibit potential to characterize different, particularly very early, degeneration stages of hyaline cartilage. Variable sensitivities towards different degeneration stages suggest that a concurrent estimation of multiple ultrasound-based parameters is diagnostically valuable. In-vivo application of the present findings is conceivable in both minimally invasive arthroscopic ultrasound and high-frequency transcutaneous ultrasound

  13. [The three-dimensional simulation of arytenoid cartilage movement].

    PubMed

    Zhang, Jun; Wang, Xuefeng

    2011-08-01

    Exploring the characteristics of arytenoid cartilage movement. Using Pro/ENGINEER (Pro/E) software, the cricoid cartilage, arytenoid cartilage and vocal cords were simulated to the three-dimensional reconstruction, by analyzing the trajectory of arytenoid cartilage in the joint surface from the cricoid cartilage and arytenoid cartilage composition. The 3D animation simulation showed the normal movement patterns of the vocal cords and the characteristics of vocal cords movement in occasion of arytenoid cartilage dislocation vividly. The three-dimensional model has clinical significance for arytenoid cartilage movement disorders.

  14. Evaluation of cartilage degeneration in a rat model of rotator cuff tear arthropathy

    PubMed Central

    Kramer, Erik J.; Bodendorfer, Blake M.; Laron, Dominique; Wong, Jason; Kim, Hubert T.; Liu, Xuhui; Feeley, Brian T.

    2013-01-01

    Introduction Rotator cuff tears are the most common injury seen by shoulder surgeons. Many late stage rotator cuff tear patients develop glenohumeral osteoarthritis as a result of torn cuff tendons, termed cuff tear arthropathy. However, the mechanisms of cuff tear arthropathy have not been fully established. It has been hypothesized that a combination of synovial and mechanical factors contribute equally to the development of cuff tear arthropathy. The goal of this study was to assess the utility of this model in investigating cuff-tear arthropathy. Methods We utilized a rat model which accurately reflects rotator cuff muscle degradation after massive rotator cuff tears through either infraspinatus and supraspinatus tenotomy or suprascapular nerve transection. Using a Modified-Mankin Scoring System (MMS), we found significant glenohumeral cartilage damage following both rotator cuff tenotomy and suprascapular nerve transection after only 12 weeks. Results Cartilage degeneration was similar between groups, and was present on both the humeral head and the glenoid. Denervation of the supraspinatus and infraspinatus muscles without opening the joint capsule caused cartilage degeneration similar to that found in the tendon transection group. Conclusions These results suggest that altered mechanical loading after rotator cuff tears is the primary factor in cartilage degeneration after rotator cuff tears. Clinically, understanding the process of cartilage degeneration after rotator cuff injury will help guide treatment decisions in the setting of rotator cuff tears. Level of evidence Basic Science Study, Animal Model PMID:23664745

  15. Effect of Dermatan Sulfate on the Indentation and Tensile Properties of Articular Cartilage

    PubMed Central

    Hall, Melanie L.; Krawczak, David A.; Simha, Narendra K.; Lewis, Jack L.

    2009-01-01

    Objective This paper examines the hypothesis that the dermatan sulfate (DS) chain on decorin is a load carrying element in cartilage and that its damage or removal will alter the material properties. Methods To test this hypothesis, indentation and tensile testing of cartilage from bovine patella was performed before and after digestion with chondroitinase B (cB). Removal of significant amounts of DS by cB digestion was verified by Western blot analysis of proteoglycans extracted from whole and sectioned specimens. Specimens (control and treated) were subjected to a series of step-hold displacements. Elastic modulus during the step rise (rapid modulus) and at equilibrium (equilibrium modulus), and the relaxation function during each step were measured for test (cB and buffer) and control (buffer alone) conditions. Results cB had no effect on any of the viscoelastic mechanical properties measured, either in indentation or tension Conclusion Removing or damaging approximately 50% of the dermatan sulfate had no effect on the mechanical properties, strongly suggesting that dermatan sulfate either carries very low load or no load. PMID:19036614

  16. Enhanced cartilage repair in 'healer' mice-New leads in the search for better clinical options for cartilage repair.

    PubMed

    Fitzgerald, Jamie

    2017-02-01

    Adult articular cartilage has a poor capacity to undergo intrinsic repair. Current strategies for the repair of large cartilage defects are generally unsatisfactory because the restored cartilage does not have the same resistance to biomechanical loading as authentic articular cartilage and degrades over time. Recently, an exciting new research direction, focused on intrinsic cartilage regeneration rather than fibrous repair by external means, has emerged. This review explores the new findings in this rapidly moving field as they relate to the clinical goal of restoration of structurally robust, stable and non-fibrous articular cartilage following injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Regeneration of Articular Cartilage in Lizard Knee from Resident Stem/Progenitor Cells

    PubMed Central

    Alibardi, Lorenzo

    2015-01-01

    The epiphysis of femur and tibia in the lizard Podarcis muralis can extensively regenerate after injury. The process involves the articular cartilage and metaphyseal (growth) plate after damage. The secondary ossification center present between the articular cartilage and the growth plate is replaced by cartilaginous epiphyses after about one month of regeneration at high temperature. The present study analyzes the origin of the chondrogenic cells from putative stem cells located in the growing centers of the epiphyses. The study is carried out using immunocytochemistry for the detection of 5BrdU-labeled long retaining cells and for the localization of telomerase, an enzyme that indicates stemness. The observations show that putative stem cells retaining 5BrdU and positive for telomerase are present in the superficial articular cartilage and metaphyseal growth plate located in the epiphyses. This observation suggests that these areas represent stem cell niches lasting for most of the lifetime of lizards. In healthy long bones of adult lizards, the addition of new chondrocytes from the stem cells population in the articular cartilage and the metaphyseal growth plate likely allows for slow, continuous longitudinal growth. When the knee is injured in the adult lizard, new populations of chondrocytes actively producing chondroitin sulfate proteoglycan are derived from these stem cells to allow for the formation of completely new cartilaginous epiphyses, possibly anticipating the re-formation of secondary centers in later stages. The study suggests that in this lizard species, the regenerative ability of the epiphyses is a pre-adaptation to the regeneration of the articular cartilage. PMID:26340619

  18. Tribological changes in the articular cartilage of a human femoral head with avascular necrosis.

    PubMed

    Seo, Eun-Min; Shrestha, Suman K; Duong, Cong-Truyen; Sharma, Ashish Ranjan; Kim, Tae-Woo; Vijayachandra, Ayyappan; Thompson, Mark S; Cho, Myung Guk; Park, Sungchan; Kim, Kwanghoon; Park, Seonghun; Lee, Sang-Soo

    2015-06-29

    The present study evaluated the tribological properties of the articular cartilage surface of the human femoral head with postcollapse stage avascular necrosis (AVN) using atomic force microscopy. The cartilage surface in the postcollapse stage AVN of the femoral head was reported to resemble those of disuse conditions, which suggests that the damage could be reversible and offers the possibilities of success of head-sparing surgeries. By comparing the tribological properties of articular cartilage in AVN with that of osteoarthritis, the authors intended to understand the cartilage degeneration mechanism and reversibility of AVN. Human femoral heads with AVN were explanted from the hip replacement surgery of four patients (60-83 years old). Nine cylindrical cartilage samples (diameter, 5 mm and height, 0.5 mm) were sectioned from the weight-bearing areas of the femoral head with AVN, and the cartilage surface was classified according to the Outerbridge Classification System (AVN0, normal; AVN1, softening and swelling; and AVN2, partial thickness defect and fissuring). Tribological properties including surface roughness and frictional coefficients and histochemistry including Safranin O and lubricin staining were compared among the three groups. The mean surface roughness Rq values of AVN cartilage increased significantly with increasing Outerbridge stages: Rq = 137 ± 26 nm in AVN0, Rq = 274 ± 49 nm in AVN1, and Rq = 452 ± 77 nm in AVN2. Significant differences in Rq were observed among different Outerbridge stages in all cases (p < 0.0001). The frictional coefficients (μ) also increased with increasing Outerbridge stages. The frictional coefficient values were μ = 0.115 ± 0.034 in AVN0, μ = 0.143 ± 0.025 in AVN1, and μ = 0.171 ± 0.039 in AVN2. Similarly to the statistical analysis of surface roughness, significant statistical differences were detected between different Outerbridge stages in all cases (p < 0.05). Both surface roughness and frictional

  19. Reconstruction of acquired sub-total ear defects with autologous costal cartilage.

    PubMed

    Harris, P A; Ladhani, K; Das-Gupta, R; Gault, D T

    1999-06-01

    Acquired sub-total ear defects are common and challenging to reconstruct. We report the use of an autologous costal cartilage framework to reconstruct sub-total defects involving all anatomical regions of the ear. Twenty-eight partially damaged ears in 27 patients were reconstructed with this technique. The defects resulted from bites (14), road traffic accidents (five), burns (four), iatrogenic causes (four) and chondritis following minor trauma (one). Computerised image analysis revealed a median of 31% (range 13-72%) ear loss. An autologous costal cartilage framework was fashioned in all cases. If adequate local skin was available, this was draped over the framework, but in nine cases preliminary tissue expansion was used and in a further three cases with significant scarring, the framework was covered with a temporoparietal fascial flap. Clinical assessment after ear reconstruction was undertaken, scoring for symmetry, the helical rim, the antihelical fold, the lobe position and a 'natural look' to produce a four-point scale; 11 were excellent, 12 were good, two were fair and three were poor. Our experience suggests that formal delayed reconstruction with autologous costal cartilage is to be recommended when managing acquired, sub-total ear deformity.

  20. No degeneration found in focal cartilage defects evaluated with dGEMRIC at 12-year follow-up.

    PubMed

    Engen, Cathrine Nørstad; Løken, Sverre; Årøen, Asbjørn; Ho, Charles; Engebretsen, Lars

    2017-02-01

    Background and purpose - The natural history of focal cartilage defects (FCDs) is still unresolved, as is the long-term cartilage quality after cartilage surgery. It has been suggested that delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) is a biomarker of early OA. We aimed to quantitatively evaluate the articular cartilage in knees with FCDs, 12 years after arthroscopic diagnosis. Patients and methods - We included 21 patients from a cohort of patients with knee pain who underwent arthroscopy in 1999. Patients with a full-thickness cartilage defect, stable knees, and at least 50% of both their menisci intact at baseline were eligible. 10 patients had cartilage repair performed at baseline (microfracture or autologous chondrocyte implantation), whereas 11 patients had either no additional surgery or simple debridement performed. Mean follow-up time was 12 (10-13) years. The morphology and biochemical features were evaluated with dGEMRIC and T2 mapping. Standing radiographs for Kellgren and Lawrence (K&L) classification of osteoarthritis (OA) were obtained. Knee function was assessed with VAS, Tegner, Lysholm, and KOOS. Results - The dGEMRIC showed varying results but, overall, no increased degeneration of the injured knees. Degenerative changes (K&L above 0) were, however, evident in 13 of the 21 knees. Interpretation - The natural history of untreated FCDs shows large dGEMRIC variations, as does the knee articular cartilage of surgically treated patients. In this study, radiographic OA changes did not correlate with cartilage quality, as assessed with dGEMRIC.

  1. Reconstruction of Hyaline Cartilage Deep Layer Properties in 3-Dimensional Cultures of Human Articular Chondrocytes.

    PubMed

    Nanduri, Vibudha; Tattikota, Surendra Mohan; T, Avinash Raj; Sriramagiri, Vijaya Rama Rao; Kantipudi, Suma; Pande, Gopal

    2014-06-01

    Articular cartilage (AC) injuries and malformations are commonly noticed because of trauma or age-related degeneration. Many methods have been adopted for replacing or repairing the damaged tissue. Currently available AC repair methods, in several cases, fail to yield good-quality long-lasting results, perhaps because the reconstructed tissue lacks the cellular and matrix properties seen in hyaline cartilage (HC). To reconstruct HC tissue from 2-dimensional (2D) and 3-dimensional (3D) cultures of AC-derived human chondrocytes that would specifically exhibit the cellular and biochemical properties of the deep layer of HC. Descriptive laboratory study. Two-dimensional cultures of human AC-derived chondrocytes were established in classical medium (CM) and newly defined medium (NDM) and maintained for a period of 6 weeks. These cells were suspended in 2 mm-thick collagen I gels, placed in 24-well culture inserts, and further cultured up to 30 days. Properties of chondrocytes, grown in 2D cultures and the reconstructed 3D cartilage tissue, were studied by optical and scanning electron microscopic techniques, immunohistochemistry, and cartilage-specific gene expression profiling by reverse transcription polymerase chain reaction and were compared with those of the deep layer of native human AC. Two-dimensional chondrocyte cultures grown in NDM, in comparison with those grown in CM, showed more chondrocyte-specific gene activity and matrix properties. The NDM-grown chondrocytes in 3D cultures also showed better reproduction of deep layer properties of HC, as confirmed by microscopic and gene expression analysis. The method used in this study can yield cartilage tissue up to approximately 1.6 cm in diameter and 2 mm in thickness that satisfies the very low cell density and matrix composition properties present in the deep layer of normal HC. This study presents a novel and reproducible method for long-term culture of AC-derived chondrocytes and reconstruction of cartilage

  2. Impairment of social and moral behavior related to early damage in human prefrontal cortex.

    PubMed

    Anderson, S W; Bechara, A; Damasio, H; Tranel, D; Damasio, A R

    1999-11-01

    The long-term consequences of early prefrontal cortex lesions occurring before 16 months were investigated in two adults. As is the case when such damage occurs in adulthood, the two early-onset patients had severely impaired social behavior despite normal basic cognitive abilities, and showed insensitivity to future consequences of decisions, defective autonomic responses to punishment contingencies and failure to respond to behavioral interventions. Unlike adult-onset patients, however, the two patients had defective social and moral reasoning, suggesting that the acquisition of complex social conventions and moral rules had been impaired. Thus early-onset prefrontal damage resulted in a syndrome resembling psychopathy.

  3. Comparison of cartilage graft and fascia in type 1 tympanoplasty: systematic review and meta-analysis.

    PubMed

    Yang, Tao; Wu, Xuewen; Peng, Xiaofei; Zhang, Yanni; Xie, Shaobing; Sun, Hong

    2016-11-01

    Tympanoplasty using cartilage grafts has a better graft take rate than that using temporalis fascia grafts. There are no significant differences between cartilage grafts and temporalis fascia grafts for hearing outcomes. Contrary to the sliced cartilage sub-group, full-thickness cartilage grafts generate better hearing outcomes than temporalis fascia grafts. Tympanic membrane perforation can cause middle ear relapsing infection and lead to hearing damage. Various techniques have been applied in order to reconstruct the tympanic membrane. Recently, cartilage grafts and temporalis fascia grafts have been widely used for tympanic membrane closure. A systemic review and meta-analysis was carried out based on published retrospective trials that investigated the efficacy of cartilage grafts and temporalis fascia grafts in type 1 tympanoplasty. Both graft take rates and mean AIR-BONE-GAP gains were analyzed. Cochrane Library, PubMed, and Embase were systematically searched. After a scientific investigation, we extracted the relevant data following our selection criteria. Odds ratio (OR) of graft take rates and mean difference (MD) of AIR-BONE-GAP gains were calculated within 95% confidence intervals. Eight eligible articles with 915 patients were reviewed. The pooled OR for graft take rate was 3.11 (95% CI =1.94-5.00; p = 0.43) and the difference between the two groups was significant, which means that the cartilage grafts group got a better graft take rate than the temporalis fascia grafts group. The pooled MD for mean AIR-BONE-GAP gain was 1.92 (95% CI = -0.12-3.95; p < 0.000 01) and the difference was not significant. However, in the full thickness cartilage grafts sub-group, the pooled MD for mean AIR-BONE-GAP gains was 2.56 (95% CI =1.02-4.10; p = 0.14) and the difference was significant, which means that the full thickness cartilage grafts sub-group got a better hearing outcome than the temporalis fascia grafts group. On the contrary, the pooled MD of

  4. Multiple myeloma involving the cricoid cartilage.

    PubMed

    Floré, B; Hermans, R

    2013-01-01

    We present the case of a man with dyspnea due to a mass in the cricoid cartilage that turns out to be an extramedullary plasmocytoma. Although the patient has a history of multiple myeloma, the disease only rarely affects the cricoid cartilage. Other subglottic lesions possibly involving the cricoid cartilage are squamous cell carcinoma, chondroma, chondrosarcoma and metastasis. The imaging characteristics suggesting extramedullary plasmocytoma arising from the cricoid consist of thinning and expansion of the cartilage laminae without mucosal lesions nor soft tissue mass adjacent to the cricoid cartilage. The patient was successfully treated with radiation therapy and peroral steroids.

  5. Genetics Home Reference: cartilage-hair hypoplasia

    MedlinePlus

    ... Twitter Home Health Conditions Cartilage-hair hypoplasia Cartilage-hair hypoplasia Printable PDF Open All Close All Enable ... to view the expand/collapse boxes. Description Cartilage-hair hypoplasia is a disorder of bone growth characterized ...

  6. The cranial cartilages of teleosts and their classification.

    PubMed Central

    Benjamin, M

    1990-01-01

    The structure and distribution of cartilages has been studied in 45 species from 24 families. The resulting data have been used as a basis for establishing a new classification. A cartilage is regarded as 'cell-rich' if its cells or their lacunae occupy more than half of the tissue volume. Five classes of cell-rich cartilage are recognised (a) hyaline-cell cartilage (common in the lips of bottom-dwelling cyprinids) and its subtypes fibro/hyaline-cell cartilage, elastic/hyaline-cell cartilage and lipo/hyaline-cell cartilage, (b) Schaffer's Zellknorpel, typified by the cartilage in the gill filaments of most teleosts examined, (c) elastic/cell-rich cartilage, such as that which supports the barbels and oral valves of catfish, e.g. Corydoras metae, (d) fibro/cell-rich cartilage, as in the submaxillary meniscus of Sphaerichthys osphromenoides, (e) cell-rich hyaline and (f) matrix-rich hyaline cartilage--both of which are common in the neurocranium and gill arches of most teleosts. The range of cartilages seen, and the predominant cartilage type, is recorded for each species and a list is provided of the tissues that most typify different organs or regions of the head. As a preliminary pointer to developmental relationships between the cartilages, note was taken of gradual transitions between one cartilage and another. It is suggested that hyaline-cell cartilage occupies a key position in teleosts as the most labile of the supporting tissues and is highly characteristic of Cypriniformes. The cartilage that best resembles mammalian hyaline cartilage (matrix-rich hyaline cartilage) has a very conservative distribution in different skeletal elements and the least number of associations with other tissues. It is well represented in Siluriformes. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 Fig. 20 Fig. 24 Fig. 25 Fig. 26 Fig. 27 PMID:2384333

  7. Stem Cell Therapies for Knee Cartilage Repair: The Current Status of Preclinical and Clinical Studies

    PubMed Central

    Anderson, John A.; Little, Dianne; Toth, Alison P.; Moorman, Claude T.; Tucker, Bradford S.; Ciccotti, Michael G.; Guilak, Farshid

    2014-01-01

    Background Articular cartilage damage of the knee is common, causing significant morbidity worldwide. Many adult tissues contain cells that are able to differentiate into multiple cell types, including chondrocytes. These stem cells have gained significant attention over the past decade and may become frontline management for cartilage defects in the very near future. Purpose The role of stem cells in the treatment of knee osteochondral defects was reviewed. Recent animal and clinical studies were reviewed to determine the benefits and potential outcomes of using stem cells for cartilage defects. Study Design Literature review. Methods A PubMed search was undertaken. The key phrase “stem cells and knee” was used. The search included reviews and original articles over an unlimited time period. From this search, articles outlining animal and clinical trials were selected. A search of current clinical trials in progress was performed on the clinicaltrials.gov website, and “stem cells and knee” was used as the search phrase. Results Stem cells have been used in many recent in vitro and animal studies. A number of cell-based approaches for cartilage repair have progressed from preclinical animal studies into clinical trials. Conclusion The use of stem cells for the treatment of cartilage defects is increasing in animal and clinical studies. Methods of delivery of stem cells to the knee’s cartilage vary from direct injection to implantation with scaffolds. While these approaches are highly promising, there is currently limited evidence of a direct clinical benefit, and further research is required to assess the overall outcome of stem cell therapies for knee cartilage repair. PMID:24220016

  8. Free Diced Cartilage: A New Application of Diced Cartilage Grafts in Primary and Secondary Rhinoplasty.

    PubMed

    Kreutzer, Christian; Hoehne, Julius; Gubisch, Wolfgang; Rezaeian, Farid; Haack, Sebastian

    2017-09-01

    Irregularities or deformities of the nasal dorsum after hump reduction account for a significant number of revision rhinoplasties. The authors therefore developed a technique of meticulously dicing and exactly placing free diced cartilage grafts, harvested from septum, rib, or ear cartilage. The cartilage paste is used for smoothening, augmentation, or camouflaging of the nasal dorsum in primary or revision rhinoplasties. A retrospective analysis of multisurgeon consecutive open approach rhinoplasties from January to December of 2014 was conducted at a single center. The authors compared the outcome of three different techniques to augment or cover the nasal dorsum after an observation period of 7 months. In group I, 325 patients with free diced cartilage grafts as the only onlay were included. In group II, consisting of 73 patients, the dorsal onlay was either fascia alone or in combination with free diced cartilage grafts. Forty-eight patients in group III received a dorsal augmentation with the classic diced cartilage in fascia technique. Four hundred forty-six patients undergoing primary and secondary rhinoplasties in which one of the above-mentioned diced cartilage techniques was used were included in the study. The authors found revision rates for dorsal irregularities within the 7-month postoperative observation period of 5.2, 8.2, and 25 percent for groups I, II, and III, respectively. The authors' findings strongly support their clinical experience that the free diced cartilage graft technique presents an effective and easily reproducible method for camouflage and augmentation in aesthetic and reconstructive rhinoplasty.

  9. Automated image processing and analysis of cartilage MRI: enabling technology for data mining applied to osteoarthritis

    PubMed Central

    Tameem, Hussain Z.; Sinha, Usha S.

    2011-01-01

    Osteoarthritis (OA) is a heterogeneous and multi-factorial disease characterized by the progressive loss of articular cartilage. Magnetic Resonance Imaging has been established as an accurate technique to assess cartilage damage through both cartilage morphology (volume and thickness) and cartilage water mobility (Spin-lattice relaxation, T2). The Osteoarthritis Initiative, OAI, is a large scale serial assessment of subjects at different stages of OA including those with pre-clinical symptoms. The electronic availability of the comprehensive data collected as part of the initiative provides an unprecedented opportunity to discover new relationships in complex diseases such as OA. However, imaging data, which provides the most accurate non-invasive assessment of OA, is not directly amenable for data mining. Changes in morphometry and relaxivity with OA disease are both complex and subtle, making manual methods extremely difficult. This chapter focuses on the image analysis techniques to automatically localize the differences in morphometry and relaxivity changes in different population sub-groups (normal and OA subjects segregated by age, gender, and race). The image analysis infrastructure will enable automatic extraction of cartilage features at the voxel level; the ultimate goal is to integrate this infrastructure to discover relationships between the image findings and other clinical features. PMID:21785520

  10. Automated image processing and analysis of cartilage MRI: enabling technology for data mining applied to osteoarthritis

    NASA Astrophysics Data System (ADS)

    Tameem, Hussain Z.; Sinha, Usha S.

    2007-11-01

    Osteoarthritis (OA) is a heterogeneous and multi-factorial disease characterized by the progressive loss of articular cartilage. Magnetic Resonance Imaging has been established as an accurate technique to assess cartilage damage through both cartilage morphology (volume and thickness) and cartilage water mobility (Spin-lattice relaxation, T2). The Osteoarthritis Initiative, OAI, is a large scale serial assessment of subjects at different stages of OA including those with pre-clinical symptoms. The electronic availability of the comprehensive data collected as part of the initiative provides an unprecedented opportunity to discover new relationships in complex diseases such as OA. However, imaging data, which provides the most accurate non-invasive assessment of OA, is not directly amenable for data mining. Changes in morphometry and relaxivity with OA disease are both complex and subtle, making manual methods extremely difficult. This chapter focuses on the image analysis techniques to automatically localize the differences in morphometry and relaxivity changes in different population sub-groups (normal and OA subjects segregated by age, gender, and race). The image analysis infrastructure will enable automatic extraction of cartilage features at the voxel level; the ultimate goal is to integrate this infrastructure to discover relationships between the image findings and other clinical features.

  11. In situ measurements of human articular cartilage stiffness by means of a scanning force microscope

    NASA Astrophysics Data System (ADS)

    Imer, Raphaël; Akiyama, Terunobu; de Rooij, Nico F.; Stolz, Martin; Aebi, Ueli; Kilger, Robert; Friederich, Niklaus F.; Wirz, Dieter; Daniels, A. U.; Staufer, Urs

    2007-03-01

    Osteoarthritis is a painful and disabling progressive joint disease, characterized by degradation of articular cartilage. In order to study this disease at early stages, we have miniaturized and integrated a complete scanning force microscope into a standard arthroscopic device fitting through a standard orthopedic canula. This instrument will allow orthopedic surgeons to measure the mechanical properties of articular cartilage at the nanometer and micrometer scale in-vivo during a standard arthroscopy. An orthopedic surgeon assessed the handling of the instrument. First measurements of the elasticity-modulus of human cartilage were recorded in a cadaver knee non minimal invasive. Second, minimally invasive experiments were performed using arthroscopic instruments. Load-displacement curves were successfully recorded.

  12. Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running.

    PubMed

    Mosher, T J; Liu, Y; Torok, C M

    2010-03-01

    To characterize effects of age and physical activity level on cartilage thickness and T2 response immediately after running. Institutional review board approval was obtained and all subjects provided informed consent prior to study participation. Cartilage thickness and magnetic resonance imaging (MRI) T2 values of 22 marathon runners and 15 sedentary controls were compared before and after 30 min of running. Runner and control groups were stratified by ageor=46 years. Multi-echo [(Time to Repetition (TR)/Time to Echo (TE) 1500 ms/9-109 ms)] MR images obtained using a 3.0 T scanner were used to calculate thickness and T2 values from the central femoral and tibial cartilage. Baseline cartilage T2 values, and change in cartilage thickness and T2 values after running were compared between the four groups using one-way analysis of variance (ANOVA). After running MRI T2 values decreased in superficial femoral (2 ms-4 ms) and tibial (1 ms-3 ms) cartilage along with a decrease in cartilage thickness: (femoral: 4%-8%, tibial: 0%-12%). Smaller decrease in cartilage T2 values were observed in the middle zone of cartilage, and no change was observed in the deepest layer. There was no difference cartilage deformation or T2 response to running as a function of age or level of physical activity. Running results in a measurable decrease in cartilage thickness and MRI T2 values of superficial cartilage consistent with greater compressibility of the superficial cartilage layer. Age and level of physical activity did not alter the T2 response to running. Copyright 2009 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  13. Engineered cartilage using primary chondrocytes cultured in a porous cartilage-derived matrix

    PubMed Central

    Cheng, Nai-Chen; Estes, Bradley T; Young, Tai-Horng; Guilak, Farshid

    2011-01-01

    Aim To investigate the cell growth, matrix accumulation and mechanical properties of neocartilage formed by human or porcine articular chondrocytes on a porous, porcine cartilage-derived matrix (CDM) for use in cartilage tissue engineering. Materials & methods We examined the physical properties, cell infiltration and matrix accumulation in different formulations of CDM and selected a CDM made of homogenized cartilage slurry as an appropriate scaffold for long-term culture of human and porcine articular chondrocytes. Results The CDM scaffold supported growth and proliferation of both human and porcine chondrocytes. Histology and immunohistochemistry showed abundant cartilage-specific macromolecule deposition at day 28. Human chondrocytes migrated throughout the CDM, showing a relatively homogeneous distribution of new tissue accumulation, whereas porcine chondrocytes tended to form a proteoglycan-rich layer primarily on the surfaces of the scaffold. Human chondrocyte-seeded scaffolds had a significantly lower aggregate modulus and hydraulic permeability at day 28. Conclusions These data show that a scaffold derived from native porcine articular cartilage can support neocartilage formation in the absence of exogenous growth factors. The overall characteristics and properties of the constructs depend on factors such as the concentration of CDM used, the porosity of the scaffold, and the species of chondrocytes. PMID:21175289

  14. Optical properties of nasal septum cartilage

    NASA Astrophysics Data System (ADS)

    Bagratashvili, Nodar V.; Sviridov, Alexander P.; Sobol, Emil N.; Kitai, Moishe S.

    1998-05-01

    Optical parameters (scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g) of hyaline cartilage were studied for the first time. Optical properties of human and pig nasal septum cartilage, and of bovine ear cartilage were examined using a spectrophotometer with an integrating sphere, and an Optical Multi-Channel Analyser. We measured total transmission Tt, total reflection Rt, and on-axis transmission Ta for light propagating through cartilage sample, over the visible spectral range (14000 - 28000 cm-1). It is shown that transmission and reflection spectra of human, pig and bovine cartilage are rather similar. It allows us to conclude that the pig cartilage can be used for in-vivo studies instead of human cartilage. The data obtained were treated by means of the one-dimensional diffusion approximation solution of the optical transport equation. We have found scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g by the iterative comparison of measured and calculated Tt, Rt and Ta values for human and pig cartilage. We found, in particular, that for 500 nm irradiation s equals 37,6 plus or minus 3.5 cm-1, g equals 0,56 plus or minus 0.05, k approximately equals 0,5 plus or minus 0.3 cm-1. The above data were used in Monte Carlo simulation for spatial intensity profile of light scattered by a cartilage sample. The computed profile was very similar to the profile measured using an Optical Multi-Channel Analyzer (OMA).

  15. Comparisons of Auricular Cartilage Tissues from Different Species.

    PubMed

    Chiu, Loraine L Y; Giardini-Rosa, Renata; Weber, Joanna F; Cushing, Sharon L; Waldman, Stephen D

    2017-12-01

    Tissue engineering of auricular cartilage has great potential in providing readily available materials for reconstructive surgeries. As the field of tissue engineering moves forward to developing human tissues, there needs to be an interspecies comparison of the native auricular cartilage in order to determine a suitable animal model to assess the performance of engineered auricular cartilage in vivo. Here, we performed interspecies comparisons of auricular cartilage by comparing tissue microstructure, protein localization, biochemical composition, and mechanical properties of auricular cartilage tissues from rat, rabbit, pig, cow, and human. Human, pig, and cow auricular cartilage have smaller lacunae compared to rat and rabbit cartilage ( P < .05). Despite differences in tissue microstructure, human auricular cartilage has similar biochemical composition to both rat and rabbit. Auricular cartilage from pig and cow, alternatively, display significantly higher glycosaminoglycan and collagen contents compared to human, rat, and rabbit ( P < .05). The mechanical properties of human auricular cartilage were comparable to that of all 4 animal species. This is the first study that compares the microstructural, biochemical, and mechanical properties of auricular cartilage from different species. This study showed that different experimental animal models of human auricular cartilage may be suitable in different cases.

  16. Supporting Biomaterials for Articular Cartilage Repair

    PubMed Central

    Duarte Campos, Daniela Filipa; Drescher, Wolf; Rath, Björn; Tingart, Markus

    2012-01-01

    Orthopedic surgeons and researchers worldwide are continuously faced with the challenge of regenerating articular cartilage defects. However, until now, it has not been possible to completely mimic the biological and biochemical properties of articular cartilage using current research and development approaches. In this review, biomaterials previously used for articular cartilage repair research are addressed. Furthermore, a brief discussion of the state of the art of current cell printing procedures mimicking native cartilage is offered in light of their use as future alternatives for cartilage tissue engineering. Inkjet cell printing, controlled deposition cell printing tools, and laser cell printing are cutting-edge techniques in this context. The development of mimetic hydrogels with specific biological properties relevant to articular cartilage native tissue will support the development of improved, functional, and novel engineered tissue for clinical application. PMID:26069634

  17. Signaling pathways effecting crosstalk between cartilage and adjacent tissues: Seminars in cell and developmental biology: The biology and pathology of cartilage.

    PubMed

    Maes, Christa

    2017-02-01

    Endochondral ossification, the mechanism responsible for the development of the long bones, is dependent on an extremely stringent coordination between the processes of chondrocyte maturation in the growth plate, vascular expansion in the surrounding tissues, and osteoblast differentiation and osteogenesis in the perichondrium and the developing bone center. The synchronization of these processes occurring in adjacent tissues is regulated through vigorous crosstalk between chondrocytes, endothelial cells and osteoblast lineage cells. Our knowledge about the molecular constituents of these bidirectional communications is undoubtedly incomplete, but certainly some signaling pathways effective in cartilage have been recognized to play key roles in steering vascularization and osteogenesis in the perichondrial tissues. These include hypoxia-driven signaling pathways, governed by the hypoxia-inducible factors (HIFs) and vascular endothelial growth factor (VEGF), which are absolutely essential for the survival and functioning of chondrocytes in the avascular growth plate, at least in part by regulating the oxygenation of developing cartilage through the stimulation of angiogenesis in the surrounding tissues. A second coordinating signal emanating from cartilage and regulating developmental processes in the adjacent perichondrium is Indian Hedgehog (IHH). IHH, produced by pre-hypertrophic and early hypertrophic chondrocytes in the growth plate, induces the differentiation of adjacent perichondrial progenitor cells into osteoblasts, thereby harmonizing the site and time of bone formation with the developmental progression of chondrogenesis. Both signaling pathways represent vital mediators of the tightly organized conversion of avascular cartilage into vascularized and mineralized bone during endochondral ossification. Copyright © 2016. Published by Elsevier Ltd.

  18. Whole-body vibration of mice induces articular cartilage degeneration with minimal changes in subchondral bone.

    PubMed

    McCann, M R; Yeung, C; Pest, M A; Ratneswaran, A; Pollmann, S I; Holdsworth, D W; Beier, F; Dixon, S J; Séguin, C A

    2017-05-01

    Low-amplitude, high-frequency whole-body vibration (WBV) has been adopted for the treatment of musculoskeletal diseases including osteoarthritis (OA); however, there is limited knowledge of the direct effects of vibration on joint tissues. Our recent studies revealed striking damage to the knee joint following exposure of mice to WBV. The current study examined the effects of WBV on specific compartments of the murine tibiofemoral joint over 8 weeks, including microarchitecture of the tibia, to understand the mechanisms associated with WBV-induced joint damage. Ten-week-old male CD-1 mice were exposed to WBV (45 Hz, 0.3 g peak acceleration; 30 min/day, 5 days/week) for 4 weeks, 8 weeks, or 4 weeks WBV followed by 4 weeks recovery. The knee joint was evaluated histologically for tissue damage. Architecture of the subchondral bone plate, subchondral trabecular bone, primary and secondary spongiosa of the tibia was assessed using micro-CT. Meniscal tears and focal articular cartilage damage were induced by WBV; the extent of damage increased between 4 and 8-week exposures to WBV. WBV did not alter the subchondral bone plate, or trabecular bone of the tibial spongiosa; however, a transient increase was detected in the subchondral trabecular bone volume and density. The lack of WBV-induced changes in the underlying subchondral bone suggests that damage to the articular cartilage may be secondary to the meniscal injury we detected. Our findings underscore the need for further studies to assess the safety of WBV in the human population to avoid long-term joint damage. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  19. Changes in Mechanics and Composition of Human Talar Cartilage Anlagen During Fetal Development

    PubMed Central

    Mahmoodian, Roza; Leasure, Jeremi; Philip, Phitha; Pleshko, Nancy; Capaldi, Franco; Siegler, Sorin

    2011-01-01

    , where the collagen and proteoglycan network play a prominent role. An understanding of the mechanisms of early cartilage maturation could provide a framework to guide tissue-engineering strategies. PMID:21843650

  20. Platelet lysate activates quiescent cell proliferation and reprogramming in human articular cartilage: Involvement of hypoxia inducible factor 1.

    PubMed

    Nguyen, Van Thi; Cancedda, Ranieri; Descalzi, Fiorella

    2018-03-01

    The idea of rescuing the body self-repair capability lost during evolution is progressively gaining ground in regenerative medicine. In particular, growth factors and bioactive molecules derived from activated platelets emerged as promising therapeutic agents acting as trigger for repair of tissue lesions and restoration of tissue functions. Aim of this study was to assess the potential of a platelet lysate (PL) for human articular cartilage repair considering its activity on progenitor cells and differentiated chondrocytes. PL induced the re-entry in the cell cycle of confluent, growth-arrested dedifferentiated/progenitor cartilage cells. In a cartilage permissive culture environment, differentiated cells also resumed proliferation after exposure to PL. These findings correlated with an up-regulation of the proliferation/survival pathways ERKs and Akt and with an induction of cyclin D1. In short- and long-term cultures of articular cartilage explants, we observed a release of proliferating chondroprogenitors able to differentiate and form an "in vitro" tissue with properties of healthy articular cartilage. Moreover, in cultured cartilage cells, PL induced a hypoxia-inducible factor (HIF-1) alpha increase, its nuclear relocation and the binding to HIF-1 responsive elements. These events were possibly related to the cell proliferation because the HIF-1 inhibitor acriflavine inhibited HIF-1 binding to HIF-1 responsive elements and cell proliferation. Our study demonstrates that PL induces quiescent cartilage cell activation and proliferation leading to new cartilage formation, identifies PL activated pathways playing a role in these processes, and provides a rationale to the application of PL for therapeutic treatment of damaged articular cartilage. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Cartilage grafting in nasal reconstruction.

    PubMed

    Immerman, Sara; White, W Matthew; Constantinides, Minas

    2011-02-01

    Nasal reconstruction after resection for cutaneous malignancies poses a unique challenge to facial plastic surgeons. The nose, a unique 3-D structure, not only must remain functional but also be aesthetically pleasing to patients. A complete understanding of all the layers of the nose and knowledge of available cartilage grafting material is necessary. Autogenous material, namely septal, auricular, and costal cartilage, is the most favored material in a free cartilage graft or a composite cartilage graft. All types of material have advantages and disadvantages that should guide the most appropriate selection to maximize the functional and cosmetic outcomes for patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Cartilage-specific RBPjκ-dependent and -independent Notch signals regulate cartilage and bone development

    PubMed Central

    Kohn, Anat; Dong, Yufeng; Mirando, Anthony J.; Jesse, Alana M.; Honjo, Tasuku; Zuscik, Michael J.; O’Keefe, Regis J.; Hilton, Matthew J.

    2012-01-01

    The Notch signaling pathway has emerged as an important regulator of endochondral bone formation. Although recent studies have examined the role of Notch in mesenchymal and chondro-osteo progenitor cell populations, there has yet to be a true examination of Notch signaling specifically within developing and committed chondrocytes, or a determination of whether cartilage and bone formation are regulated via RBPjκ-dependent or -independent Notch signaling mechanisms. To develop a complete understanding of Notch signaling during cartilage and bone development we generated and compared general Notch gain-of-function (Rosa-NICDf/+), RBPjκ-deficient (Rbpjκf/f), and RBPjκ-deficient Notch gain-of-function (Rosa-NICDf/+;Rbpjκf/f) conditional mutant mice, where activation or deletion of floxed alleles were specifically targeted to mesenchymal progenitors (Prx1Cre) or committed chondrocytes (inducible Col2CreERT2). These data demonstrate, for the first time, that Notch regulation of chondrocyte maturation is solely mediated via the RBPjκ-dependent pathway, and that the perichodrium or osteogenic lineage probably influences chondrocyte terminal maturation and turnover of the cartilage matrix. Our study further identifies the cartilage-specific RBPjκ-independent pathway as crucial for the proper regulation of chondrocyte proliferation, survival and columnar chondrocyte organization. Unexpectedly, the RBPjκ-independent Notch pathway was also identified as an important long-range cell non-autonomous regulator of perichondral bone formation and an important cartilage-derived signal required for coordinating chondrocyte and osteoblast differentiation during endochondral bone development. Finally, cartilage-specific RBPjκ-independent Notch signaling likely regulates Ihh responsiveness during cartilage and bone development. PMID:22354840

  3. Glenohumeral articular cartilage lesions: prospective comparison of non-contrast magnetic resonance imaging and findings at arthroscopy.

    PubMed

    Spencer, Brian A; Dolinskas, Carol A; Seymour, Peter A; Thomas, Stephen J; Abboud, Joseph A

    2013-09-01

    The purpose of this study was to assess the diagnostic sensitivity, specificity, accuracy, negative predictive value (NPV), positive predictive value (PPV), and test-retest reliability of magnetic resonance imaging (MRI) for detecting cartilage abnormalities of the glenohumeral joint in comparison with the gold standard of diagnostic arthroscopy. Forty-four patients with a preoperative non-contrast MRI study of their affected shoulder underwent arthroscopy by one surgeon for rotator cuff tendinopathy from 2009 to 2010. Articular cartilage defects were prospectively recorded and graded according to the International Cartilage Repair Society classification system at the time of arthroscopy. One year after surgery, the preoperative MRI were reviewed by a board-certified radiologist and the treating surgeon for articular cartilage defects of both the humeral head and the glenoid. Sensitivity, specificity, accuracy, and test-retest reliability were calculated. At arthroscopy, 43% of the shoulders were found to have articular cartilage defects. When the readers' findings were combined, the sensitivity of detecting humeral lesions on MRI was 32%; specificity, 80%; accuracy, 63%; PPV, 57%; and NPV, 66%. The sensitivity of detecting glenoid lesions was 31%; specificity, 86%; accuracy, 76%; PPV, 33%; and NPV, 85%. This study finds that the overall accuracy of MRI in detecting articular cartilage damage in patients with the clinical diagnosis of subacromial pathology is moderate. Level II, development of diagnostic criteria based on consecutive patients with universally applied reference "gold" standard. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  4. The Cartilage Warp Prevention Suture.

    PubMed

    Guyuron, Bahman; Wang, Derek Z; Kurlander, David E

    2018-06-01

    Costal cartilage graft warping can challenge rhinoplasty surgeons and compromise outcomes. We propose a technique, the "warp control suture," for eliminating cartilage warp and examine outcomes in a pilot group. The warp control suture is performed in the following manner: Harvested cartilage is cut to the desired shape and immersed in saline to induce warping. A 4-0 or 5-0 PDS suture, depending the thickness of the cartilage, is passed from convex to concave then concave to convex side several times about 5-6 mm apart, finally tying the suture on the convex side with sufficient tension to straighten the cartilage. First an ex vivo experiment was performed in 10 specimens from 10 different patients. Excess cartilage was sutured and returned to saline for a minimum of 15 min and then assessed for warping compared to cartilage cut in the identical shape also soaked in saline. Then, charts of nine subsequent patients who received the warp control suture on 16 cartilage grafts by the senior author (BG) were retrospectively reviewed. Inclusion of study subjects required at least 6 months of follow-up with standard rhinoplasty photographs. Postoperative complications and evidence of warping were recorded. In the ex vivo experiment, none of the 10 segments demonstrated warping after replacement in saline, whereas all the matching segments demonstrated significant additional warping. Clinically, no postoperative warping was observed in any of the nine patients at least 6 months postoperatively. One case of minor infection was observed in an area away from the graft and treated with antibiotics. No warping or other complications were noted. The warp control suture technique presented here effectively straightens warped cartilage graft and prevents additional warping. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online

  5. Transcriptomic signatures in cartilage ageing

    PubMed Central

    2013-01-01

    Introduction Age is an important factor in the development of osteoarthritis. Microarray studies provide insight into cartilage aging but do not reveal the full transcriptomic phenotype of chondrocytes such as small noncoding RNAs, pseudogenes, and microRNAs. RNA-Seq is a powerful technique for the interrogation of large numbers of transcripts including nonprotein coding RNAs. The aim of the study was to characterise molecular mechanisms associated with age-related changes in gene signatures. Methods RNA for gene expression analysis using RNA-Seq and real-time PCR analysis was isolated from macroscopically normal cartilage of the metacarpophalangeal joints of eight horses; four young donors (4 years old) and four old donors (>15 years old). RNA sequence libraries were prepared following ribosomal RNA depletion and sequencing was undertaken using the Illumina HiSeq 2000 platform. Differentially expressed genes were defined using Benjamini-Hochberg false discovery rate correction with a generalised linear model likelihood ratio test (P < 0.05, expression ratios ± 1.4 log2 fold-change). Ingenuity pathway analysis enabled networks, functional analyses and canonical pathways from differentially expressed genes to be determined. Results In total, the expression of 396 transcribed elements including mRNAs, small noncoding RNAs, pseudogenes, and a single microRNA was significantly different in old compared with young cartilage (± 1.4 log2 fold-change, P < 0.05). Of these, 93 were at higher levels in the older cartilage and 303 were at lower levels in the older cartilage. There was an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage derived from older donors compared with young donors. In addition, there was a reduction in Wnt signalling in ageing cartilage. Conclusion There was an age-related dysregulation of matrix, anabolic and catabolic

  6. Changes in the Chondrocyte and Extracellular Matrix Proteome during Post-natal Mouse Cartilage Development*

    PubMed Central

    Wilson, Richard; Norris, Emma L.; Brachvogel, Bent; Angelucci, Constanza; Zivkovic, Snezana; Gordon, Lavinia; Bernardo, Bianca C.; Stermann, Jacek; Sekiguchi, Kiyotoshi; Gorman, Jeffrey J.; Bateman, John F.

    2012-01-01

    Skeletal growth by endochondral ossification involves tightly coordinated chondrocyte differentiation that creates reserve, proliferating, prehypertrophic, and hypertrophic cartilage zones in the growth plate. Many human skeletal disorders result from mutations in cartilage extracellular matrix (ECM) components that compromise both ECM architecture and chondrocyte function. Understanding normal cartilage development, composition, and structure is therefore vital to unravel these disease mechanisms. To study this intricate process in vivo by proteomics, we analyzed mouse femoral head cartilage at developmental stages enriched in either immature chondrocytes or maturing/hypertrophic chondrocytes (post-natal days 3 and 21, respectively). Using LTQ-Orbitrap tandem mass spectrometry, we identified 703 cartilage proteins. Differentially abundant proteins (q < 0.01) included prototypic markers for both early and late chondrocyte differentiation (epiphycan and collagen X, respectively) and novel ECM and cell adhesion proteins with no previously described roles in cartilage development (tenascin X, vitrin, Urb, emilin-1, and the sushi repeat-containing proteins SRPX and SRPX2). Meta-analysis of cartilage development in vivo and an in vitro chondrocyte culture model (Wilson, R., Diseberg, A. F., Gordon, L., Zivkovic, S., Tatarczuch, L., Mackie, E. J., Gorman, J. J., and Bateman, J. F. (2010) Comprehensive profiling of cartilage extracellular matrix formation and maturation using sequential extraction and label-free quantitative proteomics. Mol. Cell. Proteomics 9, 1296–1313) identified components involved in both systems, such as Urb, and components with specific roles in vivo, including vitrin and CILP-2 (cartilage intermediate layer protein-2). Immunolocalization of Urb, vitrin, and CILP-2 indicated specific roles at different maturation stages. In addition to ECM-related changes, we provide the first biochemical evidence of changing endoplasmic reticulum function during

  7. Patellar cartilage lesions: comparison of magnetic resonance imaging and T2 relaxation-time mapping.

    PubMed

    Hannila, I; Nieminen, M T; Rauvala, E; Tervonen, O; Ojala, R

    2007-05-01

    To evaluate the detection and the size of focal patellar cartilage lesions in T2 mapping as compared to standard clinical magnetic resonance imaging (MRI) at 1.5T. Fifty-five consecutive clinical patients referred to knee MRI were imaged both with a standard knee MRI protocol (proton-density-weighted sagittal and axial series, T2-weighted sagittal and coronal series, and T1-weighted coronal series) and with an axial multislice multi-echo spin-echo measurement to determine the T2 relaxation time of the patellar cartilage. MR images and T2 maps of patellar cartilage were evaluated for focal lesions. The lesions were evaluated for lesion width (mm), lesion depth (1/3, 2/3, or 3/3 of cartilage thickness), and T2 value (20-40 ms, 40-60 ms, or 60-80 ms) based on visual evaluation. Altogether, 36 focal patellar cartilage lesions were detected from 20 human subjects (11 male, nine female, mean age 40+/-15 years). Twenty-eight lesions were detected both on MRI and T2 maps, while eight lesions were only visible on T2 maps. Cartilage lesions were significantly wider (P = 0.001) and thicker (P<0.001) on T2 maps as compared to standard knee MRI. Most lesions 27 had moderately (T2 40-60 ms) increased T2 values, while two lesions had slightly (T2 20-40 ms) and seven lesions remarkably (T2 60-80 ms) increased T2 relaxation times. T2 mapping of articular cartilage is feasible in the clinical setting and may reveal early cartilage lesions not visible with standard clinical MRI.

  8. PLGA-based microcarriers induce mesenchymal stem cell chondrogenesis and stimulate cartilage repair in osteoarthritis.

    PubMed

    Morille, Marie; Toupet, Karine; Montero-Menei, Claudia N; Jorgensen, Christian; Noël, Danièle

    2016-05-01

    In the present study, we aimed at evaluating the ability of novel PLGA-P188-PLGA-based microspheres to induce the differentiation of mesenchymal stem/stromal cells (MSC) into chondrocytes. To this aim, we tested microspheres releasing TGFβ3 (PAM-T) in vitro and in situ, in a pathological osteoarthritic (OA) environment. We first evaluated the chondrogenic differentiation of human MSCs seeded onto PAM-T in vitro and confirmed the up-regulation of chondrogenic markers while the secretome of the cells was not changed by the 3D environment. We then injected human MSC seeded onto PAM-T in the knee joints of mice with collagenase-induced OA. After 6 weeks, histological analysis revealed that formation of a cartilage-like tissue occurred at the vicinity of PAM-T that was not observed when MSCs were seeded onto PAM. We also noticed that the endogenous articular cartilage was less degraded. The extent of cartilage protection was further analysed by confocal laser microscopy. When MSCs seeded onto PAM-T were injected early after OA induction, protection of cartilage against degradation was evidenced and this effect was associated to a higher survival of MSCs in presence of TGFβ3. This study points to the interest of using MSCs seeded onto PAM for cartilage repair and stimulation of endogenous cartilage regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. High glucose-induced excessive reactive oxygen species promote apoptosis through mitochondrial damage in rat cartilage endplate cells.

    PubMed

    Jiang, Zengxin; Lu, Wei; Zeng, Qingmin; Li, Defang; Ding, Lei; Wu, Jingping

    2018-04-16

    Diabetes mellitus (DM) is an important factor in intervertebral disc degeneration (IDD). Apoptosis of cartilage endplate (CEP) cells is one of the initiators of IDD. However, the effects of high glucose on CEP cells are still unknown. Therefore, we conducted the present study to evaluate the effects of high glucose on CEP cells and to identify the mechanisms of those effects. Rat CEP cells were isolated and cultured in 10% foetal bovine serum (FBS, normal control) or high-glucose medium (10% FBS + 0.1 M glucose or 10% FBS + 0.2 M glucose, experimental conditions) for 1 or 3 days. In addition, CEP cells were treated with 0.2 M glucose for 3 days in the presence or absence of alpha-lipoic acid (ALA, 0.15 M). Flow cytometry was performed to identify and quantify the degree of apoptosis. The expression of reactive oxygen species (ROS) was assessed by flow cytometry, and mitochondrial damage (mitochondrial membrane potential) was assessed by fluorescence microscopy. Furthermore, the expression levels of cleaved caspase-3, cleaved caspase-9, Bcl-2, Bax, and cytochrome c were evaluated by Western blotting. High glucose significantly increased apoptosis and ROS accumulation in CEP cells in a dose- and time-dependent manner. Meanwhile, a disrupted mitochondrial membrane potential was detected in rat CEP cells cultured in the two high glucose concentrations. Incubating in high glucose enhanced the expression levels of cleaved caspase-3, cleaved caspase-9, Bax, and cytochrome c but decreased the level of the anti-apoptotic protein Bcl-2. ALA inhibited the expression of cleaved caspase-3, cleaved caspase-9, Bax, and cytochrome c but enhanced the expression of Bcl-2. ALA also prevented disruption of the mitochondrial membrane potential in CEP cells. This study demonstrates that high glucose-induced excessive reactive oxygen species promote mitochondrial damage, thus causing apoptosis in rat CEP cells in a dose- and time-dependent manner. ALA could prevent

  10. A Preclinical Assessment of Early Continuous Passive Motion and Treadmill Therapeutic Exercises for Generating Chondroprotective Effects After Anterior Cruciate Ligament Rupture.

    PubMed

    Chang, Nai-Jen; Lee, Kuan-Wei; Chu, Chih-Jou; Shie, Ming-You; Chou, Pei-Hsi; Lin, Chih-Chan; Liang, Peir-In

    2017-08-01

    Anterior cruciate ligament (ACL) injury is a well-known risk factor for the development of posttraumatic osteoarthritis (PTOA). However, whether using continuous passive motion (CPM) with or without additional treadmill exercise (TRE) in early ACL injury might provide chondroprotective effects and further decrease the risk of PTOA has yet to be determined. CPM may offer an enhanced chondroprotective effect, but TRE may attenuate that effect due to the mechanical stress on the joint and inflammatory cytokines in the joint. Controlled laboratory study. Thirty adult New Zealand White male rabbits were randomly allocated to sedentary (SED), CPM, TRE, or CPM+TRE groups. Each rabbit underwent an ACL transection (ACLT) on the right knee, with the contralateral knee used as an internal control (sham). The 4 joint surfaces (ie, medial and lateral femoral condyles and tibial plateaus) were evaluated 4 weeks after surgery for gross appearance, histological characteristics, and quantitative osteoarthritis (OA) scores. Overall, at the end of testing, the CPM group experienced the best protective therapeutic effects in all compartments. In gross appearance, CPM resulted in normal articular surfaces, while the TRE and SED groups exhibited surface abrasion. Histological analysis showed significant differences in articular cartilage status. The CPM group had significantly better histological OA scores ( P < .01), corresponding to the smoothest cartilage surface and sound chondrocyte and collagen arrangement. This group also showed abundant glycosaminoglycan (GAG) content and a sound growth microenvironment, with significantly lower expression levels of the inflammatory cytokine tumor necrosis factor α and the apoptotic marker caspase 3. In contrast, the TRE and SED groups showed several features of damage: distinct graded cartilage abrasion; damaged collagen fibers, corresponding to noticeable collagen type X (osteoarthritic cartilage); reduced cartilage thickness; fewer

  11. High throughput proteomic analysis of the secretome in an explant model of articular cartilage inflammation

    PubMed Central

    Clutterbuck, Abigail L.; Smith, Julia R.; Allaway, David; Harris, Pat; Liddell, Susan; Mobasheri, Ali

    2011-01-01

    This study employed a targeted high-throughput proteomic approach to identify the major proteins present in the secretome of articular cartilage. Explants from equine metacarpophalangeal joints were incubated alone or with interleukin-1beta (IL-1β, 10 ng/ml), with or without carprofen, a non-steroidal anti-inflammatory drug, for six days. After tryptic digestion of culture medium supernatants, resulting peptides were separated by HPLC and detected in a Bruker amaZon ion trap instrument. The five most abundant peptides in each MS scan were fragmented and the fragmentation patterns compared to mammalian entries in the Swiss-Prot database, using the Mascot search engine. Tryptic peptides originating from aggrecan core protein, cartilage oligomeric matrix protein (COMP), fibronectin, fibromodulin, thrombospondin-1 (TSP-1), clusterin (CLU), cartilage intermediate layer protein-1 (CILP-1), chondroadherin (CHAD) and matrix metalloproteinases MMP-1 and MMP-3 were detected. Quantitative western blotting confirmed the presence of CILP-1, CLU, MMP-1, MMP-3 and TSP-1. Treatment with IL-1β increased MMP-1, MMP-3 and TSP-1 and decreased the CLU precursor but did not affect CILP-1 and CLU levels. Many of the proteins identified have well-established extracellular matrix functions and are involved in early repair/stress responses in cartilage. This high throughput approach may be used to study the changes that occur in the early stages of osteoarthritis. PMID:21354348

  12. Expression of Cannabinoid Receptors in Human Osteoarthritic Cartilage: Implications for Future Therapies.

    PubMed

    Dunn, Sara L; Wilkinson, Jeremy Mark; Crawford, Aileen; Bunning, Rowena A D; Le Maitre, Christine L

    2016-01-01

    Introduction: Cannabinoids have shown to reduce joint damage in animal models of arthritis and reduce matrix metalloproteinase expression in primary human osteoarthritic (OA) chondrocytes. The actions of cannabinoids are mediated by a number of receptors, including cannabinoid receptors 1 and 2 (CB1 and CB2), G-protein-coupled receptors 55 and 18 (GPR55 and GPR18), transient receptor potential vanilloid-1 (TRPV1), and peroxisome proliferator-activated receptors alpha and gamma (PPARα and PPARγ). However, to date very few studies have investigated the expression and localization of these receptors in human chondrocytes, and expression during degeneration, and thus their potential in clinical applications is unknown. Methods: Human articular cartilage from patients with symptomatic OA was graded histologically and the expression and localization of cannabinoid receptors within OA cartilage and underlying bone were determined immunohistochemically. Expression levels across regions of cartilage and changes with degeneration were investigated. Results: Expression of all the cannabinoid receptors investigated was observed with no change with grade of degeneration seen in the expression of CB1, CB2, GPR55, PPARα, and PPARγ. Conversely, the number of chondrocytes within the deep zone of cartilage displaying immunopositivity for GPR18 and TRPV1 was significantly decreased in degenerate cartilage. Receptor expression was higher in chondrocytes than in osteocytes in the underlying bone. Conclusions: Chondrocytes from OA joints were shown to express a wide range of cannabinoid receptors even in degenerate tissues, demonstrating that these cells could respond to cannabinoids. Cannabinoids designed to bind to receptors inhibiting the catabolic and pain pathways within the arthritic joint, while avoiding psychoactive effects, could provide potential arthritis therapies.

  13. Morphogenesis of the second pharyngeal arch cartilage (Reichert's cartilage) in human embryos

    PubMed Central

    Rodríguez-Vázquez, J F; Mérida-Velasco, J R; Verdugo-López, S; Sánchez-Montesinos, I; Mérida-Velasco, J A

    2006-01-01

    This study was performed on 50 human embryos and fetuses between 7 and 17 weeks of development. Reichert's cartilage is formed in the second pharyngeal arch in two segments. The longer cranial or styloid segment is continuous with the otic capsule; its inferior end is angulated and is situated very close to the oropharynx. The smaller caudal segment is in contact with the body and greater horn of the hyoid cartilaginous structure. No cartilage forms between these segments. The persistent angulation of the inferior end of the cranial or styloid segment of Reichert's cartilage and its important neurovascular relationships may help explain the symptomatology of Eagle's syndrome. PMID:16441562

  14. Magnetic resonance imaging of the wrist: bone and cartilage injury.

    PubMed

    Hayter, Catherine L; Gold, Stephanie L; Potter, Hollis G

    2013-05-01

    Magnetic resonance imaging (MRI) is particularly useful for imaging the wrist due to its superior soft tissue contrast and ability to detect subtle bone marrow changes and occult fractures. A high field (1.5T or greater) strength, dedicated wrist coil, and high in-plane and through-plane resolution must be utilized to successfully visualize the relatively thin cartilage of the wrist. MRI can be used to detect occult carpal bone fractures, identify complications following scaphoid fractures, and assess for avascular necrosis in the setting in Kienböck's and Preiser's disease. MRI is useful to identify secondary soft tissue and chondral pathology in impaction/impingement syndromes. The use of an intermediate-echo time fast spin echo sequence allows for accurate assessment of articular cartilage, allowing evaluation of chondral wear in the setting of primary osteoarthritis and posttraumatic degenerative arthrosis. MRI is the most sensitive imaging modality for the detection of early inflammatory arthropathies and can detect synovitis, bone marrow edema, and early erosions in the setting of negative radiographs. Copyright © 2012 Wiley Periodicals, Inc.

  15. Imaging Bone–Cartilage Interactions in Osteoarthritis Using [18F]-NaF PET-MRI

    PubMed Central

    Pedoia, Valentina; Seo, Youngho; Yang, Jaewon; Bucknor, Matt; Franc, Benjamin L.; Majumdar, Sharmila

    2016-01-01

    Purpose: Simultaneous positron emission tomography–magnetic resonance imaging (PET-MRI) is an emerging technology providing both anatomical and functional images without increasing the scan time. Compared to the traditional PET/computed tomography imaging, it also exposes the patient to significantly less radiation and provides better anatomical images as MRI provides superior soft tissue characterization. Using PET-MRI, we aim to study interactions between cartilage composition and bone function simultaneously, in knee osteoarthritis (OA). Procedures: In this article, bone turnover and remodeling was studied using [18F]-sodium fluoride (NaF) PET data. Quantitative MR-derived T1ρ relaxation times characterized the biochemical cartilage degeneration. Sixteen participants with early signs of OA of the knee received intravenous injections of [18F]-NaF at the onset of PET-MR image acquisition. Regions of interest were identified, and kinetic analysis of dynamic PET data provided the rate of uptake (Ki) and the normalized uptake (standardized uptake value) of [18F]-NaF in the bone. Morphological MR images and quantitative voxel-based T1ρ maps of cartilage were obtained using an atlas-based registration technique to segment cartilage automatically. Voxel-by-voxel statistical parameter mapping was used to investigate the relationship between bone and cartilage. Results: Increases in cartilage T1ρ, indicating degenerative changes, were associated with increased turnover in the adjoining bone but reduced turnover in the nonadjoining compartments. Associations between pain and increased bone uptake were seen in the absence of morphological lesions in cartilage, but the relationship was reversed in the presence of incident cartilage lesions. Conclusion: This study shows significant cartilage and bone interactions in OA of the knee joint using simultaneous [18F]-NaF PET-MR, the first in human study. These observations highlight the complex biomechanical and biochemical

  16. Upregulation of lipocalin-2 (LCN2) in osteoarthritic cartilage is not necessary for cartilage destruction in mice.

    PubMed

    Choi, W-S; Chun, J-S

    2017-03-01

    Lipocalin-2 (LCN2) is a recently characterized adipokine that is upregulated in chondrocytes treated with pro-inflammatory mediators and in the synovial fluid of osteoarthritis (OA) patients. Here, we explored the in vivo functions of LCN2 in OA cartilage destruction in mice. The expression levels of LCN2 were determined at the mRNA and protein levels in primary cultured mouse chondrocytes and in human and mouse OA cartilage. Experimental OA was induced in wild-type (WT) or Lcn2-knockout (KO) mice by destabilization of the medial meniscus (DMM) or intra-articular (IA) injection of adenoviruses expressing hypoxia-inducible factor (HIF)-2α (Ad-Epas1), ZIP8 (Ad-Zip8), or LCN2 (Ad-Lcn2). The effect of LCN2 overexpression on the cartilage of WT mice was examined by IA injection of Ad-Lcn2. LCN2 mRNA levels in chondrocytes were markedly increased by the pro-inflammatory cytokines, interleukin (IL)-1β and tumor necrosis factor-α (TNF-α), and by previously identified catabolic regulators of OA, such as HIF-2α and components of the zinc-ZIP8-MTF1 axis. LCN2 protein levels were also markedly increased in human OA cartilage and cartilage from various experimental mouse models of OA. However, overexpression of LCN2 in chondrocytes did not modulate the expression of cartilage matrix molecules or matrix-degrading enzymes. Furthermore, LCN2 overexpression in mouse cartilage via IA injection of Ad-Lcn2 did not cause OA pathogenesis, and Lcn2 KO mice showed no alteration in DMM-induced OA cartilage destruction. Our observations collectively suggest that upregulation of LCN2 in OA cartilage is not sufficient or necessary for OA cartilage destruction in mice. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Smart Polymeric Hydrogels for Cartilage Tissue Engineering: A Review on the Chemistry and Biological Functions.

    PubMed

    Eslahi, Niloofar; Abdorahim, Marjan; Simchi, Abdolreza

    2016-11-14

    Stimuli responsive hydrogels (SRHs) are attractive bioscaffolds for tissue engineering. The structural similarity of SRHs to the extracellular matrix (ECM) of many tissues offers great advantages for a minimally invasive tissue repair. Among various potential applications of SRHs, cartilage regeneration has attracted significant attention. The repair of cartilage damage is challenging in orthopedics owing to its low repair capacity. Recent advances include development of injectable hydrogels to minimize invasive surgery with nanostructured features and rapid stimuli-responsive characteristics. Nanostructured SRHs with more structural similarity to natural ECM up-regulate cell-material interactions for faster tissue repair and more controlled stimuli-response to environmental changes. This review highlights most recent advances in the development of nanostructured or smart hydrogels for cartilage tissue engineering. Different types of stimuli-responsive hydrogels are introduced and their fabrication processes through physicochemical procedures are reported. The applications and characteristics of natural and synthetic polymers used in SRHs are also reviewed with an outline on clinical considerations and challenges.

  18. Diode laser (980nm) cartilage reshaping

    NASA Astrophysics Data System (ADS)

    El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.

    2011-03-01

    Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.

  19. Functional analysis of CTRP3/cartducin in Meckel's cartilage and developing condylar cartilage in the fetal mouse mandible

    PubMed Central

    Yokohama-Tamaki, Tamaki; Maeda, Takashi; Tanaka, Tetsuya S; Shibata, Shunichi

    2011-01-01

    CTRP3/cartducin, a novel C1q family protein, is expressed in proliferating chondrocytes in the growth plate and has an important role in regulating the growth of both chondrogenic precursors and chondrocytes in vitro. We examined the expression of CTRP3/cartducin mRNA in Meckel's cartilage and in condylar cartilage of the fetal mouse mandible. Based on in situ hybridization studies, CTRP3/cartducin mRNA was not expressed in the anlagen of Meckel's cartilage at embryonic day (E)11.5, but it was strongly expressed in Meckel's cartilage at E14.0, and then reduced in the hypertrophic chondrocytes at E16.0. CTRP3/cartducin mRNA was not expressed in the condylar anlagen at E14.0, but was expressed in the upper part of newly formed condylar cartilage at E15.0. At E16.0, CTRP3/cartducin mRNA was expressed from the polymorphic cell zone to the upper part of the hypertrophic cell zone, but was reduced in the lower part of the hypertrophic cell zone. CTRP3/cartducin-antisense oligodeoxynucleotide (AS-ODN) treatment of Meckel's cartilage and condylar anlagen from E14.0 using an organ culture system indicated that, after 4-day culture, CTRP3/cartducin abrogation induced curvature deformation of Meckel's cartilage with loss of the perichondrium and new cartilage formation. Aggrecan, type I collagen, and tenascin-C were simultaneously immunostained in this newly formed cartilage, indicating possible transformation from the perichondrium into cartilage. Further, addition of recombinant mouse CTRP3/cartducin protein to the organ culture medium with AS-ODN tended to reverse the deformation. These results suggest a novel function for CTRP3/cartducin in maintaining the perichondrium. Moreover, AS-ODN induced a deformation of the shape, loss of the perichondrium/fibrous cell zone, and disorder of the distinct architecture of zones in the mandibular condylar cartilage. Additionally, AS-ODN-treated condylar cartilage showed reduced levels of mRNA expression of aggrecan, collagen types I

  20. Potential Role of Rebamipide in Osteoclast Differentiation and Mandibular Condylar Cartilage Homeostasis.

    PubMed

    Izawa, Takashi; Hutami, Islamy Rahma; Tanaka, Eiji

    2018-04-20

    Temporomandibular joint osteoarthritis (TMJ-OA) is a degenerative disease that involves changes in subchondral bone and progressive degradation of cartilage. Currently, rebamipide, a gastroprotective drug, is administered to protect gastric mucosa and accelerate ulcer healing. Recent studies have shown that rebamipide also attenuates cartilage degeneration by suppressing oxidative damage and inducing homeostasis of the extracellular matrix of articular chondrocytes. Regarding the latter, reduced expression of cathepsin K, NFATc1, c-Src, and integrin β3, and increased expression of nuclear factor-kappa B, have been found to be mediated by the transcription factor, receptor activator of nuclear factor kappa-B ligand (RANKL). Treatment with rebamipide was also found to activate, mitogen-activated protein kinases such as p38, ERK, and JNK to reduce osteoclast differentiation. Taken together, these results strongly indicate that rebamipide mediates inhibitory effects on cartilage degradation and osteoclastogenesis in TMJ-OA. Here, we highlight recent evidence regarding the potential for rebamipide to affect osteoclast differentiation and TMJ-OA pathogenesis. We also discuss the potential role of rebamipide to serve as a new strategy for the treatment of TMJ-OA. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping at 3T MRI of the wrist: Feasibility and clinical application.

    PubMed

    Rehnitz, Christoph; Klaan, Bastian; Burkholder, Iris; von Stillfried, Falko; Kauczor, Hans-Ulrich; Weber, Marc-André

    2017-02-01

    To assess the feasibility of delayed gadolinium-enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) and T 2 mapping for biochemical imaging of the wrist at 3T. Seventeen patients with wrist pain (mean age, 41.4 ± 13.1 years) including a subgroup with chondromalacia (n = 11) and 15 healthy volunteers (26.0 ± 2.2 years) underwent dGEMRIC and T 2 mapping at 3T. For dGEMRIC, the optimum time window after contrast-injection (gadopentetate dimeglumine) was defined as the plateau of the T 1 curve of repeated measurements 15-90 minutes postinjection and assessed in all volunteers. Reference values of healthy-appearing cartilage from all individuals and values in areas of chondromalacia were assessed using region-of-interest analyses. Receiver-operating-characteristic analyses were applied to assess discriminatory ability between damaged and normal cartilage. The optimum time window was 45-90 minutes, and the 60-minute timepoint was subsequently used. In chondromalacia, dGEMRIC values were lower (551 ± 84 msec, P < 0.001), and T 2 values higher (63.9 ± 17.7, P = 0.001) compared to healthy-appearing cartilage of the same patient. Areas under the curve did not significantly differ between dGEMRIC (0.91) and T 2 mapping (0.99; P = 0.17). In healthy-appearing cartilage of volunteers and patients, mean dGEMRIC values were 731.3 ± 47.1 msec and 674.6 ± 72.1 msec (P = 0.01), and mean T 2 values were 36.5 ± 5 msec and 41.1 ± 3.2 msec (P = 0.009), respectively. At 3T, dGEMRIC and T 2 mapping are feasible for biochemical cartilage imaging of the wrist. Both techniques allow separation and biochemical assessment of thin opposing cartilage surfaces and can distinguish between healthy and damaged cartilage. 3 J. Magn. Reson. Imaging 2017;45:381-389. © 2016 International Society for Magnetic Resonance in Medicine.

  2. Non-Contact Evaluation for Articular Cartilage Using Ultrasound

    NASA Astrophysics Data System (ADS)

    Mori, Koji; Nakagawa, Yasuaki; Kuroki, Hiroshi; Nakashima, Keisuke; Ikeuchi, Ken; Mine, Takatomo; Nakamura, Takashi; Kawai, Shinya; Saito, Takashi

    In orthopedic field, various new treatments of articular cartilage defect, for example autogenous osteochondral grafts, have been developed. With the spread of these treatments, orthopedists began to focus on the mechanical properties of recovered articular cartilage. The quantitative evaluation of articular cartilage before and after these treatments gives orthopedists the important information to improve these treatments and develop new treatments. We have been investigating the non-contact ultrasonic evaluation for articular cartilage under arthroscopy. In this paper, it was hypothesized that the ultrasonic evaluation depended on the collagen fiber in cartilage. The enzymatically degradation of collagen fiber in cartilage surface was performed. The effect of the degradation on sound velocity, attenuation coefficient and signal intensity, which is the index of cartilage stiffness calculated from the proposed method, was measured. The numerical analysis was performed to clear the relation between the cartilage character and ultrasonic parameters. Experimental and numerical results suggest that the present method can be expanded the sensitive evaluation for cartilage disease in clinical field.

  3. The effects of exercise on human articular cartilage

    PubMed Central

    Eckstein, F; Hudelmaier, M; Putz, R

    2006-01-01

    The effects of exercise on articular hyaline articular cartilage have traditionally been examined in animal models, but until recently little information has been available on human cartilage. Magnetic resonance imaging now permits cartilage morphology and composition to be analysed quantitatively in vivo. This review briefly describes the methodological background of quantitative cartilage imaging and summarizes work on short-term (deformational behaviour) and long-term (functional adaptation) effects of exercise on human articular cartilage. Current findings suggest that human cartilage deforms very little in vivo during physiological activities and recovers from deformation within 90 min after loading. Whereas cartilage deformation appears to become less with increasing age, sex and physical training status do not seem to affect in vivo deformational behaviour. There is now good evidence that cartilage undergoes some type of atrophy (thinning) under reduced loading conditions, such as with postoperative immobilization and paraplegia. However, increased loading (as encountered by elite athletes) does not appear to be associated with increased average cartilage thickness. Findings in twins, however, suggest a strong genetic contribution to cartilage morphology. Potential reasons for the inability of cartilage to adapt to mechanical stimuli include a lack of evolutionary pressure and a decoupling of mechanical competence and tissue mass. PMID:16637874

  4. The effects of exercise on human articular cartilage.

    PubMed

    Eckstein, F; Hudelmaier, M; Putz, R

    2006-04-01

    The effects of exercise on articular hyaline articular cartilage have traditionally been examined in animal models, but until recently little information has been available on human cartilage. Magnetic resonance imaging now permits cartilage morphology and composition to be analysed quantitatively in vivo. This review briefly describes the methodological background of quantitative cartilage imaging and summarizes work on short-term (deformational behaviour) and long-term (functional adaptation) effects of exercise on human articular cartilage. Current findings suggest that human cartilage deforms very little in vivo during physiological activities and recovers from deformation within 90 min after loading. Whereas cartilage deformation appears to become less with increasing age, sex and physical training status do not seem to affect in vivo deformational behaviour. There is now good evidence that cartilage undergoes some type of atrophy (thinning) under reduced loading conditions, such as with postoperative immobilization and paraplegia. However, increased loading (as encountered by elite athletes) does not appear to be associated with increased average cartilage thickness. Findings in twins, however, suggest a strong genetic contribution to cartilage morphology. Potential reasons for the inability of cartilage to adapt to mechanical stimuli include a lack of evolutionary pressure and a decoupling of mechanical competence and tissue mass.

  5. The bovine patella as a model of early osteoarthritis.

    PubMed

    Hargrave-Thomas, E J; Thambyah, A; McGlashan, S R; Broom, N D

    2013-12-01

    The bovine patella model has been used extensively for studying important structure-function aspects of articular cartilage, including its degeneration. However, the degeneration seen in this model has, to our knowledge, never been adequately compared with human osteoarthritis (OA). In this study, bovine patellae displaying normal to severely degenerate states were compared with human tissue displaying intact cartilage to severe OA. Comparisons of normal and OA features were made with histological scoring, morphometric measurements, and qualitative observations. Differential interference contrast microscopy was used to image early OA changes in the articular cartilage matrix and to investigate whether this method provided comparable quality of visualisation of key structural features with standard histology. The intact bovine cartilage was found to be similar to healthy human cartilage and the degenerate bovine cartilage resembled the human OA tissues with regard to structural disruption, cellularity changes, and staining loss. The extent of degeneration in the bovine tissues matched the mild to moderate range of human OA tissues; however, no bovine samples exhibited late-stage OA. Additionally, in both bovine and human tissues, cartilage degeneration was accompanied by calcified cartilage thickening, tidemark duplication, and the advancement of the cement line by protrusions of bony spicules into the calcified cartilage. This comparison of degeneration in the bovine and human tissues suggests a common pathway for the progression of OA and thus the bovine patella is proposed to be an appropriate model for investigating the structural changes associated with early OA. © 2013 Anatomical Society.

  6. The bovine patella as a model of early osteoarthritis

    PubMed Central

    Hargrave-Thomas, E J; Thambyah, A; McGlashan, S R; Broom, N D

    2013-01-01

    The bovine patella model has been used extensively for studying important structure–function aspects of articular cartilage, including its degeneration. However, the degeneration seen in this model has, to our knowledge, never been adequately compared with human osteoarthritis (OA). In this study, bovine patellae displaying normal to severely degenerate states were compared with human tissue displaying intact cartilage to severe OA. Comparisons of normal and OA features were made with histological scoring, morphometric measurements, and qualitative observations. Differential interference contrast microscopy was used to image early OA changes in the articular cartilage matrix and to investigate whether this method provided comparable quality of visualisation of key structural features with standard histology. The intact bovine cartilage was found to be similar to healthy human cartilage and the degenerate bovine cartilage resembled the human OA tissues with regard to structural disruption, cellularity changes, and staining loss. The extent of degeneration in the bovine tissues matched the mild to moderate range of human OA tissues; however, no bovine samples exhibited late-stage OA. Additionally, in both bovine and human tissues, cartilage degeneration was accompanied by calcified cartilage thickening, tidemark duplication, and the advancement of the cement line by protrusions of bony spicules into the calcified cartilage. This comparison of degeneration in the bovine and human tissues suggests a common pathway for the progression of OA and thus the bovine patella is proposed to be an appropriate model for investigating the structural changes associated with early OA. PMID:24111904

  7. Investigation of Migration and Differentiation of Human Mesenchymal Stem Cells on Five-Layered Collagenous Electrospun Scaffold Mimicking Native Cartilage Structure.

    PubMed

    Reboredo, Jenny W; Weigel, Tobias; Steinert, Andre; Rackwitz, Lars; Rudert, Maximilian; Walles, Heike

    2016-09-01

    Cartilage degeneration is the major cause of chronic pain, lost mobility, and reduced quality of life for over estimated 150 million osteoarthritis sufferers worldwide. Despite intensive research, none of the available therapies can restore the hyaline cartilage surface beyond just fibrous repair. To overcome these limitations, numerous cell-based approaches for cartilage repair are being explored that aim to provide an appropriate microenvironment for chondrocyte maintenance and differentiation of multipotent mesenchymal stem cells (MSCs) toward the chondrogenic lineage. Articular cartilage is composed of highly organized collagen network that entails the tissue into four distinct zones and each zone into three different regions based on differences in matrix morphology and biochemistry. Current cartilage implants cannot establish the hierarchical tissue organization that seems critical for normal cartilage function. Therefore, in this study, a structured, multilayered collagen scaffold designed for the replacement of damaged cartilage is presented that allows repopulation by host cells and synthesis of a new natural matrix. By using the electrospinning method, the potential to engineer a scaffold consisting of two different collagen types is obtained. With the developed collagen scaffold, a five-layered biomaterial is created that has the potency to induce the differentiation of human bone marrow derived MSCs toward the chondrogenic lineage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Remnant Woven Bone and Calcified Cartilage in Mouse Bone: Differences between Ages/Sex and Effects on Bone Strength

    PubMed Central

    Ip, Victoria; Toth, Zacharie; Chibnall, John; McBride-Gagyi, Sarah

    2016-01-01

    Introduction Mouse models are used frequently to study effects of bone diseases and genetic determinates of bone strength. Murine bones have an intracortical band of woven bone that is not present in human bones. This band is not obvious under brightfield imaging and not typically analyzed. Due to the band’s morphology and location it has been theorized to be remnant bone from early in life. Furthermore, lamellar and woven bone are well known to have differing mechanical strengths. The purpose of this study was to determine (i) if the band is from early life and (ii) if the woven bone or calcified cartilage contained within the band affect whole bone strength. Woven Bone Origin Studies In twelve to fourteen week old mice, doxycycline was used to label bone formed prior to 3 weeks old. Doxycycline labeling and woven bone patterns on contralateral femora matched well and encompassed an almost identical cross-sectional area. Also, we highlight for the first time in mice the presence of calcified cartilage exclusively within the band. However, calcified cartilage could not be identified on high resolution cone-beam microCT scans when examined visually or by thresholding methods. Mechanical Strength Studies Subsequently, three-point bending was used to analyze the effects of woven bone and calcified cartilage on whole bone mechanics in a cohort of male and female six and 13 week old Balb/C mice. Three-point bending outcomes were correlated with structural and compositional measures using multivariate linear regression. Woven bone composed a higher percent of young bones than older bones. However, calcified cartilage in older bones was twice that of younger bones, which was similar when normalized by area. Area and/or tissue mineral density accounted for >75% of variation for most strength outcomes. Percent calcified cartilage added significant predictive power to maximal force and bending stress. Calcified cartilage and woven bone could have more influence in genetic

  9. Transfection of the IHH gene into rabbit BMSCs in a simulated microgravity environment promotes chondrogenic differentiation and inhibits cartilage aging.

    PubMed

    Liu, Peng-Cheng; Liu, Kuan; Liu, Jun-Feng; Xia, Kuo; Chen, Li-Yang; Wu, Xing

    2016-09-27

    The effect of overexpressing the Indian hedgehog (IHH) gene on the chondrogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (BMSCs) was investigated in a simulated microgravity environment. An adenovirus plasmid encoding the rabbit IHH gene was constructed in vitro and transfected into rabbit BMSCs. Two large groups were used: conventional cell culture and induction model group and simulated microgravity environment group. Each large group was further divided into blank control group, GFP transfection group, and IHH transfection group. During differentiation induction, the expression levels of cartilage-related and cartilage hypertrophy-related genes and proteins in each group were determined. In the conventional model, the IHH transfection group expressed high levels of cartilage-related factors (Coll2 and ANCN) at the early stage of differentiation induction and expressed high levels of cartilage hypertrophy-related factors (Coll10, annexin 5, and ALP) at the late stage. Under the simulated microgravity environment, the IHH transfection group expressed high levels of cartilage-related factors and low levels of cartilage hypertrophy-related factors at all stages of differentiation induction. Under the simulated microgravity environment, transfection of the IHH gene into BMSCs effectively promoted the generation of cartilage and inhibited cartilage aging and osteogenesis. Therefore, this technique is suitable for cartilage tissue engineering.

  10. Acute and Stress-related Injuries of Bone and Cartilage: Pertinent Anatomy, Basic Biomechanics, and Imaging Perspective

    PubMed Central

    Chung, Christine B.; Resnick, Donald L.

    2016-01-01

    Bone or cartilage, or both, are frequently injured related to either a single episode of trauma or repetitive overuse. The resulting structural damage is varied, governed by the complex macroscopic and microscopic composition of these tissues. Furthermore, the biomechanical properties of both cartilage and bone are not uniform, influenced by the precise age and activity level of the person and the specific anatomic location within the skeleton. Of the various histologic components that are found in cartilage and bone, the collagen fibers and bundles are most influential in transmitting the forces that are applied to them, explaining in large part the location and direction of the resulting internal stresses that develop within these tissues. Therefore, thorough knowledge of the anatomy, physiology, and biomechanics of normal bone and cartilage serves as a prerequisite to a full understanding of both the manner in which these tissues adapt to physiologic stresses and the patterns of tissue failure that develop under abnormal conditions. Such knowledge forms the basis for more accurate assessment of the diverse imaging features that are encountered following acute traumatic and stress-related injuries to the skeleton. © RSNA, 2016 PMID:27322971

  11. Thickness Distribution of Glenohumeral Joint Cartilage.

    PubMed

    Schleich, Christoph; Bittersohl, Bernd; Antoch, Gerald; Krauspe, Rüdiger; Zilkens, Christoph; Kircher, Jörn

    2017-04-01

    High-resolution 3-dimensional cartilage-specific magnetic resonance imaging (MRI) was performed at 3 T to test the following hypotheses: (1) there is a nonuniform cartilage thickness distribution both on the proximal humerus and on the glenoid surface and (2) the glenohumeral joint as a combined system is congruent with the level of the joint cartilage surface without substantial radial mismatch. Inclusion of 38 volunteers (19 females, mean age 24.34 ± 2.22 years; range 21-29 years) in a prospective study. Measurements of: cartilage thickness in 3 regions and 3 zones; radius of both circles (glenoid and humeral cartilage) for congruency calculation using 3-T MRI with 3-dimensional dual-echo steady-state sequence with water excitation. A homogenous mean cartilage thickness (1.2-1.5 mm) and slightly higher values for the glenoidal articulating surface radii both in the mid-paracoronar section (2.4 vs. 2.1 cm, P < 0.001) and in the mid-paraaxial section (2.4 vs. 2.1 cm, P < 0.001) compared with the humeral side were observed. The concept of a radial mismatch between the humeral head and the glenoid in healthy human subjects can be confirmed. This study provides normative data for the comparison of joint cartilage changes at the shoulder for future studies.

  12. Polymer Formulations for Cartilage Repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutowska, Anna; Jasionowski, Marek; Morris, J. E.

    2001-05-15

    Regeneration of destroyed articular cartilage can be induced by transplantation of cartilage cells into a defect. The best results are obtained with the use of autologus cells. However, obtaining large amounts of autologus cartilage cells causes a problem of creating a large cartilage defect in a donor site. Techniques are currently being developed to harvest a small number of cells and propagate them in vitro. It is a challenging task, however, due to the fact that ordinarily, in a cell culture on flat surfaces, chondrocytes do not maintain their in vivo phenotype and irreversibly diminish or cease the synthesis ofmore » aggregating proteoglycans. Therefore, the research is continuing to develop culture conditions for chondrocytes with the preserved phenotype.« less

  13. Topographical Variation of Human Femoral Articular Cartilage Thickness, T1rho and T2 Relaxation Times Is Related to Local Loading during Walking.

    PubMed

    Van Rossom, Sam; Wesseling, Mariska; Van Assche, Dieter; Jonkers, Ilse

    2018-01-01

    Objective Early detection of degenerative changes in the cartilage matrix composition is essential for evaluating early interventions that slow down osteoarthritis (OA) initiation. T1rho and T2 relaxation times were found to be effective for detecting early changes in proteoglycan and collagen content. To use these magnetic resonance imaging (MRI) methods, it is important to document the topographical variation in cartilage thickness, T1rho and T2 relaxation times in a healthy population. As OA is partially mechanically driven, the relation between these MRI-based parameters and localized mechanical loading during walking was investigated. Design MR images were acquired in 14 healthy adults and cartilage thickness and T1rho and T2 relaxation times were determined. Experimental gait data was collected and processed using musculoskeletal modeling to identify weight-bearing zones and estimate the contact force impulse during gait. Variation of the cartilage properties (i.e., thickness, T1rho, and T2) over the femoral cartilage was analyzed and compared between the weight-bearing and non-weight-bearing zone of the medial and lateral condyle as well as the trochlea. Results Medial condyle cartilage thickness was correlated to the contact force impulse ( r = 0.78). Lower T1rho, indicating increased proteoglycan content, was found in the medial weight-bearing zone. T2 was higher in all weight-bearing zones compared with the non-weight-bearing zones, indicating lower relative collagen content. Conclusions The current results suggest that medial condyle cartilage is adapted as a long-term protective response to localized loading during a frequently performed task and that the weight-bearing zone of the medial condyle has superior weight bearing capacities compared with the non-weight-bearing zones.

  14. Development of a Spring-Loaded Impact Device to Deliver Injurious Mechanical Impacts to the Articular Cartilage Surface

    PubMed Central

    Alexander, Peter G.; Song, Yingjie; Taboas, Juan M.; Chen, Faye H.; Melvin, Gary M.; Manner, Paul A.

    2013-01-01

    Objective: Traumatic impacts on the articular joint surface in vitro are known to lead to degeneration of the cartilage. The main objective of this study was to develop a spring-loaded impact device that can be used to deliver traumatic impacts of consistent magnitude and rate and to find whether impacts cause catabolic activities in articular cartilage consistent with other previously reported impact models and correlated with the development of osteoarthritic lesions. In developing the spring-loaded impactor, the operating hypothesis is that a single supraphysiologic impact to articular cartilage in vitro can affect cartilage integrity, cell viability, sulfated glycosaminoglycan and inflammatory mediator release in a dose-dependent manner. Design: Impacts of increasing force are delivered to adult bovine articular cartilage explants in confined compression. Impact parameters are correlated with tissue damage, cell viability, matrix and inflammatory mediator release, and gene expression 24 hours postimpact. Results: Nitric oxide release is first detected after 7.7 MPa impacts, whereas cell death, glycosaminoglycan release, and prostaglandin E2 release are first detected at 17 MPa. Catabolic markers increase linearly to maximal levels after ≥36 MPa impacts. Conclusions: A single supraphysiologic impact negatively affects cartilage integrity, cell viability, and GAG release in a dose-dependent manner. Our findings showed that 7 to 17 MPa impacts can induce cell death and catabolism without compromising the articular surface, whereas a 17 MPa impact is sufficient to induce increases in most common catabolic markers of osteoarthritic degeneration. PMID:26069650

  15. Composite poly(l-lactic-acid)/silk fibroin scaffold prepared by electrospinning promotes chondrogenesis for cartilage tissue engineering.

    PubMed

    Li, Zhengqiang; Liu, Peng; Yang, Ting; Sun, Ying; You, Qi; Li, Jiale; Wang, Zilin; Han, Bing

    2016-05-01

    Nanofibrous materials produced by electrospinning have attracted considerable attention from researchers in regenerative medicine. A combination of nanofibrous scaffold and chondrocytes is considered promising for repair of cartilage defect or damage. In the present study, we fabricated a poly(l-lactic-acid) (PLLA)/silk fibroin (SF) nanofibrous scaffold by electrospinning and evaluated its chondrogenic potential. The PLLA/SF nanofibers were characterized for diameter, surface wettability, swelling ratio, and tensile strength. Throughin vitroexperiments, PLLA/SF scaffold-chondrocyte interactions were investigated relative to the unmodified PLLA scaffold with regard to cellular adhesion, spreading, and proliferation by scanning electron microscopy and confocal laser scanning microscopy, and through analyses of DNA, sulfated glycosaminoglycan, and collagen. In addition, hematoxylin-eosin and Alcian blue-nuclear fast red staining were used to observe growth of chondrocytes, and secretion and distribution of cartilage-specific extracellular matrices in the scaffolds. Expressions of cartilage-related genes (collagen II, aggrecan, sox9, collagen I, and collagen X) were detected by real-time quantitative PCR. The PLLA/SF scaffold had better hydrophilicity, and could support chondrocytes adhesion and spreading more effectively than the unmodified PLLA scaffold. Chondrocytes secreted more cartilage-specific extracellular matrices and maintained their phenotype on the PLLA/SF scaffold. So it is concluded that the PLLA/SF scaffold is more conducive toin vitroformation of cartilage-like new tissues than the unmodified PLLA scaffold, and may be a promising material in cartilage tissue engineering. © The Author(s) 2016.

  16. Characterization of Articular Cartilage Recovery and Its Correlation with Optical Response in the Near-Infrared Spectral Range.

    PubMed

    Afara, Isaac Oluwaseun; Singh, Sanjleena; Moody, Hayley; Zhang, Lihai; Oloyede, Adekunle

    2017-07-01

    In this study, we examine the capacity of a new parameter, based on the recovery response of articular cartilage, to distinguish between healthy and damaged tissues. We also investigate whether or not this new parameter correlates with the near-infrared (NIR) optical response of articular cartilage. Normal and artificially degenerated (proteoglycan-depleted) bovine cartilage samples were nondestructively probed using NIR spectroscopy. Subsequently they were subjected to a load and unloading protocol, and the recovery response was logged during unloading. The recovery parameter, elastic rebound ( E R ), is based on the strain energy released as the samples underwent instantaneous elastic recovery. Our results reveal positive relationship between the rebound parameter and cartilage proteoglycan content (normal samples: 2.20 ± 0.10 N mm; proteoglycan-depleted samples: 0.50 ± 0.04 N mm for 1 hour of enzymatic treatment and 0.13 ± 0.02 N mm for 4 hours of enzymatic treatment). In addition, multivariate analysis using partial least squares regression was employed to investigate the relationship between E R and NIR spectral data. The results reveal significantly high correlation ( R 2 cal = 98.35% and R 2 val = 79.87%; P < 0.0001), with relatively low error (14%), between the recovery and optical response of cartilage in the combined NIR regions 5,450 to 6,100 cm -1 and 7,500 to 12,500 cm -1 . We conclude that E R can indicate the mechanical condition and state of health of articular cartilage. The correlation of E R with cartilage optical response in the NIR range could facilitate real-time evaluation of the tissue's integrity during arthroscopic surgery and could also provide an important tool for cartilage assessment in tissue engineering and regeneration research.

  17. Laser surface modification of decellularized extracellular cartilage matrix for cartilage tissue engineering.

    PubMed

    Goldberg-Bockhorn, Eva; Schwarz, Silke; Subedi, Rachana; Elsässer, Alexander; Riepl, Ricarda; Walther, Paul; Körber, Ludwig; Breiter, Roman; Stock, Karl; Rotter, Nicole

    2018-02-01

    The implantation of autologous cartilage as the gold standard operative procedure for the reconstruction of cartilage defects in the head and neck region unfortunately implicates a variety of negative effects at the donor site. Tissue-engineered cartilage appears to be a promising alternative. However, due to the complex requirements, the optimal material is yet to be determined. As demonstrated previously, decellularized porcine cartilage (DECM) might be a good option to engineer vital cartilage. As the dense structure of DECM limits cellular infiltration, we investigated surface modifications of the scaffolds by carbon dioxide (CO 2 ) and Er:YAG laser application to facilitate the migration of chondrocytes inside the scaffold. After laser treatment, the scaffolds were seeded with human nasal septal chondrocytes and analyzed with respect to cell migration and formation of new extracellular matrix proteins. Histology, immunohistochemistry, SEM, and TEM examination revealed an increase of the scaffolds' surface area with proliferation of cell numbers on the scaffolds for both laser types. The lack of cytotoxic effects was demonstrated by standard cytotoxicity testing. However, a thermal denaturation area seemed to hinder the migration of the chondrocytes inside the scaffolds, even more so after CO 2 laser treatment. Therefore, the Er:YAG laser seemed to be better suitable. Further modifications of the laser adjustments or the use of alternative laser systems might be advantageous for surface enlargement and to facilitate migration of chondrocytes into the scaffold in one step.

  18. Glucosamine Hydrochloride but Not Chondroitin Sulfate Prevents Cartilage Degradation and Inflammation Induced by Interleukin-1α in Bovine Cartilage Explants

    PubMed Central

    Bascoul-Colombo, Cécile; Garaiova, Iveta; Plummer, Sue F.; Harwood, John L.; Caterson, Bruce; Hughes, Clare E

    2016-01-01

    Objective Glucosamine hydrochloride (GH) and chondroitin sulfate (CS) are commonly used for the treatment of osteoarthritis (OA). The aim of this study was to assess their effects, alone and in combination, on preventing aggrecan degradation and inflammation in an in vitro model of OA. Design To test the effects of GH and/or CS as a preventative treatment, cartilage explants were pretreated with the compound(s) using concentrations that showed no detrimental effect on chondrocyte viability. Interleukin-1α (IL-1α) was added to induce cartilage degradation, supernatant and explants were analyzed for proteoglycan degradation products, aggrecanase mRNA expression and activity, and for the release of inflammatory markers. Results Following treatment with IL-1α, 2 mg/mL dose of GH pretreatment was associated with a reduction of glycosaminoglycan release, reduced generation of the pathological interglobular domain aggrecan catabolites, decreased mRNA levels of ADAMTS-4 and -5 and reduced activity of ADAMTS-4. In contrast, CS alone did not have a significant effect on IL-1α-induced cartilage degradation and the addition of 0.4 mg/mL CS to 2 mg/mL GH did not further inhibit IL-1α-induced activity. Pretreatment with 2 mg/mL GH also reduced the release of inflammatory markers, prostaglandin E2 and nitric oxide induced by IL-1α while CS did not have a significant effect. Conclusions The results suggest that GH prevents cartilage degradation mediated by aggrecanases ADAMTS-4 and -5, and may also reduce inflammation. This could be part of the mechanisms by which GH is effective in maintaining joint integrity and function, and preventing or delaying early symptoms of OA. PMID:26958319

  19. Cartilage proteoglycans inhibit fibronectin-mediated adhesion

    NASA Astrophysics Data System (ADS)

    Rich, A. M.; Pearlstein, E.; Weissmann, G.; Hoffstein, S. T.

    1981-09-01

    Normal tissues and organs show, on histological examination, a pattern of cellular and acellular zones that is characteristic and unique for each organ or tissue. This pattern is maintained in health but is sometimes destroyed by disease. For example, in mobile joints, the articular surfaces consist of relatively acellular hyaline cartilage, and the joint space is enclosed by a capsule of loose connective tissue with a lining of fibroblasts and macrophages. In the normal joint these cells are confined to the synovial lining and the articular surface remains acellular. In in vitro culture, macrophages and their precursor monocytes are very adhesive, and fibroblasts can migrate and overgrow surfaces such as collagen or plastic used for tissue culture. The fibroblasts adhere to collagen by means of fibronectin, which they synthesize and secrete1. Because the collagen of cartilage is capable of binding serum fibronectin2 and fibronectin is present in cartilage during its development3, these cells should, in theory, slowly migrate from the synovial lining to the articular surface. It is their absence from the articular cartilage in normal circumstances, and then presence in such pathological states as rheumatoid arthritis, that is striking. We therefore set out to determine whether a component of cartilage could prevent fibroblast adherence in a defined adhesion assay. As normal cartilage is composed of 50% proteoglycans and 50% collagen by dry weight4, we tested the possibility that the proteoglycans in cartilage inhibit fibroblast adhesion to collagen. We present here evidence that fibroblast spreading and adhesion to collagenous substrates is inhibited by cartilage proteoglycans.

  20. Cartilage.

    ERIC Educational Resources Information Center

    Caplan, Arnold I.

    1984-01-01

    Cartilage is a fundamental biological material that helps to shape the body and then helps to support it. Its fundamental properties of strength and resilience are explained in terms of the tissue's molecular structure. (JN)

  1. Computational model for the analysis of cartilage and cartilage tissue constructs

    PubMed Central

    Smith, David W.; Gardiner, Bruce S.; Davidson, John B.; Grodzinsky, Alan J.

    2013-01-01

    We propose a new non-linear poroelastic model that is suited to the analysis of soft tissues. In this paper the model is tailored to the analysis of cartilage and the engineering design of cartilage constructs. The proposed continuum formulation of the governing equations enables the strain of the individual material components within the extracellular matrix (ECM) to be followed over time, as the individual material components are synthesized, assembled and incorporated within the ECM or lost through passive transport or degradation. The material component analysis developed here naturally captures the effect of time-dependent changes of ECM composition on the deformation and internal stress states of the ECM. For example, it is shown that increased synthesis of aggrecan by chondrocytes embedded within a decellularized cartilage matrix initially devoid of aggrecan results in osmotic expansion of the newly synthesized proteoglycan matrix and tension within the structural collagen network. Specifically, we predict that the collagen network experiences a tensile strain, with a maximum of ~2% at the fixed base of the cartilage. The analysis of an example problem demonstrates the temporal and spatial evolution of the stresses and strains in each component of a self-equilibrating composite tissue construct, and the role played by the flux of water through the tissue. PMID:23784936

  2. Evaluation of the Quality, Accuracy, and Readability of Online Patient Resources for the Management of Articular Cartilage Defects.

    PubMed

    Wang, Dean; Jayakar, Rohit G; Leong, Natalie L; Leathers, Michael P; Williams, Riley J; Jones, Kristofer J

    2017-04-01

    Objective Patients commonly use the Internet to obtain their health-related information. The purpose of this study was to investigate the quality, accuracy, and readability of online patient resources for the management of articular cartilage defects. Design Three search terms ("cartilage defect," "cartilage damage," "cartilage injury") were entered into 3 Internet search engines (Google, Bing, Yahoo). The first 25 websites from each search were collected and reviewed. The quality and accuracy of online information were independently evaluated by 3 reviewers using predetermined scoring criteria. The readability was evaluated using the Flesch-Kincaid (FK) grade score. Results Fifty-three unique websites were evaluated. Quality ratings were significantly higher in websites with a FK score >11 compared to those with a score of ≤11 ( P = 0.021). Only 10 websites (19%) differentiated between focal cartilage defects and diffuse osteoarthritis. Of these, 7 (70%) were elicited using the search term "cartilage defect" ( P = 0.038). The average accuracy of the websites was high (11.7 out of maximum 12), and the average FK grade level (13.4) was several grades higher than the recommended level for readable patient education material (eighth grade level). Conclusions The quality and readability of online patient resources for articular cartilage defects favor those with a higher level of education. Additionally, the majority of these websites do not distinguish between focal chondral defects and diffuse osteoarthritis, which can fail to provide appropriate patient education and guidance for available treatment. Clinicians should help guide patients toward high-quality, accurate, and readable online patient education material.

  3. Method and apparatus for cartilage reshaping by radiofrequency heating

    DOEpatents

    Wong, Brian J.; Milner, Thomas E.; Sobol, Emil N.; Keefe, Michael W.

    2003-07-08

    A method and apparatus for reshaping cartilage using radiofrequency heating. The cartilage temperature is raised sufficiently for stress relaxation to occur in the cartilage, but low enough so that significant denaturation of the cartilage does not occur. The RF electrodes may be designed to also function as molds, preses, clamps, or mandrills to deform the cartilage tissue. Changes in various properties of the cartilage associated with stress relaxation in the cartilage may be measured in order to provide the control signal to provide effective reshaping without denaturation.

  4. Multiparametric MRI Assessment of Human Articular Cartilage Degeneration: Correlation with Quantitative Histology and Mechanical Properties

    PubMed Central

    Rautiainen, Jari; Nissi, Mikko J.; Salo, Elli-Noora; Tiitu, Virpi; Finnilä, Mikko A.J.; Aho, Olli-Matti; Saarakkala, Simo; Lehenkari, Petri; Ellermann, Jutta; Nieminen, Miika T.

    2014-01-01

    Purpose To evaluate the sensitivity of quantitative MRI techniques (T1, T1,Gd, T2, continous wave (CW) T1ρ dispersion, adiabatic T1ρ, adiabatic T2ρ, RAFF and inversion-prepared magnetization transfer (MT)) for assessment of human articular cartilage with varying degrees of natural degeneration. Methods Osteochondral samples (n = 14) were obtained from the tibial plateaus of patients undergoing total knee replacement. MRI of the specimens was performed at 9.4 T and the relaxation time maps were evaluated in the cartilage zones. For reference, quantitative histology, OARSI grading and biomechanical measurements were performed and correlated with MRI findings. Results All MRI parameters, except T1,Gd, showed statistically significant differences in tangential and full-thickness ROIs between early and advanced osteoarthritis (OA) groups, as classified by OARSI grading. CW-T1ρ showed significant dispersion in all ROIs and featured classical laminar structure of cartilage with spin-lock powers below 1000 Hz. Adiabatic T1ρ, T2ρ, CW-T1ρ, MT and RAFF correlated strongly with OARSI grade and biomechanical parameters. Conclusion MRI parameters were able to differentiate between early and advanced OA. Furthermore, rotating frame methods, namely adiabatic T1ρ, adiabatic T2ρ, CW-T1ρ and RAFF, as well as MT experiment correlated strongly with biomechanical parameters and OARSI grade, suggesting high sensitivity of the parameters for cartilage degeneration. PMID:25104181

  5. Hyaline cartilage degenerates after autologous osteochondral transplantation.

    PubMed

    Tibesku, C O; Szuwart, T; Kleffner, T O; Schlegel, P M; Jahn, U R; Van Aken, H; Fuchs, S

    2004-11-01

    Autologous osteochondral grafting is a well-established clinical procedure to treat focal cartilage defects in patients, although basic research on this topic remains sparse. The aim of the current study was to evaluate (1) histological changes of transplanted hyaline cartilage of osteochondral grafts and (2) the tissue that connects the transplanted cartilage with the adjacent cartilage in a sheep model. Both knee joints of four sheep were opened surgically and osteochondral grafts were harvested and simultaneously transplanted to the contralateral femoral condyle. The animals were sacrificed after three months and the received knee joints were evaluated histologically. Histological evaluation showed a complete ingrowth of the osseous part of the osteochondral grafts. A healing or ingrowth at the level of the cartilage could not be observed. Histological evaluation of the transplanted grafts according to Mankin revealed significantly more and more severe signs of degeneration than the adjacent cartilage, such as cloning of chondrocytes and irregularities of the articular surface. We found no connecting tissue between the transplanted and the adjacent cartilage and histological signs of degeneration of the transplanted hyaline cartilage. In the light of these findings, long-term results of autologous osteochondral grafts in human beings have to be followed critically.

  6. Thickness Distribution of Glenohumeral Joint Cartilage

    PubMed Central

    Schleich, Christoph; Bittersohl, Bernd; Antoch, Gerald; Krauspe, Rüdiger; Zilkens, Christoph; Kircher, Jörn

    2016-01-01

    High-resolution 3-dimensional cartilage-specific magnetic resonance imaging (MRI) was performed at 3 T to test the following hypotheses: (1) there is a nonuniform cartilage thickness distribution both on the proximal humerus and on the glenoid surface and (2) the glenohumeral joint as a combined system is congruent with the level of the joint cartilage surface without substantial radial mismatch. Inclusion of 38 volunteers (19 females, mean age 24.34 ± 2.22 years; range 21-29 years) in a prospective study. Measurements of: cartilage thickness in 3 regions and 3 zones; radius of both circles (glenoid and humeral cartilage) for congruency calculation using 3-T MRI with 3-dimensional dual-echo steady-state sequence with water excitation. A homogenous mean cartilage thickness (1.2-1.5 mm) and slightly higher values for the glenoidal articulating surface radii both in the mid-paracoronar section (2.4 vs. 2.1 cm, P < 0.001) and in the mid-paraaxial section (2.4 vs. 2.1 cm, P < 0.001) compared with the humeral side were observed. The concept of a radial mismatch between the humeral head and the glenoid in healthy human subjects can be confirmed. This study provides normative data for the comparison of joint cartilage changes at the shoulder for future studies. PMID:28345405

  7. MRI of articular cartilage at microscopic resolution

    PubMed Central

    Xia, Y.

    2013-01-01

    This review briefly summarises some of the definitive studies of articular cartilage by microscopic MRI (µMRI) that were conducted with the highest spatial resolutions. The article has four major sections. The first section introduces the cartilage tissue, MRI and µMRI, and the concept of image contrast in MRI. The second section describes the characteristic profiles of three relaxation times (T1, T2 and T1ρ) and self-diffusion in healthy articular cartilage. The third section discusses several factors that can influence the visualisation of articular cartilage and the detection of cartilage lesion by MRI and µMRI. These factors include image resolution, image analysis strategies, visualisation of the total tissue, topographical variations of the tissue properties, surface fibril ambiguity, deformation of the articular cartilage, and cartilage lesion. The final section justifies the values of multidisciplinary imaging that correlates MRI with other technical modalities, such as optical imaging. Rather than an exhaustive review to capture all activities in the literature, the studies cited in this review are merely illustrative. PMID:23610697

  8. 3D Human cartilage surface characterization by optical coherence tomography.

    PubMed

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven

    2015-10-07

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman's rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D surface

  9. 3D Human cartilage surface characterization by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven

    2015-10-01

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman’s rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D

  10. Peptide-Based Materials for Cartilage Tissue Regeneration.

    PubMed

    Hastar, Nurcan; Arslan, Elif; Guler, Mustafa O; Tekinay, Ayse B

    2017-01-01

    Cartilaginous tissue requires structural and metabolic support after traumatic or chronic injuries because of its limited capacity for regeneration. However, current techniques for cartilage regeneration are either invasive or ineffective for long-term repair. Developing alternative approaches to regenerate cartilage tissue is needed. Therefore, versatile scaffolds formed by biomaterials are promising tools for cartilage regeneration. Bioactive scaffolds further enhance the utility in a broad range of applications including the treatment of major cartilage defects. This chapter provides an overview of cartilage tissue, tissue defects, and the methods used for regeneration, with emphasis on peptide scaffold materials that can be used to supplement or replace current medical treatment options.

  11. Permanence of diced cartilage, bone dust and diced cartilage/bone dust mixture in experimental design in twelve weeks.

    PubMed

    Islamoglu, Kemal; Dikici, Mustafa Bahadir; Ozgentas, Halil Ege

    2006-09-01

    Bone dust and diced cartilage are used for contour restoration because their minimal donor site morbidity. The purpose of this study is to investigate permanence of bone dust, diced cartilage and bone dust/diced cartilage mixture in rabbits over 12 weeks. New Zealand white rabbits were used for this study. There were three groups in the study: Group I: 1 mL bone dust. Group II: 1 mL diced cartilage. Group III: 0.5 mL bone dust + 0.5 mL diced cartilage mixture. They were placed into subcutaneous tissue of rabbits and removed 12 weeks later. The mean volumes of groups were 0.23 +/- 0.08 mL in group I, 0.60 +/- 0.12 mL in group II and 0.36 +/- 0.10 mL in group III. The differences between groups were found statistically significant. In conclusion, diced cartilage was found more reliable than bone dust aspect of preserving its volume for a long period in this study.

  12. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells.

    PubMed

    Levato, Riccardo; Webb, William R; Otto, Iris A; Mensinga, Anneloes; Zhang, Yadan; van Rijen, Mattie; van Weeren, René; Khan, Ilyas M; Malda, Jos

    2017-10-01

    Cell-laden hydrogels are the primary building blocks for bioprinting, and, also termed bioinks, are the foundations for creating structures that can potentially recapitulate the architecture of articular cartilage. To be functional, hydrogel constructs need to unlock the regenerative capacity of encapsulated cells. The recent identification of multipotent articular cartilage-resident chondroprogenitor cells (ACPCs), which share important traits with adult stem cells, represents a new opportunity for cartilage regeneration. However, little is known about the suitability of ACPCs for tissue engineering, especially in combination with biomaterials. This study aimed to investigate the potential of ACPCs in hydrogels for cartilage regeneration and biofabrication, and to evaluate their ability for zone-specific matrix production. Gelatin methacryloyl (gelMA)-based hydrogels were used to culture ACPCs, bone marrow mesenchymal stromal cells (MSCs) and chondrocytes, and as bioinks for printing. Our data shows ACPCs outperformed chondrocytes in terms of neo-cartilage production and unlike MSCs, ACPCs had the lowest gene expression levels of hypertrophy marker collagen type X, and the highest expression of PRG4, a key factor in joint lubrication. Co-cultures of the cell types in multi-compartment hydrogels allowed generating constructs with a layered distribution of collagens and glycosaminoglycans. By combining ACPC- and MSC-laden bioinks, a bioprinted model of articular cartilage was generated, consisting of defined superficial and deep regions, each with distinct cellular and extracellular matrix composition. Taken together, these results provide important information for the use of ACPC-laden hydrogels in regenerative medicine, and pave the way to the biofabrication of 3D constructs with multiple cell types for cartilage regeneration or in vitro tissue models. Despite its limited ability to repair, articular cartilage harbors an endogenous population of progenitor cells

  13. Morphogenesis and growth of the soft tissue and cartilage of the vomeronasal organ in pigs

    PubMed Central

    Salazar, Ignacio; Lombardero, Matilde; Cifuentes, José M; Quinteiro, Pablo Sánchez; Alemañ, Nuria

    2003-01-01

    The morphology of the soft tissue and supporting cartilage of the vomeronasal organ of the fetal pig was studied from early stages to term. Specimens obtained from an abattoir were aged by crown-to-rump distance. Series of transverse sections show that some time before birth all structures – cartilage, connective tissue, blood vessels, nerves, glands and epithelia – are well developed and very similar in appearance to those of the adult. Furthermore, in transmission electron microscopy photomicrographs obtained at this stage the vomeronasal glands exhibit secretory activity. PMID:12846472

  14. Growth factor expression in cartilage wound healing: temporal and spatial immunolocalization in a rabbit auricular cartilage wound model.

    PubMed

    Bos, P K; van Osch, G J; Frenz, D A; Verhaar, J A; Verwoerd-Verhoef, H L

    2001-05-01

    The ability of cartilage to regenerate following injury is limited, potentially leading to osteoarthritis. Integrative cartilage repair, necessary for durable restoration of cartilage lesions, can be regarded as a wound healing process. Little is known about the effects of growth factors regulating acute cartilage wound healing in vivo. In this study the temporal expression patterns of growth factors and proteoglycan content in cartilage wound edges in vivo were studied. Cartilage wounds were created in rabbit ear cartilage using a 6 mm biopsy punch. Specimens were subsequently harvested 1, 3, 7, 14 and 28 days after surgery. Paraffin sections were thionin stained to visualize proteoglycan loss and replacement. Immunohistochemical staining of TGFbeta1, TGFbeta3, IGF-1, IGF-II and FGF-2 was used to define growth factor expression at the cartilage wound sites. Almost no effect of cartilage wounding was observed one day after surgery. A decrease of proteoglycan content, with a maximal loss at day 7, and a subsequent restoration was observed at the wound edges. Growth factor expression increased simultaneously. Maximal immunostaining for IGF1, IGFII, FGF2 and TGF-beta3 was observed at day 7, followed by a gradual decrease. Increased expression of TGFbeta1 lasted from day 3 until day 14. We have demonstrated the ability of chondrocytes to increase growth factor expression and to restore the rapid decrease in proteoglycan content in the initial phase following acute wounding. A temporal increase in intracellular growth factor expression suggests an autocrine and/or paracrine metabolic stimulation, which can be regarded a sign of chondrocytes repair capacity. Copyright 2001 OsteoArthritis Research Society International.

  15. Biological aspects of tissue-engineered cartilage.

    PubMed

    Hoshi, Kazuto; Fujihara, Yuko; Yamawaki, Takanori; Harai, Motohiro; Asawa, Yukiyo; Hikita, Atsuhiko

    2018-04-01

    Cartilage regenerative medicine has been progressed well, and it reaches the stage of clinical application. Among various techniques, tissue engineering, which incorporates elements of materials science, is investigated earnestly, driven by high clinical needs. The cartilage tissue engineering using a poly lactide scaffold has been exploratorily used in the treatment of cleft lip-nose patients, disclosing good clinical results during 3-year observation. However, to increase the reliability of this treatment, not only accumulation of clinical evidence on safety and usefulness of the tissue-engineered products, but also establishment of scientific background on biological mechanisms, are regarded essential. In this paper, we reviewed recent trends of cartilage tissue engineering in clinical practice, summarized experimental findings on cellular and matrix changes during the cartilage regeneration, and discussed the importance of further studies on biological aspects of tissue-engineered cartilage, especially by the histological and the morphological methods.

  16. Protective effect of rimexolone on cartilage damage in arthritic mice: a comparative study with triamcinolone hexacetonide.

    PubMed

    Joosten, L A; Helsen, M M; van den Berg, W B

    1990-08-01

    We studied the effect of the local steroid preparation rimexolone on cartilage metabolism in arthritis and normal joints. Prolonged anti-inflammatory action was evident after intraarticular injection of a single dose of 450 micrograms into mice with monoarticular antigen-induced arthritis. Suppression of inflammation lasted for at least 21 days. A single dose of 25 micrograms of the anti-inflammatory steroid triamcinolone hexacetonide (THA) induced comparable suppression in the initial stage of the arthritis, but the suppressive action was of shorter duration. Both drugs significantly prevented osteophyte formation, which is a characteristic feature of this type of experimental arthritis. Although chondrocyte proteoglycan (PG) synthesis in patellar cartilage was significantly suppressed upon injection in normal joints, both steroids counteracted the severe suppression of PG synthesis in arthritic joints. These data indicate that although steroids may have significant side effects on chondrocytes, the overall effect on arthritic chondrocytes is beneficial. An advantage of rimexolone over THA is its prolonged retention, which may explain its sustained anti-inflammatory action, and the lack of systemic effects.

  17. In Vitro Analysis of Cartilage Regeneration Using a Collagen Type I Hydrogel (CaReS) in the Bovine Cartilage Punch Model.

    PubMed

    Horbert, Victoria; Xin, Long; Foehr, Peter; Brinkmann, Olaf; Bungartz, Matthias; Burgkart, Rainer H; Graeve, T; Kinne, Raimund W

    2018-02-01

    Objective Limitations of matrix-assisted autologous chondrocyte implantation to regenerate functional hyaline cartilage demand a better understanding of the underlying cellular/molecular processes. Thus, the regenerative capacity of a clinically approved hydrogel collagen type I implant was tested in a standardized bovine cartilage punch model. Methods Cartilage rings (outer diameter 6 mm; inner defect diameter 2 mm) were prepared from the bovine trochlear groove. Collagen implants (± bovine chondrocytes) were placed inside the cartilage rings and cultured up to 12 weeks. Cartilage-implant constructs were analyzed by histology (hematoxylin/eosin; safranin O), immunohistology (aggrecan, collagens 1 and 2), and for protein content, RNA expression, and implant push-out force. Results Cartilage-implant constructs revealed vital morphology, preserved matrix integrity throughout culture, progressive, but slight proteoglycan loss from the "host" cartilage or its surface and decreasing proteoglycan release into the culture supernatant. In contrast, collagen 2 and 1 content of cartilage and cartilage-implant interface was approximately constant over time. Cell-free and cell-loaded implants showed (1) cell migration onto/into the implant, (2) progressive deposition of aggrecan and constant levels of collagens 1 and 2, (3) progressively increased mRNA levels for aggrecan and collagen 2, and (4) significantly augmented push-out forces over time. Cell-loaded implants displayed a significantly earlier and more long-lasting deposition of aggrecan, as well as tendentially higher push-out forces. Conclusion Preserved tissue integrity and progressively increasing cartilage differentiation and push-out forces for up to 12 weeks of cultivation suggest initial cartilage regeneration and lateral bonding of the implant in this in vitro model for cartilage replacement materials.

  18. Repair of articular cartilage defects by tissue-engineered cartilage constructed with adipose-derived stem cells and acellular cartilaginous matrix in rabbits.

    PubMed

    Wang, Z J; An, R Z; Zhao, J Y; Zhang, Q; Yang, J; Wang, J B; Wen, G Y; Yuan, X H; Qi, X W; Li, S J; Ye, X C

    2014-06-18

    After injury, inflammation, or degeneration, articular cartilage has limited self-repair ability. We aimed to explore the feasibility of repair of articular cartilage defects with tissue-engineered cartilage constructed by acellular cartilage matrices (ACMs) seeded with adipose-derived stem cells (ADSCs). The ADSCs were isolated from 3-month-old New Zealand albino rabbit by using collagenase and cultured and amplified in vitro. Fresh cartilage isolated from adult New Zealand albino rabbit were freeze-dried for 12 h and treated with Triton X-100, DNase, and RNase to obtain ACMs. ADSCs were seeded in the acellular cartilaginous matrix at 2x10(7)/mL, and cultured in chondrogenic differentiation medium for 2 weeks to construct tissue-engineered cartilage. Twenty-four New Zealand white rabbits were randomly divided into A, B, and C groups. Engineered cartilage was transplanted into cartilage defect position of rabbits in group A, group B obtained ACMs, and group C did not receive any transplants. The rabbits were sacrificed in week 12. The restored tissue was evaluated using macroscopy, histology, immunohistochemistry, and transmission electron microscopy (TEM). In the tissue-engineered cartilage group (group A), articular cartilage defects of the rabbits were filled with chondrocyte-like tissue with smooth surface. Immunohistochemistry showed type II-collagen expression and Alcian blue staining was positive. TEM showed chondrocytes in the recesses, with plenty of secretary matrix particles. In the scaffold group (group B), the defect was filled with fibrous tissue. No repaired tissue was found in the blank group (group C). Tissue-engineered cartilage using ACM seeded with ADSCs can help repair articular cartilage defects in rabbits.

  19. Age-dependent systemic DNA damage in early Type 2 Diabetes mellitus.

    PubMed

    Rogulj, Dinko; El Aklouk, Ismail; Konjevoda, Paško; Ljubić, Spomenka; Pibernik Okanović, Mirjana; Barbir, Ante; Luburić, Marijana; Radman, Maja; Budinski, Ninoslav; Vučić Lovrenčić, Marijana

    2017-01-01

    Oxidative stress, capable of eliciting damage to various biomolecules including DNA, is a recognized component of diabetes mellitus and its complications. Metabolic syndrome (MetS) is associated with the development of type 2 diabetes mellitus (T2DM), as well as other unfavorable outcomes. The aim of this study was to elucidate the role of oxidative stress in the development of T2DM, by investigating association of oxidative DNA damage with metabolic parameters in subjects with MetS and early T2DM. Selected anthropometric and biochemical parameters of MetS, inflammation and oxidative DNA damage: body mass index (BMI), fatty liver index (FLI), waist circumference (WC), total cholesterol, HDL and LDL-cholesterol, gamma-glutamyl transpeptidase (GGT), uric acid, C-reactive protein (CRP), total leukocyte/neutrophil count, and urinary 8-hidroxy-deoxyguanosine (u-8-OHdG) were assessed in male subjects with MetS and both younger (≤55 years) and older (>55 years) subjects with T2DM of short duration without complications. BMI, FLI, WC, total and LDL-cholesterol and uric acid were higher, while the u-8-OHdG was lower in MetS group, when compared to older T2DM subjects. None of these parameters were different neither between MetS and younger T2DM, nor between two sub-groups of subjects with T2DM. Values of CRP, HDL-cholesterol, triglycerides, GGT, leukocytes and neutrophils were not different between all examined groups of subjects. Higher 8-OHdG in older subjects with T2DM suggests that both aging process and diabetes could contribute to the development of DNA damage. Oxidative DNA damage cannot serve as an universal early marker of T2DM.

  20. Natural Type II Collagen Hydrogel, Fibrin Sealant, and Adipose-Derived Stem Cells as a Promising Combination for Articular Cartilage Repair.

    PubMed

    Lazarini, Mariana; Bordeaux-Rego, Pedro; Giardini-Rosa, Renata; Duarte, Adriana S S; Baratti, Mariana Ozello; Zorzi, Alessandro Rozim; de Miranda, João Batista; Lenz Cesar, Carlos; Luzo, Ângela; Olalla Saad, Sara Teresinha

    2017-10-01

    Objective Articular cartilage is an avascular tissue with limited ability of self-regeneration and the current clinical treatments have restricted capacity to restore damages induced by trauma or diseases. Therefore, new techniques are being tested for cartilage repair, using scaffolds and/or stem cells. Although type II collagen hydrogel, fibrin sealant, and adipose-derived stem cells (ASCs) represent suitable alternatives for cartilage formation, their combination has not yet been investigated in vivo for focal articular cartilage defects. We performed a simple experimental procedure using the combination of these 3 compounds on cartilage lesions of rabbit knees. Design The hydrogel was developed in house and was first tested in vitro for chondrogenic differentiation. Next, implants were performed in chondral defects with or without ASCs and the degree of regeneration was macroscopically and microscopically evaluated. Results Production of proteoglycans and the increased expression of collagen type II (COL2α1), aggrecan (ACAN), and sex-determining region Y-box 9 (SOX9) confirmed the chondrogenic character of ASCs in the hydrogel in vitro. Importantly, the addition of ASC induced a higher overall repair of the chondral lesions and a better cellular organization and collagen fiber alignment compared with the same treatment without ASCs. This regenerating tissue also presented the expression of cartilage glycosaminoglycan and type II collagen. Conclusions Our results indicate that the combination of the 3 compounds is effective for articular cartilage repair and may be of future clinical interest.

  1. The effect of systemic administration of G-CSF on a full-thickness cartilage defect in a rabbit model MSC proliferation as presumed mechanism: G-CSF for cartilage repair.

    PubMed

    Sasaki, T; Akagi, R; Akatsu, Y; Fukawa, T; Hoshi, H; Yamamoto, Y; Enomoto, T; Sato, Y; Nakagawa, R; Takahashi, K; Yamaguchi, S; Sasho, T

    2017-03-01

    The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation in vitro and to determine whether pre-microfracture systemic administration of G-CSF (a bone marrow stimulant) could improve the quality of repaired tissue of a full-thickness cartilage defect in a rabbit model. MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium.A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically. The cell count in the low-dose G-CSF medium was significantly higher than that in the control medium. The differentiation potential of MSCs was preserved after culturing them with G-CSF.Macroscopically, defects were filled and surfaces were smoother in the G-CSF groups than in the control group at four weeks. At 12 weeks, the quality of repaired cartilage improved further, and defects were almost completely filled in all groups. Microscopically, at four weeks, defects were partially filled with hyaline-like cartilage in the G-CSF groups. At 12 weeks, defects were repaired with hyaline-like cartilage in all groups. G-CSF promoted proliferation of MSCs in vitro . The systemic administration of G-CSF promoted the repair of damaged cartilage possibly through increasing the

  2. Release of transgenic progranulin from a living hyaline cartilage graft model: An in vitro evaluation on anti-inflammation.

    PubMed

    Lau, Ting Ting; Zhang, Feng; Tang, Wei; Wang, Dong-An

    2016-12-01

    Osteoarthritis (OA) is a prevalent condition that compromises and even jeopardizes the life quality of millions of people. Common symptoms in OA includes joint stiffness and soreness, and they are often associated with inflammations to various extend. Due to the avascular and aneural nature of articular hyaline cartilage, it has limited self-repair capabilities; especially under inflammatory conditions, damages inflicted on cartilage are often irreversible. Hence, treatment approaches focus on anti-inflammation or articular cartilage replacement. In this study, an engineered, dual-functional living hyaline cartilage graft (LhCG), capable of releasing transgenic anti-inflammatory cytokine-progranulin (PGRN) is developed and envisioned to simultaneously fulfil both requirements. The therapeutic functionality of PGRN releasing LhCG is evaluated by co-culturing the constructs with tumor necrosis factor-alpha (TNFα) secreting THP-1 cells to simulate the inflammatory condition in arthritis. Non-transgenic LhCG constructs and non-coculture sample groups were set up as controls. Gene expression and ECM composition changes across samples were assessed to understand the effects of PGRN as well as inflammatory environment on the cartilage graft. Collectively, the results in this study suggest that in situ release of transgenic recombinant PGRN protects LhCG from induced inflammation in vitro; contrastively, in the absence of PGRN, cartilage grafts are at risk of being degraded and mineralized under exposure to TNFα signaling. This shows that cartilage graft itself can be at risk of degradation or calcification when implanted in arthritic microenvironment. Hence, the inflammatory microenvironment has to be considered in cartilage replacement therapy to increase chances of successful joint mobility restoration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2968-2977, 2016. © 2016 Wiley Periodicals, Inc.

  3. In vitro cartilage construct generation from silk fibroin- chitosan porous scaffold and umbilical cord blood derived human mesenchymal stem cells in dynamic culture condition.

    PubMed

    Agrawal, Parinita; Pramanik, Krishna; Biswas, Amit; Ku Patra, Ranjan

    2018-02-01

    Cartilage construct generation includes a scaffold with appropriate composition to mimic matrix of the damaged tissue on which the stem cells grow and differentiate. In this study, umbilical cord blood (UCB) derived human mesenchymal stem cells (hMSCs) were seeded on freeze dried porous silk-fibroin (SF)/chitosan (CS) scaffolds. Influence of static and dynamic (spinner flask bioreactor) culture conditions on the developing cartilage construct were studied by in-vitro characterization for viability, proliferation, distribution, and chondrogenic differentiation of hMSCs over the scaffold. Constructs developed in spinner flask consisted of 62% live cells, and exhibited 543% more cell density at the core than constructs cultured in static system. Quantification of DNA and glycosaminoglycans accumulation after 21 days showed the progression of chondrogenic differentiation of hMSCs was higher in dynamic culture compared to static one. In constructs generated under dynamic condition, histology staining for proteoglycan matrix, and fluorescence staining for collagen-II and aggrecan showed positive correlation between early and late stage chondrogenic markers, which was further confirmed by quantitative PCR analysis, showing low collagen-I expression and highly expressed Sox9, collagen-II and aggrecan. The present study demonstrated that construct generated by combining 3D SF/CS scaffold with UCB-hMSCs under dynamic condition using spinner flask bioreactor can be used for cartilage tissue regeneration for future medical treatments. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 397-407, 2018. © 2017 Wiley Periodicals, Inc.

  4. Early and Late Damages in Chromosome 3 of Human Lymphocytes After Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Sunagawa, Mayumi; Mangala, Lingegowda; Zhang, Ye; Kahdim, Munira; Wilson, Bobby; Cucinotta, Francis A.; Wu, Honglu

    2011-01-01

    Tumor formation in humans or animals is a multi-step process. An early stage of cancer development is believed to be genomic instability (GI) which accelerates the mutation rate in the descendants of the cells surviving radiation exposure. GI is defined as elevated or persistent genetic damages occurring many generations after the cells are exposed. While early studies have demonstrated radiation-induced GI in several cell types as detected in endpoints such as mutation, apoptosis and damages in chromosomes, the dependence of GI on the quality of radiation remains uncertain. To investigate GI in human lymphocytes induced by both low- and high-LET radiation, we initially exposed white blood cells collected from healthy subjects to gamma rays in vitro, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis post irradiation and at several intervals during the culture period. Among a number of biological endpoints planned for the project, the multi-color banding fluorescent in situ hybridization (mBAND) allows identification of inversions that were expected to be stable. We present here early and late chromosome aberrations detected with mBAND in chromosome 3 after gamma exposure. Comparison of chromosome damages in between human lymphocytes and human epithelial cells is also discussed

  5. Functional peptides for cartilage repair and regeneration

    PubMed Central

    Liu, Qisong; Jia, Zhaofeng; Duan, Li; Xiong, Jianyi; Wang, Daping; Ding, Yue

    2018-01-01

    Cartilage repair after degeneration or trauma continues to be a challenge both in the clinic and for scientific research due to the limited regenerative capacity of this tissue. Cartilage tissue engineering, involving a combination of cells, scaffolds, and growth factors, is increasingly used in cartilage regeneration. Due to their ease of synthesis, robustness, tunable size, availability of functional groups, and activity, peptides have emerged as the molecules with the most potential in drug development. A number of peptides have been engineered to regenerate cartilage by acting as scaffolds, functional molecules, or both. In this paper, we will summarize the application of peptides in cartilage tissue engineering and discuss additional possibilities for peptides in this field. PMID:29511444

  6. Implantation of Autologous Cartilage Chips Improves Cartilage Repair Tissue Quality in Osteochondral Defects: A Study in Göttingen Minipigs.

    PubMed

    Christensen, Bjørn Borsøe; Foldager, Casper Bindzus; Olesen, Morten Lykke; Hede, Kris Chadwick; Lind, Martin

    2016-06-01

    Osteochondral injuries have poor endogenous healing potential, and no standard treatment has been established. The use of combined layered autologous bone and cartilage chips for treatment of osteochondral defects has shown promising short-term clinical results. This study aimed to investigate the role of cartilage chips by comparing combined layered autologous bone and cartilage chips with autologous bone implantation alone in a Göttingen minipig model. The hypothesis was that the presence of cartilage chips would improve the quality of the repair tissue. Controlled laboratory study. Twelve Göttingen minipigs received 2 osteochondral defects in each knee. The defects were randomized to autologous bone graft (ABG) combined with autologous cartilage chips (autologous dual-tissue transplantation [ADTT]) or ABG alone. Six animals were euthanized at 6 months and 6 animals were euthanized at 12 months. Follow-up evaluation consisted of histomorphometry, immunohistochemistry, semiquantitative scoring (International Cartilage Repair Society II), and computed tomography. There was significantly more hyaline cartilage in the ADTT group (25.8%) compared with the ABG group (12.8%) at 6 months after treatment. At 12 months, the fraction of hyaline cartilage in the ABG group had significantly decreased to 4.8%, whereas the fraction of hyaline cartilage in the ADTT group was unchanged (20.1%). At 6 and 12 months, there was significantly more fibrocartilage in the ADTT group (44% and 60.8%) compared with the ABG group (24.5% and 41%). The fraction of fibrous tissue was significantly lower in the ADTT group compared with the ABG group at both 6 and 12 months. The implanted cartilage chips stained >75% positive for collagen type 4 and laminin at both 6 and 12 months. Significant differences were found in a number of International Cartilage Repair Society II subcategories. The volume of the remaining bone defect significantly decreased from 6 to 12 months in both treatment groups

  7. Fibrous cartilage of human menisci is less shock-absorbing and energy-dissipating than hyaline cartilage.

    PubMed

    Gaugler, Mario; Wirz, Dieter; Ronken, Sarah; Hafner, Mirjam; Göpfert, Beat; Friederich, Niklaus F; Elke, Reinhard

    2015-04-01

    To test meniscal mechanical properties such as the dynamic modulus of elasticity E* and the loss angle δ at two loading frequencies ω at different locations of the menisci and compare it to E* and δ of hyaline cartilage in indentation mode with spherical indenters. On nine pairs of human menisci, the dynamic E*-modulus and loss angle δ (as a measure of the energy dissipation) were determined. The measurements were performed at two different strain rates (slow sinusoidal and fast single impact) to show the strain rate dependence of the material. The measurements were compared to previous similar measurements with the same equipment on human hyaline cartilage. The resultant E* at fast indentation (median 1.16 MPa) was significantly higher, and the loss angle was significantly lower (median 10.2°) compared to slow-loading mode's E* and δ (median 0.18 MPa and 16.9°, respectively). Further, significant differences for different locations are shown. On the medial meniscus, the anterior horn shows the highest resultant dynamic modulus. In dynamic measurements with a spherical indenter, the menisci are much softer and less energy-dissipating than hyaline cartilage. Further, the menisci are stiffer and less energy-dissipating in the middle, intermediate part compared to the meniscal base. In compression, the energy dissipation of meniscus cartilage plays a minor role compared to hyaline cartilage. At high impacts, energy dissipation is less than on low impacts, similar to cartilage.

  8. Cartilage quantification using contrast-enhanced MRI in the wrist of rheumatoid arthritis: cartilage loss is associated with bone marrow edema.

    PubMed

    Fujimori, Motoshi; Nakamura, Satoko; Hasegawa, Kiminori; Ikeno, Kunihiro; Ichikawa, Shota; Sutherland, Kenneth; Kamishima, Tamotsu

    2017-08-01

    To quantify wrist cartilage using contrast MRI and compare with the extent of adjacent synovitis and bone marrow edema (BME) in patients with rheumatoid arthritis (RA). 18 patients with RA underwent post-contrast fat-suppressed T 1 weighted coronal imaging. Cartilage area at the centre of the scaphoid-capitate and radius-scaphoid joints was measured by in-house developed software. We defined cartilage as the pixels with signal intensity between two thresholds (lower: 0.4, 0.5 and 0.6 times the muscle signal, upper: 0.9, 1.0, 1.1, 1.2 and 1.3 times the muscle signal). We investigated the association of cartilage loss with synovitis and BME score derived from RA MRI scoring system. Cartilage area was correlated with BME score when thresholds were adequately set with lower threshold at 0.6 times the muscle signal and upper threshold at 1.2 times the muscle signal for both SC (r s =-0.469, p < 0.05) and RS (r s =-0.486, p < 0.05) joints, while it showed no significant correlation with synovitis score at any thresholds. Our software can accurately quantify cartilage in the wrist and BME associated with cartilage loss in patients with RA. Advances in knowledge: Our software can quantify cartilage using conventional MR images of the wrist. BME is associated with cartilage loss in RA patients.

  9. Effects of growth factors and glucosamine on porcine mandibular condylar cartilage cells and hyaline cartilage cells for tissue engineering applications.

    PubMed

    Wang, Limin; Detamore, Michael S

    2009-01-01

    Temporomandibular joint (TMJ) condylar cartilage is a distinct cartilage that has both fibrocartilaginous and hyaline-like character, with a thin proliferative zone that separates the fibrocartilaginous fibrous zone at the surface from the hyaline-like mature and hypertrophic zones below. In this study, we compared the effects of insulin-like growth factor-I (IGF-I), basic fibroblast growth factor (bFGF), transforming growth factor beta1 (TGF-beta1), and glucosamine sulphate on porcine TMJ condylar cartilage and ankle cartilage cells in monolayer culture. In general, TMJ condylar cartilage cells proliferated faster than ankle cartilage cells, while ankle cells produced significantly greater amounts of glycosaminoglycans (GAGs) and collagen than TMJ condylar cartilage cells. IGF-I and bFGF were potent stimulators of TMJ cell proliferation, while no signals statistically outperformed controls for ankle cell proliferation. IGF-I was the most effective signal for GAG production with ankle cells, and the most potent upregulator of collagen synthesis for both cell types. Glucosamine sulphate promoted cell proliferation and biosynthesis at specific concentrations and outperformed growth factors in certain instances. In conclusion, hyaline cartilage cells had lower cell numbers and superior biosynthesis compared to TMJ condylar cartilage cells, and we have found IGF-I at 100 ng/mL and glucosamine sulphate at 100 microg/mL to be the most effective signals for these cells under the prescribed conditions.

  10. Uncoupled poroelastic and intrinsic viscoelastic dissipation in cartilage.

    PubMed

    Han, Guebum; Hess, Cole; Eriten, Melih; Henak, Corinne R

    2018-04-26

    This paper studies uncoupled poroelastic (flow-dependent) and intrinsic viscoelastic (flow-independent) energy dissipation mechanisms via their dependence on characteristic lengths to understand the root of cartilage's broadband dissipation behavior. Phase shift and dynamic modulus were measured from dynamic microindentation tests conducted on hydrated cartilage at different contact radii, as well as on dehydrated cartilage. Cartilage weight and thickness were recorded during dehydration. Phase shifts revealed poroelastic- and viscoelastic-dominant dissipation regimes in hydrated cartilage. Specifically, phase shift at a relatively small radius was governed by poroviscoelasticity, while phase shift at a relatively large radius was dominantly governed by intrinsic viscoelasticity. The uncoupled dissipation mechanisms demonstrated that intrinsic viscoelastic dissipation provided sustained broadband dissipation for all length scales, and additional poroelastic dissipation increased total dissipation at small length scales. Dehydration decreased intrinsic viscoelastic dissipation of cartilage. The findings demonstrated a possibility to measure poroelastic and intrinsic viscoelastic properties of cartilage at similar microscale lengths. Also they encouraged development of broadband cartilage like-dampers and provided important design parameters to maximize their performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Triiodothyronine stimulates cartilage growth and maturation by different mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burch, W.M.; Van Wyk, J.J.

    1987-02-01

    The mechanisms by which triiodothyronine (T3) stimulates growth and maturation of growth-plate cartilage in vitro were studied by incubating embryonic chick pelvic cartilages in serum-free medium in the presence and absence of T3 for 3 days. To determine whether T3 might stimulate production of somatomedins by the cartilage, medium from cartilage incubated with and without T3 was assayed for somatomedin C( Sm-C) by radioimmunoassay. No difference in Sm-C content was found. However, cartilage incubated with T3 and increasing amounts of human Sm-C (0.5-20 ng/ml) weighed more and had greater amounts of glycosaminoglycan that cartilage incubated in the same concentrations ofmore » Sm-C without T3, suggesting that T3 enhances the growth effect of somatomedin. The authors added a monoclonal antibody to Sm-C (anti-Sm-C) to the organ culture to determine whether T3's stimulatory effect on cartilage growth could be blocked. The anti-Sm-C inhibited growth of cartilage incubated in medium alone and blocked the growth response to T3. They propose two different mechanisms by which T3 affects growth-plate cartilage: (1) T3 promotes cartilage growth primarily through enhancing the effect of somatomedin, and (2) T3 stimulates cartilage maturation possibly by accelerating the normal process of cartilage differentiation from proliferative to hypertrophic chondrocytes.« less

  12. Development of large engineered cartilage constructs from a small population of cells.

    PubMed

    Brenner, Jillian M; Kunz, Manuela; Tse, Man Yat; Winterborn, Andrew; Bardana, Davide D; Pang, Stephen C; Waldman, Stephen D

    2013-01-01

    Confronted with articular cartilage's limited capacity for self-repair, joint resurfacing techniques offer an attractive treatment for damaged or diseased tissue. Although tissue engineered cartilage constructs can be created, a substantial number of cells are required to generate sufficient quantities of tissue for the repair of large defects. As routine cell expansion methods tend to elicit negative effects on chondrocyte function, we have developed an approach to generate phenotypically stable, large-sized engineered constructs (≥3 cm(2) ) directly from a small amount of donor tissue or cells (as little as 20,000 cells to generate a 3 cm(2) tissue construct). Using rabbit donor tissue, the bioreactor-cultivated constructs were hyaline-like in appearance and possessed a biochemical composition similar to native articular cartilage. Longer bioreactor cultivation times resulted in increased matrix deposition and improved mechanical properties determined over a 4 week period. Additionally, as the anatomy of the joint will need to be taken in account to effectively resurface large affected areas, we have also explored the possibility of generating constructs matched to the shape and surface geometry of a defect site through the use of rapid-prototyped defect tissue culture molds. Similar hyaline-like tissue constructs were developed that also possessed a high degree of shape correlation to the original defect mold. Future studies will be aimed at determining the effectiveness of this approach to the repair of cartilage defects in an animal model and the creation of large-sized osteochondral constructs. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  13. Saddle-nose deformity repair with microplate-adapted costal cartilage.

    PubMed

    Eren, Fikret; Öksüz, Sinan; Melikoğlu, Cenk; Karagöz, Hüseyin; Ülkür, Ersin

    2014-08-01

    Nasal deformities affecting the bone and lower two-thirds of the nose due to the loss of septal height and tip support are defined as "saddle-nose" deformity. Reconstruction of a saddle-nose deformity essentially necessitates structural grafting. This article presents an alternative approach for correction of saddle-nose deformity using a microplate and costal cartilage. The results are compared with those of the previously applied costal cartilage repair methods. Between 2004 and 2013, 16 patients were treated with costal cartilage autografts. Of these 16 patients, 7 were treated with a microplate and costal cartilage autograft combination, 4 were treated with a costal cartilage autograft and Kirschner (K)-wire, and 5 were treated with onlay costal cartilage grafts. The mean follow-up periods were 16 months for group treated with microplate-adapted autologous costal cartilage, 12 months for the group treated with K-wire and autologous costal cartilage, and 16 months for the group treated with onlay costal cartilage. The patients treated with K-wire inserted cartilages and the patients treated onlay dorsal costal cartilages encountered complications such as extrusion of the wire and warping, respectively. The seven patients treated with microplate and dorsal onlay costal cartilage graft did not experience any infection, warping, or extrusion complication. The warping tendency of the costal cartilage autograft can be efficiently prevented without a prominent complication risk by using microplate-adapted costal cartilage grafts. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  14. Papain-induced changes in rabbit cartilage; alterations in the chemical structure of the cartilage matrix.

    PubMed

    TSALTAS, T T

    1958-10-01

    Some biochemical aspects of the collapse of the rabbit ears produced by the intravenous injection of papain have been studied. A marked depletion of chondromucoprotein (M.C.S.) and a reduction of the S(35) content of cartilage matrix were found to coincide with the gross and histologic changes in the cartilage. At the same time there was a marked increase in the amount of S(35) in the serum and an increase of S(35) and glucuronic acid excreted in the urine. Alteration in the composition of the M.C.S. remaining in the cartilage of the papain-injected animals was detected. The findings indicate that the collapse of the rabbit ears is due to loss of chondromucoprotein from cartilage and reduction of chondroitin sulfate in the chondromucoprotein that remains. All these changes were reversed in recovery.

  15. Tissue-engineered articular cartilage exhibits tension-compression nonlinearity reminiscent of the native cartilage.

    PubMed

    Kelly, Terri-Ann N; Roach, Brendan L; Weidner, Zachary D; Mackenzie-Smith, Charles R; O'Connell, Grace D; Lima, Eric G; Stoker, Aaron M; Cook, James L; Ateshian, Gerard A; Hung, Clark T

    2013-07-26

    The tensile modulus of articular cartilage is much larger than its compressive modulus. This tension-compression nonlinearity enhances interstitial fluid pressurization and decreases the frictional coefficient. The current set of studies examines the tensile and compressive properties of cylindrical chondrocyte-seeded agarose constructs over different developmental stages through a novel method that combines osmotic loading, video microscopy, and uniaxial unconfined compression testing. This method was previously used to examine tension-compression nonlinearity in native cartilage. Engineered cartilage, cultured under free-swelling (FS) or dynamically loaded (DL) conditions, was tested in unconfined compression in hypertonic and hypotonic salt solutions. The apparent equilibrium modulus decreased with increasing salt concentration, indicating that increasing the bath solution osmolarity shielded the fixed charges within the tissue, shifting the measured moduli along the tension-compression curve and revealing the intrinsic properties of the tissue. With this method, we were able to measure the tensile (401±83kPa for FS and 678±473kPa for DL) and compressive (161±33kPa for FS and 348±203kPa for DL) moduli of the same engineered cartilage specimens. These moduli are comparable to values obtained from traditional methods, validating this technique for measuring the tensile and compressive properties of hydrogel-based constructs. This study shows that engineered cartilage exhibits tension-compression nonlinearity reminiscent of the native tissue, and that dynamic deformational loading can yield significantly higher tensile properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. [Research progress of articular cartilage scaffold for tissue engineering].

    PubMed

    Liu, Qingyu; Wang, Fuyou; Yang, Liu

    2012-10-01

    To review the research progress of articular cartilage scaffold materials and look into the future development prospects. Recent literature about articular cartilage scaffold for tissue engineering was reviewed, and the results from experiments and clinical application about natural and synthetic scaffold materials were analyzed. The design of articular cartilage scaffold for tissue engineering is vital to articular cartilage defects repair. The ideal scaffold can promote the progress of the cartilage repair, but the scaffold materials still have their limitations. It is necessary to pay more attention to the research of the articular cartilage scaffold, which is significant to the repair of cartilage defects in the future.

  17. Stimulation of the Superficial Zone Protein and Lubrication in the Articular Cartilage by Human Platelet-Rich Plasma

    PubMed Central

    Sakata, Ryosuke; McNary, Sean M.; Miyatake, Kazumasa; Lee, Cassandra A.; Van den Bogaerde, James M.; Marder, Richard A.; Reddi, A. Hari

    2016-01-01

    . Furthermore, PRP contains endogenous SZP and, in a functional bioassay, lubricates bovine articular cartilage explants. Clinical Relevance These findings provide evidence to explain the biochemical and biomechanical mechanisms underlying the efficacy of PRP treatment for osteoarthritis or damage in the knee joint. PMID:25813869

  18. The effect of hypoxia on thermosensitive poly(N-vinylcaprolactam) hydrogels with tunable mechanical integrity for cartilage tissue engineering.

    PubMed

    Lynch, Brandon; Crawford, Kristopher; Baruti, Omari; Abdulahad, Asem; Webster, Martial; Puetzer, Jennifer; Ryu, Chang; Bonassar, Lawrence J; Mendenhall, Juana

    2017-10-01

    Cartilage repair presents a daunting challenge in tissue engineering applications due to the low oxygen conditions (hypoxia) affiliated in diseased states. Hence, the use of biomaterial scaffolds with unique variability is imperative to treat diseased or damaged cartilage. Thermosensitive hydrogels show promise as injectable materials that can be used as tissue scaffolds for cartilage tissue regeneration. However, uses in clinical applications are limited to due mechanical stability and therapeutic efficacy to treat diseased tissue. In this study, several composite hydrogels containing poly(N-vinylcaprolactam) (PVCL) and methacrylated hyaluronic acid (meHA) were prepared using free radical polymerization to produce PVCL-graft-HA (PVCL-g-HA) and characterized using Fourier transform infrared spectroscopy, nuclear magnetic resonance, and scanning electron microscopy. Lower critical solution temperatures and gelation temperatures were confirmed in the range of 33-34°C and 41-45°C, respectively. Using dynamic sheer rheology, the temperature dependence of elastic (G') and viscous (G″) modulus between 25°C and 45°C, revealed that PVCL-g-HA hydrogels at 5% (w/v) concentration exhibited the moduli of 7 Pa (G') to 4 Pa (G″). After 10 days at 1% oxygen, collagen production on PVCL-g-HA hydrogels was 153 ± 25 μg/mg (20%) and 106 ± 18 μg/mg showing a 10-fold increase compared to meHA controls. These studies show promise in PVCL-g-HA hydrogels for the treatment of diseased or damaged articular cartilage. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1863-1873, 2017. © 2016 Wiley Periodicals, Inc.

  19. Cartilage Repair in Football (Soccer) Athletes

    PubMed Central

    Bekkers, J.E.J.; de Windt, Th.S.; Brittberg, M.

    2012-01-01

    The prevalence of focal articular cartilage lesions among athletes is higher than in the general population. Treatment goals differ considerably between the professional and recreational athlete. High financial stakes and the short duration of a professional career influence the treatment selection for the professional athlete, while such parameters weigh differently in recreational sports. This article describes our investigation of the relation between sports and a high prevalence of focal cartilage lesions. In addition, we provide a critical review of the best available evidence for cartilage surgery and treatment selection, evaluate specific patient profiles for professional and recreational athletes, and propose a treatment algorithm for the treatment of focal cartilage lesions in football (soccer) players. PMID:26069606

  20. Vascular Canals in Permanent Hyaline Cartilage: Development, Corrosion of Nonmineralized Cartilage Matrix, and Removal of Matrix Degradation Products.

    PubMed

    Gabner, Simone; Häusler, Gabriele; Böck, Peter

    2017-06-01

    Core areas in voluminous pieces of permanent cartilage are metabolically supplied via vascular canals (VCs). We studied cartilage corrosion and removal of matrix degradation products during the development of VCs in nose and rib cartilage of piglets. Conventional staining methods were used for glycosaminoglycans, immunohistochemistry was performed to demonstrate collagens types I and II, laminin, Ki-67, von Willebrand factor, VEGF, macrophage marker MAC387, S-100 protein, MMPs -2,-9,-13,-14, and their inhibitors TIMP1 and TIMP2. VCs derived from connective tissue buds that bulged into cartilage matrix ("perichondrial papillae", PPs). Matrix was corroded at the tips of PPs or resulting VCs. Connective tissue stromata in PPs and VCs comprised an axial afferent blood vessel, peripherally located wide capillaries, fibroblasts, newly synthesized matrix, and residues of corroded cartilage matrix (collagen type II, acidic proteoglycans). Multinucleated chondroclasts were absent, and monocytes/macrophages were not seen outside the blood vessels. Vanishing acidity characterized areas of extracellular matrix degradation ("preresorptive layers"), from where the dismantled matrix components diffused out. Leached-out material stained in an identical manner to intact cartilage matrix. It was detected in the stroma and inside capillaries and associated downstream veins. We conclude that the delicate VCs are excavated by endothelial sprouts and fibroblasts, whilst chondroclasts are specialized to remove high volumes of mineralized cartilage. VCs leading into permanent cartilage can be formed by corrosion or inclusion, but most VCs comprise segments that have developed in either of these ways. Anat Rec, 300:1067-1082, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Satisfactory surgical option for cartilage graft absorption in microtia reconstruction.

    PubMed

    Han, So-Eun; Oh, Kap Sung

    2016-04-01

    We routinely perform auricular elevation at least 6 months after implantation of framework in microtia reconstruction using costal cartilage. However, in a few cases, cartilage graft absorption has occurred, which has led to contour irregularity with unfavorable long-term results. In the present study, we recount the details of using additional rib cartilage augmentation to achieve an accentuated contour in cartilage graft absorption cases. The cartilage graft absorption was defined as contour irregularity or cartilage graft deformation as evaluated by the surgeon and patient. Depending on the extent of cartilage graft absorption, another rib cartilage framework was added to the previously implanted framework, targeting the absorption area. We used banked cartilage or harvested new cartilage based on three-dimensional rib computed tomography. Additional recontouring of framework was conducted in eight patients who were examined for cartilage graft absorption from 1.5 to 5 years after implantation of the framework. Four patients received additional rib cartilage augmentation and tissue expander insertion simultaneously prior to auricular elevation. Two patients underwent auricular elevation simultaneously. In another two patients, additional rib cartilage augmentation was performed before auricular elevation. The mean follow-up period was 18 months, and in all cases reconstructive results were acceptable. Although further follow-up evaluation is required, additional rib cartilage augmentation is an attractive surgical option for cartilage graft absorption cases. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  2. Early osteoarthritis of the knee.

    PubMed

    Madry, Henning; Kon, Elizaveta; Condello, Vincenzo; Peretti, Giuseppe M; Steinwachs, Matthias; Seil, Romain; Berruto, Massimo; Engebretsen, Lars; Filardo, Giuseppe; Angele, Peter

    2016-06-01

    There is an increasing awareness on the importance in identifying early phases of the degenerative processes in knee osteoarthritis (OA), the crucial period of the disease when there might still be the possibility to initiate treatments preventing its progression. Early OA may show a diffuse and ill-defined involvement, but also originate in the cartilage surrounding a focal lesion, thus necessitating a separate assessment of these two entities. Early OA can be considered to include a maximal involvement of 50 % of the cartilage thickness based on the macroscopic ICRS classification, reflecting an OARSI grade 4. The purpose of this paper was to provide an updated review of the current status of the diagnosis and definition of early knee OA, including the clinical, radiographical, histological, MRI, and arthroscopic definitions and biomarkers. Based on current evidence, practical classification criteria are presented. As new insights and technologies become available, they will further evolve to better define and treat early knee OA.

  3. [Operative treatment strategies for multiple trauma patients : early total care versus damage control].

    PubMed

    Klüter, T; Lippross, S; Oestern, S; Weuster, M; Seekamp, A

    2013-09-01

    The treatment of multiple trauma patients is a great challenge for an interdisciplinary team. After preclinical care and subsequent treatment in the emergency room the order of the interventions is prioritized depending of the individual risk stratification. For planning the surgery management it is essential to distinguish between absolutely essential operations to prevent life-threatening situations for the patient and interventions with shiftable indications, depending on the general condition of the patient. All interventions need to be done without causing significant secondary damage to prohibit hyperinflammation and systemic inflammatory response syndrome. The challenge consists in determination of the appropriate treatment at the right point in time. In general the early primary intervention, early total care, is differentiated from the damage control concept.

  4. Harnessing biomechanics to develop cartilage regeneration strategies.

    PubMed

    Athanasiou, Kyriacos A; Responte, Donald J; Brown, Wendy E; Hu, Jerry C

    2015-02-01

    As this review was prepared specifically for the American Society of Mechanical Engineers H.R. Lissner Medal, it primarily discusses work toward cartilage regeneration performed in Dr. Kyriacos A. Athanasiou's laboratory over the past 25 years. The prevalence and severity of degeneration of articular cartilage, a tissue whose main function is largely biomechanical, have motivated the development of cartilage tissue engineering approaches informed by biomechanics. This article provides a review of important steps toward regeneration of articular cartilage with suitable biomechanical properties. As a first step, biomechanical and biochemical characterization studies at the tissue level were used to provide design criteria for engineering neotissues. Extending this work to the single cell and subcellular levels has helped to develop biochemical and mechanical stimuli for tissue engineering studies. This strong mechanobiological foundation guided studies on regenerating hyaline articular cartilage, the knee meniscus, and temporomandibular joint (TMJ) fibrocartilage. Initial tissue engineering efforts centered on developing biodegradable scaffolds for cartilage regeneration. After many years of studying scaffold-based cartilage engineering, scaffoldless approaches were developed to address deficiencies of scaffold-based systems, resulting in the self-assembling process. This process was further improved by employing exogenous stimuli, such as hydrostatic pressure, growth factors, and matrix-modifying and catabolic agents, both singly and in synergistic combination to enhance neocartilage functional properties. Due to the high cell needs for tissue engineering and the limited supply of native articular chondrocytes, costochondral cells are emerging as a suitable cell source. Looking forward, additional cell sources are investigated to render these technologies more translatable. For example, dermis isolated adult stem (DIAS) cells show potential as a source of

  5. Cellular and Acellular Approaches for Cartilage Repair

    PubMed Central

    2015-01-01

    There are several choices of cells to use for cartilage repair. Cells are used as internal or external sources and sometimes in combination. In this article, an analysis of the different cell choices and their use and potential is provided. Embryonic cartilage formation is of importance when finding more about how to be able to perfect cartilage repair. Some suggestions for near future research based on up-to-date knowledge on chondrogenic cells are given to hopefully stimulate more studies on the final goal of cartilage regeneration. PMID:27340516

  6. Total-Body Irradiation Produces Late Degenerative Joint Damage in Rats

    PubMed Central

    Hutchinson, Ian D.; Olson, John; Lindburg, Carl A.; Payne, Valerie; Collins, Boyce; Smith, Thomas L.; Munley, Michael T.; Wheeler, Kenneth T.; Willey, Jeffrey S.

    2014-01-01

    Purpose Premature musculoskeletal joint failure is a major source of morbidity among childhood cancer survivors. Radiation effects on synovial joint tissues of the skeleton are poorly understood. Our goal was to assess long-term changes in the knee joint from skeletally mature rats that received total-body irradiation while skeletal growth was ongoing. Materials and Methods 14 week-old rats were irradiated with 1, 3 or 7 Gy total-body doses of 18 MV x-rays. At 53 weeks of age, structural and compositional changes in knee joint tissues (articular cartilage, subchondral bone, and trabecular bone) were characterized using 7T MRI, nanocomputed tomography (nanoCT), microcomputed tomography (microCT), and histology. Results T2 relaxation times of the articular cartilage were lower after exposure to all doses. Likewise, calcifications were observed in the articular cartilage. Trabecular bone microarchitecture was compromised in the tibial metaphysis at 7 Gy. Mild to moderate cartilage erosion was scored in the 3 and 7 Gy rats. Conclusions Late degenerative changes in articular cartilage and bone were observed after total body irradiation in adult rats exposed prior to skeletal maturity. 7T MRI, microCT, nanoCT, and histology identified potential prognostic indicators of late radiation-induced joint damage. PMID:24885745

  7. Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration.

    PubMed

    Almeida, H V; Eswaramoorthy, R; Cunniffe, G M; Buckley, C T; O'Brien, F J; Kelly, D J

    2016-05-01

    Freshly isolated stromal cells can potentially be used as an alternative to in vitro expanded cells in regenerative medicine. Their use requires the development of bioactive hydrogels or scaffolds which provide an environment to enhance their proliferation and tissue-specific differentiation in vivo. The goal of the current study was to develop an injectable fibrin hydrogel functionalized with cartilage ECM microparticles and transforming growth factor (TGF)-β3 as a putative therapeutic for articular cartilage regeneration. ECM microparticles were produced by cryomilling and freeze-drying porcine articular cartilage. Up to 2% (w/v) ECM could be incorporated into fibrin without detrimentally affecting its capacity to form stable hydrogels. To access the chondroinductivity of cartilage ECM, we compared chondrogenesis of infrapatellar fat pad-derived stem cells in fibrin hydrogels functionalized with either particulated ECM or control gelatin microspheres. Cartilage ECM particles could be used to control the delivery of TGF-β3 to IFP-derived stem cells within fibrin hydrogels in vitro, and furthermore, led to higher levels of sulphated glycosaminoglycan (sGAG) and collagen accumulation compared to control constructs loaded with gelatin microspheres. In vivo, freshly isolated stromal cells generated a more cartilage-like tissue within fibrin hydrogels functionalized with cartilage ECM particles compared to the control gelatin loaded constructs. These tissues stained strongly for type II collagen and contained higher levels of sGAGs. These results support the use of fibrin hydrogels functionalized with cartilage ECM components in single-stage, cell-based therapies for joint regeneration. An alternative to the use of in vitro expanded cells in regenerative medicine is the use of freshly isolated stromal cells, where a bioactive scaffold or hydrogel is used to provide an environment that enhances their proliferation and tissue-specific differentiation in vivo. The

  8. Validation of the ultrasonographic assessment of the femoral trochlea epiphyseal cartilage in foals at osteochondrosis predilected sites with magnetic resonance imaging and histology.

    PubMed

    Martel, G; Forget, C; Gilbert, G; Richard, H; Moser, T; Olive, J; Laverty, S

    2017-11-01

    Noninvasive imaging tools are needed to screen foal femoropatellar joints to detect subclinical osteochondrosis lesions due to focal failure of endochondral ossification to enhance early management to optimise intrinsic healing events. Recently investigations employing 3T susceptibility-weighted magnetic resonance imaging (3T SWI MRI) and CT have demonstrated their capacity for early osteochondrosis diagnosis, but these technologies are not practical for field screening. We postulate that ultrasonography is a valuable field tool for the detection of subclinical osteochondrosis lesions. The goals were to 1) describe the ultrasonographic features of the femoral trochlea of healthy and osteochondrosis-predisposed neonatal foals, 2) validate the capacity of ultrasound to assess cartilage canal vascular archictecture and the ossification front and 3) evaluate field feasibility in a pilot study. Experimental study. Ultrasonographic evaluation of osteochondrosis predisposed (n = 10) and control (n = 6) femoral trochleas was performed ex vivo and compared with site-matched histological sections and 3T SWI MRI. The articular and epiphyseal cartilage thickness, ossification front indentation and cartilage canal vascular archictecture were assessed at each ROI. Femoral trochleae of foals (n = 3) aged ≈ 1, 3 and 6 months were also evaluated with ultrasonography in field. Ultrasonographic measurements strongly correlated with the histological measurements. There was no difference in the cartilage thickness or ossification front indentation between control and osteochondrosis-predisposed specimens. The cartilage canal vascular archictecture on ultrasonograms corresponded with the vessel pattern observed on site matched histology and 3T SWI MRI. The number of specimens for study was limited and no early osteochondrosis lesions were present within the predilected group, but a field study is now underway. Ultrasonographic examination of the femoral trochlea permitted accurate

  9. Extracellular-Matrix-Based and Arg-Gly-Asp–Modified Photopolymerizing Hydrogels for Cartilage Tissue Engineering

    PubMed Central

    Kim, Hwan D.; Heo, Jiseung; Hwang, Yongsung; Kwak, Seon-Yeong; Park, Ok Kyu; Kim, Hyunbum; Varghese, Shyni

    2015-01-01

    Articular cartilage damage is a persistent and increasing problem with the aging population. Strategies to achieve complete repair or functional restoration remain a challenge. Photopolymerizing-based hydrogels have long received an attention in the cartilage tissue engineering, due to their unique bioactivities, flexible method of synthesis, range of constituents, and desirable physical characteristics. In the present study, we have introduced unique bioactivity within the photopolymerizing-based hydrogels by copolymerizing polyethylene glycol (PEG) macromers with methacrylated extracellular matrix (ECM) molecules (hyaluronic acid and chondroitin sulfate [CS]) and integrin binding peptides (RGD peptide). Results indicate that cellular morphology, as observed by the actin cytoskeleton structures, was strongly dependent on the type of ECM component as well as the presence of integrin binding moieties. Further, CS-based hydrogel with integrin binding RGD moieties increased the lubricin (or known as superficial zone protein [SZP]) gene expression of the encapsulated chondrocytes. Additionally, CS-based hydrogel displayed cell-responsive degradation and resulted in increased DNA, GAG, and collagen accumulation compared with other hydrogels. This study demonstrates that integrin-mediated interactions within CS microenvironment provide an optimal hydrogel scaffold for cartilage tissue engineering application. PMID:25266634

  10. Raman microspectrometry of laser-reshaped rabbit auricular cartilage: preliminary study on laser-induced cartilage mineralization

    NASA Astrophysics Data System (ADS)

    Heger, Michal; Mordon, Serge R.; Leroy, Gérard; Fleurisse, Laurence; Creusy, Collette

    2006-03-01

    Laser-assisted cartilage reshaping (LACR) is a relatively novel technique designed to noninvasively and permanently restructure cartilaginous tissue. It is believed that heat-induced stress relaxation, in which a temperature-mediated disruption of H2O binding is associated with conformational alterations in the proteoglycan and collagen-rich matrix, constitutes the underlying mechanism of LACR. Several reports have suggested that laser-mediated cartilage mineralization may contribute to the permanent shape change of laser-reshaped cartilage. In an effort to validate these results in the context of Er:glass LACR, we performed a preliminary Raman microspectrometric study to characterize the crystal deposits in laser-irradiated chondrocytes and extracellular matrix. For the first time, we identified intracellular calcium sulfate deposits and extracellular calcium phosphate (apatite) crystals in laser-reshaped rabbit auricular cartilage. Calcium carbonate deposits are localized in both irradiated and nonirradiated samples, suggesting that this mineral plays no role in conformational retention. In our discussion, we elaborate on the possible molecular and cellular mechanisms responsible for intra- and extracellular crystallization, and propose a novel hypothesis on the formation of apatite, inasmuch as the biological function of this mineral (providing structure and rigidity in bones and dental enamel) may be extrapolated to the permanent shape change of laser-irradiated cartilage.

  11. Chondrocyte and Mesenchymal Stem Cell Derived Engineered Cartilage Exhibits Differential Sensitivity to Pro-Inflammatory Cytokines.

    PubMed

    Mohanraj, Bhavana; Huang, Alice H; Yeger-McKeever, Meira J; Schmidt, Megan J; Dodge, George R; Mauck, Robert L

    2018-05-29

    Tissue engineering is a promising approach for the repair of articular cartilage defects, with engineered constructs emerging that match native tissue properties. However, the inflammatory environment of the damaged joint might compromise outcomes, and this may be impacted by the choice of cell source in terms of their ability to operate anabolically in an inflamed environment. Here, we compared the response of engineered cartilage derived from native chondrocytes and mesenchymal stem cells (MSCs) to challenge by TNFα and IL-1β in order to determine if either cell type possessed an inherent advantage. Compositional (extracellular matrix) and functional (mechanical) characteristics, as well as the release of catabolic mediators (matrix metalloproteinases (MMPs), nitric oxide (NO)) were assessed to determine cell- and tissue- level changes following exposure to IL-1β or TNF-α. Results demonstrated that MSC-derived constructs were more sensitive to inflammatory mediators than chondrocyte-derived constructs, exhibiting a greater loss of proteoglycans and functional properties at lower cytokine concentrations. While MSCs and chondrocytes both have the capacity to form functional engineered cartilage in vitro, this study suggests that the presence of an inflammatory environment is more likely to impair the in vivo success of MSC-derived cartilage repair. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Ultrasound elastography to determine the layered mechanical properties of articular cartilage and the importance of such structural characteristics under load.

    PubMed

    McCredie, Alexandra J; Stride, Eleanor; Saffari, Nader

    2009-01-01

    Articular cartilage is an important load bearing surface in joints. Prone to damage and with limited self-repair ability, it is of interest to tissue engineers. Tissue implant design requires full mechanical characterisation of healthy native tissue. A layered organisation of reinforcing collagen fibrils exists in healthy articular cartilage and is believed to be important for correct tissue function. However, the effect of this on the local depth-dependent elasticity is poorly characterised. In this study, quasi-static ultrasound elastography is used both to compare the depth-dependent elastic properties of cartilage structures with two different fibril arrangements and to monitor changes in the elastic properties of engineered samples during development. Results show global and local elastic properties of the native tissues and highlight the differences caused by fibril architecture. At increasing culture periods, results from the engineered tissue demonstrate an increase in elastic stiffness and the time taken to reach equilibrium under a quasi-static displacement. The study suggests suitability of ultrasound elastography for design and monitoring engineered articular cartilage.

  13. Magnetic resonance imaging of cartilage repair.

    PubMed

    Potter, Hollis G; Chong, Le Roy; Sneag, Darryl B

    2008-12-01

    Magnetic resonance imaging is an important noninvasive modality in characterizing cartilage morphology, biochemistry, and function. It serves as a valuable objective outcome measure in diagnosing pathology at the time of initial injury, guiding surgical planning, and evaluating postsurgical repair. This article reviews the current literature addressing the recent advances in qualitative and quantitative magnetic resonance imaging techniques in the preoperative setting, and in patients who have undergone cartilage repair techniques such as microfracture, autologous cartilage transplantation, or osteochondral transplantation.

  14. Effect of intra-articular administration of superparamagnetic iron oxide nanoparticles (SPIONs) for MRI assessment of the cartilage barrier in a large animal model

    PubMed Central

    Hall, Sarah; Xia, Xin-Rui; Schwarz, Tobias

    2017-01-01

    Early diagnosis of cartilage disease at a time when changes are limited to depletion of extracellular matrix components represents an important diagnostic target to reduce patient morbidity. This report is to present proof of concept for nanoparticle dependent cartilage barrier imaging in a large animal model including the use of clinical magnetic resonance imaging (MRI). Conditioned (following matrix depletion) and unconditioned porcine metacarpophalangeal cartilage was evaluated on the basis of fluorophore conjugated 30 nm and 80 nm spherical gold nanoparticle permeation and multiphoton laser scanning and bright field microscopy after autometallographic particle enhancement. Consequently, conditioned and unconditioned joints underwent MRI pre- and post-injection with 12 nm superparamagnetic iron oxide nanoparticles (SPIONs) to evaluate particle permeation in the context of matrix depletion and use of a clinical 1.5 Tesla MRI scanner. To gauge the potential pro-inflammatory effect of intra-articular nanoparticle delivery co-cultures of equine synovium and cartilage tissue were exposed to an escalating dose of SPIONs and IL-6, IL-10, IFN-γ and PGE2 were assessed in culture media. The chemotactic potential of growth media samples was subsequently assessed in transwell migration assays on isolated equine neutrophils. Results demonstrate an increase in MRI signal following conditioning of porcine joints which suggests that nanoparticle dependent compositional cartilage imaging is feasible. Tissue culture and neutrophil migration assays highlight a dose dependent inflammatory response following SPION exposure which at the imaging dose investigated was not different from controls. The preliminary safety and imaging data support the continued investigation of nanoparticle dependent compositional cartilage imaging. To our knowledge, this is the first report in using SPIONs as intra-articular MRI contrast agent for studying cartilage barrier function, which could

  15. Development of methods for analysis of knee articular cartilage degeneration by magnetic resonance imaging data

    NASA Astrophysics Data System (ADS)

    Suponenkovs, Artjoms; Glazs, Aleksandrs; Platkajis, Ardis

    2017-03-01

    The aim of this paper is to describe the new methods for analyzing knee articular cartilage degeneration. The most important aspects regarding research about magnetic resonance imaging, knee joint anatomy, stages of knee osteoarthritis, medical image segmentation and relaxation times calculation. This paper proposes new methods for relaxation times calculation and medical image segmentation. The experimental part describes the most important aspect regarding analysing of articular cartilage relaxation times changing. This part contains experimental results, which show the codependence between relaxation times and organic structure. These experimental results and proposed methods can be helpful for early osteoarthritis diagnostics.

  16. Management of chest deformity caused by microtia reconstruction: Comparison of autogenous diced cartilage versus cadaver cartilage graft partial filling techniques.

    PubMed

    Go, Ju Young; Kang, Bo Young; Hwang, Jin Hee; Oh, Kap Sung

    2017-01-01

    Efforts to prevent chest wall deformity after costal cartilage graft are ongoing. In this study, we introduce a new method to prevent donor site deformation using irradiated cadaver cartilage (ICC) and compare this method to the autogenous diced cartilage (ADC) technique. Forty-two pediatric patients comprised the ADC group (n = 24) and the ICC group (n = 18). After harvesting costal cartilage, the empty perichondrial space was filled with autologous diced cartilage in the ADC group and cadaver cartilage in the ICC group. Digital photographs and rib cartilage three-dimensional computed tomography (CT) data were analyzed to compare the preventive effect of donor site deformity. We compared the pre- and postoperative costal cartilage volumes using 3D-CT and graded the volumes (grade I: 0%-25%, grade II: 25%-50%, grade III: 50%-75%, and grade IV: 75%-100%). The average follow-up period was 20 and 24 months in the ADC and ICC groups, respectively. Grade IV maintenance of previous costal cartilage volume was evident postoperatively in 22% of patients in the ADC group and 82% of patients in the ICC group. Intercostal space narrowing and chest wall depression were less in the ICC group. There were no complications or severe resorption of cadaver cartilage. ICC support transected costal ring and prevented stability loss by acting as a spacer. The ICC technique is more effective in preventing intercostal space narrowing and chest wall depression than the ADC technique. Samsung Medical Center Institution Review Board, Unique protocol ID: 2009-10-006-008. This study is also registered on PRS (ClinicalTrials.gov Record 2009-10-006). Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  17. Semi-automatic knee cartilage segmentation

    NASA Astrophysics Data System (ADS)

    Dam, Erik B.; Folkesson, Jenny; Pettersen, Paola C.; Christiansen, Claus

    2006-03-01

    Osteo-Arthritis (OA) is a very common age-related cause of pain and reduced range of motion. A central effect of OA is wear-down of the articular cartilage that otherwise ensures smooth joint motion. Quantification of the cartilage breakdown is central in monitoring disease progression and therefore cartilage segmentation is required. Recent advances allow automatic cartilage segmentation with high accuracy in most cases. However, the automatic methods still fail in some problematic cases. For clinical studies, even if a few failing cases will be averaged out in the overall results, this reduces the mean accuracy and precision and thereby necessitates larger/longer studies. Since the severe OA cases are often most problematic for the automatic methods, there is even a risk that the quantification will introduce a bias in the results. Therefore, interactive inspection and correction of these problematic cases is desirable. For diagnosis on individuals, this is even more crucial since the diagnosis will otherwise simply fail. We introduce and evaluate a semi-automatic cartilage segmentation method combining an automatic pre-segmentation with an interactive step that allows inspection and correction. The automatic step consists of voxel classification based on supervised learning. The interactive step combines a watershed transformation of the original scan with the posterior probability map from the classification step at sub-voxel precision. We evaluate the method for the task of segmenting the tibial cartilage sheet from low-field magnetic resonance imaging (MRI) of knees. The evaluation shows that the combined method allows accurate and highly reproducible correction of the segmentation of even the worst cases in approximately ten minutes of interaction.

  18. Human acellular cartilage matrix powders as a biological scaffold for cartilage tissue engineering with synovium-derived mesenchymal stem cells.

    PubMed

    Chang, Chih-Hung; Chen, Chia-Chun; Liao, Cheng-Hao; Lin, Feng-Huei; Hsu, Yuan-Ming; Fang, Hsu-Wei

    2014-07-01

    In our previous study, we found that cartilage fragments from osteoarthritic knee promoted chondrogenesis of mesenchymal stem cells. In this study, we further transformed the cartilage tissues into acellular cartilage matrix (ACM) and explored the feasibility of using ACM as a biological scaffold. Nonworn parts of cartilage tissues were obtained during total knee arthroplasty (TKA) surgery and were successfully fabricated into ACM powders. The ACM powders and human synovium-derived mesenchymal stem cells (SMSCs) were mixed into collagen gel for in vitro culture. Histological results showed a synergistic effect of ACM powders and chondrogenic growth factors in the formation of engineered cartilage. The findings of real-time polymerase chain reaction (PCR) suggested that ACM powders had the potential of promoting type II collagen gene expression in the growth factors-absent environment. Moreover, with growth factors induction, the ACM powders could reduce the hypertrophy in chondrogenesis of SMSCs. In summary, ACM powders could serve as a functional scaffold that benefited the chondrogenesis of SMSCs for cartilage tissue engineering. © 2013 Wiley Periodicals, Inc.

  19. The amphoteric effect on friction between the bovine cartilage/cartilage surfaces under slightly sheared hydration lubrication mode.

    PubMed

    Pawlak, Zenon; Gadomski, Adam; Sojka, Michal; Urbaniak, Wieslaw; Bełdowski, Piotr

    2016-10-01

    The amphoteric effect on the friction between the bovine cartilage/cartilage contacts has been found to be highly sensitive to the pH of an aqueous solution. The cartilage surface was characterized using a combination of the pH, wettability, as well as the interfacial energy and friction coefficient testing methods to support lamellar-repulsive mechanism of hydration lubrication. It has been confirmed experimentally that phospholipidic multi-bilayers are essentially described as lamellar frictionless lubricants protecting the surface of the joints against wear. At the hydrophilicity limit, the low friction would then be due to (a) lamellar slippage of bilayers and (b) a short-range (nanometer-scale) repulsion between the interfaces of negatively charged (PO4(-)) cartilage surfaces, and in addition, contribution of the extracellular matrix (ECM) collagen fibers, hyaluronate, proteoglycans aggregates (PGs), glycoprotein termed lubricin and finally, lamellar PLs phases. In this paper we demonstrate experimentally that the pH sensitivity of cartilage to friction provides a novel concept in joint lubrication on charged surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. [A Comparison Study on Early Damage Detection of Left Ventricular Function Based on Doppler Imaging Method for Children with Tumor].

    PubMed

    Liu, Ying; Zhang, Haowei; Zhang, Hang

    2015-12-01

    The early damage detection and evaluation are of great significance in treatment and prognosis to the left ventricular function for children with tumor. In this paper, it is reported that the early damage of the left ventricular function was observed by pulsed wave Doppler (PWD) and tissue Doppler imaging (TDI) in our laboratory. Eighty children half a year to fourteen years old were included in this study. The cardiac function indices in chemotherapy group and control group were measured and compared. The results showed that there was significant difference in mitral and tricuspid annulus flow spectrum between the two groups. Compared with PWD,TDI is more prompt, objective and accurate in detecting early damage of left ventricular function in children with tumor. And TDI is a good method for early identification of ventricular function damage in children with tumor.

  1. Reviewing subchondral cartilage surgery: considerations for standardised and outcome predictable cartilage remodelling: a technical note.

    PubMed

    Benthien, Jan P; Behrens, Peter

    2013-11-01

    The potential of subchondral mesenchymal stem cell stimulation (MSS) for cartilage repair has led to the widespread use of microfracture as a first line treatment for full thickness articular cartilage defects. Recent focus on the effects of subchondral bone during cartilage injury and repair has expanded the understanding of the strengths and limitations in MSS and opened new pathways for potential improvement. Comparative studies have shown that bone marrow access has positive implications for pluripotential cell recruitment, repair quality and quantity, i.e. deeper channels elicited better cartilage fill, more hyaline cartilage character with higher type II collagen content and lower type I collagen content compared to shallow marrow access. A subchondral needling procedure using standardised and thin subchondral perforations deep into the subarticular bone marrow making the MSS more consistent with the latest developments in subchondral cartilage remodelling is proposed. As this is a novel method clinical studies have been initiated to evaluate the procedure especially compared to microfracturing. However, the first case studies and follow-ups indicate that specific drills facilitate reaching the subchondral bone marrow while the needle size makes perforation of the subchondral bone easier and more predictable. Clinical results of the first group of patients seem to compare well to microfracturing. The authors suggest a new method for a standardised procedure using a new perforating device. Advances in MSS by subchondral bone marrow perforation are discussed. It remains to be determined by clinical studies how this method compares to microfracturing. The subchondral needling offers the surgeon and the investigator a method that facilitates comparison studies because of its defined depth of subchondral penetration and needle size.

  2. FK506 protects against articular cartilage collagenous extra-cellular matrix degradation.

    PubMed

    Siebelt, M; van der Windt, A E; Groen, H C; Sandker, M; Waarsing, J H; Müller, C; de Jong, M; Jahr, H; Weinans, H

    2014-04-01

    Osteoarthritis (OA) is a non-rheumatologic joint disease characterized by progressive degeneration of the cartilage extra-cellular matrix (ECM), enhanced subchondral bone remodeling, activation of synovial macrophages and osteophyte growth. Inhibition of calcineurin (Cn) activity through tacrolimus (FK506) in in vitro monolayer chondrocytes exerts positive effects on ECM marker expression. This study therefore investigated the effects of FK506 on anabolic and catabolic markers of osteoarthritic chondrocytes in 2D and 3D in vitro cultures, and its therapeutic effects in an in vivo rat model of OA. Effects of high and low doses of FK506 on anabolic (QPCR/histochemistry) and catabolic (QPCR) markers were evaluated in vitro on isolated (2D) and ECM-embedded chondrocytes (explants, 3D pellets). Severe cartilage damage was induced unilaterally in rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with FK506 orally and compared to twenty untreated controls. Subchondral cortical and trabecular bone changes (longitudinal microCT) and macrophage activation (SPECT/CT) were measured. Articular cartilage was analyzed ex vivo using contrast enhanced microCT and histology. FK506 treatment of osteoarthritic chondrocytes in vitro induced anabolic (mainly collagens) and reduced catabolic ECM marker expression. In line with this, FK506 treatment clearly protected ECM integrity in vivo by markedly decreasing subchondral sclerosis, less development of subchondral pores, depletion of synovial macrophage activation and lower osteophyte growth. FK506 protected cartilage matrix integrity in vitro and in vivo. Additionally, FK506 treatment in vivo reduced OA-like responses in different articular joint tissues and thereby makes Cn an interesting target for therapeutic intervention of OA. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  3. The rabbit costal cartilage reconstructive surgical model.

    PubMed

    Badran, Karam W; Waki, Curt; Hamamoto, Ashley; Manz, Ryan; Wong, Brian J F

    2014-02-01

    Rib grafts in facial plastic surgery are becoming more frequently used. Small animal models, although not ideal may be used to emulate costal cartilage-based procedures. A surgical characterization of this tissue will assist future research in the selection of appropriate costal segments, based on quantitative and qualitative properties. The objective of this study is to assess the surgical anatomy of the rabbit costal margin and evaluate costal cartilage for use in either in vivo or ex vivo studies and to examine reconstructive procedures. Detailed thoracic dissections of 21 New Zealand white rabbits were performed post-mortem. Costal cartilage of true, false, and floating ribs were harvested. The length, thickness, and width at proximal, medial, and distal locations of the cartilage, with perichondrium intact were measured. Further qualitative observation and digital images of curvature, flexibility, and segmental cross-sectional shape were recorded. The main outcome measure(s) is to characterize, describe, and assess the consistency of dimensions, location, and shape of costal cartilage. In this study, 12 to 13 ribs encase the thoracic cavity. Cartilage from true ribs has an average length, width, and depth of 23.75 ± 0.662, 3.02 ± 0.025, and 2.18 ± 0.018 mm, respectively. The cartilage from false ribs has an average length, width, and depth of 41.97 ± 1.48, 2.00 ± 0.07, 1.19 ± 0.03 mm, and that of floating ribs are 7.66 ± 0.29, 1.98 ± 0.04, and 0.96 ± 0.03 mm. Rib 8 is found to be the longest costal cartilage (49.10 ± 0.64 mm), with the widest and thickest at ribs 1 (3.91 ± 0.08 mm) and 6 (2.41 ± 0.11 mm), respectively. Cross-sectional segments reveal the distal cartilage to maintain an hourglass shape that broadens to become circular and eventually ovoid at the costochondral junction. The New Zealand white rabbit is a practical source of costal cartilage that is of sufficient size and

  4. Regenerative Repair of Damaged Meniscus with Autologous Adipose Tissue-Derived Stem Cells

    PubMed Central

    Pak, Jaewoo; Lee, Jung Hun; Lee, Sang Hee

    2014-01-01

    Mesenchymal stem cells (MSCs) are defined as pluripotent cells found in numerous human tissues, including bone marrow and adipose tissue. Such MSCs, isolated from bone marrow and adipose tissue, have been shown to differentiate into bone and cartilage, along with other types of tissues. Therefore, MSCs represent a promising new therapy in regenerative medicine. The initial treatment of meniscus tear of the knee is managed conservatively with nonsteroidal anti-inflammatory drugs and physical therapy. When such conservative treatment fails, an arthroscopic resection of the meniscus is necessary. However, the major drawback of the meniscectomy is an early onset of osteoarthritis. Therefore, an effective and noninvasive treatment for patients with continuous knee pain due to damaged meniscus has been sought. Here, we present a review, highlighting the possible regenerative mechanisms of damaged meniscus with MSCs (especially adipose tissue-derived stem cells (ASCs)), along with a case of successful repair of torn meniscus with significant reduction of knee pain by percutaneous injection of autologous ASCs into an adult human knee. PMID:24592390

  5. A simple in vitro culture system for tracheal cartilage development.

    PubMed

    Park, Jinhyung; Zhang, Jennifer J R; Choi, Ruth; Trinh, Irene; Kim, Peter C W

    2010-02-01

    Semi-circular tracheal cartilage is a critical determinant of maintaining architectural integrity of the respiratory airway. The current effort to understand the morphogenesis of tracheal cartilage is challenged by the lack of appropriate model systems. Here we report an in vitro tracheal cartilage system using embryonic tracheal–lung explants to recapitulate in vivo tracheal cartilage developmental processes. With modifications of a current lung culture protocol, we report a consistent in vitro technique of culturing tracheal cartilage from primitive mouse embryonic foregut for the first time. This tracheal culture system not only induces the formation of tracheal cartilage from the mouse embryonic foregut but also allows for the proper patterning of the developed tracheal cartilage. Furthermore, we show that this culture technique can be applied to culturing other types of cartilage in vertebrae, limbs, and ribs. We believe that this novel application of our in vitro culture system will facilitate the manipulation of cartilage development under various conditions and thus enabling us to advance our current limited knowledge on cartilage biology and development.

  6. Repair of injured articular and growth plate cartilage using mesenchymal stem cells and chondrogenic gene therapy.

    PubMed

    Xian, Cory J; Foster, Bruce K

    2006-05-01

    Injuries to the articular cartilage and growth plate are significant clinical problems due to their limited ability to regenerate themselves. Despite progress in orthopedic surgery and some success in development of chondrocyte transplantation treatment and in early tissue-engineering work, cartilage regeneration using a biological approach still remains a great challenge. In the last 15 years, researchers have made significant advances and tremendous progress in exploring the potentials of mesenchymal stem cells (MSCs) in cartilage repair. These include (a) identifying readily available sources of and devising appropriate techniques for isolation and culture expansion of MSCs that have good chondrogenic differentiation capability, (b) discovering appropriate growth factors (such as TGF-beta, IGF-I, BMPs, and FGF-2) that promote MSC chondrogenic differentiation, (c) identifying or engineering biological or artificial matrix scaffolds as carriers for MSCs and growth factors for their transplantation and defect filling. In addition, representing another new perspective for cartilage repair is the successful demonstration of gene therapy with chondrogenic growth factors or inflammatory inhibitors (either individually or in combination), either directly to the cartilage tissue or mediated through transducing and transplanting cultured chondrocytes, MSCs or other mesenchymal cells. However, despite these rapid pre-clinical advances and some success in engineering cartilage-like tissue and in repairing articular and growth plate cartilage, challenges of their clinical translation remain. To achieve clinical effectiveness, safety, and practicality of using MSCs for cartilage repair, one critical investigation will be to examine the optimal combination of MSC sources, growth factor cocktails, and supporting carrier matrixes. As more insights are acquired into the critical factors regulating MSC migration, proliferation and chondrogenic differentiation both ex vivo and in

  7. In vitro expansion impaired the stemness of early passage mesenchymal stem cells for treatment of cartilage defects

    PubMed Central

    Jiang, Tongmeng; Xu, Guojie; Wang, Qiuyan; Yang, Lihui; Zheng, Li; Zhao, Jinmin; Zhang, Xingdong

    2017-01-01

    In vitro cultured autologous mesenchymal stem cells (MSCs) within passage 5 have been approved for clinical application in stem cell-based treatment of cartilage defects. However, their chondrogenic potential has not yet been questioned or verified. In this study, the chondrogenic potential of bone marrow MSCs at passage 3 (P3 BMSCs) was investigated both in cartilage repair and in vitro, with freshly isolated bone marrow mononuclear cells (BMMNCs) as controls. The results showed that P3 BMSCs were inferior to BMMNCs not only in their chondrogenic differentiation ability but also as candidates for long-term repair of cartilage defects. Compared with BMMNCs, P3 BMSCs presented a decay in telomerase activity and a change in chromosomal morphology with potential anomalous karyotypes, indicating senescence. In addition, interindividual variability in P3 BMSCs is much higher than in BMMNCs, demonstrating genomic instability. Interestingly, remarkable downregulation in cell cycle, DNA replication and mismatch repair (MMR) pathways as well as in multiple genes associated with telomerase activity and chromosomal stability were found in P3 BMSCs. This result indicates that telomerase and chromosome anomalies might originate from expansion, leading to impaired stemness and pluripotency of stem cells. In vitro culture and expansion are not recommended for cell-based therapy, and fresh BMMNCs are the first choice. PMID:28569773

  8. Cartilage-targeting drug delivery: can electrostatic interactions help?

    PubMed

    Bajpayee, Ambika G; Grodzinsky, Alan J

    2017-03-01

    Current intra-articular drug delivery methods do not guarantee sufficient drug penetration into cartilage tissue to reach cell and matrix targets at the concentrations necessary to elicit the desired biological response. Here, we provide our perspective on the utilization of charge-charge (electrostatic) interactions to enhance drug penetration and transport into cartilage, and to enable sustained binding of drugs within the tissue's highly negatively charged extracellular matrix. By coupling drugs to positively charged nanocarriers that have optimal size and charge, cartilage can be converted from a drug barrier into a drug reservoir for sustained intra-tissue delivery. Alternatively, a wide variety of drugs themselves can be made cartilage-penetrating by functionalizing them with specialized positively charged protein domains. Finally, we emphasize that appropriate animal models, with cartilage thickness similar to that of humans, must be used for the study of drug transport and retention in cartilage.

  9. Exercise-driven metabolic pathways in healthy cartilage.

    PubMed

    Blazek, A D; Nam, J; Gupta, R; Pradhan, M; Perera, P; Weisleder, N L; Hewett, T E; Chaudhari, A M; Lee, B S; Leblebicioglu, B; Butterfield, T A; Agarwal, S

    2016-07-01

    Exercise is vital for maintaining cartilage integrity in healthy joints. Here we examined the exercise-driven transcriptional regulation of genes in healthy rat articular cartilage to dissect the metabolic pathways responsible for the potential benefits of exercise. Transcriptome-wide gene expression in the articular cartilage of healthy Sprague-Dawley female rats exercised daily (low intensity treadmill walking) for 2, 5, or 15 days was compared to that of non-exercised rats, using Affymetrix GeneChip arrays. Database for Annotation, Visualization and Integrated Discovery (DAVID) was used for Gene Ontology (GO)-term enrichment and Functional Annotation analysis of differentially expressed genes (DEGs). Kyoto Encyclopedia of Genes and Genome (KEGG) pathway mapper was used to identify the metabolic pathways regulated by exercise. Microarray analysis revealed that exercise-induced 644 DEGs in healthy articular cartilage. The DAVID bioinformatics tool demonstrated high prevalence of functional annotation clusters with greater enrichment scores and GO-terms associated with extracellular matrix (ECM) biosynthesis/remodeling and inflammation/immune response. The KEGG database revealed that exercise regulates 147 metabolic pathways representing molecular interaction networks for Metabolism, Genetic Information Processing, Environmental Information Processing, Cellular Processes, Organismal Systems, and Diseases. These pathways collectively supported the complex regulation of the beneficial effects of exercise on the cartilage. Overall, the findings highlight that exercise is a robust transcriptional regulator of a wide array of metabolic pathways in healthy cartilage. The major actions of exercise involve ECM biosynthesis/cartilage strengthening and attenuation of inflammatory pathways to provide prophylaxis against onset of arthritic diseases in healthy cartilage. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights

  10. Substrate porosity enhances chondrocyte attachment, spreading, and cartilage tissue formation in vitro.

    PubMed

    Spiteri, C G; Pilliar, R M; Kandel, R A

    2006-09-15

    Tissue engineering is being explored as a new approach to treat damaged cartilage. As the biomaterial used may influence tissue formation, the effects of substrate geometry on chondrocyte behavior in vitro were examined. Articular chondrocytes were isolated and cultured on the surface of smooth, rough, porous-coated, and fully porous Ti-6Al-4V substrates. The percentage of chondrocytes that attached to each substrate at 24 h was determined. After 24 and 72 h, chondrocytes were visualized by scanning electron microscopy and cell areas were measured. Collagen and proteoglycan accumulation within the first 24 h was determined by incorporation with [3H]-proline and [35S]-SO4, respectively. Chondrocyte attachment as well as matrix accumulation was enhanced as substrate surface area increased. Cell areas on the fully porous substrate were over four times greater than on any other substrate by 72 h in culture. After 8 weeks in culture, a continuous layer of cartilaginous tissue formed only on the surface of the fully porous substrate. This suggests that fully porous Ti-6Al-4V substrates provide the conditions that favor cartilage tissue formation by influencing cell attachment and extent of cell spreading. Understanding how substrate porosity influences chondrocyte behavior may help identify methods to further enhance cartilage tissue formation in vitro. 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006.

  11. Phase contrast imaging X-ray computed tomography: quantitative characterization of human patellar cartilage matrix with topological and geometrical features

    NASA Astrophysics Data System (ADS)

    Nagarajan, Mahesh B.; Coan, Paola; Huber, Markus B.; Diemoz, Paul C.; Wismüller, Axel

    2014-03-01

    Current assessment of cartilage is primarily based on identification of indirect markers such as joint space narrowing and increased subchondral bone density on x-ray images. In this context, phase contrast CT imaging (PCI-CT) has recently emerged as a novel imaging technique that allows a direct examination of chondrocyte patterns and their correlation to osteoarthritis through visualization of cartilage soft tissue. This study investigates the use of topological and geometrical approaches for characterizing chondrocyte patterns in the radial zone of the knee cartilage matrix in the presence and absence of osteoarthritic damage. For this purpose, topological features derived from Minkowski Functionals and geometric features derived from the Scaling Index Method (SIM) were extracted from 842 regions of interest (ROI) annotated on PCI-CT images of healthy and osteoarthritic specimens of human patellar cartilage. The extracted features were then used in a machine learning task involving support vector regression to classify ROIs as healthy or osteoarthritic. Classification performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). The best classification performance was observed with high-dimensional geometrical feature vectors derived from SIM (0.95 ± 0.06) which outperformed all Minkowski Functionals (p < 0.001). These results suggest that such quantitative analysis of chondrocyte patterns in human patellar cartilage matrix involving SIM-derived geometrical features can distinguish between healthy and osteoarthritic tissue with high accuracy.

  12. Cartilage can be thicker in advanced osteoarthritic knees: a tridimensional quantitative analysis of cartilage thickness at posterior aspect of femoral condyles.

    PubMed

    Omoumi, Patrick; Babel, Hugo; Jolles, Brigitte M; Favre, Julien

    2018-04-16

    To test, through tridimensional analysis, whether (1) cartilage thickness at the posterior aspect of femoral condyles differs in knees with medial femorotibial osteoarthritis (OA) compared to non-OA knees; (2) the location of the thickest cartilage at the posterior aspect of femoral condyles differs between OA and non-OA knees. CT arthrograms of knees without radiographic OA (n = 30) and with severe medial femorotibial OA (n = 30) were selected retrospectively from patients over 50 years of age. The groups did not differ in gender, age and femoral size. CT arthrograms were segmented to measure the mean cartilage thickness, the maximal cartilage thickness and its location in a region of interest at the posterior aspect of condyles. For the medial condyle, mean and maximum cartilage thicknesses were statistically significantly higher in OA knees compared to non-OA knees [1.66 vs 1.46 mm (p = 0.03) and 2.56 vs 2.14 mm (p = 0.003), respectively]. The thickest cartilage was located in the half most medial aspect of the posterior medial condyle for both groups, without significant difference between groups. For the lateral condyle, no statistically significant difference between non-OA and OA knees was found (p ≥ 0.17). Cartilage at the posterior aspect of the medial condyle, but not the lateral condyle, is statistically significantly thicker in advanced medial femorotibial OA knees compared to non-OA knees. The thickest cartilage was located in the half most medial aspect of the posterior medial condyle. These results will serve as the basis for future research to determine the histobiological processes involved in this thicker cartilage. Advances in knowledge: This study, through a quantitative tridimensional approach, shows that cartilage at the posterior aspect of the medial condyles is thicker in severe femorotibial osteoarthritic knees compared to non-OA knees. In the posterior aspect of the medial condyle, the thickest cartilage is located in the vicinity

  13. Transcriptional network systems in cartilage development and disease.

    PubMed

    Nishimura, Riko; Hata, Kenji; Nakamura, Eriko; Murakami, Tomohiko; Takahata, Yoshifumi

    2018-04-01

    Transcription factors play important roles in the regulation of cartilage development by controlling the expression of chondrogenic genes. Genetic studies have revealed that Sox9/Sox5/Sox6, Runx2/Runx3 and Osterix in particular are essential for the sequential steps of cartilage development. Importantly, these transcription factors form network systems that are also required for appropriate cartilage development. Molecular cloning approaches have largely contributed to the identification of several transcriptional partners for Sox9 and Runx2 during cartilage development. Although the importance of a negative-feedback loop between Indian hedgehog (Ihh) and parathyroid hormone-related protein (PTHrP) in chondrocyte hypertrophy has been well established, recent studies indicate that several transcription factors interact with the Ihh-PTHrP loop and demonstrated that Ihh has multiple functions in the regulation of cartilage development. The most common cartilage disorder, osteoarthritis, has been reported to result from the pathological action of several transcription factors, including Runx2, C/EBPβ and HIF-2α. On the other hand, NFAT family members appear to play roles in the protection of cartilage from osteoarthritis. It is also becoming important to understand the homeostasis and regulation of articular chondrocytes, because they have different cellular and molecular features from chondrocytes of the growth plate. This review summarizes the regulation and roles of transcriptional network systems in cartilage development and their pathological roles in osteoarthritis.

  14. From gristle to chondrocyte transplantation: treatment of cartilage injuries

    PubMed Central

    Lindahl, Anders

    2015-01-01

    This review addresses the progress in cartilage repair technology over the decades with an emphasis on cartilage regeneration with cell therapy. The most abundant cartilage is the hyaline cartilage that covers the surface of our joints and, due to avascularity, this tissue is unable to repair itself. The cartilage degeneration seen in osteoarthritis causes patient suffering and is a huge burden to society. The surgical approach to cartilage repair was non-existing until the 1950s when new surgical techniques emerged. The use of cultured cells for cell therapy started as experimental studies in the 1970s that developed over the years to a clinical application in 1994 with the introduction of the autologous chondrocyte transplantation technique (ACT). The technology is now spread worldwide and has been further refined by combining arthroscopic techniques with cells cultured on matrix (MACI technology). The non-regenerating hypothesis of cartilage has been revisited and we are now able to demonstrate cell divisions and presence of stem-cell niches in the joint. Furthermore, cartilage derived from human embryonic stem cells and induced pluripotent stem cells could be the base for new broader cell treatments for cartilage injuries and the future technology base for prevention and cure of osteoarthritis. PMID:26416680

  15. From gristle to chondrocyte transplantation: treatment of cartilage injuries.

    PubMed

    Lindahl, Anders

    2015-10-19

    This review addresses the progress in cartilage repair technology over the decades with an emphasis on cartilage regeneration with cell therapy. The most abundant cartilage is the hyaline cartilage that covers the surface of our joints and, due to avascularity, this tissue is unable to repair itself. The cartilage degeneration seen in osteoarthritis causes patient suffering and is a huge burden to society. The surgical approach to cartilage repair was non-existing until the 1950s when new surgical techniques emerged. The use of cultured cells for cell therapy started as experimental studies in the 1970s that developed over the years to a clinical application in 1994 with the introduction of the autologous chondrocyte transplantation technique (ACT). The technology is now spread worldwide and has been further refined by combining arthroscopic techniques with cells cultured on matrix (MACI technology). The non-regenerating hypothesis of cartilage has been revisited and we are now able to demonstrate cell divisions and presence of stem-cell niches in the joint. Furthermore, cartilage derived from human embryonic stem cells and induced pluripotent stem cells could be the base for new broader cell treatments for cartilage injuries and the future technology base for prevention and cure of osteoarthritis. © 2015 The Author(s).

  16. The Application of Sheet Technology in Cartilage Tissue Engineering.

    PubMed

    Ge, Yang; Gong, Yi Yi; Xu, Zhiwei; Lu, Yanan; Fu, Wei

    2016-04-01

    Cartilage tissue engineering started to act as a promising, even essential alternative method in the process of cartilage repair and regeneration, considering adult avascular structure has very limited self-renewal capacity of cartilage tissue in adults and a bottle-neck existed in conventional surgical treatment methods. Recent progressions in tissue engineering realized the development of more feasible strategies to treat cartilage disorders. Of these strategies, cell sheet technology has shown great clinical potentials in the regenerative areas such as cornea and esophagus and is increasingly considered as a potential way to reconstruct cartilage tissues for its non-use of scaffolds and no destruction of matrix secreted by cultured cells. Acellular matrix sheet technologies utilized in cartilage tissue engineering, with a sandwich model, can ingeniously overcome the drawbacks that occurred in a conventional acellular block, where cells are often blocked from migrating because of the non-nanoporous structure. Electrospun-based sheets with nanostructures that mimic the natural cartilage matrix offer a level of control as well as manipulation and make them appealing and widely used in cartilage tissue engineering. In this review, we focus on the utilization of these novel and promising sheet technologies to construct cartilage tissues with practical and beneficial functions.

  17. An overview of cartilage tissue engineering.

    PubMed

    Kim, H W; Han, C D

    2000-12-01

    Articular cartilage regeneration refers to the formation of new tissue that is indistinguishable from the native articular cartilage with respect to zonal organization, biochemical composition, and mechanical properties. Due to a limited capacity to repair cartilage, scar tissue frequently has a poorly organized structure and lacks the functional characteristics of normal cartilage. The degree of success to date achieved using a purely cell- or biological-based approach has been modest. Potentially the development of a hybrid strategy, whereby, chondrocytes or chondrogenic stem cells are combined with a matrix, making cartilage in vitro, which is then subsequently transplanted, offers a route towards a new successful treatment modality. The success of this approach depends upon the material being biocompatible, processable into a suitable three-dimensional structure and eventually biodegradable without harmful effects. In addition, the material should have a sufficient porosity to facilitate high cell loading and tissue ingrowth, and it should be able to support cell proliferation, differentiation, and function. The cell-polymer-bioreactor system provides a basis for studying the structural and functional properties of the cartilaginous matrix during its development, because tissue concentrations of glycosaminoglycan and collagen can be modulated by altering the conditions of tissue cultivation.

  18. PAPAIN-INDUCED CHANGES IN RABBIT CARTILAGE

    PubMed Central

    Tsaltas, Theodore T.

    1958-01-01

    Some biochemical aspects of the collapse of the rabbit ears produced by the intravenous injection of papain have been studied. A marked depletion of chondromucoprotein (M.C.S.) and a reduction of the S35 content of cartilage matrix were found to coincide with the gross and histologic changes in the cartilage. At the same time there was a marked increase in the amount of S35 in the serum and an increase of S35 and glucuronic acid excreted in the urine. Alteration in the composition of the M.C.S. remaining in the cartilage of the papain-injected animals was detected. The findings indicate that the collapse of the rabbit ears is due to loss of chondromucoprotein from cartilage and reduction of chondroitin sulfate in the chondromucoprotein that remains. All these changes were reversed in recovery. PMID:13575681

  19. [Developmental amnesia and early brain damage: neuropsychology and neuroimaging].

    PubMed

    Crespo-Eguilaz, N; Dominguez, P D; Vaquero, M; Narbona, J

    2018-03-01

    To contribute to neuropsychological profiling of developmental amnesia subsequent to bilateral damage to both hippocampi in early age. The total sample of 24 schoolchildren from both sexes is distributed in three groups: perinatal hypoxic-ischaemic encephalopathy and everyday complaints of memory in school age (n = 8); perinatal hypoxic-ischaemic encephalopathy without memory complaints (n = 7); and a group of typically developing (n = 9). All participants in every groups did have normal general intelligence and attention. Both clinical groups had, as another clinical consequence, spastic cerebral palsy (diplegia). Neuropsychological exam consisted on tests of general intelligence, attentional abilities, declarative memory and semantic knowledge. All participants had a brain magnetic resonance image and spectroscopy of hippocampi. Scheltens criteria were used for visual estimation of hippocampal atrophy. Parametric and non-parametric statistical contrasts were made. Despite preservation of semantic and procedural learning, declarative-episodic memory is impaired in the first group versus the other two groups. A significant proportion of bilateral hippocampal atrophy is only present in the first group versus the other two non-amnesic groups using Scheltens estimation on MRI. Two cases without evident atrophy did have diminished NAA/(Cho + Cr) index in both hippocampi. Taken together, these results contribute to delineate developmental amnesia as an specific impairment due to early partial bihippocampal damage, in agreement with previous studies. After diagnosis of developmental amnesia, a specific psychoeducational intervention must be made; also this impairment could be candidate for pharmacological trials in the future.

  20. Microscopic and histochemical manifestations of hyaline cartilage dynamics.

    PubMed

    Malinin, G I; Malinin, T I

    1999-01-01

    Structure and function of hyaline cartilages has been the focus of many correlative studies for over a hundred years. Much of what is known regarding dynamics and function of cartilage constituents has been derived or inferred from biochemical and electron microscopic investigations. Here we show that in conjunction with ultrastructural, and high-magnification transmission light and polarization microscopy, the well-developed histochemical methods are indispensable for the analysis of cartilage dynamics. Microscopically demonstrable aspects of cartilage dynamics include, but are not limited to, formation of the intracellular liquid crystals, phase transitions of the extracellular matrix and tubular connections between chondrocytes. The role of the interchondrocytic liquid crystals is considered in terms of the tensegrity hypothesis and non-apoptotic cell death. Phase transitions of the extracellular matrix are discussed in terms of self-alignment of chondrons, matrix guidance pathways and cartilage growth in the absence of mitosis. The possible role of nonenzymatic glycation reactions in cartilage dynamics is also reviewed.