Sample records for early cellular effects

  1. Early-life stress impacts the developing hippocampus and primes seizure occurrence: cellular, molecular, and epigenetic mechanisms

    PubMed Central

    Huang, Li-Tung

    2014-01-01

    Early-life stress includes prenatal, postnatal, and adolescence stress. Early-life stress can affect the development of the hypothalamic-pituitary-adrenal (HPA) axis, and cause cellular and molecular changes in the developing hippocampus that can result in neurobehavioral changes later in life. Epidemiological data implicate stress as a cause of seizures in both children and adults. Emerging evidence indicates that both prenatal and postnatal stress can prime the developing brain for seizures and an increase in epileptogenesis. This article reviews the cellular and molecular changes encountered during prenatal and postnatal stress, and assesses the possible link between these changes and increases in seizure occurrence and epileptogenesis in the developing hippocampus. In addititon, the priming effect of prenatal and postnatal stress for seizures and epileptogenesis is discussed. Finally, the roles of epigenetic modifications in hippocampus and HPA axis programming, early-life stress, and epilepsy are discussed. PMID:24574961

  2. Characterizing early molecular biomarkers of zinc-induced adaptive and adverseoxidative stress responses in human bronchial epithelial cells

    EPA Science Inventory

    Determining mechanism-based biomarkers that distinguish adaptive and adverse cellular processes is critical to understanding the health effects of environmental exposures. Here, we examined cellular responses of the tracheobronchial airway to zinc (Zn) exposure. A pharmacokinetic...

  3. Expression of voltage-activated calcium channels in the early zebrafish embryo.

    PubMed

    Sanhueza, Dayán; Montoya, Andro; Sierralta, Jimena; Kukuljan, Manuel

    2009-05-01

    Increases in cytosolic calcium concentrations regulate many cellular processes, including aspects of early development. Calcium release from intracellular stores and calcium entry through non-voltage-gated channels account for signalling in non-excitable cells, whereas voltage-gated calcium channels (CaV) are important in excitable cells. We report the expression of multiple transcripts of CaV, identified by its homology to other species, in the early embryo of the zebrafish, Danio rerio, at stages prior to the differentiation of excitable cells. CaV mRNAs and proteins were detected as early as the 2-cell stages, which indicate that they arise from both maternal and zygotic transcription. Exposure of embryos to pharmacological blockers of CaV does not perturb early development significantly, although late effects are appreciable. These results suggest that CaV may have a role in calcium homeostasis and control of cellular process during early embryonic development.

  4. Cyclophilin B facilitates the replication of Orf virus.

    PubMed

    Zhao, Kui; Li, Jida; He, Wenqi; Song, Deguang; Zhang, Ximu; Zhang, Di; Zhou, Yanlong; Gao, Feng

    2017-06-15

    Viruses interact with host cellular factors to construct a more favourable environment for their efficient replication. Expression of cyclophilin B (CypB), a cellular peptidyl-prolyl cis-trans isomerase (PPIase), was found to be significantly up-regulated. Recently, a number of studies have shown that CypB is important in the replication of several viruses, including Japanese encephalitis virus (JEV), hepatitis C virus (HCV) and human papillomavirus type 16 (HPV 16). However, the function of cellular CypB in ORFV replication has not yet been explored. Suppression subtractive hybridization (SSH) technique was applied to identify genes differentially expressed in the ORFV-infected MDBK cells at an early phase of infection. Cellular CypB was confirmed to be significantly up-regulated by quantitative reverse transcription-PCR (qRT-PCR) analysis and Western blotting. The role of CypB in ORFV infection was further determined using Cyclosporin A (CsA) and RNA interference (RNAi). Effect of CypB gene silencing on ORFV replication by 50% tissue culture infectious dose (TCID 50 ) assay and qRT-PCR detection. In the present study, CypB was found to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection. Cyclosporin A (CsA) exhibited suppressive effects on ORFV replication through the inhibition of CypB. Silencing of CypB gene inhibited the replication of ORFV in MDBK cells. In conclusion, these data suggest that CypB is critical for the efficient replication of the ORFV genome. Cellular CypB was confirmed to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection, which could effectively facilitate the replication of ORFV.

  5. Early-life estrogen exposure and uterine pathogenesis: ?A model for gene-environment interactions

    EPA Science Inventory

    Aberrant cellular differentiation early in life can contribute to increased cancer risk later in life. In a classic model of this effect, female mice exposed on postnatal day (PND) 1-5 to the synthetic estrogen diethylstilbestrol (DES) have a high incidence of uterine carcinoma. ...

  6. Gene expression profiling in the Cynomolgus macaque Macaca fascicularis shows variation within the normal birth range

    PubMed Central

    2011-01-01

    Background Although an adverse early-life environment has been linked to an increased risk of developing the metabolic syndrome, the molecular mechanisms underlying altered disease susceptibility as well as their relevance to humans are largely unknown. Importantly, emerging evidence suggests that these effects operate within the normal range of birth weights and involve mechanisms of developmental palsticity rather than pathology. Method To explore this further, we utilised a non-human primate model Macaca fascicularis (Cynomolgus macaque) which shares with humans the same progressive history of the metabolic syndrome. Using microarray we compared tissues from neonates in the average birth weight (50-75th centile) to those of lower birth weight (5-25th centile) and studied the effect of different growth trajectories within the normal range on gene expression levels in the umbilical cord, neonatal liver and skeletal muscle. Results We identified 1973 genes which were differentially expressed in the three tissue types between average and low birth weight animals (P < 0.05). Gene ontology analysis identified that these genes were involved in metabolic processes including cellular lipid metabolism, cellular biosynthesis, cellular macromolecule synthesis, cellular nitrogen metabolism, cellular carbohydrate metabolism, cellular catabolism, nucleotide and nucleic acid metabolism, regulation of molecular functions, biological adhesion and development. Conclusion These differences in gene expression levels between animals in the upper and lower percentiles of the normal birth weight range may point towards early life metabolic adaptations that in later life result in differences in disease risk. PMID:21999700

  7. Different effects of resveratrol on early and late passage mesenchymal stem cells through β-catenin regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Dong Suk; Choi, Yoorim; Choi, Seong Mi

    2015-11-27

    Resveratrol is a sirtuin 1 (SIRT1) activator and can function as an anti-inflammatory and antioxidant factor. In mesenchymal stem cells (MSCs), resveratrol enhances the proliferation and differentiation potential and has an anti-aging effect. However, contradictory effects of resveratrol on MSC cultures have been reported. In this study, we found that resveratrol had different effects on MSC cultures according to their cell passage and SIRT1 expression. Resveratrol enhanced the self-renewal potential and multipotency of early passage MSCs, but accelerated cellular senescence of late passage MSCs. In early passage MSCs expressing SIRT1, resveratrol decreased ERK and GSK-3β phosphorylation, suppressing β-catenin activity. Inmore » contrast, in late passage MSCs, which did not express SIRT1, resveratrol increased ERK and GSK-3β phosphorylation, activating β-catenin. We confirmed that SIRT1-deficient early passage MSCs treated with resveratrol lost their self-renewal potential and multipotency, and became senescent due to increased β-catenin activity. Sustained treatment with resveratrol at early passages maintained the self-renewal potential and multipotency of MSCs up to passage 10. Our findings suggest that resveratrol can be effectively applied to early passage MSC cultures, whereas parameters such as cell passage and SIRT1 expression must be taken into consideration before applying resveratrol to late passage MSCs. - Highlights: • Resveratrol enhances self-renewal potential and multipotency of early passage MSCs. • Resveratrol accelerates the cellular senescence of late passage MSCs. • The effects of resveratrol on MSCs are dependent on the presence of SIRT1. • SIRT1 modulates ERK/GSK-3β/β-catenin signaling. • Sustained resveratrol treatment maintains MSC stemness up to P10.« less

  8. Sex-dependent effects of nutrition on telomere dynamics in zebra finches (Taeniopygia guttata)

    PubMed Central

    Noguera, Jose C.; Metcalfe, Neil B.; Boner, Winnie; Monaghan, Pat

    2015-01-01

    At a cellular level, oxidative stress is known to increase telomere attrition, and hence cellular senescence and risk of disease. It has been proposed that dietary micronutrients play an important role in telomere protection due to their antioxidant properties. We experimentally manipulated dietary micronutrients during early life in zebra finches (Taeniopygia guttata). We found no effects of micronutrient intake on telomere loss during chick growth. However, females given a diet high in micronutrients during sexual maturation showed reduced telomere loss; there was no such effect in males. These results suggest that micronutrients may influence rates of cellular senescence, but differences in micronutrient requirement and allocation strategies, probably linked to the development of sexual coloration, may underlie sex differences in response. PMID:25716087

  9. Earlier Detection of Tumor Treatment Response Using Magnetic Resonance Diffusion Imaging with Oscillating Gradients

    PubMed Central

    Colvin, Daniel C.; Loveless, Mary E.; Does, Mark D.; Yue, Zou; Yankeelov, Thomas E.; Gore, John C.

    2011-01-01

    An improved method for detecting early changes in tumors in response to treatment, based on a modification of diffusion-weighted magnetic resonance imaging, has been demonstrated in an animal model. Early detection of therapeutic response in tumors is important both clinically and in pre-clinical assessments of novel treatments. Non-invasive imaging methods that can detect and assess tumor response early in the course of treatment, and before frank changes in tumor morphology are evident, are of considerable interest as potential biomarkers of treatment efficacy. Diffusion-weighted magnetic resonance imaging is sensitive to changes in water diffusion rates in tissues that result from structural variations in the local cellular environment, but conventional methods mainly reflect changes in tissue cellularity and do not convey information specific to micro-structural variations at sub-cellular scales. We implemented a modified imaging technique using oscillating gradients of the magnetic field for evaluating water diffusion rates over very short spatial scales that are more specific for detecting changes in intracellular structure that may precede changes in cellularity. Results from a study of orthotopic 9L gliomas in rat brains indicate that this method can detect changes as early as 24 hours following treatment with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), when conventional approaches do not find significant effects. These studies suggest that diffusion imaging using oscillating gradients may be used to obtain an earlier indication of treatment efficacy than previous magnetic resonance imaging methods. PMID:21190804

  10. Reviewing the current evidence supporting early B-cells as the cellular origin of Merkel cell carcinoma.

    PubMed

    Sauer, C M; Haugg, A M; Chteinberg, E; Rennspiess, D; Winnepenninckx, V; Speel, E-J; Becker, J C; Kurz, A K; Zur Hausen, A

    2017-08-01

    Merkel cell carcinoma (MCC) is a highly malignant skin cancer characterized by early metastases and poor survival. Although MCC is a rare malignancy, its incidence is rapidly increasing in the U.S. and Europe. The discovery of the Merkel cell polyomavirus (MCPyV) has enormously impacted our understanding of its etiopathogenesis and biology. MCCs are characterized by trilinear differentiation, comprising the expression of neuroendocrine, epithelial and B-lymphoid lineage markers. To date, it is generally accepted that the initial assumption of MCC originating from Merkel cells (MCs) is unlikely. This is owed to their post-mitotic character, absence of MCPyV in MCs and discrepant protein expression pattern in comparison to MCC. Evidence from mouse models suggests that epidermal/dermal stem cells might be of cellular origin in MCC. The recently formulated hypothesis of MCC originating from early B-cells is based on morphology, the consistent expression of early B-cell lineage markers and the finding of clonal immunoglobulin chain rearrangement in MCC cells. In this review we elaborate on the cellular ancestry of MCC, the identification of which could pave the way for novel and more effective therapeutic regimens. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Trans-Golgi network/early endosome: a central sorting station for cargo proteins in plant immunity.

    PubMed

    LaMontagne, Erica D; Heese, Antje

    2017-12-01

    In plants, the trans-Golgi network (TGN) functionally overlaps with the early endosome (EE), serving as a central sorting hub to direct newly synthesized and endocytosed cargo to the cell surface or vacuole. Here, we focus on the emerging role of the TGN/EE in sorting of immune cargo proteins for effective plant immunity against pathogenic bacteria and fungi. Specific vesicle coat and regulatory components at the TGN/EE ensure that immune cargoes are correctly sorted and transported to the location of their cellular functions. Our understanding of the identity of immune cargoes and the underlying cellular mechanisms regulating their sorting are still rudimentary, but this knowledge is essential to understanding the physiological contribution of the TGN/EE to effective immune responses. Copyright © 2017. Published by Elsevier Ltd.

  12. Early spatiotemporal-specific changes in intermediate signals are predictive of cytotoxic sensitivity to TNFα and co-treatments

    NASA Astrophysics Data System (ADS)

    Loo, Lit-Hsin; Bougen-Zhukov, Nicola Michelle; Tan, Wei-Ling Cecilia

    2017-03-01

    Signaling pathways can generate different cellular responses to the same cytotoxic agents. Current quantitative models for predicting these differential responses are usually based on large numbers of intracellular gene products or signals at different levels of signaling cascades. Here, we report a study to predict cellular sensitivity to tumor necrosis factor alpha (TNFα) using high-throughput cellular imaging and machine-learning methods. We measured and compared 1170 protein phosphorylation events in a panel of human lung cancer cell lines based on different signals, subcellular regions, and time points within one hour of TNFα treatment. We found that two spatiotemporal-specific changes in an intermediate signaling protein, p90 ribosomal S6 kinase (RSK), are sufficient to predict the TNFα sensitivity of these cell lines. Our models could also predict the combined effects of TNFα and other kinase inhibitors, many of which are not known to target RSK directly. Therefore, early spatiotemporal-specific changes in intermediate signals are sufficient to represent the complex cellular responses to these perturbations. Our study provides a general framework for the development of rapid, signaling-based cytotoxicity screens that may be used to predict cellular sensitivity to a cytotoxic agent, or identify co-treatments that may sensitize or desensitize cells to the agent.

  13. Early spatiotemporal-specific changes in intermediate signals are predictive of cytotoxic sensitivity to TNFα and co-treatments

    PubMed Central

    Loo, Lit-Hsin; Bougen-Zhukov, Nicola Michelle; Tan, Wei-Ling Cecilia

    2017-01-01

    Signaling pathways can generate different cellular responses to the same cytotoxic agents. Current quantitative models for predicting these differential responses are usually based on large numbers of intracellular gene products or signals at different levels of signaling cascades. Here, we report a study to predict cellular sensitivity to tumor necrosis factor alpha (TNFα) using high-throughput cellular imaging and machine-learning methods. We measured and compared 1170 protein phosphorylation events in a panel of human lung cancer cell lines based on different signals, subcellular regions, and time points within one hour of TNFα treatment. We found that two spatiotemporal-specific changes in an intermediate signaling protein, p90 ribosomal S6 kinase (RSK), are sufficient to predict the TNFα sensitivity of these cell lines. Our models could also predict the combined effects of TNFα and other kinase inhibitors, many of which are not known to target RSK directly. Therefore, early spatiotemporal-specific changes in intermediate signals are sufficient to represent the complex cellular responses to these perturbations. Our study provides a general framework for the development of rapid, signaling-based cytotoxicity screens that may be used to predict cellular sensitivity to a cytotoxic agent, or identify co-treatments that may sensitize or desensitize cells to the agent. PMID:28272488

  14. Recombinant modified vaccinia virus Ankara generating excess early double-stranded RNA transiently activates protein kinase R and triggers enhanced innate immune responses.

    PubMed

    Wolferstätter, Michael; Schweneker, Marc; Späth, Michaela; Lukassen, Susanne; Klingenberg, Marieken; Brinkmann, Kay; Wielert, Ursula; Lauterbach, Henning; Hochrein, Hubertus; Chaplin, Paul; Suter, Mark; Hausmann, Jürgen

    2014-12-01

    Double-stranded RNA (dsRNA) is an important molecular pattern associated with viral infection and is detected by various extra- and intracellular recognition molecules. Poxviruses have evolved to avoid producing dsRNA early in infection but generate significant amounts of dsRNA late in infection due to convergent transcription of late genes. Protein kinase R (PKR) is activated by dsRNA and triggers major cellular defenses against viral infection, including protein synthesis shutdown, apoptosis, and type I interferon (IFN-I) production. The poxviral E3 protein binds and sequesters viral dsRNA and is a major antagonist of the PKR pathway. We found that the highly replication-restricted modified vaccinia virus Ankara (MVA) engineered to produce excess amounts of dsRNA early in infection showed enhanced induction of IFN-β in murine and human cells in the presence of an intact E3L gene. IFN-β induction required a minimum overlap length of 300 bp between early complementary transcripts and was strongly PKR dependent. Excess early dsRNA produced by MVA activated PKR early but transiently in murine cells and induced enhanced systemic levels of IFN-α, IFN-γ, and other cytokines and chemokines in mice in a largely PKR-dependent manner. Replication-competent chorioallantois vaccinia virus Ankara (CVA) generating excess early dsRNA also enhanced IFN-I production and was apathogenic in mice even at very high doses but showed no in vitro host range defect. Thus, genetically adjuvanting MVA and CVA to generate excess early dsRNA is an effective method to enhance innate immune stimulation by orthopoxvirus vectors and to attenuate replicating vaccinia virus in vivo. Efficient cellular sensing of pathogen-specific components, including double-stranded RNA (dsRNA), is an important prerequisite of an effective antiviral immune response. The prototype poxvirus vaccinia virus (VACV) and its derivative modified vaccinia virus Ankara (MVA) produce dsRNA as a by-product of viral transcription. We found that inhibition of cellular dsRNA recognition established by the virus-encoded proteins E3 and K3 can be overcome by directing viral overexpression of dsRNA early in infection without compromising replication of MVA in permissive cells. Early dsRNA induced transient activation of the cellular dsRNA sensor protein kinase R (PKR), resulting in enhanced production of interferons and cytokines in cells and mice. Enhancing the capacity of MVA to activate the innate immune system is an important approach to further improve the immunogenicity of this promising vaccine vector. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. Pharmacological cdk inhibitor R-Roscovitine suppresses JC virus proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orba, Yasuko; Laboratory of Molecular and Cellular Pathology, Hokkaido University Graduate School of Medicine, N15, W7, Kita-ku, 060-8638, Sapporo; Research Fellow of the Japan Society for the Promotion of Science

    2008-01-05

    The human Polyomavirus JC virus (JCV) utilizes cellular proteins for viral replication and transcription in the host cell nucleus. These cellular proteins represent potential targets for antiviral drugs against the JCV. In this study, we examined the antiviral effects of the pharmacological cyclin-dependent kinase (cdk) inhibitor R-Roscovitine, which has been shown to have antiviral activity against other viruses. We found that Roscovitine significantly inhibited the viral production and cytopathic effects of the JCV in a JCV-infected cell line. Roscovitine attenuated the transcriptional activity of JCV late genes, but not early genes, and also prevented viral replication via inhibiting phosphorylation ofmore » the viral early protein, large T antigen. These data suggest that the JCV requires cdks to transcribe late genes and to replicate its own DNA. That Roscovitine exhibited antiviral activity in JCV-infected cells suggests that Roscovitine might have therapeutic utility in the treatment of progressive multifocal leukoencephalopathy (PML)« less

  16. Construction and Characterization of Human Mammary Epithelial Cell Lines Containing Mutations in the p53 or BRCA1 Genes

    DTIC Science & Technology

    1999-01-01

    development of breast cancers. To study the effects of inactivating mutations in these tumor suppressor genes early in the breast-cancer pathway, we have...the effects of inactivating mutations in these tumor suppressor genes early in the breast-cancer pathway. The consequences of transduction of these...proposed three approaches for constructing p53-deficient cells; i.e., by mutating the p53 gene directly, by abrogating the protein’s normal cellular

  17. Downregulation of Cellular c-Jun N-Terminal Protein Kinase and NF-κB Activation by Berberine May Result in Inhibition of Herpes Simplex Virus Replication

    PubMed Central

    Song, Siwei; Qiu, Min; Chu, Ying; Chen, Deyan; Wang, Xiaohui; Su, Airong

    2014-01-01

    Berberine is a quaternary ammonium salt from the protoberberine group of isoquinoline alkaloids. Some reports show that berberine exhibits anti-inflammatory, antitumor, and antiviral properties by modulating multiple cellular signaling pathways, including p53, nuclear factor κB (NF-κB), and mitogen-activated protein kinase. In the present study, we investigated the antiviral effect of berberine against herpes simplex virus (HSV) infection. Current antiherpes medicines such as acyclovir can lessen the recurring activation when used early at infection but are unable to prevent or cure infections where treatment has selected for resistant mutants. In searching for new antiviral agents against herpesvirus infection, we found that berberine reduced viral RNA transcription, protein synthesis, and virus titers in a dose-dependent manner. To elucidate the mechanism of its antiviral activity, the effect of berberine on the individual steps of viral replication cycle of HSV was investigated via time-of-drug addition assay. We found that berberine acted at the early stage of HSV replication cycle, between viral attachment/entry and genomic DNA replication, probably at the immediate-early gene expression stage. We further demonstrated that berberine significantly reduced HSV-induced NF-κB activation, as well as IκB-α degradation and p65 nuclear translocation. Moreover, we found that berberine also depressed HSV-induced c-Jun N-terminal kinase (JNK) phosphorylation but had little effect on p38 phosphorylation. Our results suggest that the berberine inhibition of HSV infection may be mediated through modulating cellular JNK and NF-κB pathways. PMID:24913175

  18. Cancer Systems Biology Consortium | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    Cancer is a complex disease system involving multiple molecular, genetic, and cellular events. From its early initiation through progression and metastasis, cancer can adapt and evolve as a result of both internal and external signals. These properties make cancer difficult to predict, prevent, and treat. There has been significant progress in characterizing the genetics of cancer, as well as the downstream effects on the molecular and cellular pathways that are critical for the initiation and progression of cancer.

  19. [Effect of early high fat diet on pancreatic β cellularity and insulin sensibility in young rats].

    PubMed

    Xie, Kun-Xia; Xiao, Yan-Feng; Xu, Er-Di; Yin, Chun-Yan; Yi, Xiao-Qing; Chang, Ming

    2010-09-01

    To study the effects of early high fat diet on sugar metaboliam, insulin sensibility and pancreatic β cellularity in young rats. Sixty male weaned young rats were randomly fed with high fat diet (high fat group) and normal diet (control group). The body weight, viscus fattiness and fasting plasma glucose (FPG) were measured after 3, 6 and 9 weeks. Serum insulin level was measured with radioimmunoassay. The ultrastructure of pancreas was observed under an electricmicroscope. The high fat group had significantly higher body weight and visceral fat weight than the control group after 3 weeks. There were no significant differences in the FPG level between the two groups at all time points. The levels of fasting insulin and HOMAIR in the high fat group were significantly higher than those in the control group after 3, 6 and 9 weeks (P<0.01). Dilation of rough endoplasmic reticulum and mild swelling of mitochondria of islet β-cells were observed in the high fat group after 6 weeks. Early high fat diet may induce a reduction in insulin sensitivity and produce insulin resistance in young rats. Endoplasmic reticulum expansion in β-cells may be an early sign of β-cell damage due to obesity.

  20. Effects of heat stress on mammalian reproduction

    PubMed Central

    Hansen, Peter J.

    2009-01-01

    Heat stress can have large effects on most aspects of reproductive function in mammals. These include disruptions in spermatogenesis and oocyte development, oocyte maturation, early embryonic development, foetal and placental growth and lactation. These deleterious effects of heat stress are the result of either the hyperthermia associated with heat stress or the physiological adjustments made by the heat-stressed animal to regulate body temperature. Many effects of elevated temperature on gametes and the early embryo involve increased production of reactive oxygen species. Genetic adaptation to heat stress is possible both with respect to regulation of body temperature and cellular resistance to elevated temperature. PMID:19833646

  1. Maize early endosperm growth and development: from fertilization through cell type differentiation.

    PubMed

    Leroux, Brian M; Goodyke, Austin J; Schumacher, Katelyn I; Abbott, Chelsi P; Clore, Amy M; Yadegari, Ramin; Larkins, Brian A; Dannenhoffer, Joanne M

    2014-08-01

    • Given the worldwide economic importance of maize endosperm, it is surprising that its development is not the most comprehensively studied of the cereals. We present detailed morphometric and cytological descriptions of endosperm development in the maize inbred line B73, for which the genome has been sequenced, and compare its growth with four diverse Nested Association Mapping (NAM) founder lines.• The first 12 d of B73 endosperm development were described using semithin sections of plastic-embedded kernels and confocal microscopy. Longitudinal sections were used to compare endosperm length, thickness, and area.• Morphometric comparison between Arizona- and Michigan-grown B73 showed a common pattern. Early endosperm development was divided into four stages: coenocytic, cellularization through alveolation, cellularization through partitioning, and differentiation. We observed tightly synchronous nuclear divisions in the coenocyte, elucidated that the onset of cellularization was coincident with endosperm size, and identified a previously undefined cell type (basal intermediate zone, BIZ). NAM founders with small mature kernels had larger endosperms (0-6 d after pollination) than lines with large mature kernels.• Our B73-specific model of early endosperm growth links developmental events to relative endosperm size, while accounting for diverse growing conditions. Maize endosperm cellularizes through alveolation, then random partitioning of the central vacuole. This unique cellularization feature of maize contrasts with the smaller endosperms of Arabidopsis, barley, and rice that strictly cellularize through repeated alveolation. NAM analysis revealed differences in endosperm size during early development, which potentially relates to differences in timing of cellularization across diverse lines of maize. © 2014 Botanical Society of America, Inc.

  2. Increased efficacy of VX-809 in different cellular systems results from an early stabilization effect of F508del-CFTR.

    PubMed

    Farinha, Carlos M; Sousa, Marisa; Canato, Sara; Schmidt, André; Uliyakina, Inna; Amaral, Margarida D

    2015-08-01

    Cystic fibrosis (CF), the most common recessive autosomal disease among Caucasians, is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. The most common mutation, F508del, leads to CFTR impaired plasma membrane trafficking. Therapies modulating CFTR basic defect are emerging, such as VX-809, a corrector of F508del-CFTR traffic which just succeeded in a Phase III clinical trial. We recently showed that VX-809 is additive to two other correctors (VRT-325 and compound 4a). Here, we aimed to determine whether the differential rescuing by these compounds results from cell-specific factors or rather from distinct effects at the early biogenesis and/or processing. The rescuing efficiencies of the above three correctors were first compared in different cellular models (primary respiratory cells, cystic fibrosis bronchial epithelial and baby hamster kidney [BHK] cell lines) by functional approaches: micro-Ussing chamber and iodide efflux. Next, biochemical methods (metabolic labeling, pulse-chase and immunoprecipitation) were used to determine their impact on CFTR biogenesis / processing. Functional analyses revealed that VX-809 has the greatest rescuing efficacy and that the relative efficiencies of the three compounds are essentially maintained in all three cellular models tested. Nevertheless, biochemical data show that VX-809 significantly stabilizes F508del-CFTR immature form, an effect that is not observed for C3 nor C4. VX-809 and C3 also significantly increase accumulation of immature CFTR. Our data suggest that VX-809 increases the stability of F508del-CFTR immature form at an early phase of its biogenesis, thus explaining its increased efficacy when inducing its rescue.

  3. Increased efficacy of VX-809 in different cellular systems results from an early stabilization effect of F508del-CFTR

    PubMed Central

    Farinha, Carlos M; Sousa, Marisa; Canato, Sara; Schmidt, André; Uliyakina, Inna; Amaral, Margarida D

    2015-01-01

    Cystic fibrosis (CF), the most common recessive autosomal disease among Caucasians, is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. The most common mutation, F508del, leads to CFTR impaired plasma membrane trafficking. Therapies modulating CFTR basic defect are emerging, such as VX-809, a corrector of F508del-CFTR traffic which just succeeded in a Phase III clinical trial. We recently showed that VX-809 is additive to two other correctors (VRT-325 and compound 4a). Here, we aimed to determine whether the differential rescuing by these compounds results from cell-specific factors or rather from distinct effects at the early biogenesis and/or processing. The rescuing efficiencies of the above three correctors were first compared in different cellular models (primary respiratory cells, cystic fibrosis bronchial epithelial and baby hamster kidney [BHK] cell lines) by functional approaches: micro-Ussing chamber and iodide efflux. Next, biochemical methods (metabolic labeling, pulse-chase and immunoprecipitation) were used to determine their impact on CFTR biogenesis / processing. Functional analyses revealed that VX-809 has the greatest rescuing efficacy and that the relative efficiencies of the three compounds are essentially maintained in all three cellular models tested. Nevertheless, biochemical data show that VX-809 significantly stabilizes F508del-CFTR immature form, an effect that is not observed for C3 nor C4. VX-809 and C3 also significantly increase accumulation of immature CFTR. Our data suggest that VX-809 increases the stability of F508del-CFTR immature form at an early phase of its biogenesis, thus explaining its increased efficacy when inducing its rescue. PMID:26171232

  4. The cellular immunity and oxidative stress markers in early pregnancy loss.

    PubMed

    Daglar, Korkut; Biberoglu, Ebru; Kirbas, Ayse; Dirican, Aylin Onder; Genc, Metin; Avci, Aslihan; Biberoglu, Kutay

    2016-01-01

    We investigated whether changes in cellular immunity and oxidative stress in pregnancy have any association with spontaneous miscarriage. Circulating adenosine deaminase (ADA) activity as a marker of cellular immunity and malondialdehyde (MDA) and catalase (CAT), glutathione peroxidase (GPx) as markers of T lymphocyte activation and parameters of oxidative stress and antioxidant defense were compared between 40 women with early pregnancy loss and another 40 women with ungoing healthy pregnancy. Women with miscarriage had higher serum ADA and GPx levels when compared with women with normal pregnancy (p = 0.034 and p < 0.001, respectively). Although serum MDA level was slightly higher in women with miscarriage, the difference was not significant (p = 0.083). CAT levels were alike in both groups. We have demonstrated an increased cellular immunity and perhaps a compensated oxidative stress related to increased antioxidant activation in women with early spontaneous pregnancy loss.

  5. Biochemical changes to fibroblast cells subjected to ionizing radiation.

    PubMed

    Jones, Pamala; Benghuzzi, Hamed; Tucci, Michelle; Richards, Latoya; Harrison, George; Patel, Ramesh

    2008-01-01

    High energy X-rays are capable of interacting with biological membranes to cause both functional and structural modifications. The goal of the present study was to investigate the effects human fibroblast cells exposed multiple times to 10 Gy over time. Following exposures of 2, 3, or 4 times to 10 Gy/10min the cells were evaluated for cell number changes, membrane damage, and intracellular glutathione content after 24, 48 and 72 hours. Twenty-four hours following exposure the cell numbers were reduced and increased levels of cellular membrane damage was evident. This trend was observed for the duration of the study. Interestingly, there was not an exposure dependent increase in cell damage or cell loss with time. Intracellular antioxidant systems were activated as indicated by anincrease in total cellular glutathione content. Additional studies are needed to determine if the cellular reduction is caused by a direct effect of the X-rays targeting the DNA or an indirect effect of the X-ray targeting the cellular membrane, which then generates radicals that target cell cycle checkpoints or DNA damage. In conclusion, fibroblast cells can be used to determine early and late events of cellular function following exposure to harmful levels of radiation exposure and results of exposure can be seen within twenty four hours.

  6. 78 FR 69690 - Draft Guidance for Industry: Considerations for the Design of Early-Phase Clinical Trials of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... and Gene Therapy Products; Extension of Comment Period AGENCY: Food and Drug Administration, HHS...: Considerations for the Design of Early-Phase Clinical Trials of Cellular and Gene Therapy Products'' that... sponsors of Investigational New Drug Applications for cellular therapy (CT) and gene therapy (GT) products...

  7. Adverse Health Effects of Thirdhand Smoke: From Cell to Animal Models.

    PubMed

    Hang, Bo; Wang, Pin; Zhao, Yue; Sarker, Altaf; Chenna, Ahmed; Xia, Yankai; Snijders, Antoine M; Mao, Jian-Hua

    2017-04-28

    The newly identified smoke hazard, thirdhand smoke (THS), has gained public attention in recent years but its health impact and biological effects are largely unknown. THS may be defined by "the four Rs": tobacco chemicals that remain, react, re-emit, and/or are resuspended long after active smoking has ceased. This review summarizes recent research progress in the effects of THS on genotoxicity, metabolism and early life development using cellular and animal models. We first reported that THS generated in laboratory systems caused significant DNA damage in human cell lines. Our finding that THS significantly induces oxidative base lesions has been confirmed in skin wounds of mice models exposed to THS. THS also induced metabolomic changes in human reproductive cell lines. Furthermore, we demonstrated that early exposure to THS not only negatively impacts body weight in both male and female mice, but also induces persistent changes to immunological parameters in peripheral blood in these mice. These results indicate that THS is genotoxic at realistic experimental doses and that there may be a window of susceptibility for some forms of cellular damage induced by THS.

  8. New concept: cellular senescence in pathophysiology of cholangiocarcinoma.

    PubMed

    Sasaki, Motoko; Nakanuma, Yasuni

    2016-01-01

    Cholangiocarcinoma, a malignant tumor arising in the hepatobiliary system, presents with poor prognosis because of difficulty in its early detection/diagnosis. Recent progress revealed that cellular senescence may be involved in the pathophysiology of cholangiocarcinoma. Cellular senescence is defined as permanent growth arrest caused by several cellular injuries, such as oncogenic mutations and oxidative stress. "Oncogene-induced" and/or stress-induced senescence may occur in the process of multi-step cholangiocarcinogenesis, and overexpression of a polycomb group protein EZH2 may play a role in the escape from, and/or bypassing of, senescence. Furthermore, senescent cells may play important roles in tumor development and progression via the production of senescence-associated secretory phenotypes. Cellular senescence may be a new target for the prevention, early diagnosis, and therapy of cholangiocarcinoma in the near future.

  9. Differential Activation of Cellular DNA Damage Responses by Replication-Defective and Replication-Competent Adenovirus Mutants

    PubMed Central

    Prakash, Anand; Jayaram, Sumithra

    2012-01-01

    Adenovirus (Ad) mutants that lack early region 4 (E4) activate the phosphorylation of cellular DNA damage response proteins. In wild-type Ad type 5 (Ad5) infections, E1b and E4 proteins target the cellular DNA repair protein Mre11 for redistribution and degradation, thereby interfering with its ability to activate phosphorylation cascades important during DNA repair. The characteristics of Ad infection that activate cellular DNA repair processes are not yet well understood. We investigated the activation of DNA damage responses by a replication-defective Ad vector (AdRSVβgal) that lacks E1 and fails to produce the immediate-early E1a protein. E1a is important for activating early gene expression from the other viral early transcription units, including E4. AdRSVβgal can deliver its genome to the cell, but it is subsequently deficient for viral early gene expression and DNA replication. We studied the ability of AdRSVβgal-infected cells to induce cellular DNA damage responses. AdRSVβgal infection does activate formation of foci containing the Mdc1 protein. However, AdRSVβgal fails to activate phosphorylation of the damage response proteins Nbs1 and Chk1. We found that viral DNA replication is important for Nbs1 phosphorylation, suggesting that this step in the viral life cycle may provide an important trigger for activating at least some DNA repair proteins. PMID:23015708

  10. Resveratrol Inhibition of Cellular Respiration: New Paradigm for an Old Mechanism

    PubMed Central

    Madrigal-Perez, Luis Alberto; Ramos-Gomez, Minerva

    2016-01-01

    Resveratrol (3,4′,5-trihydroxy-trans-stilbene, RSV) has emerged as an important molecule in the biomedical area. This is due to its antioxidant and health benefits exerted in mammals. Nonetheless, early studies have also demonstrated its toxic properties toward plant-pathogenic fungi of this phytochemical. Both effects appear to be opposed and caused by different molecular mechanisms. However, the inhibition of cellular respiration is a hypothesis that might explain both toxic and beneficial properties of resveratrol, since this phytochemical: (1) decreases the production of energy of plant-pathogenic organisms, which prevents their proliferation; (2) increases adenosine monophosphate/adenosine diphosphate (AMP/ADP) ratio that can lead to AMP protein kinase (AMPK) activation, which is related to its health effects, and (3) increases the reactive oxygen species generation by the inhibition of electron transport. This pro-oxidant effect induces expression of antioxidant enzymes as a mechanism to counteract oxidative stress. In this review, evidence is discussed that supports the hypothesis that cellular respiration is the main target of resveratrol. PMID:26999118

  11. Two distinct cellular proteins interact with the EIa-responsive element of an adenovirus early promoter.

    PubMed Central

    Jansen-Durr, P; Wintzerith, M; Reimund, B; Hauss, C; Kédinger, C

    1990-01-01

    EIa-dependent transactivation of the adenovirus EIIa early (EIIaE) promoter is correlated with the activation of the cellular transcription factor E2F. In this study we identified a cellular protein, C alpha, that is distinct from E2F and that binds two sites in the EIIaE promoter, one of which overlaps with the proximal E2F binding site of the EIIaE promoter. The possible involvement of C alpha in the EIa responsiveness of this promoter is discussed. Images PMID:2139142

  12. Nanoparticle-facilitated functional and molecular imaging for the early detection of cancer

    PubMed Central

    Sivasubramanian, Maharajan; Hsia, Yu; Lo, Leu-Wei

    2014-01-01

    Cancer detection in its early stages is imperative for effective cancer treatment and patient survival. In recent years, biomedical imaging techniques, such as magnetic resonance imaging, computed tomography and ultrasound have been greatly developed and have served pivotal roles in clinical cancer management. Molecular imaging (MI) is a non-invasive imaging technique that monitors biological processes at the cellular and sub-cellular levels. To achieve these goals, MI uses targeted imaging agents that can bind targets of interest with high specificity and report on associated abnormalities, a task that cannot be performed by conventional imaging techniques. In this respect, MI holds great promise as a potential therapeutic tool for the early diagnosis of cancer. Nevertheless, the clinical applications of targeted imaging agents are limited due to their inability to overcome biological barriers inside the body. The use of nanoparticles has made it possible to overcome these limitations. Hence, nanoparticles have been the subject of a great deal of recent studies. Therefore, developing nanoparticle-based imaging agents that can target tumors via active or passive targeting mechanisms is desirable. This review focuses on the applications of various functionalized nanoparticle-based imaging agents used in MI for the early detection of cancer. PMID:25988156

  13. Lethal effect of dehydroleucodine (DhL) on amphibian Bufo arenarum embryos.

    PubMed

    Moreno, Liliana Elizabeth; Juárez, Américo Osvaldo; Pelzer, Lilian Eugenia

    2012-03-01

    The dehydroleucodine is a sesquiterpene lactone isolated from Artemisia douglasiana Besser which is used in popular medicine. Toxicity tests using embryos of amphibian have been widely used in order to predict toxic effects of different compounds. However, to our knowledge, there are not studies focussed on the toxic effects of dehydroleucodine on Bufo arenarum, which is an anuran widely distributed in South America. The effect of dehydroleucodine on the survival of embryos was evaluated in an acute test during the early life stage of B. arenarum embryos. Lethality and the degree of adverse effects were dehydroleucodine dose-dependent. Overall, amphibian early life stages appeared to be more susceptible to the embryotoxicity associated with exposure to dehydroleucodine, especially at concentration greater that 3mM. This increased susceptibility may result from the relatively high rate of cellular differentiation and morphogenesis that occurs at this early stage of development. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. The SIX1 oncoprotein mediates aberrant uterine basal cell development following neonatal exposure to diethylstilbestrol

    EPA Science Inventory

    Aberrant cellular differentiation early in life can contribute to increased cancer risk later in life. In a classic model of this effect, female mice exposed neonatally to the synthetic estrogen diethylstilbestrol (DES) have a high incidence of uterine carcinoma. These cancers ar...

  15. The SIX1 Oncoprotein Mediates Aberrant Uterine Basal Cell Development Following Neonatal Exposure to Diethylstilbestrol.

    EPA Science Inventory

    Aberrant cellular differentiation early in life can contribute to increased cancer risk later in life. In a classic model of this effect, female mice exposed on postnatal day (PND) 1-5 to the synthetic estrogen diethylstilbestrol (DES) have a high incidence of uterine carcinoma. ...

  16. Effects of the endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae) parasitism, venom, and calyx fluid on cellular and humoral immunity of its host Chilo suppressalis (Lepidoptera: Crambidae) larvae.

    PubMed

    Teng, Zi-Wen; Xu, Gang; Gan, Shi-Yu; Chen, Xuan; Fang, Qi; Ye, Gong-Yin

    2016-02-01

    The larval endoparasitoid Cotesia chilonis injects venom and bracoviruses into its host Chilo suppressalis during oviposition. Here we study the effects of the polydnavirus (PDV)-carrying endoparasitoid C. chilonis (Hymenoptera: Braconidae) parasitism, venom and calyx fluid on host cellular and humoral immunity, specifically hemocyte composition, cellular spreading, encapsulation and melanization. Total hemocyte counts (THCs) were higher in parasitized larvae than in unparasitized larvae in the late stages following parasitization. While both plasmatocyte and granulocyte fractions and hemocyte mortality did not differ between parasitized and unparasitized hosts, in vitro spreading behavior of hemocytes was inhibited significantly by parasitism throughout the course of parasitoid development. C. chilonis parasitism suppressed the encapsulation response and melanization in the early stages. Venom alone did not alter cellular immune responses, including effects on THCs, mortality, hemocyte composition, cell spreading and encapsulation, but venom did inhibit humoral immunity by reducing melanization within 6h after injection. In contrast to venom, calyx fluid had a significant effect on cell spreading, encapsulation and melanization from 6h after injection. Dose-response injection studies indicated the effects of venom and calyx fluid synergized, showing a stronger and more persistent reduction in immune system responses than the effect of either injected alone. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Mapping human pluripotent stem cell differentiation pathways using high throughput single-cell RNA-sequencing.

    PubMed

    Han, Xiaoping; Chen, Haide; Huang, Daosheng; Chen, Huidong; Fei, Lijiang; Cheng, Chen; Huang, He; Yuan, Guo-Cheng; Guo, Guoji

    2018-04-05

    Human pluripotent stem cells (hPSCs) provide powerful models for studying cellular differentiations and unlimited sources of cells for regenerative medicine. However, a comprehensive single-cell level differentiation roadmap for hPSCs has not been achieved. We use high throughput single-cell RNA-sequencing (scRNA-seq), based on optimized microfluidic circuits, to profile early differentiation lineages in the human embryoid body system. We present a cellular-state landscape for hPSC early differentiation that covers multiple cellular lineages, including neural, muscle, endothelial, stromal, liver, and epithelial cells. Through pseudotime analysis, we construct the developmental trajectories of these progenitor cells and reveal the gene expression dynamics in the process of cell differentiation. We further reprogram primed H9 cells into naïve-like H9 cells to study the cellular-state transition process. We find that genes related to hemogenic endothelium development are enriched in naïve-like H9. Functionally, naïve-like H9 show higher potency for differentiation into hematopoietic lineages than primed cells. Our single-cell analysis reveals the cellular-state landscape of hPSC early differentiation, offering new insights that can be harnessed for optimization of differentiation protocols.

  18. Time- and polarity-dependent proteomic changes associated with homeostatic scaling at central synapses

    PubMed Central

    Schanzenbächer, Christoph T

    2018-01-01

    In homeostatic scaling at central synapses, the depth and breadth of cellular mechanisms that detect the offset from the set-point, detect the duration of the offset and implement a cellular response are not well understood. To understand the time-dependent scaling dynamics we treated cultured rat hippocampal cells with either TTX or bicucculline for 2 hr to induce the process of up- or down-scaling, respectively. During the activity manipulation we metabolically labeled newly synthesized proteins using BONCAT. We identified 168 newly synthesized proteins that exhibited significant changes in expression. To obtain a temporal trajectory of the response, we compared the proteins synthesized within 2 hr or 24 hr of the activity manipulation. Surprisingly, there was little overlap in the significantly regulated newly synthesized proteins identified in the early- and integrated late response datasets. There was, however, overlap in the functional categories that are modulated early and late. These data indicate that within protein function groups, different proteomic choices can be made to effect early and late homeostatic responses that detect the duration and polarity of the activity manipulation. PMID:29447110

  19. Sepsis and Septic Shock Strategies.

    PubMed

    Armstrong, Bracken A; Betzold, Richard D; May, Addison K

    2017-12-01

    Three therapeutic principles most substantially improve organ dysfunction and survival in sepsis: early, appropriate antimicrobial therapy; restoration of adequate cellular perfusion; timely source control. The new definitions of sepsis and septic shock reflect the inadequate sensitivity, specify, and lack of prognostication of systemic inflammatory response syndrome criteria. Sequential (sepsis-related) organ failure assessment more effectively prognosticates in sepsis and critical illness. Inadequate cellular perfusion accelerates injury and reestablishing perfusion limits injury. Multiple organ systems are affected by sepsis and septic shock and an evidence-based multipronged approach to systems-based therapy in critical illness results in improve outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The effect of human hair keratin hydrogel on early cellular response to sciatic nerve injury in a rat model.

    PubMed

    Pace, Lauren A; Plate, Johannes F; Smith, Thomas L; Van Dyke, Mark E

    2013-08-01

    Peripheral nerve injuries requiring surgery can be repaired by autograft, the clinical "gold standard", allograft, or nerve conduits. Most published clinical studies show the effectiveness of nerve conduits in small size defects in sensory nerves. Many preclinical studies suggest that peripheral nerve regeneration through conduits can be enhanced and repair lengths increased with the use of a biomaterial filler in the conduit lumen. We have previously shown that a luminal hydrogel filler derived from human hair keratin (HHK) can improve electrophysiological and histological outcomes in mouse, rabbit, and non-human primate nerve injury models, but insight into potential mechanisms has been lacking. Based on the premise that a keratin biomaterial (KOS) hydrogel provides an instantaneous structural matrix within the lumen, the current study compares the cellular behavior elicited by KOS hydrogel to Matrigel (MAT) and saline (SAL) conduit fillers in a 1 cm rat sciatic nerve injury model at early stages of regeneration. While there was little difference in initial cellular influx, the KOS group showed earlier migration of dedifferentiated Schwann cells (SC) from the proximal nerve end compared to the other groups. The KOS group also showed faster SC dedifferentiation and myelin debris clearance, and decreased macrophage infiltration during Wallerian degeneration of the distal nerve tissue. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Facilitated Anion Transport Induces Hyperpolarization of the Cell Membrane That Triggers Differentiation and Cell Death in Cancer Stem Cells.

    PubMed

    Soto-Cerrato, Vanessa; Manuel-Manresa, Pilar; Hernando, Elsa; Calabuig-Fariñas, Silvia; Martínez-Romero, Alicia; Fernández-Dueñas, Víctor; Sahlholm, Kristoffer; Knöpfel, Thomas; García-Valverde, María; Rodilla, Ananda M; Jantus-Lewintre, Eloisa; Farràs, Rosa; Ciruela, Francisco; Pérez-Tomás, Ricardo; Quesada, Roberto

    2015-12-23

    Facilitated anion transport potentially represents a powerful tool to modulate various cellular functions. However, research into the biological effects of small molecule anionophores is still at an early stage. Here we have used two potent anionophore molecules inspired in the structure of marine metabolites tambjamines to gain insight into the effect induced by these compounds at the cellular level. We show how active anionophores, capable of facilitating the transmembrane transport of chloride and bicarbonate in model phospholipid liposomes, induce acidification of the cytosol and hyperpolarization of plasma cell membranes. We demonstrate how this combined effect can be used against cancer stem cells (CSCs). Hyperpolarization of cell membrane induces cell differentiation and loss of stemness of CSCs leading to effective elimination of this cancer cell subpopulation.

  2. The relationship between in vitro cellular aging and in vivo human age.

    PubMed Central

    Schneider, E L; Mitsui, Y

    1976-01-01

    Differences between early and late passage cell cultures on the organelle and macromolecular levels have been attributed to cellular "aging". However, concern has been expressed over whether changes in diploid cell populations after serial passage in vitro accurately reflect human cellular aging in vivo. Studies were therefore undertaken to determine if significant differences would be observed in the in vitro lifespans of skin fibroblast cultures from old and young normal, non-hospitalized volunteers and to examine if parameters that change with in vitro "aging" are altered as a function of age in vivo. Statistically signigificant (P less than 0.05) decreases were found in the rate of fibroblast migration, onset of cell culture senescence, in vitro lifespan, cell population replication rate, and cell number at confluency of fibroblast cultures derived from the old donor group when compared to parallel cultures from young donors. No significant differences were observed in modal cell volumes and cellular macromolecular contents. The differences observed in cell cultures from old and young donors were quantitatively and qualitatively distinct from those cellular alterations observed in early and late passage WI-38 cells (in vitro "aging"). Therefore, although early and late passage cultures of human diploid cells may provide an important cell system for examining loss of replicative potential, fibroblast cultures derived from old and young human donors may be a more appropriate model system for studying human cellular aging. PMID:1068470

  3. Adverse Health Effects of Thirdhand Smoke: From Cell to Animal Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hang, Bo; Wang, Pin; Zhao, Yue

    The newly identified smoke hazard, thirdhand smoke (THS), has gained public attention in recent years but its health impact and biological effects are largely unknown. THS may be defined by “the four Rs”: tobacco chemicals that remain, react, re-emit, and/or are resuspended long after active smoking has ceased. This review summarizes recent research progress in the effects of THS on genotoxicity, metabolism and early life development using cellular and animal models. We first reported that THS generated in laboratory systems caused significant DNA damage in human cell lines. Our finding that THS significantly induces oxidative base lesions has been confirmedmore » in skin wounds of mice models exposed to THS. THS also induced metabolomic changes in human reproductive cell lines. Furthermore, we demonstrated that early exposure to THS not only negatively impacts body weight in both male and female mice, but also induces persistent changes to immunological parameters in peripheral blood in these mice. These results indicate that THS is genotoxic at realistic experimental doses and that there may be a window of susceptibility for some forms of cellular damage induced by THS.« less

  4. Adverse Health Effects of Thirdhand Smoke: From Cell to Animal Models

    DOE PAGES

    Hang, Bo; Wang, Pin; Zhao, Yue; ...

    2017-04-28

    The newly identified smoke hazard, thirdhand smoke (THS), has gained public attention in recent years but its health impact and biological effects are largely unknown. THS may be defined by “the four Rs”: tobacco chemicals that remain, react, re-emit, and/or are resuspended long after active smoking has ceased. This review summarizes recent research progress in the effects of THS on genotoxicity, metabolism and early life development using cellular and animal models. We first reported that THS generated in laboratory systems caused significant DNA damage in human cell lines. Our finding that THS significantly induces oxidative base lesions has been confirmedmore » in skin wounds of mice models exposed to THS. THS also induced metabolomic changes in human reproductive cell lines. Furthermore, we demonstrated that early exposure to THS not only negatively impacts body weight in both male and female mice, but also induces persistent changes to immunological parameters in peripheral blood in these mice. These results indicate that THS is genotoxic at realistic experimental doses and that there may be a window of susceptibility for some forms of cellular damage induced by THS.« less

  5. INTEGRATION OF ANIMAL AND HUMAN GENE EXPRESSION DATA TO IMPROVE THE PREDICTIVE VALUE OF EXPOUSRE, EFFECTS AND SUSCEPTIBILITY BIOMARKERS IN ASTHMATIC CHILDREN

    EPA Science Inventory

    Advances in biomarker development have improved our ability to detect early changes at the molecular, cellular and pre-clinical level that are often predictive of adverse health outcomes. Integration of human and animal studies addresses key concerns about animal-human extrapolat...

  6. [Effect of human oviductal embryotrophic factors on gene expression of mouse preimplantation embryos].

    PubMed

    Yao, Yuan-Qing; Lee, Kai-Fai; Xu, Jia-Seng; Ho, Pak-Chung; Yeung, Shu-Biu

    2007-09-01

    To investigate the effect of embryotrophic factors (ETF) from human oviductal cells on gene expression of mouse early developmental embryos and discuss the role of fallopian tube in early development of embryos. ETF was isolated from conditioned medium of human oviductal cell line by sequential liquid chromatographic systems. Mouse embryos were treated by ETF in vitro. Using differential display RT-PCR, the gene expression of embryos treated by ETF was compared with embryos without ETF treatment. The differentially expressed genes were separated, re-amplified, cloned and sequenced. Gene expression profiles of embryos with ETF treatment was different from embryos without this treatment. Eight differentially expressed genes were cloned and sequenced. These genes functioned in RNA degradation, synthesis, splicing, protein trafficking, cellular differentiation and embryo development. Embryotrophic factors from human oviductal cells affect gene expression of early developmental embryos. The human oviductal cells play wide roles in early developmental stages of embryos.

  7. Cord blood Streptococcus pneumoniae‐specific cellular immune responses predict early pneumococcal carriage in high‐risk infants in Papua New Guinea

    PubMed Central

    Francis, J. P.; Richmond, P. C.; Strickland, D.; Prescott, S. L.; Pomat, W. S.; Michael, A.; Nadal‐Sims, M. A.; Edwards‐Devitt, C. J.; Holt, P. G.; Lehmann, D.

    2016-01-01

    Summary In areas where Streptococcus pneumoniae is highly endemic, infants experience very early pneumococcal colonization of the upper respiratory tract, with carriage often persisting into adulthood. We aimed to explore whether newborns in high‐risk areas have pre‐existing pneumococcal‐specific cellular immune responses that may affect early pneumococcal acquisition. Cord blood mononuclear cells (CBMC) of 84 Papua New Guinean (PNG; high endemic) and 33 Australian (AUS; low endemic) newborns were stimulated in vitro with detoxified pneumolysin (dPly) or pneumococcal surface protein A (PspA; families 1 and 2) and compared for cytokine responses. Within the PNG cohort, associations between CBMC dPly and PspA‐induced responses and pneumococcal colonization within the first month of life were studied. Significantly higher PspA‐specific interferon (IFN)‐γ, tumour necrosis factor (TNF)‐α, interleukin (IL)‐5, IL‐6, IL‐10 and IL‐13 responses, and lower dPly‐IL‐6 responses were produced in CBMC cultures of PNG compared to AUS newborns. Higher CBMC PspA‐IL‐5 and PspA‐IL‐13 responses correlated with a higher proportion of cord CD4 T cells, and higher dPly‐IL‐6 responses with a higher frequency of cord antigen‐presenting cells. In the PNG cohort, higher PspA‐specific IL‐5 and IL‐6 CBMC responses were associated independently and significantly with increased risk of earlier pneumococcal colonization, while a significant protective effect was found for higher PspA‐IL‐10 CBMC responses. Pneumococcus‐specific cellular immune responses differ between children born in pneumococcal high versus low endemic settings, which may contribute to the higher risk of infants in high endemic settings for early pneumococcal colonization, and hence disease. PMID:27859014

  8. Metal ions induced heat shock protein response by elevating superoxide anion level in HeLa cells transformed by HSE-SEAP reporter gene.

    PubMed

    Yu, Zhanjiang; Yang, Xiaoda; Wang, Kui

    2006-06-01

    The aim of this work is to define the relationship between heat shock protein (HSP) and reactive oxygen species (ROS) in the cells exposed to different concentrations of metal ions, and to evaluate a new method for tracing the dynamic levels of cellular reactive oxygen species using a HSE-SEAP reporter gene. The expression of heat shock protein was measured using a secreted alkaline phosphatase (SEAP) reporter gene transformed into HeLa cell strain, the levels of superoxide anion (O(2)(-)) and hydrogen peroxide (H(2)O(2)) were determined by NBT reduction assay and DCFH staining flow cytometry (FCM), respectively. The experimental results demonstrated that the expression of heat shock protein induced by metal ions was linearly related to the cellular superoxide anion level before cytotoxic effects were observed, but not related to the cellular hydrogen peroxide level. The experimental results suggested that metal ions might induce heat shock protein by elevating cellular superoxide anion level, and thus the expression of heat shock protein indicated by the HSE-SEAP reporter gene can be an effective model for monitoring the dynamic level of superoxide anion and early metal-induced oxidative stress/cytotoxicity.

  9. Mitochondrial dysfunction related to cell damage induced by 3-hydroxykynurenine and 3-hydroxyanthranilic acid: Non-dependent-effect of early reactive oxygen species production.

    PubMed

    Reyes-Ocampo, J; Ramírez-Ortega, D; Cervantes, G I Vázquez; Pineda, B; Balderas, Pavel Montes de Oca; González-Esquivel, D; Sánchez-Chapul, L; Lugo-Huitrón, R; Silva-Adaya, D; Ríos, C; Jiménez-Anguiano, A; Pérez-de la Cruz, V

    2015-09-01

    The kynurenines 3-hydroxyanthranilic acid (3-HANA) and its precursor 3-hydroxykynurenine (3-HK) are metabolites derived from tryptophan degradation. 3-HK, has been related to diverse neurodegenerative diseases including Huntington's, Alzheimer's and Parkinson's diseases that share mitochondrial metabolic dysregulation. Nevertheless, the direct effect of these kynurenines on mitochondrial function has not been investigated despite it could be regulated by their redox properties that are controversial. A body of literature has suggested a ROS mediated cell death induced by 3-HK and 3-HANA. On the other hand, some works have supported that both kynurenines have antioxidant effects. Therefore, the aim of this study was to investigate 3-HK and 3-HANA effects on mitochondrial and cellular function in rat cultured cortical astrocytes (rCCA) and in animals intrastriatally injected with these kynurenines as well as to determinate the ROS role on these effects. First, we evaluated 3-HK and 3-HANA effect on cellular function, ROS production and mitochondrial membrane potential in vivo and in vitro in rCCA. Our results show that both kynurenines decreased MTT reduction in a concentration-dependent manner together with mitochondrial membrane potential. These observations were accompanied with increased cell death in rCCA and in circling behavior and morphological changes of injected animals. Interestingly, we found that ROS production was not increased in both in vitro and in vivo experiments, and accordingly lipid peroxidation (LP) was neither increased in striatal tissue of animals injected with both kynurenines. The lack of effect on these oxidative markers is in agreement with the ·OH and ONOO(-) scavenging capacity of both kynurenines detected by chemical combinatorial assays. Altogether, these data indicate that both kynurenines exert toxic effects through mechanisms that include impairment of cellular energy metabolism which are not related to early ROS production. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Enhanced early innate and T cell-mediated responses in subjects immunized with Anthrax Vaccine Adsorbed Plus CPG 7909 (AV7909).

    PubMed

    Minang, Jacob T; Inglefield, Jon R; Harris, Andrea M; Lathey, Janet L; Alleva, David G; Sweeney, Diane L; Hopkins, Robert J; Lacy, Michael J; Bernton, Edward W

    2014-11-28

    NuThrax™ (Anthrax Vaccine Adsorbed with CPG 7909 Adjuvant) (AV7909) is in development. Samples obtained in a phase Ib clinical trial were tested to confirm biomarkers of innate immunity and evaluate effects of CPG 7909 (PF-03512676) on adaptive immunity. Subjects received two intramuscular doses of commercial BioThrax(®) (Anthrax Vaccine Adsorbed, AVA), or two intramuscular doses of one of four formulations of AV7909. IP-10, IL-6, and C-reactive protein (CRP) levels were elevated 24-48 h after administration of AV7909 formulations, returning to baseline by Day 7. AVA (no CPG 7909) resulted in elevated IL-6 and CRP, but not IP-10. Another marker of CpG, transiently decreased absolute lymphocyte counts (ALCs), correlated with transiently increased IP-10. Cellular recall responses to anthrax protective antigen (PA) or PA peptides were assessed by IFN-γ ELISpot assay performed on cryopreserved PBMCs obtained from subjects prior to immunization and 7 days following the second immunization (study day 21). One-half of subjects that received AV7909 with low-dose (0.25mg/dose) CPG 7909 possessed positive Day 21 T cell responses to PA. In contrast, positive T cell responses occurred at an 11% average rate (1/9) for AVA-treated subjects. Differences in cellular responses due to dose level of CPG 7909 were not associated with differences in humoral anti-PA IgG responses, which were elevated for recipients of AV7909 compared to recipients of AVA. Serum markers at 24 or 48 h (i.e. % ALC decrease, or increase in IL-6, IP-10, or CRP) correlated with the humoral (antibody) responses 1 month later, but did not correlate with cellular ELISpot responses. In summary, biomarkers of early responses to CPG 7909 were confirmed, and adding a CpG adjuvant to a vaccine administered twice resulted in increased T cell effects relative to vaccine alone. Changes in early biomarkers correlated with subsequent adaptive humoral immunity but not cellular immunity. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Interpreting the universal phylogenetic tree

    NASA Technical Reports Server (NTRS)

    Woese, C. R.

    2000-01-01

    The universal phylogenetic tree not only spans all extant life, but its root and earliest branchings represent stages in the evolutionary process before modern cell types had come into being. The evolution of the cell is an interplay between vertically derived and horizontally acquired variation. Primitive cellular entities were necessarily simpler and more modular in design than are modern cells. Consequently, horizontal gene transfer early on was pervasive, dominating the evolutionary dynamic. The root of the universal phylogenetic tree represents the first stage in cellular evolution when the evolving cell became sufficiently integrated and stable to the erosive effects of horizontal gene transfer that true organismal lineages could exist.

  12. Extrinsic Embryonic Sensory Stimulation Alters Multimodal Behavior and Cellular Activation

    PubMed Central

    Markham, Rebecca G.; Shimizu, Toru; Lickliter, Robert

    2009-01-01

    Embryonic vision is generated and maintained by spontaneous neuronal activation patterns, yet extrinsic stimulation also sculpts sensory development. Because the sensory and motor systems are interconnected in embryogenesis, how extrinsic sensory activation guides multimodal differentiation is an important topic. Further, it is unknown whether extrinsic stimulation experienced near sensory sensitivity onset contributes to persistent brain changes, ultimately affecting postnatal behavior. To determine the effects of extrinsic stimulation on multimodal development, we delivered auditory stimulation to bobwhite quail groups during early, middle, or late embryogenesis, and then tested postnatal behavioral responsiveness to auditory or visual cues. Auditory preference tendencies were more consistently toward the conspecific stimulus for animals stimulated during late embryogenesis. Groups stimulated during middle or late embryogenesis showed altered postnatal species-typical visual responsiveness, demonstrating a persistent multimodal effect. We also examined whether auditory-related brain regions are receptive to extrinsic input during middle embryogenesis by measuring postnatal cellular activation. Stimulated birds showed a greater number of ZENK-immunopositive cells per unit volume of brain tissue in deep optic tectum, a midbrain region strongly implicated in multimodal function. We observed similar results in the medial and caudomedial nidopallia in the telencephalon. There were no ZENK differences between groups in inferior colliculus or in caudolateral nidopallium, avian analog to prefrontal cortex. To our knowledge, these are the first results linking extrinsic stimulation delivered so early in embryogenesis to changes in postnatal multimodal behavior and cellular activation. The potential role of competitive interactions between the sensory and motor systems is discussed. PMID:18777564

  13. The neurite growth inhibitory effects of soluble TNFα on developing sympathetic neurons are dependent on developmental age.

    PubMed

    Nolan, Aoife M; Collins, Louise M; Wyatt, Sean L; Gutierrez, Humberto; O'Keeffe, Gerard W

    2014-01-01

    During development, the growth of neural processes is regulated by an array of cellular and molecular mechanisms which influence growth rate, direction and branching. Recently, many members of the TNF superfamily have been shown to be key regulators of neurite growth during development. The founder member of this family, TNFα can both promote and inhibit neurite growth depending on the cellular context. Specifically, transmembrane TNFα promotes neurite growth, while soluble TNFα inhibits it. While the growth promoting effects of TNFα are restricted to a defined developmental window of early postnatal development, whether the growth inhibitory effects of soluble TNFα occur throughout development is unknown. In this study we used the extensively studied, well characterised neurons of the superior cervical ganglion to show that the growth inhibitory effects of soluble TNFα are restricted to a specific period of late embryonic and early postnatal development. Furthermore, we show that this growth inhibitory effect of soluble TNFα requires NF-κB signalling at all developmental stages at which soluble TNFα inhibits neurite growth. These findings raise the possibility that increases in the amount of soluble TNFα in vivo, for example as a result of maternal inflammation, could negatively affect neurite growth in developing neurons at specific stages of development. Copyright © 2015 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  14. Internalization and localization of basal insulin peglispro in cells.

    PubMed

    Moyers, Julie S; Volk, Catherine B; Cao, Julia X C; Zhang, Chen; Ding, Liyun; Kiselyov, Vladislav V; Michael, M Dodson

    2017-10-15

    Basal insulin peglispro (BIL) is a novel, PEGylated insulin lispro that has a large hydrodynamic size compared with insulin lispro. It has a prolonged duration of action, which is related to a delay in insulin absorption and a reduction in clearance. Given the different physical properties of BIL compared with native insulin and insulin lispro, it is important to assess the cellular internalization characteristics of the molecule. Using immunofluorescent confocal imaging, we compared the cellular internalization and localization patterns of BIL, biosynthetic human insulin, and insulin lispro. We assessed the effects of BIL on internalization of the insulin receptor (IR) and studied cellular clearance of BIL. Co-localization studies using antibodies to either insulin or PEG, and the early endosomal marker EEA1 showed that the overall internalization and subcellular localization pattern of BIL was similar to that of human insulin and insulin lispro; all were rapidly internalized and co-localized with EEA1. During ligand washout for 4 h, concomitant loss of insulin, PEG methoxy group, and PEG backbone immunostaining was observed for BIL, similar to the loss of insulin immunostaining observed for insulin lispro and human insulin. Co-localization studies using an antibody to the lysosomal marker LAMP1 did not reveal evidence of lysosomal localization for insulin lispro, human insulin, BIL, or PEG using either insulin or PEG immunostaining reagents. BIL and human insulin both induced rapid phosphorylation and internalization of human IR. Our findings show that treatment of cells with BIL stimulates internalization and localization of IR to early endosomes. Both the insulin and PEG moieties of BIL undergo a dynamic cellular process of rapid internalization and transport to early endosomes followed by loss of cellular immunostaining in a manner similar to that of insulin lispro and human insulin. The rate of clearance for the insulin lispro portion of BIL was slower than the rate of clearance for human insulin. In contrast, the PEG moiety of BIL can recycle out of cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Massive cellular disruption occurs during early imbibition of Cuphea seeds containing crystallized triacylglycerols.

    PubMed

    Volk, Gayle M; Crane, Jennifer; Caspersen, Ann M; Hill, Lisa M; Gardner, Candice; Walters, Christina

    2006-11-01

    The transition from anhydrobiotic to hydrated state occurs during early imbibition of seeds and is lethal if lipid reserves in seeds are crystalline. Low temperatures crystallize lipids during seed storage. We examine the nature of cellular damage observed in seeds of Cuphea wrightii and C. lanceolata that differ in triacylglycerol composition and phase behavior. Intracellular structure, observed using transmission electron microscopy, is profoundly and irreversibly perturbed if seeds with crystalline triacylglycerols are imbibed briefly. A brief heat treatment that melts triacylglycerols before imbibition prevents the loss of cell integrity; however, residual effects of cold treatments in C. wrightii cells are reflected by the apparent coalescence of protein and oil bodies. The timing and temperature dependence of cellular changes suggest that damage arises via a physical mechanism, perhaps as a result of shifts in hydrophobic and hydrophilic interactions when triacylglycerols undergo phase changes. Stabilizers of oil body structure such as oleosins that rely on a balance of physical forces may become ineffective when triacylglycerols crystallize. Recent observations linking poor oil body stability and poor seed storage behavior are potentially explained by the phase behavior of the storage lipids. These findings directly impact the feasibility of preserving genetic resources from some tropical and subtropical species.

  16. Repeated exposure of mouse dermal fibroblasts at a sub-cytotoxic dose of UVB leads to premature senescence: a robust model of cellular photoaging.

    PubMed

    Zeng, Ji-ping; Bi, Bo; Chen, Liang; Yang, Ping; Guo, Yu; Zhou, Yi-qun; Liu, Tian-yi

    2014-01-01

    Photoaging skin is due to accumulative effect of UV irradiation that mainly imposes its damage on dermal fibroblasts. To mimic the specific cellular responses invoked by long term effect of UVB, it is preferable to develop a photo-damaged model in vitro based on repeated UVB exposure instead of a single exposure. To develop a photo-damaged model of fibroblasts by repeated UVB exposure allowing for investigation of molecular mechanism underlying premature senescence and testing of potential anti-photoaging compounds. Mouse dermal fibroblasts (MDFs) at early passages (passages 1-3) were exposed to a series of 4 sub-cytotoxic dose of UVB. The senescent phenotypes were detected at 24 or 48h after the last irradiation including cell viability, ROS generation, mitochondrial membrane potential, cell cycle, production and degradation of extracellular matrix. Repeated exposure of UVB resulted in remarkable features of senescence. It effectively avoided the disadvantages of single dose such as induction of cell death rather than senescence, inadequate stress resulting in cellular self-rehabilitation. Our work confirms the possibility of detecting cellular machinery that mediates UVB damage to fibroblasts in vitro by repeated exposure, while the potential molecular mechanisms including cell surface receptors, protein kinase signal transduction pathways, and transcription factors remain to be further evaluated. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Cytotoxicity and Physiological Effects of Silver Nanoparticles on Marine Invertebrates.

    PubMed

    Magesky, Adriano; Pelletier, Émilien

    2018-01-01

    Silver nanoparticles (AgNPs) incorporation in commercial products is increasing due to their remarkable physical and chemical properties and their low cost on the market. Silver has been known for a long time to be highly toxic to bacterial communities, aquatic organisms, and particularly to marine biota. Strong chloro-complexes dominate Ag speciation in seawater and facilitate its persistence in dissolved form. It has a great impact on marine organisms because low concentration of silver can lead to strong bioaccumulation, partly because the neutral silver chloro complex (AgCl 0 ) is highly bioavailable. Owing to the fact that estuaries and coastal areas are considered as the ultimate fate for AgNPs, the study of their toxic effects on marine invertebrates can reveal some environmental risks related to nanosilver exposure. In an attempt to reach this goal, many invertebrate taxa including mollusks, crustaceans, echinoderms and polychaetes have been used as biological models. The main findings related to AgNP toxicity and marine invertebrates are summarized hereafter. Some cellular mechanisms involving nano-internalization (cellular uptake, distribution and elimination), DNA damaging, antioxidant cellular defenses and protein expression are discussed. Physiological effects on early stage development, silver metabolic speciation, immune response, tissue damaging, anti-oxidant effects and nano-depuration are also described. Finally, we paid attention to some recent interesting findings using sea urchin developmental stages and their cells as models for nanotoxicity investigation. Cellular and physiological processes characterizing sea urchin development revealed new and multiple toxicity mechanisms of both soluble and nano forms of silver.

  18. The Effect of Gravity Fields on Cellular Gene Expression

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, Millie

    1999-01-01

    Early theoretical analysis predicted that microgravity effects on the isolated cell would be minuscule at the subcellular level; however, these speculations have not proven true in the real world. Astronauts experience a significant bone and muscle loss in as little as 2 weeks of spaceflight and changes are seen at the cellular level soon after exposure to microgravity. Changes in biological systems may be primarily due to the lack of gravity and the resulting loss of mechanical stress on tissues and cells. Recent ground and flight studies examining the effects of gravity or mechanical stress on cells demonstrate marked changes in gene expression when relatively small changes in mechanical forces or gravity fields were made. Several immediate early genes (IEG) like c-fos and c-myc are induced by mechanical stimulation within minutes. In contrast, several investigators report that the absence of mechanical forces during space flight result in decreased sera response element (SRE) activity and attenuation of expression of IEGs such as c-fos, c-jun and cox-2 mRNAs. Clearly, these early changes in gene expression may have long term consequences on mechanically sensitive cells. In our early studies on STS-56, we reported four major changes in the osteoblast; 1) prostaglandin synthesis in flight, 2) changes in cellular morphology, 3) altered actin cytoskeleton and 4) reduced osteoblast growth after four days exposure to microgravity. Initially, it was believed that changes in fibronectin (FN) RNA, FN protein synthesis or subsequent FN matrix formation might account for the changes in cytoskeleton and/ or reduction of growth. However our recent studies on Biorack (STS-76, STS-81 and STS-84), using ground and in-flight 1-G controls, demonstrated that fibronectin synthesis and matrix formation were normal in microgravity. In addition, in our most recent Biorack paper, our laboratory has documented that relative protein synthesis and mRNA synthesis are not changed after 24 hours exposure to microgravity. We did, however, find significant changes in osteoblast gene expression of IEGs, c-fos and cox-2 in microgravity exposure as compared to ground and in-flight 1-G controls. Subsequent ground studies suggest that the molecular mechanism underlying these changes may involve prostaglandin c-AMP receptors (EPs) and/or subsequent alteration of intracellular signaling in the absence of gravity.

  19. Compound annotation with real time cellular activity profiles to improve drug discovery.

    PubMed

    Fang, Ye

    2016-01-01

    In the past decade, a range of innovative strategies have been developed to improve the productivity of pharmaceutical research and development. In particular, compound annotation, combined with informatics, has provided unprecedented opportunities for drug discovery. In this review, a literature search from 2000 to 2015 was conducted to provide an overview of the compound annotation approaches currently used in drug discovery. Based on this, a framework related to a compound annotation approach using real-time cellular activity profiles for probe, drug, and biology discovery is proposed. Compound annotation with chemical structure, drug-like properties, bioactivities, genome-wide effects, clinical phenotypes, and textural abstracts has received significant attention in early drug discovery. However, these annotations are mostly associated with endpoint results. Advances in assay techniques have made it possible to obtain real-time cellular activity profiles of drug molecules under different phenotypes, so it is possible to generate compound annotation with real-time cellular activity profiles. Combining compound annotation with informatics, such as similarity analysis, presents a good opportunity to improve the rate of discovery of novel drugs and probes, and enhance our understanding of the underlying biology.

  20. Cellular homeoproteins, SATB1 and CDP, bind to the unique region between the human cytomegalovirus UL127 and major immediate-early genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee Jialing; Klase, Zachary; Gao Xiaoqi

    An AT-rich region of the human cytomegalovirus (CMV) genome between the UL127 open reading frame and the major immediate-early (MIE) enhancer is referred to as the unique region (UR). It has been shown that the UR represses activation of transcription from the UL127 promoter and functions as a boundary between the divergent UL127 and MIE genes during human CMV infection [Angulo, A., Kerry, D., Huang, H., Borst, E.M., Razinsky, A., Wu, J., Hobom, U., Messerle, M., Ghazal, P., 2000. Identification of a boundary domain adjacent to the potent human cytomegalovirus enhancer that represses transcription of the divergent UL127 promoter. J.more » Virol. 74 (6), 2826-2839; Lundquist, C.A., Meier, J.L., Stinski, M.F., 1999. A strong negative transcriptional regulatory region between the human cytomegalovirus UL127 gene and the major immediate-early enhancer. J. Virol. 73 (11), 9039-9052]. A putative forkhead box-like (FOX-like) site, AAATCAATATT, was identified in the UR and found to play a key role in repression of the UL127 promoter in recombinant virus-infected cells [Lashmit, P.E., Lundquist, C.A., Meier, J.L., Stinski, M.F., 2004. Cellular repressor inhibits human cytomegalovirus transcription from the UL127 promoter. J. Virol. 78 (10), 5113-5123]. However, the cellular factors which associate with the UR and FOX-like region remain to be determined. We reported previously that pancreatic-duodenal homeobox factor-1 (PDX1) bound to a 45-bp element located within the UR [Chao, S.H., Harada, J.N., Hyndman, F., Gao, X., Nelson, C.G., Chanda, S.K., Caldwell, J.S., 2004. PDX1, a Cellular Homeoprotein, Binds to and Regulates the Activity of Human Cytomegalovirus Immediate Early Promoter. J. Biol. Chem. 279 (16), 16111-16120]. Here we demonstrate that two additional cellular homeoproteins, special AT-rich sequence binding protein 1 (SATB1) and CCAAT displacement protein (CDP), bind to the human CMV UR in vitro and in vivo. Furthermore, CDP is identified as a FOX-like binding protein and a repressor of the UL127 promoter, while SATB1 has no effect on UL127 expression. Since CDP is known as a transcription repressor and a nuclear matrix-associated region binding protein, CDP may have a role in the regulation of human CMV transcription.« less

  1. Calcification and Silicification: Fossilization Potential of Cyanobacteria from Stromatolites of Niuafo‘ou's Caldera Lakes (Tonga) and Implications for the Early Fossil Record

    PubMed Central

    Kazmierczak, Józef; Łukomska-Kowalczyk, Maja; Kempe, Stephan

    2012-01-01

    Abstract Calcification and silicification processes of cyanobacterial mats that form stromatolites in two caldera lakes of Niuafo‘ou Island (Vai Lahi and Vai Si‘i) were evaluated, and their importance as analogues for interpreting the early fossil record are discussed. It has been shown that the potential for morphological preservation of Niuafo‘ou cyanobacteria is highly dependent on the timing and type of mineral phase involved in the fossilization process. Four main modes of mineralization of cyanobacteria organic parts have been recognized: (i) primary early postmortem calcification by aragonite nanograins that transform quickly into larger needle-like crystals and almost totally destroy the cellular structures, (ii) primary early postmortem silicification of almost intact cyanobacterial cells that leave a record of spectacularly well-preserved cellular structures, (iii) replacement by silica of primary aragonite that has already recrystallized and obliterated the cellular structures, (iv) occasional replacement of primary aragonite precipitated in the mucopolysaccharide sheaths and extracellular polymeric substances by Al-Mg-Fe silicates. These observations suggest that the extremely scarce earliest fossil record may, in part, be the result of (a) secondary replacement by silica of primary carbonate minerals (aragonite, calcite, siderite), which, due to recrystallization, had already annihilated the cellular morphology of the mineralized microbiota or (b) relatively late primary silicification of already highly degraded and no longer morphologically identifiable microbial remains. Key Words: Stromatolites—Cyanobacteria—Calcification—Silicification—Niuafo‘ou (Tonga)—Archean. Astrobiology 12, 535–548. PMID:22794297

  2. In vitro characterization of MG-63 osteoblast-like cells cultured on organic-inorganic lyophilized gelatin sponges for early bone healing.

    PubMed

    Rodriguez, Isaac A; Saxena, Gunjan; Hixon, Katherine R; Sell, Scott A; Bowlin, Gary L

    2016-08-01

    The development of three-dimensional porous scaffolds with enhanced osteogenic and angiogenic potential would be beneficial for inducing early-stage bone regeneration. Previous studies have demonstrated the advantages of mineralized and nonmineralized acellular 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) cross-linked gelatin sponges enhanced with preparations rich in growth factors, hydroxyapatite, and chitin whiskers. In this study, those same scaffolds were mineralized and dynamically seeded with MG-63 cells. Cell proliferation, protein/cytokine secretion, and compressive mechanical properties of scaffolds were evaluated. It was found that mineralization and the addition of growth factors increased cell proliferation compared to gelatin controls. Cells on all scaffolds responded in an appropriate bone regenerative fashion as shown through osteocalcin secretion and little to no secretion of bone resorbing markers. However, compressive mechanical properties of cellularized scaffolds were not significantly different from acellular scaffolds. The combined results of increased cellular attachment, infiltration, and bone regenerative protein/cytokine secretion on scaffolds support the need for the addition of a bone-like mineral surface. Cellularized scaffolds containing growth factors reported similar advantages and mechanical values in the range of native tissues present in the early stages of bone healing. These results suggest that the developed composite sponges exhibited cellular responses and mechanical properties appropriate for promoting early bone healing in various applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2011-2019, 2016. © 2016 Wiley Periodicals, Inc.

  3. Early effects of altered gravity environments on plant cell growth and cell proliferation: Characterization of morphofunctional nucleolar types in an Arabidopsis cell culture system

    NASA Astrophysics Data System (ADS)

    Manzano, Ana Isabel; Herranz, Raul; Manzano, Aránzazu; Van Loon, Jack; Medina, Francisco Javier

    2016-02-01

    Changes in the cell growth rate of an in vitro cellular system in Arabidopsis thaliana induced by short exposure to an altered gravity environment have been estimated by a novel approach. The method consisted of defining three structural nucleolar types which are easy and reliable indicators of the ribosome biogenesis activity and, consequently, of protein biosynthesis, a parameter strictly correlated to cell growth in this cellular system. The relative abundance of each nucleolar type was statistically assessed in different conditions of gravity. Samples exposed to simulated microgravity for 200 min showed a significant decrease in nucleolar activity compared to 1g controls, whereas samples exposed to hypergravity (2g) for the same period showed nucleolar activity slightly increased,. These effects could be considered as an early cellular response to the environmental alteration, given the short duration of the treatment. The functional significance of the structural data was validated by a combination of several different well-known parameters, using microscopical, flow cytometry, qPCR and proteomic approaches, which showed that the decreased cell growth rate was decoupled from an increased cell proliferation rate under simulated microgravity, and the opposite trend was observed under hypergravity. Actually, not all parameters tested showed the same quantitative changes, indicating that the response to the environmental alteration is time-dependent. These results are in agreement with previous observations in root meristematic cells and they show the ability of plant cells to produce a response to gravity changes, independently of their integration into plant organs.

  4. In Vitro Cell Death Discrimination and Screening Method by Simple and Cost-Effective Viability Analysis.

    PubMed

    Helm, Katharina; Beyreis, Marlena; Mayr, Christian; Ritter, Markus; Jakab, Martin; Kiesslich, Tobias; Plaetzer, Kristjan

    2017-01-01

    For in vitro cytotoxicity testing, discrimination of apoptosis and necrosis represents valuable information. Viability analysis performed at two different time points post treatment could serve such a purpose because the dynamics of metabolic activity of apoptotic and necrotic cells is different, i.e. a more rapid decline of cellular metabolism during necrosis whereas cellular metabolism is maintained during the entire execution phase of apoptosis. This study describes a straightforward approach to distinguish apoptosis and necrosis. A431 human epidermoid carcinoma cells were treated with different concentrations/doses of actinomycin D (Act-D), 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), Ro 31-8220, H2O2 and photodynamic treatment (PDT). The resazurin viability signal was recorded at 2 and 24 hrs post treatment. Apoptosis and necrosis were verified by measuring caspase 3/7 and membrane integrity. Calculation of the difference curve between the 2 and 24 hrs resazurin signals yields the following information: a positive difference signal indicates apoptosis (i.e. high metabolic activity at early time points and low signal at 24 hrs post treatment) while an early reduction of the viability signal indicates necrosis. For all treatments, this dose-dependent sequence of cellular responses could be confirmed by independent assays. Simple and cost-effective viability analysis provides reliable information about the dose ranges of a cytotoxic agent where apoptosis or necrosis occurs. This may serve as a starting point for further in-depth characterisation of cytotoxic treatments. © 2017 The Author(s)Published by S. Karger AG, Basel.

  5. A synthetic eicosanoid LX-mimetic unravels host-donor interactions in allogeneic BMT-induced GvHD to reveal an early protective role for host neutrophils.

    PubMed

    Devchand, Pallavi R; Schmidt, Birgitta A; Primo, Valeria C; Zhang, Qing-yin; Arnaout, M Amin; Serhan, Charles N; Nikolic, Boris

    2005-02-01

    Lipoxin A(4) (LXA(4)) and aspirin-triggered 15-epi-LXA(4) are potent endogenous lipid mediators thought to define the inflammatory set-point. We used single prophylactic administrations of a synthetic aspirin-triggered lipoxin A(4) signal mimetic, ATLa, to probe dynamics of early host-donor interactions in a mouse model for the inflammation-associated multifactorial disease of allogeneic bone marrow transplant (BMT) -induced graft-vs.-host disease (GvHD). We first demonstrated that both host and donor are responsive to the ATLa signals. The simple and restricted regimen of a single prophylactic administration of ATLa [100 ng/mL to donor cells or 1 microg (approximately 50 microg/kg) i.v. to host] was sufficient to delay death. Clinical indicators of weight, skin lesions, diarrhea and eye inflammation were monitored. Histological analyses on day 45 post-BMT showed that the degree of cellular trafficking, particularly neutrophil infiltrate, and protection of end-organ target pathology are different, depending on whether the host or donor was treated with ATLa. Taken together, these results chart some ATLa protective effects on GvHD cellular dynamics over time and identify a previously unrecognized effect of host neutrophils in the early phase post-BMT as important determinants in the dynamics of GvHD onset and progression.-Devchand, P. R., Schmidt, B. A., Primo, V. C., Zhang, Q.-y., Arnaout, M. A., Serhan, C. N., Nikolic, B. A synthetic eicosanoid LX-mimetic unravels host-donor interactions in allogeneic BMT-induced GvHD to reveal an early protective role for host neutrophils.

  6. Safe use of cellular telephones in hospitals: fundamental principles and case studies.

    PubMed

    Cohen, Ted; Ellis, Willard S; Morrissey, Joseph J; Bakuzonis, Craig; David, Yadin; Paperman, W David

    2005-01-01

    Many industries and individuals have embraced cellular telephones. They provide mobile, synchronous communication, which could hypothetically increase the efficiency and safety of inpatient healthcare. However, reports of early analog cellular telephones interfering with critical life-support machines had led many hospitals to strictly prohibit cellular telephones. A literature search revealed that individual hospitals now are allowing cellular telephone use with various policies to prevent electromagnetic interference with medical devices. The fundamental principles underlying electromagnetic interference are immunity, frequency, modulation technology, distance, and power Electromagnetic interference risk mitigation methods based on these principles have been successfully implemented. In one case study, a minimum distance between cellular telephones and medical devices is maintained, with restrictions in critical areas. In another case study, cellular telephone coverage is augmented to automatically control the power of the cellular telephone. While no uniform safety standard yet exists, cellular telephones can be safely used in hospitals when their use is managed carefully.

  7. [Molecular aspects of human papillomaviruses and their relation to uterine cervix cancer].

    PubMed

    García-Carrancá, A; Gariglio, P V

    1993-01-01

    Papillomaviruses (wart viruses) are responsible for the development of benign and malignant epithelial lesions in mammals. More than 60 different types of human papillomaviruses (HPVs) have been isolated to date. Some of them are major candidates as etiologic agents in cervical cancer. DNA from HPV types 16, 18 and 33 is usually found integrated in about 90 percent of genital carcinomas. Integration of the viral DNA into the cellular genome may be an important step towards the development of malignancy. Two early genes of HPVs (E6 y E7) are involved in cellular transformation. Another early gene (E2) participates in gene control by directly binding to conserved DNA motifs in the viral genome. Several protein factors of viral and cellular origin interact with the regulatory region of HPVs and participate in the regulation transcription of oncogenes E6 and E7. Cellular factors, such as immune system and oncogene and anti-oncogene alterations, seem to play an important role in papillomavirus-associated cervical carcinogenesis.

  8. Sensitivity of eastern oyster (Crassostrea virginica) spermatozoa and oocytes to dispersed oil: Cellular responses and impacts on fertilization and embryogenesis.

    PubMed

    Vignier, J; Volety, A K; Rolton, A; Le Goïc, N; Chu, F-L E; Robert, R; Soudant, P

    2017-06-01

    The 2010 Deepwater Horizon (DWH) oil spill released millions of barrels of oil and dispersant into the Gulf of Mexico. The timing of the spill coincided with the spawning season of Crassostrea virginica. Consequently, gametes released in the water were likely exposed to oil and dispersant. This study aimed to (i) evaluate the cellular effects of acute exposure of spermatozoa and oocytes to surface slick oil, dispersed mechanically (HEWAF) and chemically (CEWAF), using flow-cytometric (FCM) analyses, and (ii) determine whether the observed cellular effects relate to impairments of fertilization and embryogenesis of gametes exposed to the same concentrations of CEWAF and HEWAF. Following a 30-min exposure, the number of spermatozoa and their viability were reduced due to a physical action of oil droplets (HEWAF) and a toxic action of CEWAF respectively. Additionally, reactive oxygen species (ROS) production in exposed oocytes tended to increase with increasing oil concentrations suggesting that exposure to dispersed oil resulted in an oxidative stress. The decrease in fertilization success (1-h), larval survival (24-h) and increase in abnormalities (6-h and 24-h) may be partly related to altered cellular characteristics. FCM assays are a good predictor of sublethal effects especially on fertilization success. These data suggest that oil/dispersant are cytotoxic to gametes, which may affect negatively the reproduction success and early development of oysters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eom, Young Woo; Biomedical Research Institute, Lifeliver Co., Ltd., Suwon; Lee, Jong Eun

    2011-04-29

    Highlights: {yields} hASCs were differentiated into skeletal muscle cells by treatment with 5-azacytidine, FGF-2, and the supernatant of cultured hASCs. {yields} Dystrophin and MyHC were expressed in late differentiation step by treatment with the supernatant of cultured hASCs. {yields} hASCs expressing dystrophin and MyHC contributed to myotube formation during co-culture with mouse myoblast C2C12 cells. -- Abstract: Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear. We investigated the myogenic phases of humanmore » adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells. In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1 day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6 days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step. Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation. Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.« less

  10. Activation of autophagy by stress-activated signals as a cellular self-defense mechanism against the cytotoxic effects of MBIC in human breast cancer cells in vitro.

    PubMed

    Hasanpourghadi, Mohadeseh; Majid, Nazia Abdul; Mustafa, Mohd Rais

    2018-06-01

    We recently reported that methyl 2-(-5-fluoro-2-hydroxyphenyl)-1H-benzo[d]imidazole-5-carboxylate (MBIC) is a microtubule targeting agent (MTA) with multiple mechanisms of action including apoptosis in two human breast cancer cell-lines MCF-7 and MDA-MB-231. In the present study, investigation of early molecular events following MBIC treatment demonstrated the induction of autophagy. This early (<24 h) response to MBIC was characterized by accumulation of autophagy markers; LC3-II, Beclin1, autophagic proteins (ATGs) and collection of autophagosomes but with different variations in the two cell-lines. MBIC-induced autophagy was associated with generation of reactive oxygen species (ROS). In parallel, an increased activation of SAPK/JNK pathway was detected, as an intersection of ROS production and induction of autophagy. The cytotoxic effect of MBIC was enhanced by inhibition of autophagy through blockage of SAPK/JNK signaling, suggesting that MBIC-induced autophagy, is a possible cellular self-defense mechanism against toxicity of this agent in both breast cancer cell-lines. The present findings suggest that inhibition of autophagy eliminates the cytoprotective activity of MDA-MB-231 and MCF-7 cells, and sensitizes both the aggressive and non-aggressive human breast cancer cell-lines to the cytotoxic effects of MBIC. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. MHC-driven HIV-1 control on the long run is not systematically determined at early times post-HIV-1 infection.

    PubMed

    Antoni, Guillemette; Guergnon, Julien; Meaudre, Céline; Samri, Assia; Boufassa, Faroudy; Goujard, Cécile; Lambotte, Olivier; Autran, Brigitte; Rouzioux, Christine; Costagliola, Dominique; Meyer, Laurence; Theodorou, Ioannis

    2013-07-17

    Human leukocyte antigen (HLA) class I-driven long-term protection against HIV-1 is mainly associated with HLA-B*27 and HLA-B*57. This effect is observed early after infection. Clarification needs to be established concerning the moment of action for the other HLA-B or HLA-C alleles. HLA-B and HLA-C alleles from 111 individuals that control HIV-1 disease for over 8 years and from 747 seroconverters frequencies were compared. Also, HLA-B and HLA-C influence on early levels of plasma HIV-RNA, cellular HIV-DNA, CD4, CD8 and CD4/CD8 ratio was evaluated among the seroconverters. We performed univariate, multivariate and haplotypic analyses in order to disentangle the respective contribution of the HLA-B and HLA-C genes. The haplotypes analysis shows three patterns of protective effects of HLA-B and HLA-C alleles or haplotypes. First, the HLA B*57, HLA-B*27, HLA-B*13 and HLA-C*14 alleles, which have a strong effect on long-term disease control, also influence at least one of the early infection phenotypes. Second, HLA-B*52 has a strong effect during early time points on HIV-RNA without significant effect on the long-term control of HIV-1. Finally, the HLA-B*14-C*08 haplotype has a strong effect on the long-term protection, without influencing early viral control. Our study highlighted independent effects of HLA-B and HLA-C alleles on HIV-disease progression. Furthermore, some alleles appeared to be specifically associated with either long-term control or early virological parameters, suggesting different immunological mechanisms according to the disease stages.

  12. Cellular mechanisms underlying an effect of "early handling" on pCREB and BDNF in the neonatal rat hippocampus.

    PubMed

    Garoflos, Efstathios; Stamatakis, Antonios; Mantelas, Athanasios; Philippidis, Helen; Stylianopoulou, Fotini

    2005-08-09

    Early experiences have long-term effects on brain function and behavior. However, the precise mechanisms involved still remain elusive. In an effort to address this issue, we employed the model of "early handling", which is known to affect the ability of the adult organism to respond to stressful stimuli, and determined its effects on hippocampal pCREB and BDNF 2, 4, and 8 h later. 8 h following "handling" on postnatal day 1, there was an increase in pCREB and BDNF positive cells in the hippocampus, a brain area which is a specific target of "handling". On the other hand, vehicle injection resulted in decreased pCREB and BDNF in both handled and non-handled animals 2 and 4 h later. The "handling"-induced increase of pCREB and BDNF was cancelled by inhibition of NMDA, AMPA/kainate, GABA-A, 5-HT1A or 5-HT2A/C receptors, as well as L-type voltage-gated Ca(2+) channels. It thus appears that "early handling" activates these neurotransmitter receptors, leading to increased intracellular Ca(2+), phosphorylation of the transcription factor CREB, and increased BDNF expression. BDNF can then exert its morphogenetic effects and thus "imprint" the effects of "handling" on the brain.

  13. Epigenetics and type II diabetes mellitus: underlying mechanisms of prenatal predisposition

    PubMed Central

    Sterns, J. David; Smith, Colin B.; Steele, John R.; Stevenson, Kimberly L.; Gallicano, G. Ian

    2014-01-01

    Type II diabetes mellitus (T2DM) is a widespread metabolic disorder characterized by insulin resistance precipitating abnormally high blood glucose levels. While the onset of T2DM is known to be the consequence of a multifactorial interplay with a strong genetic component, emerging research has demonstrated the additional role of a variety of epigenetic mechanisms in the development of this disorder. Heritable epigenetic modifications, such as DNA methylation and histone modifications, play a vital role in many important cellular processes, including pancreatic cellular differentiation and maintenance of normal β-cell function. Recent studies have found possible epigenetic mechanisms to explain observed risk factors, such as altered atherogenic lipid profiles, elevated body mass index (BMI), and impaired glucose tolerance (IGT), for later development of T2DM in children born to mothers experiencing both famine and hyperglycemic conditions. It is suggested that these epigenetic influences happen early during gestation and are less susceptible to the effects of postnatal environmental modification as was previously thought, highlighting the importance of early preventative measures in minimizing the global burden of T2DM. PMID:25364722

  14. Cidofovir inhibits polyomavirus BK replication in human renal tubular cells downstream of viral early gene expression.

    PubMed

    Bernhoff, E; Gutteberg, T J; Sandvik, K; Hirsch, H H; Rinaldo, C H

    2008-07-01

    The human polyomavirus BK (BKV) causes nephropathy and hemorrhagic cystitis in kidney and bone marrow transplant patients, respectively. The anti-viral cidofovir (CDV) has been used in small case series but the effects on BKV replication are unclear, since polyomaviruses do not encode viral DNA polymerases. We investigated the effects of CDV on BKV(Dunlop) replication in primary human renal proximal tubule epithelial cells (RPTECs). CDV inhibited the generation of viral progeny in a dose-dependent manner yielding a 90% reduction at 40 microg/mL. Early steps such as receptor binding and entry seemed unaffected. Initial large T-antigen transcription and expression were also unaffected, but subsequent intra-cellular BKV DNA replication was reduced by >90%. Late viral mRNA and corresponding protein levels were also 90% reduced. In uninfected RPTECs, CDV 40 microg/mL reduced cellular DNA replication and metabolic activity by 7% and 11% in BrdU and WST-1 assays, respectively. BKV infection increased DNA replication to 142% and metabolic activity to 116%, respectively, which were reduced by CDV 40 microg/mL to levels of uninfected untreated RPTECs. Our results show that CDV inhibits BKV DNA replication downstream of large T-antigen expression and involves significant host cell toxicity. This should be considered in current treatment and drug development.

  15. Physiology and Endocrinology Symposium: influence of cattle genotype (Bos indicus vs. Bos taurus) on oocyte and preimplantation embryo resistance to increased temperature.

    PubMed

    Paula-Lopes, F F; Lima, R S; Satrapa, R A; Barros, C M

    2013-03-01

    High environmental temperatures during the hot months of the year reduce reproductive performance in cattle. Summer heat stress depression in fertility is a multifactorial problem; however, there is evidence that the bovine germinal vesicle and maturing oocyte, as well as the early embryo, are major targets of the deleterious effects of heat stress. Such adverse effects are less pronounced in heat-tolerant breeds (Bos indicus) than heat-sensitive breeds (Bos taurus). This genetic variation results from the greater thermoregulatory ability and cellular thermoresistance of heat-tolerant breeds. Heat-induced oocyte cellular damage occurs in both cytoplasmic and nuclear compartments. Heat shock has been shown to reduce oocyte nuclear maturation, induce apoptosis, compromise oocyte cytoskeleton, and impair oocyte mitochondrial function and developmental competence. However, the oocyte cytoplasm is more susceptible to heat shock than the nucleus. This effect is greater for Bos taurus than Bos indicus oocytes. The detrimental effects of heat shock are also critical during the first cleavage divisions when most of the embryonic genome is inactive; however, the bovine embryo becomes more resistant to increased temperature as it proceeds through development. Several studies demonstrated that Bos indicus embryos are more thermotolerant than Bos taurus embryos. Adaptive changes involved in acquisition of thermotolerance are likely derived from changes in gene expression and (or) activity of biochemical molecules that control cellular functions against stress. Recently, molecules such as IGF-I and caspase inhibitor z-DEVD-fmk have been shown to exert a thermoprotective role, rescuing heat-induced oocyte and embryo cellular damage and developmental competence. Therefore, cattle genotype and thermoprotective molecules can be considered as an alternative to modulate the effects of increased temperature in reproductive function.

  16. African swine fever virus infects macrophages, the natural host cells, via clathrin- and cholesterol-dependent endocytosis.

    PubMed

    Galindo, Inmaculada; Cuesta-Geijo, Miguel Angel; Hlavova, Karolina; Muñoz-Moreno, Raquel; Barrado-Gil, Lucía; Dominguez, Javier; Alonso, Covadonga

    2015-03-16

    The main cellular target for African swine fever virus (ASFV) is the porcine macrophage. However, existing data about the early phases of infection were previously characterized in non-leukocyte cells such as Vero cells. Here, we report that ASFV enters the natural host cell using dynamin-dependent and clathrin-mediated endocytosis. This pathway is strongly pH-dependent during the first steps of infection in porcine macrophages. We investigated the effect of drugs inhibiting several endocytic pathways in macrophages and compared ASFV with vaccinia virus (VV), which apparently involves different entry pathways. The presence of cholesterol in cellular membranes was found to be essential for a productive ASFV infection while actin-dependent endocytosis and the participation of phosphoinositide-3-kinase (PI3K) activity were other cellular factors required in the process of viral entry. These findings improved our understanding of the ASFV interactions with macrophages that allow for successful viral replication. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Study of effects of radio-wave frequency radiation emitted from cellular telephones on embryonic development of danio rerio

    NASA Astrophysics Data System (ADS)

    Vagula, Mary; Harkless, Ryan

    2013-05-01

    Radio wave frequency (RF) radiation emitted from cellular telephones has become increasingly ubiquitous as a result of the popularity of these phones. With the increasing and unavoidable exposure to RF radiation a reality, it is imperative that the effects of such radiation on living tissue be well understood. In particular, it is critical to understand any effects that RF radiation may have as a carcinogen and on embryonic development, as pregnant women are not exempt from such exposure. As a model organism, zebrafish (Danio rerio) have been studied extensively, and their value in studies of gene expression cannot be overstated. This study observed the effects of RF radiation on the embryonic development of zebrafish. The expression of two genes, shha and hoxb9a, that are key to the early development of the fish was examined. Both genes have homologs in humans as well as in other model organisms. Preliminary results suggest that exposure to cell phone radiation might have an effect on the expression of shha in zebrafish embryos, causing under expression. More trials are necessary to validate these results.

  18. Comparison between reflectance confocal microscopy and two-photon microscopy in early detection of cutaneous radiation injury in a mouse model in-vivo.

    PubMed

    Jang, Won Hyuk; Kwon, Soonjae; Shim, Sehwan; Jang, Won-Suk; Myung, Jae Kyung; Yang, Sejung; Park, Sunhoo; Kim, Ki Hean

    2018-05-12

    Cutaneous radiation injury (CRI) is a skin injury caused by high dose exposure of ionizing radiation (IR). For proper treatment, early detection of CRI before clinical symptoms is important. Optical microscopic techniques such as reflectance confocal microscopy (RCM) and two-photon microscopy (TPM) have been tested as the early diagnosis method by detecting cellular changes. In this study, RCM and TPM were compared in the detection of cellular changes caused by CRI in an in-vivo mouse model. CRI was induced on the mouse hindlimb skin with various IR doses and the injured skin regions were imaged longitudinally by both modalities until the onset of clinical symptoms. Both RCM and TPM detected the changes of epidermal cells and sebaceous glands before clinical symptoms in different optical contrasts. RCM detected changes of cell morphology and scattering property based on light reflection. TPM detected detail changes of cellular structures based on autofluorescence of cells. Since both RCM and TPM were sensitive to the early-stage CRI by using different contrasts, the optimal method for clinical CRI diagnosis could be either individual methods or their combination. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. 78 FR 39736 - Draft Guidance for Industry: Considerations for the Design of Early-Phase Clinical Trials of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ..., choosing a study population, using a control group and blinding, dose selection, treatment plans...] Draft Guidance for Industry: Considerations for the Design of Early-Phase Clinical Trials of Cellular... document entitled ``Guidance for Industry: Considerations for the Design of Early-Phase Clinical Trials of...

  20. Adaptation response of Pseudomonas fragi on refrigerated solid matrix to a moderate electric field.

    PubMed

    Chen, Wenbo; Hu, Honghai; Zhang, Chunjiang; Huang, Feng; Zhang, Dequan; Zhang, Hong

    2017-02-10

    Moderate electric field (MEF) technology is a promising food preservation strategy since it relies on physical properties-rather than chemical additives-to preserve solid cellular foods during storage. However, the effectiveness of long-term MEF exposure on the psychrotrophic microorganisms responsible for the food spoilage at cool temperatures remains unclear. The spoilage-associated psychrotroph Pseudomonas fragi MC16 was obtained from pork samples stored at 7 °C. Continuous MEF treatment attenuated growth and resulted in subsequent adaptation of M16 cultured on nutrient agar plates at 7 °C, compared to the control cultures, as determined by biomass analysis and plating procedures. Moreover, intracellular dehydrogenase activity and ATP levels also indicated an initial effect of MEF treatment followed by cellular recovery, and extracellular β-galactosidase activity assays indicated no obvious changes in cell membrane permeability. Furthermore, microscopic observations using scanning and transmission electron microscopy revealed that MEF induced sublethal cellular injury during early treatment stages, but no notable changes in morphology or cytology on subsequent days. Our study provides direct evidence that psychrotrophic P. fragi MC16 cultured on nutrient agar plates at 7 °C are capable of adapting to MEF treatment.

  1. Effect of Withaferin A on A549 cellular proliferation and apoptosis in non-small cell lung cancer.

    PubMed

    Cai, Yong; Sheng, Zhao-Ying; Chen, Yun; Bai, Chong

    2014-01-01

    To explore the effect of Withaferin A on A549 cellular proliferation and apoptosis in non-small cell lung cancer (NSCLC). NSCNC cell line A549 was selected to explore the effect of Withaferin A on A549 cellular proliferation, apoptosis and the PI3K/Akt signal pathway capable of regulating tumor biological behavior by assessment of cellular proliferation, cellular apoptotic rates and cellular cycling as well as by immuno-blotting. Withaferin A could inhibit A549 cellular proliferation and the control rate was dosage-dependent (P<0.05), which also increased time-dependently with the same dosage of Withaferin A (P<0.05). The apoptotic indexes in A549 cells treated with 0, 2.5, 5.0, 10.0 and 20.0 μmol·L-1 Withaferin A for 48 h were significantly different (P<0.05). In addition, the apoptotic rates of each group in both early and advanced stages were higher than those in 0 μmol·L-1 (P<0.05), which were evidently higher after 48 h than those after 24 h (P<0.05). A549 cells treated by Withaferin A for 48 h were markedly lower in Bcl-2 level and obviously higher in Bax and cleaved caspase-3 levels than those treated by 0 μmol·L-1 Withaferin A (P<0.05), and there were significant differences among 5, 10 and 20 μmol·L-1 Withaferin A (P<0.05). The ratios of A549 cells treated by Withaferin A for 48 h in G0/G1 stage were higher than those in 0 μmol·L-1 , while those in S and G2/M stages were obviously lower than those in G2/M stage, and there were significant differences in 5.0, 10.0 and 20.0 μmol·L-1 Withaferin A (P<0.05). Additionally, p-Akt/Akt values were in reverse association with dosage, and the differences were significant (P<0.05). Withaferin A can inhibit the proliferation and apoptosis of A549 cells by suppressing activation of the PI3K/Akt pathways.

  2. Rapid assessment of Oenococcus oeni activity by measuring intracellular pH and membrane potential by flow cytometry, and its application to the more effective control of malolactic fermentation.

    PubMed

    Bouix, M; Ghorbal, S

    2015-01-16

    The aim of this study is to highlight the changes in the physiological cellular state of Oenococcus oeni during malolactic fermentation (MLF), and to use its cellular parameters to improve existing knowledge of O. oeni behaviour and to more effectively control the performance of the bacteria during MLF in wine. To do this, measurements of intracellular pH, transmembrane potential and vitality were performed using flow cytometry with different fluorescent probes: CFDA-SE and CDCF, DiBAC and CFDA, respectively. The kinetics of the cellular changes in these parameters were determined during MLF in FT80 synthetic medium and in white wine, as were the kinetics of malic acid consumption. pHin measurement throughout the entire growth shows that the pH was equal to the pH of the culture medium during the early stage, increased to pH6 in the exponential phase, and then decreased to equilibrate with the pH of the medium in the late stationary phase. Membrane potential increased in early MLF and then decreased. The decrease in pHin and membrane potential occurred when all of the malic acid was consumed. Finally, we showed that the higher the ΔpH (pHin-pHex) in O. oeni cells was, the shorter the lag phase of the MLF was. To better manage the initiation of MLF in wines, the physiological state of O. oeni cells must be taken into account. These results allow us to understand the sometimes random initiation of MLF in wines inoculated with O. oeni and to suggest ways to improve this control. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The roles of cellular and molecular components of a hematoma at early stage of bone healing.

    PubMed

    Shiu, Hoi Ting; Leung, Ping Chung; Ko, Chun Hay

    2018-04-01

    Bone healing is a complex repair process that commences with the formation of a blood clot at the injured bone, termed hematoma. It has evidenced that a lack of a stable hematoma causes delayed bone healing or non-union. The hematoma at the injured bone constitutes the early healing microenvironment. It appears to dictate healing pathways that ends in a regenerative bone. However, the hematoma is often clinically removed from the damaged site. Conversely, blood-derived products have been used in bone tissue engineering for treating critical sized defects, including fibrin gels and platelet-rich plasma. A second generation of platelet concentrate that is based on leukocyte and fibrin content has also been developed and introduced in market. Conflicting effect of these products in bone repair are reported. We propose that the bone healing response becomes dysregulated if the blood response and subsequent formation and properties of a hematoma are altered. This review focuses on the central structural, cellular, and molecular components of a fracture hematoma, with a major emphasis on their roles in regulating bone healing mechanism, and their interactions with mesenchymal stem cells. New angles towards a better understanding of these factors and relevant mechanisms involved at the beginning of bone healing may help to clarify limited or adverse effects of blood-derived products on bone repair. We emphasize that the recreation of an early hematoma niche with critical compositions might emerge as a viable therapeutic strategy for enhanced skeletal tissue engineering. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Carbon monoxide induces cardiac arrhythmia via induction of the late Na+ current.

    PubMed

    Dallas, Mark L; Yang, Zhaokang; Boyle, John P; Boycott, Hannah E; Scragg, Jason L; Milligan, Carol J; Elies, Jacobo; Duke, Adrian; Thireau, Jérôme; Reboul, Cyril; Richard, Sylvain; Bernus, Olivier; Steele, Derek S; Peers, Chris

    2012-10-01

    Clinical reports describe life-threatening cardiac arrhythmias after environmental exposure to carbon monoxide (CO) or accidental CO poisoning. Numerous case studies describe disruption of repolarization and prolongation of the QT interval, yet the mechanisms underlying CO-induced arrhythmias are unknown. To understand the cellular basis of CO-induced arrhythmias and to identify an effective therapeutic approach. Patch-clamp electrophysiology and confocal Ca(2+) and nitric oxide (NO) imaging in isolated ventricular myocytes was performed together with protein S-nitrosylation to investigate the effects of CO at the cellular and molecular levels, whereas telemetry was used to investigate effects of CO on electrocardiogram recordings in vivo. CO increased the sustained (late) component of the inward Na(+) current, resulting in prolongation of the action potential and the associated intracellular Ca(2+) transient. In more than 50% of myocytes these changes progressed to early after-depolarization-like arrhythmias. CO elevated NO levels in myocytes and caused S-nitrosylation of the Na(+) channel, Na(v)1.5. All proarrhythmic effects of CO were abolished by the NO synthase inhibitor l-NAME, and reversed by ranolazine, an inhibitor of the late Na(+) current. Ranolazine also corrected QT variability and arrhythmias induced by CO in vivo, as monitored by telemetry. Our data indicate that the proarrhythmic effects of CO arise from activation of NO synthase, leading to NO-mediated nitrosylation of Na(V)1.5 and to induction of the late Na(+) current. We also show that the antianginal drug ranolazine can abolish CO-induced early after-depolarizations, highlighting a novel approach to the treatment of CO-induced arrhythmias.

  5. Identification of TRIM27 as a novel degradation target of herpes simplex virus 1 ICP0.

    PubMed

    Conwell, Sara E; White, Anne E; Harper, J Wade; Knipe, David M

    2015-01-01

    The herpes simplex virus 1 (HSV-1) immediate early protein ICP0 performs many functions during infection, including transactivation of viral gene expression, suppression of innate immune responses, and modification and eviction of histones from viral chromatin. Although these functions of ICP0 have been characterized, the detailed mechanisms underlying ICP0's complex role during infection warrant further investigation. We thus undertook an unbiased proteomic approach to identifying viral and cellular proteins that interact with ICP0 in the infected cell. Cellular candidates resulting from our analysis included the ubiquitin-specific protease USP7, the transcriptional repressor TRIM27, DNA repair proteins NBN and MRE11A, regulators of apoptosis, including BIRC6, and the proteasome. We also identified two HSV-1 early proteins involved in nucleotide metabolism, UL39 and UL50, as novel candidate interactors of ICP0. Because TRIM27 was the most statistically significant cellular candidate, we investigated the relationship between TRIM27 and ICP0. We observed rapid, ICP0-dependent loss of TRIM27 during HSV-1 infection. TRIM27 protein levels were restored by disrupting the RING domain of ICP0 or by inhibiting the proteasome, arguing that TRIM27 is a novel degradation target of ICP0. A mutant ICP0 lacking E3 ligase activity interacted with endogenous TRIM27 during infection as demonstrated by reciprocal coimmunoprecipitation and supported by immunofluorescence data. Surprisingly, ICP0-null mutant virus yields decreased upon TRIM27 depletion, arguing that TRIM27 has a positive effect on infection despite being targeted for degradation. These results illustrate a complex interaction between TRIM27 and viral infection with potential positive or negative effects of TRIM27 on HSV under different infection conditions. During productive infection, a virus must simultaneously redirect multiple cellular pathways to replicate itself while evading detection by the host's defenses. To orchestrate such complex regulation, viruses, including herpes simplex virus 1 (HSV-1), rely on multifunctional proteins such as the E3 ubiquitin ligase ICP0. This protein regulates various cellular pathways concurrently by targeting a diverse set of cellular factors for degradation. While some of these targets have been previously identified and characterized, we undertook a proteomic screen to identify additional targets of this activity to further characterize ICP0's role during infection. We describe a set of candidate interacting proteins of ICP0 identified through this approach and our characterization of the most statistically significant result, the cellular transcriptional repressor TRIM27. We present TRIM27 as a novel degradation target of ICP0 and describe the relationship of these two proteins during infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. A single-center retrospective clinicopathologic study of endomyocardial biopsies after heart transplant at Baskent University Hospital in Ankara, 1993-2014.

    PubMed

    Terzi, Ayşen; Sezgin, Atilla; Tunca, Zeynep; Deniz, Ebru; Ayva, Ebru Şebnem; Haberal Reyhan, Nihan; Müderrisoğlu, Haldun; Özdemir, Binnaz Handan

    2015-04-01

    The purpose of this study was to investigate the frequency and prognostic importance of acute cellular rejection after heart transplant. All 84 heart transplant patients at our center from January 1993 to January 2014, including all 576 endomyocardial biopsies, were evaluated with retrospective review of clinical records and endomyocardial biopsies. Routine and clinically indicated endomyocardial biopsies after heart transplant were graded for acute cellular rejection (2005 International Society for Heart and Lung Transplantation Working Formulation). Survival analysis was performed using Kaplan-Meier method. There were 61 male (73%) and 23 female recipients. Median age at heart transplant was 29 years (range, 1-62 y). Posttransplant early mortality rate was 17.9% (15 patients). In the other 69 patients, 23 patients died and 46 patients (66.7%) were alive at mean 69.3 ± 7.2 months after heart transplant. Mean follow-up was 35.4 ± 29.8 months (range, 0.07-117.5 mo). Mean 8.4 ± 4.2 endomyocardial biopsies (range, 1-19 biopsies) were performed per patient. Median first biopsy time was 7 days (range, 1-78 d). The frequency of posttransplant acute cellular rejection was 63.8% (44 of 69 patients) by histopathology; 86% patients experienced the first episode of acute cellular rejection within 6 months after transplant. There were 18 patients with acute cellular rejection ≥ grade 2R on ≥ 1 endomyocardial biopsy in 44 patients with acute cellular rejection. No significant difference was observed between survival rates of patients with grade 1R or ≥ grade 2R acute cellular rejection, or between survival rates of patients with or without diagnosis of any grade of acute cellular rejection. Acute cellular rejection was not related to any prognostic risk factor. Acute cellular rejection had no negative effect on heart recipient long-term survival, but it was a frequent complication after heart transplant, especially within the first 6 months.

  7. Potential Role of Lateral Gene Transfer in the Evolution of Biofilm Communities at the Lost City Hydrothermal Field and in the Earliest Stages of Cellular Evolution

    NASA Astrophysics Data System (ADS)

    Brazelton, W. J.; Mehta, M. P.; Baross, J. A.

    2010-04-01

    DNA sequencing and metabolic activity measurements show that lateral gene transfer promotes phenotypic diversity in single-species archaeal biofilms attached to hydrothermal chimneys. This system may be a useful model for early cellular evolution.

  8. Toxic effects of magnesium oxide nanoparticles on early developmental and larval stages of zebrafish (Danio rerio).

    PubMed

    Ghobadian, Mehdi; Nabiuni, Mohammad; Parivar, Kazem; Fathi, Mojtaba; Pazooki, Jamileh

    2015-12-01

    Magnesium oxide nanoparticles (MgONPs) are used in medicine, manufacturing and food industries. Because of their extensive application in our daily lives, environmental exposure to these nanoparticles is inevitable. The present study examined the effects of MgONPs on zebrafish (Danio rerio) early developmental stages. The results showed that, at different concentrations, MgONPs induced cellular apoptosis and intracellular reactive oxygen species. The hatching rate and survival of embryos decreased in a dose dependent manner. The 96-h LC50 value of MgONPs on zebrafish survival was 428 mg/l and the 48-h EC50 value of MgONPs on zebrafish embryo hatching rate was 175 mg/l. Moreover different types of malformation were observed in exposed embryos. The results demonstrate the toxic effects of MgONPs on zebrafish embryos and emphasize the need for further studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Cervical cancer cells (HeLa) response to photodynamic therapy using a zinc phthalocyanine photosensitizer.

    PubMed

    Hodgkinson, Natasha; Kruger, Cherie Ann; Mokwena, Mpho; Abrahamse, Heidi

    2017-12-01

    Cervical cancer is the most common gynecological malignancy worldwide, and the leading cause of cancer related deaths among females. Conventional treatment for early cervical cancer is radical hysterectomy. In locally advanced cancer the treatment of choice is concurrent chemo radiation. Although such treatment methods show promise, they do have adverse side effects. To minimize these effects, as well as prevent cancer re-occurrence, new treatment methods are being investigated. Photodynamic therapy (PDT) involves the selective uptake of a photosensitizer (PS) by cancer cells, illumination with light of an appropriate wavelength that triggers a photochemical reaction leading to the generation of reactive oxygen and subsequent tumor regression. The effect of PDT on a cervical cancer cell line (HeLa) was assessed by exposing cultured cells to a sulphonated zinc phthalocyanine PS (ZnPcS mix ) and irradiating the cells using a 673nm diode laser. The effects were measured using the Trypan blue viability assay, adenosine triphosphate assay (ATP) luminescence assay for proliferation, Lactate Dehydrogenase (LDH) membrane integrity cytotoxicity assay, and fluorescent microscopy to assess PS cellular localization and nuclear damage. Fluorescent microscopy revealed localization of the PS in the cytoplasm and perinuclear region of HeLa cells. PDT treated cellular responses showed dose dependent structural changes, with decreased cell viability and proliferation, as well as considerable membrane damage. Hoechst stained cells also revealed DNA damage in PDT treated cells. The final findings from this study suggest that ZnPcS mix is a promising PS for the PDT treatment of cervical cancer in vitro, where a significant 85% cellular cytotoxicity with only 25% cellular viability was noted in cells which received 1μM ZnPcS mix when an 8J/cm 2 fluence was applied. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Prediction of intracellular exposure bridges the gap between target- and cell-based drug discovery

    PubMed Central

    Gordon, Laurie J.; Wayne, Gareth J.; Almqvist, Helena; Axelsson, Hanna; Seashore-Ludlow, Brinton; Treyer, Andrea; Lundbäck, Thomas; West, Andy; Hann, Michael M.; Artursson, Per

    2017-01-01

    Inadequate target exposure is a major cause of high attrition in drug discovery. Here, we show that a label-free method for quantifying the intracellular bioavailability (Fic) of drug molecules predicts drug access to intracellular targets and hence, pharmacological effect. We determined Fic in multiple cellular assays and cell types representing different targets from a number of therapeutic areas, including cancer, inflammation, and dementia. Both cytosolic targets and targets localized in subcellular compartments were investigated. Fic gives insights on membrane-permeable compounds in terms of cellular potency and intracellular target engagement, compared with biochemical potency measurements alone. Knowledge of the amount of drug that is locally available to bind intracellular targets provides a powerful tool for compound selection in early drug discovery. PMID:28701380

  11. Control of human adenovirus type 5 gene expression by cellular Daxx/ATRX chromatin-associated complexes

    PubMed Central

    Schreiner, Sabrina; Bürck, Carolin; Glass, Mandy; Groitl, Peter; Wimmer, Peter; Kinkley, Sarah; Mund, Andreas; Everett, Roger D.; Dobner, Thomas

    2013-01-01

    Death domain–associated protein (Daxx) cooperates with X-linked α-thalassaemia retardation syndrome protein (ATRX), a putative member of the sucrose non-fermentable 2 family of ATP-dependent chromatin-remodelling proteins, acting as the core ATPase subunit in this complex, whereas Daxx is the targeting factor, leading to histone deacetylase recruitment, H3.3 deposition and transcriptional repression of cellular promoters. Despite recent findings on the fundamental importance of chromatin modification in host-cell gene regulation, it remains unclear whether adenovirus type 5 (Ad5) transcription is regulated by cellular chromatin remodelling to allow efficient virus gene expression. Here, we focus on the repressive role of the Daxx/ATRX complex during Ad5 replication, which depends on intact protein–protein interaction, as negative regulation could be relieved with a Daxx mutant that is unable to interact with ATRX. To ensure efficient viral replication, Ad5 E1B-55K protein inhibits Daxx and targets ATRX for proteasomal degradation in cooperation with early region 4 open reading frame protein 6 and cellular components of a cullin-dependent E3-ubiquitin ligase. Our studies illustrate the importance and diversity of viral factors antagonizing Daxx/ATRX-mediated repression of viral gene expression and shed new light on the modulation of cellular chromatin remodelling factors by Ad5. We show for the first time that cellular Daxx/ATRX chromatin remodelling complexes play essential roles in Ad gene expression and illustrate the importance of early viral proteins to counteract cellular chromatin remodelling. PMID:23396441

  12. Repeated short-term stress synergizes the ROS signalling through up regulation of NFkB and iNOS expression induced due to combined exposure of trichloroethylene and UVB rays.

    PubMed

    Ali, Farrah; Sultana, Sarwat

    2012-01-01

    Restraint stress is known to catalyse the pathogenesis of the variety of chronic inflammatory disorders. The present study was designed to evaluate the effect of repeated short-term stress (RRS) on cellular transduction apart from oxidative burden and early tumour promotional biomarkers induced due to combined exposure of trichloroethylene (TCE) and Ultra-violet radiation (UVB). RRS leads to the increase in the expression of the stress responsive cellular transduction elements NFkB-p65 and activity of iNOS in the epidermal tissues of mice after toxicant exposure. RRS augments the steep depletion of the cellular antioxidant machinery which was evidenced by the marked depletion in GSH (Glutathione and GSH dependant enzymes), superoxide dismutase and catalase activity that were observed at significance level of P < 0.001 with increase in lipid peroxidation, H(2)O(2) and xanthine oxidase activity (P < 0.001) in the stressed animals and down regulation of DT-diaphorase activity (P < 0.001). Since, the induction of NFkB-p65 and inducible nitric oxide synthase expression mediated can lead to the hyperproliferation, we estimated a significant increment (P < 0.001) in the synthesis of polyamines in mice skin evidenced here by the ornithine decarboxylase which is the early marker of tumour promotion and further evaluated PCNA expression. All these findings cues towards the synergising ability of repeated short-term stress in the toxic response of TCE and UVB radiation.

  13. Global gene expression analysis of early response to chemotherapy treatment in ovarian cancer spheroids.

    PubMed

    L'Espérance, Sylvain; Bachvarova, Magdalena; Tetu, Bernard; Mes-Masson, Anne-Marie; Bachvarov, Dimcho

    2008-02-26

    Chemotherapy (CT) resistance in ovarian cancer (OC) is broad and encompasses diverse unrelated drugs, suggesting more than one mechanism of resistance. To better understand the molecular mechanisms controlling the immediate response of OC cells to CT exposure, we have performed gene expression profiling in spheroid cultures derived from six OC cell lines (OVCAR3, SKOV3, TOV-112, TOV-21, OV-90 and TOV-155), following treatment with 10,0 microM cisplatin, 2,5 microM paclitaxel or 5,0 microM topotecan for 72 hours. Exposure of OC spheroids to these CT drugs resulted in differential expression of genes associated with cell growth and proliferation, cellular assembly and organization, cell death, cell cycle control and cell signaling. Genes, functionally involved in DNA repair, DNA replication and cell cycle arrest were mostly overexpressed, while genes implicated in metabolism (especially lipid metabolism), signal transduction, immune and inflammatory response, transport, transcription regulation and protein biosynthesis, were commonly suppressed following all treatments. Cisplatin and topotecan treatments triggered similar alterations in gene and pathway expression patterns, while paclitaxel action was mainly associated with induction of genes and pathways linked to cellular assembly and organization (including numerous tubulin genes), cell death and protein synthesis. The microarray data were further confirmed by pathway and network analyses. Most alterations in gene expression were directly related to mechanisms of the cytotoxics actions in OC spheroids. However, the induction of genes linked to mechanisms of DNA replication and repair in cisplatin- and topotecan-treated OC spheroids could be associated with immediate adaptive response to treatment. Similarly, overexpression of different tubulin genes upon exposure to paclitaxel could represent an early compensatory effect to this drug action. Finally, multicellular growth conditions that are known to alter gene expression (including cell adhesion and cytoskeleton organization), could substantially contribute in reducing the initial effectiveness of CT drugs in OC spheroids. Results described in this study underscore the potential of the microarray technology for unraveling the complex mechanisms of CT drugs actions in OC spheroids and early cellular response to treatment.

  14. [The role of cellular senescence in carcinogenesis and antitumor therapy].

    PubMed

    Mosieniak, Grazyna; Strzeszewska, Anna

    2014-01-01

    Cellular senescence is the process that lead to terminal growth arrest induced by unrepairable double strand DNA damage (DSB). Moreover, activation of the oncogenes as well as inhibition of the tumor suppressor genes were shown to contribute to senescence induction and the senescent cells were identified in the premalignant lesions. Thus senescence is considered as an natural antitumor barrier that act at the early stages of cancerogenesis to stop the proliferation of transformed cells. Interestingly, the premalignant cells that escaped senescence and progress into full blown tumor cells still remain sensitive to induction of senescence, for example during chemio- or radiotherapy. Thus, induction of cancer cell senescence, similarly to apoptosis, is considered to restrain tumor growth and thus contribute to effectiveness of anticancer therapy. The senescent cells, although do not proliferate, remain viable and metabolically active. They secret a lot of cytokines, mitogens as well as enzymes degrading extracellular matrix. These factors can have opposing effect on neighboring cells, leading to senescence induction or stimulation of proliferation. Thus, senescence can act as an double edge sword that inhibit the propagation of potentially dangerous, transformed cells on one hand or induce cell division of the same cell on the other. Presently a lot of work is focused on finding new therapeutic strategies that would involve the tumor targeted senescence induction in both early late stages of cancer development. Nevertheless, the unwanted influence of the senescent cells on the microenvironment, requires careful monitoring the effects of pro-senescent therapies in each case.

  15. A role for autophagic protein beclin 1 early in lymphocyte development.

    PubMed

    Arsov, Ivica; Adebayo, Adeola; Kucerova-Levisohn, Martina; Haye, Joanna; MacNeil, Margaret; Papavasiliou, F Nina; Yue, Zhenyu; Ortiz, Benjamin D

    2011-02-15

    Autophagy is a highly regulated and evolutionarily conserved process of cellular self-digestion. Recent evidence suggests that this process plays an important role in regulating T cell homeostasis. In this study, we used Rag1(-/-) (recombination activating gene 1(-/-)) blastocyst complementation and in vitro embryonic stem cell differentiation to address the role of Beclin 1, one of the key autophagic proteins, in lymphocyte development. Beclin 1-deficient Rag1(-/-) chimeras displayed a dramatic reduction in thymic cellularity compared with control mice. Using embryonic stem cell differentiation in vitro, we found that the inability to maintain normal thymic cellularity is likely caused by impaired maintenance of thymocyte progenitors. Interestingly, despite drastically reduced thymocyte numbers, the peripheral T cell compartment of Beclin 1-deficient Rag1(-/-) chimeras is largely normal. Peripheral T cells displayed normal in vitro proliferation despite significantly reduced numbers of autophagosomes. In addition, these chimeras had greatly reduced numbers of early B cells in the bone marrow compared with controls. However, the peripheral B cell compartment was not dramatically impacted by Beclin 1 deficiency. Collectively, our results suggest that Beclin 1 is required for maintenance of undifferentiated/early lymphocyte progenitor populations. In contrast, Beclin 1 is largely dispensable for the initial generation and function of the peripheral T and B cell compartments. This indicates that normal lymphocyte development involves Beclin 1-dependent, early-stage and distinct, Beclin 1-independent, late-stage processes.

  16. Arabidopsis thaliana GEX1 has dual functions in gametophyte development and early embryogenesis

    USDA-ARS?s Scientific Manuscript database

    GEX1 is a plasma membrane protein conserved among plant species, and was previously shown to be expressed in sperm cells and some sporophytic tissues. Here we show that GEX1 is also expressed in the embryo sac before cellularization, in the egg cell after cellularization, in the zygote/embryo immedi...

  17. Assessment of oral cytological features in smokers and nonsmokers after application of toluidine blue.

    PubMed

    Sharbatdaran, Majid; Abbaszadeh, Hamid; Siadati, Sepideh; Ranaee, Mohammad; Hajian-Tilaki, Karimollah; Rajabi-Moghaddam, Mahdieh

    2017-06-01

    Smoking is the most important etiologic factor of oral cancer. Exfoliative cytology is the best method for early detection of oral cancer. Toluidine blue staining is used for detection of oral premalignant and malignant lesions. The aim of this study was to enhance the accuracy of oral exfoliative cytology in evaluating dysplastic features using toluidine blue staining. This clinical trials study was performed on 60 male smokers and nonsmokers without clinically oral lesion. Oral exfoliative cytological smears were prepared before and after application of toluidine blue and stained with Papanicolaou and evaluated under light microscope. Cytological features such as cellular clumping nuclear-to-cytoplasmic ratio, cellular and nuclear pleomorphism, micronuclei, binucleation, presence of bacterial colonies, and keratin flakes were assessed and compared before and after application of toluidine blue. Results showed that cellular clumping and micronuclei were significantly decreased after application of toluidine blue and conversely cellular and nuclear pleomorphisms were significantly increased. Frequency of micronuclei and binucleation were greater in smokers than nonsmokers which were insignificant. Cellular and nuclear pleomorphisms were significantly higher in smokers than nonsmokers after application of toluidine blue. Toluidine blue improved cellular, nuclear, and structural features of oral cytological smears and filtered false-positive or false-negative results. Thus, application of toluidine blue in combination with oral exfoliative cytology for early detection of oral cancer is recommended. Diagn. Cytopathol. 2017;45:513-519. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Cellular regeneration strategies for macular degeneration: past, present and future.

    PubMed

    Chichagova, Valeria; Hallam, Dean; Collin, Joseph; Zerti, Darin; Dorgau, Birthe; Felemban, Majed; Lako, Majlinda; Steel, David H

    2018-05-01

    Despite considerable effort and significant therapeutic advances, age-related macular degeneration (AMD) remains the commonest cause of blindness in the developed world. Progressive late-stage AMD with outer retinal degeneration currently has no proven treatment. There has been significant interest in the possibility that cellular treatments may slow or reverse visual loss in AMD. A number of modes of action have been suggested, including cell replacement and rescue, as well as immune modulation to delay the neurodegenerative process. Their appeal in this enigmatic disease relate to their generic, non-pathway-specific effects. The outer retina in particular has been at the forefront of developments in cellular regenerative therapies being surgically accessible, easily observable, as well as having a relatively simple architecture. Both the retinal pigment epithelium (RPE) and photoreceptors have been considered for replacement therapies as both sheets and cell suspensions. Studies using autologous RPE, and to a lesser extent, foetal retina, have shown proof of principle. A wide variety of cell sources have been proposed with pluripotent stem cell-derived cells currently holding the centre stage. Recent early-phase trials using these cells for RPE replacement have met safety endpoints and hinted at possible efficacy. Animal studies have confirmed the promise that photoreceptor replacement, even in a completely degenerated outer retina may restore some vision. Many challenges, however, remain, not least of which include avoiding immune rejection, ensuring long-term cellular survival and maximising effect. This review provides an overview of progress made, ongoing studies and challenges ahead.

  19. Perspectives and Open Problems in the Early Phases of Left-Right Patterning

    PubMed Central

    Vandenberg, Laura N.; Levin, Michael

    2009-01-01

    Summary Embryonic left-right (LR) patterning is a fascinating aspect of embryogenesis. The field currently faces important questions about the origin of LR asymmetry, the mechanisms by which consistent asymmetry is imposed on the scale of the whole embryo, and the degree of conservation of early phases of LR patterning among model systems. Recent progress on planar cell polarity and cellular asymmetry in a variety of tissues and species provides a new perspective on the early phases of LR patterning. Despite the huge diversity in body-plans over which consistent LR asymmetry is imposed, and the apparent divergence in molecular pathways that underlie laterality, the data reveal conservation of physiological modules among phyla and a basic scheme of cellular chirality amplified by a planar cell polarity-like pathway over large cell fields. PMID:19084609

  20. pH-Controlled Two-Step Uncoating of Influenza Virus

    PubMed Central

    Li, Sai; Sieben, Christian; Ludwig, Kai; Höfer, Chris T.; Chiantia, Salvatore; Herrmann, Andreas; Eghiaian, Frederic; Schaap, Iwan A.T.

    2014-01-01

    Upon endocytosis in its cellular host, influenza A virus transits via early to late endosomes. To efficiently release its genome, the composite viral shell must undergo significant structural rearrangement, but the exact sequence of events leading to viral uncoating remains largely speculative. In addition, no change in viral structure has ever been identified at the level of early endosomes, raising a question about their role. We performed AFM indentation on single viruses in conjunction with cellular assays under conditions that mimicked gradual acidification from early to late endosomes. We found that the release of the influenza genome requires sequential exposure to the pH of both early and late endosomes, with each step corresponding to changes in the virus mechanical response. Step 1 (pH 7.5–6) involves a modification of both hemagglutinin and the viral lumen and is reversible, whereas Step 2 (pH <6.0) involves M1 dissociation and major hemagglutinin conformational changes and is irreversible. Bypassing the early-endosomal pH step or blocking the envelope proton channel M2 precludes proper genome release and efficient infection, illustrating the importance of viral lumen acidification during the early endosomal residence for influenza virus infection. PMID:24703306

  1. Imaging the morphological change of tissue structure during the early phase of esophageal tumor progression using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Kang, Deyong; Xu, Meifang; Zhu, Xiaoqin; Zhuo, Shuangmu; Chen, Jianxin

    2012-12-01

    Esophageal cancer is a common malignancy with a very poor prognosis. Successful strategies for primary prevention and early detection are critically needed to control this disease. Multiphoton microscopy (MPM) is becoming a novel optical tool of choice for imaging tissue architecture and cellular morphology by two-photon excited fluorescence. In this study, we used MPM to image microstructure of human normal esophagus, carcinoma in situ (CIS), and early invasive carcinoma in order to establish the morphological features to differentiate these tissues. The diagnostic features such as the appearance of cancerous cells, the significant loss of stroma, the absence of the basement membrane were extracted to distinguish between normal and cancerous esophagus tissue. These results correlated well with the paired histological findings. With the advancement of clinically miniaturized MPM and the multi-photon probe, combining MPM with standard endoscopy will therefore allow us to make a real-time in vivo diagnosis of early esophageal cancer at the cellular level.

  2. Cellular pharmacodynamics of the cytotoxic guanidino-containing drug CHS 828. Comparison with methylglyoxal-bis(guanylhydrazone).

    PubMed

    Ekelund, S; Sjöholm, A; Nygren, P; Binderup, L; Larsson, R

    2001-04-20

    N-(6-(4-chlorophenoxy)hexyl)-N'-cyano-N"-4-pyridylguanidine (CHS 828) is a new guanidino-containing compound with antitumoral activity both in vitro and in vivo. Its activity profile differs from those of standard cytotoxic drugs but the mechanism of action is not yet fully understood. CHS 828 is presently in early phase I and II clinical trials. In the present study, the pharmacodynamic effects at the cellular level of CHS 828 was compared to another compound containing two guanidino groups, methylglyoxal-bis(guanylhydrazone) (MGBG). MGBG is known to inhibit the synthesis of polyamines, which are important in, e.g., proliferation and macromolecular synthesis. The concentration-response relationship of CHS 828 closely resembled that of MGBG and the drugs were similar with respect to inhibition of DNA and protein synthesis. On the other hand, CHS 828 induced a significant increase in cellular metabolism while MGBG did not. The cytotoxic effect of MGBG was reversed by the addition of exogenous polyamines, while that of CHS 828 was unaffected. Unlike MGBG, there was also no effect of CHS 828 on the levels of decarboxylating enzymes in the polyamine biosynthesis. In conclusion, CHS 828 does not appear to share any major mechanisms of action with the polyamine synthesis inhibitor MGBG. Further studies will be required to define the exact mechanism of action of CHS 828.

  3. Time scale of diffusion in molecular and cellular biology

    NASA Astrophysics Data System (ADS)

    Holcman, D.; Schuss, Z.

    2014-05-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.

  4. The 19S proteasome activator promotes human cytomegalovirus immediate early gene expression through proteolytic and nonproteolytic mechanisms.

    PubMed

    Winkler, Laura L; Kalejta, Robert F

    2014-10-01

    Proteasomes are large, multisubunit complexes that support normal cellular activities by executing the bulk of protein turnover. During infection, many viruses have been shown to promote viral replication by using proteasomes to degrade cellular factors that restrict viral replication. For example, the human cytomegalovirus (HCMV) pp71 protein induces the proteasomal degradation of Daxx, a cellular transcriptional repressor that can silence viral immediate early (IE) gene expression. We previously showed that this degradation requires both the proteasome catalytic 20S core particle (CP) and the 19S regulatory particle (RP). The 19S RP associates with the 20S CP to facilitate protein degradation but also plays a 20S CP-independent role promoting transcription. Here, we present a nonproteolytic role of the 19S RP in HCMV IE gene expression. We demonstrate that 19S RP subunits are recruited to the major immediate early promoter (MIEP) that directs IE transcription. Depletion of 19S RP subunits generated a defect in RNA polymerase II elongation through the MIE locus during HCMV infection. Our results reveal that HCMV commandeers proteasome components for both proteolytic and nonproteolytic roles to promote HCMV lytic infection. Importance: Proteasome inhibitors decrease or eliminate 20S CP activity and are garnering increasing interest as chemotherapeutics. However, an increasing body of evidence implicates 19S RP subunits in important proteolytic-independent roles during transcription. Thus, pharmacological inhibition of the 20S CP as a means to modulate proteasome function toward therapeutic effect is an incomplete capitalization on the potential of this approach. Here, we provide an additional example of nonproteolytic 19S RP function in promoting HCMV transcription. These data provide a novel system with which to study the roles of different proteasome components during transcription, a rationale for previously described shifts in 19S RP subunit localization during HCMV infection, and a potential therapeutic intervention point at a pre-immediate early stage for the inhibition of HCMV infection. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Pathways to Aging: The Mitochondrion at the Intersection of Biological and Psychosocial Sciences

    PubMed Central

    Picard, Martin

    2011-01-01

    Compelling evidence suggests that both biological and psychosocial factors impact the process of aging. However, our understanding of the dynamic interplay among biological and psychosocial factors across the life course is still fragmentary. For example, it needs to be established how the interaction of individual factors (e.g., genetic and epigenetic endowment and personality), behavioral factors (e.g., physical activity, diet, and stress management), and psychosocial experiences (e.g., social support, well-being, socioeconomic status, and marriage) in perinatal, childhood, and adulthood influence health across the aging continuum. This paper aims to outline potential intersection points serving as an interface between biological and psychosocial factors, with an emphasis on the mitochondrion. Mitochondria are cellular organelles which play a critical role in cellular senescence. Both chronic exposure to psychosocial stress and genetic-based mitochondrial dysfunction have strikingly similar biological consequences; both predispose individuals to adverse age-related health disorders and early mortality. Exploring the interactive nature of the factors resulting in pathways to normal healthy aging, as well as those leading to morbidity and early mortality, will continue to enhance our ability to translate research into effective practices that can be implemented throughout the life course to optimise the aging process. PMID:21961065

  6. Pathways to aging: the mitochondrion at the intersection of biological and psychosocial sciences.

    PubMed

    Picard, Martin

    2011-01-01

    Compelling evidence suggests that both biological and psychosocial factors impact the process of aging. However, our understanding of the dynamic interplay among biological and psychosocial factors across the life course is still fragmentary. For example, it needs to be established how the interaction of individual factors (e.g., genetic and epigenetic endowment and personality), behavioral factors (e.g., physical activity, diet, and stress management), and psychosocial experiences (e.g., social support, well-being, socioeconomic status, and marriage) in perinatal, childhood, and adulthood influence health across the aging continuum. This paper aims to outline potential intersection points serving as an interface between biological and psychosocial factors, with an emphasis on the mitochondrion. Mitochondria are cellular organelles which play a critical role in cellular senescence. Both chronic exposure to psychosocial stress and genetic-based mitochondrial dysfunction have strikingly similar biological consequences; both predispose individuals to adverse age-related health disorders and early mortality. Exploring the interactive nature of the factors resulting in pathways to normal healthy aging, as well as those leading to morbidity and early mortality, will continue to enhance our ability to translate research into effective practices that can be implemented throughout the life course to optimise the aging process.

  7. Microgravity effects of sea urchin fertilization and development

    NASA Technical Reports Server (NTRS)

    Steffen, S.; Simerly, C.; Schatten, H.; Schatten, G.; Fiser, R.

    1992-01-01

    Gravity has been a pervasive influence on all living systems and there is convincing evidence to suggest that it alters fertilization and embryogenesis in several developmental systems. Notwithstanding the global importance of gravity on development, it has only been recently possible to begin to design experiments which might directly investigate the specific effects of this vector. The goal of this research program is to explore and understand the effects of gravity on fertilization and early development using sea urchins as a model system. Sea urchin development has several advantages for this project including the feasibility of maintaining and manipulating these cells during spaceflight, the high percentage of normal fertilization and early development, and the abundant knowledge about molecular, biochemical, and cellular events during embryogenesis which permits detailed insights into the mechanism by which gravity might interfere with development. Furthermore, skeletal calcium is deposited into the embryonic spicules within a day of fertilization permitting studies of the effects of gravity on bone calcium deposition.

  8. Integrating High-Dimensional Transcriptomics and Image Analysis Tools into Early Safety Screening: Proof of Concept for a New Early Drug Development Strategy.

    PubMed

    Verbist, Bie M P; Verheyen, Geert R; Vervoort, Liesbet; Crabbe, Marjolein; Beerens, Dominiek; Bosmans, Cindy; Jaensch, Steffen; Osselaer, Steven; Talloen, Willem; Van den Wyngaert, Ilse; Van Hecke, Geert; Wuyts, Dirk; Van Goethem, Freddy; Göhlmann, Hinrich W H

    2015-10-19

    During drug discovery and development, the early identification of adverse effects is expected to reduce costly late-stage failures of candidate drugs. As risk/safety assessment takes place rather late during the development process and due to the limited ability of animal models to predict the human situation, modern unbiased high-dimensional biology readouts are sought, such as molecular signatures predictive for in vivo response using high-throughput cell-based assays. In this theoretical proof of concept, we provide findings of an in-depth exploration of a single chemical core structure. Via transcriptional profiling, we identified a subset of close analogues that commonly downregulate multiple tubulin genes across cellular contexts, suggesting possible spindle poison effects. Confirmation via a qualified toxicity assay (in vitro micronucleus test) and the identification of a characteristic aggregate-formation phenotype via exploratory high-content imaging validated the initial findings. SAR analysis triggered the synthesis of a new set of compounds and allowed us to extend the series showing the genotoxic effect. We demonstrate the potential to flag toxicity issues by utilizing data from exploratory experiments that are typically generated for target evaluation purposes during early drug discovery. We share our thoughts on how this approach may be incorporated into drug development strategies.

  9. KSR2 Mutations Are Associated with Obesity, Insulin Resistance, and Impaired Cellular Fuel Oxidation

    PubMed Central

    Pearce, Laura R.; Atanassova, Neli; Banton, Matthew C.; Bottomley, Bill; van der Klaauw, Agatha A.; Revelli, Jean-Pierre; Hendricks, Audrey; Keogh, Julia M.; Henning, Elana; Doree, Deon; Jeter-Jones, Sabrina; Garg, Sumedha; Bochukova, Elena G.; Bounds, Rebecca; Ashford, Sofie; Gayton, Emma; Hindmarsh, Peter C.; Shield, Julian P.H.; Crowne, Elizabeth; Barford, David; Wareham, Nick J.; O’Rahilly, Stephen; Murphy, Michael P.; Powell, David R.; Barroso, Ines; Farooqi, I. Sadaf

    2013-01-01

    Summary Kinase suppressor of Ras 2 (KSR2) is an intracellular scaffolding protein involved in multiple signaling pathways. Targeted deletion of Ksr2 leads to obesity in mice, suggesting a role in energy homeostasis. We explored the role of KSR2 in humans by sequencing 2,101 individuals with severe early-onset obesity and 1,536 controls. We identified multiple rare variants in KSR2 that disrupt signaling through the Raf-MEK-ERK pathway and impair cellular fatty acid oxidation and glucose oxidation in transfected cells; effects that can be ameliorated by the commonly prescribed antidiabetic drug, metformin. Mutation carriers exhibit hyperphagia in childhood, low heart rate, reduced basal metabolic rate and severe insulin resistance. These data establish KSR2 as an important regulator of energy intake, energy expenditure, and substrate utilization in humans. Modulation of KSR2-mediated effects may represent a novel therapeutic strategy for obesity and type 2 diabetes. PaperFlick PMID:24209692

  10. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3

    PubMed Central

    Khan, Nahid A; Auranen, Mari; Paetau, Ilse; Pirinen, Eija; Euro, Liliya; Forsström, Saara; Pasila, Lotta; Velagapudi, Vidya; Carroll, Christopher J; Auwerx, Johan; Suomalainen, Anu

    2014-01-01

    Nutrient availability is the major regulator of life and reproduction, and a complex cellular signaling network has evolved to adapt organisms to fasting. These sensor pathways monitor cellular energy metabolism, especially mitochondrial ATP production and NAD+/NADH ratio, as major signals for nutritional state. We hypothesized that these signals would be modified by mitochondrial respiratory chain disease, because of inefficient NADH utilization and ATP production. Oral administration of nicotinamide riboside (NR), a vitamin B3 and NAD+ precursor, was previously shown to boost NAD+ levels in mice and to induce mitochondrial biogenesis. Here, we treated mitochondrial myopathy mice with NR. This vitamin effectively delayed early- and late-stage disease progression, by robustly inducing mitochondrial biogenesis in skeletal muscle and brown adipose tissue, preventing mitochondrial ultrastructure abnormalities and mtDNA deletion formation. NR further stimulated mitochondrial unfolded protein response, suggesting its protective role in mitochondrial disease. These results indicate that NR and strategies boosting NAD+ levels are a promising treatment strategy for mitochondrial myopathy. PMID:24711540

  11. Agomelatine: mechanism of action and pharmacological profile in relation to antidepressant properties

    PubMed Central

    Guardiola-Lemaitre, B; De Bodinat, C; Delagrange, P; Millan, M J; Munoz, C; Mocaër, E

    2014-01-01

    Agomelatine behaves both as a potent agonist at melatonin MT1 and MT2 receptors and as a neutral antagonist at 5-HT2C receptors. Accumulating evidence in a broad range of experimental procedures supports the notion that the psychotropic effects of agomelatine are due to the synergy between its melatonergic and 5-hydroxytryptaminergic effects. The recent demonstration of the existence of heteromeric complexes of MT1 and MT2 with 5-HT2C receptors at the cellular level may explain how these two properties of agomelatine translate into a synergistic action that, for example, leads to increases in hippocampal proliferation, maturation and survival through modulation of multiple cellular pathways (increase in trophic factors, synaptic remodelling, glutamate signalling) and key targets (early genes, kinases). The present review focuses on the pharmacological properties of this novel antidepressant. Its mechanism of action, strikingly different from that of conventional classes of antidepressants, opens perspectives towards a better understanding of the physiopathological bases underlying depression. PMID:24724693

  12. The Immunology of Posttransplant CMV Infection: Potential Effect of CMV Immunoglobulins on Distinct Components of the Immune Response to CMV

    PubMed Central

    Carbone, Javier

    2016-01-01

    Abstract The immune response to cytomegalovirus (CMV) infection is highly complex, including humoral, cellular, innate, and adaptive immune responses. Detection of CMV by the innate immune system triggers production of type I IFNs and inflammatory cytokines which initiate cellular and humoral responses that are critical during the early viremic phase of CMV infection. Sustained control of CMV infection is largely accounted for by cellular immunity, involving various T-cell and B-cell subsets. In solid organ transplant patients, global suppression of innate and adaptive immunities by immunosuppressive agents limits immunological defense, including inhibition of natural killer cell activity with ongoing lowering of Ig levels and CMV-specific antibody titers. This is coupled with a short-term suppression of CMV-specific T cells, the extent and duration of which can predict risk of progression to CMV viremia. CMV immunoglobulin (CMVIG) preparations have the potential to exert immunomodulatory effects as well as providing passive immunization. Specific CMVIG antibodies and virus neutralization might be enhanced by modulation of dendritic cell activity and by a decrease in T-cell activation, effects which are of importance during the initial phase of infection. In summary, the role of CMVIG in reconstituting specific anti-CMV antibodies may be enhanced by some degree of modulation of the innate and adaptive immune responses, which could help to control some of the direct and indirect effects of CMV infection. PMID:26900990

  13. The Immunology of Posttransplant CMV Infection: Potential Effect of CMV Immunoglobulins on Distinct Components of the Immune Response to CMV.

    PubMed

    Carbone, Javier

    2016-03-01

    The immune response to cytomegalovirus (CMV) infection is highly complex, including humoral, cellular, innate, and adaptive immune responses. Detection of CMV by the innate immune system triggers production of type I IFNs and inflammatory cytokines which initiate cellular and humoral responses that are critical during the early viremic phase of CMV infection. Sustained control of CMV infection is largely accounted for by cellular immunity, involving various T-cell and B-cell subsets. In solid organ transplant patients, global suppression of innate and adaptive immunities by immunosuppressive agents limits immunological defense, including inhibition of natural killer cell activity with ongoing lowering of Ig levels and CMV-specific antibody titers. This is coupled with a short-term suppression of CMV-specific T cells, the extent and duration of which can predict risk of progression to CMV viremia. CMV immunoglobulin (CMVIG) preparations have the potential to exert immunomodulatory effects as well as providing passive immunization. Specific CMVIG antibodies and virus neutralization might be enhanced by modulation of dendritic cell activity and by a decrease in T-cell activation, effects which are of importance during the initial phase of infection. In summary, the role of CMVIG in reconstituting specific anti-CMV antibodies may be enhanced by some degree of modulation of the innate and adaptive immune responses, which could help to control some of the direct and indirect effects of CMV infection.

  14. Fasting increases the phosphorylation of AMPK and expression of sirtuin1 in muscle of adult male northern elephant seals (Mirounga angustirostris).

    PubMed

    Lee, Debby; Martinez, Bridget; Crocker, Daniel E; Ortiz, Rudy M

    2017-02-01

    Fasting typically suppresses thyroid hormone (TH)-mediated cellular events and increases sirtuin 1 (SIRT1) activity. THs may regulate metabolism through nongenomic pathways and directly through activation of adenosine monophosphate-activated protein kinase (AMPK). Adult male elephant seals ( Mirounga angustirostris ) are active, hypermetabolic, and normothermic during their annual breeding fast, which is characterized by stable TH levels. However, the contribution of TH to maintenance of their fasting metabolism is unknown. To investigate the fasting effects on cellular TH-mediated events and its potential association with SIRT1 and AMPK, we quantified plasma TH levels, mRNA expressions of muscle SIRT1 and TH-associated genes as well as the phosphorylation of AMPK in adult, male northern elephant seals ( n  = 10/fasting period) over 8 weeks of fasting (early vs. late). Deiodinase type I (DI1) expression increased twofold with fasting duration suggesting that the potential for TH-mediated cellular signaling is increased. AMPK phosphorylation increased 61 ± 21% with fasting suggesting that cellular metabolism is increased. The mRNA expression of the TH transporter, monocarboxylate transporter 10 (MCT10), increased 2.4-fold and the TH receptor (THr β -1) decreased 30-fold suggesting that cellular uptake of T 4 is increased, but its subsequent cellular effects such as activation of AMPK are likely nongenomic. The up-regulation of SIRT1 mRNA expression (2.6-fold) likely contributes to the nongenomic activation of AMPK by TH, which may be necessary to maintain the expression of PGC-1 α These coordinated changes likely contribute to the up-regulation of mitochondrial metabolism to support the energetic demands associated with prolonged fasting in adult seals. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  15. The effect of parenteral nitrogen and energy intake on electrolyte balance in the preterm infant.

    PubMed

    Bonsante, F; Iacobelli, S; Chantegret, C; Martin, D; Gouyon, J-B

    2011-10-01

    Recent guidelines for preterm parenteral nutrition (PN) recommend an earlier and higher intake of amino acids (AA) and energy to avoid postnatal catabolism and approximate normal fetal growth. Few investigations explored how early PN may affect electrolyte and water homeostasis. We performed a prospective observational trial to assess the effect of nutrient intake on electrolyte homeostasis and balance. During 16 months, all infants ≤32 weeks were eligible. In the first week of life, we recorded the following daily: electrolytes (plasma and 8-h urine collection), nutritional intake, urine output, body weight, and we calculated sodium (Na) and potassium (K) balance. Infants were divided, for analysis, into three groups of AA intake: low <1.5 g/kg/day (LAA), medium 1.5-2 g/kg/day (MAA) and high >2 g/kg/day (HAA). A total of 154 infants were included. HAA group presented lower weight loss. Na balance was influenced by urine output and postnatal age, with little contribution of nutrition. Kalemia and K balance were mainly influenced by AA intake. K balance differed among groups: LAA, -2.3 mmol/kg/week; MAA, 1.1 mmol/kg/week; and HAA 2.6 mmol/kg/week (P<0.0001). In the HAA group, plasma and urine K were significantly lower and non-oliguric hyperkalemia was reduced. Na homeostasis was very slightly modified by early nutrition, suggesting that a negative Na balance is obligatory after birth. We showed that AA intake strongly affects K balance, minimize hyperkalemia and reduces weight loss. As K balance is strictly linked to cellular metabolism, we speculate that early nutrition may inhibit cellular catabolism and reduce the contraction of intracellular water compartment.

  16. High resolution time-course mapping of early transcriptomic, molecular and cellular phenotypes in Huntington's disease CAG knock-in mice across multiple genetic backgrounds.

    PubMed

    Ament, Seth A; Pearl, Jocelynn R; Grindeland, Andrea; St Claire, Jason; Earls, John C; Kovalenko, Marina; Gillis, Tammy; Mysore, Jayalakshmi; Gusella, James F; Lee, Jong-Min; Kwak, Seung; Howland, David; Lee, Min Young; Baxter, David; Scherler, Kelsey; Wang, Kai; Geman, Donald; Carroll, Jeffrey B; MacDonald, Marcy E; Carlson, George; Wheeler, Vanessa C; Price, Nathan D; Hood, Leroy E

    2017-03-01

    Huntington's disease is a dominantly inherited neurodegenerative disease caused by the expansion of a CAG repeat in the HTT gene. In addition to the length of the CAG expansion, factors such as genetic background have been shown to contribute to the age at onset of neurological symptoms. A central challenge in understanding the disease progression that leads from the HD mutation to massive cell death in the striatum is the ability to characterize the subtle and early functional consequences of the CAG expansion longitudinally. We used dense time course sampling between 4 and 20 postnatal weeks to characterize early transcriptomic, molecular and cellular phenotypes in the striatum of six distinct knock-in mouse models of the HD mutation. We studied the effects of the HttQ111 allele on the C57BL/6J, CD-1, FVB/NCr1, and 129S2/SvPasCrl genetic backgrounds, and of two additional alleles, HttQ92 and HttQ50, on the C57BL/6J background. We describe the emergence of a transcriptomic signature in HttQ111/+  mice involving hundreds of differentially expressed genes and changes in diverse molecular pathways. We also show that this time course spanned the onset of mutant huntingtin nuclear localization phenotypes and somatic CAG-length instability in the striatum. Genetic background strongly influenced the magnitude and age at onset of these effects. This work provides a foundation for understanding the earliest transcriptional and molecular changes contributing to HD pathogenesis. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Human Hsp10 and Early Pregnancy Factor (EPF) and their relationship and involvement in cancer and immunity: current knowledge and perspectives.

    PubMed

    Corrao, Simona; Campanella, Claudia; Anzalone, Rita; Farina, Felicia; Zummo, Giovanni; Conway de Macario, Everly; Macario, Alberto J L; Cappello, Francesco; La Rocca, Giampiero

    2010-01-30

    This article is about Hsp10 and its intracellular and extracellular forms focusing on the relationship of the latter with Early Pregnancy Factor and on their roles in cancer and immunity. Cellular physiology and survival are finely regulated and depend on the correct functioning of the entire set of proteins. Misfolded or unfolded proteins can cause deleterious effects and even cell death. The chaperonins Hsp10 and Hsp60 act together inside the mitochondria to assist protein folding. Recent studies demonstrated that these proteins have other roles inside and outside the cell, either together or independently of each other. For example, Hsp10 was found increased in the cytosol of different tumors (although in other tumors it was found decreased). Moreover, Hsp10 localizes extracellularly during pregnancy and is often indicated as Early Pregnancy Factor (EPF), which is released during the first stages of gestation and is involved in the establishment of pregnancy. Various reports show that extracellular Hsp10 and EPF modulate certain aspects of the immune response with anti-inflammatory effects in patients with autoimmune conditions improving clinically after treatment with recombinant Hsp10. Moreover, Hsp10 and EPF are involved in embryonic development, acting as a growth factor, and in cell proliferation/differentiation mechanisms. Therefore, it becomes evident that Hsp10 is not only a co-chaperonin, but an active player in its own right in various cellular functions. In this article, we present an overview of various aspects of Hsp10 and EPF as they participate in physiological and pathological processes such as the antitumor response and autoimmune diseases. Copyright 2009 Elsevier Inc. All rights reserved.

  18. Transcriptome-Wide Analysis of Hepatitis B Virus-Mediated Changes to Normal Hepatocyte Gene Expression.

    PubMed

    Lamontagne, Jason; Mell, Joshua C; Bouchard, Michael J

    2016-02-01

    Globally, a chronic hepatitis B virus (HBV) infection remains the leading cause of primary liver cancer. The mechanisms leading to the development of HBV-associated liver cancer remain incompletely understood. In part, this is because studies have been limited by the lack of effective model systems that are both readily available and mimic the cellular environment of a normal hepatocyte. Additionally, many studies have focused on single, specific factors or pathways that may be affected by HBV, without addressing cell physiology as a whole. Here, we apply RNA-seq technology to investigate transcriptome-wide, HBV-mediated changes in gene expression to identify single factors and pathways as well as networks of genes and pathways that are affected in the context of HBV replication. Importantly, these studies were conducted in an ex vivo model of cultured primary hepatocytes, allowing for the transcriptomic characterization of this model system and an investigation of early HBV-mediated effects in a biologically relevant context. We analyzed differential gene expression within the context of time-mediated gene-expression changes and show that in the context of HBV replication a number of genes and cellular pathways are altered, including those associated with metabolism, cell cycle regulation, and lipid biosynthesis. Multiple analysis pipelines, as well as qRT-PCR and an independent, replicate RNA-seq analysis, were used to identify and confirm differentially expressed genes. HBV-mediated alterations to the transcriptome that we identified likely represent early changes to hepatocytes following an HBV infection, suggesting potential targets for early therapeutic intervention. Overall, these studies have produced a valuable resource that can be used to expand our understanding of the complex network of host-virus interactions and the impact of HBV-mediated changes to normal hepatocyte physiology on viral replication.

  19. Breast cancer risk accumulation starts early – Prevention must also

    PubMed Central

    Colditz, Graham A; Bohlke, Kari; Berkey, Catherine S.

    2014-01-01

    Purpose Nearly 1 in 4 breast cancers is diagnosed before the age of 50, and many early-stage premalignant lesions are present but not yet diagnosed. Therefore, we review evidence to support the strategy that breast cancer prevention efforts must begin early in life. Methods Literature review Results Exposures during childhood and adolescence affect a woman’s long-term risk of breast cancer, but have received far less research attention than exposures that occur later in life. Breast tissue undergoes rapid cellular proliferation between menarche and first full-term pregnancy, and risk accumulates rapidly until the terminal differentiation that accompanies first pregnancy. Evidence on childhood diet and growth in height, and adolescent alcohol intake, among other adolescent factors are related to breast cancer risk and risk of premalignant proliferative benign lesions. Conclusion Breast cancer prevention efforts will have the greatest effect when initiated at an early age and continued over a lifetime. Gaps in knowledge are identified and deserve increase attention to inform prevention. PMID:24820413

  20. A novel CDKL5 mutation in a 47,XXY boy with the early-onset seizure variant of Rett syndrome.

    PubMed

    Sartori, Stefano; Di Rosa, Gabriella; Polli, Roberta; Bettella, Elisa; Tricomi, Giovanni; Tortorella, Gaetano; Murgia, Alessandra

    2009-02-01

    Mutations of the cyclin-dependent kinase-like 5 gene (CDKL5), reported almost exclusively in female subjects, have been recently found to be the cause of a phenotype overlapping Rett syndrome with early-onset epileptic encephalopathy. We describe the first CDKL5 mutation detected in a male individual with 47,XXY karyotype. This previously unreported, de novo, mutation truncates the large CDKL5 COOH-terminal region, thought to be crucial for the proper sub-cellular localization of the CDKL5 protein. The resulting phenotype is characterized by a severe early-onset epileptic encephalopathy, global developmental delay, and profound intellectual and motor impairment with features reminiscent of Rett syndrome. In light of the data presented we discuss the possible phenotypic modulatory effects of the supernumerary wild type X allele and pattern of X chromosome inactivation and stress the importance of considering the causal involvement of CDKL5 in developmentally delayed males with early-onset seizures. (c) 2009 Wiley-Liss, Inc.

  1. Breast cancer risk accumulation starts early: prevention must also.

    PubMed

    Colditz, Graham A; Bohlke, Kari; Berkey, Catherine S

    2014-06-01

    Nearly one in four breast cancers is diagnosed before the age of 50, and many early-stage premalignant lesions are present but not yet diagnosed. Therefore, we review evidence to support the strategy that breast cancer prevention efforts must begin early in life. This study follows the literature review methods and format. Exposures during childhood and adolescence affect a woman's long-term risk of breast cancer, but have received far less research attention than exposures that occur later in life. Breast tissue undergoes rapid cellular proliferation between menarche and first full-term pregnancy, and risk accumulates rapidly until the terminal differentiation that accompanies first pregnancy. Evidence on childhood diet and growth in height, and adolescent alcohol intake, among other adolescent factors is related to breast cancer risk and risk of premalignant proliferative benign lesions. Breast cancer prevention efforts will have the greatest effect when initiated at an early age and continued over a lifetime. Gaps in knowledge are identified and deserve increase attention to inform prevention.

  2. Protective Cellular Immunity Against Influenza Virus Induced by Plasmid Inoculation of Newborn Mice

    PubMed Central

    Bot, Adrian; Bot, Simona; García-Sastre, Adolfo

    1998-01-01

    Neonate organisms display an intrinsic disability to mount effective immune responses to infectious agents or conventional vaccines. Whereas low. doses of antigens trigger a suboptimal response, higher doses are frequently associated with tolerance induction. We investigated the ability of a plasmid-expressing nucleoprotein of influenza virus to prime a specific cellular immune response when administered to newborn mice. We found that persistent exposure to antigen following plasmid inoculation of neonates leads to a vigorous priming of specific CTLs rather than tolerance induction. The CTLs were cross-reactive against multiple strains of type A influenza viruses and produced IFNγ but no IL-4. The immunity triggered by plasmid inoculation of neonates was protective in terms of pulmonary virus clearance as well as survival rate following lethal challenge with influenza virus. Whereas the persistence of the plasmid at the site of injection was readily demonstrable in adult mice at 3 months after inoculation, mice immunized as newborns displayed no plasmid at 3 months and very little at 1 month after injection. Thus, DNA-based immunization of neonates may prove an effective and safe vaccination strategy for induction of cellular immunity against microbes that cause serious infectious diseases in the early period of life. PMID:9851359

  3. EFFECT OF MECHANICAL STIMULI ON SKELETAL REGENERATION AROUND IMPLANTS

    PubMed Central

    Leucht, Philipp; Kim, Jae-Beom; Wazen, Rima; Currey, Jennifer A.; Nanci, Antonio; Brunski, John B.; Helms, Jill A.

    2007-01-01

    Due to the aging population and the increasing need for total joint replacements, osseointegration is of a great interest for various clinical disciplines. Our objective was to investigate the molecular and cellular foundation that underlies this process. Here, we used an in vivo mouse model to study the cellular and molecular response in three distinct areas of unloaded implants: the periosteum, the gap between implant and cortical bone, and the marrow space. Our analyses began with the early phases of healing, and continued until the implants were completely osseointegrated. We investigated aspects of osseointegration ranging from vascularization, cell proliferation, differentiation, and bone remodeling. In doing so, we gained an understanding of the healing mechanisms of different skeletal tissues during unloaded implant osseointegration. To continue our analysis, we used a micromotion device to apply a defined physical stimulus to the implants, and in doing so, we dramatically enhanced bone formation in the peri-implant tissue. By comparing strain measurements with cellular and molecular analyses, we developed an understanding of the correlation between strain magnitudes and fate decisions of cells shaping the skeletal regenerate. PMID:17175211

  4. Cellular trafficking of low molecular weight heparin incorporated in layered double hydroxide nanoparticles in rat vascular smooth muscle cells.

    PubMed

    Gu, Zi; Rolfe, Barbara E; Thomas, Anita C; Campbell, Julie H; Lu, G Q Max; Xu, Zhi P

    2011-10-01

    This paper reports a clear elucidation of the pathway for the cellular delivery of layered double hydroxide (LDH) nanoparticles intercalated with anti-restenotic low molecular weight heparin (LMWH). Cellular uptake of LMWH-LDH conjugates into cultured rat vascular smooth muscle cells (SMCs) measured via flow cytometry was more than ten times greater than that of LMWH alone. Confocal and transmission electron microscopy showed LMWH-LDH conjugates taken up by endosomes, then released into the cytoplasm. We propose that LMWH-LDH is taken up via a unique 'modified endocytic' pathway, whereby the conjugate is internalized by SMCs in early endosomes, sorted in late endosomes, and quickly released from late endosomes/lysosomes, avoiding degradation. Treatment of cells with LMWH-LDH conjugates suppressed the activation of ERK1/2 in response to foetal calf serum (FCS) for up to 24h, unlike unconjugated LMWH which had no significant effect at 24h. Improved understanding of the intracellular pathway of LMWH-LDH nanohybrids in SMC will allow for refinement of design for LDH nanomedicine applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Distinct Mechanisms of Pathogenic DJ-1 Mutations in Mitochondrial Quality Control

    PubMed Central

    Strobbe, Daniela; Robinson, Alexis A.; Harvey, Kirsten; Rossi, Lara; Ferraina, Caterina; de Biase, Valerio; Rodolfo, Carlo; Harvey, Robert J.; Campanella, Michelangelo

    2018-01-01

    The deglycase and chaperone protein DJ-1 is pivotal for cellular oxidative stress responses and mitochondrial quality control. Mutations in PARK7, encoding DJ-1, are associated with early-onset familial Parkinson’s disease and lead to pathological oxidative stress and/or disrupted protein degradation by the proteasome. The aim of this study was to gain insights into the pathogenic mechanisms of selected DJ-1 missense mutations, by characterizing protein–protein interactions, core parameters of mitochondrial function, quality control regulation via autophagy, and cellular death following dopamine accumulation. We report that the DJ-1M26I mutant influences DJ-1 interactions with SUMO-1, in turn enhancing removal of mitochondria and conferring increased cellular susceptibility to dopamine toxicity. By contrast, the DJ-1D149A mutant does not influence mitophagy, but instead impairs Ca2+ dynamics and free radical homeostasis by disrupting DJ-1 interactions with a mitochondrial accessory protein known as DJ-1-binding protein (DJBP/EFCAB6). Thus, individual DJ-1 mutations have different effects on mitochondrial function and quality control, implying mutation-specific pathomechanisms converging on impaired mitochondrial homeostasis. PMID:29599708

  6. Developmental consequences of cryopreservation of mammalian oocytes and embryos.

    PubMed

    Smith, Gary D; Silva E Silva, Cristine Ane

    2004-08-01

    During the last three decades, significant advances have been made in successful cryopreservation of mammalian preimplantation embryos, and more recently oocytes. The ability to cryopreserve, thaw, and establish pregnancies with supernumerary preimplantation embryos has become an important tool in fertility treatment. Human oocyte cryopreservation has practical application in preserving fertility for individuals at risk of compromised egg quality due to cancer treatments or advanced maternal age. While oocyte/embryo cryopreservation success has increased over time, there is still room for improvement. Oocytes and embryos are susceptible to cryo-damage, which collectively entails cellular damage caused by mechanical, chemical, or thermal forces during the freeze-thaw process. Basic studies focused on understanding cellular structures, their composition, and more importantly their functions, in normal cell developments will continue to be critical in assessing, understanding, and correcting oocyte/embryo cryo-damage. This review will delineate many of the oocyte/embryo intracellular and extracellular structures that are or may be compromised during cryopreservation. A global theme presented throughout this review is that many structural components of the oocyte/embryo also have essential functional roles in development. Compromising these cellular structures, and thus their cellular homeostatic functions, can deleteriously influence initial cryo-survival or compromise subsequent normal development through effects on the oocyte and/or early embryo.

  7. Cellular metabolic energy modulation by tangeretin in 7,12-dimethylbenz(a) anthracene-induced breast cancer.

    PubMed

    Periyasamy, Kuppusamy; Sivabalan, Venkatachalam; Baskaran, Kuppusamy; Kasthuri, Kannayiram; Sakthisekaran, Dhanapal

    2016-03-01

    Breast cancer is the leading cause of death among women worldwide. Chemoprevention and chemotherapy play beneficial roles in reducing the incidence and mortality of cancer. Epidemiological and experimental studies showed that naturally-occurring antioxidants present in the diet may act as anticancer agents. Identifying the abnormalities of cellular energy metabolism facilitates early detection and management of breast cancer. The present study evaluated the effect of tangeretin on cellular metabolic energy fluxes in 7,12-dimethylbenz(a) anthracene (DMBA)-induced proliferative breast cancer. The results showed that the activities of glycolytic enzymes significantly increased in mammary tissues of DMBA-induced breast cancer bearing rats. The gluconeogenic tricarboxylic acid (TCA) cycle and respiratory chain enzyme activities significantly decreased in breast cancer-bearing rats. In addition, proliferating cell nuclear antigen (PCNA) was highly expressed in breast cancer tissues. However, the activities of glycolytic enzymes were significantly normalized in the tangeretin pre- and post-treated rats and the TCA cycle and respiratory chain enzyme activities were significantly increased in tangeretin treated rats. Furthermore, tangeretin down-regulated PCNA expression on breast cancer-bearing rats. Our study demonstrates that tangeretin specifically regulates cellular metabolic energy fluxes in DMBA-induced breast cancer-bearing rats. © 2016 by the Journal of Biomedical Research. All rights reserved.

  8. Functionalized graphene oxide/Fe3O4 hybrids for cellular magnetic resonance imaging and fluorescence labeling.

    PubMed

    Zhou, Chaohui; Wu, Hui; Wang, Mingliang; Huang, Chusen; Yang, Dapeng; Jia, Nengqin

    2017-09-01

    In this work, we developed a T 2 -weighted contrast agent based on graphene oxide (GO)/Fe 3 O 4 hybrids for efficient cellular magnetic resonance imaging (MRI). The GO/Fe 3 O 4 hybrids were obtained by combining with co-precipitation method and pyrolysis method. The structural, surface and magnetic characteristics of the hybrids were systematically characterized by transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), AFM, Raman, FT-IR and XRD. The GO/Fe 3 O 4 hybrids were functionalized by modifying with anionic and cationic polyelectrolyte through layer-by-layer assembling. The fluorescence probe fluorescein isothiocyanate (FITC) was further loaded on the surface of functionalized GO/Fe 3 O 4 hybrids to trace the location of GO/Fe 3 O 4 hybrids in cells. Functionalized GO/Fe 3 O 4 hybrids possess good hydrophilicity, less cytotoxicity, high MRI enhancement with the relaxivity (r 2 ) of 493mM -1 s -1 as well as cellular MRI contrast effect. These obtained results indicated that the functionalized GO/Fe 3 O 4 hybrids could have great potential to be utilized as cellular MRI contrast agents for tumor early diagnosis and monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The pathobiology and mechanisms of infection of HPV.

    PubMed

    Wood, N H; Khammissa, R A G; Chikte, U M E; Meyerov, R; Lemmer, J; Feller, L

    2010-04-01

    There are more than 120 types of low-risk and high-risk human papillomaviruses, all of which are epitheliotropic. HPV infection may be latent, or active in a subclinical form or a symptomatic form, the latter manifesting as benign or malignant neoplasms. In basal cells with non-productive HPV infection some early HPV proteins are expressed independently of cell maturation: the productive cycle of HPV replication depends upon specific cellular factors of the maturation of the infected keratinocytes. In HPV-mediated oncogenesis, the combined pathobiological effects of E6 and E7 oncoproteins of high-risk HPV culminate in cellular genomic instability and transformation of persistently infected cells, that progress to the development of a malignant phenotype. In this article we provide insights into the stages of HPV infection, and into the viral genomic organization and replicative cycle.

  10. Amino acid transport system - A substrate predicts the therapeutic effects of particle radiotherapy

    PubMed Central

    Watanabe, Mariko; Suzuki, Hiroyuki; Furusawa, Yoshiya; Arano, Yasushi

    2017-01-01

    L-[methyl-11C]Methionine (11C-Met) is useful for estimating the therapeutic efficacy of particle radiotherapy at early stages of the treatment. Given the short half-life of 11C, the development of longer-lived 18F- and 123I-labeled probes that afford diagnostic information similar to 11C-Met, are being sought. Tumor uptake of 11C-Met is involved in many cellular functions such as amino acid transport System-L, protein synthesis, and transmethylation. Among these processes, since the energy-dependent intracellular functions involved with 11C-Met are more reflective of the radiotherapeutic effects, we evaluated the activity of the amino acid transport System-A as an another energy-dependent cellular function in order to estimate radiotherapeutic effects. In this study, using a carbon-ion beam as the radiation source, the activity of System-A was evaluated by a specific System-A substrate, alpha-[1-14C]-methyl-aminoisobutyric acid (14C-MeAIB). Cellular growth and the accumulation of 14C-MeAIB or 14C-Met were evaluated over time in vitro in cultured human salivary gland (HSG) tumor cells (3-Gy) or in vivo in murine xenografts of HSG tumors (6- or 25-Gy) before and after irradiation with the carbon-ion beam. Post 3-Gy irradiation, in vitro accumulation of 14C-Met and 14C-MeAIB decreased over a 5-day period. In xenografts of HSG tumors in mice, tumor re-growth was observed in vivo on day-10 after a 6-Gy irradiation dose, but no re-growth was detected after the 25-Gy irradiation dose. Consistent with the growth results, the in vivo tumor accumulation of 14C-MeAIB did not decrease after the 6-Gy irradiation dose, whereas a significant decrease was observed after the 25-Gy irradiation dose. These results indicate that the activity of energy dependent System-A transporter may reflect the therapeutic efficacy of carbon-ion radiotherapy and suggests that longer half-life radionuclide-labeled probes for System-A may also provide widely available probes to evaluate the effects of particle radiotherapy on tumors at early stage of the treatment. PMID:28245294

  11. "The Only 13-Year-Old on Planet Earth without a Cell Phone": Meanings of Cell Phones in Early Adolescents' Everyday Lives

    ERIC Educational Resources Information Center

    Blair, Bethany L.; Fletcher, Anne C.

    2011-01-01

    Cellular telephones have become an increasingly prevalent feature of contemporary American life, with usage often beginning during early adolescence. With this in mind, twenty 7th graders and their mothers participated in separate qualitative interviews regarding early adolescents' use of cell phones as well as perceived risks and benefits of such…

  12. New and evolving concepts in the neurotoxicology of lead

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, L.D.; Cory-Slechta, D.A.; Gilbert, M.E.

    2007-11-15

    Lead (Pb) is a xenobiotic metal with no known essential function in cellular growth, proliferation, or signaling. Decades of research characterizing the toxicology of Pb have shown it to be a potent neurotoxicant, especially during nervous system development. New concepts in the neurotoxicology of Pb include advances in understanding the mechanisms and cellular specificity of Pb. Experimental studies have shown that stress can significantly alter the effects of Pb, effects that could potentially be mediated through alterations in the interactions of glucocorticoids with the mesocorticolimbic dopamine system of the brain. Elevated stress, with corresponding elevated glucocorticoid levels, has been postulatedmore » to contribute to the increased levels of many diseases and dysfunctions in low socioeconomic status populations. Cellular models of learning and memory have been utilized to investigate the potential mechanisms of Pb-induced cognitive deficits. Examination of long-term potentiation in the rodent hippocampus has revealed Pb-induced increases in threshold, decreases in magnitude, and shorter retention times of synaptic plasticity. Structural plasticity in the form of adult neurogenesis in the hippocampus is also impacted by Pb exposure. The action of Pb on glutamate release, NMDA receptor function, or structural plasticity may underlie perturbations in synaptic plasticity and contribute to learning impairments. In addition to providing insight into potential mechanisms of Pb-induced cognitive deficits, cellular models offer an opportunity to investigate direct effects of Pb on isolated biological substrates. A target of interest is the 78-kDa molecular chaperone glucose-regulated protein (GRP78). GRP78 chaperones the secretion of the cytokine interleukin-6 (IL-6) by astrocytes. In vitro evidence shows that Pb strongly binds to GRP78, induces GRP78 aggregation, and blocks IL-6 secretion in astroglial cells. These findings provide evidence for a significant chaperone deficiency in Pb-exposed astrocytes in culture. In the long term, chaperone deficiency could underlie protein conformational diseases such as Alzheimer's Disease (AD). Lead exposure in early life has been implicated in subsequent progression of amyloidogenesis in rodents during old age. This exposure resulted in an increase in proteins associated with AD pathology viz., beta-amyloid precursor protein ({beta}-APP), and beta-amyloid (A{beta}). These four new lines of research comprise compelling evidence that exposures to Pb have adverse effects on the nervous system, that environmental factors increase nervous system susceptibility to Pb, and that exposures in early life may cause neurodegeneration in later life.« less

  13. Evaluating the progenitor cells of ovarian cancer: analysis of current animal models.

    PubMed

    King, Shelby M; Burdette, Joanna E

    2011-07-01

    Serous ovarian cancer is one of the most lethal gynecological malignancies. Progress on effective diagnostics and therapeutics for this disease are hampered by ambiguity as to the cellular origins of this histotype of ovarian cancer, as well as limited suitable animal models to analyze early stages of disease. In this report, we will review current animal models with respect to the two proposed progenitor cells for serous ovarian cancer, the ovarian surface epithelium and the fallopian tube epithelium.

  14. Extracellular matrix motion and early morphogenesis

    PubMed Central

    Loganathan, Rajprasad; Rongish, Brenda J.; Smith, Christopher M.; Filla, Michael B.; Czirok, Andras; Bénazéraf, Bertrand

    2016-01-01

    For over a century, embryologists who studied cellular motion in early amniotes generally assumed that morphogenetic movement reflected migration relative to a static extracellular matrix (ECM) scaffold. However, as we discuss in this Review, recent investigations reveal that the ECM is also moving during morphogenesis. Time-lapse studies show how convective tissue displacement patterns, as visualized by ECM markers, contribute to morphogenesis and organogenesis. Computational image analysis distinguishes between cell-autonomous (active) displacements and convection caused by large-scale (composite) tissue movements. Modern quantification of large-scale ‘total’ cellular motion and the accompanying ECM motion in the embryo demonstrates that a dynamic ECM is required for generation of the emergent motion patterns that drive amniote morphogenesis. PMID:27302396

  15. NF-kB activation and its downstream target genes expression after heavy ions exposure

    NASA Astrophysics Data System (ADS)

    Chishti, Arif Ali; Baumstark-Khan, Christa; Hellweg, Christine; Schmitz, Claudia; Koch, Kristina; Feles, Sebastian

    2016-07-01

    To enable long-term human space flight cellular radiation response to densely ionizing radiation needs to be better understood for developing appropriate countermeasures to mitigate acute effects and late radiation risks for the astronaut. The biological effectiveness of accelerated heavy ions (which constitute the most important radiation type in space) with high linear energy transfer (LET) for effecting DNA damage response pathways as a gateway to cell death or survival is of major concern not only for space missions but also for new regimes of tumor radiotherapy. In the current research study, the contribution of NF-κB in response to space-relevant radiation qualities was determined by a NF-κB reporter cell line (HEK-pNF-κB-d2EGFP/Neo L2). The NF-κB dependent reporter gene expression (d2EGFP) after ionizing radiation (X-rays and heavy ions) exposure was evaluated by flow cytometry. Because of differences in the extent of NF-κB activation after X-irradiation and heavy ions exposure, it was expected that radiation quality (LET) might play an important role in the cellular radiation response. In addition, the biological effectiveness (RBE) of NF-κB activation and reduction of cellular survival was examined for heavy ions having a broad range of LET (˜0.3 - 9674 keV/µm). Furthermore, the effect of LET on NF-κB target gene expression was analyzed by real time reverse transcriptase quantitative PCR (RT-qPCR). In this study it was proven that NF-κB activation and NF-κB dependent gene expression comprises an early step in cellular radiation response. Taken together, this study clearly demonstrates that NF-κB activation and NF-κB-dependent gene expression by heavy ions are highest in the LET range of ˜50-200 keV/μupm. The up-regulated chemokines and cytokines (CXCL1, CXCL2, CXCL10, IL-8 and TNF) might be important for cell-cell communication among hit as well as unhit cells (bystander effect). The results obtained suggest the NF-κB pathway to be a promising target for pharmacological modulation of cellular radiation response either to improve tumor cell killing during radiotherapy with heavy ions or to mitigate radiation late effects in astronauts or irradiated healthy tissue.

  16. Therapeutic mechanism of treating SMMC-7721 liver cancer cells with magnetic fluid hyperthermia using Fe₂O₃ nanoparticles.

    PubMed

    Yan, S Y; Chen, M M; Fan, J G; Wang, Y Q; Du, Y Q; Hu, Y; Xu, L M

    2014-11-01

    This study aimed to investigate the therapeutic mechanism of treating SMMC-7721 liver cancer cells with magnetic fluid hyperthermia (MFH) using Fe₂O₃ nanoparticles. Hepatocarcinoma SMMC-7721 cells cultured in vitro were treated with ferrofluid containing Fe₂O₃ nanoparticles and irradiated with an alternating radio frequency magnetic field. The influence of the treatment on the cells was examined by inverted microscopy, MTT and flow cytometry. To study the therapeutic mechanism of the Fe₂O₃ MFH, Hsp70, Bax, Bcl-2 and p53 were detected by immunocytochemistry and reverse transcription polymerase chain reaction (RT-PCR). It was shown that Fe₂O₃ MFH could cause cellular necrosis, induce cellular apoptosis, and significantly inhibit cellular growth, all of which appeared to be dependent on the concentration of the Fe₂O₃nanoparticles. Immunocytochemistry results showed that MFH could induce high expression of Hsp70 and Bax, decrease the expression of mutant p53, and had little effect on Bcl-2. RT-PCR indicated that Hsp70 expression was high in the early stage of MFH (<24 h) and became low or absent after 24 h of MFH treatment. It can be concluded that Fe₂O₃MFH significantly inhibited the proliferation of in vitro cultured liver cancer cells (SMMC-7721), induced cell apoptosis and arrested the cell cycle at the G₂/M phase. Fe₂O₃ MFH can induce high Hsp70 expression at an early stage, enhance the expression of Bax, and decrease the expression of mutant p53, which promotes the apoptosis of tumor cells.

  17. Biophotonics for imaging and cell manipulation: quo vadis?

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexandros A.; Makropoulou, Mirsini; Kotsifaki, Domna G.; Tsigaridas, Giorgos

    2016-01-01

    As one of the major health problems for mankind is cancer, any development for the early detection and effective treatment of cancer is crucial to saving lives. Worldwide, the dream for the anti-cancer procedure of attack is the development of a safe and efficient early diagnosis technique, the so called "optical biopsy". As early diagnosis of cancer is associated with improved prognosis, several laser based optical diagnostic methods were developed to enable earlier, non-invasive detection of human cancer, as Laser Induced Fluorescence spectroscopy (LIFs), Diffuse Reflectance spectroscopy (DRs), confocal microscopy, and Optical Coherence Tomography (OCT). Among them, Optical Coherence Tomography (OCT) imaging is considered to be a useful tool to differentiate healthy from malignant (e.g. basal cell carcinoma, squamous cell carcinoma) skin tissue. If the demand is to perform imaging in sub-tissular or even sub-cellular level, optical tweezers and atomic force microscopy have enabled the visualization of molecular events underlying cellular processes in live cells, as well as the manipulation and characterization of microscale or even nanoscale biostructures. In this work, we will present the latest advances in the field of laser imaging and manipulation techniques, discussing some representative experimental data focusing on the 21th century biophotonics roadmap of novel diagnostic and therapeutical approaches. As an example of a recently discussed health and environmental problem, we studied both experimentally and theoretically the optical trapping forces exerted on yeast cells and modified with estrogen-like acting compounds yeast cells, suspended in various buffer media.

  18. Somatostatin protects photoreceptor cells against high glucose-induced apoptosis.

    PubMed

    Arroba, Ana I; Mazzeo, Aurora; Cazzoni, Daniele; Beltramo, Elena; Hernández, Cristina; Porta, Massimo; Simó, Rafael; Valverde, Ángela M

    2016-01-01

    Many cellular and molecular studies in experimental animals and early retinal function tests in patients with diabetic retinopathy (DR) have shown that retinal neurodegeneration is an early event in the pathogenesis of the disease. Somatostatin (SST) is one of the most important neuroprotective factors synthesized by the retina: SST levels are decreased in parallel to retinal neurodegeneration in early stages of DR. In this study, we characterized the induction of apoptosis (programmed cell death) in a 661W photoreceptor-like cell line cultured under high glucose (HG) conditions and the effect of SST. A 661W photoreceptor-like cell line and retinal explants from 10-week-old male C57BL/6 mice were cultured under HG conditions and treated with SST. Hyperglycemia significantly reduced the cellular viability by increasing the percentage of apoptotic cells, and this effect was ameliorated by SST (p˂0.05). Activation of caspase-8 by hyperglycemia was found in the 661W cells and retinal explants and decreased in the presence of SST (p˂0.05). Moreover, we detected activation of calpain-2 associated with hyperglycemia-induced cell death, as well as increased protein tyrosine phosphatase 1B (PTP1B) protein levels; both had a pattern of cleavage that was absent in the presence of SST (p˂0.05). Treatment of the 661W cells and retinal explants with SST for 24 h increased the phosphorylation of type 1 insulin-like growth factor receptor (IGF-IR; tyrosine 1165/1166) and protein kinase B (Akt; serine 473), suggesting this survival signaling is activated in the neuroretina by SST (p˂0.05). This study has provided new mechanistic insights first into the involvement of calpain-2 and PTP1B in the loss of cell survival and increased caspase-8-dependent apoptosis induced by hyperglycemia in photoreceptor cells and second, on the protective effect of SST against apoptosis by the enhancement of IGF-IR-mediated Akt phosphorylation.

  19. Somatostatin protects photoreceptor cells against high glucose–induced apoptosis

    PubMed Central

    Mazzeo, Aurora; Cazzoni, Daniele; Beltramo, Elena; Hernández, Cristina; Porta, Massimo; Simó, Rafael; Valverde, Ángela M.

    2016-01-01

    Purpose Many cellular and molecular studies in experimental animals and early retinal function tests in patients with diabetic retinopathy (DR) have shown that retinal neurodegeneration is an early event in the pathogenesis of the disease. Somatostatin (SST) is one of the most important neuroprotective factors synthesized by the retina: SST levels are decreased in parallel to retinal neurodegeneration in early stages of DR. In this study, we characterized the induction of apoptosis (programmed cell death) in a 661W photoreceptor-like cell line cultured under high glucose (HG) conditions and the effect of SST. Methods A 661W photoreceptor-like cell line and retinal explants from 10-week-old male C57BL/6 mice were cultured under HG conditions and treated with SST. Results Hyperglycemia significantly reduced the cellular viability by increasing the percentage of apoptotic cells, and this effect was ameliorated by SST (p˂0.05). Activation of caspase-8 by hyperglycemia was found in the 661W cells and retinal explants and decreased in the presence of SST (p˂0.05). Moreover, we detected activation of calpain-2 associated with hyperglycemia-induced cell death, as well as increased protein tyrosine phosphatase 1B (PTP1B) protein levels; both had a pattern of cleavage that was absent in the presence of SST (p˂0.05). Treatment of the 661W cells and retinal explants with SST for 24 h increased the phosphorylation of type 1 insulin-like growth factor receptor (IGF-IR; tyrosine 1165/1166) and protein kinase B (Akt; serine 473), suggesting this survival signaling is activated in the neuroretina by SST (p˂0.05). Conclusions This study has provided new mechanistic insights first into the involvement of calpain-2 and PTP1B in the loss of cell survival and increased caspase-8-dependent apoptosis induced by hyperglycemia in photoreceptor cells and second, on the protective effect of SST against apoptosis by the enhancement of IGF-IR-mediated Akt phosphorylation. PMID:28050125

  20. Biomarkers as a tool to assess effects of chromium (VI): comparison of responses in zebrafish early life stages and adults.

    PubMed

    Domingues, Inês; Oliveira, Rhaul; Lourenço, Joana; Grisolia, Cesar Koppe; Mendo, Sónia; Soares, A M V M

    2010-09-01

    The present work aims to compare the sensitivity of embryos and adult zebrafish to chromium (VI) (as potassium dichromate) focusing on biomarkers (cholinesterase, glutathione S-transferase and lactate dehydrogenase) as endpoints. Zebrafish eggs showed less sensitivity to Cr (VI) (96 h-LC50=145.7 mg/L) than adults (96 h-LC50=39.4 mg/L) probably due to the protective action of the chorion. However, biomarkers were much more responsive in larvae than in adults and gave clear indications about Cr (VI) mode of action: it seems to be neurotoxic (inhibited cholinesterase), to inhibit glutathione S-transferase activity and to interfere with cellular metabolic activity (changes in lactate dehydrogenase activity) in larvae. In adults, only glutathione S-transferase was responsive, showing a clear inhibition. The responsiveness of the analyzed biomarkers in larvae reinforces the idea of the usefulness of early life stage assays in the assessment of chemicals effects. Moreover, early life stage assays also contributed with relevant information regarding anomalies in larvae development and behavior. Further research should focus on the use of biomarkers to assess long term effects which are ecologically more relevant. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  1. Polyamines and Their Metabolites as Diagnostic Markers of Human Diseases

    PubMed Central

    Park, Myung Hee; Igarashi, Kazuei

    2013-01-01

    Polyamines, putrescine, spermidine and spermine, are ubiquitous in living cells and are essential for eukaryotic cell growth. These polycations interact with negatively charged molecules such as DNA, RNA, acidic proteins and phospholipids and modulate various cellular functions including macromolecular synthesis. Dysregulation of the polyamine pathway leads to pathological conditions including cancer, inflammation, stroke, renal failure and diabetes. Increase in polyamines and polyamine synthesis enzymes is often associated with tumor growth, and urinary and plasma contents of polyamines and their metabolites have been investigated as diagnostic markers for cancers. Of these, diacetylated derivatives of spermidine and spermine are elevated in the urine of cancer patients and present potential markers for early detection. Enhanced catabolism of cellular polyamines by polyamine oxidases (PAO), spermine oxidase (SMO) or acetylpolyamine oxidase (AcPAO), increases cellular oxidative stress and generates hydrogen peroxide and a reactive toxic metabolite, acrolein, which covalently incorporates into lysine residues of cellular proteins. Levels of protein-conjuagated acrolein (PC-Acro) and polyamine oxidizing enzymes were increased in the locus of brain infarction and in plasma in a mouse model of stroke and also in the plasma of stroke patients. When the combined measurements of PC-Acro, interleukin 6 (IL-6), and C-reactive protein (CRP) were evaluated, even silent brain infarction (SBI) was detected with high sensitivity and specificity. Considering that there are no reliable biochemical markers for early stage of stroke, PC-Acro and PAOs present promising markers. Thus the polyamine metabolites in plasma or urine provide useful tools in early diagnosis of cancer and stroke. PMID:24009852

  2. [Monitoring early toxicity of heavy metals including Hg using a HSE-SEAP reporter gene].

    PubMed

    Yu, Zhan-Jiang; Yang, Qin; Yang, Xiao-Da; Wang, Kui

    2006-08-01

    To develop a cellular assay based on heat shock signal pathway and secreted alkaline phosphatase (SEAP) reporter gene for investigating/predicting the early toxicity of heavy metals on HeLa cells in Chinese traditional medicine (TCM). The pHSE-SEAP plasmid was transfected into HeLa cells to build a HSE-SEAP-HeLa cell model. For validation of the model, the transfected cells were treated by either heating at 42 degrees C for 1 h or incubated with 5 mol x L(-1) CdCl2 for 4 h. Then the cells were covered in complete DMEM culture medium for 48 h and the activity of SEAP (reflecting the cellular level of heat shock protein) in cultural supernatants was measured; meanwhile, cell viability was determined by MTT assays. In addition, the cells were treated by four mercury compounds, HgCl2, merthilate sodium, HgS and cinnabar at the sub-lethal concentrations (determined by MTT assays). Then the heat shock response was detected likewise. Significant level of secreted alkaline phosphatase (SEAP) was found in pHSE-SEAP transfected HeLa cells treated either by heating (42 degrees C) or incubating with CdCl2. The heat shock protein was induced by CdCl2 before decrease of cell viability was observed. All four mercury compounds induced heat shock response in both time and concentration-dependant manner. However, there were big differences among the mercury compounds, suggesting potential differences for early-stage toxicity in vivo. The pHSE-SEAP transfected HeLa cells respond effectively to heat shock and metal stresses, and therefore provide a practical and repeatable assay for investigating/predicting the early toxicity of heavy metals and mineral-containing drugs in TCM.

  3. Microfossils of the Early Archean Apex chert - New evidence of the antiquity of life

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1993-01-01

    Eleven taxa (including eight heretofore undescribed species) of cellularly preserved filamentous microbes, among the oldest fossils known, have been discovered in a bedded chert unit of the Early Archean Apex Basalt of northwestern Western Australia. This prokaryotic assemblage establishes that trichomic cyanobacteriumlike microorganisms were extant and morphologically diverse at least as early as about 3465 million years ago and suggests that oxygen-producing photoautotrophy may have already evolved by this early stage in biotic history.

  4. pH-Controlled two-step uncoating of influenza virus.

    PubMed

    Li, Sai; Sieben, Christian; Ludwig, Kai; Höfer, Chris T; Chiantia, Salvatore; Herrmann, Andreas; Eghiaian, Frederic; Schaap, Iwan A T

    2014-04-01

    Upon endocytosis in its cellular host, influenza A virus transits via early to late endosomes. To efficiently release its genome, the composite viral shell must undergo significant structural rearrangement, but the exact sequence of events leading to viral uncoating remains largely speculative. In addition, no change in viral structure has ever been identified at the level of early endosomes, raising a question about their role. We performed AFM indentation on single viruses in conjunction with cellular assays under conditions that mimicked gradual acidification from early to late endosomes. We found that the release of the influenza genome requires sequential exposure to the pH of both early and late endosomes, with each step corresponding to changes in the virus mechanical response. Step 1 (pH 7.5-6) involves a modification of both hemagglutinin and the viral lumen and is reversible, whereas Step 2 (pH <6.0) involves M1 dissociation and major hemagglutinin conformational changes and is irreversible. Bypassing the early-endosomal pH step or blocking the envelope proton channel M2 precludes proper genome release and efficient infection, illustrating the importance of viral lumen acidification during the early endosomal residence for influenza virus infection. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Taxonomic and developmental aspects of radiosensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, F.L.; Anderson, S.L.

    1996-11-01

    Considerable information is available on the effects of radioactivity on adult and early life stages of organisms. The preponderance of data is on mortality after a single irradiation with relatively high doses. Unfortunately, because experiments were carried out under different conditions and for different time periods, the validity of comparing the results from different laxonomic groups is questionable. In general, the conclusions are that there is a relationship (1) between radioresistance to high doses of acute radiation and taxonomy of the organism, primitive forms being more radioresistant than complex vertebrates and (2) between radiosensitivity and developmental stage, early life stagesmore » being more sensitive than later stages. The first conclusion may be related to the capability of the organism to repopulate cells and to differentiate and redifferentiate them; the second to the rate of cellular division and to the degree of differentiation. In question, however, is the relevance of the responses from high levels of acute radiation to that of the responses to long-term exposure to low levels of radiation, which are ecologically of more interest. Data from studies of the effects of acute and chronic exposure on development of gametes and zygotes indicate that, for some fishes and invertebrates, responses at the cellular and molecular levels show effect levels comparable to those observed in some mammals. Acute doses between 0,05 and 0.5Cy and dose rates between 0.02 to 0.2mCy/h appear to define critical ranges in which detrimental effects on fertility are first observed in a variety of radiosensitive organisms. To better understand inherent radiosensitivity, we need more information on the ability of cells to repopulate and differentiate and to prevent or repair damage to biological critical molecules, such as DNA, because these factors may alter significantly organisms` responses to radiation.« less

  6. Blood-Brain Barrier Permeability and Monocyte Infiltration in Experimental Allergic Encephalomyelitis

    ERIC Educational Resources Information Center

    Floris, S.; Blezer, E. L. A.; Schreibelt, G.; Dopp, E.; van der Pol, S. M. A.; Schadee-Eestermans, I. L.; Nicolay, K.; Dijkstra, C. D.; de Vries, H. E.

    2004-01-01

    Enhanced cerebrovascular permeability and cellular infiltration mark the onset of early multiple sclerosis lesions. So far, the precise sequence of these events and their role in lesion formation and disease progression remain unknown. Here we provide quantitative evidence that blood-brain barrier leakage is an early event and precedes massive…

  7. DNA Methylation: A Mechanism for Embedding Early Life Experiences in the Genome

    ERIC Educational Resources Information Center

    Szyf, Moshe; Bick, Johanna

    2013-01-01

    Although epidemiological data provide evidence that early life experience plays a critical role in human development, the mechanism of how this works remains in question. Recent data from human and animal literature suggest that epigenetic changes, such as DNA methylation, are involved not only in cellular differentiation but also in the…

  8. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging.

    PubMed

    Ben-Zvi, Anat; Miller, Elizabeth A; Morimoto, Richard I

    2009-09-01

    Protein damage contributes prominently to cellular aging. To address whether this occurs at a specific period during aging or accumulates gradually, we monitored the biochemical, cellular, and physiological properties of folding sensors expressed in different tissues of C. elegans. We observed the age-dependent misfolding and loss of function of diverse proteins harboring temperature-sensitive missense mutations in all somatic tissues at the permissive condition. This widespread failure in proteostasis occurs rapidly at an early stage of adulthood, and coincides with a severely reduced activation of the cytoprotective heat shock response and the unfolded protein response. Enhancing stress responsive factors HSF-1 or DAF-16 suppresses misfolding of these metastable folding sensors and restores the ability of the cell to maintain a functional proteome. This suggests that a compromise in the regulation of proteostatic stress responses occurs early in adulthood and tips the balance between the load of damaged proteins and the proteostasis machinery. We propose that the collapse of proteostasis represents an early molecular event of aging that amplifies protein damage in age-associated diseases of protein conformation.

  9. Session 6: Infant nutrition: future research developments in Europe EARNEST, the early nutrition programming project: EARly Nutrition programming - long-term Efficacy and Safety Trials and integrated epidemiological, genetic, animal, consumer and economic research.

    PubMed

    Fewtrell, M S

    2007-08-01

    Increasing evidence from lifetime experimental studies in animals and observational and experimental studies in human subjects suggests that pre- and postnatal nutrition programme long-term health. However, key unanswered questions remain on the extent of early-life programming in contemporary European populations, relevant nutritional exposures, critical time periods, mechanisms and the effectiveness of interventions to prevent or reverse programming effects. The EARly Nutrition programming - long-term Efficacy and Safety Trials and integrated epidemiological, genetic, animal, consumer and economic research (EARNEST) consortium brings together a multi-disciplinary team of scientists from European research institutions in an integrated programme of work that includes experimental studies in human subjects, modern prospective observational studies and mechanistic animal work including physiological studies, cell-culture models and molecular techniques. Theme 1 tests early nutritional programming of disease in human subjects, measuring disease markers in childhood and early adulthood in nineteen randomised controlled trials of nutritional interventions in pregnancy and infancy. Theme 2 examines associations between early nutrition and later outcomes in large modern European population-based prospective studies, with detailed measures of diet in pregnancy and early life. Theme 3 uses animal, cellular and molecular techniques to study lifetime effects of early nutrition. Biomedical studies are complemented by studies of the social and economic importance of programming (themes 4 and 5), and themes encouraging integration, communication, training and wealth creation. The project aims to: help formulate policies on the composition and testing of infant foods; improve the nutritional value of infant formulas; identify interventions to prevent and reverse adverse early nutritional programming. In addition, it has the potential to develop new products through industrial partnerships, generate information on the social and economic cost of programming in Europe and help maintain Europe's lead in this critical area of research.

  10. The role of FDG-PET in detecting rejection after liver transplantation.

    PubMed

    Watson, Ashley M; Bhutiani, Neal; Philips, Prejesh; Davis, Eric G; Eng, Mary; Cannon, Robert M; Jones, Christopher M

    2018-05-15

    The activation and increased metabolic activity of T cells in acute cellular rejection could allow fluoro-2-deoxyglucose positron emission tomography to be utilized for detection of acute cellular rejection. The objective of this study was to evaluate the effectiveness of fluoro-2-deoxyglucose positron emission tomography in detecting acute cellular rejection in the clinical setting. Fluoro-2-deoxyglucose positron emission tomography studies were performed on 88 orthotopic liver transplant patients at 7 and 17 days postoperatively (first positron emission tomography and second positron emission tomography, respectively). Additional studies were performed if patients had suspicion of rejection and at resolution of rejection (third positron emission tomography and fourth positron emission tomography, respectively). A circular region of interest was placed over the liver for semiquantitative evaluation of fluoro-2-deoxyglucose positron emission tomography images by means of standard uptake values. Eighteen of 88 patients in our study (20.5%) had histologically proven acute cellular rejection during a 16 ± 11 day follow-up. There was no significant difference between the standard uptake values of first positron emission tomography among non-rejecters versus rejecters (2.05 ±0.46 non-rejecters versus 1.82 ± 0.40 rejecters, P = .127). Within the rejection cohort, the standard uptake values from the third positron emission tomography (rejection) were higher compared to the first positron emission tomography (baseline) (2.41 ± 0.48 third positron emission tomography versus 1.82 ± 0.41 first positron emission tomography, P < .001). Increased signal on fluoro-2-deoxyglucose positron emission tomography over baseline is associated with acute cellular rejection in liver transplant recipients. Additional prospective validation studies are essential to define the role of fluoro-2-deoxyglucose positron emission tomography scan as an early marker for acute cellular rejection. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. The Vitamin Nicotinamide: Translating Nutrition into Clinical Care

    PubMed Central

    Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen

    2009-01-01

    Nicotinamide, the amide form of vitamin B3 (niacin), is changed to its mononucleotide compound with the enzyme nicotinic acide/nicotinamide adenylyl-transferase, and participates in the cellular energy metabolism that directly impacts normal physiology. However, nicotinamide also influences oxidative stress and modulates multiple pathways tied to both cellular survival and death. During disorders that include immune system dysfunction, diabetes, and aging-related diseases, nicotinamide is a robust cytoprotectant that blocks cellular inflammatory cell activation, early apoptotic phosphatidylserine exposure, and late nuclear DNA degradation. Nicotinamide relies upon unique cellular pathways that involve forkhead transcription factors, sirtuins, protein kinase B (Akt), Bad, caspases, and poly (ADP-ribose) polymerase that may offer a fine line with determining cellular longevity, cell survival, and unwanted cancer progression. If one is cognizant of the these considerations, it becomes evident that nicotinamide holds great potential for multiple disease entities, but the development of new therapeutic strategies rests heavily upon the elucidation of the novel cellular pathways that nicotinamide closely governs. PMID:19783937

  12. Accelerated telomere shortening: Tracking the lasting impact of early institutional care at the cellular level.

    PubMed

    Humphreys, Kathryn L; Esteves, Kyle; Zeanah, Charles H; Fox, Nathan A; Nelson, Charles A; Drury, Stacy S

    2016-12-30

    Studies examining the association between early adversity and longitudinal changes in telomere length within the same individual are rare, yet are likely to provide novel insight into the subsequent lasting effects of negative early experiences. We sought to examine the association between institutional care history and telomere shortening longitudinally across middle childhood and into adolescence. Buccal DNA was collected 2-4 times, between the ages of 6 and 15 years, in 79 children enrolled in the Bucharest Early Intervention Project (BEIP), a longitudinal study exploring the impact of early institutional rearing on child health and development. Children with a history of early institutional care (n=50) demonstrated significantly greater telomere shortening across middle childhood and adolescence compared to never institutionalized children (n=29). Among children with a history of institutional care, randomization to high quality foster care was not associated with differential telomere attrition across development. Cross-sectional analysis of children randomized to the care as usual group indicated shorter telomere length was associated with greater percent of the child's life spent in institutional care up to age 8. These results suggest that early adverse care from severe psychosocial deprivation may be embedded at the molecular genetic level through accelerated telomere shortening. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Accelerated telomere shortening: Tracking the lasting impact of early institutional care at the cellular level

    PubMed Central

    Humphreys, Kathryn L.; Esteves, Kyle; Zeanah, Charles H; Fox, Nathan A; Nelson, Charles A.; Drury, Stacy S.

    2016-01-01

    Studies examining the association between early adversity and longitudinal changes in telomere length within the same individual are rare, yet are likely to provide novel insight into the subsequent lasting effects of negative early experiences. We sought to examine the association between institutional care history and telomere shortening longitudinally across middle childhood and into adolescence. Buccal DNA was collected 2 to 4 times, between the ages of 6 and 15 years, in 79 children enrolled in the Bucharest Early Intervention Project (BEIP), a longitudinal study exploring the impact of early institutional rearing on child health and development. Children with a history of early institutional care (n=50) demonstrated significantly greater telomere shortening across middle childhood and adolescence compared to never institutionalized children (n=29). Among children with a history of institutional care, randomization to high quality foster care was not associated with differential telomere attrition across development. Cross-sectional analysis of children randomized to the care as usual group indicated shorter telomere length was associated with greater percent of the child’s life spent in institutional care up to age 8. These results suggest that early adverse care from severe psychosocial deprivation may be embedded at the molecular genetic level through accelerated telomere shortening. PMID:27677058

  14. Generation of anti-porcine CD69 monoclonal antibodies and their usefulness to evaluate early activation of cellular immunity by flow cytometric analysis.

    PubMed

    Hayashi, Yumiko; Okutani, Mie; Ogawa, Shohei; Tsukahara, Takamitsu; Inoue, Ryo

    2018-05-01

    T cell-mediated cellular immunity and humoral immunity are equally important for the prevention of diseases. To assess activation of human and mouse cellular immunity, early activation markers of lymphocytes are often used in flow cytometry targeting expression of CD69 molecules. Response of humoral immunity against infection or vaccination has been well investigated in pigs, but that of cellular immunity has been largely neglected due to lack of direct evaluation tools. Thus, in pig research a proper assay of antibody reacted with porcine CD69 is still unavailable. In the present study, two anti-porcine CD69 mAb-producing mouse hybridomas, 01-14-22-51 (IgG2b-κ) and 01-22-44-102 (IgG2a-κ), both showing fine reactivity with phorbol 12-myristate 13-acetate (PMA) and ionomycin-stimulated porcine peripheral blood lymphocytes in flow cytometry, were established. When porcine peripheral blood lymphocytes were activated with PMA and ionomycin and analyzed by flow cytometry, it was found that both mAbs generated in this study stained about 70% of lymphocytes. In contrast, after an identical procedure, only 5% and 13.5% of lymphocytes were stained with anti-interferon-γ mAb and anti-tumor necrosis factor-α mAb, respectively. These results indicate that evaluation of cellular immunity activation turns more sensitive after using our newly generated mAbs. © 2018 Japanese Society of Animal Science.

  15. Early Functional Deficit and Microglial Disturbances in a Mouse Model of Amyotrophic Lateral Sclerosis

    PubMed Central

    Rabano, Miriam; Vivanco, Maria d M; Perrin, Florence Evelyne

    2012-01-01

    Background Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by selective motoneurons degeneration. There is today no clear-cut pathogenesis sequence nor any treatment. However growing evidences are in favor of the involvement, besides neurons, of several partners such as glia and muscles. To better characterize the time course of pathological events in an animal model that recapitulates human ALS symptoms, we investigated functional and cellular characteristics of hSOD1G93A mice. Methods and Findings We have evaluated locomotor function of hSOD1G93A mice through dynamic walking patterns and spontaneous motor activity analysis. We detected early functional deficits that redefine symptoms onset at 60 days of age, i.e. 20 days earlier than previously described. Moreover, sequential combination of these approaches allows monitoring of motor activity up to disease end stage. To tentatively correlate early functional deficit with cellular alterations we have used flow cytometry and immunohistochemistry approaches to characterize neuromuscular junctions, astrocytes and microglia. We show that (1) decrease in neuromuscular junction's number correlates with motor impairment, (2) astrocytes number is not altered at pre- and early-symptomatic ages but intraspinal repartition is modified at symptoms onset, and (3) microglia modifications precede disease onset. At pre-symptomatic age, we show a decrease in microglia number whereas at onset of the disease two distinct microglia sub-populations emerge. Conclusions In conclusion, precise motor analysis updates the onset of the disease in hSOD1G93A mice and allows locomotor monitoring until the end stage of the disease. Early functional deficits coincide with alterations of neuromuscular junctions. Importantly, we identify different sets of changes in microglia before disease onset as well as at early-symptomatic stage. This finding not only brings a new sequence of cellular events in the natural history of the disease, but it may also provide clues in the search for biomarkers of the disease, and potential therapeutic targets. PMID:22558300

  16. Early histological and functional effects of chronic copper exposure in rat liver.

    PubMed

    Cisternas, Felipe A; Tapia, Gladys; Arredondo, Miguel; Cartier-Ugarte, Denise; Romanque, Pamela; Sierralta, Walter D; Vial, María T; Videla, Luis A; Araya, Magdalena

    2005-10-01

    Cu is an essential trace element capable of producing toxic effects in animals and man when ingested acutely or chronically in excess. Although chronic Cu exposure is increasingly recognized as a public health issue, its early effects remain largely unknown. We approached the significance of a moderate chronic Cu load in young rats to correlate early hepatic histopathological changes with functional alterations of liver cells. For this purpose, supplementation with 1,200 ppm of Cu in rat food for 16 weeks was chosen. In these conditions, Cu load elicited a significant decrease in growth curves. There were mild light microscopy alterations in Cu-treated rats, although increasing intracellular Cu storage was correlated with longer Cu exposure both by histological and biochemical measurements. Ultrastructural alterations included lysosomal inclusions as well as mitochondrial and nuclear changes. Liver perfusion studies revealed higher rates of basal O(2) consumption and colloidal carbon-induced O(2) uptake in Cu-treated rats, with enhanced carbon-induced O(2)/carbon uptake ratios and NF-kappaB DNA binding activity. These changes were time-dependent and returned to control values after 12 or 16 weeks. It is concluded that subchronic Cu loading in young rats induces early hepatic morphological changes, with enhancement in Küpffer cell-dependent respiratory burst activity and NF-kappaB DNA binding, cellular responses that may prevent or alleviate the hepatotoxicity of the metal.

  17. Extracellular matrix motion and early morphogenesis.

    PubMed

    Loganathan, Rajprasad; Rongish, Brenda J; Smith, Christopher M; Filla, Michael B; Czirok, Andras; Bénazéraf, Bertrand; Little, Charles D

    2016-06-15

    For over a century, embryologists who studied cellular motion in early amniotes generally assumed that morphogenetic movement reflected migration relative to a static extracellular matrix (ECM) scaffold. However, as we discuss in this Review, recent investigations reveal that the ECM is also moving during morphogenesis. Time-lapse studies show how convective tissue displacement patterns, as visualized by ECM markers, contribute to morphogenesis and organogenesis. Computational image analysis distinguishes between cell-autonomous (active) displacements and convection caused by large-scale (composite) tissue movements. Modern quantification of large-scale 'total' cellular motion and the accompanying ECM motion in the embryo demonstrates that a dynamic ECM is required for generation of the emergent motion patterns that drive amniote morphogenesis. © 2016. Published by The Company of Biologists Ltd.

  18. Effects of mild running on substantia nigra during early neurodegeneration.

    PubMed

    Almeida, Michael F; Silva, Carolliny M; Chaves, Rodrigo S; Lima, Nathan C R; Almeida, Renato S; Melo, Karla P; Demasi, Marilene; Fernandes, Tiago; Oliveira, Edilamar M; Netto, Luis E S; Cardoso, Sandra M; Ferrari, Merari F R

    2018-06-01

    Moderate physical exercise acts at molecular and behavioural levels, such as interfering in neuroplasticity, cell death, neurogenesis, cognition and motor functions. Therefore, the aim of this study is to analyse the cellular effects of moderate treadmill running upon substantia nigra during early neurodegeneration. Aged male Lewis rats (9-month-old) were exposed to rotenone 1mg/kg/day (8 weeks) and 6 weeks of moderate treadmill running, beginning 4 weeks after rotenone exposure. Substantia nigra was extracted and submitted to proteasome and antioxidant enzymes activities, hydrogen peroxide levels and Western blot to evaluate tyrosine hydroxylase (TH), alpha-synuclein, Tom-20, PINK1, TrkB, SLP1, CRMP-2, Rab-27b, LC3II and Beclin-1 level. It was demonstrated that moderate treadmill running, practiced during early neurodegeneration, prevented the increase of alpha-synuclein and maintained the levels of TH unaltered in substantia nigra of aged rats. Physical exercise also stimulated autophagy and prevented impairment of mitophagy, but decreased proteasome activity in rotenone-exposed aged rats. Physical activity also prevented H 2 O 2 increase during early neurodegeneration, although the involved mechanism remains to be elucidated. TrkB levels and its anterograde trafficking seem not to be influenced by moderate treadmill running. In conclusion, moderate physical training could prevent early neurodegeneration in substantia nigra through the improvement of autophagy and mitophagy.

  19. Modulation of proteostasis counteracts oxidative stress and affects DNA base excision repair capacity in ATM-deficient cells

    PubMed Central

    Yang, Di; Fletcher, Sally C.; Vendrell, Iolanda; Fischer, Roman; Legrand, Arnaud J.

    2017-01-01

    Abstract Ataxia telangiectasia (A-T) is a syndrome associated with loss of ATM protein function. Neurodegeneration and cancer predisposition, both hallmarks of A-T, are likely to emerge as a consequence of the persistent oxidative stress and DNA damage observed in this disease. Surprisingly however, despite these severe features, a lack of functional ATM is still compatible with early life, suggesting that adaptation mechanisms contributing to cell survival must be in place. Here we address this gap in our knowledge by analysing the process of human fibroblast adaptation to the lack of ATM. We identify profound rearrangement in cellular proteostasis occurring very early on after loss of ATM in order to counter protein damage originating from oxidative stress. Change in proteostasis, however, is not without repercussions. Modulating protein turnover in ATM-depleted cells also has an adverse effect on the DNA base excision repair pathway, the major DNA repair system that deals with oxidative DNA damage. As a consequence, the burden of unrepaired endogenous DNA lesions intensifies, progressively leading to genomic instability. Our study provides a glimpse at the cellular consequences of loss of ATM and highlights a previously overlooked role for proteostasis in maintaining cell survival in the absence of ATM function. PMID:28973444

  20. Differential effects of the extracellular microenvironment on human embryonic stem cell differentiation into keratinocytes and their subsequent replicative life span.

    PubMed

    Movahednia, Mohammad Mehdi; Kidwai, Fahad Karim; Zou, Yu; Tong, Huei Jinn; Liu, Xiaochen; Islam, Intekhab; Toh, Wei Seong; Raghunath, Michael; Cao, Tong

    2015-04-01

    Culture microenvironment plays a critical role in the propagation and differentiation of human embryonic stem cells (hESCs) and their differentiated progenies. Although high efficiency of hESC differentiation to keratinocytes (hESC-Kert) has been achieved, little is known regarding the effects of early culture microenvironment and pertinent extracellular matrix (ECM) interactions during epidermal commitment on subsequent proliferative capacity of hESC-Kert. The aim of this study is to evaluate the effects of the different ECM microenvironments during hESC differentiation on subsequent replicative life span of hESC-Kert. In doing so, H1-hESCs were differentiated to keratinocytes (H1-Kert) in two differentiation systems. The first system employed autologous fibroblast feeder support, in which keratinocytes (H1-Kert(ACC)) were derived by coculture of hESCs with hESC-derived fibroblasts (H1-ebFs). The second system employed a novel decellularized matrix from H1-ebFs to create a dermoepidermal junction-like (DEJ) matrix. H1-Kert(AFF) were derived by differentiation of hESCs on the feeder-free system employing the DEJ matrix. Our study indicated that the feeder-free system with the use of DEJ matrix was more efficient in differentiation of hESCs toward epidermal progenitors. However, the feeder-free system was not sufficient to support the subsequent replicative capacity of differentiated keratinocytes. Of note, H1-Kert(AFF) showed limited replicative capacity with reduced telomere length and early cellular senescence. We further showed that the lack of cell-cell interactions during epidermal commitment led to heightened production of TGF-β1 by hESC-Kert during extended culture, which in turn was responsible for resulting in the limited replicative life span with cellular senescence of hESC-Kert derived under the feeder-free culture system. This study highlights for the first time the importance of the culture microenvironment and cell-ECM interactions during differentiation of hESCs on subsequent replicative life span and cellular senescence of the differentiated keratinocytes, with implications for use of these cells for applications in tissue engineering and regenerative medicine.

  1. Cellular retinoic acid bioavailability in various pathologies and its therapeutic implication.

    PubMed

    Osanai, Makoto

    2017-06-01

    Retinoic acid (RA), an active metabolite of vitamin A, is a critical signaling molecule in various cell types. We found that RA depletion caused by expression of the RA-metabolizing enzyme CYP26A1 promotes carcinogenesis, implicating CYP26A1 as a candidate oncogene. Several studies of CYP26s have suggested that the biological effect of RA on target cells is primarily determined by "cellular RA bioavailability", which is defined as the RA level in an individual cell, rather than by the serum concentration of RA. Consistently, stellate cells store approximately 80% of vitamin A in the body, and the state of cellular RA bioavailability regulates their function. Based on the similarities between stellate cells and astrocytes, we demonstrated that retinal astrocytes regulate tight junction-based endothelial integrity in a paracrine manner. Since diabetic retinopathy is characterized by increased vascular permeability in its early pathogenesis, RA normalized retinal astrocytes that are compromised in diabetes, resulting in suppression of vascular leakiness. RA also attenuated the loss of the epithelial barrier in murine experimental colitis. The concept of "cellular RA bioavailability" in various diseases will be directed at understanding various pathologies caused by RA insufficiency, implying the potential feasibility of a therapeutic strategy targeting the stellate cell system. © 2017 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  2. Geometry, packing, and evolutionary paths to increased multicellular size

    NASA Astrophysics Data System (ADS)

    Jacobeen, Shane; Graba, Elyes C.; Brandys, Colin G.; Day, Thomas C.; Ratcliff, William C.; Yunker, Peter J.

    2018-05-01

    The evolutionary transition to multicellularity transformed life on earth, heralding the evolution of large, complex organisms. Recent experiments demonstrated that laboratory-evolved multicellular "snowflake yeast" readily overcome the physical barriers that limit cluster size by modifying cellular geometry [Jacobeen et al., Nat. Phys. 14, 286 (2018), 10.1038/s41567-017-0002-y]. However, it is unclear why this route to large size is observed, rather than an evolved increase in intercellular bond strength. Here, we use a geometric model of the snowflake yeast growth form to examine the geometric efficiency of increasing size by modifying geometry and bond strength. We find that changing geometry is a far more efficient route to large size than evolving increased intercellular adhesion. In fact, increasing cellular aspect ratio is on average ˜13 times more effective than increasing bond strength at increasing the number of cells in a cluster. Modifying other geometric parameters, such as the geometric arrangement of mother and daughter cells, also had larger effects on cluster size than increasing bond strength. Simulations reveal that as cells reproduce, internal stress in the cluster increases rapidly; thus, increasing bond strength provides diminishing returns in cluster size. Conversely, as cells become more elongated, cellular packing density within the cluster decreases, which substantially decreases the rate of internal stress accumulation. This suggests that geometrically imposed physical constraints may have been a key early selective force guiding the emergence of multicellular complexity.

  3. A Review: Some biological effects of high LET radiations

    NASA Technical Reports Server (NTRS)

    Wiley, A., Jr.

    1972-01-01

    There are qualitative and quantitative differences in the biological damage observed after exposure to high LET radiation as compared to that caused by low LET radiations. This review is concerned with these differences, which are ultimately reflected at the biochemical, cellular and even whole animal levels. In general, high LET radiations seem to produce biochemical damage which is more severe and possibly less repairable. Experimental data for those effects are presented in terms of biochemical RBE's with consideration of both early and late manifestations. An LET independent process by which significant biochemical damage may result from protons, neutrons and negative pion mesons is discussed.

  4. Early Environmental Enrichment Enhances Abnormal Brain Connectivity in a Rabbit Model of Intrauterine Growth Restriction.

    PubMed

    Illa, Miriam; Brito, Verónica; Pla, Laura; Eixarch, Elisenda; Arbat-Plana, Ariadna; Batallé, Dafnis; Muñoz-Moreno, Emma; Crispi, Fatima; Udina, Esther; Figueras, Francesc; Ginés, Silvia; Gratacós, Eduard

    2017-10-12

    The structural correspondence of neurodevelopmental impairments related to intrauterine growth restriction (IUGR) that persists later in life remains elusive. Moreover, early postnatal stimulation strategies have been proposed to mitigate these effects. Long-term brain connectivity abnormalities in an IUGR rabbit model and the effects of early postnatal environmental enrichment (EE) were explored. IUGR was surgically induced in one horn, whereas the contralateral one produced the controls. Postnatally, a subgroup of IUGR animals was housed in an enriched environment. Functional assessment was performed at the neonatal and long-term periods. At the long-term period, structural brain connectivity was evaluated by means of diffusion-weighted brain magnetic resonance imaging and by histological assessment focused on the hippocampus. IUGR animals displayed poorer functional results and presented altered whole-brain networks and decreased median fractional anisotropy in the hippocampus. Reduced density of dendritic spines and perineuronal nets from hippocampal neurons were also observed. Of note, IUGR animals exposed to enriched environment presented an improvement in terms of both function and structure. IUGR is associated with altered brain connectivity at the global and cellular level. A strategy based on early EE has the potential to restore the neurodevelopmental consequences of IUGR. © 2017 S. Karger AG, Basel.

  5. Physiology and Evolution of Voltage-Gated Calcium Channels in Early Diverging Animal Phyla: Cnidaria, Placozoa, Porifera and Ctenophora

    PubMed Central

    Senatore, Adriano; Raiss, Hamad; Le, Phuong

    2016-01-01

    Voltage-gated calcium (Cav) channels serve dual roles in the cell, where they can both depolarize the membrane potential for electrical excitability, and activate transient cytoplasmic Ca2+ signals. In animals, Cav channels play crucial roles including driving muscle contraction (excitation-contraction coupling), gene expression (excitation-transcription coupling), pre-synaptic and neuroendocrine exocytosis (excitation-secretion coupling), regulation of flagellar/ciliary beating, and regulation of cellular excitability, either directly or through modulation of other Ca2+-sensitive ion channels. In recent years, genome sequencing has provided significant insights into the molecular evolution of Cav channels. Furthermore, expanded gene datasets have permitted improved inference of the species phylogeny at the base of Metazoa, providing clearer insights into the evolution of complex animal traits which involve Cav channels, including the nervous system. For the various types of metazoan Cav channels, key properties that determine their cellular contribution include: Ion selectivity, pore gating, and, importantly, cytoplasmic protein-protein interactions that direct sub-cellular localization and functional complexing. It is unclear when these defining features, many of which are essential for nervous system function, evolved. In this review, we highlight some experimental observations that implicate Cav channels in the physiology and behavior of the most early-diverging animals from the phyla Cnidaria, Placozoa, Porifera, and Ctenophora. Given our limited understanding of the molecular biology of Cav channels in these basal animal lineages, we infer insights from better-studied vertebrate and invertebrate animals. We also highlight some apparently conserved cellular functions of Cav channels, which might have emerged very early on during metazoan evolution, or perhaps predated it. PMID:27867359

  6. Nipah virus matrix protein: expert hacker of cellular machines.

    PubMed

    Watkinson, Ruth E; Lee, Benhur

    2016-08-01

    Nipah virus (NiV, Henipavirus) is a highly lethal emergent zoonotic paramyxovirus responsible for repeated human outbreaks of encephalitis in South East Asia. There are no approved vaccines or treatments, thus improved understanding of NiV biology is imperative. NiV matrix protein recruits a plethora of cellular machinery to scaffold and coordinate virion budding. Intriguingly, matrix also hijacks cellular trafficking and ubiquitination pathways to facilitate transient nuclear localization. While the biological significance of matrix nuclear localization for an otherwise cytoplasmic virus remains enigmatic, the molecular details have begun to be characterized, and are conserved among matrix proteins from divergent paramyxoviruses. Matrix protein appropriation of cellular machinery will be discussed in terms of its early nuclear targeting and later role in virion assembly. © 2016 Federation of European Biochemical Societies.

  7. Important cellular targets for antimicrobial photodynamic therapy.

    PubMed

    Awad, Mariam M; Tovmasyan, Artak; Craik, James D; Batinic-Haberle, Ines; Benov, Ludmil T

    2016-09-01

    The persistent problem of antibiotic resistance has created a strong demand for new methods for therapy and disinfection. Photodynamic inactivation (PDI) of microbes has demonstrated promising results for eradication of antibiotic-resistant strains. PDI is based on the use of a photosensitive compound (photosensitizer, PS), which upon illumination with visible light generates reactive species capable of damaging and killing microorganisms. Since photogenerated reactive species are short lived, damage is limited to close proximity of the PS. It is reasonable to expect that the larger the number of damaged targets is and the greater their variety is, the higher the efficiency of PDI is and the lower the chances for development of resistance are. Exact molecular mechanisms and specific targets whose damage is essential for microbial inactivation have not been unequivocally established. Two main cellular components, DNA and plasma membrane, are regarded as the most important PDI targets. Using Zn porphyrin-based PSs and Escherichia coli as a model Gram-negative microorganism, we demonstrate that efficient photoinactivation of bacteria can be achieved without detectable DNA modification. Among the cellular components which are modified early during illumination and constitute key PDI targets are cytosolic enzymes, membrane-bound protein complexes, and the plasma membrane. As a result, membrane barrier function is lost, and energy and reducing equivalent production is disrupted, which in turn compromises cell defense mechanisms, thus augmenting the photoinduced oxidative injury. In conclusion, high PDI antimicrobial effectiveness does not necessarily require impairment of a specific critical cellular component and can be achieved by inducing damage to multiple cellular targets.

  8. Molecular and Cellular Aspects of Calcific Aortic Valve Disease

    PubMed Central

    Towler, Dwight A.

    2014-01-01

    Calcific aortic valve disease (CAVD) increasingly afflicts our aging population. One-third of our elderly have echocardiographic or radiological evidence of aortic valve sclerosis (CAVS), an early and subclinical form of CAVD. Age, gender, tobacco use, hypercholesterolemia, hypertension, and type II diabetes all contribute to the risk of disease that has worldwide distribution. Upon progression to its most severe form --- calcific aortic stenosis (CAS) --- CAVD becomes debilitating and devastating, and 2% of individuals over age 60 suffer from CAS to the extent that surgical intervention is required. No effective pharmacotherapies exist for treating those at risk for clinical progression. It is becoming increasingly apparent that a diverse spectrum of cellular and molecular mechanisms converge to regulate valvular calcium load; this is evidenced not only in histopathologic heterogeneity of CAVD but also from the multiplicity of cell types that can participate in valve biomineralization. In this review, we highlight our current understanding of CAVD disease biology, emphasizing molecular and cellular aspects of its regulation. We end by pointing to important biological and clinical questions that must be answered to enable sophisticated disease staging and the development of new strategies to medically treat CAVD. PMID:23833294

  9. Thoracic organ transplantation: laboratory methods.

    PubMed

    Patel, Jignesh K; Kobashigawa, Jon A

    2013-01-01

    Although great progress has been achieved in thoracic organ transplantation through the development of effective immunosuppression, there is still significant risk of rejection during the early post-transplant period, creating a need for routine monitoring for both acute antibody and cellular mediated rejection. The currently available multiplexed, microbead assays utilizing solubilized HLA antigens afford the capability of sensitive detection and identification of HLA and non-HLA specific antibodies. These assays are being used to assess the relative strength of donor specific antibodies; to permit performance of virtual crossmatches which can reduce the waiting time to transplantation; to monitor antibody levels during desensitization; and for heart transplants to monitor antibodies post-transplant. For cell mediated immune responses, the recent development of gene expression profiling has allowed noninvasive monitoring of heart transplant recipients yielding predictive values for acute cellular rejection. T cell immune monitoring in heart and lung transplant recipients has allowed individual tailoring of immunosuppression, particularly to minimize risk of infection. While the current antibody and cellular laboratory techniques have enhanced the ability to manage thoracic organ transplant recipients, future developments from improved understanding of microchimerism and graft tolerance may allow more refined allograft monitoring techniques.

  10. Classical ROS-dependent and early/rapid ROS-independent release of Neutrophil Extracellular Traps triggered by Leishmania parasites.

    PubMed

    Rochael, Natalia C; Guimarães-Costa, Anderson B; Nascimento, Michelle T C; DeSouza-Vieira, Thiago S; Oliveira, Matheus P; Garcia e Souza, Luiz F; Oliveira, Marcus F; Saraiva, Elvira M

    2015-12-17

    Neutrophil extracellular traps (NETs) extruded from neutrophils upon activation are composed of chromatin associated with cytosolic and granular proteins, which ensnare and kill microorganisms. This microbicidal mechanism named classical netosis has been shown to dependent on reactive oxygen species (ROS) generation by NADPH oxidase and also chromatin decondensation dependent upon the enzymes (PAD4), neutrophil elastase (NE) and myeloperoxidase (MPO). NET release also occurs through an early/rapid ROS-independent mechanism, named early/rapid vital netosis. Here we analyze the role of ROS, NE, MPO and PAD4 in the netosis stimulated by Leishmania amazonensis promastigotes in human neutrophils. We demonstrate that promastigotes induce a classical netosis, dependent on the cellular redox imbalance, as well as by a chloroamidine sensitive and elastase activity mechanism. Additionally, Leishmania also induces the early/rapid NET release occurring only 10 minutes after neutrophil-parasite interaction. We demonstrate here, that this early/rapid mechanism is dependent on elastase activity, but independent of ROS generation and chloroamidine. A better understanding of both mechanisms of NET release, and the NETs effects on the host immune system modulation, could support the development of new potential therapeutic strategies for leishmaniasis.

  11. Acute myeloid leukaemia at an early age: Reviewing the interaction between pesticide exposure and KMT2A-rearrangement

    PubMed Central

    Pombo-de-Oliveira, Maria S; Andrade, Francianne Gomes; Brisson, Gisele Dallapicola; dos Santos Bueno, Filipe Vicente; Cezar, Ingrid Sardou; Noronha, Elda Pereira

    2017-01-01

    Acute myeloid leukaemia (AML) in early childhood is characterised by a high frequency of recurrent genomic aberrations associated with distinct myeloid subtypes, clinical outcomes and pathogenesis. Genomic instability is the first step of pathogenic mechanism in early childhood AML. A sum of adverse events is necessary to the development of infant AML (i-AML), which includes latency of biochemical-molecular and cellular effects. Inherited genetic susceptibility associated with exposures to biotransformation substances can modulate the risk of DNA damage and it is a very important piece in the pathogenic puzzle. In this review, we have aimed to explore the chain of events in the time-points of the natural history of i-AML, which includes maternal exposures during pregnancy, the speculations about the formation of somatic mutations during foetal life and the secondary genomic aberrations associated with i-AML. The modulation of risk conferred by xenobiotic metabolism´s genes variants is the bottom line of the pathogenic process. Since we have conducted observational and molecular investigations in early childhood leukaemia, the data focused here is based on Brazilian findings with summarised results of our experience with epidemiological and molecular studies in early-age leukaemia. PMID:29225689

  12. Effect of Atmospheric Plasma Treatment to Titanium Surface on Initial Osteoblast-Like Cell Spreading. .

    PubMed

    Kim, In-Hye; Son, Jun-Sik; Kwon, Tae-Yub; Kim, Kyo-Han

    2015-01-01

    Plasma treatments are becoming a popular method for modifying the characteristics of a range of substrate surfaces. Atmospheric pressure plasma is cost-efficient, safe and simple compared to high-pressure plasma. This study examined the effects of atmospheric pressure plasma to a titanium (Ti) surface on osteoblast-like cell (osteoblast) spreading and cellular networks. The characteristics of the Ti surface before and after the atmospheric plasma treatment were analyzed by X-ray photoemission spectroscopy (XPS), scanning electron microscopy (SEM), contact angle measurements, and an optical 3D profiling system. The morphology of osteoblasts attached to the Ti surfaces was observed by SEM and confocal laser scanning microscopy. The atmospheric pressure plasma made the Ti surfaces more hydrophilic. The osteoblasts that adhered to the untreated surface were round and spherical, whereas the cells covered a larger surface area on the plasma-treated surface. The plasma-treated Ti surface showed enhanced cell spreading and migration with more developed cellular networks. In conclusion, an atmospheric plasma treatment is a potential surface modifying method that can enhance the initial the cell affinity at the early stages in vitro.

  13. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3.

    PubMed

    Khan, Nahid A; Auranen, Mari; Paetau, Ilse; Pirinen, Eija; Euro, Liliya; Forsström, Saara; Pasila, Lotta; Velagapudi, Vidya; Carroll, Christopher J; Auwerx, Johan; Suomalainen, Anu

    2014-06-01

    Nutrient availability is the major regulator of life and reproduction, and a complex cellular signaling network has evolved to adapt organisms to fasting. These sensor pathways monitor cellular energy metabolism, especially mitochondrial ATP production and NAD(+)/NADH ratio, as major signals for nutritional state. We hypothesized that these signals would be modified by mitochondrial respiratory chain disease, because of inefficient NADH utilization and ATP production. Oral administration of nicotinamide riboside (NR), a vitamin B3 and NAD(+) precursor, was previously shown to boost NAD(+) levels in mice and to induce mitochondrial biogenesis. Here, we treated mitochondrial myopathy mice with NR. This vitamin effectively delayed early- and late-stage disease progression, by robustly inducing mitochondrial biogenesis in skeletal muscle and brown adipose tissue, preventing mitochondrial ultrastructure abnormalities and mtDNA deletion formation. NR further stimulated mitochondrial unfolded protein response, suggesting its protective role in mitochondrial disease. These results indicate that NR and strategies boosting NAD(+) levels are a promising treatment strategy for mitochondrial myopathy. © 2014 The Authors. Published under the terms of the CC BY license.

  14. Post-training gamma irradiation-enhanced contextual fear memory associated with reduced neuronal activation of the infralimbic cortex.

    PubMed

    Kugelman, Tara; Zuloaga, Damian G; Weber, Sydney; Raber, Jacob

    2016-02-01

    The brain might be exposed to irradiation under a variety of situations, including clinical treatments, nuclear accidents, dirty bomb scenarios, and military and space missions. Correctly recalling tasks learned prior to irradiation is important but little is known about post-learning effects of irradiation. It is not clear whether exposure to X-ray irradiation during memory consolidation, a few hours following training, is associated with altered contextual fear conditioning 24h after irradiation and which brain region(s) might be involved in these effects. Brain immunoreactivity patterns of the immediately early gene c-Fos, a marker of cellular activity was used to determine which brain areas might be altered in post-training irradiation memory retention tasks. In this study, we show that post-training gamma irradiation exposure (1 Gy) enhanced contextual fear memory 24h later and is associated with reduced cellular activation in the infralimbic cortex. Reduced GABA-ergic neurotransmission in parvalbumin-positive cells in the infralimbic cortex might play a role in this post-training radiation-enhanced contextual fear memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Use of Polyamine Derivatives as Selective Histone Deacetylase Inhibitors

    PubMed Central

    Woster, Patrick M.

    2014-01-01

    Histone acetylation and deacetylation, mediated by histone acetyltransferase and the 11 isoforms of histone deacetylase, play an important role in gene expression. Histone deacetylase inhibitors have found utility in the treatment of cancer by promoting the reexpression of aberrantly silenced genes that code for tumor suppressor factors. It is unclear which of the 11 histone deacetylase isoforms are important in human cancer. We have designed a series of polyaminohydroxamic acid (PAHA) and polyaminobenzamide (PABA) histone deacetylase inhibitors that exhibit selectivity among four histone deacetylase isoforms. Although all of the active inhibitors promote reexpression of tumor suppressor factors, they produce variable cellular effects ranging from stimulation of growth to cytostasis and cytotoxicity. This chapter describes the procedures used to quantify the global and isoform-specific inhibition caused by these inhibitors, and techniques used to measure cellular effects such as reexpression of tumor suppressor proteins and hyperacetylation of histones H3 and H4. Procedures are also described to examine the ability of PAHAs and PABAs to utilize the polyamine transport system and to induce overexpression of the early apoptotic factor annexin A1. PMID:21318894

  16. Post-training gamma irradiation-enhanced contextual fear memory associated with reduced neuronal activation of the infralimbic cortex

    PubMed Central

    Kugelman, Tara; Zuloaga, Damian G.; Weber, Sydney; Raber, Jacob

    2015-01-01

    The brain might be exposed to irradiation under a variety of situations, including clinical treatments, nuclear accidents, dirty bomb scenarios, and military and space missions. Correctly recalling tasks learned prior to irradiation is important but little is known about post-learning effects of irradiation. It is not clear whether exposure to X-ray irradiation during memory consolidation, a few hours following training, is associated with altered contextual fear conditioning 24 hours after irradiation and which brain region(s) might be involved in these effects. Brain immunoreactivity patterns of the immediately early gene c-Fos, a marker of cellular activity was used to determine which brain areas might be altered in post-training irradiation memory retention tasks. In this study, we show that post-training gamma irradiation exposure (1 Gy) enhanced contextual fear memory 24 hours later and is associated with reduced cellular activation in the infralimbic cortex. Reduced GABA-ergic neurotransmission in parvalbumin-positive cells in the infralimbic cortex might play a role in this post-training radiation-enhanced contextual fear memory. PMID:26522840

  17. Effects of cellular origin on differentiation of human induced pluripotent stem cell–derived endothelial cells

    PubMed Central

    Zhao, Ming-Tao; Jahanbani, Fereshteh; Lee, Won Hee; Snyder, Michael P.

    2016-01-01

    Human induced pluripotent stem cells (iPSCs) can be derived from various types of somatic cells by transient overexpression of 4 Yamanaka factors (OCT4, SOX2, C-MYC, and KLF4). Patient-specific iPSC derivatives (e.g., neuronal, cardiac, hepatic, muscular, and endothelial cells [ECs]) hold great promise in drug discovery and regenerative medicine. In this study, we aimed to evaluate whether the cellular origin can affect the differentiation, in vivo behavior, and single-cell gene expression signatures of human iPSC–derived ECs. We derived human iPSCs from 3 types of somatic cells of the same individuals: fibroblasts (FB-iPSCs), ECs (EC-iPSCs), and cardiac progenitor cells (CPC-iPSCs). We then differentiated them into ECs by sequential administration of Activin, BMP4, bFGF, and VEGF. EC-iPSCs at early passage (10 < P < 20) showed higher EC differentiation propensity and gene expression of EC-specific markers (PECAM1 and NOS3) than FB-iPSCs and CPC-iPSCs. In vivo transplanted EC-iPSC–ECs were recovered with a higher percentage of CD31+ population and expressed higher EC-specific gene expression markers (PECAM1, KDR, and ICAM) as revealed by microfluidic single-cell quantitative PCR (qPCR). In vitro EC-iPSC–ECs maintained a higher CD31+ population than FB-iPSC–ECs and CPC-iPSC–ECs with long-term culturing and passaging. These results indicate that cellular origin may influence lineage differentiation propensity of human iPSCs; hence, the somatic memory carried by early passage iPSCs should be carefully considered before clinical translation. PMID:27398408

  18. Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis

    PubMed Central

    Liu, Pei; Zhang, Huoming; Yu, Boying; Xiong, Liming; Xia, Yiji

    2015-01-01

    Accumulation of reactive oxygen species (ROS) is one of the early defense responses against pathogen infection in plants. The mechanism about the initial and direct regulation of the defense signaling pathway by ROS remains elusive. Perturbation of cellular redox homeostasis by ROS is believed to alter functions of redox-sensitive proteins through their oxidative modifications. Here we report an OxiTRAQ-based proteomic study in identifying proteins whose cysteines underwent oxidative modifications in Arabidopsis cells during the early response to salicylate or flg22, two defense pathway elicitors that are known to disturb cellular redox homeostasis. Among the salicylate- and/or flg22-responsive redox-sensitive proteins are those involved in transcriptional regulation, chromatin remodeling, RNA processing, post-translational modifications, and nucleocytoplasmic shuttling. The identification of the salicylate-/flg22-responsive redox-sensitive proteins provides a foundation from which further study can be conducted toward understanding biological significance of their oxidative modifications during the plant defense response. PMID:25720653

  19. Early patterning and specification of cardiac progenitors in gastrulating mesoderm

    PubMed Central

    Devine, W Patrick; Wythe, Joshua D; George, Matthew; Koshiba-Takeuchi, Kazuko; Bruneau, Benoit G

    2014-01-01

    Mammalian heart development requires precise allocation of cardiac progenitors. The existence of a multipotent progenitor for all anatomic and cellular components of the heart has been predicted but its identity and contribution to the two cardiac progenitor ‘fields’ has remained undefined. Here we show, using clonal genetic fate mapping, that Mesp1+ cells in gastrulating mesoderm are rapidly specified into committed cardiac precursors fated for distinct anatomic regions of the heart. We identify Smarcd3 as a marker of early specified cardiac precursors and identify within these precursors a compartment boundary at the future junction of the left and right ventricles that arises prior to morphogenesis. Our studies define the timing and hierarchy of cardiac progenitor specification and demonstrate that the cellular and anatomical fate of mesoderm-derived cardiac cells is specified very early. These findings will be important to understand the basis of congenital heart defects and to derive cardiac regeneration strategies. DOI: http://dx.doi.org/10.7554/eLife.03848.001 PMID:25296024

  20. How Should Oxygen Supplementation Be Guided by Pulse Oximetry in Children: Do We Know the Level?

    PubMed Central

    Langley, Ross; Cunningham, Steve

    2017-01-01

    Supplemental oxygen is one of the most commonly prescribed therapies to children in hospital, but one of the least studied therapeutics. This review considers oxygen from a range of perspectives; discovery and early use; estimation of oxygenation in the human body—both clinically and by medical device; the effects of illness on oxygen utilization; the cellular consequences of low oxygen; and finally, how clinical studies currently inform our approach to targeting supplementing oxygen in those with lower than normal oxygen saturation. PMID:28191454

  1. Cellular La protein shields nonsegmented negative-strand RNA viral leader RNA from RIG-I and enhances virus growth by diverse mechanisms.

    PubMed

    Bitko, Vira; Musiyenko, Alla; Bayfield, Mark A; Maraia, Richard J; Barik, Sailen

    2008-08-01

    The La antigen (SS-B) associates with a wide variety of cellular and viral RNAs to affect gene expression in multiple systems. We show that La is the major cellular protein found to be associated with the abundant 44-nucleotide viral leader RNA (leRNA) early after infection with respiratory syncytial virus (RSV), a nonsegmented negative-strand RNA virus. Consistent with this, La redistributes from the nucleus to the cytoplasm in RSV-infected cells. Upon RNA interference knockdown of La, leRNA is redirected to associate with the RNA-binding protein RIG-I, a known activator of interferon (IFN) gene expression, and this is accompanied by the early induction of IFN mRNA. These results suggest that La shields leRNA from RIG-I, abrogating the early viral activation of type I IFN. We mapped the leRNA binding function to RNA recognition motif 1 of La and showed that while wild-type La greatly enhanced RSV growth, a La mutant defective in RSV leRNA binding also did not support RSV growth. Comparative studies of RSV and Sendai virus and the use of IFN-negative Vero cells indicated that La supports the growth of nonsegmented negative-strand RNA viruses by both IFN suppression and a potentially novel IFN-independent mechanism.

  2. Cellular uptake mediated by epidermal growth factor receptor facilitates the intracellular activity of phosphorothioate-modified antisense oligonucleotides

    PubMed Central

    Wang, Shiyu; Allen, Nickolas; Vickers, Timothy A; Revenko, Alexey S; Sun, Hong; Liang, Xue-hai; Crooke, Stanley T

    2018-01-01

    Abstract Chemically modified antisense oligonucleotides (ASOs) with phosphorothioate (PS) linkages have been extensively studied as research and therapeutic agents. PS-ASOs can enter the cell and trigger cleavage of complementary RNA by RNase H1 even in the absence of transfection reagent. A number of cell surface proteins have been identified that bind PS-ASOs and mediate their cellular uptake; however, the mechanisms that lead to productive internalization of PS-ASOs are not well understood. Here, we characterized the interaction between PS-ASOs and epidermal growth factor receptor (EGFR). We found that PS-ASOs trafficked together with EGF and EGFR into clathrin-coated pit structures. Their co-localization was also observed at early endosomes and inside enlarged late endosomes. Reduction of EGFR decreased PS-ASO activity without affecting EGF-mediated signaling pathways and overexpression of EGFR increased PS-ASO activity in cells. Furthermore, reduction of EGFR delays PS-ASO trafficking from early to late endosomes. Thus, EGFR binds to PS-ASOs at the cell surface and mediates essential steps for active (productive) cellular uptake of PS-ASOs through its cargo-dependent trafficking processes which migrate PS-ASOs from early to late endosomes. This EGFR-mediated process can also serve as an additional model to better understand the mechanism of intracellular uptake and endosomal release of PS-ASOs. PMID:29514240

  3. The evolution of early cellular systems viewed through the lens of biological interactions.

    PubMed

    Poole, Anthony M; Lundin, Daniel; Rytkönen, Kalle T

    2015-01-01

    The minimal cell concept represents a pragmatic approach to the question of how few genes are required to run a cell. This is a helpful way to build a parts-list, and has been more successful than attempts to deduce a minimal gene set for life by inferring the gene repertoire of the last universal common ancestor, as few genes trace back to this hypothetical ancestral state. However, the study of minimal cellular systems is the study of biological outliers where, by practical necessity, coevolutionary interactions are minimized or ignored. In this paper, we consider the biological context from which minimal genomes have been removed. For instance, some of the most reduced genomes are from endosymbionts and are the result of coevolutionary interactions with a host; few such organisms are "free-living." As few, if any, biological systems exist in complete isolation, we expect that, as with modern life, early biological systems were part of an ecosystem, replete with organismal interactions. We favor refocusing discussions of the evolution of cellular systems on processes rather than gene counts. We therefore draw a distinction between a pragmatic minimal cell (an interesting engineering problem), a distributed genome (a system resulting from an evolutionary transition involving more than one cell) and the looser coevolutionary interactions that are ubiquitous in ecosystems. Finally, we consider the distributed genome and coevolutionary interactions between genomic entities in the context of early evolution.

  4. Insects as test systems for assessing the potential role of microgravity in biological development and evolution

    NASA Astrophysics Data System (ADS)

    Vernós, I.; Carratalá, M.; González-Jurado, J.; Valverde, J. R.; Calleja, M.; Domingo, A.; Vinós, J.; Cervera, M.; Marco, R.

    Gravity and radiation are undoubtedly the two major environmental factors altered in space. Gravity is a weak force, which creates a permanent potential field acting on the mass of biological systems and their cellular components, strongly reduced in space flights. Developmental systems, particularly at very early stages, provide the larger cellular compartments known, where the effects of alterations in the size of the gravity vector on living organisms can be more effectively tested. The insects, one of the more highly evolved classes of animals in which early development occurs in a syncytial embryo, are systems particularly well suited to test these effects and the specific developmental mechanisms affected. Furthermore, they share some basic features such as small size, short life cycles, relatively high radio-resistance, etc. and show a diversity of developmental strategies and tempos advantageous in experiments of this type in space. Drosophila melanogaster, the current biological paradigm to study development, with so much genetic and evolutionary background available, is clearly the reference organism for these studies. The current evidence on the effects of the physical parameters altered in space flights on insect development indicate a surprising correlation between effects seen on the fast developing and relatively small Drosophila embryo and the more slowly developing and large Carausius morosus system. In relation to the issue of the importance of developmental and environmental constraints in biological evolution, still the missing link in current evolutionary thinking, insects and space facilities for long-term experiments could provide useful experimental settings where to critically assess how development and evolution may be interconnected. Finally, it has to be pointed out that since there are experimental data indicating a possible synergism between microgravity and space radiation, possible effects of space radiation should be taken into account in the planning and evaluation of experiments designed to test the potential role of microgravity on biological development and evolution.

  5. Insects as test systems for assessing the potential role of microgravity in biological development and evolution.

    PubMed

    Vernós, I; Carratalá, M; González-Jurado, J; Valverde, J R; Calleja, M; Domingo, A; Vinós, J; Cervera, M; Marco, R

    1989-01-01

    Gravity and radiation are undoubtedly the two major environmental factors altered in space. Gravity is a weak force, which creates a permanent potential field acting on the mass of biological systems and their cellular components, strongly reduced in space flights. Developmental systems, particularly at very early stages, provide the larger cellular compartments known, where the effects of alterations in the size of the gravity vector on living organisms can be more effectively tested. The insects, one of the more highly evolved classes of animals in which early development occurs in a syncytial embryo, are systems particularly well suited to test these effects and the specific developmental mechanisms affected. Furthermore, they share some basic features such as small size, short life cycles, relatively high radio-resistance, etc. and show a diversity of developmental strategies and tempos advantageous in experiments of this type in space. Drosophila melanogaster, the current biological paradigm to study development, with so much genetic and evolutionary background available, is clearly the reference organism for these studies. The current evidence on the effects of the physical parameters altered in space flights on insect development indicate a surprising correlation between effects seen on the fast developing and relatively small Drosophila embryo and the more slowly developing and large Carausius morosus system. In relation to the issue of the importance of developmental and environmental constraints in biological evolution, still the missing link in current evolutionary thinking, insects and space facilities for long-term experiments could provide useful experimental settings where to critically assess how development and evolution may be interconnected. Finally, it has to be pointed out that since there are experimental data indicating a possible synergism between microgravity and space radiation, possible effects of space radiation should be taken into account in the planning and evaluation of experiments designed to test the potential role of microgravity on biological developmental and evolution.

  6. ATP-driven and AMPK-independent autophagy in an early branching eukaryotic parasite.

    PubMed

    Li, Feng-Jun; Xu, Zhi-Shen; Soo, Andy D S; Lun, Zhao-Rong; He, Cynthia Y

    2017-04-03

    Autophagy is a catabolic cellular process required to maintain protein synthesis, energy production and other essential activities in starved cells. While the exact nutrient sensor(s) is yet to be identified, deprivation of amino acids, glucose, growth factor and other nutrients can serve as metabolic stimuli to initiate autophagy in higher eukaryotes. In the early-branching unicellular parasite Trypanosoma brucei, which can proliferate as procyclic form (PCF) in the tsetse fly or as bloodstream form (BSF) in animal hosts, autophagy is robustly triggered by amino acid deficiency but not by glucose depletion. Taking advantage of the clearly defined adenosine triphosphate (ATP) production pathways in T. brucei, we have shown that autophagic activity depends on the levels of cellular ATP production, using either glucose or proline as a carbon source. While autophagosome formation positively correlates with cellular ATP levels; perturbation of ATP production by removing carbon sources or genetic silencing of enzymes involved in ATP generation pathways, also inhibited autophagy. This obligate energy dependence and the lack of glucose starvation-induced autophagy in T. brucei may reflect an adaptation to its specialized, parasitic life style.

  7. The Shigella flexneri OspB effector: an early immunomodulator.

    PubMed

    Ambrosi, Cecilia; Pompili, Monica; Scribano, Daniela; Limongi, Dolores; Petrucca, Andrea; Cannavacciuolo, Sonia; Schippa, Serena; Zagaglia, Carlo; Grossi, Milena; Nicoletti, Mauro

    2015-01-01

    Through the action of the type three secretion system (T3SS) Shigella flexneri delivers several effectors into host cells to promote cellular invasion, multiplication and to exploit host-cell signaling pathways to modulate the host innate immune response. Although much progress has been made in the understanding of many type III effectors, the molecular and cellular mechanism of the OspB effector is still poorly characterized. In this study we present new evidence that better elucidates the role of OspB as pro-inflammatory factor at very early stages of infection. Indeed, we demonstrate that, during the first hour of infection, OspB is required for full activation of ERK1/2 and p38 MAPKs and the cytosolic phospholipase A(2) (cPLA(2)). Activation of cPLA(2) ultimately leads to the production and secretion of PMN chemoattractant metabolite(s) uncoupled with release of IL-8. Moreover, we also present evidence that OspB is required for the development of the full and promptly inflammatory reaction characteristic of S. flexneri wild-type infection in vivo. Based on OspB and OspF similarity (both effectors share similar transcription regulation, temporal secretion into host cells and nuclear localization) we hypothesized that OspB and OspF effectors may form a pair aimed at modulating the host cell response throughout the infection process, with opposite effects. A model is presented to illustrate how OspB activity would promote S. flexneri invasion and bacterial dissemination at early critical phases of infection. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Differential susceptibility of primary cultured human skin cells to hypericin PDT in an in vitro model.

    PubMed

    Popovic, A; Wiggins, T; Davids, L M

    2015-08-01

    Skin cancer is the most common cancer worldwide, and its incidence rate in South Africa is increasing. Photodynamic therapy (PDT) has been shown to be an effective treatment modality, through topical administration, for treatment of non-melanoma skin cancers. Our group investigates hypericin-induced PDT (HYP-PDT) for the treatment of both non-melanoma and melanoma skin cancers. However, a prerequisite for effective cancer treatments is efficient and selective targeting of the tumoral cells with minimal collateral damage to the surrounding normal cells, as it is well established that cancer therapies have bystander effects on normal cells in the body, often causing undesirable side effects. The aim of this study was to investigate the cellular and molecular effects of HYP-PDT on normal primary human keratinocytes (Kc), melanocytes (Mc) and fibroblasts (Fb) in an in vitro tissue culture model which represented both the epidermal and dermal cellular compartments of human skin. Cell viability analysis revealed a differential cytotoxic response to a range of HYP-PDT doses in all the human skin cell types, showing that Fb (LD50=1.75μM) were the most susceptible to HYP-PDT, followed by Mc (LD50=3.5μM) and Kc (LD50>4μM HYP-PDT) These results correlated with the morphological analysis which displayed distinct morphological changes in Fb and Mc, 24h post treatment with non-lethal (1μM) and lethal (3μM) doses of HYP-PDT, but the highest HYP-PDT doses had no effect on Kc morphology. Fluorescent microscopy displayed cytoplasmic localization of HYP in all the 3 skin cell types and additionally, HYP was excluded from the nuclei in all the cell types. Intracellular ROS levels measured in Fb at 3μM HYP-PDT, displayed a significant 3.8 fold (p<0.05) increase in ROS, but no significant difference in ROS levels occurred in Mc or Kc. Furthermore, 64% (p<0.005) early apoptotic Fb and 20% (p<0.05) early apoptotic Mc were evident; using fluorescence activated cell sorting (FACS), 24h post 3μM HYP-PDT. These results depict a differential response to HYP-PDT by different human skin cells thus highlighting the efficacy and indeed, the potential bystander effect of if administered in vivo. This study contributes toward our knowledge of the cellular response of the epidermis to photodynamic therapies and will possibly enhance the efficacy of future photobiological treatments. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Quantification of nanoscale density fluctuations by electron microscopy: probing cellular alterations in early carcinogenesis

    NASA Astrophysics Data System (ADS)

    Pradhan, Prabhakar; Damania, Dhwanil; Joshi, Hrushikesh M.; Turzhitsky, Vladimir; Subramanian, Hariharan; Roy, Hemant K.; Taflove, Allen; Dravid, Vinayak P.; Backman, Vadim

    2011-04-01

    Most cancers are curable if they are diagnosed and treated at an early stage. Recent studies suggest that nanoarchitectural changes occur within cells during early carcinogenesis and that such changes precede microscopically evident tissue alterations. It follows that the ability to comprehensively interrogate cell nanoarchitecture (e.g., macromolecular complexes, DNA, RNA, proteins and lipid membranes) could be critical to the diagnosis of early carcinogenesis. We present a study of the nanoscale mass-density fluctuations of biological tissues by quantifying their degree of disorder at the nanoscale. Transmission electron microscopy images of human tissues are used to construct corresponding effective disordered optical lattices. The properties of nanoscale disorder are then studied by statistical analysis of the inverse participation ratio (IPR) of the spatially localized eigenfunctions of these optical lattices at the nanoscale. Our results show an increase in the disorder of human colonic epithelial cells in subjects harboring early stages of colon neoplasia. Furthermore, our findings strongly suggest that increased nanoscale disorder correlates with the degree of tumorigenicity. Therefore, the IPR technique provides a practicable tool for the detection of nanoarchitectural alterations in the earliest stages of carcinogenesis. Potential applications of the technique for early cancer screening and detection are also discussed. Originally submitted for the special focus issue on physical oncology.

  10. Distinct p300-Responsive Mechanisms Promote Caspase-Dependent Apoptosis by Human T-Cell Lymphotropic Virus Type 1 Tax Protein

    PubMed Central

    Nicot, Christophe; Harrod, Robert

    2000-01-01

    The dysregulation of cellular apoptosis pathways has emerged as a critical early event associated with the development of many types of human cancers. Numerous viral and cellular oncogenes, aside from their inherent transforming properties, are known to induce programmed cell death, consistent with the hypothesis that genetic defects are required to support tumor survival. Here, we report that nuclear expression of the CREB-binding protein (CBP)/p300-binding domain of the human T-cell lymphotropic virus type 1 (HTLV-1) transactivator, Tax, triggers an apoptotic death-inducing signal during short-term clonal analyses, as well as in transient cell death assays. Coexpression of the antiapoptotic factor Bcl-2 increased serum stimulation; incubation with the chemical caspase inhibitor z-Val-Ala-dl-Asp fluoromethylketone antagonized Tax-induced cell death. The CBP/p300-binding defective Tax mutants K88A and V89A exhibited markedly reduced cytotoxic effects compared to the wild-type Tax protein. Importantly, nuclear expression of the minimal CBP/p300-binding peptide of Tax induced apoptosis in the absence of Tax-dependent transcriptional activities, while its K88A counterpart did not cause cell death. Further, Tax-mediated apoptosis was effectively prevented by ectopic expression of the p300 coactivator. We also report that activation of the NF-κB transcription pathway by Tax, under growth arrest conditions, results in apoptosis that occurs independent of direct Tax coactivator effects. Our results allude to a novel pivotal role for the transcriptional coactivator p300 in determining cell fate and raise the possibility that dysregulated coactivator usage may pose an early barrier to transformation that must be selectively overcome as a prerequisite for the initiation of neoplasia. PMID:11046153

  11. Distinct p300-responsive mechanisms promote caspase-dependent apoptosis by human T-cell lymphotropic virus type 1 Tax protein.

    PubMed

    Nicot, C; Harrod, R

    2000-11-01

    The dysregulation of cellular apoptosis pathways has emerged as a critical early event associated with the development of many types of human cancers. Numerous viral and cellular oncogenes, aside from their inherent transforming properties, are known to induce programmed cell death, consistent with the hypothesis that genetic defects are required to support tumor survival. Here, we report that nuclear expression of the CREB-binding protein (CBP)/p300-binding domain of the human T-cell lymphotropic virus type 1 (HTLV-1) transactivator, Tax, triggers an apoptotic death-inducing signal during short-term clonal analyses, as well as in transient cell death assays. Coexpression of the antiapoptotic factor Bcl-2 increased serum stimulation; incubation with the chemical caspase inhibitor z-Val-Ala-DL-Asp fluoromethylketone antagonized Tax-induced cell death. The CBP/p300-binding defective Tax mutants K88A and V89A exhibited markedly reduced cytotoxic effects compared to the wild-type Tax protein. Importantly, nuclear expression of the minimal CBP/p300-binding peptide of Tax induced apoptosis in the absence of Tax-dependent transcriptional activities, while its K88A counterpart did not cause cell death. Further, Tax-mediated apoptosis was effectively prevented by ectopic expression of the p300 coactivator. We also report that activation of the NF-kappaB transcription pathway by Tax, under growth arrest conditions, results in apoptosis that occurs independent of direct Tax coactivator effects. Our results allude to a novel pivotal role for the transcriptional coactivator p300 in determining cell fate and raise the possibility that dysregulated coactivator usage may pose an early barrier to transformation that must be selectively overcome as a prerequisite for the initiation of neoplasia.

  12. Regulatory effect of Dimethyl Sulfoxide (DMSO) on astrocytic reactivity in a murine model of cerebral infarction by arterial embolization

    PubMed Central

    Rengifo Valbuena, Carlos Augusto; Ávila Rodríguez, Marco Fidel; Céspedes Rubio, Angel

    2013-01-01

    Introduction: The pathophysiology of cerebral ischemia is essential for early diagnosis, neurologic recovery, the early onset of drug treatment and the prognosis of ischemic events. Experimental models of cerebral ischemia can be used to evaluate the cellular response phenomena and possible neurological protection by drugs. Objective: To characterize the cellular changes in the neuronal population and astrocytic response by the effect of Dimethyl Sulfoxide (DMSO) on a model of ischemia caused by cerebral embolism. Methods: Twenty Wistar rats were divided into four groups (n= 5). The infarct was induced with α-bovine thrombin (40 NIH/Unit.). The treated group received 90 mg (100 μL) of DMSO in saline (1:1 v/v) intraperitoneally for 5 days; ischemic controls received only NaCl (placebo) and two non-ischemic groups (simulated) received NaCl and DMSO respectively. We evaluated the neuronal (anti-NeuN) and astrocytic immune-reactivity (anti-GFAP). The results were analyzed by densitometry (NIH Image J-Fiji 1.45 software) and analysis of variance (ANOVA) with the Graph pad software (Prism 5). Results: Cerebral embolism induced reproducible and reliable lesions in the cortex and hippocampus (CA1)., similar to those of focal models. DMSO did not reverse the loss of post-ischemia neuronal immune-reactivity, but prevented the morphological damage of neurons, and significantly reduced astrocytic hyperactivity in the somato-sensory cortex and CA1 (p <0.001). Conclusions: The regulatory effect of DMSO on astrocyte hyperreactivity and neuronal-astroglial cytoarchitecture , gives it potential neuroprotective properties for the treatment of thromboembolic cerebral ischemia in the acute phase. PMID:24892319

  13. High Content Analysis of Hippocampal Neuron-Astrocyte Co-cultures Shows a Positive Effect of Fortasyn Connect on Neuronal Survival and Postsynaptic Maturation.

    PubMed

    van Deijk, Anne-Lieke F; Broersen, Laus M; Verkuyl, J Martin; Smit, August B; Verheijen, Mark H G

    2017-01-01

    Neuronal and synaptic membranes are composed of a phospholipid bilayer. Supplementation with dietary precursors for phospholipid synthesis -docosahexaenoic acid (DHA), uridine and choline- has been shown to increase neurite outgrowth and synaptogenesis both in vivo and in vitro . A role for multi-nutrient intervention with specific precursors and cofactors has recently emerged in early Alzheimer's disease, which is characterized by decreased synapse numbers in the hippocampus. Moreover, the medical food Souvenaid, containing the specific nutrient combination Fortasyn Connect (FC), improves memory performance in early Alzheimer's disease patients, possibly via maintaining brain connectivity. This suggests an effect of FC on synapses, but the underlying cellular mechanism is not fully understood. Therefore, we investigated the effect of FC (consisting of DHA, eicosapentaenoic acid (EPA), uridine, choline, phospholipids, folic acid, vitamins B12, B6, C and E, and selenium), on synaptogenesis by supplementing it to primary neuron-astrocyte co-cultures, a cellular model that mimics metabolic dependencies in the brain. We measured neuronal developmental processes using high content screening in an automated manner, including neuronal survival, neurite morphology, as well as the formation and maturation of synapses. Here, we show that FC supplementation resulted in increased numbers of neurons without affecting astrocyte number. Furthermore, FC increased postsynaptic PSD95 levels in both immature and mature synapses. These findings suggest that supplementation with FC to neuron-astrocyte co-cultures increased both neuronal survival and the maturation of postsynaptic terminals, which might aid the functional interpretation of FC-based intervention strategies in neurological diseases characterized by neuronal loss and impaired synaptic functioning.

  14. High Content Analysis of Hippocampal Neuron-Astrocyte Co-cultures Shows a Positive Effect of Fortasyn Connect on Neuronal Survival and Postsynaptic Maturation

    PubMed Central

    van Deijk, Anne-Lieke F.; Broersen, Laus M.; Verkuyl, J. Martin; Smit, August B.; Verheijen, Mark H. G.

    2017-01-01

    Neuronal and synaptic membranes are composed of a phospholipid bilayer. Supplementation with dietary precursors for phospholipid synthesis –docosahexaenoic acid (DHA), uridine and choline– has been shown to increase neurite outgrowth and synaptogenesis both in vivo and in vitro. A role for multi-nutrient intervention with specific precursors and cofactors has recently emerged in early Alzheimer's disease, which is characterized by decreased synapse numbers in the hippocampus. Moreover, the medical food Souvenaid, containing the specific nutrient combination Fortasyn Connect (FC), improves memory performance in early Alzheimer's disease patients, possibly via maintaining brain connectivity. This suggests an effect of FC on synapses, but the underlying cellular mechanism is not fully understood. Therefore, we investigated the effect of FC (consisting of DHA, eicosapentaenoic acid (EPA), uridine, choline, phospholipids, folic acid, vitamins B12, B6, C and E, and selenium), on synaptogenesis by supplementing it to primary neuron-astrocyte co-cultures, a cellular model that mimics metabolic dependencies in the brain. We measured neuronal developmental processes using high content screening in an automated manner, including neuronal survival, neurite morphology, as well as the formation and maturation of synapses. Here, we show that FC supplementation resulted in increased numbers of neurons without affecting astrocyte number. Furthermore, FC increased postsynaptic PSD95 levels in both immature and mature synapses. These findings suggest that supplementation with FC to neuron-astrocyte co-cultures increased both neuronal survival and the maturation of postsynaptic terminals, which might aid the functional interpretation of FC-based intervention strategies in neurological diseases characterized by neuronal loss and impaired synaptic functioning. PMID:28824363

  15. Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level.

    PubMed

    Cadiou, Hervé; Aoudé, Imad; Tazir, Bassim; Molinas, Adrien; Fenech, Claire; Meunier, Nicolas; Grosmaitre, Xavier

    2014-04-02

    Mammalian olfactory sensory neurons (OSNs) form the primary elements of the olfactory system. Inserted in the olfactory mucosa lining of the nasal cavity, they are exposed to the environment and their lifespan is brief. Several reports say that OSNs are regularly regenerated during the entire life and that odorant environment affects the olfactory epithelium. However, little is known about the impact of the odorant environment on OSNs at the cellular level and more precisely in the context of early postnatal olfactory exposure. Here we exposed MOR23-green fluorescent protein (GFP) and M71-GFP mice to lyral or acetophenone, ligands for MOR23 or M71, respectively. Daily postnatal exposure to lyral induces plasticity in the population of OSNs expressing MOR23. Their density decreases after odorant exposure, whereas the amount of MOR23 mRNA and protein remain stable in the whole epithelium. Meanwhile, quantitative PCR indicates that each MOR23 neuron has higher levels of olfactory receptor transcripts and also expresses more CNGA2 and phosphodiesterase 1C, fundamental olfactory transduction pathway proteins. Transcript levels return to baseline after 4 weeks recovery. Patch-clamp recordings reveal that exposed MOR23 neurons respond to lyral with higher sensitivity and broader dynamic range while the responses' kinetics were faster. These effects are specific to the odorant-receptor pair lyral-MOR23: there was no effect of acetophenone on MOR23 neurons and no effect of acetophenone and lyral on the M71 population. Together, our results clearly demonstrate that OSNs undergo specific anatomical, molecular, and functional adaptation when chronically exposed to odorants in the early stage of life.

  16. Abnormality of G-protein-coupled receptor kinases at prodromal and early stages of Alzheimer's disease: an association with early beta-amyloid accumulation.

    PubMed

    Suo, Zhiming; Wu, Min; Citron, Bruce A; Wong, Gwendolyn T; Festoff, Barry W

    2004-03-31

    Overwhelming evidence indicates that the effects of beta-amyloid (Abeta) are dose dependent both in vitro and in vivo, which implies that Abeta is not directly detrimental to brain cells until it reaches a threshold concentration. In an effort to understand early Alzheimer's disease (AD) pathogenesis, this study focused on the effects of subthreshold soluble Abeta and the underlying molecular mechanisms in murine microglial cells and an AD transgenic mouse model. We found that there were two phases of dose-dependent Abeta effects on microglial cells: at the threshold of 5 microm and above, Abeta directly induced tumor necrosis factor-alpha (TNF-alpha) release, and at subthreshold doses, Abeta indirectly potentiated TNF-alpha release induced by certain G-protein-coupled receptor (GPCR) activators. Mechanistic studies revealed that subthreshold Abeta pretreatment in vitro reduced membrane GPCR kinase-2/5 (GRK2/5), which led to retarded GPCR desensitization, prolonged GPCR signaling, and cellular hyperactivity to GPCR agonists. Temporal analysis in an early-onset AD transgenic model, CRND8 mice, revealed that the membrane (functional) GRK2/5 in brain cortices were significantly reduced. More importantly, such a GRK abnormality took place before cognitive decline and changed in a manner corresponding with the mild to moderate soluble Abeta accumulation in these transgenic mice. Together, this study not only discovered a novel link between subthreshold Abeta and GRK dysfunction, it also demonstrated that the GRK abnormality in vivo occurs at prodromal and early stages of AD.

  17. Intra-articular administration of xenogeneic neonatal Mesenchymal Stromal Cells early after meniscal injury down-regulates metalloproteinase gene expression in synovium and prevents cartilage degradation in a rabbit model of osteoarthritis.

    PubMed

    Saulnier, N; Viguier, E; Perrier-Groult, E; Chenu, C; Pillet, E; Roger, T; Maddens, S; Boulocher, C

    2015-01-01

    The anti-inflammatory and anti-catabolic effects of neonatal Mesenchymal Stromal Cell (MSC) were investigated in a xenogeneic model of mild osteoarthritis (OA). The paracrine properties of MSC on synoviocytes were further investigated in vitro. OA was induced by medial meniscal release (MMR) in 30 rabbit knees. A single early (day 3) or delayed (day 15) intra-articular (IA) injection of MSC isolated from equine Umbilical Cord Wharton's jelly (UC-MSC) was performed. Rabbits were euthanized on days 15 or 56. OA grading was performed and gene expression of inflammatory cytokines and metalloproteinases was measured in synovial tissue. Paracrine effects of UC-MSC were investigated using UC-conditioned vs control medium on rabbit primary synoviocytes stimulated with interleukin 1 beta in vitro. No adverse local or systemic responses were observed clinically after xenogeneic UC-MSC injection. At study end point, cartilage fibrillation was lower in early treatment than in delayed treatment group. Cellular infiltrate was observed in the synovium of both UC-MSC groups. OA synovium exhibited a reduced expression of metalloproteinases-1, -3, -13 in the early cell-treated group at d56. In vitro, UC-conditioned medium exerted anti-inflammatory and anti-catabolic effects on synoviocytes exposed to pro-inflammatory stimulus. Early IA injection of equine UC-MSC was effective in preventing OA signs in rabbit knees following MMR. UC-MSC target the synovium and modulate the gene expression pattern of synoviocytes to promote an anti-catabolic environment. This confirms the synovium is a major target and mediator of MSC therapy, modulating the expression of matrix-degrading enzymes. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  18. Tissue morphodynamics shaping the early mouse embryo.

    PubMed

    Sutherland, Ann E

    2016-07-01

    Generation of the elongated vertebrate body plan from the initially radially symmetrical embryo requires comprehensive changes to tissue form. These shape changes are generated by specific underlying cell behaviors, coordinated in time and space. Major principles and also specifics are emerging, from studies in many model systems, of the cell and physical biology of how region-specific cell behaviors produce regional tissue morphogenesis, and how these, in turn, are integrated at the level of the embryo. New technical approaches have made it possible more recently, to examine the morphogenesis of the mouse embryo in depth, and to elucidate the underlying cellular mechanisms. This review focuses on recent advances in understanding the cellular basis for the early fundamental events that establish the basic form of the embryo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Space Tissue Loss Configuration B (STL-B)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The goal of these experiments was to determine the effect of microgravity on the early development of the fish medaka. There were two objectives for this flight series. The primary objective was to assess the effects of microgravity on different stages of development and to ascertain whether the relevant developmental questions can be addressed at the gross morphological level or if the issues involve more subtle questions about regulation at the molecular and cellular levels. The secondary objective was the assessment of the utility of flight hardware with the capabilities to perform embryological studies. We have been able to take advantage of the flight testing phase of the STL-B hardware to also study the effects of microgravity on the early development of the fish, Medaka. Our initial studies involved monitoring the early Medaka development and raising flight embryos for breeding. Images of the developing embryos were collected either via video which was either taken by the astronauts or broadcast to Earth. Sample video images were digitized and stored on a hard drive resident within the on-board STL-B unit. Embryos were fixed at specific intervals, returned to Earth and are being analyzed for the timing and location of molecular events associated with controlling the morphological pattern for the onset of adult structures.

  20. Development of the Fish Medaka in Microgravity

    NASA Technical Reports Server (NTRS)

    Wolgemuth, Debra J.

    1995-01-01

    The goal of these experiments was to determine the effect of microgravity on the early development of the fish medaka. There were two objectives for this flight series. The primary objective was to assess the effects of microgravity on different stages of development and to ascertain whether the relevant developmental questions can be addressed at the gross morphological level or if the issues involve more subtle questions about regulation at the molecular and cellular levels. The secondary objective was the assessment of the utility of flight hardware with the capabilities to perform embryological studies. We have been able to take advantage of the flight testing phase of the STL-B hardware to also study the effects of microgravity on the early development of the fish, Medaka. Our initial studies involved monitoring the early Medaka development and raising flight embryos for breeding. Images of the developing embryos were collected either via video which was either taken by the astronauts or broadcast to Earth. Sample video images were digitized and stored on a hard drive resident within the on-board STL-B unit. Embryos were fixed at specific intervals, returned to Earth and are being analyzed for the timing and location of molecular events associated with controlling the morphological pattern for the onset of adult structures.

  1. TopBP1 deficiency causes an early embryonic lethality and induces cellular senescence in primary cells.

    PubMed

    Jeon, Yoon; Ko, Eun; Lee, Kyung Yong; Ko, Min Ji; Park, Seo Young; Kang, Jeeheon; Jeon, Chang Hwan; Lee, Ho; Hwang, Deog Su

    2011-02-18

    TopBP1 plays important roles in chromosome replication, DNA damage response, and other cellular regulatory functions in vertebrates. Although the roles of TopBP1 have been studied mostly in cancer cell lines, its physiological function remains unclear in mice and untransformed cells. We generated conditional knock-out mice in which exons 5 and 6 of the TopBP1 gene are flanked by loxP sequences. Although TopBP1-deficient embryos developed to the blastocyst stage, no homozygous mutant embryos were recovered at E8.5 or beyond, and completely resorbed embryos were frequent at E7.5, indicating that mutant embryos tend to die at the peri-implantation stage. This finding indicated that TopBP1 is essential for cell proliferation during early embryogenesis. Ablation of TopBP1 in TopBP1(flox/flox) mouse embryonic fibroblasts and 3T3 cells using Cre recombinase-expressing retrovirus arrests cell cycle progression at the G(1), S, and G(2)/M phases. The TopBP1-ablated mouse cells exhibit phosphorylation of H2AX and Chk2, indicating that the cells contain DNA breaks. The TopBP1-ablated mouse cells enter cellular senescence. Although RNA interference-mediated knockdown of TopBP1 induced cellular senescence in human primary cells, it induced apoptosis in cancer cells. Therefore, TopBP1 deficiency in untransformed mouse and human primary cells induces cellular senescence rather than apoptosis. These results indicate that TopBP1 is essential for cell proliferation and maintenance of chromosomal integrity.

  2. Characterization of Betula platyphylla gene transcripts associated with early development of male inflorescence.

    PubMed

    Xing, Lei; Liu, Xue-Mei

    2012-02-01

    Birch (Betula platyphylla), an eminent tree species in Northeast and Inner Mongolia of China, has been widely used in architecture, furniture, and paper making in recent years. In order to retrieve genes involved in early development of B. platyphylla male inflorescence, RNA populations extracted from early and late developmental stage were analyzed by cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) technique. Following amplification of 256 pairs of primer combinations, ~7000 fragments were generated, of which 350 transcripts expressing more in early stage than late. Of 350 specific transcripts, 198 clear and reproducible electrophoresis bands were retrieved and sequenced successfully, 74 of them (37%) showing significant homologies to known genes after GO annotation. Majority of the predicted gene products were involved in metabolism (24.56%), cellular process (27.19%), response to stimulus (11.4%) and cell growth (8.7%). Transcripts ME56, ME108, ME206 and ME310, representing metabolism, cellular process, response to stimulus and cell growth, respectively, were selected for further study to validate cDNA-AFLP expression patterns via RT-PCR and qRT-PCR analysis. RT-PCR and qRT-PCR expression pattern results were consistent with cDNA-AFLP analysis results.

  3. The Emergence of Predators in Early Life: There was No Garden of Eden

    PubMed Central

    de Nooijer, Silvester; Holland, Barbara R.; Penny, David

    2009-01-01

    Background Eukaryote cells are suggested to arise somewhere between 0.85∼2.7 billion years ago. However, in the present world of unicellular organisms, cells that derive their food and metabolic energy from larger cells engulfing smaller cells (phagocytosis) are almost exclusively eukaryotic. Combining these propositions, that eukaryotes were the first phagocytotic predators and that they arose only 0.85∼2.7 billion years ago, leads to an unexpected prediction of a long period (∼1–3 billion years) with no phagocytotes – a veritable Garden of Eden. Methodology We test whether such a long period is reasonable by simulating a population of very simple unicellular organisms - given only basic physical, biological and ecological principles. Under a wide range of initial conditions, cellular specialization occurs early in evolution; we find a range of cell types from small specialized primary producers to larger opportunistic or specialized predators. Conclusions Both strategies, specialized smaller cells and phagocytotic larger cells are apparently fundamental biological strategies that are expected to arise early in cellular evolution. Such early predators could have been ‘prokaryotes’, but if the earliest cells on the eukaryote lineage were predators then this explains most of their characteristic features. PMID:19492046

  4. [Soy isoflavones and human health: breast cancer and puberty timing].

    PubMed

    Valladares, Luis; Garrido, Argelia; Sierralta, Walter

    2012-04-01

    Accumulated exposure to high levels of estrogen is associated with an increased incidence of breast cancer. Thus, factors such as early puberty, late menopause and hormone replacement therapy are considered to be risk factors, whereas early childbirth, breastfeeding and puberty at a later age are known to consistently decrease the lifetime breast cancer risk. Epidemiological studies suggest that consumption of isoflavones correlates with a lower incidence of breast cancer. Data from human intervention studies show that the effects of isoflavones on early breast cancer markers differ between pre- and post-menopausal women. The reports from experimental animals (rats and mice) on mammary tumors are variable. These results taken together with heterogeneous outcomes of human interventions, have led to a controversy surrounding the intake of isoflavones to reduce breast cancer risk. This review summarizes recent studies and analyzes factors that could explain the variability of results. In mammary tissue, from the cellular endocrine viewpoint, we analyze the effect of isoflavones on the estrogen receptor and their capacity to act as agonists or antagonists. On the issue of puberty timing, we analyze the mechanisms by which girls, but not boys, with higher prepuberal isoflavone intakes appear to enter puberty at a later age.

  5. Navigating novel mechanisms of cellular plasticity with the NAD+ precursor and nutrient nicotinamide.

    PubMed

    Li, Faqi; Chong, Zhao Zhong; Maiese, Kenneth

    2004-09-01

    Interest in neuroprotectants for the central nervous system continues to garner significant attention. Nicotinamide, the amide form of niacin (vitamin B3), is the precursor for the coenzyme beta-nicotinamide adenine dinucleotide (NAD+) and is considered to be necessary for cellular function and metabolism. However, recent work has focused on the development of nicotinamide as a novel agent that is critical for modulating cellular plasticity, longevity, and inflammatory microglial function. The ability of nicotinamide to preserve both neuronal and vascular cell populations in the brain during injury is intriguing, but further knowledge of the specific cellular mechanisms that determine protection by this agent is required. The capacity of nicotinamide to govern not only intrinsic cellular integrity, but also extrinsic cellular inflammation rests with the modulation of a host of cellular targets that involve protein kinase B, glycogen synthase kinase-3 beta (GSK-3 beta), Forkhead transcription factors, mitochondrial dysfunction, poly(ADP-ribose) polymerase, cysteine proteases, and microglial activation. Intimately tied to the cytoprotection of nicotinamide is the modulation of an early and late phase of apoptotic injury that is triggered by the loss of membrane asymmetry. Identifying robust cytoprotective agents as nicotinamide in conjunction with the elucidation of the cellular mechanisms responsible for cell survival will continue to solidify the development of therapeutic strategies against neurodegenerative diseases

  6. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo

    DOE PAGES

    Ju, Young Seok; Martincorena, Inigo; Gerstung, Moritz; ...

    2017-03-22

    Somatic cells acquire mutations throughout the course of an individual’s life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and theirmore » contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. As a result, this study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.« less

  7. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Young Seok; Martincorena, Inigo; Gerstung, Moritz

    Somatic cells acquire mutations throughout the course of an individual’s life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and theirmore » contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. As a result, this study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.« less

  8. Morphogenesis and gravity in a whole amphibian embryo and in isolated blastomeres of sea urchins.

    PubMed

    Izumi-Kurotani, Akemi; Kiyomoto, Masato

    2003-01-01

    Fertilization and subsequent embryogenesis of newts occurred normally under microgravity in two Astronewt flight experiments. By accumulation of the results from the amphibian flight experiments including 'Astronewt', it is considered that gravity has rather small effects on the early development of amphibian eggs. However, some temporary abnormalities, which recover in the course of the further developmental process, have been observed. Some regulations may occur in whole embryos. For a thorough knowledge about the role of gravity in morphogenesis, we need to investigate the gravitational effects on a single cell in a whole embryo. We propose a new experimental system with sea urchin embryos and micromeres for further studies at a cellular level of the effects of gravity on morphogenesis.

  9. Detection of early effects of a single herbicide (diuron) and a mix of herbicides and pharmaceuticals (diuron, isoproturon, ibuprofen) on immunological parameters of Pacific oyster (Crassostrea gigas) spat.

    PubMed

    Luna-Acosta, A; Renault, T; Thomas-Guyon, H; Faury, N; Saulnier, D; Budzinski, H; Le Menach, K; Pardon, P; Fruitier-Arnaudin, I; Bustamante, P

    2012-06-01

    In the context of massive summer mortality events of the Pacific oyster Crassostrea gigas, the aim of this study was to investigate the early effects on genes, enzymes and haemocyte parameters implicated in immune defence mechanisms in C. gigas oysters exposed to a potentially hostile environment, i.e. to an herbicide alone or within a mixture. Following 2 h of exposure to the herbicide diuron at 1 μg L(-1), the repression of different genes implicated in immune defence mechanisms in the haemocytes and the inhibition of enzyme activities, such as laccase-type phenoloxidase (PO) in the plasma, were observed. The inhibition of superoxide dismutase (SOD) activity in the plasma was also observed after 6 and 24 h of exposure. In the mixture with the herbicides diuron and isoproturon, and the pharmaceutical ibuprofen, catecholase-type PO activity in the plasma and the percentage of phagocytosis in the haemocytes were reduced after 6 h of exposure. Our results showed that early effects on molecular, biochemical and cellular parameters can be detected in the presence of diuron alone or within a mixture, giving an insight of its potential effect in situations that can be found in natural environments, i.e. relatively high concentrations for short periods of time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. δ- and γ-tocopherols inhibit phIP/DSS-induced colon carcinogenesis by protection against early cellular and DNA damages.

    PubMed

    Chen, Jayson X; Liu, Anna; Lee, Mao-Jung; Wang, Hong; Yu, Siyuan; Chi, Eric; Reuhl, Kenneth; Suh, Nanjoo; Yang, Chung S

    2017-01-01

    Tocopherols, the major forms of vitamin E, are a family of fat-soluble compounds that exist in alpha (α-T), beta (β-T), gamma (γ-T), and delta (δ-T) variants. A cancer preventive effect of vitamin E is suggested by epidemiological studies. However, past animal studies and human intervention trials with α-T, the most active vitamin E form, have yielded disappointing results. A possible explanation is that the cancer preventive activity of α-T is weak compared to other tocopherol forms. In the present study, we investigated the effects of δ-T, γ-T, and α-T (0.2% in diet) in a novel colon cancer model induced by the meat-derived dietary carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and promoted by dextran sodium sulfate (DSS)-induced colitis in CYP1A-humanized (hCYP1A) mice. PhIP/DSS treatments induced multiple polypoid tumors, mainly tubular adenocarcinomas, in the middle to distal colon of the hCYP1A mice after 10 wk. Dietary supplementation with δ-T and γ-T significantly reduced colon tumor formation and suppressed markers of oxidative and nitrosative stress (i.e., 8-oxo-dG and nitrotyrosine) as well as pro-inflammatory mediators (i.e., NF-κB p65 and p-STAT3) in tumors and adjacent tissues. By administering δ-T at different time periods, we obtained results suggesting that the inhibitory effect of δ-T against colon carcinogenesis is mainly due to protection against early cellular and DNA damages caused by PhIP. α-T was found to be ineffective in inhibiting colon tumors and less effective in attenuating the molecular changes. Altogether, we demonstrated strong cancer preventive effects of δ-T and γ-T in a physiologically relevant model of human colon cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. δ- and γ-Tocopherols Inhibit PhIP/DSS-induced Colon Carcinogenesis by Protection against Early Cellular and DNA Damages

    PubMed Central

    Chen, Jayson X.; Liu, Anna; Lee, Mao-Jung; Wang, Hong; Yu, Siyuan; Chi, Eric; Reuhl, Kenneth; Suh, Nanjoo; Yang, Chung S.

    2017-01-01

    Tocopherols, the major forms of vitamin E, are a family of fat-soluble compounds that exist in alpha (α-T), beta (β-T), gamma (γ-T) and delta (δ-T) variants. A cancer preventive effect of vitamin E is suggested by epidemiological studies. However, past animal studies and human intervention trials with α-T, the most active vitamin E form, have yielded disappointing results. A possible explanation is that the cancer preventive activity of α-T is weak compared to other tocopherol forms. In the present study, we investigated the effects of δ-T, γ-T and α-T (0.2% in diet) in a novel colon cancer model induced by the meat-derived dietary carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and promoted by dextran sodium sulfate (DSS)-induced colitis in CYP1A-humanized (hCYP1A) mice. PhIP/DSS treatments induced multiple polypoid tumors, mainly tubular adenocarcinomas, in the middle to distal colon of the hCYP1A mice after 10 weeks. Dietary supplementation with δ-T and γ-T significantly reduced colon tumor formation and suppressed markers of oxidative and nitrosative stress (i.e., 8-oxo-dG and nitrotyrosine) as well as pro-inflammatory mediators (i.e., NF-κB p65 and p-STAT3) in tumors and adjacent tissues. By administering δ-T at different time periods, we obtained results suggesting that the inhibitory effect of δ-T against colon carcinogenesis is mainly due to protection against early cellular and DNA damages caused by PhIP. α-T was found to be ineffective in inhibiting colon tumors and less effective in attenuating the molecular changes. Altogether, we demonstrated strong cancer preventive effects of δ-T and γ-T in a physiologically relevant model of human colon cancer. PMID:27175800

  12. Indications for distinct pathogenic mechanisms of asbestos and silica through gene expression profiling of the response of lung epithelial cells

    PubMed Central

    Perkins, Timothy N.; Peeters, Paul M.; Shukla, Arti; Arijs, Ingrid; Dragon, Julie; Wouters, Emiel F.M.; Reynaert, Niki L.; Mossman, Brooke T.

    2015-01-01

    Occupational and environmental exposures to airborne asbestos and silica are associated with the development of lung fibrosis in the forms of asbestosis and silicosis, respectively. However, both diseases display distinct pathologic presentations, likely associated with differences in gene expression induced by different mineral structures, composition and bio-persistent properties. We hypothesized that effects of mineral exposure in the airway epithelium may dictate deviating molecular events that may explain the different pathologies of asbestosis versus silicosis. Using robust gene expression-profiling in conjunction with in-depth pathway analysis, we assessed early (24 h) alterations in gene expression associated with crocidolite asbestos or cristobalite silica exposures in primary human bronchial epithelial cells (NHBEs). Observations were confirmed in an immortalized line (BEAS-2B) by QRT-PCR and protein assays. Utilization of overall gene expression, unsupervised hierarchical cluster analysis and integrated pathway analysis revealed gene alterations that were common to both minerals or unique to either mineral. Our findings reveal that both minerals had potent effects on genes governing cell adhesion/migration, inflammation, and cellular stress, key features of fibrosis. Asbestos exposure was most specifically associated with aberrant cell proliferation and carcinogenesis, whereas silica exposure was highly associated with additional inflammatory responses, as well as pattern recognition, and fibrogenesis. These findings illustrate the use of gene-profiling as a means to determine early molecular events that may dictate pathological processes induced by exogenous cellular insults. In addition, it is a useful approach for predicting the pathogenicity of potentially harmful materials. PMID:25351596

  13. Effects of seawater acidification on the early development of sea urchin Glyptocidaris crenularis

    NASA Astrophysics Data System (ADS)

    Zhan, Yaoyao; Hu, Wanbin; Duan, Lizhu; Liu, Minbo; Zhang, Weijie; Chang, Yaqing; Li, Cong

    2017-10-01

    In this study, we evaluated the effects of CO2-induced seawater acidification on fertilization, embryogenesis and early larval development in the sea urchin Glyptocidaris crenularis, that inhabits subtidal coastal areas in northern China. The range in seawater pH used in experiments was based on the projections of the Intergovernmental Panel on Climate Change (IPCC), to the year 2100. A natural seawater treatment (pHnbs=7.98±0.03) and three laboratory-controlled acidified treatments (OA1, ΔpHnbs=-0.3 units; OA2, ΔpHnbs=-0.4 units; OA3, ΔpHnbs=-0.5 units) were used in experiments. Results show that: (1) there was a negative effect of seawater acidification on fertilization and on the percentage of abnormal fertilized eggs; (2) the size of early cleavage stage embryos decreased in a dose-dependent manner with decreasing pH; (3) both the hatching rate of blastulae and the survival rate of four-armed pluteus larvae decreased as pH declined; (4) larval abnormalities including asymmetrical development, changes in the length of skeletal elements, and corroded spicules were observed in all seawater acidified-treatments compared with the control. These data indicate that seawater acidification has a negative impact on the early development of G. crenularis, and supports the hypothesis that the response of echinoderms to ocean acidification (OA) varies among species. Further research is required to clarify the specific cellular mechanisms involved.

  14. Omics-Based Identification of Biomarkers for Nasopharyngeal Carcinoma

    PubMed Central

    2015-01-01

    Nasopharyngeal carcinoma (NPC) is a head and neck cancer that is highly found in distinct geographic areas, such as Southeast Asia. The management of NPC remains burdensome as the prognosis is poor due to the late presentation of the disease and the complex nature of NPC pathogenesis. Therefore, it is necessary to find effective molecular markers for early detection and therapeutic measure of NPC. In this paper, the discovery of molecular biomarker for NPC through the emerging omics technologies including genomics, miRNA-omics, transcriptomics, proteomics, and metabolomics will be extensively reviewed. These markers have been shown to play roles in various cellular pathways in NPC progression. The knowledge on their function will help us understand in more detail the complexity in tumor biology, leading to the better strategies for early detection, outcome prediction, detection of disease recurrence, and therapeutic approach. PMID:25999660

  15. Early life adversity and telomere length: a meta-analysis.

    PubMed

    Ridout, K K; Levandowski, M; Ridout, S J; Gantz, L; Goonan, K; Palermo, D; Price, L H; Tyrka, A R

    2018-04-01

    Early adversity, in the form of abuse, neglect, socioeconomic status and other adverse experiences, is associated with poor physical and mental health outcomes. To understand the biologic mechanisms underlying these associations, studies have evaluated the relationship between early adversity and telomere length, a marker of cellular senescence. Such results have varied in regard to the size and significance of this relationship. Using meta-analytic techniques, we aimed to clarify the relationship between early adversity and telomere length while exploring factors affecting the association, including adversity type, timing and study design. A comprehensive search in July 2016 of PubMed/MEDLINE, PsycINFO and Web of Science identified 2462 studies. Multiple reviewers appraised studies for inclusion or exclusion using a priori criteria; 3.9% met inclusion criteria. Data were extracted into a structured form; the Newcastle-Ottawa Scale assessed study quality, validity and bias. Forty-one studies (N=30 773) met inclusion criteria. Early adversity and telomere length were significantly associated (Cohen's d effect size=-0.35; 95% CI, -0.46 to -0.24; P<0.0001). Sensitivity analyses revealed no outlier effects. Adversity type and timing significantly impacted the association with telomere length (P<0.0001 and P=0.0025, respectively). Subgroup and meta-regression analyses revealed that medication use, medical or psychiatric conditions, case-control vs longitudinal study design, methodological factors, age and smoking significantly affected the relationship. Comprehensive evaluations of adversity demonstrated more extensive telomere length changes. These results suggest that early adversity may have long-lasting physiological consequences contributing to disease risk and biological aging.

  16. Multi-parameter phenotypic profiling: using cellular effects to characterize small-molecule compounds.

    PubMed

    Feng, Yan; Mitchison, Timothy J; Bender, Andreas; Young, Daniel W; Tallarico, John A

    2009-07-01

    Multi-parameter phenotypic profiling of small molecules provides important insights into their mechanisms of action, as well as a systems level understanding of biological pathways and their responses to small molecule treatments. It therefore deserves more attention at an early step in the drug discovery pipeline. Here, we summarize the technologies that are currently in use for phenotypic profiling--including mRNA-, protein- and imaging-based multi-parameter profiling--in the drug discovery context. We think that an earlier integration of phenotypic profiling technologies, combined with effective experimental and in silico target identification approaches, can improve success rates of lead selection and optimization in the drug discovery process.

  17. Interaction between Herpes Simplex Virus Type 1 IE63 Protein and Cellular Protein p32

    PubMed Central

    Bryant, Helen E.; Matthews, David A.; Wadd, Sarah; Scott, James E.; Kean, Joy; Graham, Susan; Russell, William C.; Clements, J. Barklie

    2000-01-01

    The herpes simplex virus type 1 (HSV-1) immediate-early gene IE63 (ICP27), the only HSV-1 regulatory gene with a homologue in every mammalian and avian herpesvirus sequenced so far, is a multifunctional protein which regulates transcriptional and posttranscriptional processes. One of its posttranscriptional effects is the inhibition of splicing of viral and cellular transcripts. We previously identified heterogeneous nuclear ribonucleoprotein (hnRNP) K and casein kinase 2 (CK2) as two protein partners of IE63 (H. Bryant et al., J. Biol. Chem. 274:28991–28998, 1999). Here, using a yeast two-hybrid assay, we identify another partner of IE63, the cellular protein p32. Confirmation of this interaction was provided by coimmunoprecipitation from virus-infected cells and recombinant p32 binding assays. A p32-hnRNP K-CK2 complex, which required IE63 to form, was isolated from HSV-1-infected cells, and coimmunoprecipitating p32 was phosphorylated by CK2. Expression of IE63 altered the cytoplasmic distribution of p32, with some now colocalizing with IE63 in the nuclei of infected and transfected cells. As p32 copurifies with splicing factors and can inhibit splicing, we propose that IE63 together with p32, possibly with other IE63 partner proteins, acts to disrupt or regulate pre-mRNA splicing. As well as contributing to host cell shutoff, this effect could facilitate splicing-independent nuclear export of viral transcripts. PMID:11070032

  18. Interaction between herpes simplex virus type 1 IE63 protein and cellular protein p32.

    PubMed

    Bryant, H E; Matthews, D A; Wadd, S; Scott, J E; Kean, J; Graham, S; Russell, W C; Clements, J B

    2000-12-01

    The herpes simplex virus type 1 (HSV-1) immediate-early gene IE63 (ICP27), the only HSV-1 regulatory gene with a homologue in every mammalian and avian herpesvirus sequenced so far, is a multifunctional protein which regulates transcriptional and posttranscriptional processes. One of its posttranscriptional effects is the inhibition of splicing of viral and cellular transcripts. We previously identified heterogeneous nuclear ribonucleoprotein (hnRNP) K and casein kinase 2 (CK2) as two protein partners of IE63 (H. Bryant et al., J. Biol. Chem. 274:28991-28998, 1999). Here, using a yeast two-hybrid assay, we identify another partner of IE63, the cellular protein p32. Confirmation of this interaction was provided by coimmunoprecipitation from virus-infected cells and recombinant p32 binding assays. A p32-hnRNP K-CK2 complex, which required IE63 to form, was isolated from HSV-1-infected cells, and coimmunoprecipitating p32 was phosphorylated by CK2. Expression of IE63 altered the cytoplasmic distribution of p32, with some now colocalizing with IE63 in the nuclei of infected and transfected cells. As p32 copurifies with splicing factors and can inhibit splicing, we propose that IE63 together with p32, possibly with other IE63 partner proteins, acts to disrupt or regulate pre-mRNA splicing. As well as contributing to host cell shutoff, this effect could facilitate splicing-independent nuclear export of viral transcripts.

  19. Enhanced Medial Collateral Ligament Healing using Mesenchymal Stem Cells: Dosage Effects on Cellular Response and Cytokine Profile

    PubMed Central

    Saether, Erin E.; Chamberlain, Connie S.; Leiferman, Ellen M.; Kondratko-Mittnacht, Jaclyn R.; Li, Wan Ju; Brickson, Stacey L.; Vanderby, Ray

    2013-01-01

    Mesenchymal stem cells (MSCs) have potential therapeutic applications for musculoskeletal injuries due to their ability to differentiate into several tissue cell types and modulate immune and inflammatory responses. These immune-modulatory properties were examined in vivo during early stage rat medial collateral ligament healing. Two different cell doses (low dose 1×106 or high dose 4×106 MSCs) were administered at the time of injury and compared with normal ligament healing at days 5 and 14 post-injury. At both times, the high dose MSC group demonstrated a significant decrease in M2 macrophages compared to controls. At day 14, fewer M1 macrophages were detected in the low dose group compared to the high dose group. These results, along with significant changes in procollagen I, proliferating cells, and endothelialization suggest that MSCs can alter the cellular response during healing in a dose-dependent manner. The higher dose ligaments also had increased expression of several pro-inflammatory cytokines at day 5 (IL-1β, IFNγ, IL-2) and increased expression of IL-12 at day 14. Mechanical testing at day 14 revealed increased failure strength and stiffness in low dose ligaments compared to controls. Based on these improved mechanical properties, MSCs enhanced functional healing when applied at a lower dose. Different doses of MSCs uniquely affected the cellular response and cytokine expression in healing ligaments. Interestingly, the lower dose of cells proved to be most effective in improving functional properties. PMID:24174129

  20. Optical scatter imaging of cellular and mitochondrial swelling in brain tissue models of stroke

    NASA Astrophysics Data System (ADS)

    Johnson, Lee James

    2001-08-01

    The severity of brain edema resulting from a stroke can determine a patient's survival and the extent of their recovery. Cellular swelling is the microscopic source of a significant part of brain edema. Mitochondrial swelling also appears to be a determining event in the death or survival of the cells that are injured during a stroke. Therapies for reducing brain edema are not effective in many cases and current treatments of stroke do not address mitochondrial swelling at all. This dissertation is motivated by the lack of a complete understanding of cellular swelling resulting from stroke and the lack of a good method to begin to study mitochondrial swelling resulting from stroke in living brain tissue. In this dissertation, a novel method of detecting mitochondrial and cellular swelling in living hippocampal slices is developed and validated. The system is used to obtain spatial and temporal information about cellular and mitochondrial swelling resulting from various models of stroke. The effect of changes in water content on light scatter and absorption are examined in two models of brain edema. The results of this study demonstrate that optical techniques can be used to detect changes in water content. Mie scatter theory, the theoretical basis of the dual- angle scatter ratio imaging system, is presented. Computer simulations based on Mie scatter theory are used to determine the optimal angles for imaging. A detailed account of the early systems is presented to explain the motivations for the system design, especially polarization, wavelength and light path. Mitochondrial sized latex particles are used to determine the system response to changes in scattering particle size and concentration. The dual-angle scatter ratio imaging system is used to distinguish between osmotic and excitotoxic models of stroke injury. Such distinction cannot be achieved using the current techniques to study cellular swelling in hippocampal slices. The change in the scatter ratio is then shown to correlate to mitochondrial swelling, as observed with electron microscopy. The system is finally used to study mitochondrial and cellular swelling. Evidence of the susceptibility of certain hippocampal regions, CA1 and the dentate gyrus, to exhibit mitochondrial swelling as the result of oxygen and glucose deprivation is presented. In addition, for the first time, the time course of mitochondrial swelling is seen. Finally, experiments with scatter imaging and measurement of nitric oxide with carbon fiber electrodes demonstrate a clear link between nitric oxide and cellular swelling. A potential mechanism of the action of nitric oxide is evaluated. Nitric oxide appears to act to cause cellular swelling without the release of glutamate. The use of targeted nitric oxide inhibitors may be useful for the reduction of edema.

  1. AJAP1 is Dysregulated at an Early Stage of Gliomagenesis and Suppresses Invasion Through Cytoskeleton Reorganization

    PubMed Central

    Han, Lei; Zhang, Kai-Liang; Zhang, Jun-Xia; Zeng, Liang; Di, Chun-Hui; Fee, Brian E.; Rivas, Miriam; Bao, Zhao-Shi; Jiang, Tao; Bigner, Darrell; Kang, Chun-Sheng; Adamson, David Cory

    2015-01-01

    SUMMARY Aims Down-regulation of AJAP1 in glioblastoma multiforme (GBM) has been reported. However, the expression profiles of AJAP1 in gliomas and the underlying mechanisms of AJAP1 function on invasion are still poorly understood. Methods The gene profiles of AJAP1 in glioma patients were studied among four independent cohorts. Confocal imaging was used to analyze the AJAP1 localization. After AJAP1 overexpression in GBM cell lines, cellular polarity, cytoskeleton distribution, and antitumor effect were investigated in vitro and in vivo. Results AJAP1 expression was significantly decreased in gliomas compared with normal brain in REMBRANDT and CGCA cohorts. Additionally, low AJAP1 expression was associated with worse survival in GBMs in REMBRANDT and TCGA U133A cohorts and was significantly associated with classical and mesenchymal subtypes of GBMs among four cohorts. Confocal imaging indicated AJAP1 localized in cell membranes in low-grade gliomas and AJAP1-overexpressing GBM cells, but difficult to assess in high-grade gliomas due to its absence. AJAP1 overexpression altered the cytoskeleton and cellular polarity in vitro and inhibited the tumor growth in vivo. Conclusions AJAP1 is dysregulated at an early stage of gliomagenesis and may suppress glioma cell invasion and proliferation, which suggests that AJAP1 may be a potential diagnostic and prognostic marker for gliomas. PMID:24483339

  2. Interleukin-6 inhibits early differentiation of ATDC5 chondrogenic progenitor cells.

    PubMed

    Nakajima, Shoko; Naruto, Takuya; Miyamae, Takako; Imagawa, Tomoyuki; Mori, Masaaki; Nishimaki, Shigeru; Yokota, Shumpei

    2009-08-01

    Interleukin (IL)-6 is a causative agent of systemic juvenile idiopathic arthritis (sJIA), a chronic inflammatory disease complicated with severe growth impairment. Recent trials of anti-IL-6 receptor monoclonal antibody, tocilizumab, indicated that tocilizumab blocks IL-6/IL-6 receptor-mediated inflammation, and induces catch-up growth in children with sJIA. This study evaluates the effects of IL-6 on chondrogenesis by ATDC5 cells, a clonal murine chondrogenic cell line that provides an excellent model for studying endochondral ossification at growth plate. ATDC5 cells were examined for the expression of IL-6 receptor and gp130 by fluorescence-activated cell sorting analysis. Recombinant murine IL-6 was added to ATDC5 cultures to observe cell differentiation, using a quantitative RT-PCR for the chondrogenic differentiation markers type II collagen, aggrecan, and type X collagen. To block IL-6, the anti-mouse IL-6 receptor monoclonal antibody MR16-1 was added. As a result, the cells expressed IL-6 receptor and gp130. The expression of chondrogenic differentiation marker gene was reduced by IL-6, but this was abrogated by MR16-1. We conclude that IL-6 inhibits early chondrogenesis of ATDC5 cells suggesting that IL-6 may affect committed stem cells at a cellular level during chondrogenic differentiation of growth plate chondrocytes, and that IL-6 may be a cellular-level factor in growth impairment in sJIA.

  3. Proteomic analysis of 3-MCPD and 3-MCPD dipalmitate toxicity in rat testis.

    PubMed

    Sawada, Stefanie; Oberemm, Axel; Buhrke, Thorsten; Meckert, Christine; Rozycki, Christel; Braeuning, Albert; Lampen, Alfonso

    2015-09-01

    Thermal treatment of foodstuff containing fats and salt promotes the formation of 3-chloropropane-1,2-diol (3-MCPD) and its fatty acid esters. 3-MCPD-exposed rats develop testicular lesions and Leydig cell tumors. 3-MCPD and 3-MCPD ester toxicity is thought to be caused by 3-MCPD and its metabolites, since 3-MCPD esters are hydrolyzed in the gut. Inhibition of glycolysis is one of the few known molecular mechanisms of 3-MCPD toxicity. To obtain deeper insight into this process, a comparative proteomic approach was chosen, based on a 28-days repeated-dose feeding study with male Wistar rats. Animals received equimolar doses of 3-MCPD or 3-MCPD dipalmitate. A lower dose of 3-MCPD dipalmitate was also administered. Absence of histopathological changes supported an analysis of early cellular disturbance. Testes were analyzed by two-dimensional gel electrophoresis followed by mass-spectrometric protein identification. Data provide a comprehensive overview of proteomic changes induced by 3-MCPD and 3-MCPD dipalmitate in rat testis in an early phase of organ impairment. Results are compatible with known 3-MCPD effects on reproductive function, substantially extend our knowledge about cellular responses to 3-MCPD and support the hypothesis that toxicity of 3-MCPD and 3-MCPD esters is mediated via common effectors. DJ-1 was identified as a candidate marker for 3-MCPD exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Modulation of proteostasis counteracts oxidative stress and affects DNA base excision repair capacity in ATM-deficient cells.

    PubMed

    Poletto, Mattia; Yang, Di; Fletcher, Sally C; Vendrell, Iolanda; Fischer, Roman; Legrand, Arnaud J; Dianov, Grigory L

    2017-09-29

    Ataxia telangiectasia (A-T) is a syndrome associated with loss of ATM protein function. Neurodegeneration and cancer predisposition, both hallmarks of A-T, are likely to emerge as a consequence of the persistent oxidative stress and DNA damage observed in this disease. Surprisingly however, despite these severe features, a lack of functional ATM is still compatible with early life, suggesting that adaptation mechanisms contributing to cell survival must be in place. Here we address this gap in our knowledge by analysing the process of human fibroblast adaptation to the lack of ATM. We identify profound rearrangement in cellular proteostasis occurring very early on after loss of ATM in order to counter protein damage originating from oxidative stress. Change in proteostasis, however, is not without repercussions. Modulating protein turnover in ATM-depleted cells also has an adverse effect on the DNA base excision repair pathway, the major DNA repair system that deals with oxidative DNA damage. As a consequence, the burden of unrepaired endogenous DNA lesions intensifies, progressively leading to genomic instability. Our study provides a glimpse at the cellular consequences of loss of ATM and highlights a previously overlooked role for proteostasis in maintaining cell survival in the absence of ATM function. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Pre-cancer risk assessment in habitual smokers from DIC images of oral exfoliative cells using active contour and SVM analysis.

    PubMed

    Dey, Susmita; Sarkar, Ripon; Chatterjee, Kabita; Datta, Pallab; Barui, Ananya; Maity, Santi P

    2017-04-01

    Habitual smokers are known to be at higher risk for developing oral cancer, which is increasing at an alarming rate globally. Conventionally, oral cancer is associated with high mortality rates, although recent reports show the improved survival outcomes by early diagnosis of disease. An effective prediction system which will enable to identify the probability of cancer development amongst the habitual smokers, is thus expected to benefit sizable number of populations. Present work describes a non-invasive, integrated method for early detection of cellular abnormalities based on analysis of different cyto-morphological features of exfoliative oral epithelial cells. Differential interference contrast (DIC) microscopy provides a potential optical tool as this mode provides a pseudo three dimensional (3-D) image with detailed morphological and textural features obtained from noninvasive, label free epithelial cells. For segmentation of DIC images, gradient vector flow snake model active contour process has been adopted. To evaluate cellular abnormalities amongst habitual smokers, the selected morphological and textural features of epithelial cells are compared with the non-smoker (-ve control group) group and clinically diagnosed pre-cancer patients (+ve control group) using support vector machine (SVM) classifier. Accuracy of the developed SVM based classification has been found to be 86% with 80% sensitivity and 89% specificity in classifying the features from the volunteers having smoking habit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Depletion of HPV16 early genes induces autophagy and senescence in a cervical carcinogenesis model, regardless of viral physical state.

    PubMed

    Hanning, Jennifer E; Saini, Harpreet K; Murray, Matthew J; Caffarel, Maria M; van Dongen, Stijn; Ward, Dawn; Barker, Emily M; Scarpini, Cinzia G; Groves, Ian J; Stanley, Margaret A; Enright, Anton J; Pett, Mark R; Coleman, Nicholas

    2013-11-01

    In cervical carcinomas, high-risk human papillomavirus (HR-HPV) may be integrated into host chromosomes or remain extra-chromosomal (episomal). We used the W12 cervical keratinocyte model to investigate the effects of HPV16 early gene depletion on in vitro cervical carcinogenesis pathways, particularly effects shared by cells with episomal versus integrated HPV16 DNA. Importantly, we were able to study the specific cellular consequences of viral gene depletion by using short interfering RNAs known not to cause phenotypic or transcriptional off-target effects in keratinocytes. We found that while cervical neoplastic progression in vitro was characterized by dynamic changes in HPV16 transcript levels, viral early gene expression was required for cell survival at all stages of carcinogenesis, regardless of viral physical state, levels of early gene expression or histology in organotypic tissue culture. Moreover, HPV16 early gene depletion induced changes in host gene expression that were common to both episome-containing and integrant-containing cells. In particular, we observed up-regulation of autophagy genes, associated with enrichment of senescence and innate immune-response pathways, including the senescence-associated secretory phenotype (SASP). In keeping with these observations, HPV16 early gene depletion induced autophagy in both episome-containing and integrant-containing W12 cells, as evidenced by the appearance of autophagosomes, punctate expression of the autophagy marker LC3, conversion of LC3B-I to LC3B-II, and reduced levels of the autophagy substrate p62. Consistent with the reported association between autophagy and senescence pathways, HPV16 early gene depletion induced expression of the senescence marker beta-galactosidase and increased secretion of the SASP-related protein IGFBP3. Together, these data indicate that depleting HR-HPV early genes would be of potential therapeutic benefit in all cervical carcinogenesis pathways, regardless of viral physical state. In addition, the senescence/SASP response associated with autophagy induction may promote beneficial immune effects in bystander cells. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  7. Preparing the “Soil”: The Premetastatic Niche

    PubMed Central

    Kaplan, Rosandra N.; Rafii, Shahin; Lyden, David

    2010-01-01

    Current focus on cancer metastasis has centered on the intrinsic factors regulating the cell autonomous homing of the tumor cells to the metastatic site. Specific up-regulation of fibronectin and clustering of bone marrow–derived cellular infiltrates coexpressing matrix metalloproteinases in distant tissue sites before tumor cell arrival are proving to be indispensable for the initial stages of metastasis. These bone marrow–derived hematopoietic progenitors that express vascular endothelial growth factor receptor 1 mobilize in response to the unique array of growth factors produced by the primary tumor. Their arrival in distant sites represents early changes in the local microenvironment, termed the “premetastatic niche,” which dictate the pattern of metastatic spread. Focus on the early cellular and molecular events in cancer dissemination and selectivity will likely lead to new approaches to detect and prevent metastasis at its earliest inception. PMID:17145848

  8. Did the Ancient Crenarchaeal Viruses from the Dawn of Life Survive Exceptionally Well the Eons of Meteorite Bombardment?

    NASA Astrophysics Data System (ADS)

    Jalasvuori, Matti; Bamford, Jaana K. H.

    2009-02-01

    The viruses of Crenarchaeota are unexpectedly diverse in their morphologies, and most have no, or few, genes related to bacterial, eukaryal, euryarchaeal, or other crenarchaeal viruses. Though several different virus morphotypes have been discovered in enrichment cultures of microbial communities collected from geothermally heated environments around the world, the origins of such differences are unknown. We present a model that combines consideration of Earth's geological history, the early emergence of hyperthermophiles, and the early formation of viruses from primordial genes with the intent to explain this vast diversity of crenarchaeal viruses. Several meteorite- or flood basalt-induced extinction events in the past resulted in a reduction in the numbers of cellular organisms. Acidophilic hyperthermophiles survived the global thermal rises and, therefore, still host a wide variety of ancient virus morphotypes. In contrast, other, more "recent" cellular lineages have lost the majority of their original viruses, as they have been separated geologically and genetically, and have gone through several near-extinction-level episodes of decimation. This view suggests that, among crenarchaeal viruses, the direct descendants of very early genetic elements are well preserved; thus, their examination would improve our understanding as to how life actually evolved from its origins to the complex cellular systems we see today. We also present a hypothesis that describes the role of viral armadas and extinctions during evolution, as extinctions may have episodically eliminated most of the abusive parasites.

  9. Alzheimer's as a Systems-Level Disease Involving the Interplay of Multiple Cellular Networks.

    PubMed

    Castrillo, Juan I; Oliver, Stephen G

    2016-01-01

    Alzheimer's disease (AD), and many neurodegenerative disorders, are multifactorial in nature. They involve a combination of genomic, epigenomic, interactomic and environmental factors. Progress is being made, and these complex diseases are beginning to be understood as having their origin in altered states of biological networks at the cellular level. In the case of AD, genomic susceptibility and mechanisms leading to (or accompanying) the impairment of the central Amyloid Precursor Protein (APP) processing and tau networks are widely accepted as major contributors to the diseased state. The derangement of these networks may result in both the gain and loss of functions, increased generation of toxic species (e.g., toxic soluble oligomers and aggregates) and imbalances, whose effects can propagate to supra-cellular levels. Although well sustained by empirical data and widely accepted, this global perspective often overlooks the essential roles played by the main counteracting homeostatic networks (e.g., protein quality control/proteostasis, unfolded protein response, protein folding chaperone networks, disaggregases, ER-associated degradation/ubiquitin proteasome system, endolysosomal network, autophagy, and other stress-protective and clearance networks), whose relevance to AD is just beginning to be fully realized. In this chapter, an integrative perspective is presented. Alzheimer's disease is characterized to be a result of: (a) intrinsic genomic/epigenomic susceptibility and, (b) a continued dynamic interplay between the deranged networks and the central homeostatic networks of nerve cells. This interplay of networks will underlie both the onset and rate of progression of the disease in each individual. Integrative Systems Biology approaches are required to effect its elucidation. Comprehensive Systems Biology experiments at different 'omics levels in simple model organisms, engineered to recapitulate the basic features of AD may illuminate the onset and sequence of events underlying AD. Indeed, studies of models of AD in simple organisms, differentiated cells in culture and rodents are beginning to offer hope that the onset and progression of AD, if detected at an early stage, may be stopped, delayed, or even reversed, by activating or modulating networks involved in proteostasis and the clearance of toxic species. In practice, the incorporation of next-generation neuroimaging, high-throughput and computational approaches are opening the way towards early diagnosis well before irreversible cell death. Thus, the presence or co-occurrence of: (a) accumulation of toxic Aβ oligomers and tau species; (b) altered splicing and transcriptome patterns; (c) impaired redox, proteostatic, and metabolic networks together with, (d) compromised homeostatic capacities may constitute relevant 'AD hallmarks at the cellular level' towards reliable and early diagnosis. From here, preventive lifestyle changes and tailored therapies may be investigated, such as combined strategies aimed at both lowering the production of toxic species and potentiating homeostatic responses, in order to prevent or delay the onset, and arrest, alleviate, or even reverse the progression of the disease.

  10. Propofol exposure during early gestation impairs learning and memory in rat offspring by inhibiting the acetylation of histone.

    PubMed

    Lin, Jiamei; Wang, Shengqiang; Feng, Yunlin; Zhao, Weihong; Zhao, Weilu; Luo, Foquan; Feng, Namin

    2018-05-01

    Propofol is widely used in clinical practice, including non-obstetric surgery in pregnant women. Previously, we found that propofol anaesthesia in maternal rats during the third trimester (E18) caused learning and memory impairment to the offspring rats, but how about the exposure during early pregnancy and the underlying mechanisms? Histone acetylation plays an important role in synaptic plasticity. In this study, propofol was administered to the pregnant rats in the early pregnancy (E7). The learning and memory function of the offspring were tested by Morris water maze (MWM) test on post-natal day 30. Two hours before each MWM trial, histone deacetylase 2 (HDAC2) inhibitor, suberoylanilide hydroxamic acid (SAHA), Senegenin (SEN, traditional Chinese medicine), hippyragranin (HGN) antisense oligonucleotide (HGNA) or vehicle were given to the offspring. The protein levels of HDAC2, acetylated histone 3 (H3) and 4 (H4), cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), N-methyl-D-aspartate receptor (NMDAR) 2 subunit B (NR2B), HGN and synaptophysin in offspring's hippocampus were determined by Western blot or immunofluorescence test. It was discovered that infusion with propofol in maternal rats on E7 leads to impairment of learning and memory in offspring, increased the protein levels of HDAC2 and HGN, decreased the levels of acetylated H3 and H4 and phosphorylated CREB, NR2B and synaptophysin. HDAC2 inhibitor SAHA, Senegenin or HGN antisense oligonucleotide reversed all the changes. Thus, present results indicate exposure to propofol during the early gestation impairs offspring's learning and memory via inhibiting histone acetylation. SAHA, Senegenin and HGN antisense oligonucleotide might have therapeutic value for the adverse effect of propofol. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  11. Evidence for Functional Differentiation among Drosophila Septins in Cytokinesis and Cellularization

    PubMed Central

    Adam, Jennifer C.; Pringle, John R.; Peifer, Mark

    2000-01-01

    The septins are a conserved family of proteins that are involved in cytokinesis and other aspects of cell-surface organization. In Drosophila melanogaster, null mutations in the pnut septin gene are recessive lethal, but homozygous pnut mutants complete embryogenesis and survive until the pupal stage. Because the completion of cellularization and other aspects of early development seemed likely to be due to maternally contributed Pnut product, we attempted to generate embryos lacking the maternal contribution in order to explore the roles of Pnut in these processes. We used two methods, the production of germline clones homozygous for a pnut mutation and the rescue of pnut homozygous mutant flies by a pnut+ transgene under control of the hsp70 promoter. Remarkably, the pnut germline-clone females produced eggs, indicating that stem-cell and cystoblast divisions in the female germline do not require Pnut. Moreover, the Pnut-deficient embryos obtained by either method completed early syncytial development and began cellularization of the embryo normally. However, during the later stages of cellularization, the organization of the actin cytoskeleton at the leading edge of the invaginating furrows became progressively more abnormal, and the embryos displayed widespread defects in cell and embryo morphology beginning at gastrulation. Examination of two other septins showed that Sep1 was not detectable at the cellularization front in the Pnut-deficient embryos, whereas Sep2 was still present in normal levels. Thus, it is possible that Sep2 (perhaps in conjunction with other septins such as Sep4 and Sep5) fulfills an essential septin role during the organization and initial ingression of the cellularization furrow even in the absence of Pnut and Sep1. Together, the results suggest that some cell-division events in Drosophila do not require septin function, that there is functional differentiation among the Drosophila septins, or both. PMID:10982405

  12. CHIP as a membrane-shuttling proteostasis sensor

    PubMed Central

    Kopp, Yannick; Martínez-Limón, Adrián; Hofbauer, Harald F; Ernst, Robert; Calloni, Giulia

    2017-01-01

    Cells respond to protein misfolding and aggregation in the cytosol by adjusting gene transcription and a number of post-transcriptional processes. In parallel to functional reactions, cellular structure changes as well; however, the mechanisms underlying the early adaptation of cellular compartments to cytosolic protein misfolding are less clear. Here we show that the mammalian ubiquitin ligase C-terminal Hsp70-interacting protein (CHIP), if freed from chaperones during acute stress, can dock on cellular membranes thus performing a proteostasis sensor function. We reconstituted this process in vitro and found that mainly phosphatidic acid and phosphatidylinositol-4-phosphate enhance association of chaperone-free CHIP with liposomes. HSP70 and membranes compete for mutually exclusive binding to the tetratricopeptide repeat domain of CHIP. At new cellular locations, access to compartment-specific substrates would enable CHIP to participate in the reorganization of the respective organelles, as exemplified by the fragmentation of the Golgi apparatus (effector function). PMID:29091030

  13. Overexpression of feline tripartite motif-containing 25 interferes with the late stage of feline leukemia virus replication.

    PubMed

    Koba, Ryota; Oguma, Keisuke; Sentsui, Hiroshi

    2015-06-02

    Tripartite motif-containing 25 (TRIM25) regulates various cellular processes through E3 ubiquitin ligase activity. Previous studies have revealed that the expression of TRIM25 is induced by type I interferon and that TRIM25 is involved in the host cellular innate immune response against retroviral infection. Although retroviral infection is prevalent in domestic cats, the roles of feline TRIM25 in the immune response against these viral infections are poorly understood. Because feline TRIM25 is expected to modulate the infection of feline leukemia virus (FeLV), we investigated its effects on early- and late-stage FeLV replication. This study revealed that ectopic expression of feline TRIM25 in HEK293T cells reduced viral protein levels leading to the inhibition of FeLV release. Our findings show that feline TRIM25 has a potent antiviral activity and implicate an antiviral mechanism whereby feline TRIM25 interferes with late-stage FeLV replication. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Cancer Risk-Assessment of Radiation Damage in Ataxia Telangiectasia Heterozygous Human Breast Epithelial Cell Cultures

    NASA Technical Reports Server (NTRS)

    Applewhite, Lisa C.

    2002-01-01

    This paper describes the study of the markers of cellular changes that are found during the onset of carcinogenesis. Several of the biological factors are markers of stress response, oncoprotein expression, and differentiation factors. Oxidative stress response agents such as heat shock proteins (HSPs) protect cells from oxidative stresses such as ionizing radiation. The onocoprotein HER-2/neu, a specific breast cancer marker, indicates early onset of cancer. Additional structural and morphogenetic markers of differentiation were considered in order to determine initial cellular changes at the initial onset of cancer. As an additional consideration, all-trans retinoic acid (RA), a differentiation agent, was considered because of its known role in regulating normal differentiation and inhibiting tumor proliferation via specific nuclear receptors. This paper discusses study and results of the preliminary analyses of gamma irradiation of AT heterozygous human breast epithelial cells (WH). Comparisons are also made of the effects various RA concentrations post-irradiation.

  15. Charge-conversional poly(amino acid)s derivatives as a drug delivery carrier in response to the tumor environment.

    PubMed

    Yoon, Se Rim; Yang, Hee-Man; Park, Chan Woo; Lim, Sujin; Chung, Bong Hyun; Kim, Jong-Duk

    2012-08-01

    A charge-converting and pH-dependent nanocarrier was achieved by conjugating 2,3-dimethylmaleic anhydride (DMMA) to the amino group of an octadecyl grafted poly (2-hydroxyethyl aspartamide) (PHEA-g-C(18)-NH(2)) backbone, thereby forming a spherical micelle. PHEA, a poly(amino acid)s derivative, was derived from poly(succinimide), which is biocompatible and biodegradable. DMMA, a detachable component at the tumor site, was added, preventing aggregation with negative blood serum and enhancing the nanocarrier's cellular uptake. The polymeric micelle was comprehensively characterized and doxorubicin was encapsulated successively. The cellular uptake and anticancer therapeutic effect were evaluated by flow cytometry, confocal laser scanning microscopy, and a MTT assay. The properties of the nanocarrier can further be exploited to develop an early detection module for cancer. The present work is also expected to advance the study of designing smart carriers for drug and gene delivery. Copyright © 2012 Wiley Periodicals, Inc.

  16. An introduction to DARC technology.

    PubMed

    Ahmad, Syed Shoeb

    2017-01-01

    Glaucoma is a multi-factorial neurodegenerative disorder. The common denominator in all types of glaucomas is retinal ganglion cell death through apoptosis. However, this cellular demise in glaucoma is detected late by structural or functional analyses. There can be a 10-year delay prior to the appearance of visual field defects and pre-perimetric glaucoma is an issue still being addressed. However, a new cutting-edge technology called detection of apoptosing retinal cells (DARC) is being developed. This technique is capable of non-invasive, real-time visualization of apoptotic changes at the cellular level. It can detect glaucomatous cell damage at a very early stage, at the moment apoptosis starts, and thus management can be initiated even prior to development of visual field changes. In future, this technique will also be able to provide conclusive evidence of the effectiveness of treatment protocol and the need for any modifications which may be required. This article aims to provide a concise review of DARC technology.

  17. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals.

    PubMed

    Marchetto, Maria C; Belinson, Haim; Tian, Yuan; Freitas, Beatriz C; Fu, Chen; Vadodaria, Krishna; Beltrao-Braga, Patricia; Trujillo, Cleber A; Mendes, Ana P D; Padmanabhan, Krishnan; Nunez, Yanelli; Ou, Jing; Ghosh, Himanish; Wright, Rebecca; Brennand, Kristen; Pierce, Karen; Eichenfield, Lawrence; Pramparo, Tiziano; Eyler, Lisa; Barnes, Cynthia C; Courchesne, Eric; Geschwind, Daniel H; Gage, Fred H; Wynshaw-Boris, Anthony; Muotri, Alysson R

    2017-06-01

    Autism spectrum disorders (ASD) are common, complex and heterogeneous neurodevelopmental disorders. Cellular and molecular mechanisms responsible for ASD pathogenesis have been proposed based on genetic studies, brain pathology and imaging, but a major impediment to testing ASD hypotheses is the lack of human cell models. Here, we reprogrammed fibroblasts to generate induced pluripotent stem cells, neural progenitor cells (NPCs) and neurons from ASD individuals with early brain overgrowth and non-ASD controls with normal brain size. ASD-derived NPCs display increased cell proliferation because of dysregulation of a β-catenin/BRN2 transcriptional cascade. ASD-derived neurons display abnormal neurogenesis and reduced synaptogenesis leading to functional defects in neuronal networks. Interestingly, defects in neuronal networks could be rescued by insulin growth factor 1 (IGF-1), a drug that is currently in clinical trials for ASD. This work demonstrates that selection of ASD subjects based on endophenotypes unraveled biologically relevant pathway disruption and revealed a potential cellular mechanism for the therapeutic effect of IGF-1.

  18. Adult Stem Cells and Diseases of Aging

    PubMed Central

    Boyette, Lisa B.; Tuan, Rocky S.

    2014-01-01

    Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan. PMID:24757526

  19. Impact of simulated microgravity on the normal developmental time line of an animal-bacteria symbiosis

    PubMed Central

    Foster, Jamie S.; Khodadad, Christina L. M.; Ahrendt, Steven R.; Parrish, Mirina L.

    2013-01-01

    The microgravity environment during space flight imposes numerous adverse effects on animal and microbial physiology. It is unclear, however, how microgravity impacts those cellular interactions between mutualistic microbes and their hosts. Here, we used the symbiosis between the host squid Euprymna scolopes and its luminescent bacterium Vibrio fischeri as a model system. We examined the impact of simulated microgravity on the timeline of bacteria-induced development in the host light organ, the site of the symbiosis. To simulate the microgravity environment, host squid and symbiosis-competent bacteria were incubated together in high-aspect ratio rotating wall vessel bioreactors and examined throughout the early stages of the bacteria-induced morphogenesis. The host innate immune response was suppressed under simulated microgravity; however, there was an acceleration of bacteria-induced apoptosis and regression in the host tissues. These results suggest that the space flight environment may alter the cellular interactions between animal hosts and their natural healthy microbiome. PMID:23439280

  20. Longevity of duodenal and peripheral T-cell and humoral responses to live-attenuated Salmonella Typhi strain Ty21a.

    PubMed

    Pennington, Shaun H; Ferreira, Daniela M; Reiné, Jesús; Nyirenda, Tonney S; Thompson, Ameeka L; Hancock, Carole A; Wright, Angela D; Gordon, Stephen B; Gordon, Melita A

    2018-06-26

    We have previously demonstrated that polyfunctional Ty21a-responsive CD4 + and CD8 + T cells are generated at the duodenal mucosa 18 days following vaccination with live-attenuated S. Typhi (Ty21a). The longevity of cellular responses has been assessed in peripheral blood, but persistence of duodenal responses is unknown. We vaccinated eight healthy adults with Ty21a. Peripheral blood and duodenal samples were acquired after a median of 1.5 years (ranging from 1.1 to 3.7 years) following vaccination. Cellular responses were assessed in peripheral blood and at the duodenal mucosa by flow cytometry. Levels of IgG and IgA were also assessed in peripheral blood by enzyme-linked immunosorbent assay. No T-cell responses were observed at the duodenal mucosa, but CD4 + T-cell responses to Ty21a and FliC were observed in peripheral blood. Peripheral anti-lipopolysaccharide IgG and IgA responses were also observed. Early immunoglobulin responses were not associated with the persistence of long-term cellular immune responses. Early T-cell responses which we have previously observed at the duodenal mucosa 18 days following oral vaccination with Ty21a could not be detected at a median of 1.5 years. Peripheral responses were observed at this time. Immunoglobulin responses observed shortly after vaccination were not associated with cellular immune responses at 1.5 years, suggesting that the persistence of cellular immunity is not associated with the strength of the initial humoral response to vaccination. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Human Papillomavirus Types 16 and 18 Early-expressed Proteins Differentially Modulate the Cellular Redox State and DNA Damage

    PubMed Central

    Cruz-Gregorio, Alfredo; Manzo-Merino, Joaquín; Gonzaléz-García, María Cecilia; Pedraza-Chaverri, José; Medina-Campos, Omar Noel; Valverde, Mahara; Rojas, Emilio; Rodríguez-Sastre, María Alexandra; García-Cuellar, Claudia María; Lizano, Marcela

    2018-01-01

    Oxidative stress has been proposed as a risk factor for cervical cancer development. However, few studies have evaluated the redox state associated with human papillomavirus (HPV) infection. The aim of this work was to determine the role of the early expressed viral proteins E1, E2, E6 and E7 from HPV types 16 and 18 in the modulation of the redox state in an integral form. Therefore, generation of reactive oxygen species (ROS), concentration of reduced glutathione (GSH), levels and activity of the antioxidant enzymes catalase and superoxide dismutase (SOD) and deoxyribonucleic acid (DNA) damage, were analysed in epithelial cells ectopically expressing the viral proteins. Our research shows that E6 oncoproteins decreased GSH and catalase protein levels, as well as its enzymatic activity, which was associated with an increase in ROS production and DNA damage. In contrast, E7 oncoproteins increased GSH, as well as catalase protein levels and its activity, which correlated with a decrease in ROS without affecting DNA integrity. The co-expression of both E6 and E7 oncoproteins neutralized the effects that were independently observed for each of the viral proteins. Additionally, the combined expression of E1 and E2 proteins increased ROS levels with the subsequent increase in the marker for DNA damage phospho-histone 2AX (γH2AX). A decrease in GSH, as well as SOD2 levels and activity were also detected in the presence of E1 and E2, even though catalase activity increased. This study demonstrates that HPV early expressed proteins differentially modulate cellular redox state and DNA damage. PMID:29483822

  2. Early experiences mediate distinct adult gene expression and reproductive programs in Caenorhabditis elegans

    PubMed Central

    Ow, Maria C.; Nichitean, Alexandra M.; Dorus, Steve; Hall, Sarah E.

    2018-01-01

    Environmental stress during early development in animals can have profound effects on adult phenotypes via programmed changes in gene expression. Using the nematode C. elegans, we demonstrated previously that adults retain a cellular memory of their developmental experience that is manifested by differences in gene expression and life history traits; however, the sophistication of this system in response to different environmental stresses, and how it dictates phenotypic plasticity in adults that contribute to increased fitness in response to distinct environmental challenges, was unknown. Using transcriptional profiling, we show here that C. elegans adults indeed retain distinct cellular memories of different environmental conditions. We identified approximately 500 genes in adults that entered dauer due to starvation that exhibit significant opposite (“seesaw”) transcriptional phenotypes compared to adults that entered dauer due to crowding, and are distinct from animals that bypassed dauer. Moreover, we show that two-thirds of the genes in the genome experience a 2-fold or greater seesaw trend in gene expression, and based upon the direction of change, are enriched in large, tightly linked regions on different chromosomes. Importantly, these transcriptional programs correspond to significant changes in brood size depending on the experienced stress. In addition, we demonstrate that while the observed seesaw gene expression changes occur in both somatic and germline tissue, only starvation-induced changes require a functional GLP-4 protein necessary for germline development, and both programs require the Argonaute CSR-1. Thus, our results suggest that signaling between the soma and the germ line can generate phenotypic plasticity as a result of early environmental experience, and likely contribute to increased fitness in adverse conditions and the evolution of the C. elegans genome. PMID:29447162

  3. Early Hits and Long-Term Consequences: Tracking the Lasting Impact of Prenatal Smoke Exposure on Telomere Length in Children

    PubMed Central

    McKasson, Sarah; Mabile, Emily; Dunaway, Lauren F.; Drury, Stacy S.

    2013-01-01

    We examined the association between telomere length and prenatal tobacco exposure (PTE) in 104 children aged 4 to 14 years. Salivary telomere length (STL) was determined from salivary DNA using quantitative polymerase chain reaction. Of the children, 18% had maternal reported PTE. Mean STL was significantly lower among children with PTE (6.4 vs 7.5, P < .05). Findings extend the literature demonstrating the negative long-term effects of PTE to include a cellular marker of aging linked to multiple negative health outcomes. PMID:23927510

  4. Rigid amphipathic fusion inhibitors demonstrate antiviral activity against African swine fever virus.

    PubMed

    Hakobyan, Astghik; Galindo, Inmaculada; Nañez, Almudena; Arabyan, Erik; Karalyan, Zaven; Chistov, Alexey A; Streshnev, Philipp P; Korshun, Vladimir A; Alonso, Covadonga; Zakaryan, Hovakim

    2018-01-01

    Rigid amphipathic fusion inhibitors (RAFIs) are a family of nucleoside derivatives that inhibit the infectivity of several enveloped viruses by interacting with virion envelope lipids and inhibiting fusion between viral and cellular membranes. Here we tested the antiviral activity of two RAFIs, 5-(Perylen-3-ylethynyl)-arabino-uridine (aUY11) and 5-(Perylen-3-ylethynyl)uracil-1-acetic acid (cm1UY11) against African swine fever virus (ASFV), for which no effective vaccine is available. Both compounds displayed a potent, dose-dependent inhibitory effect on ASFV infection in Vero cells. The major antiviral effect was observed when aUY11 and cm1UY11 were added at early stages of infection and maintained during the complete viral cycle. Furthermore, virucidal assay revealed a significant extracellular anti-ASFV activity for both compounds. We also found decrease in the synthesis of early and late viral proteins in Vero cells treated with cm1UY11. Finally, the inhibitory effect of aUY11 and cm1UY11 on ASFV infection in porcine alveolar macrophages was confirmed. Overall, our study has identified novel anti-ASFV compounds with potential for future therapeutic developments.

  5. Understanding the Molecular Mechanisms Underpinning Gene by Environment Interactions in Psychiatric Disorders: The FKBP5 Model.

    PubMed

    Matosin, Natalie; Halldorsdottir, Thorhildur; Binder, Elisabeth B

    2018-05-15

    Epidemiologic and genetic studies suggest common environmental and genetic risk factors for a number of psychiatric disorders, including depression, bipolar disorder, and schizophrenia. Genetic and environmental factors, especially adverse life events, not only have main effects on disease development but also may interact to shape risk and resilience. Such gene by adversity interactions have been described for FKBP5, an endogenous regulator of the stress-neuroendocrine system, conferring risk for a number of psychiatric disorders. In this review, we present a molecular and cellular model of the consequences of FKBP5 by early adversity interactions. We illustrate how altered genetic and epigenetic regulation of FKBP5 may contribute to disease risk by covering evidence from clinical and preclinical studies of FKBP5 dysregulation, known cell-type and tissue-type expression patterns of FKBP5 in humans and animals, and the role of FKBP5 as a stress-responsive molecular hub modulating many cellular pathways. FKBP5 presents the possibility to better understand the molecular and cellular factors contributing to a disease-relevant gene by environment interaction, with implications for the development of biomarkers and interventions for psychiatric disorders. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Activity-based proteome profiling of potential cellular targets of Orlistat--an FDA-approved drug with anti-tumor activities.

    PubMed

    Yang, Peng-Yu; Liu, Kai; Ngai, Mun Hong; Lear, Martin J; Wenk, Markus R; Yao, Shao Q

    2010-01-20

    Orlistat, or tetrahydrolipstatin (THL), is an FDA-approved antiobesity drug with potential antitumor activities. Cellular off-targets and potential side effects of Orlistat in cancer therapies, however, have not been extensively explored thus far. In this study, we report the total of synthesis of THL-like protein-reactive probes, in which extremely conservative modifications (i.e., an alkyne handle) were introduced in the parental THL structure to maintain the native biological properties of Orlistat, while providing the necessary functionality for target identification via the bio-orthogonal click chemistry. With these natural productlike, cell-permeable probes, we were able to demonstrate, for the first time, this chemical proteomic approach is suitable for the identification of previously unknown cellular targets of Orlistat. In addition to the expected fatty acid synthase (FAS), we identified a total of eight new targets, some of which were further validated by experiments including Western blotting, recombinant protein expression, and site-directed mutagenesis. Our findings have important implications in the consideration of Orlistat as a potential anticancer drug at its early stages of development for cancer therapy. Our strategy should be broadly useful for off-target identification against quite a number of existing drugs and/or candidates, which are also covalent modifiers of their biological targets.

  7. PSYCHIATRIC DISORDERS AND LEUKOCYTE TELOMERE LENGTH: UNDERLYING MECHANISMS LINKING MENTAL ILLNESS WITH CELLULAR AGING

    PubMed Central

    Lindqvist, Daniel; Epel, Elissa S.; Mellon, Synthia H.; Penninx, Brenda W.; Révész, Dóra; Verhoeven, Josine E.; Reus, Victor I.; Lin, Jue; Mahan, Laura; Hough, Christina M.; Rosser, Rebecca; Bersani, F. Saverio; Blackburn, Elizabeth H.; Wolkowitz, Owen M.

    2015-01-01

    Many psychiatric illnesses are associated with early mortality and with an increased risk of developing physical diseases that are more typically seen in the elderly. Moreover, certain psychiatric illnesses may be associated with accelerated cellular aging, evidenced by shortened leukocyte telomere length (LTL), which could underlie this association. Shortened LTL reflects a cell’s mitotic history and cumulative exposure to inflammation and oxidation as well as the availability of telomerase, a telomere-lengthening enzyme. Critically short telomeres can cause cells to undergo senescence, apoptosis or genomic instability, and shorter LTL correlates with poorer health and predicts mortality. Emerging data suggest that LTL may be reduced in certain psychiatric illnesses, perhaps in proportion to exposure to the psychiatric illnesses, although conflicting data exist. Telomerase has been less well characterized in psychiatric illnesses, but a role in depression and in antidepressant and neurotrophic effects has been suggested by preclinical and clinical studies. In this article, studies on LTL and telomerase activity in psychiatric illnesses are critically reviewed, potential mediators are discussed, and future directions are suggested. A deeper understanding of cellular aging in psychiatric illnesses could lead to re-conceptualizing them as systemic illnesses with manifestations inside and outside the brain and could identify new treatment targets. PMID:25999120

  8. Epigenetic Matters: The Link between Early Nutrition, Microbiome, and Long-term Health Development

    PubMed Central

    Indrio, Flavia; Martini, Silvia; Francavilla, Ruggiero; Corvaglia, Luigi; Cristofori, Fernanda; Mastrolia, Salvatore Andrea; Neu, Josef; Rautava, Samuli; Russo Spena, Giovanna; Raimondi, Francesco; Loverro, Giuseppe

    2017-01-01

    Epigenetic modifications are among the most important mechanisms by which environmental factors can influence early cellular differentiation and create new phenotypic traits during pregnancy and within the neonatal period without altering the deoxyribonucleic acid sequence. A number of antenatal and postnatal factors, such as maternal and neonatal nutrition, pollutant exposure, and the composition of microbiota, contribute to the establishment of epigenetic changes that can not only modulate the individual adaptation to the environment but also have an influence on lifelong health and disease by modifying inflammatory molecular pathways and the immune response. Postnatal intestinal colonization, in turn determined by maternal flora, mode of delivery, early skin-to-skin contact and neonatal diet, leads to specific epigenetic signatures that can affect the barrier properties of gut mucosa and their protective role against later insults, thus potentially predisposing to the development of late-onset inflammatory diseases. The aim of this review is to outline the epigenetic mechanisms of programming and development acting within early-life stages and to examine in detail the role of maternal and neonatal nutrition, microbiota composition, and other environmental factors in determining epigenetic changes and their short- and long-term effects. PMID:28879172

  9. Differential effects of subtype-specific nicotinic acetylcholine receptor agonists on early and late hippocampal LTP.

    PubMed

    Kroker, Katja S; Rast, Georg; Rosenbrock, Holger

    2011-12-05

    Brain nicotinic acetylcholine receptors are involved in several neuropsychiatric disorders, e.g. Alzheimer's and Parkinson's diseases, Tourette's syndrome, schizophrenia, depression, autism, attention deficit hyperactivity disorder, and anxiety. Currently, approaches selectively targeting the activation of specific nicotinic acetylcholine receptors are in clinical development for treatment of memory impairment of Alzheimer's disease patients. These are α4β2 and α7 nicotinic acetylcholine receptor agonists which are believed to enhance cholinergic and glutamatergic neurotransmission, respectively. In order to gain a better insight into the mechanistic role of these two nicotinic acetylcholine receptors in learning and memory, we investigated the effects of the α4β2 nicotinic acetylcholine receptor agonist TC-1827 and the α7 nicotinic acetylcholine receptor partial agonist SSR180711 on hippocampal long-term potentiation (LTP), a widely accepted cellular experimental model of memory formation. Generally, LTP is distinguished in an early and a late form, the former being protein-synthesis independent and the latter being protein-synthesis dependent. TC-1827 was found to increase early LTP in a bell-shaped dose dependent manner, but did not affect late LTP. In contrast, the α7 nicotinic acetylcholine receptor partial agonist SSR180711 showed enhancing effects on both early and late LTP in a bell-shaped manner. Furthermore, SSR180711 not only increased early LTP, but also transformed it into late LTP, which was not observed with the α4β2 nicotinic acetylcholine receptor agonist. Therefore, based on these findings α7 nicotinic acetylcholine receptor (partial) agonists appear to exhibit stronger efficacy on memory improvement than α4β2 nicotinic acetylcholine receptor agonists. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Effects of varying pulsatile lavage pressure on cancellous bone structure and fracture healing.

    PubMed

    Polzin, Britton; Ellis, Thomas; Dirschl, Douglas R

    2006-04-01

    To study the effects of variations in pulsatile lavage irrigation pressure on the rate of new bone formation and the degree to which cellular elements are removed from cancellous bone after fracture. A previously described intraarticular fracture model was used for 29 New Zealand white rabbits that underwent osteotomy of the medial femoral condyle. Fractures were irrigated with high-pressure pulsatile lavage at a fixed distance and volume, but at nozzle pressures varying from 20 to 70 psi. Fractures were reduced and stabilized, and animals euthanized 14 days after fracture. Fluorescent bone staining was used to determine the rate of new bone formation in the osteotomy site. At the time of euthanasia, the nonoperated knees of 12 rabbits underwent osteotomy and irrigation using the same protocol. These specimens were sent for immediate scanning electron microscopy to determine the amount of cellular material removed from the bony trabeculae. In the first week after irrigation, there was no significant difference in the amount of new bone formation between the 20- and 30-psi groups, but there were significant differences between these groups and the 50- and 70-psi groups. There were no significant differences between any of the groups in the amount of new bone formed during the second week after irrigation. No structural damage to the bony trabeculae was observed in any specimen irrigated at any of the pressures used. There was a direct correlation between percentage of the trabecula completely cleared of cellular material and irrigation pressure; there were statistically significant differences between each of the groups. There are presently no recommended guidelines as to the optimal irrigation pressure, and this study is the first to address the effects of variations in pressure on bone healing. The results of this study indicate that early new bone formation in an intraarticular fracture rabbit model is inhibited by irrigation pressure of 50 psi or greater. Additionally, this study demonstrates a direct relationship between irrigation pressure and the amount of cellular material removed from the trabecula at the irrigation site. Surgeons should be aware of the potentially detrimental effects of using irrigation pressures at or above 50 psi in the treatment of fractures.

  11. Flavivirus Infection Impairs Peroxisome Biogenesis and Early Antiviral Signaling

    PubMed Central

    You, Jaehwan; Hou, Shangmei; Malik-Soni, Natasha; Xu, Zaikun; Kumar, Anil; Rachubinski, Richard A.; Frappier, Lori

    2015-01-01

    ABSTRACT Flaviviruses are significant human pathogens that have an enormous impact on the global health burden. Currently, there are very few vaccines against or therapeutic treatments for flaviviruses, and our understanding of how these viruses cause disease is limited. Evidence suggests that the capsid proteins of flaviviruses play critical nonstructural roles during infection, and therefore, elucidating how these viral proteins affect cellular signaling pathways could lead to novel targets for antiviral therapy. We used affinity purification to identify host cell proteins that interact with the capsid proteins of West Nile and dengue viruses. One of the cellular proteins that formed a stable complex with flavivirus capsid proteins is the peroxisome biogenesis factor Pex19. Intriguingly, flavivirus infection resulted in a significant loss of peroxisomes, an effect that may be due in part to capsid expression. We posited that capsid protein-mediated sequestration and/or degradation of Pex19 results in loss of peroxisomes, a situation that could result in reduced early antiviral signaling. In support of this hypothesis, we observed that induction of the lambda interferon mRNA in response to a viral RNA mimic was reduced by more than 80%. Together, our findings indicate that inhibition of peroxisome biogenesis may be a novel mechanism by which flaviviruses evade the innate immune system during early stages of infection. IMPORTANCE RNA viruses infect hundreds of millions of people each year, causing significant morbidity and mortality. Chief among these pathogens are the flaviviruses, which include dengue virus and West Nile virus. Despite their medical importance, there are very few prophylactic or therapeutic treatments for these viruses. Moreover, the manner in which they subvert the innate immune response in order to establish infection in mammalian cells is not well understood. Recently, peroxisomes were reported to function in early antiviral signaling, but very little is known regarding if or how pathogenic viruses affect these organelles. We report for the first time that flavivirus infection results in significant loss of peroxisomes in mammalian cells, which may indicate that targeting of peroxisomes is a key strategy used by viruses to subvert early antiviral defenses. PMID:26423946

  12. Illness versus substance use effects on the frontal white matter in early phase schizophrenia: A 4Tesla (1)H-MRS study.

    PubMed

    Bernier, Denise; Bartha, Robert; McAllindon, David; Hanstock, Christopher C; Marchand, Yannick; Dillen, Kim N H; Gallant, Michelle; Good, Kimberly P; Tibbo, Philip G

    2016-08-01

    Young adults with early phase schizophrenia often report a past or current pattern of illicit substance use and/or alcohol misuse. Still, little is known about the cumulative and separate effects of each stressor on white matter tissue, at this vulnerable period of brain development. Participants involved 24 healthy controls with a past or current history of sustained illicit drug use and/or alcohol misuse (users), 23 healthy controls without such history (normative data), and 27 users with early phase schizophrenia. (1)H-MRS data were acquired from a large frontal volume encompassing 95% of white matter, using a 4Tesla scanner (LASER sequence, TR/TE 3200/46ms). Reduced levels of choline-containing compounds (Cho) were specific to the effect of illness (Cohen's d=0.68), with 22% of the variance in Cho levels accounted for by duration of illness. Reduced levels of myoInositol (d=1.10) and creatine plus phosphocreatine (d=1.07) were specific to the effects of illness plus substance use. Effect of substance use on its own was revealed by reductions in levels of glutamate plus glutamine (d=0.83) in control users relative to normative data. The specific effect of illness on white matter might indicate a decreased synthesis of membrane phospholipids or alternatively, reduced membrane cellular density. In terms of limitations, this study did not include patients without a lifetime history of substance use (non-users), and the specific effect of each substance used could not be studied separately. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal.

    PubMed

    Putker, Marrit; O'Neill, John Stuart

    2016-01-01

    Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redox-sensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian time-keeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological time-keeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping.

  14. Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal

    PubMed Central

    Putker, Marrit; O’Neill, John Stuart

    2016-01-01

    Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redox-sensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian time-keeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological time-keeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping. PMID:26810072

  15. Effect of Boron Doping on Cellular Discontinuous Precipitation for Age-Hardenable Cu–Ti Alloys

    PubMed Central

    Semboshi, Satoshi; Ikeda, Jun; Iwase, Akihiro; Takasugi, Takayuki; Suzuki, Shigeru

    2015-01-01

    The effects of boron doping on the microstructural evolution and mechanical and electrical properties of age-hardenable Cu–4Ti (at.%) alloys are investigated. In the quenched Cu–4Ti–0.03B (at.%) alloy, elemental B (boron) is preferentially segregated at the grain boundaries of the supersaturated solid-solution phase. The aging behavior of the B-doped alloy is mostly similar to that of conventional age-hardenable Cu–Ti alloys. In the early stage of aging at 450 °C, metastable β′-Cu4Ti with fine needle-shaped precipitates continuously form in the matrix phase. Cellular discontinuous precipitates composed of the stable β-Cu4Ti and solid-solution laminates are then formed and grown at the grain boundaries. However, the volume fraction of the discontinuous precipitates is lower in the Cu–4Ti–0.03B alloy than the Cu–4Ti alloy, particularly in the over-aging period of 72–120 h. The suppression of the formation of discontinuous precipitates eventually results in improvement of the hardness and tensile strength. It should be noted that minor B doping of Cu–Ti alloys also effectively enhances the elongation to fracture, which should be attributed to segregation of B at the grain boundaries.

  16. Early Cellular Changes in the Ascending Aorta and Myocardium in a Swine Model of Metabolic Syndrome.

    PubMed

    Saraf, Rabya; Huang, Thomas; Mahmood, Feroze; Owais, Khurram; Bardia, Amit; Khabbaz, Kamal R; Liu, David; Senthilnathan, Venkatachalam; Lassaletta, Antonio D; Sellke, Frank; Matyal, Robina

    2016-01-01

    Metabolic syndrome is associated with pathological remodeling of the heart and adjacent vessels. The early biochemical and cellular changes underlying the vascular damage are not fully understood. In this study, we sought to establish the nature, extent, and initial timeline of cytochemical derangements underlying reduced ventriculo-arterial compliance in a swine model of metabolic syndrome. Yorkshire swine (n = 8 per group) were fed a normal diet (ND) or a high-cholesterol (HCD) for 12 weeks. Myocardial function and blood flow was assessed before harvesting the heart. Immuno-blotting and immuno-histochemical staining were used to assess the cellular changes in the myocardium, ascending aorta and left anterior descending artery (LAD). There was significant increase in body mass index, blood glucose and mean arterial pressures (p = 0.002, p = 0.001 and p = 0.024 respectively) in HCD group. At the cellular level there was significant increase in anti-apoptotic factors p-Akt (p = 0.007 and p = 0.002) and Bcl-xL (p = 0.05 and p = 0.01) in the HCD aorta and myocardium, respectively. Pro-fibrotic markers TGF-β (p = 0.01), pSmad1/5 (p = 0.03) and MMP-9 (p = 0.005) were significantly increased in the HCD aorta. The levels of pro-apoptotic p38MAPK, Apaf-1 and cleaved Caspase3 were significantly increased in aorta of HCD (p = 0.03, p = 0.04 and p = 0.007 respectively). Similar changes in coronary arteries were not observed in either group. Functionally, the high cholesterol diet resulted in significant increase in ventricular end systolic pressure and-dp/dt (p = 0.05 and p = 0.007 respectively) in the HCD group. Preclinical metabolic syndrome initiates pro-apoptosis and pro-fibrosis pathways in the heart and ascending aorta, while sparing coronary arteries at this early stage of dietary modification.

  17. Magnetic Resonance Imaging to Detect Early Molecular and Cellular Changes in Alzheimer's Disease.

    PubMed

    Knight, Michael J; McCann, Bryony; Kauppinen, Risto A; Coulthard, Elizabeth J

    2016-01-01

    Recent pharmaceutical trials have demonstrated that slowing or reversing pathology in Alzheimer's disease is likely to be possible only in the earliest stages of disease, perhaps even before significant symptoms develop. Pathology in Alzheimer's disease accumulates for well over a decade before symptoms are detected giving a large potential window of opportunity for intervention. It is therefore important that imaging techniques detect subtle changes in brain tissue before significant macroscopic brain atrophy. Current diagnostic techniques often do not permit early diagnosis or are too expensive for routine clinical use. Magnetic Resonance Imaging (MRI) is the most versatile, affordable, and powerful imaging modality currently available, being able to deliver detailed analyses of anatomy, tissue volumes, and tissue state. In this mini-review, we consider how MRI might detect patients at risk of future dementia in the early stages of pathological change when symptoms are mild. We consider the contributions made by the various modalities of MRI (structural, diffusion, perfusion, relaxometry) in identifying not just atrophy (a late-stage AD symptom) but more subtle changes reflective of early dementia pathology. The sensitivity of MRI not just to gross anatomy but to the underlying "health" at the cellular (and even molecular) scales, makes it very well suited to this task.

  18. The effects of early life adversity on the immune system.

    PubMed

    Elwenspoek, Martha M C; Kuehn, Annette; Muller, Claude P; Turner, Jonathan D

    2017-08-01

    Early life adversity (ELA) is associated with a higher risk for diseases in adulthood. Although the pathophysiological effects of ELA are varied, there may be a unifying role for the immune system in all of the long-term pathologies such as chronic inflammatory disorders (autoimmune diseases, allergy, and asthma). Recently, significant efforts have been made to elucidate the long-term effects ELA has on immune function, as well as the mechanisms underlying these immune changes. In this review, we focus on data from human studies investigating immune parameters in relation to post-natal adverse experiences. We describe the current understanding of the 'ELA immune phenotype', characterized by inflammation, impairment of the cellular immune system, and immunosenescence. However, at present, data addressing specific immune functions are limited and there is a need for high-quality, well powered, longitudinal studies to unravel cause from effect. Besides the immune system, also the stress system and health behaviors are altered in ELA. We discuss probable underlying mechanisms based on epigenetic programming that could explain the ELA immune phenotype and whether this is a direct effect of immune programming or an indirect consequence of changes in behavior or stress reactivity. Understanding the underlying mechanisms will help define effective strategies to prevent or counteract negative ELA-associated outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Distinct embryotoxic effects of lithium appeared in a new assessment model of the sea urchin: the whole embryo assay and the blastomere culture assay.

    PubMed

    Kiyomoto, Masato; Morinaga, Seiko; Ooi, Nagisa

    2010-03-01

    Early embryogenesis is one of the most sensitive and critical stages in animal development. Here we propose a new assessment model on the effect of pollutant to multicellular organism development. That is a comparison between the whole embryo assay and the blastomere culture assay. We examined the LiCl effect on the sea urchin early development in both of whole embryos and the culture of isolated blastomeres. The mesoderm and endoderm region were capable to differentiate into skeletogenic cells when they were isolated at 60-cell stage and cultured in vitro. The embryo developed to exogastrula by the vegetalizing effect of the same LiCl condition where ectodermal region changed their fate to endoderm, while the isolated blastomeres from the presumptive ectoderm region differentiated into skeletogenic cells in the culture with LiCl. The effect of LiCl to the sea urchin embryo and to the dissociated blastomere is a unique example where same cells response distinctly to the same agent depend on the condition around them. Present results show the importance of examining the process in cellular and tissue levels for the exact understanding on the morphological effect of chemicals and metals.

  20. Effects of Simulated Weightlessness on Mammalian Development. Part 2: Meiotic Maturation of Mouse Oocytes During Clinostat Rotation

    NASA Technical Reports Server (NTRS)

    Wolgemuth, D. J.; Grills, G. S.

    1985-01-01

    In order to understand the role of gravity in basic cellular processes that are important during development, the effects of a simulated microgravity environment on mammalian gametes and early embryos cultured in vitro are examined. A microgravity environment is simulated by use of a clinostat, which essentially reorients cells relative to the gravity vector. Initial studies have focused on assessing the effects of clinostat rotation on the meiotic progression of mouse oocytes. Modifications centered on providing the unique in vitro culture of the clinostat requirements of mammalian oocytes and embryos: 37 C temperature, constant humidity, and a 5% CO2 in air environment. The oocytes are observed under the dissecting microscope for polar body formation and gross morphological appearance. They are then processed for cytogenetic analysis.

  1. Role of Mitochondrial Ca2+ in the Regulation of Cellular Energetics

    PubMed Central

    Glancy, Brian; Balaban, Robert S.

    2012-01-01

    Calcium is an important signaling molecule involved in the regulation of many cellular functions. The large free energy in the Ca2+ ion membrane gradients make Ca2+ signaling inherently sensitive to the available cellular free energy, primarily in the form of ATP. In addition, Ca2+ regulates many cellular ATP consuming reactions such as muscle contraction, exocytosis, biosynthesis and neuronal signaling. Thus, Ca2+ becomes a logical candidate as a signaling molecule to modulate ATP hydrolysis and synthesis during changes in numerous forms of cellular work. Mitochondria are the primary source of aerobic energy production in mammalian cells and also maintain a large Ca2+ gradient across their inner membrane providing a signaling potential for this molecule. The demonstrated link between cytosolic and mitochondrial [Ca2+], identification of transport mechanisms as well as proximity of mitochondria to Ca2+ release sites further supports the notion that Ca2+ can be an important signaling molecule in the energy metabolism interplay of the cytosol with the mitochondria. Here we review sites within the mitochondria where Ca2+ plays a role in the regulation of ATP generation and potentially contributes to the orchestration of the cellular metabolic homeostasis. Early work on isolated enzymes pointed to several matrix dehydrogenases that are stimulated by Ca2+, which were confirmed in the intact mitochondrion as well as cellular and in vivo systems. However, studies in these intact systems suggested a more expansive influence of Ca2+ on mitochondrial energy conversion. Numerous non-invasive approaches monitoring NADH, mitochondrial membrane potential, oxygen consumption and workloads suggest significant Ca2+ effects on other elements of NADH generation as well as downstream elements of oxidative phosphorylation including the F1FO-ATPase and the cytochrome chain. These other potential elements of Ca2+ modification of mitochondrial energy conversion will be the focus of this review. Though most of specific molecular mechanisms have yet to be elucidated, it is clear that Ca2+ provides a balanced activation of mitochondrial energy metabolism which exceeds the alteration of dehydrogenases alone. PMID:22443365

  2. Pre-implantation Development of Domestic Animals.

    PubMed

    Piliszek, Anna; Madeja, Zofia E

    2018-01-01

    During the first days following fertilization, cells of mammalian embryo gradually lose totipotency, acquiring distinct identity. The first three lineages specified in the mammalian embryo are pluripotent epiblast, which later gives rise to the embryo proper, and two extraembryonic lineages, hypoblast (also known as primitive endoderm) and trophectoderm, which form tissues supporting development of the fetus in utero. Most of our knowledge regarding the mechanisms of early lineage specification in mammals comes from studies in the mouse. However, the growing body of evidence points to both similarities and species-specific differences. Understanding molecular and cellular mechanisms of early embryonic development in nonrodent mammals expands our understanding of basic mechanisms of differentiation and is essential for the development of effective protocols for assisted reproduction in agriculture, veterinary medicine, and for biomedical research. This review summarizes the current state of knowledge on key events in epiblast, hypoblast, and trophoblast differentiation in domestic mammals. © 2018 Elsevier Inc. All rights reserved.

  3. Vaccination and the TAP-independent antigen processing pathways.

    PubMed

    López, Daniel; Lorente, Elena; Barriga, Alejandro; Johnstone, Carolina; Mir, Carmen

    2013-09-01

    The cytotoxic CD8(+) T lymphocyte-mediated cellular response is important for the elimination of virus-infected cells and requires the prior recognition of short viral peptide antigens previously translocated to the endoplasmic reticulum by the transporter associated with antigen processing (TAP). However, individuals with nonfunctional TAP complexes or infected cells with TAP molecules blocked by specific viral proteins, such as the cowpoxvirus, a component of the first source of early empirical vaccination against smallpox, are still able to present several HLA class I ligands generated by the TAP-independent antigen processing pathways to specific cytotoxic CD8(+) T lymphocytes. Currently, bioterrorism and emerging infectious diseases have renewed interest in poxviruses. Recent works that have identified HLA class I ligands and epitopes in virus-infected TAP-deficient cells have implications for the study of both the effectiveness of early empirical vaccination and the analysis of HLA class I antigen processing in TAP-deficient subjects.

  4. SAUR Proteins as Effectors of Hormonal and Environmental Signals in Plant Growth

    PubMed Central

    Ren, Hong; Gray, William M.

    2016-01-01

    The plant hormone auxin regulates numerous aspects of plant growth and development. Early auxin response genes mediate its genomic effects on plant growth and development. Discovered in 1987, SMALL AUXIN UP RNAs (SAURs) are the largest family of early auxin response genes. SAUR functions have remained elusive, however, presumably due to extensive genetic redundancy. However, recent molecular, genetic, biochemical, and genomic studies have implicated SAURs in the regulation of a wide range of cellular, physiological, and developmental processes. Recently, crucial mechanistic insight into SAUR function was provided by the demonstration that SAURs inhibit PP2C.D phosphatases to activate plasma membrane (PM) H+-ATPases and promote cell expansion. In addition to auxin, several other hormones and environmental factors also regulate SAUR gene expression. We propose that SAURs are key effector outputs of hormonal and environmental signals that regulate plant growth and development. PMID:25983207

  5. Label-free identification of intestinal metaplasia in the stomach using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Wu, G.; Wei, J.; Zheng, Z.; Ye, J.; Zeng, S.

    2014-06-01

    The early diagnosis of intestinal metaplasia (IM) in the stomach together with effective therapeutic interventions is crucial to reducing the mortality-rates of the patients associated with gastric cancer. However, it is challenging during conventional white-light endoscopy, and histological analysis remains the ‘gold standard’ for the final diagnosis. Here, we describe a label-free imaging method, multiphoton microscopy (MPM), for the identification of IM in the stomach. It was found that multiphoton imaging provides cellular and subcellular details to the identification of IM from normal gastric tissues. In particular, there is significant difference in the population density of goblet cells between normal and IM gastric tissues, providing substantial potential to become a quantitative intrinsic marker for in vivo clinical diagnosis of early gastric lesions. To our knowledge, this is the first demonstration of the potential of MPM for the identification of IM.

  6. Transcriptional Downregulation of ORF50/Rta by Methotrexate Inhibits the Switch of Kaposi's Sarcoma-Associated Herpesvirus/Human Herpesvirus 8 from Latency to Lytic Replication

    PubMed Central

    Curreli, Francesca; Cerimele, Francesca; Muralidhar, Sumitra; Rosenthal, Leonard J.; Cesarman, Ethel; Friedman-Kien, Alvin E.; Flore, Ornella

    2002-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a cellular dihydrofolate reductase (DHFR) homologue. Methotrexate (MTX), a potent anti-inflammatory agent, inhibits cellular DHFR activity. We investigated the effect of noncytotoxic doses of MTX on latency and lytic KSHV replication in two KSHV-infected primary effusion lymphoma cell lines (BC-3 and BC-1) and in MTX-resistant BC-3 cells (MTX-R-BC-3 cells). Treatment with MTX completely prevented tetradecanoyl phorbol acetate-induced viral DNA replication and strongly decreased viral lytic transcript levels, even in MTX-resistant cells. However, the same treatment had no effect on transcription of cellular genes and KSHV latent genes. One of the lytic transcripts inhibited by MTX, ORF50/Rta (open reading frame), is an immediate-early gene encoding a replication-transcription activator required for expression of other viral lytic genes. Therefore, transcription of genes downstream of ORF50/Rta was inhibited, including those encoding the viral G-protein-coupled receptor (GPCR), viral interleukin-6, and K12/kaposin, which have been shown to be transforming in vitro and oncogenic in mice. Resistance to MTX has been documented in cultured cells and also in patients treated with this drug. However, MTX showed an inhibitory activity even in MTX-R-BC-3 cells. Two currently available antiherpesvirus drugs, cidofovir and foscarnet, had no effect on the transcription of these viral oncogenes and ORF50/Rta. MTX is the first example of a compound shown to downregulate the expression of ORF50/Rta and therefore prevent viral transforming gene transcription. Given that the expression of these genes may be important for tumor development, MTX could play a role in the future management of KSHV-associated malignancies. PMID:11967335

  7. Curcumin Rescues a PINK1 Knock Down SH-SY5Y Cellular Model of Parkinson's Disease from Mitochondrial Dysfunction and Cell Death.

    PubMed

    van der Merwe, Celia; van Dyk, Hayley Christy; Engelbrecht, Lize; van der Westhuizen, Francois Hendrikus; Kinnear, Craig; Loos, Ben; Bardien, Soraya

    2017-05-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterised by the loss of dopaminergic neurons in the substantia nigra. Mutations in the PINK1 gene result in an autosomal recessive form of early-onset PD. PINK1 plays a vital role in mitochondrial quality control via the removal of dysfunctional mitochondria. The aim of the present study was to create a cellular model of PD using siRNA-mediated knock down of PINK1 in SH-SY5Y neuroblastoma cells The possible protective effects of curcumin, known for its many beneficial properties including antioxidant and anti-inflammatory effects, was tested on this model in the presence and absence of paraquat, an additional stressor. PINK1 siRNA and control cells were separated into four treatment groups: (i) untreated, (ii) treated with paraquat, (iii) pre-treated with curcumin then treated with paraquat, or (iv) treated with curcumin. Various parameters of cellular and mitochondrial function were then measured. The PINK1 siRNA cells exhibited significantly decreased cell viability, mitochondrial membrane potential (MMP), mitochondrial respiration and ATP production, and increased apoptosis. Paraquat-treated cells exhibited decreased cell viability, increased apoptosis, a more fragmented mitochondrial network and decreased MMP. Curcumin pre-treatment followed by paraquat exposure rescued cell viability and increased MMP and mitochondrial respiration in control cells, and significantly decreased apoptosis and increased MMP and maximal respiration in PINK1 siRNA cells. These results highlight a protective effect of curcumin against mitochondrial dysfunction and apoptosis in PINK1-deficient and paraquat-exposed cells. More studies are warranted to further elucidate the potential neuroprotective properties of curcumin.

  8. Quartz exposure, retention, and early silicosis in sheep.

    PubMed

    Bégin, R; Dufresne, A; Cantin, A; Possmayer, F; Sébastien, P; Fabi, D; Bilodeau, G; Martel, M; Bisson, D; Pietrowski, B

    1989-05-01

    The purposes of this study were (1) to investigate the chronology of events in cellular and biochemical changes thought to be important in the development of silicosis, (2) to relate these to changes in lung function and radiograph, and (3) to evaluate the relation of quartz exposure and retention to individual response leading to early silicosis. Thirty-six sheep were exposed by repeated intratracheal infusion at 10-day intervals to 100 mg Minusil-5 in 100 ml saline (Si group), and 10 sheep were exposed at the same intervals to 100 ml saline (control). All sheep were investigated at 3-month intervals by chest radiograph, lung function, and lung lavage. At month 9, chest radiograph score of parenchymal opacities was significantly increased at 2.8 +/- 0.6 versus 0.4 +/- 0.4 in the Si group (p less than .05), establishing early radiologic silicosis. Lung function was significantly altered with reduction in lung compliance, vital capacity, and diffusion capacity (p less than .05). Lung lavage cellularity revealed significant increase in total cells (X 2.5), macrophages (X3), and neutrophils (X3). Albumin in BAL remained at the control level. Fibronectin production was significantly increased, as was the fibroblast growth activity, without significant change in procollagen 3 at this early stage of disease. Total phospholipids were significantly elevated in the Si-exposed sheep, and the profile demonstrated an increase in all the phospholipid components. Spontaneous release of hydrogen peroxide by alveolar cells was not increased, but in the presence of phorbol myristate acetate (PMA) higher levels of peroxide were found in the quartz-exposed sheep (p less than .05). The cellular and biochemical alterations of lung lavage preceded other changes. At month 12, there were good correlations (r greater than .49, p less than .001) between parameters evaluating related phenomena but poor correlations between measurements evaluating different aspects of the disorder. To investigate the heterogeneity in the individual response of sheep to the same exposure (susceptibility), individual quartz retention levels at month 12 were measured and found to correlate well with individual parameters of disease activity. We concluded that in early silicosis of sheep, cellular and biochemical changes in lung lavage preceded derangements of pulmonary function and radiographic abnormalities. Thereafter, parameters of lung lavage, lung function, and radiograph were significantly interrelated, but for a given exposure the degree of quartz retention appeared to determine the intensity of the silicotic process.

  9. Structural and biomechanical characteristics after early mobilization in an Achilles tendon rupture model: operative versus nonoperative treatment.

    PubMed

    Krapf, Daniel; Kaipel, Martin; Majewski, Martin

    2012-09-01

    Acute Achilles tendon ruptures are common sports injuries; however, treatment remains a clinical challenge. Studies show a superior effect of early mobilization and full weight bearing on tendon healing and clinical outcome; however, few data exist on structural and biomechanical characteristics in the early healing phase. This study investigated the histological and biomechanical characteristics of early mobilization and full weight bearing in an Achilles tendon rupture model. Eighty rats underwent dissection of a hindpaw Achilles tendon; 40 rats were treated conservatively and 40 underwent open repair of the transected Achilles tendon by suturing. Early mobilization and full weight bearing were allowed in both groups. At 1, 2, 4, and 8 weeks after tenotomy, tensile strength, stiffness, thickness, tissue characteristics (histological analysis), and length were determined. Dissected Achilles tendons healed in all animals during full weight-bearing early mobilization. One and 2 weeks after tenotomy, rats in the operative group showed increased tensile strength and stiffness compared with the nonoperative group. Repair-site diameters were increased at 1, 2, and 8 weeks after tenotomy. Tendon length was decreased in the operative group throughout observation, whereas the nonoperative group showed increased structural characteristics on the cellular level and a more homogeneous collagen distribution. Surgical treatment of dissected rat Achilles tendons showed superior biomechanical characteristics within the first 2 weeks. Conservative treatment resulted in superior histological findings but significant lengthening of the tendon in the early healing phase (weeks 1-8). Copyright 2012, SLACK Incorporated.

  10. Early detection of disease program: Evaluation of the cellular immune response

    NASA Technical Reports Server (NTRS)

    Criswell, B. S.; Knight, V.; Martin, R. R.; Kasel, J. A.

    1974-01-01

    The early cellular responses of specific components of the leukocyte and epithelial cell populations to foreign challenges of both an infectious and noninfectious character were evaluated. Procedures for screening potential flight crews were developed, documented, and tested on a control population. Methods for preparing suitable populations of lymphocytes, polymorphonuclear leukocytes, macrophages, and epithelial cells were first established and evaluated. Epithelial cells from viral infected individuals were screened with a number of anti-viral antisera. This procedure showed the earliest indication of disease as well as providing a specific diagnosis to the physicians. Both macrophages and polymorphonuclear leukocytes were studied from normal individuals, smokers, and patients with viral infections. Newer techniques enabling better definition of lymphocyte subpopulations were then developed, namely the E and EAC rosette procedures for recognition of T (thymus-derived) and B (bone-marrow-derived) lymphocyte subpopulations. Lymphocyte and lymphocyte subpopulation response to multiple mitogens have been evaluated.

  11. AMPD2 Regulates GTP Synthesis and is Mutated in a Potentially-Treatable Neurodegenerative Brainstem Disorder

    PubMed Central

    Akizu, Naiara; Cantagrel, Vincent; Schroth, Jana; Cai, Na; Vaux, Keith; McCloskey, Douglas; Naviaux, Robert K.; Vleet, Jeremy Van; Fenstermaker, Ali G.; Silhavy, Jennifer L.; Scheliga, Judith S.; Toyama, Keiko; Morisaki, Hiroko; Sonmez, Fatma Mujgan; Celep, Figen; Oraby, Azza; Zaki, Maha S.; Al-Baradie, Raidah; Faqeih, Eissa; Saleh, Mohammad; Spencer, Emily; Rosti, Rasim Ozgur; Scott, Eric; Nickerson, Elizabeth; Gabriel, Stacey; Morisaki, Takayuki; Holmes, Edward W.; Gleeson, Joseph G.

    2013-01-01

    Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energy homeostasis and nucleic acids synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a new distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH), due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation, which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a new, potentially treatable early-onset neurodegenerative disease. PMID:23911318

  12. AMPD2 regulates GTP synthesis and is mutated in a potentially treatable neurodegenerative brainstem disorder.

    PubMed

    Akizu, Naiara; Cantagrel, Vincent; Schroth, Jana; Cai, Na; Vaux, Keith; McCloskey, Douglas; Naviaux, Robert K; Van Vleet, Jeremy; Fenstermaker, Ali G; Silhavy, Jennifer L; Scheliga, Judith S; Toyama, Keiko; Morisaki, Hiroko; Sonmez, Fatma M; Celep, Figen; Oraby, Azza; Zaki, Maha S; Al-Baradie, Raidah; Faqeih, Eissa A; Saleh, Mohammed A M; Spencer, Emily; Rosti, Rasim Ozgur; Scott, Eric; Nickerson, Elizabeth; Gabriel, Stacey; Morisaki, Takayuki; Holmes, Edward W; Gleeson, Joseph G

    2013-08-01

    Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energy homeostasis and nucleic acid synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH) due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation, which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a potentially treatable early-onset neurodegenerative disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Environmental Adaptation from the Origin of Life to the Last Universal Common Ancestor

    NASA Astrophysics Data System (ADS)

    Cantine, Marjorie D.; Fournier, Gregory P.

    2018-03-01

    Extensive fundamental molecular and biological evolution took place between the prebiotic origins of life and the state of the Last Universal Common Ancestor (LUCA). Considering the evolutionary innovations between these two endpoints from the perspective of environmental adaptation, we explore the hypothesis that LUCA was temporally, spatially, and environmentally distinct from life's earliest origins in an RNA world. Using this lens, we interpret several molecular biological features as indicating an environmental transition between a cold, radiation-shielded origin of life and a mesophilic, surface-dwelling LUCA. Cellularity provides motility and permits Darwinian evolution by connecting genetic material and its products, and thus establishing heredity and lineage. Considering the importance of compartmentalization and motility, we propose that the early emergence of cellularity is required for environmental dispersal and diversification during these transitions. Early diversification and the emergence of ecology before LUCA could be an important pre-adaptation for life's persistence on a changing planet.

  14. Phase imaging of mechanical properties of live cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wax, Adam

    2017-02-01

    The mechanisms by which cells respond to mechanical stimuli are essential for cell function yet not well understood. Many rheological tools have been developed to characterize cellular viscoelastic properties but these typically require direct mechanical contact, limiting their throughput. We have developed a new approach for characterizing the organization of subcellular structures using a label free, noncontact, single-shot phase imaging method that correlates to measured cellular mechanical stiffness. The new analysis approach measures refractive index variance and relates it to disorder strength. These measurements are compared to cellular stiffness, measured using the same imaging tool to visualize nanoscale responses to flow shear stimulus. The utility of the technique is shown by comparing shear stiffness and phase disorder strength across five cellular populations with varying mechanical properties. An inverse relationship between disorder strength and shear stiffness is shown, suggesting that cell mechanical properties can be assessed in a format amenable to high throughput studies using this novel, non-contact technique. Further studies will be presented which include examination of mechanical stiffness in early carcinogenic events and investigation of the role of specific cellular structural proteins in mechanotransduction.

  15. Telomere length and early trauma in schizophrenia.

    PubMed

    Riley, Gabriella; Perrin, Mary; Vaez-Azizi, Leila M; Ruby, Eugene; Goetz, Raymond R; Dracxler, Roberta; Walsh-Messinger, Julie; Keefe, David L; Buckley, Peter F; Szeszko, Philip R; Malaspina, Dolores

    2018-04-02

    Childhood trauma is emerging as a risk factor for schizophrenia, but its mechanism with respect to etiology is unknown. One possible pathway is through leucocyte telomere length (LTL) shortening, a measure of cellular aging associated with trauma. This study examined early trauma and LTL shortening in schizophrenia and considered sex effects. The early trauma inventory (ETI) was administered to 48 adults with DSM-5 schizophrenia and 18 comparison participants. LTL was measured using qPCR. Cases had significantly more global trauma (F=4.10, p<0.01) and traumatic events (F=11.23, p<0.001), but case and control groups had similar LTL (1.91±0.74 and 1.83±0.62: p=0.68). The association of early trauma and LTL differed by sex in cases and controls (Fisher's R: Z<0.05). Significant negative associations were shown in male cases and, conversely, in female controls. For example, physical punishment was associated LTL shortening in males' cases (r=-0.429, p<01). Only female controls showed significant telomere shortening in association with early trauma. This data confirms the substantial excess of early trauma among schizophrenia cases. There were significant sex-differences in the relationship of the trauma to LTL, with only male cases showing the expected shortening. There were converse sex effects in the control group. Mean LTL was notably similar in cases and controls, despite the trauma-related shortening in male cases, cigarette smoking, older age and chronic illness of the cases. Factors may lengthen LTL in some schizophrenia cases. The converse sex differences in the cases are consistent with findings defective sexual differentiation in schizophrenia, consistent with other findings in the field. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Monitoring of human populations for early markers of cadmium toxicity: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Bruce A.

    2009-08-01

    Exposure of human populations to cadmium (Cd) from air, food and water may produce effects in organs such as the kidneys, liver, lungs, cardiovascular, immune and reproductive systems. Since Cd has been identified as a human carcinogen, biomarkers for early detection of susceptibility to cancer are of an importance to public health. The ability to document Cd exposure and uptake of this element through biological monitoring is a first step towards understanding its health effects. Interpretation and application of biological monitoring data for predicting human health outcomes require correlation with biological measures of organ system responses to the documented exposure.more » Essential to this understanding is the detection and linkage of early biological responses toxic effects in target cell populations. Fortunately, advances in cell biology have resulted in the development of pre-clinical biological markers (biomarkers) that demonstrate measurable and characteristic molecular changes in organ systems following chemical exposures that occur prior to the onset of overt clinical disease or development of cancer. Technical advances have rendered a number of these biomarkers practical for monitoring Cd-exposed human populations. Biomarkers will be increasingly important in relation to monitoring effects from the exposure to new Cd-based high technology materials. For example, cadmium-selenium (CdSe), nano-materials made from combinations of these elements have greatly altered cellular uptake characteristics due to particle size. These differences may greatly alter effects at the target cell level and hence risks for organ toxicities from such exposures. The value of validated biomarkers for early detection of systemic Cd-induced effects in humans cannot be underestimated due to the rapid expansion of nano-material technologies. This review will attempt to briefly summarize the applications, to date, of biomarker endpoints for assessing target organ system effects in humans and experimental systems from Cd exposure. Further, it will attempt to provide a prospective look at the possible future of biomarkers. The emphasis will be on the detection of early toxic effects from exposure to Cd in new products such as nano-materials and identification of populations at special risk for Cd toxicity.« less

  17. Monitoring of human populations for early markers of cadmium toxicity: a review.

    PubMed

    Fowler, Bruce A

    2009-08-01

    Exposure of human populations to cadmium (Cd) from air, food and water may produce effects in organs such as the kidneys, liver, lungs, cardiovascular, immune and reproductive systems. Since Cd has been identified as a human carcinogen, biomarkers for early detection of susceptibility to cancer are of an importance to public health. The ability to document Cd exposure and uptake of this element through biological monitoring is a first step towards understanding its health effects. Interpretation and application of biological monitoring data for predicting human health outcomes require correlation with biological measures of organ system responses to the documented exposure. Essential to this understanding is the detection and linkage of early biological responses toxic effects in target cell populations. Fortunately, advances in cell biology have resulted in the development of pre-clinical biological markers (biomarkers) that demonstrate measurable and characteristic molecular changes in organ systems following chemical exposures that occur prior to the onset of overt clinical disease or development of cancer. Technical advances have rendered a number of these biomarkers practical for monitoring Cd-exposed human populations. Biomarkers will be increasingly important in relation to monitoring effects from the exposure to new Cd-based high technology materials. For example, cadmium-selenium (CdSe), nano-materials made from combinations of these elements have greatly altered cellular uptake characteristics due to particle size. These differences may greatly alter effects at the target cell level and hence risks for organ toxicities from such exposures. The value of validated biomarkers for early detection of systemic Cd-induced effects in humans cannot be underestimated due to the rapid expansion of nano-material technologies. This review will attempt to briefly summarize the applications, to date, of biomarker endpoints for assessing target organ system effects in humans and experimental systems from Cd exposure. Further, it will attempt to provide a prospective look at the possible future of biomarkers. The emphasis will be on the detection of early toxic effects from exposure to Cd in new products such as nano-materials and identification of populations at special risk for Cd toxicity.

  18. On the origin and early evolution of biological catalysis and other studies on chemical evolution

    NASA Technical Reports Server (NTRS)

    Oro, J.; Lazcano, A.

    1991-01-01

    One of the lines of research in molecular evolution which we have developed for the past three years is related to the experimental and theoretical study of the origin and early evolution of biological catalysis. In an attempt to understand the nature of the first peptidic catalysts and coenzymes, we have achieved the non-enzymatic synthesis of the coenzymes ADPG, GDPG, and CDP-ethanolamine, under conditions considered to have been prevalent on the primitive Earth. We have also accomplished the prebiotic synthesis of histidine, as well as histidyl-histidine, and we have measured the enhancing effects of this catalytic dipeptide on the dephosphorylation of deoxyribonucleotide monophosphates, the hydrolysis of oligo A, and the oligomerization 2', 3' cAMP. We reviewed and further developed the hypothesis that RNA preceded double stranded DNA molecules as a reservoir of cellular genetic information. This led us to undertake the study of extant RNA polymerases in an attempt to discover vestigial sequences preserved from early Archean times. In addition, we continued our studies of on the chemical evolution of organic compounds in the solar system and beyond.

  19. Detection of early changes in lung cell cytology by flow-systems analysis techniques, July 1--December 31, 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinkamp, J.A.; Ingram, M.; Hansen, K.M.

    1976-03-01

    This report summarizes results of preliminary experiments to demonstrate the feasibility of using automated flow-systems analysis in detecting early changes of respiratory epithelium exposed to physical and chemical agents associated with the by-products of nonnuclear energy production. The Syrian hamster was selected as the experimental test animal to begin investigation of the effects of toxic agents to cells of the respiratory tract. Since initiation of the program approximately six months ago, the goals have been acquisition of adequate numbers of exfoliated cells from the lung; adaptation of cytological techniques developed on human exfoliated gynecological samples to hamster lung epithelium formore » obtaining single-cell suspensions; utilization of existing cell staining methods to measure DNA content in lung cells; and analysis of DNA content and cell size. As the flow-system cell analysis technology is adapted to the measurement of exfoliated lung cells, rapid and quantitative determination of early changes in the physical and biochemical cellular properties will be attempted as a function of exposure to the toxic agents. (auth)« less

  20. Detection of early changes in lung cell cytology by flow-systems analysis techniques. Progress report, October 1, 1976--June 30, 1977. [Damage induced by exposure to toxic agents associated with production of synthetic fuels from oil shale and coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinkamp, J.A.; Hansen, K.M.; Wilson, J.S.

    1977-07-01

    This report summarizes results of continuing experiments to develop cytological and biochemical indicators for estimating damage to respiratory tract cells in animals exposed to toxic agents associated with production of synthetic fuels from oil shale and coal, the specific goal being the application of advanced flow-systems technologies to the detection of early atypical cellular changes in lung epithelium. The objectives of the program during the past 6 months were: to develop standard methods for lavaging lungs of several rodent species (hamster, rat, and mouse) to increase cell yield; initiate oil shale exposures in hamsters and rats; study the effects ofmore » macrophage mobility in the presence of oil shale; and determine the effects of different fixatives on lung cell morphology using electron microscopy. To develop standard methods for lavaging the respiratory tract of test animals, experiments were devised to increase cell yield with minimal debris and blood. Proteolytic enzymes such as trypsin were also tested but produced excessive amounts of fibrinated blood. Experimental animals were exposed to raw and spent oil shale particulates to determine if changes in lung cell differential counts and/or atypical cellular changes were noted. Since the multiparameter cell separator system was inoperative during this reporting period due to major modifications, including the addition of an uv krypton laser, emphasis was primarily on cytological techniques. As the flow-systems instrumentation becomes fully operational during the next month, automated analysis of respiratory tract cells and measurement of physical and biochemical properties as a function of exposure to toxic agents will continue.« less

  1. Cellular mechanism underlying hypothermia-induced ventricular tachycardia/ventricular fibrillation in the setting of early repolarization and the protective effect of quinidine, cilostazol, and milrinone.

    PubMed

    Gurabi, Zsolt; Koncz, István; Patocskai, Bence; Nesterenko, Vladislav V; Antzelevitch, Charles

    2014-02-01

    Hypothermia has been reported to induce ventricular tachycardia and fibrillation (VT/VF) in patients with early repolarization (ER) pattern. This study examines the cellular mechanisms underlying VT/VF associated with hypothermia in an experimental model of ER syndrome and examines the effectiveness of quinidine, cilostazol, and milrinone to prevent hypothermia-induced arrhythmias. Transmembrane action potentials were simultaneously recorded from 2 epicardial and 1 endocardial site of coronary-perfused canine left ventricular wedge preparations, together with a pseudo-ECG. A combination of NS5806 (3-10 μmol/L) and verapamil (1 μmol/L) was used to pharmacologically model the genetic mutations responsible for ER syndrome. Acetylcholine (3 μmol/L) was used to simulate increased parasympathetic tone, which is known to promote ER. In controls, lowering the temperature of the coronary perfusate to induce mild hypothermia (32°C-34°C) resulted in increased J-wave area on the ECG and accentuated epicardial action potential notch but no arrhythmic activity. In the setting of ER, hypothermia caused further accentuation of the epicardial action potential notch, leading to loss of the action potential dome at some sites but not others, thus creating the substrate for development of phase 2 reentry and VT/VF. Addition of the transient outward current antagonist quinidine (5 μmol/L) or the phosphodiesterase III inhibitors cilostazol (10 μmol/L) or milrinone (5 μmol/L) diminished the ER manifestations and prevented the hypothermia-induced phase 2 reentry and VT/VF. Hypothermia leads to VT/VF in the setting of ER by exaggerating repolarization abnormalities, leading to development of phase 2 reentry. Quinidine, cilostazol, and milrinone suppress the hypothermia-induced VT/VF by reversing the repolarization abnormalities.

  2. Cellular Mechanism Underlying Hypothermia-Induced VT/VF in the Setting of Early Repolarization and the Protective Effect of Quinidine, Cilostazol and Milrinone

    PubMed Central

    Gurabi, Zsolt; Koncz, István; Patocskai, Bence; Nesterenko, Vladislav V.; Antzelevitch, Charles

    2014-01-01

    Background Hypothermia has been reported to induce ventricular tachycardia and fibrillation (VT/VF) in patients with early repolarization (ER) pattern. This study examines the cellular mechanisms underlying VT/VF associated with hypothermia in an experimental model of ER syndrome (ERS) and examines the effectiveness of quinidine, cilostazol and milrinone to prevent hypothermia-induced arrhythmias. Method and Results Transmembrane action potentials (AP) were simultaneously recorded from 2 epicardial and 1 endocardial site of coronary-perfused canine left-ventricular wedge preparations, together with a pseudo-ECG. A combination of NS5806 (3–10 µM) and verapamil (1µM) was used to pharmacologically model the genetic mutations responsible for ERS. Acetylcholine (3µM) was used to simulate increased parasympathetic tone, which is known to promote ER. In control, lowering the temperature of the coronary perfusate to induce mild hypothermia (32°C-34°C) resulted in increased J wave area on the ECG and accentuated epicardial AP notch but no arrhythmic activity. In the setting of ER, hypothermia caused further accentuation of the epicardial AP notch, leading to loss of the AP dome at some sites but not others, thus creating the substrate for development of phase-2-reentry and VT/VF. Addition of the Ito antagonist quinidine (5 µM) or the phosphodiesterase III inhibitors cilostazol (10 µM) or milrinone (5 µM), diminished the ER manifestations and prevented the hypothermia-induced phase 2 reentry and VT/VF. Conclusions Hypothermia leads to VT/VF in the setting of ER by exaggerating repolarization abnormalities, leading to development of phase-2-reentry. Quinidine, cilostazol and milrinone suppress the hypothermia-induced VT/VF by reversing the repolarization abnormalities. PMID:24429494

  3. Early to Late Endosome Trafficking Controls Secretion and Zymogen Activation in Rodent and Human Pancreatic Acinar Cells.

    PubMed

    Messenger, Scott W; Thomas, Diana Dh; Cooley, Michelle M; Jones, Elaina K; Falkowski, Michelle A; August, Benjamin K; Fernandez, Luis A; Gorelick, Fred S; Groblewski, Guy E

    2015-11-01

    Pancreatic acinar cells have an expanded apical endosomal system, the physiological and pathophysiological significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate (PI(3,5)P 2 ) is an essential phospholipid generated by PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI(3)P). PI(3,5)P 2 is necessary for maturation of early endosomes (EE) to late endosomes (LE). Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE) intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. Inhibition of EE to LE trafficking was achieved using pharmacological inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1), and trypsinogen activation in response to high-dose CCK-8, bile acids and cigarette toxin was determined. PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to high CCK-8, tobacco toxin, and bile salts in both rodent and human acini. These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular activation of zymogens leading to the pathogenicity of acute pancreatitis.

  4. Efficacy and safety of mitomycin C as an agent to treat corneal scarring in horses using an in vitro model.

    PubMed

    Buss, Dylan G; Sharma, Ajay; Giuliano, Elizabeth A; Mohan, Rajiv R

    2010-07-01

    Mitomycin C (MMC) is used clinically to treat corneal scarring in human patients. We investigated the safety and efficacy of MMC to treat corneal scarring in horses by examining its effects at the early and late stages of disease using an in vitro model. An in vitro model of equine corneal fibroblast (ECF) developed was used. The ECF or myofibroblast cultures were produced by growing primary ECF in the presence or absence of transforming growth factor beta-1 (TGFbeta1) under serum-free conditions. The MMC dose for the equine cornea was defined with dose-dependent trypan blue exclusion and (3-4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays after applying MMC to the cultures once for 2 min. The efficacy of MMC to control corneal scarring in horses was determined by measuring mRNA and protein expression of corneal scarring markers (alpha-smooth muscle actin and F-actin) with western blotting, immunocytochemistry and/or quantitative real-time polymerase chain reactions. A single 2-min treatment of 0.02% or less MMC did not alter ECF phenotype, viability, or cellular proliferation whereas 0.05% or higher MMC doses showed mild-to-moderate cellular toxicity. The TGFbeta1 at 1 ng/mL showed significant myofibroblast formation in ECF under serum-free conditions. A single 2-min, 0.02% MMC treatment 24 h (early) after TGFbeta1 stimulation significantly reduced conversion of ECF to myofibroblasts, however, a single 0.02% MMC treatment 11 days after TGFbeta1 stimulation showed moderate myofibroblast inhibition. That MMC safely and effectively reduced scarring in ECF by reducing the degree of transdifferentiation of corneal fibroblasts to myofibroblasts in vitro. Further clinical in vivo investigations are warranted using MMC in horses.

  5. Cellular Contraction and Polarization Drive Collective Cellular Motion.

    PubMed

    Notbohm, Jacob; Banerjee, Shiladitya; Utuje, Kazage J C; Gweon, Bomi; Jang, Hwanseok; Park, Yongdoo; Shin, Jennifer; Butler, James P; Fredberg, Jeffrey J; Marchetti, M Cristina

    2016-06-21

    Coordinated motions of close-packed multicellular systems typically generate cooperative packs, swirls, and clusters. These cooperative motions are driven by active cellular forces, but the physical nature of these forces and how they generate collective cellular motion remain poorly understood. Here, we study forces and motions in a confined epithelial monolayer and make two experimental observations: 1) the direction of local cellular motion deviates systematically from the direction of the local traction exerted by each cell upon its substrate; and 2) oscillating waves of cellular motion arise spontaneously. Based on these observations, we propose a theory that connects forces and motions using two internal state variables, one of which generates an effective cellular polarization, and the other, through contractile forces, an effective cellular inertia. In agreement with theoretical predictions, drugs that inhibit contractility reduce both the cellular effective elastic modulus and the frequency of oscillations. Together, theory and experiment provide evidence suggesting that collective cellular motion is driven by at least two internal variables that serve to sustain waves and to polarize local cellular traction in a direction that deviates systematically from local cellular velocity. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Urban Flood Prevention and Early Warning System in Jinan City

    NASA Astrophysics Data System (ADS)

    Feng, Shiyuan; Li, Qingguo

    2018-06-01

    The system construction of urban flood control and disaster reduction in China is facing pressure and challenge from new urban water disaster. Under the circumstances that it is difficult to build high standards of flood protection engineering measures in urban areas, it is particularly important to carry out urban flood early warning. In Jinan City, a representative inland area, based on the index system of early warning of flood in Jinan urban area, the method of fuzzy comprehensive evaluation was adopted to evaluate the level of early warning. Based on the cumulative rainfall of 3 hours, the CAflood simulation results based on cellular automaton model of urban flooding were used as evaluation indexes to realize the accuracy and integration of urban flood control early warning.

  7. BAP1 and Cancer

    PubMed Central

    Carbone, Michele; Yang, Haining; Pass, Harvey I.; Krausz, Thomas; Testa, Joseph R.; Gaudino, Giovanni

    2013-01-01

    Preface BAP1 is a deubiquitylase that is found associated with multi-protein complexes that regulate key cellular pathways, including the cell cycle, cellular differentiation, cell death, gluconeogenesis and the DNA damage response (DDR). Recent findings indicate that germline BAP1 mutations cause a novel cancer syndrome, characterized, at least in the affected families studied so far, by the onset at an early age of benign melanocytic skin tumours with mutated BAP1, and later in life by a high incidence of mesothelioma, uveal melanoma, cutaneous melanoma and possibly additional cancers. PMID:23550303

  8. Developmental Progression in the Coral Acropora digitifera Is Controlled by Differential Expression of Distinct Regulatory Gene Networks

    PubMed Central

    Reyes-Bermudez, Alejandro; Villar-Briones, Alejandro; Ramirez-Portilla, Catalina; Hidaka, Michio; Mikheyev, Alexander S.

    2016-01-01

    Corals belong to the most basal class of the Phylum Cnidaria, which is considered the sister group of bilaterian animals, and thus have become an emerging model to study the evolution of developmental mechanisms. Although cell renewal, differentiation, and maintenance of pluripotency are cellular events shared by multicellular animals, the cellular basis of these fundamental biological processes are still poorly understood. To understand how changes in gene expression regulate morphogenetic transitions at the base of the eumetazoa, we performed quantitative RNA-seq analysis during Acropora digitifera’s development. We collected embryonic, larval, and adult samples to characterize stage-specific transcription profiles, as well as broad expression patterns. Transcription profiles reconstructed development revealing two main expression clusters. The first cluster grouped blastula and gastrula and the second grouped subsequent developmental time points. Consistently, we observed clear differences in gene expression between early and late developmental transitions, with higher numbers of differentially expressed genes and fold changes around gastrulation. Furthermore, we identified three coexpression clusters that represented discrete gene expression patterns. During early transitions, transcriptional networks seemed to regulate cellular fate and morphogenesis of the larval body. In late transitions, these networks seemed to play important roles preparing planulae for switch in lifestyle and regulation of adult processes. Although developmental progression in A. digitifera is regulated to some extent by differential coexpression of well-defined gene networks, stage-specific transcription profiles appear to be independent entities. While negative regulation of transcription is predominant in early development, cell differentiation was upregulated in larval and adult stages. PMID:26941230

  9. Age gene expression and coexpression progressive signatures in peripheral blood leukocytes.

    PubMed

    Irizar, Haritz; Goñi, Joaquín; Alzualde, Ainhoa; Castillo-Triviño, Tamara; Olascoaga, Javier; Lopez de Munain, Adolfo; Otaegui, David

    2015-12-01

    Both cellular senescence and organismic aging are known to be dynamic processes that start early in life and progress constantly during the whole life of the individual. In this work, with the objective of identifying signatures of age-related progressive change at the transcriptomic level, we have performed a whole-genome gene expression analysis of peripheral blood leukocytes in a group of healthy individuals with ages ranging from 14 to 93 years. A set of genes with progressively changing gene expression (either increase or decrease with age) has been identified and contextualized in a coexpression network. A modularity analysis has been performed on this network and biological-term and pathway enrichment analyses have been used for biological interpretation of each module. In summary, the results of the present work reveal the existence of a transcriptomic component that shows progressive expression changes associated to age in peripheral blood leukocytes, highlighting both the dynamic nature of the process and the need to complement young vs. elder studies with longitudinal studies that include middle aged individuals. From the transcriptional point of view, immunosenescence seems to be occurring from a relatively early age, at least from the late 20s/early 30s, and the 49-56 year old age-range appears to be critical. In general, the genes that, according to our results, show progressive expression changes with aging are involved in pathogenic/cellular processes that have classically been linked to aging in humans: cancer, immune processes and cellular growth vs. maintenance. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Delayed histochemical alterations within the neurovascular unit due to transient focal cerebral ischemia and experimental treatment with neurotrophic factors.

    PubMed

    Michalski, Dominik; Pitsch, Roman; Pillai, Deepu R; Mages, Bianca; Aleithe, Susanne; Grosche, Jens; Martens, Henrik; Schlachetzki, Felix; Härtig, Wolfgang

    2017-01-01

    Current stroke therapy is focused on recanalizing strategies, but neuroprotective co-treatments are still lacking. Modern concepts of the ischemia-affected neurovascular unit (NVU) and surrounding penumbra emphasize the complexity during the transition from initial damaging to regenerative processes. While early treatment with neurotrophic factors was shown to result in lesion size reduction and blood-brain barrier (BBB) stabilization, cellular consequences from these treatments are poorly understood. This study explored delayed cellular responses not only to ischemic stroke, but also to an early treatment with neurotrophic factors. Rats underwent 60 minutes of focal cerebral ischemia. Fluorescence labeling was applied to sections from brains perfused 7 days after ischemia. Analyses focused on NVU constituents including the vasculature, astrocytes and microglia in the ischemic striatum, the border zone and the contralateral hemisphere. In addition to histochemical signs of BBB breakdown, a strong up-regulation of collagen IV and microglia activation occurred within the ischemic core with simultaneous degradation of astrocytes and their endfeet. Activated astroglia were mainly depicted at the border zone in terms of a glial scar formation. Early treatment with pigment epithelium-derived factor (PEDF) resulted in an attenuation of the usually up-regulated collagen IV-immunoreactivity. However, glial activation was not influenced by treatment with PEDF or the epidermal growth factor (EGF). In conclusion, these data on ischemia-induced cellular reactions within the NVU might help to develop treatments addressing the transition from injury towards regeneration. Thereby, the integrity of the vasculature in close relation to neighboring structures like astrocytes appears as a promising target.

  11. Remotely supported prehospital ultrasound: A feasibility study of real-time image transmission and expert guidance to aid diagnosis in remote and rural communities.

    PubMed

    Eadie, Leila; Mulhern, John; Regan, Luke; Mort, Alasdair; Shannon, Helen; Macaden, Ashish; Wilson, Philip

    2017-01-01

    Introduction Our aim is to expedite prehospital assessment of remote and rural patients using remotely-supported ultrasound and satellite/cellular communications. In this paradigm, paramedics are remotely-supported ultrasound operators, guided by hospital-based specialists, to record images before receiving diagnostic advice. Technology can support users in areas with little access to medical imaging and suboptimal communications coverage by connecting to multiple cellular networks and/or satellites to stream live ultrasound and audio-video. Methods An ambulance-based demonstrator system captured standard trauma and novel transcranial ultrasound scans from 10 healthy volunteers at 16 locations across the Scottish Highlands. Volunteers underwent brief scanning training before receiving expert guidance via the communications link. Ultrasound images were streamed with an audio/video feed to reviewers for interpretation. Two sessions were transmitted via satellite and 21 used cellular networks. Reviewers rated image and communication quality, and their utility for diagnosis. Transmission latency and bandwidth were recorded, and effects of scanner and reviewer experience were assessed. Results Appropriate views were provided in 94% of the simulated trauma scans. The mean upload rate was 835/150 kbps and mean latency was 114/2072 ms for cellular and satellite networks, respectively. Scanning experience had a significant impact on time to achieve a diagnostic image, and review of offline scans required significantly less time than live-streamed scans. Discussion This prehospital ultrasound system could facilitate early diagnosis and streamlining of treatment pathways for remote emergency patients, being particularly applicable in rural areas worldwide with poor communications infrastructure and extensive transport times.

  12. Adenovirus type 5 exerts genome-wide control over cellular programs governing proliferation, quiescence, and survival

    PubMed Central

    Miller, Daniel L; Myers, Chad L; Rickards, Brenden; Coller, Hilary A; Flint, S Jane

    2007-01-01

    Background Human adenoviruses, such as serotype 5 (Ad5), encode several proteins that can perturb cellular mechanisms that regulate cell cycle progression and apoptosis, as well as those that mediate mRNA production and translation. However, a global view of the effects of Ad5 infection on such programs in normal human cells is not available, despite widespread efforts to develop adenoviruses for therapeutic applications. Results We used two-color hybridization and oligonucleotide microarrays to monitor changes in cellular RNA concentrations as a function of time after Ad5 infection of quiescent, normal human fibroblasts. We observed that the expression of some 2,000 genes, about 10% of those examined, increased or decreased by a factor of two or greater following Ad5 infection, but were not altered in mock-infected cells. Consensus k-means clustering established that the temporal patterns of these changes were unexpectedly complex. Gene Ontology terms associated with cell proliferation were significantly over-represented in several clusters. The results of comparative analyses demonstrate that Ad5 infection induces reversal of the quiescence program and recapitulation of the core serum response, and that only a small subset of the observed changes in cellular gene expression can be ascribed to well characterized functions of the viral E1A and E1B proteins. Conclusion These findings establish that the impact of adenovirus infection on host cell programs is far greater than appreciated hitherto. Furthermore, they provide a new framework for investigating the molecular functions of viral early proteins and information relevant to the design of conditionally replicating adenoviral vectors. PMID:17430596

  13. Early warning of illegal development for protected areas by integrating cellular automata with neural networks.

    PubMed

    Li, Xia; Lao, Chunhua; Liu, Yilun; Liu, Xiaoping; Chen, Yimin; Li, Shaoying; Ai, Bing; He, Zijian

    2013-11-30

    Ecological security has become a major issue under fast urbanization in China. As the first two cities in this country, Shenzhen and Dongguan issued the ordinance of Eco-designated Line of Control (ELC) to "wire" ecologically important areas for strict protection in 2005 and 2009 respectively. Early warning systems (EWS) are a useful tool for assisting the implementation ELC. In this study, a multi-model approach is proposed for the early warning of illegal development by integrating cellular automata (CA) and artificial neural networks (ANN). The objective is to prevent the ecological risks or catastrophe caused by such development at an early stage. The integrated model is calibrated by using the empirical information from both remote sensing and handheld GPS (global positioning systems). The MAR indicator which is the ratio of missing alarms to all the warnings is proposed for better assessment of the model performance. It is found that the fast urban development has caused significant threats to natural-area protection in the study area. The integration of CA, ANN and GPS provides a powerful tool for describing and predicting illegal development which is in highly non-linear and fragmented forms. The comparison shows that this multi-model approach has much better performances than the single-model approach for the early warning. Compared with the single models of CA and ANN, this integrated multi-model can improve the value of MAR by 65.48% and 5.17% respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Coordination of cellular differentiation, polarity, mitosis and meiosis - New findings from early vertebrate oogenesis.

    PubMed

    Elkouby, Yaniv M; Mullins, Mary C

    2017-10-15

    A mechanistic dissection of early oocyte differentiation in vertebrates is key to advancing our knowledge of germline development, reproductive biology, the regulation of meiosis, and all of their associated disorders. Recent advances in the field include breakthroughs in the identification of germline stem cells in Medaka, in the cellular architecture of the germline cyst in mice, in a mechanistic dissection of chromosomal pairing and bouquet formation in meiosis in mice, in tracing oocyte symmetry breaking to the chromosomal bouquet of meiosis in zebrafish, and in the biology of the Balbiani body, a universal oocyte granule. Many of the major events in early oogenesis are universally conserved, and some are co-opted for species-specific needs. The chromosomal events of meiosis are of tremendous consequence to gamete formation and have been extensively studied. New light is now being shed on other aspects of early oocyte differentiation, which were traditionally considered outside the scope of meiosis, and their coordination with meiotic events. The emerging theme is of meiosis as a common groundwork for coordinating multifaceted processes of oocyte differentiation. In an accompanying manuscript we describe methods that allowed for investigations in the zebrafish ovary to contribute to these breakthroughs. Here, we review these advances mostly from the zebrafish and mouse. We discuss oogenesis concepts across established model organisms, and construct an inclusive paradigm for early oocyte differentiation in vertebrates. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Comparison between the early cellular response to electron radiation and the production of tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinclair, Ian P.

    1972-11-01

    The aim of the study is to quantitate radiation-induced cell population changes in various epithelial components of rat skin and to correlate them, if possible with the subsequent production of tumors.

  16. Decoupling diffusional from dimensional control of signaling in 3D culture reveals a role for myosin in tubulogenesis

    PubMed Central

    Raghavan, Srivatsan; Shen, Colette J.; Desai, Ravi A.; Sniadecki, Nathan J.; Nelson, Celeste M.; Chen, Christopher S.

    2010-01-01

    We present a novel microfabricated platform to culture cells within arrays of micrometer-scale three-dimensional (3D) extracellular matrix scaffolds (microgels). These microscale cultures eliminate diffusion barriers that are intrinsic to traditional 3D culture systems (macrogels) and enable uniform cytokine stimulation of the entire culture population, as well as allow immunolabeling, imaging and population-based biochemical assays across the relatively coplanar microgels. Examining early signaling associated with hepatocyte growth factor (HGF)-mediated scattering and tubulogenesis of MDCK cells revealed that 3D culture modulates cellular responses both through dimensionality and altered stimulation rates. Comparing responses in 2D culture, microgels and macrogels demonstrated that HGF-induced ERK signaling was driven by the dynamics of stimulation and not by whether cells were in a 2D or 3D environment, and that this ERK signaling was equally important for HGF-induced cell scattering on 2D substrates and tubulogenesis in 3D. By contrast, we discovered a specific HGF-induced increase in myosin expression leading to sustained downregulation of myosin activity that occurred only within 3D contexts and was required for 3D tubulogenesis but not 2D scattering. Interestingly, although absent in cells on collagen-coated plates, downregulation of myosin activity also occurred for cells on collagen gels, but was transient and mediated by a combination of myosin dephosphorylation and enhanced myosin expression. Furthermore, upregulating myosin activity via siRNA targeted to a myosin phosphatase did not attenuate scattering in 2D but did inhibit tubulogenesis in 3D. Together, these results demonstrate that cellular responses to soluble cues in 3D culture are regulated by both rates of stimulation and by matrix dimensionality, and highlight the importance of decoupling these effects to identify early signals relevant to cellular function in 3D environments. PMID:20682635

  17. Changes in oxidative stress parameters in relation to age, growth and reproduction in the short-lived catarina scallop Argopecten ventricosus reared in its natural environment.

    PubMed

    Guerra, C; Zenteno-Savín, T; Maeda-Martínez, A N; Philipp, E E R; Abele, D

    2012-08-01

    Increase in oxidative damage and decrease in cellular maintenance is often associated with aging, but, in marine ectotherms, both processes are also strongly influenced by somatic growth, maturation and reproduction. In this study, we used a single cohort of the short-lived catarina scallop Argopecten ventricosus, to investigate the effects of somatic growth, reproduction and aging on oxidative damage parameters (protein carbonyls, TBARS and lipofuscin) and cellular maintenance mechanisms (antioxidant activity and apoptosis) in scallops, caged in their natural environment. The concentrations of protein carbonyls and TBARS increased steeply during the early period of fast growth and during reproduction in one-year-old scallops. However, oxidative damage was transient, and apoptotic cell death played a pivotal role in eliminating damage in gill, mantle and muscle tissues of young scallops. Animals were able to reproduce again in the second year, but the reduced intensity of apoptosis impaired subsequent removal of damaged cells. In late survivors low antioxidant capacity and apoptotic activity together with a fast accumulation of the age pigment lipofuscin was observed. Rates of oxygen consumption and oxidative stress markers were strongly dependent on somatic growth and reproductive state but not on temperature. Compared to longer-lived bivalves, A. ventricosus seems more susceptible to oxidative stress with higher tissue-specific protein carbonyl levels and fast accumulation of lipofuscin in animals surviving the second spawning. Superoxide dismutase activity and apoptotic cell death intensity were however higher in this short-lived scallop than in longer-lived bivalves. The life strategy of this short-lived and intensely predated scallop supports rapid somatic growth and fitness as well as early maturation at young age at the cost of fast cellular degradation in second year scallops. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Cellular Apoptosis of Hemocytes from Dendrolimus tabulaeformis Tsai et Liu Larvae Induced with the Secondary Metabolites of Beauveria brongniartii (Sacc.) Petch

    PubMed Central

    Fan, Jinhua; Xie, Yingping; Xue, Jiaoliang; Zhang, Yingling; Yang, Qian

    2013-01-01

    To investigate the effect of the secondary metabolites of entomopathogenic fungus on the hemocyte immunity of host insect, the secondary metabolite complex (SMC) of Beauveria brongniartii was used in three concentrations (5.5, 55, and 550 µg/mL), and the 4th instar larvae of the pine caterpillar Dendrolimus tabulaeformis were employed as host insects. The larvae were inoculated with the SMC solutions by injection in bioassays. Apoptosis of the larval hemocytes was observed using fluorescence microscopy (FM), transmission electron microscopy (TEM), and flow cytometry (FCM). The FM results showed that in the treated groups, larval hemocytes exhibited symptoms of early apoptosis at 6 h post-treatment by radiating a non-uniform kelly fluorescence and exhibited symptoms of late apoptosis at 12 h post-treatment by radiating a non-uniform orange fluorescence. Under TEM, the following ultra-structural changes associated with apoptosis of the larval hemocytes were observed in the treated groups: the nuclei were hypertrophied, slight folds were on the nuclear envelope, the chromatin became concentrated, the mitochondrial cristae disappeared or were disorderly, most cells developed blebs, and fibrillar aggregation appeared and accumulated in the cytoplasm. Apoptosis of the larval hemocytes was detected by FCM at 6 h post-treatment; the percentage of early apoptotic cells in the SMC 5.5, 55, and 550 µg/mL treatment groups were 11.93%, 13.10%, and 18.42%, respectively. Late apoptosis first occurred at 12 h post-treatment; the highest rate of apoptosis was 36.54 ± 4.37% at 24 h post-treatment in the SMC 55 µg/mL treatment group. In general, the cellular apoptosis rate was positively correlated with the SMC concentration and the time post-treatment. These results indicate that secondary metabolites of B . brongniartii are able to attack the hemocytes of D . tabulaeformis larvae and induce cellular apoptosis, thereby providing new evidence that secondary metabolites of mycopathogens can act on host immune systems. PMID:23940771

  19. Phosphoprotein profiles of candidate markers for early cellular responses to low-dose γ-radiation in normal human fibroblast cells

    PubMed Central

    Yim, Ji-Hye; Yun, Jung Mi; Kim, Ji Young; Lee, In Kyung; Nam, Seon Young

    2017-01-01

    Abstract Ionizing radiation causes biological damage that leads to severe health effects. However, the effects and subsequent health implications caused by exposure to low-dose radiation are unclear. The objective of this study was to determine phosphoprotein profiles in normal human fibroblast cell lines in response to low-dose and high-dose γ-radiation. We examined the cellular response in MRC-5 cells 0.5 h after exposure to 0.05 or 2 Gy. Using 1318 antibodies by antibody array, we observed ≥1.3-fold increases in a number of identified phosphoproteins in cells subjected to low-dose (0.05 Gy) and high-dose (2 Gy) radiation, suggesting that both radiation levels stimulate distinct signaling pathways. Low-dose radiation induced nucleic acid–binding transcription factor activity, developmental processes, and multicellular organismal processes. By contrast, high-dose radiation stimulated apoptotic processes, cell adhesion and regulation, and cellular organization and biogenesis. We found that phospho-BTK (Tyr550) and phospho-Gab2 (Tyr643) protein levels at 0.5 h after treatment were higher in cells subjected to low-dose radiation than in cells treated with high-dose radiation. We also determined that the phosphorylation of BTK and Gab2 in response to ionizing radiation was regulated in a dose-dependent manner in MRC-5 and NHDF cells. Our study provides new insights into the biological responses to low-dose γ-radiation and identifies potential candidate markers for monitoring exposure to low-dose ionizing radiation. PMID:28122968

  20. Nature, nurture and neurology: gene-environment interactions in neurodegenerative disease. FEBS Anniversary Prize Lecture delivered on 27 June 2004 at the 29th FEBS Congress in Warsaw.

    PubMed

    Spires, Tara L; Hannan, Anthony J

    2005-05-01

    Neurodegenerative disorders, such as Huntington's, Alzheimer's, and Parkinson's diseases, affect millions of people worldwide and currently there are few effective treatments and no cures for these diseases. Transgenic mice expressing human transgenes for huntingtin, amyloid precursor protein, and other genes associated with familial forms of neurodegenerative disease in humans provide remarkable tools for studying neurodegeneration because they mimic many of the pathological and behavioural features of the human conditions. One of the recurring themes revealed by these various transgenic models is that different diseases may share similar molecular and cellular mechanisms of pathogenesis. Cellular mechanisms known to be disrupted at early stages in multiple neurodegenerative disorders include gene expression, protein interactions (manifesting as pathological protein aggregation and disrupted signaling), synaptic function and plasticity. Recent work in mouse models of Huntington's disease has shown that enriching the environment of transgenic animals delays the onset and slows the progression of Huntington's disease-associated motor and cognitive symptoms. Environmental enrichment is known to induce various molecular and cellular changes in specific brain regions of wild-type animals, including altered gene expression profiles, enhanced neurogenesis and synaptic plasticity. The promising effects of environmental stimulation, demonstrated recently in models of neurodegenerative disease, suggest that therapy based on the principles of environmental enrichment might benefit disease sufferers and provide insight into possible mechanisms of neurodegeneration and subsequent identification of novel therapeutic targets. Here, we review the studies of environmental enrichment relevant to some major neurodegenerative diseases and discuss their research and clinical implications.

  1. Distinct Effect of Impact Rise Times on Immediate and Early Neuropathology After Brain Injury in Juvenile Rats

    PubMed Central

    Jayakumar, Archana; Pfister, Bryan J.; Santhakumar, Vijayalakshmi

    2015-01-01

    Traumatic brain injury (TBI) can occur from physical trauma from a wide spectrum of insults ranging from explosions to falls. The biomechanics of the trauma can vary in key features, including the rate and magnitude of the insult. Although the effect of peak injury pressure on neurological outcome has been examined in the fluid percussion injury (FPI) model, it is unknown whether differences in rate of rise of the injury waveform modify cellular and physiological changes after TBI. Using a programmable FPI device, we examined juvenile rats subjected to a constant peak pressure at two rates of injury: a standard FPI rate of rise and a faster rate of rise to the same peak pressure. Immediate postinjury assessment identified fewer seizures and relatively brief loss of consciousness after fast-rise injuries than after standard-rise injuries at similar peak pressures. Compared with rats injured at standard rise, fewer silver-stained injured neuronal profiles and degenerating hilar neurons were observed 4-6 hr after fast-rise FPI. However, 1 week postinjury, both fast- and standard-rise FPI resulted in hilar cell loss and enhanced perforant path-evoked granule cell field excitability compared with sham controls. Notably, the extent of neuronal loss and increase in dentate excitability were not different between rats injured at fast and standard rates of rise to peak pressure. Our data indicate that reduced cellular damage and improved immediate neurological outcome after fast rising primary concussive injuries mask the severity of the subsequent cellular and neurophysiological pathology and may be unreliable as a predictor of prognosis. PMID:24799156

  2. Gene therapy on the move

    PubMed Central

    Kaufmann, Kerstin B; Büning, Hildegard; Galy, Anne; Schambach, Axel; Grez, Manuel

    2013-01-01

    The first gene therapy clinical trials were initiated more than two decades ago. In the early days, gene therapy shared the fate of many experimental medicine approaches and was impeded by the occurrence of severe side effects in a few treated patients. The understanding of the molecular and cellular mechanisms leading to treatment- and/or vector-associated setbacks has resulted in the development of highly sophisticated gene transfer tools with improved safety and therapeutic efficacy. Employing these advanced tools, a series of Phase I/II trials were started in the past few years with excellent clinical results and no side effects reported so far. Moreover, highly efficient gene targeting strategies and site-directed gene editing technologies have been developed and applied clinically. With more than 1900 clinical trials to date, gene therapy has moved from a vision to clinical reality. This review focuses on the application of gene therapy for the correction of inherited diseases, the limitations and drawbacks encountered in some of the early clinical trials and the revival of gene therapy as a powerful treatment option for the correction of monogenic disorders. PMID:24106209

  3. Initiating a regenerative response; cellular and molecular features of wound healing in the cnidarian Nematostella vectensis.

    PubMed

    DuBuc, Timothy Q; Traylor-Knowles, Nikki; Martindale, Mark Q

    2014-03-26

    Wound healing is the first stage of a series of cellular events that are necessary to initiate a regenerative response. Defective wound healing can block regeneration even in animals with a high regenerative capacity. Understanding how signals generated during wound healing promote regeneration of lost structures is highly important, considering that virtually all animals have the ability to heal but many lack the ability to regenerate missing structures. Cnidarians are the phylogenetic sister taxa to bilaterians and are highly regenerative animals. To gain a greater understanding of how early animals generate a regenerative response, we examined the cellular and molecular components involved during wound healing in the anthozoan cnidarian Nematostella vectensis. Pharmacological inhibition of extracellular signal-regulated kinases (ERK) signaling blocks regeneration and wound healing in Nematostella. We characterized early and late wound healing events through genome-wide microarray analysis, quantitative PCR, and in situ hybridization to identify potential wound healing targets. We identified a number of genes directly related to the wound healing response in other animals (metalloproteinases, growth factors, transcription factors) and suggest that glycoproteins (mucins and uromodulin) play a key role in early wound healing events. This study also identified a novel cnidarian-specific gene, for a thiamine biosynthesis enzyme (vitamin B synthesis), that may have been incorporated into the genome by lateral gene transfer from bacteria and now functions during wound healing. Lastly, we suggest that ERK signaling is a shared element of the early wound response for animals with a high regenerative capacity. This research describes the temporal events involved during Nematostella wound healing, and provides a foundation for comparative analysis with other regenerative and non-regenerative species. We have shown that the same genes that heal puncture wounds are also activated after oral-aboral bisection, indicating a clear link with the initiation of regenerative healing. This study demonstrates the strength of using a forward approach (microarray) to characterize a developmental phenomenon (wound healing) at a phylogenetically important crossroad of animal evolution (cnidarian-bilaterian ancestor). Accumulation of data on the early wound healing events across numerous systems may provide clues as to why some animals have limited regenerative abilities.

  4. Initiating a regenerative response; cellular and molecular features of wound healing in the cnidarian Nematostella vectensis

    PubMed Central

    2014-01-01

    Background Wound healing is the first stage of a series of cellular events that are necessary to initiate a regenerative response. Defective wound healing can block regeneration even in animals with a high regenerative capacity. Understanding how signals generated during wound healing promote regeneration of lost structures is highly important, considering that virtually all animals have the ability to heal but many lack the ability to regenerate missing structures. Cnidarians are the phylogenetic sister taxa to bilaterians and are highly regenerative animals. To gain a greater understanding of how early animals generate a regenerative response, we examined the cellular and molecular components involved during wound healing in the anthozoan cnidarian Nematostella vectensis. Results Pharmacological inhibition of extracellular signal-regulated kinases (ERK) signaling blocks regeneration and wound healing in Nematostella. We characterized early and late wound healing events through genome-wide microarray analysis, quantitative PCR, and in situ hybridization to identify potential wound healing targets. We identified a number of genes directly related to the wound healing response in other animals (metalloproteinases, growth factors, transcription factors) and suggest that glycoproteins (mucins and uromodulin) play a key role in early wound healing events. This study also identified a novel cnidarian-specific gene, for a thiamine biosynthesis enzyme (vitamin B synthesis), that may have been incorporated into the genome by lateral gene transfer from bacteria and now functions during wound healing. Lastly, we suggest that ERK signaling is a shared element of the early wound response for animals with a high regenerative capacity. Conclusions This research describes the temporal events involved during Nematostella wound healing, and provides a foundation for comparative analysis with other regenerative and non-regenerative species. We have shown that the same genes that heal puncture wounds are also activated after oral-aboral bisection, indicating a clear link with the initiation of regenerative healing. This study demonstrates the strength of using a forward approach (microarray) to characterize a developmental phenomenon (wound healing) at a phylogenetically important crossroad of animal evolution (cnidarian-bilaterian ancestor). Accumulation of data on the early wound healing events across numerous systems may provide clues as to why some animals have limited regenerative abilities. PMID:24670243

  5. Synthesis and in vitro biochemical evaluation of oxime bond-linked daunorubicin–GnRH-III conjugates developed for targeted drug delivery

    PubMed Central

    Schuster, Sabine; Biri-Kovács, Beáta; Szeder, Bálint; Farkas, Viktor; Buday, László; Szabó, Zsuzsanna; Halmos, Gábor

    2018-01-01

    Gonadotropin releasing hormone-III (GnRH-III), a native isoform of the human GnRH isolated from sea lamprey, specifically binds to GnRH receptors on cancer cells enabling its application as targeting moieties for anticancer drugs. Recently, we reported on the identification of a novel daunorubicin–GnRH-III conjugate (GnRH-III–[4Lys(Bu), 8Lys(Dau=Aoa)] with efficient in vitro and in vivo antitumor activity. To get a deeper insight into the mechanism of action of our lead compound, the cellular uptake was followed by confocal laser scanning microscopy. Hereby, the drug daunorubicin could be visualized in different subcellular compartments by following the localization of the drug in a time-dependent manner. Colocalization studies were carried out to prove the presence of the drug in lysosomes (early stage) and on its site of action (nuclei after 10 min). Additional flow cytometry studies demonstrated that the cellular uptake of the bioconjugate was inhibited in the presence of the competitive ligand triptorelin indicating a receptor-mediated pathway. For comparative purpose, six novel daunorubicin–GnRH-III bioconjugates have been synthesized and biochemically characterized in which 6Asp was replaced by D-Asp, D-Glu and D-Trp. In addition to the analysis of the in vitro cytostatic effect and cellular uptake, receptor binding studies with 125I-triptorelin as radiotracer and degradation of the GnRH-III conjugates in the presence of rat liver lysosomal homogenate have been performed. All derivatives showed high binding affinities to GnRH receptors and displayed in vitro cytostatic effects on HT-29 and MCF-7 cancer cells with IC50 values in a low micromolar range. Moreover, we found that the release of the active drug metabolite and the cellular uptake of the bioconjugates were strongly affected by the amino acid exchange which in turn had an impact on the antitumor activity of the bioconjugates. PMID:29719573

  6. II. Model building: an electrical theory of control of growth and development in animals, prompted by studies of exogenous magnetic field effects (paper I), and evidence of DNA current conduction, in vitro.

    PubMed

    Elson, Edward

    2009-01-01

    A theory of control of cellular proliferation and differentiation in the early development of metazoan systems, postulating a system of electrical controls "parallel" to the processes of molecular biochemistry, is presented. It is argued that the processes of molecular biochemistry alone cannot explain how a developing organism defies a stochastic universe. The demonstration of current flow (charge transfer) along the long axis of DNA through the base-pairs (the "pi-way) in vitro raises the question of whether nature may employ such current flows for biological purposes. Such currents might be too small to be accessible to direct measurement in vivo but conduction has been measured in vitro, and the methods might well be extended to living systems. This has not been done because there is no reasonable model which could stimulate experimentation. We suggest several related, but detachable or independent, models for the biological utility of charge transfer, whose scope admittedly outruns current concepts of thinking about organization, growth, and development in eukaryotic, metazoan systems. The ideas are related to explanations proposed to explain the effects demonstrated on tumors and normal tissues described in Article I (this issue). Microscopic and mesoscopic potential fields and currents are well known at sub-cellular, cellular, and organ systems levels. Not only are such phenomena associated with internal cellular membranes in bioenergetics and information flow, but remarkable long-range fields over tissue interfaces and organs appear to play a role in embryonic development (Nuccitelli, 1992 ). The origin of the fields remains unclear and is the subject of active investigation. We are proposing that similar processes could play a vital role at a "sub-microscopic level," at the level of the chromosomes themselves, and could play a role in organizing and directing fundamental processes of growth and development, in parallel with the more discernible fields and currents described.

  7. Oleic acid blocks EGF-induced [Ca2+]i release without altering cellular metabolism in fibroblast EGFR T17.

    PubMed

    Zugaza, J L; Casabiell, X A; Bokser, L; Casanueva, F F

    1995-02-06

    EGFR-T17 cells were pretreated with oleic acid and 5-10 minutes later stimulated with EGF, to study if early ionic signals are instrumental in inducing metabolic cellular response. Oleic acid blocks EGF-induced [Ca2+]i rise and Ca2+ influx without altering 2-deoxyglucose and 2-aminobutiryc acid uptake nor acute, nor chronically. Oleic acid it is shown, in the first minutes favors the entrance of both molecules to modify the physico-chemical membrane state. On the other hand, oleic acid is unable to block protein synthesis. The results suggest that EGF-induced Ins(1,4,5)P3/Ca2+ pathway does not seem to be decisive in the control of cellular metabolic activity.

  8. Cortactin Branches Out: Roles in Regulating Protrusive Actin Dynamics

    PubMed Central

    Ammer, Amanda Gatesman; Weed, Scott A.

    2008-01-01

    Since its discovery in the early 1990’s, cortactin has emerged as a key signaling protein in many cellular processes, including cell adhesion, migration, endocytosis, and tumor invasion. While the list of cellular functions influenced by cortactin grows, the ability of cortactin to interact with and alter the cortical actin network is central to its role in regulating these processes. Recently, several advances have been made in our understanding of the interaction between actin and cortactin, providing insight into how these two proteins work together to provide a framework for normal and altered cellular function. This review examines how regulation of cortactin through post-translational modifications and interactions with multiple binding partners elicits changes in cortical actin cytoskeletal organization, impacting the regulation and formation of actin-rich motility structures. PMID:18615630

  9. Specific early fine structural changes in the lung following irradiation. [X rays; mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penney, D.P.; Rubin, P.

    1977-01-01

    The lungs of mice were irradiated with single and fractionated doses of 1000 R, 2000 R, and 3000 R and recovered 1 hr, 1 day, 1 week, and 1 month following exposure. Electron microscopy revealed early changes in the decrement of lamellar bodies of Type II pneumocytes and increased fibrous content and edema in the septal walls of all animals treated. Those lungs treated with fractionated doses of irradiation displayed more pronounced cellular damage than did singly-dosed lungs. It is proposed that these early changes may predict for subsequent atelectasis.

  10. Heparin binding epidermal growth factor in renal ischaemia/reperfusion injury.

    PubMed

    Mulder, Gemma M; Nijboer, Willemijn N; Seelen, Marc A; Sandovici, Maria; Bos, Eelke M; Melenhorst, Wynand B W H; Trzpis, Monika; Kloosterhuis, Niels J; Visser, Lydia; Henning, Rob H; Leuvenink, Henri G D; Ploeg, Rutger J; Sunnarborg, Susan W; van Goor, Harry

    2010-06-01

    The epidermal growth factor (EGF) receptor and its ligands are crucially involved in the renal response to ischaemia. We studied the heparin binding-epidermal growth factor (HB-EGF), a major ligand for the EGF receptor, in experimental and human ischaemia/reperfusion injury (IRI). HB-EGF mRNA and protein expression was studied in rat kidneys and cultured human tubular (HK-2) cells that were subjected to IRI and in human donor kidneys during transplantation. The effect of EGF receptor inhibition was investigated in vivo and in vitro. Furthermore, urinary HB-EGF protein excretion was studied after renal transplantation. Finally, HB-EGF KO and WT mice were subjected to IRI to study the role of HB-EGF in renal injury. HB-EGF mRNA was significantly up-regulated in the early phase of IRI in rats, cells, and human donor biopsies. Treatment with PKI-166 reduces macrophage accumulation and interstitial alpha-SMA in the early phase of IRI in rats. In vitro, PKI-166 causes a marked reduction in HB-EGF-induced cellular proliferation. Urinary HB-EGF is increased after transplantation compared with control urines from healthy subjects. HB-EGF KO mice subjected to IRI revealed significantly less morphological damage after IRI, compared with WT mice. We conclude that IRI results in early induction of HB-EGF mRNA and protein in vivo and in vitro. Absence of HB-EGF and inhibition of the EGF receptor in the early phase of IRI has protective effects, suggesting a modulating role for HB-EGF.

  11. Effects of Gravity, Microgravity or Microgravity Simulation on Early Mammalian Development.

    PubMed

    Ruden, Douglas M; Bolnick, Alan; Awonuga, Awoniyi; Abdulhasan, Mohammed; Perez, Gloria; Puscheck, Elizabeth E; Rappolee, Daniel A

    2018-06-11

    Plant and animal life forms evolved mechanisms for sensing and responding to gravity on Earth where homeostatic needs require responses. The lack of gravity, such as in the International Space Station (ISS), causes acute, intra-generational changes in the quality of life. These include maintaining calcium levels in bone, maintaining muscle tone, and disturbances in the vestibular apparatus in the ears. These problems decrease work efficiency and quality of life of humans not only during microgravity exposures but also after return to higher gravity on Earth or destinations such as Mars or the Moon. It has been hypothesized that lack of gravity during mammalian development may cause prenatal, postnatal and transgenerational effects that conflict with the environment, especially if the developing organism and its progeny are returned, or introduced de novo, into the varied gravity environments mentioned above. Although chicken and frog pregastrulation development, and plant root development, have profound effects due to orientation of cues by gravity-sensing mechanisms and responses, mammalian development is not typically characterized as gravity-sensing. Although no effects of microgravity simulation (MGS) on mouse fertilization were observed in two reports, negative effects of MGS on early mammalian development after fertilization and before gastrulation are presented in four reports that vary with the modality of MGS. This review will analyze the positive and negative mammalian early developmental outcomes, and enzymatic and epigenetic mechanisms known to mediate developmental responses to simulated microgravity on Earth and microgravity during spaceflight experiments. We will update experimental techniques that have already been developed or need to be developed for zero gravity molecular, cellular, and developmental biology experiments.

  12. Milestones of Hematopoietic Stem Cell Transplantation – From First Human Studies to Current Developments

    PubMed Central

    Juric, Mateja Kralj; Ghimire, Sakhila; Ogonek, Justyna; Weissinger, Eva M.; Holler, Ernst; van Rood, Jon J.; Oudshoorn, Machteld; Dickinson, Anne; Greinix, Hildegard T.

    2016-01-01

    Since the early beginnings, in the 1950s, hematopoietic stem cell transplantation (HSCT) has become an established curative treatment for an increasing number of patients with life-threatening hematological, oncological, hereditary, and immunological diseases. This has become possible due to worldwide efforts of preclinical and clinical research focusing on issues of transplant immunology, reduction of transplant-associated morbidity, and mortality and efficient malignant disease eradication. The latter has been accomplished by potent graft-versus-leukemia (GvL) effector cells contained in the stem cell graft. Exciting insights into the genetics of the human leukocyte antigen (HLA) system allowed improved donor selection, including HLA-identical related and unrelated donors. Besides bone marrow, other stem cell sources like granulocyte-colony stimulating-mobilized peripheral blood stem cells and cord blood stem cells have been established in clinical routine. Use of reduced-intensity or non-myeloablative conditioning regimens has been associated with a marked reduction of non-hematological toxicities and eventually, non-relapse mortality allowing older patients and individuals with comorbidities to undergo allogeneic HSCT and to benefit from GvL or antitumor effects. Whereas in the early years, malignant disease eradication by high-dose chemotherapy or radiotherapy was the ultimate goal; nowadays, allogeneic HSCT has been recognized as cellular immunotherapy relying prominently on immune mechanisms and to a lesser extent on non-specific direct cellular toxicity. This chapter will summarize the key milestones of HSCT and introduce current developments. PMID:27881982

  13. Superoxide dismutating molecules rescue the toxic effects of PINK1 and parkin loss.

    PubMed

    Biosa, Alice; Sanchez-Martinez, Alvaro; Filograna, Roberta; Terriente-Felix, Ana; Alam, Sarah M; Beltramini, Mariano; Bubacco, Luigi; Bisaglia, Marco; Whitworth, Alexander J

    2018-05-01

    Reactive oxygen species exert important functions in regulating several cellular signalling pathways. However, an excessive accumulation of reactive oxygen species can perturb the redox homeostasis leading to oxidative stress, a condition which has been associated to many neurodegenerative disorders. Accordingly, alterations in the redox state of cells and mitochondrial homeostasis are established hallmarks in both familial and sporadic Parkinson's disease cases. PINK1 and Parkin are two genes which account for a large fraction of autosomal recessive early-onset forms of Parkinson's disease and are now firmly associated to both mitochondria and redox homeostasis. In this study we explored the hypothesis that superoxide anions participate in the generation of the Parkin and PINK1 associated phenotypic effect by testing the capacity of endogenous and exogenous superoxide dismutating molecules to rescue the toxic effects induced by loss of PINK1 or Parkin, in both cellular and fly models. Our results demonstrate the positive effect of an increased level of superoxide dismutase proteins on the pathological phenotypes, both in vitro and in vivo. A more pronounced effectiveness for mitochondrial SOD2 activity points to the superoxide radicals generated in the mitochondrial matrix as the prime suspect in the definition of the observed phenotypes. Moreover, we also demonstrate the efficacy of a SOD-mimetic compound, M40403, to partially ameliorate PINK1/Parkin phenotypes in vitro and in vivo. These results support the further exploration of SOD-mimetic compounds as a therapeutic strategy against Parkinson's disease.

  14. The Competitive Interplay between Allosteric HIV-1 Integrase Inhibitor BI/D and LEDGF/p75 during the Early Stage of HIV-1 Replication Adversely Affects Inhibitor Potency.

    PubMed

    Feng, Lei; Dharmarajan, Venkatasubramanian; Serrao, Erik; Hoyte, Ashley; Larue, Ross C; Slaughter, Alison; Sharma, Amit; Plumb, Matthew R; Kessl, Jacques J; Fuchs, James R; Bushman, Frederic D; Engelman, Alan N; Griffin, Patrick R; Kvaratskhelia, Mamuka

    2016-05-20

    Allosteric HIV-1 integrase inhibitors (ALLINIs) have recently emerged as a promising class of antiretroviral agents and are currently in clinical trials. In infected cells, ALLINIs potently inhibit viral replication by impairing virus particle maturation but surprisingly exhibit a reduced EC50 for inhibiting HIV-1 integration in target cells. To better understand the reduced antiviral activity of ALLINIs during the early stage of HIV-1 replication, we investigated the competitive interplay between a potent representative ALLINI, BI/D, and LEDGF/p75 with HIV-1 integrase. While the principal binding sites of BI/D and LEDGF/p75 overlap at the integrase catalytic core domain dimer interface, we show that the inhibitor and the cellular cofactor induce markedly different multimerization patterns of full-length integrase. LEDGF/p75 stabilizes an integrase tetramer through the additional interactions with the integrase N-terminal domain, whereas BI/D induces protein-protein interactions in C-terminal segments that lead to aberrant, higher-order integrase multimerization. We demonstrate that LEDGF/p75 binds HIV-1 integrase with significantly higher affinity than BI/D and that the cellular protein is able to reverse the inhibitor induced aberrant, higher-order integrase multimerization in a dose-dependent manner in vitro. Consistent with these observations, alterations of the cellular levels of LEDGF/p75 markedly affected BI/D EC50 values during the early steps of HIV-1 replication. Furthermore, genome-wide sequencing of HIV-1 integration sites in infected cells demonstrate that LEDGF/p75-dependent integration site selection is adversely affected by BI/D treatment. Taken together, our studies elucidate structural and mechanistic details of the interplay between LEDGF/p75 and BI/D during the early stage of HIV-1 replication.

  15. Epigenetic alterations mediate iPSC normalization of DNA-repair expression and TNR stability in Huntington's disease.

    PubMed

    Mollica, Peter A; Zamponi, Martina; Reid, John A; Sharma, Deepak K; White, Alyson E; Ogle, Roy C; Bruno, Robert D; Sachs, Patrick C

    2018-06-13

    Huntington's disease (HD) is a rare autosomal dominant neurodegenerative disorder caused by a cytosine-adenine-guanine (CAG) trinucleotide repeat (TNR) expansion within the HTT gene. The mechanisms underlying HD-associated cellular dysfunction during pluripotency and neurodevelopment, are poorly understood. Here we tested the hypothesis that hypomethylation during cellular reprogramming leads to up-regulation of DNA repair genes and stabilization of TNRs in HD cells. We sought to determine how the HD TNR region is affected by global epigenetic changes through cellular reprogramming and early neurodifferentiation. We find that early-stage HD-affected neural stem cells (NSCs) contain increased levels of global 5-hydroxymethylation (5-hmC) and normalized DNA repair gene expression. We confirm TNR stability is induced during pluripotency, and maintained in HD-NSCs. We also identify up-regulation of 5-hmC catalyzing ten-eleven translocation (TET1/2) proteins, and show their knockdown leads to a corresponding decrease in select DNA repair gene expression. We further confirm decreased expression of TET regulating miR-29 family members in HD-NSCs. Our findings demonstrate that mechanisms involved in pluripotency recover the selected DNA repair gene expression and stabilizes pathogenic TNRs in HD. © 2018. Published by The Company of Biologists Ltd.

  16. Diverse mechanisms evolved by DNA viruses to inhibit early host defenses

    PubMed Central

    Sheng, Xinlei; Song, Bokai; Cristea, Ileana M.

    2016-01-01

    In mammalian cells, early defenses against infection by pathogens are mounted through a complex network of signaling pathways shepherded by immune-modulatory pattern-recognition receptors. As obligate parasites, the survival of viruses is dependent upon the evolutionary acquisition of mechanisms that tactfully dismantle and subvert the cellular intrinsic and innate immune responses. Here, we review the diverse mechanisms by which viruses that accommodate DNA genomes are able to circumvent activation of cellular immunity. We start by discussing viral manipulation of host defense protein levels by either transcriptional regulation or protein degradation. We next review viral strategies used to repurpose or inhibit these cellular immune factors by molecular hijacking or by regulating their post-translational modification status. Additionally, we explore the infection-induced temporal modulation of apoptosis to facilitate viral replication and spread. Lastly, the co-evolution of viruses with their hosts is highlighted by the acquisition of elegant mechanisms for suppressing host defenses via viral mimicry of host factors. In closing, we present a perspective on how characterizing these viral evasion tactics both broadens the understanding of virus-host interactions and reveals essential functions of the immune system at the molecular level. This knowledge is critical in understanding the sources of viral pathogenesis, as well as for the design of antiviral therapeutics and autoimmunity treatments. PMID:27650455

  17. Podocytes populate cellular crescents in a murine model of inflammatory glomerulonephritis.

    PubMed

    Moeller, Marcus J; Soofi, Abdulsalaam; Hartmann, Inge; Le Hir, Michel; Wiggins, Roger; Kriz, Wilhelm; Holzman, Lawrence B

    2004-01-01

    Cellular crescents are a defining histologic finding in many forms of inflammatory glomerulonephritis. Despite numerous studies, the origin of glomerular crescents remains unresolved. A genetic cell lineage-mapping study with a novel transgenic mouse model was performed to investigate whether visceral glomerular epithelial cells, termed podocytes, are precursors of cells that populate cellular crescents. The podocyte-specific 2.5P-Cre mouse line was crossed with the ROSA26 reporter line, resulting in irreversible constitutive expression of beta-galactosidase in doubly transgenic 2.5P-Cre/ROSA26 mice. In these mice, crescentic glomerulonephritis was induced with a previously described rabbit anti-glomerular basement membrane antiserum nephritis approach. Interestingly, beta-galactosidase-positive cells derived from podocytes adhered to the parietal basement membrane and populated glomerular crescents during the early phases of cellular crescent formation, accounting for at least one-fourth of the total cell mass. In cellular crescents, the proliferation marker Ki-67 was expressed in beta-galactosidase-positive and beta-galactosidase-negative cells, indicating that both cell types contributed to the formation of cellular crescents through proliferation in situ. Podocyte-specific antigens, including WT-1, synaptopodin, nephrin, and podocin, were not expressed by any cells in glomerular crescents, suggesting that podocytes underwent profound phenotypic changes in this nephritis model.

  18. Synchrony of plant cellular circadian clocks with heterogeneous properties under light/dark cycles.

    PubMed

    Okada, Masaaki; Muranaka, Tomoaki; Ito, Shogo; Oyama, Tokitaka

    2017-03-22

    Individual cells in a plant can work independently as circadian clocks, and their properties are the basis of various circadian phenomena. The behaviour of individual cellular clocks in Lemna gibba was orderly under 24-h light/dark cycles despite their heterogeneous free-running periods (FRPs). Here, we reveal the entrainment habits of heterogeneous cellular clocks using non-24-h light/dark cycles (T-cycles). The cellular rhythms of AtCCA1::LUC under T = 16 h cycles showed heterogeneous entrainment that was associated with their heterogeneous FRPs. Under T = 12 h cycles, most cells showed rhythms having ~24-h periods. This suggested that the lower limit of entrainment to the light/dark cycles of heterogeneous cellular circadian clocks is set to a period longer than 12 h, which enables them to be synchronous under ~24-h daily cycles without being perturbed by short light/dark cycles. The entrainment habits of individual cellular clocks are likely to be the basis of the circadian behaviour of plant under the natural day-night cycle with noisy environmental fluctuations. We further suggest that modifications of EARLY FLOWERING3 (ELF3) in individual cells deviate the entrainability to shorter T-cycles possibly by altering both the FRPs and light responsiveness.

  19. Tip60 degradation by adenovirus relieves transcriptional repression of viral transcriptional activator EIA.

    PubMed

    Gupta, A; Jha, S; Engel, D A; Ornelles, D A; Dutta, A

    2013-10-17

    Adenoviruses are linear double-stranded DNA viruses that infect human and rodent cell lines, occasionally transform them and cause tumors in animal models. The host cell challenges the virus in multifaceted ways to restrain viral gene expression and DNA replication, and sometimes even eliminates the infected cells by programmed cell death. To combat these challenges, adenoviruses abrogate the cellular DNA damage response pathway. Tip60 is a lysine acetyltransferase that acetylates histones and other proteins to regulate gene expression, DNA damage response, apoptosis and cell cycle regulation. Tip60 is a bona fide tumor suppressor as mice that are haploid for Tip60 are predisposed to tumors. We have discovered that Tip60 is degraded by adenovirus oncoproteins EIB55K and E4orf6 by a proteasome-mediated pathway. Tip60 binds to the immediate early adenovirus promoter and suppresses adenovirus EIA gene expression, which is a master regulator of adenovirus transcription, at least partly through retention of the virally encoded repressor pVII on this promoter. Thus, degradation of Tip60 by the adenoviral early proteins is important for efficient viral early gene transcription and for changes in expression of cellular genes.

  20. Early diagnosis of tongue malignancy using laser induced fluorescence spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Patil, Ajeetkumar; Unnikrishnan V., K.; Ongole, Ravikiran; Pai, Keerthilatha M.; Kartha, V. B.; Chidangil, Santhosh

    2015-07-01

    Oral cancer together with pharyngeal cancer is the sixth most common malignancy reported worldwide and one with high mortality ratio among all malignancies [1]. Worldwide 450,000 new cases are estimated in 2014[2]. About 90% are a type of cancer called squamous cell carcinoma (SCC). SCC of the tongue is the most common oral malignancy accounting for approximately 40% of all oral carcinomas. One of the important factors for successful therapy of any malignancy is early diagnosis. Although considerable progress has been made in understanding the cellular and molecular mechanisms of tumorigenesis, lack of reliable diagnostic methods for early detection leading to delay in therapy is an important factor responsible for the increase in the mortality rate in various types of cancers. Spectroscopy techniques are extremely sensitive for the analysis of biochemical changes in cellular systems. These techniques can provide a valuable information on alterations that occur during the development of cancer. This is especially important in oral cancer, where "tumor detection is complicated by a tendency towards field cancerization, leading to multi-centric lesions" and "current techniques detect malignant change too late" [3], and "biopsies are not representative of the whole premalignant lesion". [4

  1. Modeling the Interaction between Quinolinate and the Receptor for Advanced Glycation End Products (RAGE): Relevance for Early Neuropathological Processes

    PubMed Central

    Serratos, Iris N.; Castellanos, Pilar; Pastor, Nina; Millán-Pacheco, César; Rembao, Daniel; Pérez-Montfort, Ruy; Cabrera, Nallely; Reyes-Espinosa, Francisco; Díaz-Garrido, Paulina; López-Macay, Ambar; Martínez-Flores, Karina; López-Reyes, Alberto; Sánchez-García, Aurora; Cuevas, Elvis; Santamaria, Abel

    2015-01-01

    The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor involved in neurodegenerative and inflammatory disorders. RAGE induces cellular signaling upon binding to a variety of ligands. Evidence suggests that RAGE up-regulation is involved in quinolinate (QUIN)-induced toxicity. We investigated the QUIN-induced toxic events associated with early noxious responses, which might be linked to signaling cascades leading to cell death. The extent of early cellular damage caused by this receptor in the rat striatum was characterized by image processing methods. To document the direct interaction between QUIN and RAGE, we determined the binding constant (Kb) of RAGE (VC1 domain) with QUIN through a fluorescence assay. We modeled possible binding sites of QUIN to the VC1 domain for both rat and human RAGE. QUIN was found to bind at multiple sites to the VC1 dimer, each leading to particular mechanistic scenarios for the signaling evoked by QUIN binding, some of which directly alter RAGE oligomerization. This work contributes to the understanding of the phenomenon of RAGE-QUIN recognition, leading to the modulation of RAGE function. PMID:25757085

  2. Proteomic analysis of the herpes simplex virus 1 virion protein 16 transactivator protein in infected cells.

    PubMed

    Suk, Hyung; Knipe, David M

    2015-06-01

    The herpes simplex virus 1 virion protein 16 (VP16) tegument protein forms a transactivation complex with the cellular proteins host cell factor 1 (HCF-1) and octamer-binding transcription factor 1 (Oct-1) upon entry into the host cell. VP16 has also been shown to interact with a number of virion tegument proteins and viral glycoprotein H to promote viral assembly, but no comprehensive study of the VP16 proteome has been performed at early times postinfection. We therefore performed a proteomic analysis of VP16-interacting proteins at 3 h postinfection. We confirmed the interaction of VP16 with HCF-1 and a large number of cellular Mediator complex proteins, but most surprisingly, we found that the major viral protein associating with VP16 is the infected cell protein 4 (ICP4) immediate-early (IE) transactivator protein. These results raise the potential for a new function for VP16 in associating with the IE ICP4 and playing a role in transactivation of early and late gene expression, in addition to its well-documented function in transactivation of IE gene expression. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Using sex differences in the developing brain to identify nodes of influence for seizure susceptibility and epileptogenesis.

    PubMed

    Kight, Katherine E; McCarthy, Margaret M

    2014-12-01

    Sexual differentiation of the developing brain organizes the neural architecture differently between males and females, and the main influence on this process is exposure to gonadal steroids during sensitive periods of prenatal and early postnatal development. Many molecular and cellular processes are influenced by steroid hormones in the developing brain, including gene expression, cell birth and death, neurite outgrowth and synaptogenesis, and synaptic activity. Perturbations in these processes can alter neuronal excitability and circuit activity, leading to increased seizure susceptibility and the promotion of pathological processes that constitute epileptogenesis. In this review, we will provide a general overview of sex differences in the early developing brain that may be relevant for altered seizure susceptibility in early life, focusing on limbic areas of the brain. Sex differences that have the potential to alter the progress of epileptogenesis are evident at molecular and cellular levels in the developing brain, and include differences in neuronal excitability, response to environmental insult, and epigenetic control of gene expression. Knowing how these processes differ between the sexes can help us understand fundamental mechanisms underlying gender differences in seizure susceptibility and epileptogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. A Novel Type III Endosome Transmembrane Protein, TEMP

    PubMed Central

    Aturaliya, Rajith N.; Kerr, Markus C.; Teasdale, Rohan D.

    2012-01-01

    As part of a high-throughput subcellular localisation project, the protein encoded by the RIKEN mouse cDNA 2610528J11 was expressed and identified to be associated with both endosomes and the plasma membrane. Based on this, we have assigned the name TEMP for Type III Endosome Membrane Protein. TEMP encodes a short protein of 111 amino acids with a single, alpha-helical transmembrane domain. Experimental analysis of its membrane topology demonstrated it is a Type III membrane protein with the amino-terminus in the lumenal, or extracellular region, and the carboxy-terminus in the cytoplasm. In addition to the plasma membrane TEMP was localized to Rab5 positive early endosomes, Rab5/Rab11 positive recycling endosomes but not Rab7 positive late endosomes. Video microscopy in living cells confirmed TEMP’s plasma membrane localization and identified the intracellular endosome compartments to be tubulovesicular. Overexpression of TEMP resulted in the early/recycling endosomes clustering at the cell periphery that was dependent on the presence of intact microtubules. The cellular function of TEMP cannot be inferred based on bioinformatics comparison, but its cellular distribution between early/recycling endosomes and the plasma membrane suggests a role in membrane transport. PMID:24710541

  5. P-TEFb, the Super Elongation Complex and Mediator Regulate a Subset of Non-paused Genes during Early Drosophila Embryo Development

    PubMed Central

    Dahlberg, Olle; Shilkova, Olga; Tang, Min; Holmqvist, Per-Henrik; Mannervik, Mattias

    2015-01-01

    Positive Transcription Elongation Factor b (P-TEFb) is a kinase consisting of Cdk9 and Cyclin T that releases RNA Polymerase II (Pol II) into active elongation. It can assemble into a larger Super Elongation Complex (SEC) consisting of additional elongation factors. Here, we use a miRNA-based approach to knock down the maternal contribution of P-TEFb and SEC components in early Drosophila embryos. P-TEFb or SEC depletion results in loss of cells from the embryo posterior and in cellularization defects. Interestingly, the expression of many patterning genes containing promoter-proximal paused Pol II is relatively normal in P-TEFb embryos. Instead, P-TEFb and SEC are required for expression of some non-paused, rapidly transcribed genes in pre-cellular embryos, including the cellularization gene Serendipity-α. We also demonstrate that another P-TEFb regulated gene, terminus, has an essential function in embryo development. Similar morphological and gene expression phenotypes were observed upon knock down of Mediator subunits, providing in vivo evidence that P-TEFb, the SEC and Mediator collaborate in transcription control. Surprisingly, P-TEFb depletion does not affect the ratio of Pol II at the promoter versus the 3’ end, despite affecting global Pol II Ser2 phosphorylation levels. Instead, Pol II occupancy is reduced at P-TEFb down-regulated genes. We conclude that a subset of non-paused, pre-cellular genes are among the most susceptible to reduced P-TEFb, SEC and Mediator levels in Drosophila embryos. PMID:25679530

  6. Early growth response 1 (EGR-1) is a transcriptional regulator of mitochondrial carrier homolog 1 (MTCH 1)/presenilin 1-associated protein (PSAP).

    PubMed

    Nelo-Bazán, María Alejandra; Latorre, Pedro; Bolado-Carrancio, Alfonso; Pérez-Campo, Flor M; Echenique-Robba, Pablo; Rodríguez-Rey, José Carlos; Carrodeguas, José Alberto

    2016-03-01

    Attempts to elucidate the cellular function of MTCH1 (mitochondrial carrier homolog 1) have not yet rendered a clear insight into the function of this outer mitochondrial membrane protein. Classical biochemical and cell biology approaches have not produced the expected outcome. In vitro experiments have indicated a likely role in the regulation of cell death by apoptosis, and its reported interaction with presenilin 1 suggests a role in the cellular pathways in which this membrane protease participates, nevertheless in vivo data are missing. In an attempt to identify cellular pathways in which this protein might participate, we have studied its promoter looking for transcriptional regulators. We have identified several putative binding sites for EGR-1 (Early growth response 1; a protein involved in growth, proliferation and differentiation), in the proximal region of the MTCH1 promoter. Chromatin immunoprecipitation showed an enrichment of these sequences in genomic DNA bound to EGR-1 and transient overexpression of EGR-1 in cultured HEK293T cells induces an increase of endogenous MTCH1 levels. We also show that MTCH1 levels increase in response to treatment of cells with doxorubicin, an apoptosis inducer through DNA damage. The endogenous levels of MTCH1 decrease when EGR-1 levels are lowered by RNA interference. Our results indicate that EGR-1 is a transcriptional regulator of MTCH1 and give some clues about the cellular processes in which MTCH1 might participate. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The path to successful commercialization of cell and gene therapies: empowering patient advocates.

    PubMed

    Bauer, Gerhard; Abou-El-Enein, Mohamed; Kent, Alastair; Poole, Brian; Forte, Miguel

    2017-02-01

    Often, novel gene and cell therapies provide hope for many people living with incurable diseases. To facilitate and accelerate a successful regulatory approval and commercialization path for effective, safe and affordable cell and gene therapies, the involvement of patient advocacy groups (PAGs) should be considered early in the development process. This report provides a thorough overview of the various roles PAGs play in the clinical translation of cell and gene therapies and how they can bring about positive changes in the regulatory process, infrastructure improvements and market stability. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  8. Amiodarone affects Ebola virus binding and entry into target cells.

    PubMed

    Salata, Cristiano; Munegato, Denis; Martelli, Francesco; Parolin, Cristina; Calistri, Arianna; Baritussio, Aldo; Palù, Giorgio

    2018-03-02

    Ebola Virus Disease is one of the most lethal transmissible infections characterized by a high fatality rate. Several research studies have aimed to identify effective antiviral agents. Amiodarone, a drug used for the treatment of arrhythmias, has been shown to inhibit filovirus infection in vitro by acting at the early step of the viral replication cycle. Here we demonstrate that amiodarone reduces virus binding to target cells and slows down the progression of the viral particles along the endocytic pathway. Overall our data support the notion that amiodarone interferes with Ebola virus infection by affecting cellular pathways/targets involved in the viral entry process.

  9. Environmental and epigenetic effects upon preimplantation embryo metabolism and development

    PubMed Central

    Chason, Rebecca J; Csokmay, John; Segars, James H.; DeCherney, Alan H.; Armant, D. Randall

    2011-01-01

    In vitro fertilization has provided a unique window into the metabolic processes that drive embryonic growth and development from a fertilized ovum to a competent blastocyst. Post-fertilization development is dependent upon a dramatic reshuffling of the parental genomes during meiosis, as well as epigenetic changes that provide a new and autonomous set of instructions to guide cellular differentiation both in the embryo and beyond. While early literature focused simply on the substrates and culture conditions required for progress through embryonic development, more recent insights lead us to suggest that the surrounding environment can alter the epigenome, which can, in turn, impact embryonic metabolism and developmental competence. PMID:21741268

  10. Alterations of overused supraspinatus tendon: a possible role of glycosaminoglycans and HARP/pleiotrophin in early tendon pathology.

    PubMed

    Attia, Mohamed; Scott, Alexander; Duchesnay, Arlette; Carpentier, Gilles; Soslowsky, Louis J; Huynh, Minh Bao; Van Kuppevelt, Toin H; Gossard, Camille; Courty, José; Tassoni, Marie-Claude; Martelly, Isabelle

    2012-01-01

    Supraspinatus tendon overuse injuries lead to significant pain and disability in athletes and workers. Despite the prevalence and high social cost of these injuries, the early pathological events are not well known. We analyzed the potential relation between glycosaminoglycan (GAG) composition and phenotypic cellular alteration using a rat model of rotator cuff overuse. Total sulfated GAGs increased after 4 weeks of overuse and remained elevated up to 16 weeks. GAG accumulation was preceded by up-regulation of decorin, versican, and aggrecan proteoglycans (PGs) mRNAs and proteins and biglycan PG mRNA after 2 weeks. At 2 weeks, collagen 1 transcript decreased whereas mRNAs for collagen 2, collagen 3, collagen 6, and the transcription factor Sox9 were increased. Protein levels of heparin affine regulatory peptide (HARP)/pleiotrophin, a cytokine known to regulate developmental chondrocyte formation, were enhanced especially at 4 weeks, without up-regulation of HARP/pleiotrophin mRNA. Further results suggest that the increased GAGs present in early lesions may sequester HARP/pleiotrophin, which could contribute to a loss of tenocyte's phenotype. All these modifications are characteristic of a shift towards the chondrocyte phenotype. Identification of these early changes in the extra-cellular matrix may help to prevent the progression of the pathology to more disabling, degenerative alterations. Copyright © 2011 Orthopaedic Research Society.

  11. Early nutrition programming of long-term health.

    PubMed

    Koletzko, Berthold; Brands, Brigitte; Poston, Lucilla; Godfrey, Keith; Demmelmair, Hans

    2012-08-01

    Increasing evidence from the EU Project EARNEST and many other investigators demonstrates that early nutrition and lifestyle have long-term effects on later health and the risk of common non-communicable diseases (known as 'developmental programming'). Because of the increasing public health importance and the transgenerational nature of the problem, obesity and associated disorders are the focus of the new EU funded project 'EarlyNutrition'. Currently, three key hypotheses have been defined: the fuel mediated 'in utero' hypothesis suggests that intrauterine exposure to an excess of fuels, most notably glucose, causes permanent changes of the fetus that lead to obesity in postnatal life; the accelerated postnatal weight gain hypothesis proposes an association between rapid weight gain in infancy and an increased risk of later obesity and adverse outcomes; and the mismatch hypothesis suggests that experiencing a developmental 'mismatch' between a sub-optimal perinatal and an obesogenic childhood environment is related to a particular predisposition to obesity and corresponding co-morbidities. Using existing cohort studies, ongoing and novel intervention studies and a basic science programme to investigate those key hypotheses, project EarlyNutrition will provide the scientific foundations for evidence-based recommendations for optimal nutrition considering long-term health outcomes, with a focus on obesity and related disorders. Scientific and technical expertise in placental biology, epigenetics and metabolomics will provide understanding at the cellular and molecular level of the relationships between early life nutritional status and the risk of later adiposity. This will help refine strategies for intervention in early life to prevent obesity.

  12. Toxicity and Carcinogenicity Mechanisms of Fibrous Antigorite

    PubMed Central

    Cardile, Venera; Lombardo, Laura; Belluso, Elena; Panico, Annamaria; Capella, Silvana; Balazy, Michael

    2007-01-01

    We studied the effects of fibrous antigorite on mesothelial MeT-5A and monocyte-macrophage J774 cell lines to further understand cellular mechanisms induced by asbestos fibers leading to lung damage and cancer. Antigorite is a mineral with asbestiform properties, which tends to associate with chrysotile or tremolite, and frequently occurs as the predominant mineral in the veins of several serpentinite rocks found abundantly in the Western Alps. Particles containing antigorite are more abundant in the breathing air of this region than those typically found in urban ambient air. Exposure of MeT-5A and J774 cells to fibrous antigorite at concentrations of 5–100 μg/ml for 72 hr induced dose-dependent cytotoxicity. Antigorite also stimulated the ROS production, induced the generation of nitrite and PGE2. MeT-5A cells were more sensitive to antigorite than J774 cells. The results of this study revealed that the fibrous antigorite stimulates cyclooxygenase and formation of hydroxyl and nitric oxide radicals. These changes represent early cellular responses to antigorite fibers, which lead to a host of pathological and neoplastic conditions because free radicals and PGE2 play important roles as mediators of tumor pathogenesis. Understanding the mechanisms of the cellular responses to antigorite and other asbestos particles should be helpful in designing rational prevention and treatment approaches. PMID:17431308

  13. Cellular Stress and p53-Associated Apoptosis by Juniperus communis L. Berry Extract Treatment in the Human SH-SY5Y Neuroblastoma Cells.

    PubMed

    Lantto, Tiina A; Laakso, Into; Dorman, H J Damien; Mauriala, Timo; Hiltunen, Raimo; Kõks, Sulev; Raasmaja, Atso

    2016-07-13

    Plant phenolics have shown to activate apoptotic cell death in different tumourigenic cell lines. In this study, we evaluated the effects of juniper berry extract (Juniperus communis L.) on p53 protein, gene expression and DNA fragmentation in human neuroblastoma SH-SY5Y cells. In addition, we analyzed the phenolic composition of the extract. We found that juniper berry extract activated cellular relocalization of p53 and DNA fragmentation-dependent cell death. Differentially expressed genes between treated and non-treated cells were evaluated with the cDNA-RDA (representational difference analysis) method at the early time point of apoptotic process when p53 started to be activated and no caspase activity was detected. Twenty one overexpressed genes related to cellular stress, protein synthesis, cell survival and death were detected. Interestingly, they included endoplasmic reticulum (ER) stress inducer and sensor HSPA5 and other ER stress-related genes CALM2 and YKT6 indicating that ER stress response was involved in juniper berry extract mediated cell death. In composition analysis, we identified and quantified low concentrations of fifteen phenolic compounds. The main groups of them were flavones, flavonols, phenolic acids, flavanol and biflavonoid including glycosides of quercetin, apigenin, isoscutellarein and hypolaetin. It is suggested that juniper berry extract induced the p53-associated apoptosis through the potentiation and synergism by several phenolic compounds.

  14. Activation of AMP-activated protein kinase in response to temperature elevation shows seasonal variation in the zebra mussel, Dreissena polymorpha.

    PubMed

    Jost, Jennifer A; Keshwani, Sarah S; Abou-Hanna, Jacob J

    2015-04-01

    Global climate change is affecting ectothermic species, and a variety of studies are needed on thermal tolerances, especially from cellular and physiological perspectives. This study utilized AMP-activated protein kinase (AMPK), a key regulator of cellular energy levels, to examine the effects of high water temperatures on zebra mussel (Dreissena polymorpha) physiology. During heating, AMPK activity increased as water temperature increased to a point, and maximum AMPK activity was detected at high, but sublethal, water temperatures. This pattern varied with season, suggesting that cellular mechanisms of seasonal thermal acclimatization affect basic metabolic processes during sublethal heat stress. There was a greater seasonal variation in the water temperature at which maximum AMPK activity was measured than in lethal water temperature. Furthermore, baseline AMPK activity varied significantly across seasons, most likely reflecting altered metabolic states during times of growth and reproduction. In addition, when summer-collected mussels were lab-acclimated to winter and spring water temperatures, patterns of heat stress mirrored those of field-collected animals. These data suggest that water temperature is the main driver of the seasonal variation in physiology. This study concluded that AMPK activity, which reflects changes in energy supply and demand during heat stress, can serve as a sensitive and early indicator of temperature stress in mussels. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. The Role of Cellular Proliferation in Adipogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells.

    PubMed

    Marquez, Maribel P; Alencastro, Frances; Madrigal, Alma; Jimenez, Jossue Loya; Blanco, Giselle; Gureghian, Alex; Keagy, Laura; Lee, Cecilia; Liu, Robert; Tan, Lun; Deignan, Kristen; Armstrong, Brian; Zhao, Yuanxiang

    2017-11-01

    Mitotic clonal expansion has been suggested as a prerequisite for adipogenesis in murine preadipocytes, but the precise role of cell proliferation during human adipogenesis is unclear. Using adipose tissue-derived human mesenchymal stem cells as an in vitro cell model for adipogenic study, a group of cell cycle regulators, including Cdk1 and CCND1, were found to be downregulated as early as 24 h after adipogenic initiation and consistently, cell proliferation activity was restricted to the first 48 h of adipogenic induction. Cell proliferation was either further inhibited using siRNAs targeting cell cycle genes or enhanced by supplementing exogenous growth factor, basic fibroblast growth factor (bFGF), at specific time intervals during adipogenesis. Expression knockdown of Cdk1 at the initiation of adipogenic induction resulted in significantly increased adipocytes, even though total number of cells was significantly reduced compared to siControl-treated cells. bFGF stimulated proliferation throughout adipogenic differentiation, but exerted differential effect on adipogenic outcome at different phases, promoting adipogenesis during mitotic phase (first 48 h), but significantly inhibiting adipogenesis during adipogenic commitment phase (days 3-6). Our results demonstrate that cellular proliferation is counteractive to adipogenic commitment in human adipogenesis. However, cellular proliferation stimulation can be beneficial for adipogenesis during the mitotic phase by increasing the population of cells capable of committing to adipocytes before adipogenic commitment.

  16. Transient Shifts of Incubation Temperature Reveal Immediate and Long-Term Transcriptional Response in Chicken Breast Muscle Underpinning Resilience and Phenotypic Plasticity.

    PubMed

    Naraballobh, Watcharapong; Trakooljul, Nares; Murani, Eduard; Brunner, Ronald; Krischek, Carsten; Janisch, Sabine; Wicke, Michael; Ponsuksili, Siriluck; Wimmers, Klaus

    2016-01-01

    Variations in egg incubation temperatures can have acute or long-term effects on gene transcription in avian species. Altered gene expression may, in turn, affect muscle traits in poultry and indirectly influence commercial production. To determine how changes in eggshell temperature affect gene expression, incubation temperatures were varied [36.8°C (low), 37.8°C (control), 38.8°C (high)] at specific time periods reflecting two stages of myogenesis [embryonic days (ED) 7-10 and 10-13]. Gene expression was compared between interventions and matching controls by microarrays in broiler breast muscle at ED10 or ED13 and post-hatch at day 35. Early (ED7-10) high incubation temperature (H10ΔC) resulted in 1370 differentially expressed genes (DEGs) in embryos. Ingenuity pathway analysis revealed temporary activation of cell maintenance, organismal development, and survival ability genes, but these effects were not maintained in adults. Late high incubation temperature (ED10-13) (H13ΔC) had slightly negative impacts on development of cellular components in embryos, but a cumulative effect was observed in adults, in which tissue development and nutrition metabolism were affected. Early low incubation temperature (L10ΔC) produced 368 DEGs, most of which were down-regulated and involved in differentiation and formation of muscle cells. In adults, this treatment down-regulated pathways of transcriptional processes, but up-regulated cell proliferation. Late low temperature incubation (L13ΔC) produced 795 DEGs in embryos, and activated organismal survival and post-transcriptional regulation pathways. In adults this treatment activated cellular and organ development, nutrition and small molecule activity, and survival rate, but deactivated size of body and muscle cells. Thermal interventions during incubation initiate immediate and delayed transcriptional responses that are specific for timing and direction of treatment. Interestingly, the transcriptional response to transiently decreased incubation temperature, which did not affect the phenotypes, prompts compensatory effects reflecting resilience. In contrast, higher incubation temperature triggers gene expression and has long-term effects on the phenotype. These mechanisms of considerable phenotypic plasticity contribute to the biodiversity and broaden the basis for managing poultry populations.

  17. Cellular Stress Response to Engineered Nanoparticles: Effect of Size, Surface Coating, and Cellular Uptake

    EPA Science Inventory

    CELLULAR STRESS RESPONSE TO ENGINEERED NANOPARTICLES: EFFECT OF SIZE, SURFACE COATING, AND CELLULAR UPTAKE RY Prasad 1, JK McGee2, MG Killius1 D Ackerman2, CF Blackman2 DM DeMarini2 , SO Simmons2 1 Student Services Contractor, US EPA, RTP, NC 2 US EPA, RTP, NC The num...

  18. Epithelium-Innate Immune Cell Axis in Mucosal Responses to SIV

    PubMed Central

    Shang, L.; Duan, L.; Perkey, K. E.; Wietgrefe, S.; Zupancic, M.; Smith, A. J.; Southern, P. J.; Johnson, R. P.; Haase, A. T.

    2016-01-01

    In the SIV-rhesus macaque model of HIV-1 transmission to women, one hallmark of the mucosal response to exposure to high doses of SIV is CD4 T cell recruitment that fuels local virus expansion in early infection. In this study, we systematically analyzed the cellular events and chemoattractant profiles in cervical tissues that precede CD4 T cell recruitment. We show that vaginal exposure to the SIV inoculum rapidly induces chemokine expression in cervical epithelium including CCL3, CCL20, and CXCL8. The chemokine expression is associated with early recruitment of macrophages and plasmacytoid dendritic cells that are co-clustered underneath the cervical epithelium. Production of chemokines CCL3 and CXCL8 by these cells in turn generates a chemokine gradient that is spatially correlated with the recruitment of CD4 T cells. We further show that the protection of SIVmac239Δnef vaccination against vaginal challenge is correlated with the absence of this epithelium-innate immune cell-CD4 T cell axis response in the cervical mucosa. Our results reveal a critical role for cervical epithelium in initiating early mucosal responses to vaginal infection, highlight an important role for macrophages in target cell recruitment and provide further evidence of a paradoxical dampening effect of a protective vaccine on these early mucosal responses. PMID:27435105

  19. Inhibitors of the proteasome suppress homologous DNA recombination in mammalian cells.

    PubMed

    Murakawa, Yasuhiro; Sonoda, Eiichiro; Barber, Louise J; Zeng, Weihua; Yokomori, Kyoko; Kimura, Hiroshi; Niimi, Atsuko; Lehmann, Alan; Zhao, Guang Yu; Hochegger, Helfrid; Boulton, Simon J; Takeda, Shunichi

    2007-09-15

    Proteasome inhibitors are novel antitumor agents against multiple myeloma and other malignancies. Despite the increasing clinical application, the molecular basis of their antitumor effect has been poorly understood due to the involvement of the ubiquitin-proteasome pathway in multiple cellular metabolisms. Here, we show that treatment of cells with proteasome inhibitors has no significant effect on nonhomologous end joining but suppresses homologous recombination (HR), which plays a key role in DNA double-strand break (DSB) repair. In this study, we treat human cells with proteasome inhibitors and show that the inhibition of the proteasome reduces the efficiency of HR-dependent repair of an artificial HR substrate. We further show that inhibition of the proteasome interferes with the activation of Rad51, a key factor for HR, although it does not affect the activation of ATM, gammaH2AX, or Mre11. These data show that the proteasome-mediated destruction is required for the promotion of HR at an early step. We suggest that the defect in HR-mediated DNA repair caused by proteasome inhibitors contributes to antitumor effect, as HR plays an essential role in cellular proliferation. Moreover, because HR plays key roles in the repair of DSBs caused by chemotherapeutic agents such as cisplatin and by radiotherapy, proteasome inhibitors may enhance the efficacy of these treatments through the suppression of HR-mediated DNA repair pathways.

  20. The endocannabinoid system in normal and pathological brain ageing

    PubMed Central

    Bilkei-Gorzo, Andras

    2012-01-01

    The role of endocannabinoids as inhibitory retrograde transmitters is now widely known and intensively studied. However, endocannabinoids also influence neuronal activity by exerting neuroprotective effects and regulating glial responses. This review centres around this less-studied area, focusing on the cellular and molecular mechanisms underlying the protective effect of the cannabinoid system in brain ageing. The progression of ageing is largely determined by the balance between detrimental, pro-ageing, largely stochastic processes, and the activity of the homeostatic defence system. Experimental evidence suggests that the cannabinoid system is part of the latter system. Cannabinoids as regulators of mitochondrial activity, as anti-oxidants and as modulators of clearance processes protect neurons on the molecular level. On the cellular level, the cannabinoid system regulates the expression of brain-derived neurotrophic factor and neurogenesis. Neuroinflammatory processes contributing to the progression of normal brain ageing and to the pathogenesis of neurodegenerative diseases are suppressed by cannabinoids, suggesting that they may also influence the ageing process on the system level. In good agreement with the hypothesized beneficial role of cannabinoid system activity against brain ageing, it was shown that animals lacking CB1 receptors show early onset of learning deficits associated with age-related histological and molecular changes. In preclinical models of neurodegenerative disorders, cannabinoids show beneficial effects, but the clinical evidence regarding their efficacy as therapeutic tools is either inconclusive or still missing. PMID:23108550

  1. The endocannabinoid system in normal and pathological brain ageing.

    PubMed

    Bilkei-Gorzo, Andras

    2012-12-05

    The role of endocannabinoids as inhibitory retrograde transmitters is now widely known and intensively studied. However, endocannabinoids also influence neuronal activity by exerting neuroprotective effects and regulating glial responses. This review centres around this less-studied area, focusing on the cellular and molecular mechanisms underlying the protective effect of the cannabinoid system in brain ageing. The progression of ageing is largely determined by the balance between detrimental, pro-ageing, largely stochastic processes, and the activity of the homeostatic defence system. Experimental evidence suggests that the cannabinoid system is part of the latter system. Cannabinoids as regulators of mitochondrial activity, as anti-oxidants and as modulators of clearance processes protect neurons on the molecular level. On the cellular level, the cannabinoid system regulates the expression of brain-derived neurotrophic factor and neurogenesis. Neuroinflammatory processes contributing to the progression of normal brain ageing and to the pathogenesis of neurodegenerative diseases are suppressed by cannabinoids, suggesting that they may also influence the ageing process on the system level. In good agreement with the hypothesized beneficial role of cannabinoid system activity against brain ageing, it was shown that animals lacking CB1 receptors show early onset of learning deficits associated with age-related histological and molecular changes. In preclinical models of neurodegenerative disorders, cannabinoids show beneficial effects, but the clinical evidence regarding their efficacy as therapeutic tools is either inconclusive or still missing.

  2. Experimental Approaches to Systematic Discovery and Development of Reproductive Adverse Outcome Pathways in Fish

    EPA Science Inventory

    Adverse outcome pathways (AOPs) are conceptual frameworks that portray causal and predictive linkages between key events at multiple scales of biological organization that connect molecular initiating events and early cellular perturbations (e.g., initiation of toxicity pathways)...

  3. Metabolomic differences in early and late lactation first-parity gilts

    USDA-ARS?s Scientific Manuscript database

    Investigating the metabolome provides the evaluation of all cellular processes occuring while accounting for environmental influence and may provide additional information for selection criteria to fully evolve. Blood samples and body condition measurements were acquired from 68, first-parity gilts ...

  4. Telomere length and early severe social deprivation: linking early adversity and cellular aging

    PubMed Central

    Drury, SS; Theall, K; Gleason, MM; Smyke, AT; De Vivo, I; Wong, JYY; Fox, NA; Zeanah, CH; Nelson, CA

    2012-01-01

    Accelerated telomere length attrition has been associated with psychological stress and early adversity in adults; however, no studies have examined whether telomere length in childhood is associated with early experiences. The Bucharest Early Intervention Project is a unique randomized controlled trial of foster care placement compared with continued care in institutions. As a result of the study design, participants were exposed to a quantified range of time in institutional care, and represented an ideal population in which to examine the association between a specific early adversity, institutional care and telomere length. We examined the association between average relative telomere length, telomere repeat copy number to single gene copy number (T/S) ratio and exposure to institutional care quantified as the percent of time at baseline (mean age 22 months) and at 54 months of age that each child lived in the institution. A significant negative correlation between T/S ratio and percentage of time was observed. Children with greater exposure to institutional care had significantly shorter relative telomere length in middle childhood. Gender modified this main effect. The percentage of time in institutional care at baseline significantly predicted telomere length in females, whereas the percentage of institutional care at 54 months was strongly predictive of telomere length in males. This is the first study to demonstrate an association between telomere length and institutionalization, the first study to find an association between adversity and telomere length in children, and contributes to the growing literature linking telomere length and early adversity. PMID:21577215

  5. Immediate Administration of Intraarticular Triamcinolone Acetonide after Joint Injury Modulates Molecular Outcomes Associated with Early Synovitis

    PubMed Central

    Sieker, Jakob T.; Ayturk, Ugur M.; Proffen, Benedikt L.; Weissenberger, Manuela H.; Kiapour, Ata M.; Murray, Martha M.

    2016-01-01

    Objective To test if intraarticular corticosteroid injection mitigates injury-induced synovitis and collagen degradation after anterior cruciate ligament (ACL) transection and characterize the synovial response using a functional genomics approach in a preclinical model of post- traumatic osteoarthritis. Methods Yorkshire pigs received untreated unilateral ACL transection (ACLT, n=6) or transection with immediate injection of 20mg triamcinolone acetonide (STEROID, n=6). Total synovial membrane cellularity and synovial fluid concentration of COL-2 3/4C short neoepitope bearing collagen fragments at 14 days post-injury were primary endpoints and compared between ACLT, STEROID and INTACT (n=6 uninjured knees). Cells were differentiated by histological phenotype and counted, while RNA-seq was used to quantify transcriptome-wide gene expression, monocyte, macrophage and lymphocyte markers. Results Total cellularity of 13% (95% confidence interval of 9–16) and COL-2 3/4C short levels of 0.24 Kg/ml (0.08–0.39) were determined in INTACT. Significant increases in total cellularity to 21% (16–27) and COL-2 3/4C short to 0.49 Kg/ml (0.39–0.59) were observed in ACLT. Compared to ACLT, total cellularity was non-significantly and COL-2 3/4C short was significantly decreased in STEROID to 17% (15–18, p=0.26) and 0.29 Kg/ml (0.23–0.35). Between ACLT and INTACT, 255 genes were differentially expressed and enriched pathways related to cellular immune response and proteolysis. Mononuclear leukocytes were the dominant cell type in cell dense areas. MARCO, SOCS3, CCR1, IL4R and MMP2 expression was significantly associated with COL-2 3/4C short levels. Conclusions Early intraarticular immunosuppression mitigated the injury-induced increase of collagen fragments, an outcome better predicted by specific marker expression than histological measures of synovitis. PMID:26866935

  6. Genetics of human hydrocephalus

    PubMed Central

    Williams, Michael A.; Rigamonti, Daniele

    2006-01-01

    Human hydrocephalus is a common medical condition that is characterized by abnormalities in the flow or resorption of cerebrospinal fluid (CSF), resulting in ventricular dilatation. Human hydrocephalus can be classified into two clinical forms, congenital and acquired. Hydrocephalus is one of the complex and multifactorial neurological disorders. A growing body of evidence indicates that genetic factors play a major role in the pathogenesis of hydrocephalus. An understanding of the genetic components and mechanism of this complex disorder may offer us significant insights into the molecular etiology of impaired brain development and an accumulation of the cerebrospinal fluid in cerebral compartments during the pathogenesis of hydrocephalus. Genetic studies in animal models have started to open the way for understanding the underlying pathology of hydrocephalus. At least 43 mutants/loci linked to hereditary hydrocephalus have been identified in animal models and humans. Up to date, 9 genes associated with hydrocephalus have been identified in animal models. In contrast, only one such gene has been identified in humans. Most of known hydrocephalus gene products are the important cytokines, growth factors or related molecules in the cellular signal pathways during early brain development. The current molecular genetic evidence from animal models indicate that in the early development stage, impaired and abnormal brain development caused by abnormal cellular signaling and functioning, all these cellular and developmental events would eventually lead to the congenital hydrocephalus. Owing to our very primitive knowledge of the genetics and molecular pathogenesis of human hydrocephalus, it is difficult to evaluate whether data gained from animal models can be extrapolated to humans. Initiation of a large population genetics study in humans will certainly provide invaluable information about the molecular and cellular etiology and the developmental mechanisms of human hydrocephalus. This review summarizes the recent findings on this issue among human and animal models, especially with reference to the molecular genetics, pathological, physiological and cellular studies, and identifies future research directions. PMID:16773266

  7. Saquinavir inhibits early events associated with establishment of HIV-1 infection: potential role for protease inhibitors in prevention.

    PubMed

    Stefanidou, Martha; Herrera, Carolina; Armanasco, Naomi; Shattock, Robin J

    2012-08-01

    The maturation of newly formed human immunodeficiency virus type 1 (HIV-1) virions is a critical step for the establishment of productive infection. We investigated the potential of saquinavir (SQV), a protease inhibitor (PI) used in highly active antiretroviral therapy (HAART), as a candidate microbicide. SQV inhibited replication of clade B and clade C isolates in a dose-dependent manner in all cellular models tested: PM-1 CD4 T cells, peripheral blood mononuclear cells (PBMCs), monocyte-derived macrophages (MDMs), and immature monocyte-derived dendritic cells (iMDDCs). SQV also inhibited production of infectious virus in cervical, penile, and colorectal explants cocultured with T cells. Moreover, SQV demonstrated inhibitory potency against trans infection of T cells by in vitro-derived dendritic cells and by primary dendritic cells that emigrate from penile and cervical tissue explants. No cellular or tissue toxicity was detected in the presence of SQV, suggesting that this drug could be considered for development as a component of an effective microbicide, capable of blocking viral maturation and transmission of HIV-1 at mucosal surfaces.

  8. l-Carnitine Supplementation in Recovery after Exercise.

    PubMed

    Fielding, Roger; Riede, Linda; Lugo, James P; Bellamine, Aouatef

    2018-03-13

    Given its pivotal role in fatty acid oxidation and energy metabolism, l-carnitine has been investigated as ergogenic aid for enhancing exercise capacity in the healthy athletic population. Early research indicates its beneficial effects on acute physical performance, such as increased maximum oxygen consumption and higher power output. Later studies point to the positive impact of dietary supplementation with l-carnitine on the recovery process after exercise. It is demonstrated that l-carnitine alleviates muscle injury and reduces markers of cellular damage and free radical formation accompanied by attenuation of muscle soreness. The supplementation-based increase in serum and muscle l-carnitine contents is suggested to enhance blood flow and oxygen supply to the muscle tissue via improved endothelial function thereby reducing hypoxia-induced cellular and biochemical disruptions. Studies in older adults further showed that l-carnitine intake can lead to increased muscle mass accompanied by a decrease in body weight and reduced physical and mental fatigue. Based on current animal studies, a role of l-carnitine in the prevention of age-associated muscle protein degradation and regulation of mitochondrial homeostasis is suggested.

  9. l-Carnitine Supplementation in Recovery after Exercise

    PubMed Central

    Fielding, Roger; Riede, Linda; Lugo, James P.; Bellamine, Aouatef

    2018-01-01

    Given its pivotal role in fatty acid oxidation and energy metabolism, l-carnitine has been investigated as ergogenic aid for enhancing exercise capacity in the healthy athletic population. Early research indicates its beneficial effects on acute physical performance, such as increased maximum oxygen consumption and higher power output. Later studies point to the positive impact of dietary supplementation with l-carnitine on the recovery process after exercise. It is demonstrated that l-carnitine alleviates muscle injury and reduces markers of cellular damage and free radical formation accompanied by attenuation of muscle soreness. The supplementation-based increase in serum and muscle l-carnitine contents is suggested to enhance blood flow and oxygen supply to the muscle tissue via improved endothelial function thereby reducing hypoxia-induced cellular and biochemical disruptions. Studies in older adults further showed that l-carnitine intake can lead to increased muscle mass accompanied by a decrease in body weight and reduced physical and mental fatigue. Based on current animal studies, a role of l-carnitine in the prevention of age-associated muscle protein degradation and regulation of mitochondrial homeostasis is suggested. PMID:29534031

  10. A Comparative Analysis of Drug-Induced Hepatotoxicity in Clinically Relevant Situations

    PubMed Central

    Thiel, Christoph; Cordes, Henrik; Fabbri, Lorenzo; Aschmann, Hélène Eloise; Baier, Vanessa; Atkinson, Francis; Blank, Lars Mathias; Kuepfer, Lars

    2017-01-01

    Drug-induced toxicity is a significant problem in clinical care. A key problem here is a general understanding of the molecular mechanisms accompanying the transition from desired drug effects to adverse events following administration of either therapeutic or toxic doses, in particular within a patient context. Here, a comparative toxicity analysis was performed for fifteen hepatotoxic drugs by evaluating toxic changes reflecting the transition from therapeutic drug responses to toxic reactions at the cellular level. By use of physiologically-based pharmacokinetic modeling, in vitro toxicity data were first contextualized to quantitatively describe time-resolved drug responses within a patient context. Comparatively studying toxic changes across the considered hepatotoxicants allowed the identification of subsets of drugs sharing similar perturbations on key cellular processes, functional classes of genes, and individual genes. The identified subsets of drugs were next analyzed with regard to drug-related characteristics and their physicochemical properties. Toxic changes were finally evaluated to predict both molecular biomarkers and potential drug-drug interactions. The results may facilitate the early diagnosis of adverse drug events in clinical application. PMID:28151932

  11. Seeking new anti-cancer agents from autophagy-regulating natural products.

    PubMed

    Hua, Fang; Shang, Shuang; Hu, Zhuo-Wei

    2017-04-01

    Natural products are an important original source of many widely used drugs, including anti-cancer drugs. Early research efforts for seeking anti-cancer therapy from the natural products are mainly focused on the compounds with cytotoxicity capability. The good examples include vinblastine, vincristine, the camptothecin derivatives; topotecan, irinotecan, epipodophyllotoxin derivatives and paclitaxel. In a recent decade, the fundamental progression has been made in the understanding of molecular and cellular mechanisms regarding tumor initiation, metastasis, therapeutic resistance, immune escape, and relapse, which provide a great opportunity for the development of new mechanism-based anticancer drugs, especially drugs against new molecular and cellular targets. Autophagy, a critical cell homeostasis mechanism and promising drug target involved in a verity of human diseases including cancer, can be modulated by many compounds derived from natural products. In this review, we'll give a short introduction of autophagy and discuss the roles of autophagy in the tumorigenesis and progression. And then, we summarize the accumulated evidences to show the anti-tumor effects of several compounds derived from natural products through modulation of autophagy activity.

  12. Yeast chronological lifespan and proteotoxic stress: is autophagy good or bad?

    PubMed

    Sampaio-Marques, Belém; Felgueiras, Carolina; Silva, Alexandra; Rodrigues, Fernando; Ludovico, Paula

    2011-10-01

    Autophagy, a highly conserved proteolytic mechanism of quality control, is essential for the maintenance of metabolic and cellular homoeostasis and for an efficient cellular response to stress. Autophagy declines with aging and is believed to contribute to different aspects of the aging phenotype. The nutrient-sensing pathways PKA (protein kinase A), Sch9 and TOR (target of rapamycin), involved in the regulation of yeast lifespan, also converge on a common targeted process: autophagy. The molecular mechanisms underlying the regulation of autophagy and aging by these signalling pathways in yeast, with special attention to the TOR pathway, are discussed in the present paper. The question of whether or not autophagy could contribute to yeast cell death occurring during CLS (chronological lifespan) is discussed in the light of our findings obtained after autophagy activation promoted by proteotoxic stress. Autophagy progressively increases in cells expressing the aggregation-prone protein α-synuclein and seems to participate in the early cell death and shortening of CLS under these conditions, highlighting that autophagic activity should be maintained below physiological levels to exert its promising anti-aging effects.

  13. Stage-dependent toxicity of bisphenol a on Rhinella arenarum (anura, bufonidae) embryos and larvae.

    PubMed

    Wolkowicz, Ianina R Hutler; Herkovits, Jorge; Pérez Coll, Cristina S

    2014-02-01

    The acute and chronic toxicity of bisphenol A (BPA) was evaluated on the common South American toad Rhinella arenarum embryos and larvae by means of continuous and pulse exposure treatments. Embryos were treated continuously from early blastula (S.4) up to complete operculum (S.25), during early larval stages and by means of 24 h pulse exposures of BPA in concentrations ranging between 1.25 and 40 mg L(-1) , in order to evaluate the susceptibility to this compound in different developmental stages. For lethal effects, S.25 was the most sensitive and gastrula was the most resistant to BPA. The Teratogenic Index for neurula, the most sensitive embryonic stage for sublethal effects was 4.7. The main morphological alterations during early stages were: delayed or arrested development, reduced body size, persistent yolk plug, microcephaly, axial/tail flexures, edemas, blisters, waving fin, underdeveloped gills, mouth malformations, and cellular dissociation. BPA caused a remarkable narcotic effect from gill circulation stage (S.20) onwards in all the organisms exposed after 3 h of treatment with 10 mg L(-1) BPA. After recovering, the embryos exhibited scarce response to stimuli, erratic or circular swimming, and spasmodic contractions from 5 mg L(-1) onwards. Our results highlight the lethal and sublethal effectsof BPA on R. arenarum embryos and larvae, in the last case both at structural and functional levels. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  14. Molecular regulation of sex change induced by methyltestosterone -feeding and methyltestosterone -feeding withdrawal in the protogynous orange-spotted grouper.

    PubMed

    Wang, Qing; Liu, Yun; Peng, Cheng; Wang, Xiang; Xiao, Ling; Wang, Dengdong; Chen, Jiaxing; Zhang, Haifa; Zhao, Huihong; Li, Shuisheng; Zhang, Yong; Lin, Haoran

    2017-08-01

    The sex identity of fish can be easily manipulated by exogenous hormones. Treatment with 17-methyltestosterone (MT) has been widely used to induce a male fate, but the molecular and cellular processes underlying sex changes induced by MT treatments and the withdrawal of MT are not well studied. In this study, we systematically investigated gonadal histology, gene expression profiles, sex steroid hormone levels, and cellular changes during sex changes induced by MT-feeding and MT-feeding withdrawal in the protogynous orange-spotted grouper, Epinephelus coioides. Based on gonadal histology, we demonstrated that MT-feeding-induced sex reversal can be divided into early and late phases: in the early phase, male and female germ cells coexist, and MT-feeding withdrawal leads to a female fate; in the late phase, only male germ cells are observed, and MT-feeding withdrawal does not reverse the process, leading to a male fate. In both the early and late phases, cytochrome P450 family19 subfamily A member 1 (cyp19a1a) gene expression increased in response to MT-feeding withdrawal. Finally, by tracing doublesex- and Mab-3-related transcription factor 1 (dmrt1)-expressing cells, we found that gonia-like cells in the germinal epithelium might be the major germ cell sources for developing testes during sex reversal. Collectively, our findings provide insights into the molecular and cellular mechanisms underlying sex changes induced by exogenous hormones. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. High-density human mesenchymal stem cell rings with spatiotemporally-controlled morphogen presentation as building blocks for engineering bone diaphyseal tissue

    PubMed Central

    Herberg, Samuel; Varghai, Daniel; Cheng, Yuxuan; Dikina, Anna D.; Dang, Phuong N.; Rolle, Marsha W.; Alsberg, Eben

    2018-01-01

    Emerging biomimetic tissue engineering strategies aim to partially recapitulate fundamental events that transpire during embryonic skeletal development; namely, cellular self-organization and targeted morphogenetic pathway activation. Here, we describe self-assembled, scaffold-free human mesenchymal stem cell (hMSC) rings featuring microparticle-mediated presentation of transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2). We tested the hypothesis that spatiotemporally-controlled dual presentation of TGF-β1 and BMP-2 is superior in modulating in vitro endochondral ossification of high-density cellular constructs compared to single morphogen delivery. hMSC rings were engineered by seeding cells with microparticles presenting (1) TGF-β1, (2) BMP-2, or (3) TGF-β1 + BMP-2 in custom agarose wells to facilitate self-assembly within 2 d, followed by horizontal culture on glass tubes for 5 weeks. At day 2, hMSC rings across groups revealed homogenous cellular organization mimetic of early mesenchymal condensation with no evidence of new matrix or mineral deposition. Significant early chondrogenic and osteogenic priming occurred with TGF-β1 + BMP-2 presentation compared to single morphogen-loaded groups. By week 5, TGF-β1-loaded hMSC rings had undergone chondrogenesis, while presentation of BMP-2 alone or in conjunction with TGF-β1 stimulated chondrogenesis, chondrocyte hypertrophy, and osteogenesis indicative of endochondral ossification. Importantly, tissue mineralization was most compelling with TGF-β1 + BMP-2 loading. Lastly, hMSC ring 'building blocks' were shown to efficiently fuse into tubes within 6 d post self-assembly. The resulting tubular tissue units exhibited structural integrity, highlighting the translational potential of this advanced biomimetic technology for potential early implantation in long bone defects. PMID:29577017

  16. Dendritic cells are early cellular targets of Listeria monocytogenes after intestinal delivery and are involved in bacterial spread in the host.

    PubMed

    Pron, B; Boumaila, C; Jaubert, F; Berche, P; Milon, G; Geissmann, F; Gaillard, J L

    2001-05-01

    We studied the sequence of cellular events leading to the dissemination of Listeria monocytogenes from the gut to draining mesenteric lymph nodes (MLNs) by confocal microscopy of immunostained tissue sections from a rat ligated ileal loop system. OX-62-positive cells beneath the epithelial lining of Peyer's patches (PPs) were the first Listeria targets identified after intestinal inoculation. These cells had other features typical of dendritic cells (DCs): they were large, pleiomorphic and major histocompatibility complex class II(hi). Listeria were detected by microscopy in draining MLNs as early as 6 h after inoculation. Some 80-90% of bacteria were located in the deep paracortical regions, and 100% of the bacteria were present in OX-62-positive cells. Most infected cells contained more than five bacteria each, suggesting that they had arrived already loaded with bacteria. At later stages, the bacteria in these areas were mostly present in ED1-positive mononuclear phagocytes. These cells were also infected by an actA mutant defective in cell-to-cell spreading. This suggests that Listeria are transported by DCs from PPs to the deep paracortical regions of draining MLNs and are then transmitted to other cell populations by mechanisms independent of ActA. Another pathway of dissemination to MLNs was identified, probably involving free Listeria and leading to the infection of ED3-positive mononuclear phagocytes in the subcapsular sinus and adjacent paracortical areas. This study provides evidence that DCs are major cellular targets of L. monocytogenes in PPs and that DCs may be involved in the early dissemination of this pathogen. DCs were not sites of active bacterial replication, making these cells ideal vectors of infection.

  17. Activation of G-protein coupled estrogen receptor 1 improves early-onset cognitive impairment via PI3K/Akt pathway in rats with traumatic brain injury.

    PubMed

    Wang, Ze-Fen; Pan, Zhi-Yong; Xu, Cheng-Shi; Li, Zhi-Qiang

    2017-01-22

    Previous studies experimentally reveal that G-protein coupled estrogen receptor 1(GPER) has neuroprotection against ischemic injury. However, its effect on traumatic brain injury (TBI) is less well-established. Cognitive impairment following human TBI is a common clinical observation, and TBI is considered as a risk factor for Alzheimer's disease (AD). This study aimed to observe the possible protective effect of GPER on early-onset cognitive impairment after a single TBI and investigate the cellular mechanism underlying its actions. We found that selective GPER agonist G-1 significantly reduced hippocampal CA1 neuronal loss and improved cognitive impairment in TBI rats. Although previous studies have shown that AD-like tau pathology occurs many years after both repetitive and single TBI, accumulation of hyperphosphorylated tau was not observed within days (detected at 24 h and 7d) after TBI. Furthermore, tau phosphorylation was not altered by G-1 treatment. It was found that G-1 administration caused an increase in p-Akt level. However, the neuroprotective effects of G-1 on spatial cognition and neuronal death were attenuated by PI3K/Akt inhibitor LY294002. These findings indicate that GPER agonist G-1 had protection on cognitive function via activation of PI3K/Akt signaling. Early-onset cognitive impairment following a single TBI was closely associated with acute hippocampal neuronal loss rather than tau pathology. This study suggests that early activation of GPER might be a promising therapeutic strategy for improvement of TBI-induced cognitive outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Genetics and epigenetics of aging and longevity

    PubMed Central

    Moskalev, Alexey A; Aliper, Alexander M; Smit-McBride, Zeljka; Buzdin, Anton; Zhavoronkov, Alex

    2014-01-01

    Evolutionary theories of aging predict the existence of certain genes that provide selective advantage early in life with adverse effect on lifespan later in life (antagonistic pleiotropy theory) or longevity insurance genes (disposable soma theory). Indeed, the study of human and animal genetics is gradually identifying new genes that increase lifespan when overexpressed or mutated: gerontogenes. Furthermore, genetic and epigenetic mechanisms are being identified that have a positive effect on longevity. The gerontogenes are classified as lifespan regulators, mediators, effectors, housekeeping genes, genes involved in mitochondrial function, and genes regulating cellular senescence and apoptosis. In this review we demonstrate that the majority of the genes as well as genetic and epigenetic mechanisms that are involved in regulation of longevity are highly interconnected and related to stress response. PMID:24603410

  19. Alcohol consumption stimulates early steps in reverse cholesterol transport.

    PubMed

    van der Gaag, M S; van Tol, A; Vermunt, S H; Scheek, L M; Schaafsma, G; Hendriks, H F

    2001-12-01

    Alcohol consumption is associated with increased HDL cholesterol levels, which may indicate stimulated reverse cholesterol transport. The mechanism is, however, not known. The aim of this study was to evaluate the effects of alcohol consumption on the first two steps of the reverse cholesterol pathway: cellular cholesterol efflux and plasma cholesterol esterification. Eleven healthy middle-aged men consumed four glasses (40 g of alcohol) of red wine, beer, spirits (Dutch gin), or carbonated mineral water (control) daily with evening dinner, for 3 weeks, according to a 4 x 4 Latin square design. After 3 weeks of alcohol consumption the plasma ex vivo cholesterol efflux capacity, measured with Fu5AH cells, was raised by 6.2% (P < 0.0001) and did not differ between the alcoholic beverages. Plasma cholesterol esterification was increased by 10.8% after alcohol (P = 0.008). Changes were statistically significant after beer and spirits, but not after red wine consumption (P = 0.16). HDL lipids changed after alcohol consumption; HDL total cholesterol, HDL cholesteryl ester, HDL free cholesterol, HDL phospholipids and plasma apolipoprotein A-I all increased (P < 0.01). In conclusion, alcohol consumption stimulates cellular cholesterol efflux and its esterification in plasma. These effects were mostly independent of the kind of alcoholic beverage

  20. Dynamics of the HIV infection under antiretroviral therapy: A cellular automata approach

    NASA Astrophysics Data System (ADS)

    González, Ramón E. R.; Coutinho, Sérgio; Zorzenon dos Santos, Rita Maria; de Figueirêdo, Pedro Hugo

    2013-10-01

    The dynamics of human immunodeficiency virus infection under antiretroviral therapy is investigated using a cellular automata model where the effectiveness of each drug is self-adjusted by the concentration of CD4+ T infected cells present at each time step. The effectiveness of the drugs and the infected cell concentration at the beginning of treatment are the control parameters of the cell population’s dynamics during therapy. The model allows describing processes of mono and combined therapies. The dynamics that emerges from this model when considering combined antiretroviral therapies reproduces with fair qualitative agreement the phases and different time scales of the process. As observed in clinical data, the results reproduce the significant decrease in the population of infected cells and a concomitant increase of the population of healthy cells in a short timescale (weeks) after the initiation of treatment. Over long time scales, early treatment with potent drugs may lead to undetectable levels of infection. For late treatment or treatments starting with a low density of CD4+ T healthy cells it was observed that the treatment may lead to a steady state in which the T cell counts are above the threshold associated with the onset of AIDS. The results obtained are validated through comparison to available clinical trial data.

  1. Microfluidics as a new tool in radiation biology

    PubMed Central

    Lacombe, Jerome; Phillips, Shanna Leslie; Zenhausern, Frederic

    2016-01-01

    Ionizing radiations interact with molecules at the cellular and molecular levels leading to several biochemical modifications that may be responsible for biological effects on tissue or whole organisms. The study of these changes is difficult because of the complexity of the biological response(s) to radiations and the lack of reliable models able to mimic the whole molecular phenomenon and different communications between the various cell networks, from the cell activation to the macroscopic effect at the tissue or organismal level. Microfluidics, the science and technology of systems that can handle small amounts of fluids in confined and controlled environment, has been an emerging field for several years. Some microfluidic devices, even at early stages of development, may already help radiobiological research by proposing new approaches to study cellular, tissue and total-body behavior upon irradiation. These devices may also be used in clinical biodosimetry since microfluidic technology is frequently developed for integrating complex bioassay chemistries into automated user-friendly, reproducible and sensitive analyses. In this review, we discuss the use, numerous advantages, and possible future of microfluidic technology in the field of radiobiology. We will also examine the disadvantages and required improvements for microfluidics to be fully practical in radiation research and to become an enabling tool for radiobiologists and radiation oncologists. PMID:26704304

  2. Microfluidics as a new tool in radiation biology.

    PubMed

    Lacombe, Jerome; Phillips, Shanna Leslie; Zenhausern, Frederic

    2016-02-28

    Ionizing radiations interact with molecules at the cellular and molecular levels leading to several biochemical modifications that may be responsible for biological effects on tissue or whole organisms. The study of these changes is difficult because of the complexity of the biological response(s) to radiations and the lack of reliable models able to mimic the whole molecular phenomenon and different communications between the various cell networks, from the cell activation to the macroscopic effect at the tissue or organismal level. Microfluidics, the science and technology of systems that can handle small amounts of fluids in confined and controlled environment, has been an emerging field for several years. Some microfluidic devices, even at early stages of development, may already help radiobiological research by proposing new approaches to study cellular, tissue and total-body behavior upon irradiation. These devices may also be used in clinical biodosimetry since microfluidic technology is frequently developed for integrating complex bioassay chemistries into automated user-friendly, reproducible and sensitive analyses. In this review, we discuss the use, numerous advantages, and possible future of microfluidic technology in the field of radiobiology. We will also examine the disadvantages and required improvements for microfluidics to be fully practical in radiation research and to become an enabling tool for radiobiologists and radiation oncologists. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Molecular and Cellular Mechanisms of Muscle Aging and Sarcopenia and Effects of Electrical Stimulation in Seniors.

    PubMed

    Barber, Laura; Scicchitano, Bianca Maria; Musaro, Antonio

    2015-08-24

    The prolongation of skeletal muscle strength in aging and neuromuscular disease has been the objective of numerous studies employing a variety of approaches. It is generally accepted that cumulative failure to repair damage related to an overall decrease in anabolic processes is a primary cause of functional impairment in muscle. The functional performance of skeletal muscle tissues declines during post- natal life and it is compromised in different diseases, due to an alteration in muscle fiber composition and an overall decrease in muscle integrity as fibrotic invasions replace functional contractile tissue. Characteristics of skeletal muscle aging and diseases include a conspicuous reduction in myofiber plasticity (due to the progressive loss of muscle mass and in particular of the most powerful fast fibers), alteration in muscle-specific transcriptional mechanisms, and muscle atrophy. An early decrease in protein synthetic rates is followed by a later increase in protein degradation, to affect biochemical, physiological, and morphological parameters of muscle fibers during the aging process. Alterations in regenerative pathways also compromise the functionality of muscle tissues. In this review we will give an overview of the work on molecular and cellular mechanisms of aging and sarcopenia and the effects of electrical stimulation in seniors..

  4. The interfacial pH of acidic degradable polymeric biomaterials and its effects on osteoblast behavior.

    PubMed

    Ruan, Changshun; Hu, Nan; Ma, Yufei; Li, Yuxiao; Liu, Juan; Zhang, Xinzhou; Pan, Haobo

    2017-07-28

    A weak alkaline environment is established to facilitate the growth of osteoblasts. Unfortunately, this is inconsistent with the application of biodegradable polymer in bone regeneration, as the degradation products are usually acidic. In this study, the variation of the interfacial pH of poly (D, L-lactide) and piperazine-based polyurethane ureas (P-PUUs), as the representations of acidic degradable materials, and the behavior of osteoblasts on these substrates with tunable interfacial pH were investigated in vitro. These results revealed that the release of degraded products caused a rapid decrease in the interfacial pH, and this could be relieved by the introduction of alkaline segments. On the contrary, when culturing with osteoblasts, the variation of the interfacial pH revealed an upward tendency, indicating that cell could construct the microenvironment by secreting cellular metabolites to satisfy its own survival. In addition, the behavior of osteoblasts on substrates exhibited that P-PUUs with the most PP units were better for cell growth and osteogenic differentiation of cells. This is due to the hydrophilic surface and the moderate N% in P-PUUs, key factors in the promotion of the early stages of cellular responses, and the interfacial pH contributing to the enhanced effect on osteogenic differentiation.

  5. Ocean Warming Enhances Malformations, Premature Hatching, Metabolic Suppression and Oxidative Stress in the Early Life Stages of a Keystone Squid

    PubMed Central

    Rosa, Rui; Pimentel, Marta S.; Boavida-Portugal, Joana; Teixeira, Tatiana; Trübenbach, Katja; Diniz, Mário

    2012-01-01

    Background The knowledge about the capacity of organisms’ early life stages to adapt to elevated temperatures is very limited but crucial to understand how marine biota will respond to global warming. Here we provide a comprehensive and integrated view of biological responses to future warming during the early ontogeny of a keystone invertebrate, the squid Loligo vulgaris. Methodology/Principal Findings Recently-spawned egg masses were collected and reared until hatching at present day and projected near future (+2°C) temperatures, to investigate the ability of early stages to undergo thermal acclimation, namely phenotypic altering of morphological, behavioural, biochemical and physiological features. Our findings showed that under the projected near-future warming, the abiotic conditions inside the eggs promoted metabolic suppression, which was followed by premature hatching. Concomitantly, the less developed newborns showed greater incidence of malformations. After hatching, the metabolic burst associated with the transition from an encapsulated embryo to a planktonic stage increased linearly with temperature. However, the greater exposure to environmental stress by the hatchlings seemed to be compensated by physiological mechanisms that reduce the negative effects on fitness. Heat shock proteins (HSP70/HSC70) and antioxidant enzymes activities constituted an integrated stress response to ocean warming in hatchlings (but not in embryos). Conclusions/Significance The stressful abiotic conditions inside eggs are expected to be aggravated under the projected near-future ocean warming, with deleterious effects on embryo survival and growth. Greater feeding challenges and the lower thermal tolerance limits of the hatchlings are strictly connected to high metabolic demands associated with the planktonic life strategy. Yet, we found some evidence that, in the future, the early stages might support higher energy demands by adjusting some cellular functional properties to increase their thermal tolerance windows. PMID:22701620

  6. Carbon Monoxide Poisoning: Pathogenesis, Management, and Future Directions of Therapy.

    PubMed

    Rose, Jason J; Wang, Ling; Xu, Qinzi; McTiernan, Charles F; Shiva, Sruti; Tejero, Jesus; Gladwin, Mark T

    2017-03-01

    Carbon monoxide (CO) poisoning affects 50,000 people a year in the United States. The clinical presentation runs a spectrum, ranging from headache and dizziness to coma and death, with a mortality rate ranging from 1 to 3%. A significant number of patients who survive CO poisoning suffer from long-term neurological and affective sequelae. The neurologic deficits do not necessarily correlate with blood CO levels but likely result from the pleiotropic effects of CO on cellular mitochondrial respiration, cellular energy utilization, inflammation, and free radical generation, especially in the brain and heart. Long-term neurocognitive deficits occur in 15-40% of patients, whereas approximately one-third of moderate to severely poisoned patients exhibit cardiac dysfunction, including arrhythmia, left ventricular systolic dysfunction, and myocardial infarction. Imaging studies reveal cerebral white matter hyperintensities, with delayed posthypoxic leukoencephalopathy or diffuse brain atrophy. Management of these patients requires the identification of accompanying drug ingestions, especially in the setting of intentional poisoning, fire-related toxic gas exposures, and inhalational injuries. Conventional therapy is limited to normobaric and hyperbaric oxygen, with no available antidotal therapy. Although hyperbaric oxygen significantly reduces the permanent neurological and affective effects of CO poisoning, a portion of survivors still have substantial morbidity. There has been some early success in therapies targeting the downstream inflammatory and oxidative effects of CO poisoning. New methods to directly target the toxic effect of CO, such as CO scavenging agents, are currently under development.

  7. Carbon Monoxide Poisoning: Pathogenesis, Management, and Future Directions of Therapy

    PubMed Central

    Xu, Qinzi; Shiva, Sruti

    2017-01-01

    Carbon monoxide (CO) poisoning affects 50,000 people a year in the United States. The clinical presentation runs a spectrum, ranging from headache and dizziness to coma and death, with a mortality rate ranging from 1 to 3%. A significant number of patients who survive CO poisoning suffer from long-term neurological and affective sequelae. The neurologic deficits do not necessarily correlate with blood CO levels but likely result from the pleiotropic effects of CO on cellular mitochondrial respiration, cellular energy utilization, inflammation, and free radical generation, especially in the brain and heart. Long-term neurocognitive deficits occur in 15–40% of patients, whereas approximately one-third of moderate to severely poisoned patients exhibit cardiac dysfunction, including arrhythmia, left ventricular systolic dysfunction, and myocardial infarction. Imaging studies reveal cerebral white matter hyperintensities, with delayed posthypoxic leukoencephalopathy or diffuse brain atrophy. Management of these patients requires the identification of accompanying drug ingestions, especially in the setting of intentional poisoning, fire-related toxic gas exposures, and inhalational injuries. Conventional therapy is limited to normobaric and hyperbaric oxygen, with no available antidotal therapy. Although hyperbaric oxygen significantly reduces the permanent neurological and affective effects of CO poisoning, a portion of survivors still have substantial morbidity. There has been some early success in therapies targeting the downstream inflammatory and oxidative effects of CO poisoning. New methods to directly target the toxic effect of CO, such as CO scavenging agents, are currently under development. PMID:27753502

  8. Ankaferd hemostat in the management of gastrointestinal hemorrhages

    PubMed Central

    Beyazit, Yavuz; Kekilli, Murat; Haznedaroglu, Ibrahim C; Kayacetin, Ertugrul; Basaranoglu, Metin

    2011-01-01

    Gastrointestinal (GI) bleeding refers to any hemorrhage ascribed to the pathologies of the gastrointestinal tract, extending from the mouth to the anal canal. Despite the recent improvements in the endoscopic, hemostatic and adjuvant pharmacologic techniques, the reported mortality is still around 5%-10% for peptic ulcer bleeding and about 15%-20% for variceal hemorrhages. Although endoscopic management reduces the rates of re-bleeding, surgery, and mortality in active bleeding; early recurrence ratios still occur in around 20% of the cases even with effective initial hemostatic measures. In this quest for an alternative pro-hemostatic agent for the management of GI bleedings, Ankaferd blood stopper (ABS) offers a successful candidate, specifically for “difficult-to-manage” situations as evidenced by data presented in several studies. ABS is a standardized mixture of the plants Thymus vulgaris, Glycyrrhiza glabra, Vitis vinifera, Alpinia officinarum, and Urtica dioica. It is effective in both bleeding individuals with normal hemostatic parameters and in patients with deficient primary and/or secondary hemostasis. ABS also modulates the cellular apoptotic responses to hemorrhagic stress, as well as hemostatic hemodynamic activity. Through its effects on the endothelium, blood cells, angiogenesis, cellular proliferation, vascular dynamics, and wound healing, ABS is now becoming an effective alternative hemostatic medicine for gastrointestinal bleedings that are resistant to conventional anti-hemorrhagic measurements. The aim of this review is to outline current literature experience suggesting the place of ABS in the management of GI bleeding, and potential future controlled trials in this complicated field. PMID:22046083

  9. Biological effect of aqueous C60 aggregates on Scenedesmus obliquus revealed by transcriptomics and non-targeted metabolomics.

    PubMed

    Du, Chunlei; Zhang, Bo; He, Yiliang; Hu, Chaoyang; Ng, Qin Xiang; Zhang, Hui; Ong, Choon Nam; ZhifenLin

    2017-02-15

    This work evaluated biological effect of nC 60 on Scenedesmus obliquus. The cells were exposed to various concentrations of nC 60 for 7days. Low-dose of nC 60 was found to have a minor growth inhibitory effect. The transcriptomics and metabolomics were integrated to examine intricate molecular and cellular effects of nC 60 on Scenedesmus obliquus. We found that Scenedesmus obliquus cells exposed to nC 60 had several significant alterations in cellular transcription and biochemical processes. During the 7-day exposure to nC 60 , 2234 and 2,448 unigenes were differentially expressed by 0.1mg/L and 1mg/L nC 60 -treated groups compared with the control, including 2085 or 2247 up-regulated genes and 149 or 201 down-regulated genes, respectively. We successfully identified 22 metabolites, including 6 significantly changed metabolites, such as sucrose, d-glucose, and malic acid. The citrate cycle (TCA cycle) (ko00020) was the main target of both differentially expressed genes and metabolic change. However, accumulation of sucrose (end-product) could have induced feedback inhibition of photosynthesis in Scenedesmus obliquus, explaining the slight growth inhibition observed. The results provided a mechanistic understanding of the growth inhibition of nC 60 toxicity. These genes and metabolites are useful biomarkers for future studies and offer new insights into the early detectable changes in Scenedesmus obliquus with nC 60 exposure. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Is biological aging accelerated in drug addiction?

    PubMed

    Bachi, Keren; Sierra, Salvador; Volkow, Nora D; Goldstein, Rita Z; Alia-Klein, Nelly

    2017-02-01

    Drug-addiction may trigger early onset of age-related disease, due to drug-induced multi-system toxicity and perilous lifestyle, which remains mostly undetected and untreated. We present the literature on pathophysiological processes that may hasten aging and its relevance to addiction, including: oxidative stress and cellular aging, inflammation in periphery and brain, decline in brain volume and function, and early onset of cardiac, cerebrovascular, kidney, and liver disease. Timely detection of accelerated aging in addiction is crucial for the prevention of premature morbidity and mortality.

  11. Induction of cyclo-oxygenase-2 mRNA by prostaglandin E2 in human prostatic carcinoma cells

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Dahiya, R.; Hughes-Fulford, M.

    1997-01-01

    Prostaglandins are synthesized from arachidonic acid by the enzyme cyclo-oxygenase. There are two isoforms of cyclooxygenases: COX-1 (a constitutive form) and COX-2 (an inducible form). COX-2 has recently been categorized as an immediate-early gene and is associated with cellular growth and differentiation. The purpose of this study was to investigate the effects of exogenous dimethylprostaglandin E2 (dmPGE2) on prostate cancer cell growth. Results of these experiments demonstrate that administration of dmPGE2 to growing PC-3 cells significantly increased cellular proliferation (as measured by the cell number), total DNA content and endogenous PGE2 concentration. DmPGE2 also increased the steady-state mRNA levels of its own inducible synthesizing enzyme, COX-2, as well as cellular growth to levels similar to those seen with fetal calf serum and phorbol ester. The same results were observed in other human cancer cell types, such as the androgen-dependent LNCaP cells, breast cancer MDA-MB-134 cells and human colorectal carcinoma DiFi cells. In PC-3 cells, the dmPGE2 regulation of the COX-2 mRNA levels was both time dependent, with maximum stimulation seen 2 h after addition, and dose dependent on dmPGE2 concentration, with maximum stimulation seen at 5 microg ml(-1). The non-steroidal anti-inflammatory drug flurbiprofen (5 microM), in the presence of exogenous dmPGE2, inhibited the up-regulation of COX-2 mRNA and PC-3 cell growth. Taken together, these data suggest that PGE2 has a specific role in the maintenance of human cancer cell growth and that the activation of COX-2 expression depends primarily upon newly synthesized PGE2, perhaps resulting from changes in local cellular PGE2 concentrations.

  12. Human T-cell leukemia virus-I tax oncoprotein functionally targets a subnuclear complex involved in cellular DNA damage-response.

    PubMed

    Haoudi, Abdelali; Daniels, Rodney C; Wong, Eric; Kupfer, Gary; Semmes, O John

    2003-09-26

    The virally encoded oncoprotein Tax has been implicated in HTLV-1-mediated cellular transformation. The exact mechanism by which this protein contributes to the oncogenic process is not known. However, it has been hypothesized that Tax induces genomic instability via repression of cellular DNA repair. We examined the effect of de novo Tax expression upon the cell cycle, because appropriate activation of cell cycle checkpoints is essential to a robust damage-repair response. Upon induction of tax expression, Jurkat T-cells displayed a pronounced accumulation in G2/M that was reversible by caffeine. We examined the G2-specific checkpoint signaling response in these cells and found activation of the ATM/chk2-mediated pathway, whereas the ATR/chk1-mediated response was unaffected. Immunoprecipitation with anti-chk2 antibody results in co-precipitation of Tax demonstrating a direct interaction of Tax with a chk2-containing complex. We also show that Tax targets a discrete nuclear site and co-localizes with chk2 and not chk1. This nuclear site, previously identified as Tax Speckled Structures (TSS), also contains the early damage response factor 53BP1. The recruitment of 53BP1 to TSS is dependent upon ATM signaling and requires expression of Tax. Specifically, Tax expression induces redistribution of diffuse nuclear 53BP1 to the TSS foci. Taken together these data suggest that the TSS describe a unique nuclear site involved in DNA damage recognition, repair response, and cell cycle checkpoint activation. We suggest that association of Tax with this multifunctional subnuclear site results in disruption of a subset of the site-specific activities and contributes to cellular genomic instability.

  13. Th1 stimulatory proteins of Leishmania donovani: comparative cellular and protective responses of rTriose phosphate isomerase, rProtein disulfide isomerase and rElongation factor-2 in combination with rHSP70 against visceral leishmaniasis.

    PubMed

    Jaiswal, Anil Kumar; Khare, Prashant; Joshi, Sumit; Kushawaha, Pramod Kumar; Sundar, Shyam; Dube, Anuradha

    2014-01-01

    In visceral leishmaniasis, the recovery from the disease is always associated with the generation of Th1-type of cellular responses. Based on this, we have previously identified several Th1-stimulatory proteins of Leishmania donovani -triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and elongation factor-2 (EL-2) etc. including heat shock protein 70 (HSP70) which induced Th1-type of cellular responses in both cured Leishmania patients/hamsters. Since, HSPs, being the logical targets for vaccines aimed at augmenting cellular immunity and can be early targets in the immune response against intracellular pathogens; they could be exploited as vaccine/adjuvant to induce long-term immunity more effectively. Therefore, in this study, we checked whether HSP70 can further enhance the immunogenicity and protective responses of the above said Th1-stimulatory proteins. Since, in most of the studies, immunogenicity of HSP70 of L. donovani was assessed in native condition, herein we generated recombinant HSP70 and tested its potential to stimulate immune responses in lymphocytes of cured Leishmania infected hamsters as well as in the peripheral blood mononuclear cells (PBMCs) of cured patients of VL either individually or in combination with above mentioned recombinant proteins. rLdHSP70 alone elicited strong cellular responses along with remarkable up-regulation of IFN-γ and IL-12 cytokines and extremely lower level of IL-4 and IL-10. Among the various combinations, rLdHSP70 + rLdPDI emerged as superior one augmenting improved cellular responses followed by rLdHSP70 + rLdEL-2. These combinations were further evaluated for its protective potential wherein rLdHSP70 + rLdPDI again conferred utmost protection (∼80%) followed by rLdHSP70 + rLdEL-2 (∼75%) and generated a strong cellular immune response with significant increase in the levels of iNOS transcript as well as IFN-γ and IL-12 cytokines which was further supported by the high level of IgG2 antibody in vaccinated animals. These observations indicated that vaccine(s) based on combination of HSP70 with Th1-stimulatory protein(s) may be a viable proposition against intracellular pathogens.

  14. Th1 Stimulatory Proteins of Leishmania donovani: Comparative Cellular and Protective Responses of rTriose Phosphate Isomerase, rProtein Disulfide Isomerase and rElongation Factor-2 in Combination with rHSP70 against Visceral Leishmaniasis

    PubMed Central

    Jaiswal, Anil Kumar; Khare, Prashant; Joshi, Sumit; Kushawaha, Pramod Kumar; Sundar, Shyam; Dube, Anuradha

    2014-01-01

    In visceral leishmaniasis, the recovery from the disease is always associated with the generation of Th1-type of cellular responses. Based on this, we have previously identified several Th1-stimulatory proteins of Leishmania donovani -triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and elongation factor-2 (EL-2) etc. including heat shock protein 70 (HSP70) which induced Th1-type of cellular responses in both cured Leishmania patients/hamsters. Since, HSPs, being the logical targets for vaccines aimed at augmenting cellular immunity and can be early targets in the immune response against intracellular pathogens; they could be exploited as vaccine/adjuvant to induce long-term immunity more effectively. Therefore, in this study, we checked whether HSP70 can further enhance the immunogenicity and protective responses of the above said Th1-stimulatory proteins. Since, in most of the studies, immunogenicity of HSP70 of L. donovani was assessed in native condition, herein we generated recombinant HSP70 and tested its potential to stimulate immune responses in lymphocytes of cured Leishmania infected hamsters as well as in the peripheral blood mononuclear cells (PBMCs) of cured patients of VL either individually or in combination with above mentioned recombinant proteins. rLdHSP70 alone elicited strong cellular responses along with remarkable up-regulation of IFN-γ and IL-12 cytokines and extremely lower level of IL-4 and IL-10. Among the various combinations, rLdHSP70 + rLdPDI emerged as superior one augmenting improved cellular responses followed by rLdHSP70 + rLdEL-2. These combinations were further evaluated for its protective potential wherein rLdHSP70 + rLdPDI again conferred utmost protection (∼80%) followed by rLdHSP70 + rLdEL-2 (∼75%) and generated a strong cellular immune response with significant increase in the levels of iNOS transcript as well as IFN-γ and IL-12 cytokines which was further supported by the high level of IgG2 antibody in vaccinated animals. These observations indicated that vaccine(s) based on combination of HSP70 with Th1-stimulatory protein(s) may be a viable proposition against intracellular pathogens. PMID:25268700

  15. Histone deacetylase 5 modulates the effects of social adversity in early life on cocaine-induced behavior.

    PubMed

    Valzania, Alessandro; Catale, Clarissa; Viscomi, Maria Teresa; Puglisi-Allegra, Stefano; Carola, Valeria

    2017-03-15

    Psychostimulants induce stable changes in neural plasticity and behavior in a transcription-dependent manner. Further, stable cellular changes require transcription that is regulated by epigenetic mechanisms that alter chromatin structure, such as histone acetylation. This mechanism is typically catalyzed by enzymes with histone acetyltransferase or histone deacetylase (HDAC) activity. Class IIa HDACs are notable for their high expression in important regions of the brain reward circuitry and their neural activity-dependent shuttling in and out of the cell nucleus. In particular, HDAC5 has an important modulatory function in cocaine-induced behaviors and social defeat stress-induced effects. Although a mutation in HDAC5 has been shown to cause hypersensitive responses to chronic cocaine use whether this response worsens during chronic early life stress has not been examined yet. In this study, we exposed mouse pups to two different early life stress paradigms (social isolation, ESI, and social threat, EST) to determine whether the heterozygous null mutation in HDAC5 (HDAC5+/-) moderated the effects of exposure to stress in early life on adult cocaine-induced conditioned place preference (CPP). Notably, HDAC5+/- mice that had been exposed to ESI were more susceptible to developing cocaine-induced CPP and more resistant to extinguishing this behavior. The same effect was not observed for HDAC5+/- mice experiencing EST, suggesting that only ESI induces behavioral changes by acting precisely through HDAC5-related biological pathways. Finally, an analysis of c-Fos expression performed to discover the neurobiological substrates that mediated this phenotype, identified the dorsolateral striatum as an important structure that mediates the interaction between HDAC5 mutation and ESI. Our data demonstrate that decreased HDAC5 function is able to exacerbate the long-term behavioral effects of adverse rearing environment in mouse. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Cellular and ionic mechanisms underlying the effects of cilostazol, milrinone, and isoproterenol to suppress arrhythmogenesis in an experimental model of early repolarization syndrome.

    PubMed

    Patocskai, Bence; Barajas-Martinez, Hector; Hu, Dan; Gurabi, Zsolt; Koncz, István; Antzelevitch, Charles

    2016-06-01

    Early repolarization syndrome (ERS) is associated with polymorphic ventricular tachycardia (PVT) and ventricular fibrillation, leading to sudden cardiac death. The present study tests the hypothesis that the transient outward potassium current (Ito)-blocking effect of phosphodiesterase-3 (PDE-3) inhibitors plays a role in reversing repolarization heterogeneities responsible for arrhythmogenesis in experimental models of ERS. Transmembrane action potentials (APs) were simultaneously recorded from epicardial and endocardial regions of coronary-perfused canine left ventricular (LV) wedge preparations, together with a transmural pseudo-electrocardiogram. The Ito agonist NS5806 (7-15 μM) and L-type calcium current (ICa) blocker verapamil (2-3 μM) were used to induce an early repolarization pattern and PVT. After stable induction of arrhythmogenesis, the PDE-3 inhibitors cilostazol and milrinone or isoproterenol were added to the coronary perfusate. All were effective in restoring the AP dome in the LV epicardium, thus abolishing the repolarization defects responsible for phase 2 reentry and PVT. Arrhythmic activity was suppressed in 7 of 8 preparations by cilostazol (10 μM), 6 of 7 by milrinone (2.5 μM), and 7 of 8 by isoproterenol (0.1-1 μM). Using voltage clamp techniques applied to LV epicardial myocytes, both cilostazol (10 μM) and milrinone (2.5 μM) were found to reduce Ito by 44.4% and 40.4%, respectively, in addition to their known effects to augment ICa. Our findings suggest that PDE-3 inhibitors exert an ameliorative effect in the setting of ERS by producing an inward shift in the balance of current during the early phases of the epicardial AP via inhibition of Ito as well as augmentation of ICa, thus reversing the repolarization defects underlying the development of phase 2 reentry and ventricular tachycardia/ventricular fibrillation. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  17. Glutamatergic drive along the septo-temporal axis of hippocampus boosts prelimbic oscillations in the neonatal mouse

    PubMed Central

    Ahlbeck, Joachim; Song, Lingzhen; Chini, Mattia; Bitzenhofer, Sebastian H

    2018-01-01

    The long-range coupling within prefrontal-hippocampal networks that account for cognitive performance emerges early in life. The discontinuous hippocampal theta bursts have been proposed to drive the generation of neonatal prefrontal oscillations, yet the cellular substrate of these early interactions is still unresolved. Here, we selectively target optogenetic manipulation of glutamatergic projection neurons in the CA1 area of either dorsal or intermediate/ventral hippocampus at neonatal age to elucidate their contribution to the emergence of prefrontal oscillatory entrainment. We show that despite stronger theta and ripples power in dorsal hippocampus, the prefrontal cortex is mainly coupled with intermediate/ventral hippocampus by phase-locking of neuronal firing via dense direct axonal projections. Theta band-confined activation by light of pyramidal neurons in intermediate/ventral but not dorsal CA1 that were transfected by in utero electroporation with high-efficiency channelrhodopsin boosts prefrontal oscillations. Our data causally elucidate the cellular origin of the long-range coupling in the developing brain. PMID:29631696

  18. Foot pad dermatitis develops at an early age in commercial turkeys.

    PubMed

    Mayne, R K; Hocking, P M; Else, R W

    2006-02-01

    1. A field experiment was conducted to identify the macroscopic and histological changes associated with the development of foot pad dermatitis (FPD) in growing turkeys. Two affected and two unaffected turkeys were sampled weekly from 1 to 8 and at 10 and 21 weeks of age. 2. At one week old, birds with external signs of FPD (surface skin discolouration) showed abnormal cellular changes of the foot pad integument. As the flock aged the reactions intensified, with one sample exhibiting a fully developed macroscopic lesion at 3 weeks. 3. Major pathological changes had occurred by 6 weeks and all turkeys with external signs of lesions had fully developed microscopic inflammatory cellular lesions. From 6 weeks of age onwards lesions were increasingly numerous and became more overtly necrotic. 4. Externally normal foot pads showed microscopic evidence of lesions after the turkeys reached 4 weeks. 5. We conclude that FPD lesions become severe over a short period of time and at a very early age.

  19. An inquiry-based practical for a large, foundation-level undergraduate laboratory that enhances student understanding of basic cellular concepts and scientific experimental design.

    PubMed

    Bugarcic, A; Zimbardi, K; Macaranas, J; Thorn, P

    2012-01-01

    Student-centered education involving research experiences or inquiry have been shown to help undergraduate students understand, and become excited about, the process of scientific investigation. These benefits are particularly important for students in the early stages of their degree (Report and Kenny, http://naplesccsunysbedu/Pres/boyernsf/1998). However, embedding such experiences into the curriculum is particularly difficult when dealing with early stage students, who are in larger cohorts and often lack the background content knowledge necessary to engage with primary research literature and research level methods and equipment. We report here the design, delivery, assessment, and subsequent student learning outcomes of a 4-week practical module for 120 students at the beginning of their second year of university, which successfully engages students in designing cell culture experiments and in understanding the molecular processes and machinery involved in the basic cellular process of macropinocytosis. Copyright © 2011 Wiley Periodicals, Inc.

  20. Ubiquitination dynamics in the early-branching eukaryote Giardia intestinalis

    PubMed Central

    Niño, Carlos A; Chaparro, Jenny; Soffientini, Paolo; Polo, Simona; Wasserman, Moises

    2013-01-01

    Ubiquitination is a highly dynamic and versatile posttranslational modification that regulates protein function, stability, and interactions. To investigate the roles of ubiquitination in a primitive eukaryotic lineage, we utilized the early-branching eukaryote Giardia intestinalis. Using a combination of biochemical, immunofluorescence-based, and proteomics approaches, we assessed the ubiquitination status during the process of differentiation in Giardia. We observed that different types of ubiquitin modifications present specific cellular and temporal distribution throughout the Giardia life cycle from trophozoites to cyst maturation. Ubiquitin signal was detected in the wall of mature cysts, and enzymes implicated in cyst wall biogenesis were identified as substrates for ubiquitination. Interestingly, inhibition of proteasome activity did not affect trophozoite replication and differentiation, while it caused a decrease in cyst viability, arguing for proteasome involvement in cyst wall maturation. Using a proteomics approach, we identified around 200 high-confidence ubiquitinated candidates that vary their ubiquitination status during differentiation. Our results indicate that ubiquitination is critical for several cellular processes in this primitive eukaryote. PMID:23613346

  1. Immunization of neonatal mice with LAMP/p55 HIV gag DNA elicits robust immune responses that last to adulthood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ordonhez Rigato, Paula; Maciel, Milton; Goldoni, Adriana Leticia

    2010-10-10

    Successful T cell priming in early postnatal life that can generate effective long-lasting responses until adulthood is critical in HIV vaccination strategies because it prevents early sexual initiation and breastfeeding transmission of HIV. A chimeric DNA vaccine encoding p55 HIV gag associated with lysosome-associated membrane protein 1 (LAMP-1; which drives the antigen to the MIIC compartment), has been used to enhance cellular and humoral antigen-specific responses in adult mice and macaques. Herein, we investigated LAMP-1/gag vaccine immunogenicity in the neonatal period in mice and its ability to generate long-lasting effects. Neonatal vaccination with chimeric LAMP/gag generated stronger Gag-specific immune responses,more » as measured by the breadth of the Gag peptide-specific IFN-{gamma}, proliferative responsiveness, cytokine production and antibody production, all of which revealed activation of CD4+ T cells as well as the generation of a more robust CTL response compared to gag vaccine alone. To induce long-lived T and B cell memory responses, it was necessary to immunize neonates with the chimeric LAMP/gag DNA vaccine. The LAMP/gag DNA vaccine strategy could be particularly useful for generating an anti-HIV immune response in the early postnatal period capable of inducing long-term immunological memory.« less

  2. Molecular markers of trichloroethylene-induced toxicity in human kidney cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lash, Lawrence H.; Putt, David A.; Hueni, Sarah E.

    Difficulties in evaluation of trichloroethylene (TRI)-induced toxicity in humans and extrapolation of data from laboratory animals to humans are due to the existence of multiple target organs, multiple metabolic pathways, sex-, species-, and strain-dependent differences in both metabolism and susceptibility to toxicity, and the lack or minimal amount of human data for many target organs. The use of human tissue for mechanistic studies is thus distinctly advantageous. The kidneys are one target organ for TRI and metabolism by the glutathione (GSH) conjugation pathway is responsible for nephrotoxicity. The GSH conjugate is processed further to produce the cysteine conjugate, S-(1,2-dichlorovinyl)-L-cysteine (DCVC),more » which is the penultimate nephrotoxic species. Confluent, primary cultures of human proximal tubular (hPT) cells were used as the model system. Although cells in log-phase growth, which are undergoing more rapid DNA synthesis, would give lower LD{sub 50} values, confluent cells more closely mimic the in vivo proximal tubule. DCVC caused cellular necrosis only at relatively high doses (>100 {mu}M) and long incubation times (>24 h). In contrast, both apoptosis and enhanced cellular proliferation occurred at relatively low doses (10-100 {mu}M) and early incubation times (2-8 h). These responses were associated with prominent changes in expression of several proteins that regulate apoptosis (Bcl-2, Bax, Apaf-1, Caspase-9 cleavage, PARP cleavage) and cellular growth, differentiation and stress response (p53, Hsp27, NF-{kappa}B). Effects on p53 and Hsp27 implicate function of protein kinase C, the mitogen activated protein kinase pathway, and the cytoskeleton. The precise pattern of expression of these and other proteins can thus serve as molecular markers for TRI exposure and effect in human kidney.« less

  3. Rice Fertilization-Independent Endosperm1 Regulates Seed Size under Heat Stress by Controlling Early Endosperm Development1[W

    PubMed Central

    Folsom, Jing J.; Begcy, Kevin; Hao, Xiaojuan; Wang, Dong; Walia, Harkamal

    2014-01-01

    Although heat stress reduces seed size in rice (Oryza sativa), little is known about the molecular mechanisms underlying the observed reduction in seed size and yield. To elucidate the mechanistic basis of heat sensitivity and reduced seed size, we imposed a moderate (34°C) and a high (42°C) heat stress treatment on developing rice seeds during the postfertilization stage. Both stress treatments reduced the final seed size. At a cellular level, the moderate heat stress resulted in precocious endosperm cellularization, whereas severe heat-stressed seeds failed to cellularize. Initiation of endosperm cellularization is a critical developmental transition required for normal seed development, and it is controlled by Polycomb Repressive Complex2 (PRC2) in Arabidopsis (Arabidopsis thaliana). We observed that a member of PRC2 called Fertilization-Independent Endosperm1 (OsFIE1) was sensitive to temperature changes, and its expression was negatively correlated with the duration of the syncytial stage during heat stress. Seeds from plants overexpressing OsFIE1 had reduced seed size and exhibited precocious cellularization. The DNA methylation status and a repressive histone modification of OsFIE1 were observed to be temperature sensitive. Our data suggested that the thermal sensitivity of seed enlargement could partly be caused by altered epigenetic regulation of endosperm development during the transition from the syncytial to the cellularized state. PMID:24590858

  4. Extracellular superoxide dismutase increased the therapeutic potential of human mesenchymal stromal cells in radiation pulmonary fibrosis.

    PubMed

    Wei, Li; Zhang, Jing; Yang, Zai-Liang; You, Hua

    2017-05-01

    Pulmonary fibrosis induced by irradiation is a significant problem of radiotherapy in cancer patients. Extracellular superoxide dismutase (SOD3) is found to be predominantly and highly expressed in the extracellular matrix of lung and plays a pivotal role against oxidative damage. Early administration of mesenchymal stromal cells (MSCs) has been demonstrated to reduce fibrosis of damaged lung. However, injection of MSCs at a later stage would be involved in fibrosis development. The present study aimed to determine whether injection of human umbilical cord-derived MSCs (UC-MSCs) over-expressing SOD3 at the established fibrosis stage would have beneficial effects in a mice model of radiation pulmonary fibrosis. Herein, pulmonary fibrosis in mice was induced using Cobalt-60 ( 60 Co) irradiator with 20 Gy, followed by intravenous injection of UC-MSCs, transduced or not to express SOD3 at 2 h (early delivery) and 60 day (late delivery) post-irradiation, respectively. Our results demonstrated that the early administration of UC-MSCs could attenuate the microscopic damage, reduce collagen deposition, inhibit (myo)fibroblast proliferation, reduce inflammatory cell infiltration, protect alveolar type II (AE2) cell injury, prevent oxidative stress and increase antioxidant status, and reduce pro-fibrotic cytokine level in serum. Furthermore, the early treatment with SOD3-infected UC-MSCs resulted in better improvement. However, we failed to observe the therapeutic effects of UC-MSCs, transduced to express SOD3, during established fibrosis. Altogether, our results demonstrated that the early treatment with UC-MSCs alone significantly reduced radiation pulmonary fibrosis in mice through paracrine effects, with further improvement by administration of SOD3-infected UC-MSCs, suggesting that SOD3-infected UC-MSCs may be a potential cell-based gene therapy to treat clinical radiation pulmonary fibrosis. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  5. Low interleukin-2 concentration favors generation of early memory T cells over effector phenotypes during chimeric antigen receptor T-cell expansion.

    PubMed

    Kaartinen, Tanja; Luostarinen, Annu; Maliniemi, Pilvi; Keto, Joni; Arvas, Mikko; Belt, Heini; Koponen, Jonna; Loskog, Angelica; Mustjoki, Satu; Porkka, Kimmo; Ylä-Herttuala, Seppo; Korhonen, Matti

    2017-06-01

    Adoptive T-cell therapy offers new options for cancer treatment. Clinical results suggest that T-cell persistence, depending on T-cell memory, improves efficacy. The use of interleukin (IL)-2 for in vitro T-cell expansion is not straightforward because it drives effector T-cell differentiation but does not promote the formation of T-cell memory. We have developed a cost-effective expansion protocol for chimeric antigen receptor (CAR) T cells with an early memory phenotype. Lymphocytes were transduced with third-generation lentiviral vectors and expanded using CD3/CD28 microbeads. The effects of altering the IL-2 supplementation (0-300 IU/mL) and length of expansion (10-20 days) on the phenotype of the T-cell products were analyzed. High IL-2 levels led to a decrease in overall generation of early memory T cells by both decreasing central memory T cells and augmenting effectors. T memory stem cells (T SCM , CD95 + CD45RO - CD45RA + CD27 + ) were present variably during T-cell expansion. However, their presence was not IL-2 dependent but was linked to expansion kinetics. CD19-CAR T cells generated in these conditions displayed in vitro antileukemic activity. In summary, production of CAR T cells without any cytokine supplementation yielded the highest proportion of early memory T cells, provided a 10-fold cell expansion and the cells were functionally potent. The number of early memory T cells in a T-cell preparation can be increased by simply reducing the amount of IL-2 and limiting the length of T-cell expansion, providing cells with potentially higher in vivo performance. These findings are significant for robust and cost-effective T-cell manufacturing. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  6. Diurnal Regulation of Cellular Processes in the Cyanobacterium Synechocystis sp. Strain PCC 6803: Insights from Transcriptomic, Fluxomic, and Physiological Analyses

    PubMed Central

    Saha, Rajib; Liu, Deng; Hoynes-O’Connor, Allison; Liberton, Michelle; Yu, Jingjie; Bhattacharyya-Pakrasi, Maitrayee; Balassy, Andrea; Zhang, Fuzhong; Maranas, Costas D.

    2016-01-01

    ABSTRACT Synechocystis sp. strain PCC 6803 is the most widely studied model cyanobacterium, with a well-developed omics level knowledgebase. Like the lifestyles of other cyanobacteria, that of Synechocystis PCC 6803 is tuned to diurnal changes in light intensity. In this study, we analyzed the expression patterns of all of the genes of this cyanobacterium over two consecutive diurnal periods. Using stringent criteria, we determined that the transcript levels of nearly 40% of the genes in Synechocystis PCC 6803 show robust diurnal oscillating behavior, with a majority of the transcripts being upregulated during the early light period. Such transcripts corresponded to a wide array of cellular processes, such as light harvesting, photosynthetic light and dark reactions, and central carbon metabolism. In contrast, transcripts of membrane transporters for transition metals involved in the photosynthetic electron transport chain (e.g., iron, manganese, and copper) were significantly upregulated during the late dark period. Thus, the pattern of global gene expression led to the development of two distinct transcriptional networks of coregulated oscillatory genes. These networks help describe how Synechocystis PCC 6803 regulates its metabolism toward the end of the dark period in anticipation of efficient photosynthesis during the early light period. Furthermore, in silico flux prediction of important cellular processes and experimental measurements of cellular ATP, NADP(H), and glycogen levels showed how this diurnal behavior influences its metabolic characteristics. In particular, NADPH/NADP+ showed a strong correlation with the majority of the genes whose expression peaks in the light. We conclude that this ratio is a key endogenous determinant of the diurnal behavior of this cyanobacterium. PMID:27143387

  7. Alarmin S100A8/S100A9 as a biomarker for molecular imaging of local inflammatory activity.

    PubMed

    Vogl, Thomas; Eisenblätter, Michel; Völler, Tom; Zenker, Stefanie; Hermann, Sven; van Lent, Peter; Faust, Andreas; Geyer, Christiane; Petersen, Beatrix; Roebrock, Kirsten; Schäfers, Michael; Bremer, Christoph; Roth, Johannes

    2014-08-06

    Inflammation has a key role in the pathogenesis of various human diseases. The early detection, localization and monitoring of inflammation are crucial for tailoring individual therapies. However, reliable biomarkers to detect local inflammatory activities and to predict disease outcome are still missing. Alarmins, which are locally released during cellular stress, are early amplifiers of inflammation. Here, using optical molecular imaging, we demonstrate that the alarmin S100A8/S100A9 serves as a sensitive local and systemic marker for the detection of even sub-clinical disease activity in inflammatory and immunological processes like irritative and allergic contact dermatitis. In a model of collagen-induced arthritis, we use S100A8/S100A9 imaging to predict the development of disease activity. Furthermore, S100A8/S100A9 can act as a very early and sensitive biomarker in experimental leishmaniasis for phagocyte activation linked to an effective Th1-response. In conclusion, the alarmin S100A8/S100A9 is a valuable and sensitive molecular target for novel imaging approaches to monitor clinically relevant inflammatory disorders on a molecular level.

  8. Impaired ventilatory acclimatization to hypoxia in mice lacking the immediate early gene fos B.

    PubMed

    Malik, Mohammad T; Peng, Ying-Jie; Kline, David D; Adhikary, Gautam; Prabhakar, Nanduri R

    2005-01-15

    Earlier studies on cell culture models suggested that immediate early genes (IEGs) play an important role in cellular adaptations to hypoxia. Whether IEGs are also necessary for hypoxic adaptations in intact animals is not known. In the present study we examined the potential importance of fos B, an IEG in ventilatory acclimatization to hypoxia. Experiments were performed on wild type and mutant mice lacking the fos B gene. Ventilation was monitored by whole body plethysmography in awake animals. Baseline ventilation under normoxia, and ventilatory response to acute hypoxia and hypercapnia were comparable between wild type and mutant mice. Hypobaric hypoxia (0.4 atm; 3 days) resulted in a significant elevation of baseline ventilation in wild type but not in mutant mice. Wild type mice exposed to hypobaric hypoxia manifested an enhanced hypoxic ventilatory response compared to pre-hypobaric hypoxia. In contrast, hypobaric hypoxia had no effect on the hypoxic ventilatory response in mutant mice. Hypercapnic ventilatory responses, however, were unaffected by hypobaric hypoxia in both groups of mice. These results suggest that the fos B, an immediate early gene, plays an important role in ventilatory acclimatization to hypoxia in mice.

  9. A study on differences between radiation-induced micronuclei and apoptosis of lymphocytes in breast cancer patients after radiotherapy.

    PubMed

    Taghavi-Dehaghani, Mahnaz; Mohammadi, Shahla; Ziafazeli, Tahereh; Sardari-Kermani, Manouchehr

    2005-01-01

    Cancer patients' responses to radiotherapy vary in severity. It has been suggested that it may be due to differences in intrinsic cellular radiosensitivity. Prediction of tissue reactions to radiotherapy would permit tailoring of dosage to each patient. Towards this goal the micronucleus and apoptosis tests have been proposed as methods for measurement of chromosomal damage in peripheral blood lymphocytes. In this study, gamma-ray sensitivity of cultured lymphocytes of 26 breast cancer patients with early or late reactions was investigated. After irradiation with 4 Gy gamma radiation in G0, the frequency of micronuclei for patients with early reactions was significantly higher (P < 0.05) than for patients with late reactions. In the contrary the frequency of apoptosis for patients with early reactions was significantly lower (P < 0.05) than in the other group. It could be suggested that such a reduced amount of micronuclei in the late effects group is due to the presence of some residual DNA damages which are not completely repaired and lesions show increasing severity when the patients' cells are irradiated again. These induced damages, probably are high enough to stimulate other endpoints like apoptosis instead of micronuclei.

  10. Teen smoking, field cancerization, and a "critical period" hypothesis for lung cancer susceptibility.

    PubMed Central

    Wiencke, John K; Kelsey, Karl T

    2002-01-01

    Cigarette smoking by children and adolescents continues to be prevalent, and this fact represents a major public health problem and challenge. Epidemiologic work has previously suggested that exposure of the lung to tobacco carcinogens at an early age may be an independent risk factor for lung cancer. Recent studies at the molecular and cellular levels are consistent with this, now suggesting that early exposure enhances DNA damage and is associated with the induction of DNA alterations in specific chromosomal regions. In this paper we hypothesize that adolescence, which is known to be the period of greatest development for the lung, may constitute a "critical period" in which tobacco carcinogens can induce fields of genetic alterations that make the early smoker more susceptible to the damaging effects of continued smoking. The fact that lung development differs by sex might also contribute to apparent gender differences in lung cancer susceptibility. Because this hypothesis has important implications for health policy and tobacco control, additional resources need to be devoted to its further evaluation. Targeted intervention in adolescent smoking may yield even greater reductions in lung cancer occurrence than otherwise anticipated. PMID:12055044

  11. Early Gag Immunodominance of the HIV-Specific T-Cell Response during Acute/Early Infection Is Associated with Higher CD8+ T-Cell Antiviral Activity and Correlates with Preservation of the CD4+ T-Cell Compartment

    PubMed Central

    Ghiglione, Yanina; Falivene, Juliana; Socias, María Eugenia; Laufer, Natalia; Coloccini, Romina Soledad; Rodriguez, Ana María; Ruiz, María Julia; Pando, María Ángeles; Giavedoni, Luis David; Cahn, Pedro; Sued, Omar; Salomon, Horacio; Gherardi, María Magdalena

    2013-01-01

    The important role of the CD8+ T-cell response on HIV control is well established. Moreover, the acute phase of infection represents a proper scenario to delineate the antiviral cellular functions that best correlate with control. Here, multiple functional aspects (specificity, ex vivo viral inhibitory activity [VIA] and polyfunctionality) of the HIV-specific CD8+ T-cell subset arising early after infection, and their association with disease progression markers, were examined. Blood samples from 44 subjects recruited within 6 months from infection (primary HIV infection [PHI] group), 16 chronically infected subjects, 11 elite controllers (EC), and 10 healthy donors were obtained. Results indicated that, although Nef dominated the anti-HIV response during acute/early infection, a higher proportion of early anti-Gag T cells correlated with delayed progression. Polyfunctional HIV-specific CD8+ T cells were detected at early time points but did not associate with virus control. Conversely, higher CD4+ T-cell set points were observed in PHI subjects with higher HIV-specific CD8+ T-cell VIA at baseline. Importantly, VIA levels correlated with the magnitude of the anti-Gag cellular response. The advantage of Gag-specific cells may result from their enhanced ability to mediate lysis of infected cells (evidenced by a higher capacity to degranulate and to mediate VIA) and to simultaneously produce IFN-γ. Finally, Gag immunodominance was associated with elevated plasma levels of interleukin 2 (IL-2) and macrophage inflammatory protein 1β (MIP-1β). All together, this study underscores the importance of CD8+ T-cell specificity in the improved control of disease progression, which was related to the capacity of Gag-specific cells to mediate both lytic and nonlytic antiviral mechanisms at early time points postinfection. PMID:23616666

  12. Clinical Features of β-Thalassemia and Sickle Cell Disease.

    PubMed

    McGann, Patrick T; Nero, Alecia C; Ware, Russell E

    2017-01-01

    Sickle cell disease (SCD) and β-thalassemia are among the most common inherited diseases, affecting millions of persons globally. It is estimated that 5-7% of the world's population is a carrier of a significant hemoglobin variant. Without early diagnosis followed by initiation of preventative and therapeutic care, both SCD and β-thalassemia result in significant morbidity and early mortality. Despite great strides in the understanding of the molecular basis and pathophysiology of these conditions, the burden of disease remains high, particularly in limited resource settings. Current therapy relies heavily upon the availability and safety of erythrocyte transfusions to treat acute and chronic complications of these conditions, but frequent transfusions results in significant iron overload, as well as challenges from acquired infections and alloimmunization. Hydroxyurea is a highly effective treatment for SCD but less so for β-thalassemia, and does not represent curative therapy. As technology and use of cellular and gene therapies expand, SCD and thalassemia should be among the highest disease priorities.

  13. New tricks by an old dogma: mechanisms of the Organizational/Activational Hypothesis of steroid-mediated sexual differentiation of brain and behavior.

    PubMed

    McCarthy, Margaret M; Wright, Christopher L; Schwarz, Jaclyn M

    2009-05-01

    The hormonal regulation of sexual behavior has been the topic of study for over 50 years and yet controversies persist regarding the importance of early versus late events and the identity of the critical neural and cellular substrates. We have taken a mechanistic approach toward the masculinizing actions of the gonadal steroid estradiol, as a means to understand how organization of the neuroarchitechture during a perinatal sensitive period exerts enduring influences on adult behavior. We have identified important roles for prostaglandins, FAK and paxillin, PI3 kinase and glutamate, and determined that cell-to-cell signaling is a critical component of the early organizational events. We have further determined that the mechanisms mediating different components of sexual behavior are distinct and regionally specific. The multitude of mechanisms by which the steroid estradiol, exerts divergent effects on the developing nervous system provides for a multitude of phenotypes which can vary significantly both within and between the sexes.

  14. New tricks by an old dogma: Mechanisms of the Organizational/Activational Hypothesis of steroid-mediated sexual differentiation of brain and behavior

    PubMed Central

    McCarthy, Margaret M.; Wright, Christopher L.; Schwarz, Jaclyn M.

    2009-01-01

    The hormonal regulation of sexual behavior has been the topic of study for over 50 years and yet controversies persist regarding the importance of early versus late events and the identity of the critical neural and cellular substrates. We have taken a mechanistic approach toward the masculinizing actions of the gonadal steroid estradiol, as a means to understand how organization of the neuroarchitechture during a perinatal sensitive period exerts enduring influences on adult behavior. We have identified important roles for prostaglandins, FAK and paxillin, PI3 kinase and glutamate, and determined that cell-to-cell signaling is a critical component of the early organizational events. We have further determined that the mechanisms mediating different components of sexual behavior are distinct and regionally specific. The multitude of mechanisms by which the steroid estradiol, exerts divergent effects on the developing nervous system provides for a multitude of phenotypes which can vary significantly both within and between the sexes. PMID:19682425

  15. Reactivation in Working Memory: An Attractor Network Model of Free Recall

    PubMed Central

    Lansner, Anders; Marklund, Petter; Sikström, Sverker; Nilsson, Lars-Göran

    2013-01-01

    The dynamic nature of human working memory, the general-purpose system for processing continuous input, while keeping no longer externally available information active in the background, is well captured in immediate free recall of supraspan word-lists. Free recall tasks produce several benchmark memory phenomena, like the U-shaped serial position curve, reflecting enhanced memory for early and late list items. To account for empirical data, including primacy and recency as well as contiguity effects, we propose here a neurobiologically based neural network model that unifies short- and long-term forms of memory and challenges both the standard view of working memory as persistent activity and dual-store accounts of free recall. Rapidly expressed and volatile synaptic plasticity, modulated intrinsic excitability, and spike-frequency adaptation are suggested as key cellular mechanisms underlying working memory encoding, reactivation and recall. Recent findings on the synaptic and molecular mechanisms behind early LTP and on spiking activity during delayed-match-to-sample tasks support this view. PMID:24023690

  16. Reactivation in working memory: an attractor network model of free recall.

    PubMed

    Lansner, Anders; Marklund, Petter; Sikström, Sverker; Nilsson, Lars-Göran

    2013-01-01

    The dynamic nature of human working memory, the general-purpose system for processing continuous input, while keeping no longer externally available information active in the background, is well captured in immediate free recall of supraspan word-lists. Free recall tasks produce several benchmark memory phenomena, like the U-shaped serial position curve, reflecting enhanced memory for early and late list items. To account for empirical data, including primacy and recency as well as contiguity effects, we propose here a neurobiologically based neural network model that unifies short- and long-term forms of memory and challenges both the standard view of working memory as persistent activity and dual-store accounts of free recall. Rapidly expressed and volatile synaptic plasticity, modulated intrinsic excitability, and spike-frequency adaptation are suggested as key cellular mechanisms underlying working memory encoding, reactivation and recall. Recent findings on the synaptic and molecular mechanisms behind early LTP and on spiking activity during delayed-match-to-sample tasks support this view.

  17. Acute allograft failure in thoracic organ transplantation.

    PubMed

    Jahania, M S; Mullett, T W; Sanchez, J A; Narayan, P; Lasley, R D; Mentzer, R M

    2000-01-01

    Thoracic organ transplantation is an effective form of treatment for end-stage heart and lung disease. Despite major advances in the field, transplant patients remain at risk for acute allograft dysfunction, a major cause of early and late mortality. The most common causes of allograft failure include primary graft failure secondary to inadequate heart and lung preservation during cold storage, cellular rejection, and various donor-recipient-related factors. During cold storage and early reperfusion, heart and lung allografts are vulnerable to intracellular calcium overload, acidosis, cell swelling, injury mediated by reactive oxygen species, and the inflammatory response. Brain death itself is associated with a reduction in myocardial contractility, and recipient-related factors such as preexisting pulmonary hypertension can lead to acute right heart failure and the pulmonary reimplantation response. The development of new methods to prevent or treat these various causes of acute graft failure could lead to a marked improvement in short- and long-term survival of patients undergoing thoracic organ transplantation.

  18. Dietary Fructo-Oligosaccharides Attenuate Early Activation of CD4+ T Cells Which Produce both Th1 and Th2 Cytokines in the Intestinal Lymphoid Tissues of a Murine Food Allergy Model.

    PubMed

    Tsuda, Masato; Arakawa, Haruka; Ishii, Narumi; Ubukata, Chihiro; Michimori, Mana; Noda, Masanari; Takahashi, Kyoko; Kaminogawa, Shuichi; Hosono, Akira

    2017-01-01

    Fructo-oligosaccharides (FOS) are prebiotic agents with immunomodulatory effects involving improvement of the intestinal microbiota and metabolome. In this study, we investigated the cellular mechanisms through which FOS modulate intestinal antigen-specific CD4+ T cell responses in food allergy, using OVA23-3 mice. OVA23-3 mice were fed an experimental diet containing either ovalbumin (OVA) or OVA and FOS for 1 week. Body weight and mucosal mast cell protease 1 in the serum were measured as the indicator of intestinal inflammation. Single-cell suspensions were prepared from intestinal and systemic lymphoid tissues for cellular analysis. Cytokine production was measured by ELISA. Activation markers and intracellular cytokines in CD4+ T cells were analyzed by flow cytometry. Activated CD4+ T cells were purified to examine cytokine production. Dietary intake of FOS provided moderate protection from the intestinal inflammation induced by the OVA-containing diet. FOS significantly reduced food allergy-induced Th2 cytokine responses in intestinal tissues but not in systemic tissues. FOS decreased OVA diet-induced IFN-γ+IL-4+ double-positive CD4+ T cells and early-activated CD45RBhighCD69+CD4+ T cells in the mesenteric lymph nodes. Furthermore, we confirmed that these CD45RBhighCD69+CD4+ T cells are able to produce high levels of IFN-γ and moderate level of IL-4, IL-10, and IL-13. Dietary intake of FOS during the development of food allergy attenuates the induction of intestinal Th2 cytokine responses by regulating early activation of naïve CD4+ T cells, which produce both Th1 and Th2 cytokines. Our results suggest FOS might be a potential food agent for the prevention of food allergy by modulating oral sensitization to food antigens. © 2017 S. Karger AG, Basel.

  19. In Silico QT and APD Prolongation Assay for Early Screening of Drug-Induced Proarrhythmic Risk.

    PubMed

    Romero, Lucia; Cano, Jordi; Gomis-Tena, Julio; Trenor, Beatriz; Sanz, Ferran; Pastor, Manuel; Saiz, Javier

    2018-04-23

    Drug-induced proarrhythmicity is a major concern for regulators and pharmaceutical companies. For novel drug candidates, the standard assessment involves the evaluation of the potassium hERG channels block and the in vivo prolongation of the QT interval. However, this method is known to be too restrictive and to stop the development of potentially valuable therapeutic drugs. The aim of this work is to create an in silico tool for early detection of drug-induced proarrhythmic risk. The system is based on simulations of how different compounds affect the action potential duration (APD) of isolated endocardial, midmyocardial, and epicardial cells as well as the QT prolongation in a virtual tissue. Multiple channel-drug interactions and state-of-the-art human ventricular action potential models ( O'Hara , T. , PLos Comput. Biol. 2011 , 7 , e1002061 ) were used in our simulations. Specifically, 206.766 cellular and 7072 tissue simulations were performed by blocking the slow and the fast components of the delayed rectifier current ( I Ks and I Kr , respectively) and the L-type calcium current ( I CaL ) at different levels. The performance of our system was validated by classifying the proarrhythmic risk of 84 compounds, 40 of which present torsadogenic properties. On the basis of these results, we propose the use of a new index (Tx) for discriminating torsadogenic compounds, defined as the ratio of the drug concentrations producing 10% prolongation of the cellular endocardial, midmyocardial, and epicardial APDs and the QT interval, over the maximum effective free therapeutic plasma concentration (EFTPC). Our results show that the Tx index outperforms standard methods for early identification of torsadogenic compounds. Indeed, for the analyzed compounds, the Tx tests accuracy was in the range of 87-88% compared with a 73% accuracy of the hERG IC 50 based test.

  20. Arousal of cancer-associated stroma: overexpression of palladin activates fibroblasts to promote tumor invasion.

    PubMed

    Brentnall, Teresa A; Lai, Lisa A; Coleman, Joshua; Bronner, Mary P; Pan, Sheng; Chen, Ru

    2012-01-01

    Cancer-associated fibroblasts, comprised of activated fibroblasts or myofibroblasts, are found in the stroma surrounding solid tumors. These myofibroblasts promote invasion and metastasis of cancer cells. Mechanisms regulating the activation of the fibroblasts and the initiation of invasive tumorigenesis are of great interest. Upregulation of the cytoskeletal protein, palladin, has been detected in the stromal myofibroblasts surrounding many solid cancers and in expression screens for genes involved in invasion. Using a pancreatic cancer model, we investigated the functional consequence of overexpression of exogenous palladin in normal fibroblasts in vitro and its effect on the early stages of tumor invasion. Palladin expression in stromal fibroblasts occurs very early in tumorigenesis. In vivo, concordant expression of palladin and the myofibroblast marker, alpha smooth muscle actin (α-SMA), occurs early at the dysplastic stages in peri-tumoral stroma and progressively increases in pancreatic tumorigenesis. In vitro introduction of exogenous 90 kD palladin into normal human dermal fibroblasts (HDFs) induces activation of stromal fibroblasts into myofibroblasts as marked by induction of α-SMA and vimentin, and through the physical change of cell morphology. Moreover, palladin expression in the fibroblasts enhances cellular migration, invasion through the extracellular matrix, and creation of tunnels through which cancer cells can follow. The fibroblast invasion and creation of tunnels results from the development of invadopodia-like cellular protrusions which express invadopodia proteins and proteolytic enzymes. Palladin expression in fibroblasts is triggered by the co-culture of normal fibroblasts with k-ras-expressing epithelial cells. Overall, palladin expression can impart myofibroblast properties, in turn promoting the invasive potential of these peri-tumoral cells with invadopodia-driven degradation of extracellular matrix. Palladin expression in fibroblasts can be triggered by k-ras expression in adjacent epithelial cells. This data supports a model whereby palladin-activated fibroblasts facilitate stromal-dependent metastasis and outgrowth of tumorigenic epithelium.

  1. Overexpression of the base excision repair NTHL1 glycosylase causes genomic instability and early cellular hallmarks of cancer

    PubMed Central

    Limpose, Kristin L; Trego, Kelly S; Li, Zhentian; Leung, Sara W; Sarker, Altaf H; Shah, Jason A; Ramalingam, Suresh S; Werner, Erica M; Dynan, William S; Cooper, Priscilla K; Corbett, Anita H; Doetsch, Paul W

    2018-01-01

    Abstract Base excision repair (BER), which is initiated by DNA N-glycosylase proteins, is the frontline for repairing potentially mutagenic DNA base damage. The NTHL1 glycosylase, which excises DNA base damage caused by reactive oxygen species, is thought to be a tumor suppressor. However, in addition to NTHL1 loss-of-function mutations, our analysis of cancer genomic datasets reveals that NTHL1 frequently undergoes amplification or upregulation in some cancers. Whether NTHL1 overexpression could contribute to cancer phenotypes has not yet been explored. To address the functional consequences of NTHL1 overexpression, we employed transient overexpression. Both NTHL1 and a catalytically-dead NTHL1 (CATmut) induce DNA damage and genomic instability in non-transformed human bronchial epithelial cells (HBEC) when overexpressed. Strikingly, overexpression of either NTHL1 or CATmut causes replication stress signaling and a decrease in homologous recombination (HR). HBEC cells that overexpress NTHL1 or CATmut acquire the ability to grow in soft agar and exhibit loss of contact inhibition, suggesting that a mechanism independent of NTHL1 catalytic activity contributes to acquisition of cancer-related cellular phenotypes. We provide evidence that NTHL1 interacts with the multifunctional DNA repair protein XPG suggesting that interference with HR is a possible mechanism that contributes to acquisition of early cellular hallmarks of cancer. PMID:29522130

  2. E-Professionalism for Early Care and Education Providers

    ERIC Educational Resources Information Center

    Harte, Helene Arbouet

    2011-01-01

    Teachers of young children work hard to be professional and to be viewed by others as professionals. These efforts to maintain professionalism must include e-professionalism. E-professionalism involves behavior related to professional standards and ethics when using electronic communication (Evans & Gerwitz, 2008). Cellular telephones, social…

  3. Early growth response protein-1 mediates lipotoxicity-associated placental inflammation: Role in maternal obesity

    USDA-ARS?s Scientific Manuscript database

    Obesity is associated with low-grade chronic inflammation, which contributes to cellular dysfunction promoting metabolic disease. Obesity during pregnancy leads to a pro-inflammatory milieu in the placenta; however, the underlying causes for obesity-induced placental inflammation remain unclear. H...

  4. Molecular Mechanisms of Chromium in Alleviating Insulin Resistance

    PubMed Central

    Hua, Yinan; Clark, Suzanne; Ren, Jun; Sreejayan, Nair

    2011-01-01

    Type 2 diabetes is often associated with obesity, dyslipidemia, and cardiovascular anomalies and is a major health problem approaching global epidemic proportions. Insulin resistance, a prediabetic condition, precedes the onset of frank type 2 diabetes and offers potential avenues for early intervention to treat the disease. Although lifestyle modifications and exercise can reduce the incidence of diabetes, compliance has proved to be difficult, warranting pharmacological interventions. However, most of the currently available drugs that improve insulin sensitivity have adverse effects. Therefore, attractive strategies to alleviate insulin resistance include dietary supplements. One such supplement is chromium, which has been shown reduce insulin resistance in some, but not all, studies. Furthermore, the molecular mechanisms of chromium in alleviating insulin resistance remain elusive. This review examines emerging reports on the effect of chromium, as well as molecular and cellular mechanisms by which chromium may provide beneficial effects in alleviating insulin resistance. PMID:22423897

  5. Early development of the circumferential axonal pathway in mouse and chick spinal cord.

    PubMed

    Holley, J A

    1982-03-10

    The early development of the circumferential axonal pathway in the brachial and lumbar spinal cord of mouse and chick embryos was studied by scanning and transmission electron microscopy. The cellular processes which comprise this pathway grow in the transverse plane and along the lateral margin of the marginal zone (i.e., circumferentially oriented), as typified by the early embryonic commissural axons. The first formative event observed was in the ventrolateral margin of the primitive spinal cord ventricular zone. Cellular processes were found near the external limiting membrane that appeared to grow a variable distance either dorsally or ventrally. Later in development, presumptive motor column neurons migrated into the ventrolateral region, distal to these early circumferentially oriented processes. Concurrently, other circumferentially oriented perikarya and processes appeared along the dorsolateral margin. Due to their aligned sites of origin and parallel growth, the circumferential processes formed a more or less continuous line or pathway, which in about 10% of the scanned specimens could be followed along the entire lateral margin of the embryonic spinal cord. Several specimens later in development had two sets of aligned circumferential processes in the ventral region. Large numbers of circumferential axons were then found to follow the preformed pathway by fasciculation, after the primitive motor column had become established. Since the earliest circumferential processes appeared to differentiate into axons and were found nearly 24 hours prior to growth of most circumferential axons, their role in guidance as pioneering axons was suggested.

  6. Dendritic cells modulate burn wound healing by enhancing early proliferation.

    PubMed

    Vinish, Monika; Cui, Weihua; Stafford, Eboni; Bae, Leon; Hawkins, Hal; Cox, Robert; Toliver-Kinsky, Tracy

    2016-01-01

    Adequate wound healing is vital for burn patients to reduce the risk of infections and prolonged hospitalization. Dendritic cells (DCs) are antigen presenting cells that release cytokines and are central for the activation of innate and acquired immune responses. Studies have showed their presence in human burn wounds; however, their role in burn wound healing remains to be determined. This study investigated the role of DCs in modulating healing responses within the burn wound. A murine model of full-thickness contact burns was used to study wound healing in the absence of DCs (CD11c promoter-driven diphtheria toxin receptor transgenic mice) and in a DC-rich environment (using fms-like tyrosine kinase-3 ligand, FL- a DC growth factor). Wound closure was significantly delayed in DC-deficient mice and was associated with significant suppression of early cellular proliferation, granulation tissue formation, wound levels of TGFβ1 and formation of CD31+ vessels in healing wounds. In contrast, DC enhancement significantly accelerated early wound closure, associated with increased and accelerated cellular proliferation, granulation tissue formation, and increased TGFβ1 levels and CD31+ vessels in healing wounds. We conclude that DCs play an important role in the acceleration of early wound healing events, likely by secreting factors that trigger the proliferation of cells that mediate wound healing. Therefore, pharmacological enhancement of DCs may provide a therapeutic intervention to facilitate healing of burn wounds. © 2016 by the Wound Healing Society.

  7. Combined vitamin C and vitamin E deficiency worsens early atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Babaev, Vladimir R; Li, Liying; Shah, Sanket; Fazio, Sergio; Linton, MacRae F; May, James M

    2010-09-01

    To assess the role of combined deficiencies of vitamins C and E on the earliest stages of atherosclerosis (an inflammatory condition associated with oxidative stress), 4 combinations of vitamin supplementation (low C/low E, low C/high E, high C/low E, and high C/high E) were studied in atherosclerosis-prone apolipoprotein E-deficient mice also unable to synthesize their own vitamin C (gulonolactone oxidase(-/-)); and to evaluate the effect of a more severe depletion of vitamin C alone in a second experiment using gulonolactone oxidase(-/-) mice carrying the hemizygous deletion of SVCT2 (the vitamin C transporter). After 8 weeks of a high-fat diet (16% lard and 0.2% cholesterol), atherosclerosis developed in the aortic sinus areas of mice in all diet groups. Each vitamin-deficient diet significantly decreased liver and brain contents of the corresponding vitamin. Combined deficiency of both vitamins increased lipid peroxidation, doubled plaque size, and increased plaque macrophage content by 2- to 3-fold in male mice, although only plaque macrophage content was increased in female mice. A more severe deficiency of vitamin C in gulonolactone oxidase(-/-) mice with defective cellular uptake of vitamin C increased both oxidative stress and atherosclerosis in apolipoprotein E(-/-) mice compared with littermates receiving a diet replete in vitamin C, again most clearly in males. Combined deficiencies of vitamins E and C are required to worsen early atherosclerosis in an apolipoprotein E-deficient mouse model. However, a more severe cellular deficiency of vitamin C alone promotes atherosclerosis when vitamin E is replete.

  8. Genome-wide localization and expression profiling establish Sp2 as a sequence-specific transcription factor regulating vitally important genes

    PubMed Central

    Terrados, Gloria; Finkernagel, Florian; Stielow, Bastian; Sadic, Dennis; Neubert, Juliane; Herdt, Olga; Krause, Michael; Scharfe, Maren; Jarek, Michael; Suske, Guntram

    2012-01-01

    The transcription factor Sp2 is essential for early mouse development and for proliferation of mouse embryonic fibroblasts in culture. Yet its mechanisms of action and its target genes are largely unknown. In this study, we have combined RNA interference, in vitro DNA binding, chromatin immunoprecipitation sequencing and global gene-expression profiling to investigate the role of Sp2 for cellular functions, to define target sites and to identify genes regulated by Sp2. We show that Sp2 is important for cellular proliferation that it binds to GC-boxes and occupies proximal promoters of genes essential for vital cellular processes including gene expression, replication, metabolism and signalling. Moreover, we identified important key target genes and cellular pathways that are directly regulated by Sp2. Most significantly, Sp2 binds and activates numerous sequence-specific transcription factor and co-activator genes, and represses the whole battery of cholesterol synthesis genes. Our results establish Sp2 as a sequence-specific regulator of vitally important genes. PMID:22684502

  9. Targeting Virus-host Interactions of HIV Replication.

    PubMed

    Weydert, Caroline; De Rijck, Jan; Christ, Frauke; Debyser, Zeger

    2016-01-01

    Cellular proteins that are hijacked by HIV in order to complete its replication cycle, form attractive new targets for antiretroviral therapy. In particular, the protein-protein interactions between these cellular proteins (cofactors) and viral proteins are of great interest to develop new therapies. Research efforts have led to the validation of different cofactors and some successes in therapeutic applications. Maraviroc, the first cofactor inhibitor approved for human medicinal use, provided a proof of concept. Furthermore, compounds developed as Integrase-LEDGF/p75 interaction inhibitors (LEDGINs) have advanced to early clinical trials. Other compounds targeting cofactors and cofactor-viral protein interactions are currently under development. Likewise, interactions between cellular restriction factors and their counteracting HIV protein might serve as interesting targets in order to impair HIV replication. In this respect, compounds targeting the Vif-APOBEC3G interaction have been described. In this review, we focus on compounds targeting the Integrase- LEDGF/p75 interaction, the Tat-P-TEFb interaction and the Vif-APOBEC3G interaction. Additionally we give an overview of currently discovered compounds presumably targeting cellular cofactor-HIV protein interactions.

  10. Origin of life: LUCA and extracellular membrane vesicles (EMVs)

    NASA Astrophysics Data System (ADS)

    Gill, S.; Forterre, P.

    2016-01-01

    Cells from the three domains of life produce extracellular membrane vesicles (EMVs), suggesting that EMV production is an important aspect of cellular physiology. EMVs have been implicated in many aspects of cellular life in all domains, including stress response, toxicity against competing strains, pathogenicity, detoxification and resistance against viral attack. These EMVs represent an important mode of inter-cellular communication by serving as vehicles for transfer of DNA, RNA, proteins and lipids between cells. Here, we review recent progress in the understanding of EMV biology and their various roles. We focus on the role of membrane vesicles in early cellular evolution and how they would have helped shape the nature of the last universal common ancestor. A membrane-protected micro-environment would have been a key to the survival of spontaneous molecular systems and efficient metabolic reactions. Interestingly, the morphology of EMVs is strongly reminiscent of the morphology of some virions. It is thus tempting to make a link between the origin of the first protocell via the formation of vesicles and the origin of viruses.

  11. An outline of cellular automaton universe via cosmological KdV equation

    NASA Astrophysics Data System (ADS)

    Christianto, V.; Smarandache, F.; Umniyati, Y.

    2018-03-01

    It has been known for long time that the cosmic sound wave was there since the early epoch of the Universe. Signatures of its existence are abound. However, such a sound wave model of cosmology is rarely developed fully into a complete framework. This paper can be considered as our second attempt towards such a complete description of the Universe based on soliton wave solution of cosmological KdV equation. Then we advance further this KdV equation by virtue of Cellular Automaton method to solve the PDEs. We submit wholeheartedly Robert Kuruczs hypothesis that Big Bang should be replaced with a finite cellular automaton universe with no expansion [4][5]. Nonetheless, we are fully aware that our model is far from being complete, but it appears the proposed cellular automaton model of the Universe is very close in spirit to what Konrad Zuse envisaged long time ago. It is our hope that the new proposed method can be verified with observation data. But we admit that our model is still in its infancy, more researches are needed to fill all the missing details.

  12. CDKL5, a novel MYCN-repressed gene, blocks cell cycle and promotes differentiation of neuronal cells

    PubMed Central

    Valli, Emanuele; Trazzi, Stefania; Fuchs, Claudia; Erriquez, Daniela; Bartesaghi, Renata; Perini, Giovanni; Ciani, Elisabetta

    2012-01-01

    Mutations in the CDKL5 (cyclin-dependent kinase-like 5) gene are associated with a severe epileptic encephalopathy (early infantile epileptic encephalopathy type 2, EIEE2) characterized by early-onset intractable seizures, infantile spasms, severe developmental delay, intellectual disability, and Rett syndrome (RTT)-like features. Despite the clear involvement of CDKL5 mutations in intellectual disability, the function of this protein during brain development and the molecular mechanisms involved in its regulation are still unknown. Using human neuroblastoma cells as a model system we found that an increase in CDKL5 expression caused an arrest of the cell cycle in the G0/G1 phases and induced cellular differentiation. Interestingly, CDKL5 expression was inhibited by MYCN, a transcription factor that promotes cell proliferation during brain development and plays a relevant role in neuroblastoma biology. Through a combination of different and complementary molecular and cellular approaches we could show that MYCN acts as a direct repressor of the CDKL5 promoter. Overall our findings unveil a functional axis between MYCN and CDKL5 governing both neuron proliferation rate and differentiation. The fact that CDKL5 is involved in the control of both neuron proliferation and differentiation may help understand the early appearance of neurological symptoms in patients with mutations in CDKL5. PMID:22921766

  13. PGC-1α, A Potential Therapeutic Target for Early Intervention in Parkinson’s Disease

    PubMed Central

    Zheng, Bin; Liao, Zhixiang; Locascio, Joseph J.; Lesniak, Kristen A.; Roderick, Sarah S.; Watt, Marla L.; Eklund, Aron C.; Zhang-James, Yanli; Kim, Peter D.; Hauser, Michael A.; Grünblatt, Edna; Moran, Linda B.; Mandel, Silvia A.; Riederer, Peter; Miller, Renee M.; Federoff, Howard J.; Wüllner, Ullrich; Papapetropoulos, Spyridon; Youdim, Moussa B.; Cantuti-Castelvetri, Ippolita; Young, Anne B.; Vance, Jeffery M.; Davis, Richard L.; Hedreen, John C.; Adler, Charles H.; Beach, Thomas G.; Graeber, Manuel B.; Middleton, Frank A.; Rochet, Jean-Christophe; Scherzer, Clemens R.

    2011-01-01

    Parkinson’s disease affects 5 million people worldwide, but the molecular mechanisms underlying its pathogenesis are still unclear. Here, we report a genome-wide meta-analysis of gene sets (groups of genes that encode the same biological pathway or process) in 410 samples from patients with symptomatic Parkinson’s and subclinical disease and healthy controls. We analyzed 6.8 million raw data points from nine genome-wide expression studies, and 185 laser-captured human dopaminergic neuron and substantia nigra transcriptomes, followed by two-stage replication on three platforms. We found 10 gene sets with previously unknown associations with Parkinson’s disease. These gene sets pinpoint defects in mitochondrial electron transport, glucose utilization, and glucose sensing and reveal that they occur early in disease pathogenesis. Genes controlling cellular bioenergetics that are expressed in response to peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α) are underexpressed in Parkinson’s disease patients. Activation of PGC-1α results in increased expression of nuclear-encoded subunits of the mitochondrial respiratory chain and blocks the dopaminergic neuron loss induced by mutant α-synuclein or the pesticide rotenone in cellular disease models. Our systems biology analysis of Parkinson’s disease identifies PGC-1α as a potential therapeutic target for early intervention. PMID:20926834

  14. Current trends in the use of liposomes for tumor targeting

    PubMed Central

    Deshpande, Pranali P; Biswas, Swati; Torchilin, Vladimir P

    2013-01-01

    The use of liposomes for drug delivery began early in the history of pharmaceutical nanocarriers. These nanosized, lipid bilayered vesicles have become popular as drug delivery systems owing to their efficiency, biocompatibility, nonimmunogenicity, enhanced solubility of chemotherapeutic agents and their ability to encapsulate a wide array of drugs. Passive and ligand-mediated active targeting promote tumor specificity with diminished adverse off-target effects. The current field of liposomes focuses on both clinical and diagnostic applications. Recent efforts have concentrated on the development of multifunctional liposomes that target cells and cellular organelles with a single delivery system. This review discusses the recent advances in liposome research in tumor targeting. PMID:23914966

  15. [Effects of epithalon and cortagene on immunity and hemostasis in neonatally hypophysectomized chicken and old birds].

    PubMed

    Kuznik, B I; Pateiuk, A V; Baranchugova, L M; Rusaeva, N S

    2008-01-01

    It has been found that chicken hypophysectomized early in the neonatal period develop anemia, cellular and humoral immune deficiency, hypercoagulation and inhibited fibrinolysis by their 45th postnatal day. An analogous operation performed on old birds produces less significant changes in erythrocytes, immunity and hemostasis. Injections of epithalon tetrapeptide (Ala-Glu-Asp-Gly) administered to either hypophysectomized chicken or old birds during a period of 40 days completely eliminate the shifts registered in erythrocytes, immunity and hemostasis, while injections of cortagene (Ala-Glu-Asp-Pro) which is distinguished from epithalon by a different terminal aminoacid (with Gly being replaced by Pro) do not affect the parameters studied.

  16. Comparative Morphology of Sulfur Mustard Effects in the Hairless Guinea Pig and a Human Skin Equivalent

    DTIC Science & Technology

    1993-01-01

    guinea pig model (HD-HGP). HSE samples were exposed to 10 micro l HD vapor for 8 min and harvested at selected times up to 24 h. Skin sites of HGP were exposed to the same vapor dose or to 2.0 micro l HD for 30 min and collected at 12 and 24 h. In both models, basal cells of the stratum germinativum were selectively affected. The HD-HSE study revealed that basal cell changes began 3 to 6 h following exposure. These early cellular included an acantholysis of some basal cells with widening of intercellular spaces, disruption of desmosomal attachments, nuclear pyknosis,

  17. Cellular Therapies Clinical Research Roadmap: lessons learned on how to move a cellular therapy into a clinical trial.

    PubMed

    Ouseph, Stacy; Tappitake, Darah; Armant, Myriam; Wesselschmidt, Robin; Derecho, Ivy; Draxler, Rebecca; Wood, Deborah; Centanni, John M

    2015-04-01

    A clinical research roadmap has been developed as a resource for researchers to identify critical areas and potential pitfalls when transitioning a cellular therapy product from the research laboratory, by means of an Investigational New Drug (IND) application, into early-phase clinical trials. The roadmap describes four key areas: basic and preclinical research, resource development, translational research and Good Manufacturing Practice (GMP) and IND assembly and submission. Basic and preclinical research identifies a new therapeutic concept and demonstrates its potential value with the use of a model of the relevant disease. During resource development, the appropriate specialists and the required expertise to bring this product into the clinic are identified (eg, researchers, regulatory specialists, GMP manufacturing staff, clinicians and clinical trials staff, etc). Additionally, the funds required to achieve this goal (or a plan to procure them) are identified. In the next phase, the plan to translate the research product into a clinical-grade therapeutic is developed. Finally regulatory approval to start the trial must be obtained. In the United States, this is done by filing an IND application with the Food and Drug Administration. The National Heart, Lung and Blood Institute-funded Production Assistance for Cellular Therapies program has facilitated the transition of a variety of cellular therapy products from the laboratory into Phase1/2 trials. The five Production Assistance for Cellular Therapies facilities have assisted investigators by performing translational studies and GMP manufacturing to ensure that cellular products met release specifications and were manufactured safely, reproducibly and at the appropriate scale. The roadmap resulting from this experience is the focus of this article. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  18. Chemotherapeutic-Induced Cardiovascular Dysfunction: Physiological Effects, Early Detection—The Role of Telomerase to Counteract Mitochondrial Defects and Oxidative Stress

    PubMed Central

    Quryshi, Nabeel; Norwood Toro, Laura E.; Ait-Aissa, Karima; Kong, Amanda; Beyer, Andreas M.

    2018-01-01

    Although chemotherapeutics can be highly effective at targeting malignancies, their ability to trigger cardiovascular morbidity is clinically significant. Chemotherapy can adversely affect cardiovascular physiology, resulting in the development of cardiomyopathy, heart failure and microvascular defects. Specifically, anthracyclines are known to cause an excessive buildup of free radical species and mitochondrial DNA damage (mtDNA) that can lead to oxidative stress-induced cardiovascular apoptosis. Therefore, oncologists and cardiologists maintain a network of communication when dealing with patients during treatment in order to treat and prevent chemotherapy-induced cardiovascular damage; however, there is a need to discover more accurate biomarkers and therapeutics to combat and predict the onset of cardiovascular side effects. Telomerase, originally discovered to promote cellular proliferation, has recently emerged as a potential mechanism to counteract mitochondrial defects and restore healthy mitochondrial vascular phenotypes. This review details mechanisms currently used to assess cardiovascular damage, such as C-reactive protein (CRP) and troponin levels, while also unearthing recently researched biomarkers, including circulating mtDNA, telomere length and telomerase activity. Further, we explore a potential role of telomerase in the mitigation of mitochondrial reactive oxygen species and maintenance of mtDNA integrity. Telomerase activity presents a promising indicator for the early detection and treatment of chemotherapy-derived cardiac damage. PMID:29534446

  19. Differential Immunotoxicity Induced by Two Different Windows of Developmental Trichloroethylene Exposure

    PubMed Central

    Gilbert, Kathleen M.; Woodruff, William; Blossom, Sarah J.

    2014-01-01

    Developmental exposure to environmental toxicants may induce immune system alterations that contribute to adult stage autoimmune disease. We have shown that continuous exposure of MRL+/+ mice to trichloroethylene (TCE) from gestational day (GD) 0 to postnatal day (PND) 49 alters several aspects of CD4+ T cell function. This window of exposure corresponds to conception-adolescence/young adulthood in humans. More narrowly defining the window of TCE developmental exposure causes immunotoxicity that would establish the stage at which avoidance and/or intervention would be most effective. The current study divided continuous TCE exposure into two separate windows, namely, gestation only (GD0 to birth (PND0)) and early-life only (PND0-PND49). The mice were examined for specific alterations in CD4+ T cell function at PND49. One potentially long-lasting effect of developmental exposure, alterations in retrotransposon expression indicative of epigenetic alterations, was found in peripheral CD4+ T cells from both sets of developmentally exposed mice. Interestingly, certain other effects, such as alterations in thymus cellularity, were only found in mice exposed to TCE during gestation. In contrast, expansion of memory/activation cell subset of peripheral CD4+ T cells were only found in mice exposed to TCE during early life. Different windows of developmental TCE exposure can have different functional consequences. PMID:24696780

  20. Validation of hsp70 stress gene expression as a marker of metal effects in Deroceras reticulatum (Pulmonata): Correlation with demographic parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koehler, H.R.; Eckwert, H.; Rahman, B.

    1998-11-01

    The presence of a stress gene comprising a motif homologous to the hsp70 consensus sequence was proven for the grey garden slug, Deroceras reticulatum (Mueller). The induction of stress gene transcription (including mRNA stability) and the accumulation of the corresponding stress protein, Hsp70, was quantified in slugs exposed to cadmium- or zinc-enriched food for 2 to 3 weeks. To validate the suitability of these two aspects of the cellular stress response to act as early-warning markers for metal effects on life-history parameters, fecundity, offspring number, longevity, and mortality of slugs were recorded in life-cycle experiments. Quantitative reverse transcription-polymerase chain reactionmore » and a standardized immunoblotting technique revealed higher sensitivity of changes in hsp70 transcription than stress protein accumulation in response to both metals. The elevation of the hsp70-mRNA level caused by short-term (14 d) metal exposure coincided with both diminished fecundity and reduced offspring production due to chronic metal exposure in terms of threshold concentrations for cadmium effects. As well, accumulation of Hsp70 after 3 weeks of exposure can be considered an early-warning signal for increased mortality when cadmium or zinc exposure is throughout the entire lifetime of the slugs.« less

  1. Developmental Regulation of Nucleolus Size during Drosophila Eye Differentiation

    PubMed Central

    Baker, Nicholas E.

    2013-01-01

    When cell cycle withdrawal accompanies terminal differentiation, biosynthesis and cellular growth are likely to change also. In this study, nucleolus size was monitored during cell fate specification in the Drosophila eye imaginal disc using fibrillarin antibody labeling. Nucleolus size is an indicator of ribosome biogenesis and can correlate with cellular growth rate. Nucleolar size was reduced significantly during cell fate specification and differentiation, predominantly as eye disc cells entered a cell cycle arrest that preceded cell fate specification. This reduction in nucleolus size required Dpp and Hh signaling. A transient enlargement of the nucleolus accompanied cell division in the Second Mitotic Wave. Nucleoli continued to diminish in postmitotic cells following fate specification. These results suggest that cellular growth is regulated early in the transition from proliferating progenitor cells to terminal cell fate specification, contemporary with regulation of the cell cycle, and requiring the same extracellular signals. PMID:23472166

  2. Endocytosis and Endosomal Trafficking in Plants.

    PubMed

    Paez Valencia, Julio; Goodman, Kaija; Otegui, Marisa S

    2016-04-29

    Endocytosis and endosomal trafficking are essential processes in cells that control the dynamics and turnover of plasma membrane proteins, such as receptors, transporters, and cell wall biosynthetic enzymes. Plasma membrane proteins (cargo) are internalized by endocytosis through clathrin-dependent or clathrin-independent mechanism and delivered to early endosomes. From the endosomes, cargo proteins are recycled back to the plasma membrane via different pathways, which rely on small GTPases and the retromer complex. Proteins that are targeted for degradation through ubiquitination are sorted into endosomal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery for degradation in the vacuole. Endocytic and endosomal trafficking regulates many cellular, developmental, and physiological processes, including cellular polarization, hormone transport, metal ion homeostasis, cytokinesis, pathogen responses, and development. In this review, we discuss the mechanisms that mediate the recognition and sorting of endocytic and endosomal cargos, the vesiculation processes that mediate their trafficking, and their connection to cellular and physiological responses in plants.

  3. [Incontinentia pigmenti with defect in cellular immunity].

    PubMed

    Zamora-Chávez, Antonio; Escobar-Sánchez, Argelia; Sadowinski-Pine, Stanislaw; Saucedo-Ramírez, Omar Josué; Delgado-Barrera, Palmira; Enríquez-Quiñones, Claudia G

    Incontinentia pigmenti is a rare, X-linked genetic disease and affects all ectoderm-derived tissues such as skin, appendages, eyes, teeth and central nervous system as well as disorders of varying degree of cellular immunity characterized by decreasing melanin in the epidermis and increase in the dermis. When the condition occurs in males, it is lethal. We present the case of a 2-month-old infant with severe incontinentia pigmenti confirmed by histological examination of skin biopsy. The condition evolved with severe neurological disorders and seizures along with severe cellular immune deficiency, which affected the development of severe infections and caused the death of the patient. The importance of early clinical diagnosis is highlighted along with the importance of multidisciplinary management of neurological disorders and infectious complications. Copyright © 2015 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  4. The Potential of Cellular- and Viral-Based Immunotherapies for Malignant Glioma-Dendritic Cell Vaccines, Adoptive Cell Transfer, and Oncolytic Viruses.

    PubMed

    Maxwell, Russell; Luksik, Andrew S; Garzon-Muvdi, Tomas; Lim, Michael

    2017-06-01

    Malignant gliomas, including glioblastoma and anaplastic astrocytoma, are the most frequent primary brain tumors and present with many treatment challenges. In this review, we discuss the potential of cellular- and viral-based immunotherapies in the treatment of malignant glioma, specifically focusing on dendritic cell vaccines, adoptive cell therapy, and oncolytic viruses. Diverse cellular- and viral-based strategies have been engineered and optimized to generate either a specific or broad antitumor immune response in malignant glioma. Due to their successes in the preclinical arena, many of these therapies have undergone phase I and II clinical testing. These early clinical trials have demonstrated the feasibility, safety, and efficacy of these immunotherapies. Dendritic cell vaccines, adoptive cell transfer, and oncolytic viruses may have a potential role in the treatment of malignant glioma. However, these modalities must be investigated in well-designed phase III trials to prove their efficacy.

  5. Developmental regulation of nucleolus size during Drosophila eye differentiation.

    PubMed

    Baker, Nicholas E

    2013-01-01

    When cell cycle withdrawal accompanies terminal differentiation, biosynthesis and cellular growth are likely to change also. In this study, nucleolus size was monitored during cell fate specification in the Drosophila eye imaginal disc using fibrillarin antibody labeling. Nucleolus size is an indicator of ribosome biogenesis and can correlate with cellular growth rate. Nucleolar size was reduced significantly during cell fate specification and differentiation, predominantly as eye disc cells entered a cell cycle arrest that preceded cell fate specification. This reduction in nucleolus size required Dpp and Hh signaling. A transient enlargement of the nucleolus accompanied cell division in the Second Mitotic Wave. Nucleoli continued to diminish in postmitotic cells following fate specification. These results suggest that cellular growth is regulated early in the transition from proliferating progenitor cells to terminal cell fate specification, contemporary with regulation of the cell cycle, and requiring the same extracellular signals.

  6. Rab protein evolution and the history of the eukaryotic endomembrane system

    PubMed Central

    Brighouse, Andrew; Dacks, Joel B.

    2010-01-01

    Spectacular increases in the quantity of sequence data genome have facilitated major advances in eukaryotic comparative genomics. By exploiting homology with classical model organisms, this makes possible predictions of pathways and cellular functions currently impossible to address in intractable organisms. Echoing realization that core metabolic processes were established very early following evolution of life on earth, it is now emerging that many eukaryotic cellular features, including the endomembrane system, are ancient and organized around near-universal principles. Rab proteins are key mediators of vesicle transport and specificity, and via the presence of multiple paralogues, alterations in interaction specificity and modification of pathways, contribute greatly to the evolution of complexity of membrane transport. Understanding system-level contributions of Rab proteins to evolutionary history provides insight into the multiple processes sculpting cellular transport pathways and the exciting challenges that we face in delving further into the origins of membrane trafficking specificity. PMID:20582450

  7. Novel therapy for renal protection.

    PubMed

    Zarbock, Alexander; Milles, Kindgen

    2015-08-01

    Acute kidney injury (AKI) is a common and serious complication that significantly increases morbidity, mortality, and cost of care after surgery. In this article, we review recent studies that deal with strategies for renal protection and the prevention of AKI after surgery. A prerequisite for any prophylactic intervention is the identification of patients at risk for AKI or those with acute kidney damage before kidney function deteriorates. In this context, new biomarkers can help to detect cellular injury early. This way, a window for interventions can be opened. Several studies demonstrated the tissue-protective effect of remote ischemic preconditioning in various organs. There is clear evidence that use of balanced crystalloid fluids and the avoidance of hyperchloremic solutions for infusion therapy can reduce the incidence of AKI. Preliminary data show a protective effect if dexmedetomidine is used as a sedative agent following cardiac surgery. The most important intervention with proven efficacy to protect from AKI is aggressive hemodynamic stabilization. Early identification of patients at risk for AKI is crucial to apply any protective intervention. An improved perioperative management is required to prevent AKI. Although pharmacological therapies aiming to protect AKI are under evaluation, hemodynamic optimization and avoidance of nephrotoxic drugs are critical for perioperative patient.

  8. Zinc and Autophagy

    PubMed Central

    Liuzzi, Juan P.; Guo, Liang; Yoo, Changwon; Stewart, Tiffanie S

    2014-01-01

    Autophagy is a highly conserved degradative process through which cells overcome stressful conditions. Inasmuch as faulty autophagy has been associated with aging, neuronal degeneration disorders, diabetes, and fatty liver, autophagy is regarded as a potential therapeutic target. This review summarizes the present state of knowledge concerning the role of zinc in the regulation of autophagy, the role of autophagy in zinc metabolism, and the potential role of autophagy as a mediator of the protective effects of zinc. Data from in vitro studies consistently support the notion that zinc is critical for early and late autophagy. Studies have shown inhibition of early and late autophagy in cells cultured in medium treated with zinc chelators. Conversely, excess zinc added to the medium has shown to potentiate the stimulation of autophagy by tamoxifen, H2O2, ethanol and dopamine. The potential role of autophagy in zinc homeostasis has just begun to be investigated.Increasing evidence indicates that autophagy dysregulation causes significant changes in cellular zinc homeostasis. Autophagy may mediate the protective effect of zinc against lipid accumulation, apoptosis and inflammation by promoting degradation of lipid droplets, inflammasomes, p62/SQSTM1 and damaged mitochondria.Studies with humans and animal models are necessary to determine whether autophagy is influenced by zinc intake. PMID:25012760

  9. Characterization of the Rana grylio virus 3{beta}-hydroxysteroid dehydrogenase and its novel role in suppressing virus-induced cytopathic effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Wei; Huang Youhua; Zhao Zhe

    2006-12-08

    The 3{beta}-hydroxysteroid dehydrogenase (3{beta}-HSD) isoenzymes play a key role in cellular steroid hormone synthesis. Here, a 3{beta}-HSD gene homolog was cloned from Rana grylio virus (RGV), a member of family Iridoviridae. RGV 3{beta}-HSD gene has 1068 bp, encoding a 355 aa predicted protein. Transcription analyses showed that RGV 3{beta}-HSD gene was transcribed immediate-early during infection from an initiation site 19 nucleotides upstream of the translation start site. Confocal microscopy revealed that the 3{beta}-HSD-EGFP fusion protein was exclusively colocalized with the mitochondria marker (pDsRed2-Mito) in EPC cells. Upon morphological observation and MTT assay, it was revealed that overexpression of RGV 3{beta}-HSDmore » in EPC cells could apparently suppress RGV-induced cytopathic effect (CPE). The present studies indicate that the RGV immediate-early 3{beta}-HSD gene encodes a mitochondria-localized protein, which has a novel role in suppressing virus-induced CPE. All these suggest that RGV 3{beta}-HSD might be a protein involved in host-virus interaction.« less

  10. Co-expression Network Approach to Studying the Effects of Botulinum Neurotoxin-A.

    PubMed

    Mukund, Kavitha; Ward, Samuel R; Lieber, Richard L; Subramaniam, Shankar

    2017-10-16

    Botulinum Neurotoxin A (BoNT-A) is a potent neurotoxin with several clinical applications.The goal of this study was to utilize co-expression network theory to analyze temporal transcriptional data from skeletal muscle after BoNT-A treatment. Expression data for 2000 genes (extracted using a ranking heuristic) served as the basis for this analysis. Using weighted gene co-expression network analysis (WGCNA), we identified 19 co-expressed modules, further hierarchically clustered into 5 groups. Quantifying average expression and co-expression patterns across these groups revealed temporal aspects of muscle's response to BoNT-A. Functional analysis revealed enrichment of group 1 with metabolism; group 5 with contradictory functions of atrophy and cellular recovery; and groups 2 and 3 with extracellular matrix (ECM) and non-fast fiber isoforms. Topological positioning of two highly ranked, significantly expressed genes- Dclk1 and Ostalpha within group 5 suggested possible mechanistic roles in recovery from BoNT-A induced atrophy. Phenotypic correlations of groups with titin and myosin protein content further emphasized the effect of BoNT-A on the sarcomeric contraction machinery in early phase of chemodenervation. In summary, our approach revealed a hierarchical functional response to BoNT-A induced paralysis with early metabolic and later ECM responses and identified putative biomarkers associated with chemodenervation. Additionally, our results provide an unbiased validation of the response documented in our previous workBotulinum Neurotoxin A (BoNT-A) is a potent neurotoxin with several clinical applications.The goal of this study was to utilize co-expression network theory to analyze temporal transcriptional data from skeletal muscle after BoNT-A treatment. Expression data for 2000 genes (extracted using a ranking heuristic) served as the basis for this analysis. Using weighted gene co-expression network analysis (WGCNA), we identified 19 co-expressed modules, further hierarchically clustered into 5 groups. Quantifying average expression and co-expression patterns across these groups revealed temporal aspects of muscle's response to BoNT-A. Functional analysis revealed enrichment of group 1 with metabolism; group 5 with contradictory functions of atrophy and cellular recovery; and groups 2 and 3 with extracellular matrix (ECM) and non-fast fiber isoforms. Topological positioning of two highly ranked, significantly expressed genes- Dclk1 and Ostalpha within group 5 suggested possible mechanistic roles in recovery from BoNT-A induced atrophy. Phenotypic correlations of groups with titin and myosin protein content further emphasized the effect of BoNT-A on the sarcomeric contraction machinery in early phase of chemodenervation. In summary, our approach revealed a hierarchical functional response to BoNT-A induced paralysis with early metabolic and later ECM responses and identified putative biomarkers associated with chemodenervation. Additionally, our results provide an unbiased validation of the response documented in our previous work.

  11. Advances in Bio-Optical Imaging for the Diagnosis of Early Oral Cancer

    PubMed Central

    Olivo, Malini; Bhuvaneswari, Ramaswamy; Keogh, Ivan

    2011-01-01

    Oral cancer is among the most common malignancies worldwide, therefore early detection and treatment is imperative. The 5-year survival rate has remained at a dismal 50% for the past several decades. The main reason for the poor survival rate is the fact that most of the oral cancers, despite the general accessibility of the oral cavity, are not diagnosed until the advanced stage. Early detection of the oral tumors and its precursor lesions may be the most effective means to improve clinical outcome and cure most patients. One of the emerging technologies is the use of non-invasive in vivo tissue imaging to capture the molecular changes at high-resolution to improve the detection capability of early stage disease. This review will discuss the use of optical probes and highlight the role of optical imaging such as autofluorescence, fluorescence diagnosis (FD), laser confocal endomicroscopy (LCE), surface enhanced Raman spectroscopy (SERS), optical coherence tomography (OCT) and confocal reflectance microscopy (CRM) in early oral cancer detection. FD is a promising method to differentiate cancerous lesions from benign, thus helping in the determination of adequate resolution of surgical resection margin. LCE offers in vivo cellular imaging of tissue structures from surface to subsurface layers and has demonstrated the potential to be used as a minimally invasive optical biopsy technique for early diagnosis of oral cancer lesions. SERS was able to differentiate between normal and oral cancer patients based on the spectra acquired from saliva of patients. OCT has been used to visualize the detailed histological features of the oral lesions with an imaging depth down to 2–3 mm. CRM is an optical tool to noninvasively image tissue with near histological resolution. These comprehensive diagnostic modalities can also be used to define surgical margin and to provide a direct assessment of the therapeutic effectiveness. PMID:24310585

  12. Early life experience alters behavior during social defeat: focus on serotonergic systems.

    PubMed

    Gardner, K L; Thrivikraman, K V; Lightman, S L; Plotsky, P M; Lowry, C A

    2005-01-01

    Early life experience can have prolonged effects on neuroendocrine, autonomic, and behavioral responses to stress. The objective of this study was to investigate the effects of early life experience on behavior during social defeat, as well as on associated functional cellular responses in serotonergic and non-serotonergic neurons within the dorsal raphe nucleus, a structure which plays an important role in modulation of stress-related physiology and behavior. Male Long Evans rat pups were exposed to either normal animal facility rearing or 15 min or 180 min of maternal separation from postnatal days 2-14. As adults, these rats were exposed to a social defeat protocol. Differences in behavior were seen among the early life treatment groups during social defeat; rats exposed to 180 min of maternal separation from postnatal days 2-14 displayed more passive-submissive behaviors and less proactive coping behaviors. Analysis of the distribution of tryptophan hydroxylase and c-Fos-like immunoreactivity in control rats exposed to a novel cage and rats exposed to social defeat revealed that, independent of the early life experience, rats exposed to social defeat showed an increase in the number of c-Fos-like immunoreactive nuclei in serotonergic neurons in the middle and caudal parts of the dorsal dorsal raphe nucleus and caudal part of the ventral dorsal raphe nucleus, regions known to contain serotonergic neurons projecting to central autonomic and emotional motor control systems. This is the first study to show that the dorsomedial part of the mid-rostrocaudal dorsal raphe nucleus is engaged by a naturalistic stressor and supports the hypothesis that early life experience alters behavioral coping strategies during social conflict; furthermore, this study is consistent with the hypothesis that topographically organized subpopulations of serotonergic neurons principally within the mid-rostrocaudal and caudal part of the dorsal dorsal raphe nucleus modulate stress-related physiological and behavioral responses.

  13. Effects of 915 nm GaAs diode laser on mitochondria of human dermal fibroblasts: analysis with confocal microscopy.

    PubMed

    Belletti, Silvana; Uggeri, Jacopo; Mergoni, Giovanni; Vescovi, Paolo; Merigo, Elisabetta; Fornaini, Carlo; Nammour, Samir; Manfredi, Maddalena; Gatti, Rita

    2015-01-01

    Low-level laser therapy (LLLT) is widely used in tissue regeneration and pain therapy. Mitochondria are supposed to be one of the main cellular targets, due to the presence of cytochrome C oxidase as photo-acceptor. Laser stimulation could influence mitochondria metabolism affecting mainly transmembrane mitochondrial potential (Δψm). The aim of our study is to evaluate "in vitro" the early mitochondrial response after irradiation with a 915 GaAs laser. Since some evidences suggest that cellular response to LLLT can be differently modulated by the mode of irradiation, we would like to evaluate whether there are changes in the mitochondrial potential linked to the use of the laser treatments applied with continuous wave (CW) in respect to those applied with pulsed wave (PW). In this study, we analyzed effects of irradiation with a 915-nm GaAs diode laser on human dermal fibroblast. We compared effects of irradiation applied with either CW or PW at different fluences 45-15-5 J/cm(2) on Δψm. Laser scanning microscopy (LSM) was used in living cells to detect ROS (reactive oxygen species) using calcein AM and real-time changes of and Δψm following distribution of the potentiometric probe tetramethylrhodamine methyl ester (TMRM). At higher doses (45-15 J/cm(2)), fibroblasts showed a dose-dependent decrement of Δψm in either the modalities employed, with higher amplitudes in CW-treated cells. This behavior is transient and not followed by any sign of toxicity, even if reactive oxygen species generation was observed. At 5 J/cm(2), CW irradiation determined a little decrease (5%) of the baseline level of Δψm, while opposite behavior was shown when cells were irradiated with PW, with a 10% increment. Our results suggest that different responses observed at cellular level with low doses of irradiation, could be at the basis of efficacy of LLLT in clinical application, performed with PW rather than CW modalities.

  14. Cellular Response to Bleomycin-Induced DNA Damage in Human Fibroblast Cells in Space

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Wong, Michael; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2015-01-01

    Outside the protection of the geomagnetic field, astronauts and other living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. Whether spaceflight factors, microgravity in particular, have effects on cellular responses to DNA damage induced by exposure to radiation or cytotoxic chemicals is still unknown, as is their impact on the radiation risks for astronauts and on the mutation rate in microorganisms. Although possible synergistic effects of space radiation and other spaceflight factors have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on cellular responses to DNA damages, human fibroblast cells flown to the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induced DNA damages including double-strand breaks (DSB) similar to the ionizing radiation. Damages in the DNA were measured by the phosphorylation of a histone protein H2AX (g-H2AX), which showed slightly more foci in the cells on ISS than in the ground control. The expression of genes involved in DNA damage response was also analyzed using the PCR array. Although a number of the genes, including CDKN1A and PCNA, were significantly altered in the cells after bleomycin treatment, no significant difference in the expression profile of DNA damage response genes was found between the flight and ground samples. At the time of the bleomycin treatment, the cells on the ISS were found to be proliferating faster than the ground control as measured by the percentage of cells containing positive Ki-67 signals. Our results suggested that the difference in g-H2AX focus counts between flight and ground was due to the faster growth rate of the cells in space, but spaceflight did not affect initial transcriptional responses of the DNA damage response genes to bleomycin treatment.

  15. Childhood malignant blue nevus of the ear associated with two intracranial melanocytic tumors-metastases or neurocutaneous melanosis?

    PubMed

    Popović, Mara; Dolenc-Strazar, Zvezdana; Anzic, Jozica; Luzar, Bostjan

    2004-10-01

    Blue nevus is an uncommon pigmented tumor of dermal melanocytes that has traditionally been classified into common and cellular variant. It is usually a skin tumor in adults but can become apparent in early childhood or even be present at birth. Malignant blue nevus is a rare melanocytic tumor of the skin arising from a preexisting cellular blue nevus. We report a multinodular blue nevus of the left ear in an 11-year-old girl who also had 2 intracranial melanocytic lesions. Differential diagnosis between metastases from malignant blue nevus and neurocutaneous melanosis is discussed.

  16. Adenylate Energy Pool and Energy Charge in Maturing Rape Seeds 1

    PubMed Central

    Ching, Te May; Crane, Jim M.; Stamp, David L.

    1974-01-01

    A study of energy state and chemical composition of pod walls and seeds of maturing rape (Brassica napus L.) was conducted on two varieties, Victor and Gorczanski. Total adenosine phosphates, ATP, and adenylate energy charge increased with increasing cell number and cellular synthesis during the early stages, remained high at maximum dry weight accumulation and maximum substrate influx time, and decreased with ripening. A temporal control of energy supply and ATP concentration is evident in developing tissues with determined functions; whereas the association of a high energy charge and active cellular biosynthesis occurs only in tissues with a stabilized cell number. PMID:16658964

  17. APPLICATION OF A SIMPLE CIRCULATING MARKER OF OXIDATIVE STRESS FOR CLINICAL AND EPIDEMIOLOGICAL STUDIES

    EPA Science Inventory

    Biomarker development has improved our ability to detect early changes at the molecular, cellular and pre-clinical level that are often predictive of adverse cancer and non cancer related health outcomes. The role of reactive oxygen species (ROS) is implicated in many disease pr...

  18. BioImaging Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Nix, Lisa Simirenko

    2006-10-25

    The Biolmaging Database (BID) is a relational database developed to store the data and meta-data for the 3D gene expression in early Drosophila embryo development on a cellular level. The schema was written to be used with the MySQL DBMS but with minor modifications can be used on any SQL compliant relational DBMS.

  19. Epigenetics and the Biological Definition of Gene X Environment Interactions

    ERIC Educational Resources Information Center

    Meaney, Michael J.

    2010-01-01

    Variations in phenotype reflect the influence of environmental conditions during development on cellular functions, including that of the genome. The recent integration of epigenetics into developmental psychobiology illustrates the processes by which environmental conditions in early life structurally alter DNA, providing a physical basis for the…

  20. Meta-analysis of Gene Expression in the Mouse Liver Reveals Biomarkers Associated with Inflammation Increased Early During Aging

    EPA Science Inventory

    Aging is associated with a predictable loss of cellular homeostasis, a decline in physiological function and an increase in various diseases. We hypothesized that similar age-related gene expression profiles would be observed in mice across independent studies. Employing a metaan...

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleiner, J.B.; Amiel, D.; Harwood, F.L.

    A rabbit model for anterior cruciate ligament (ACL) reconstruction using autogenous patellar tendon was utilized to study the early events of autograft cellular dynamics. Biochemical, autoradiographic, histological, and vascular injection techniques demonstrated that the native autograft cell population rapidly necroses. This repopulation occurs without a vascular contribution; cells entering the autograft are reliant upon synovial fluid nutrition.

  2. The SIX1 Oncoprotein Mediates Aberrant Endometrial Basal Cell Development Following Neonatal Exposure to Diethylstilbestrol

    EPA Science Inventory

    Early-life exposures can disrupt cellular differentiation and contribute to increased cancer risk later in life. In a model of developmental estrogen exposure, female mice exposed on postnatal day (PND) 1-5 to diethylstilbestrol (DES) develop a high incidence of endometrial adeno...

  3. MicroRNA-93 inhibits tumor growth and early relapse of human colorectal cancer by affecting genes involved in the cell cycle.

    PubMed

    Yang, I-Ping; Tsai, Hsiang-Lin; Hou, Ming-Feng; Chen, Ku-Chung; Tsai, Pei-Chien; Huang, Szu-Wei; Chou, Wen-Wen; Wang, Jaw-Yuan; Juo, Suh-Hang Hank

    2012-08-01

    Colorectal cancer (CRC) is associated with high recurrence and mortality. Because deregulation of microRNAs is associated with CRC development and recurrence, the expression levels of microRNAs can be a simple and reliable biomarker to detect postoperative early relapse, thereby helping physicians to treat high-risk patients more efficiently. We used microRNA arrays and observed that microRNA-93 had substantially different expression levels in early (recurrence within 12 months after surgery) and non-early relapse CRC patients. The replication study, which included 35 early relapse and 42 non-early relapse subjects, further confirmed overexpression of microRNA-93 in non-early relapse samples. The in vitro and in vivo effects of microRNA-93 were investigated by examining cell proliferation, migration and invasion, as well as cell cycles, target-gene expression and xenograft in null mice. Cellular studies showed that the overexpression of microRNA-93 inhibited colon cancer cell proliferation and migration but not invasion. The cell cycle studies also revealed that microRNA-93 caused an accumulation of the G2 population. However, microRNA-93 could not induce cell apoptosis or necrosis. Functional studies showed that microRNA-93 could suppress CCNB1 protein expression leading to cell cycle arrest in the G2 phase. Moreover, microRNA-93 repressed expression of ERBB2, p21 and VEGF, all of which are involved in cell proliferation. MicroRNA-93 also suppressed tumor growth in null mice. This study showed that microRNA-93 can inhibit tumorigenesis and reduce the recurrence of CRC; these findings may have potential clinical applications for predicting the recurrence of CRC.

  4. Cellular Stress and p53-Associated Apoptosis by Juniperus communis L. Berry Extract Treatment in the Human SH-SY5Y Neuroblastoma Cells

    PubMed Central

    Lantto, Tiina A.; Laakso, Into; Dorman, H. J. Damien; Mauriala, Timo; Hiltunen, Raimo; Kõks, Sulev; Raasmaja, Atso

    2016-01-01

    Plant phenolics have shown to activate apoptotic cell death in different tumourigenic cell lines. In this study, we evaluated the effects of juniper berry extract (Juniperus communis L.) on p53 protein, gene expression and DNA fragmentation in human neuroblastoma SH-SY5Y cells. In addition, we analyzed the phenolic composition of the extract. We found that juniper berry extract activated cellular relocalization of p53 and DNA fragmentation-dependent cell death. Differentially expressed genes between treated and non-treated cells were evaluated with the cDNA-RDA (representational difference analysis) method at the early time point of apoptotic process when p53 started to be activated and no caspase activity was detected. Twenty one overexpressed genes related to cellular stress, protein synthesis, cell survival and death were detected. Interestingly, they included endoplasmic reticulum (ER) stress inducer and sensor HSPA5 and other ER stress-related genes CALM2 and YKT6 indicating that ER stress response was involved in juniper berry extract mediated cell death. In composition analysis, we identified and quantified low concentrations of fifteen phenolic compounds. The main groups of them were flavones, flavonols, phenolic acids, flavanol and biflavonoid including glycosides of quercetin, apigenin, isoscutellarein and hypolaetin. It is suggested that juniper berry extract induced the p53-associated apoptosis through the potentiation and synergism by several phenolic compounds. PMID:27420050

  5. Cellular studies and interaction mechanisms of extremely low frequency fields

    NASA Astrophysics Data System (ADS)

    Liburdy, Robert P.

    1995-01-01

    Worldwide interest in the biological effects of ELF (extremely low frequency, <1 kHz) electromagnetic fields has grown significantly. Health professionals and government administrators and regulators, scientists and engineers, and, importantly, an increasing number of individuals in the general public are interested in this health issue. The goal of research at the cellular level is to identify cellular responses to ELF fields, to develop a dose threshold for such interactions, and with such information to formulate and test appropriate interaction mechanisms. This review is selective and will discuss the most recent cellular studies directed at these goals which relate to power line, sinusoidal ELF fields. In these studies an interaction site at the cell membrane is by consensus a likely candidate, since changes in ion transport, ligand-receptor events such as antibody binding, and G protein activation have been reported. These changes strongly indicate that signal transduction (ST) can be influenced. Also, ELF fields are reported to influence enzyme activation, gene expression, protein synthesis, and cell proliferation, which are triggered by earlier ST events at the cell membrane. The concept of ELF fields altering early cell membrane events and thereby influencing intracellular cell function via the ST cascade is perhaps the most plausible biological framework currently being investigated for understanding ELF effects on cells. For example, the consequence of an increase due to ELF fields in mitogenesis, the final endpoint of the ST cascade, is an overall increase in the probability of mutagenesis and consequently cancer, according to the Ames epigenetic model of carcinogenesis. Consistent with this epigenetic mechanism and the ST pathway to carcinogenesis is recent evidence that ELF fields can alter breast cancer cell proliferation and can act as a copromoter in vitro. The most important dosimetric question being addressed currently is whether the electric (E) or the magnetic (B) field, or if combinations of static B and time-varying B fields represent an exposure metric for the cell. This question relates directly to understanding fundamental interaction mechanisms and to the development of a rationale for ELF dose threshold guidelines. The weight of experimental evidence indicates that an induced E field according to Faraday's law of induction during magnetic field exposures elicits cellular effects. An E-field-mediated interaction has interesting consequences for microdosimetry at the cellular level and is mechanistically consistent with an interaction at the cell surface, since the E field does not penetrate beyond the cell membrane. Recently, several studies have suggested that an ELF B field by itself or in combination with a static B field may elicit cellular effects. Thus in addition to E-field-mediated effects, other interaction mechanisms as yet not fully understood may operate at the cellular level; this complexity is in contrast to the case for ionizing radiation. In addition to the question of an exposure field metric, the biological state of the target cell is important in ELF interactions. Biological factors such as cell type, cell cycle, cell activation, age of donor animal, passage number of cell line, presence of specific growth/mitogenic factors, temperature, shape, and cell density/packing during exposures have been shown to play a role in mediating ELF interactions with cells. Most recently, reports of single-cell studies usher in a new direction for research that can be termed microbioelectromagnetics. Single-cell digital microscopy introduces a new approach to answer the above questions with potential for real-time microdosimetry and bioeffects limited only by the spatial resolution of state-of-the-art microscopy, which is approximately 0.1 /μm. Digital imaging microscopy should therefore permit the quantitative assessment of spatial and temporal features of ELF field interactions within living single cells.

  6. High-purity flow sorting of early meiocytes based on DNA analysis of guinea pig spermatogenic cells.

    PubMed

    Rodríguez-Casuriaga, Rosana; Geisinger, Adriana; Santiñaque, Federico F; López-Carro, Beatriz; Folle, Gustavo A

    2011-08-01

    Mammalian spermatogenesis is still nowadays poorly understood at the molecular level. Testis cellular heterogeneity is a major drawback for spermatogenic gene expression studies, especially when research is focused on stages that are usually very short and poorly represented at the cellular level such as initial meiotic prophase I (i.e., leptotene [L] and zygotene [Z]). Presumably, genes whose products are involved in critical meiotic events such as alignment, pairing and recombination of homologous chromosomes are expressed during the short stages of early meiotic prophase. Aiming to characterize mammalian early meiotic gene expression, we have found the guinea pig (Cavia porcellus) as an especially attractive model. A detailed analysis of its first spermatogenic wave by flow cytometry (FCM) and optical microscopy showed that guinea pig testes exhibit a higher representation of early meiotic stages compared to other studied rodents, partly because of their longer span, and also as a result of the increased number of cells entering meiosis. Moreover, we have found that adult guinea pig testes exhibit a peculiar 4C DNA content profile, with a bimodal peak for L/Z and P spermatocytes that is absent in other rodents. Besides, we show that this unusual 4C peak allows the separation by FCM of highly pure L/Z spermatocyte populations aside from pachytene ones, even from adult individuals. To our knowledge, this is the first report on an accurate and suitable method for highly pure early meiotic prophase cell isolation from adult mammals, and thus sets an interesting approach for gene expression studies aiming at a deeper understanding of the molecular groundwork underlying male gamete production. Copyright © 2011 International Society for Advancement of Cytometry.

  7. [The maturation steps of human immunodeficiency virus and the role of proteolysis].

    PubMed

    Bukrinskaia, A G; Grigor'ev, V B; Korablina, E V; Gur'ev, E L; Vorkunova, G K

    2010-01-01

    HIV-1 virions are as immature noninfectious particles lacking a central core. Shortly after budding, virions temporally mature and acquire cores and infectious activity. The cause of maturation remains poorly studied. We have revealed that the virions produced early after infection following 24-36 hours, never mature and remain noninfectious, and only virions produced 48-72 hours after infection mature. The mature virions contain 3 times more genomic viral RNA than "early" virus. The "early" virions contain the same proteolytically cleaved Gag proteins as mature virions in contrast to the accepted version. The virus protease inhibitor Indinavir sulfate (IS) fully blocks infectivity when added early after infection. The early proteolysis of Gag precursor in the infected cells and inclusion into the virions of cellularly cleaved matrix protein (cMA) are shown in the IS-treated cells. cMA is associated with genomic viral RNA.

  8. Biologically based multistage modeling of radiation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistagemore » carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of epidemiologic studies using multistage carcinogenesis models that incorporate the ''initiation, promotion, and malignant conversion'' paradigm of carcinogenesis are indicating that promotion of initiated cells is the most important cellular mechanism driving the shape of the age specific hazard for many types of cancer. Second, we have realized that many of the genes that are modified in early stages of the carcinogenic process contribute to one or more of four general cellular pathways that confer a promotional advantage to cells when these pathways are disrupted.« less

  9. Viral reprogramming of the Daxx histone H3.3 chaperone during early Epstein-Barr virus infection.

    PubMed

    Tsai, Kevin; Chan, Lilian; Gibeault, Rebecca; Conn, Kristen; Dheekollu, Jayaraju; Domsic, John; Marmorstein, Ronen; Schang, Luis M; Lieberman, Paul M

    2014-12-01

    Host chromatin assembly can function as a barrier to viral infection. Epstein-Barr virus (EBV) establishes latent infection as chromatin-assembled episomes in which all but a few viral genes are transcriptionally silent. The factors that control chromatin assembly and guide transcription regulation during the establishment of latency are not well understood. Here, we demonstrate that the EBV tegument protein BNRF1 binds the histone H3.3 chaperone Daxx to modulate histone mobility and chromatin assembly on the EBV genome during the early stages of primary infection. We demonstrate that BNRF1 substitutes for the repressive cochaperone ATRX to form a ternary complex of BNRF1-Daxx-H3.3-H4, using coimmunoprecipitation and size-exclusion chromatography with highly purified components. FRAP (fluorescence recovery after photobleaching) assays were used to demonstrate that BNRF1 promotes global mobilization of cellular histone H3.3. Mutation of putative nucleotide binding motifs on BNRF1 attenuates the displacement of ATRX from Daxx. We also show by immunofluorescence combined with fluorescence in situ hybridization that BNRF1 is important for the dissociation of ATRX and Daxx from nuclear bodies during de novo infection of primary B lymphocytes. Virion-delivered BNRF1 suppresses Daxx-ATRX-mediated H3.3 loading on viral chromatin as measured by chromatin immunoprecipitation assays and enhances viral gene expression during early infection. We propose that EBV tegument protein BNRF1 replaces ATRX to reprogram Daxx-mediated H3.3 loading, in turn generating chromatin suitable for latent gene expression. Epstein-Barr Virus (EBV) is a human herpesvirus that efficiently establishes latent infection in primary B lymphocytes. Cellular chromatin assembly plays an important role in regulating the establishment of EBV latency. We show that the EBV tegument protein BNRF1 functions to regulate chromatin assembly on the viral genome during early infection. BNRF1 alters the host cellular chromatin assembly to prevent antiviral repressive chromatin and establish chromatin structure permissive for viral gene expression and the establishment of latent infection. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. MRI surveillance of cancer cell fate in a brain metastasis model after early radiotherapy.

    PubMed

    Murrell, Donna H; Zarghami, Niloufar; Jensen, Michael D; Dickson, Fiona; Chambers, Ann F; Wong, Eugene; Foster, Paula J

    2017-10-01

    Incidence of brain metastasis attributed to breast cancer is increasing and prognosis is poor. It is thought that disseminated dormant cancer cells persist in metastatic organs and may evade treatments, thereby facilitating a mechanism for recurrence. Radiotherapy is used to treat brain metastases clinically, but assessment has been limited to macroscopic tumor volumes detectable by clinical imaging. Here, we use cellular MRI to understand the concurrent responses of metastases and nonproliferative or slowly cycling cancer cells to radiotherapy. MRI cell tracking was used to investigate the impact of early cranial irradiation on the fate of individual iron-labeled cancer cells and outgrowth of breast cancer brain metastases in the human MDA-MB-231-BR-HER2 cell model. Early whole-brain radiotherapy significantly reduced the outgrowth of metastases from individual disseminated cancer cells in treated animals compared to controls. However, the numbers of nonproliferative iron-retaining cancer cells in the brain were not significantly different. Radiotherapy, when given early in cancer progression, is effective in preventing the outgrowth of solitary cancer cells to brain metastases. Future studies of the nonproliferative cancer cells' clonogenic potentials are warranted, given that their persistent presence suggests that they may have evaded treatment. Magn Reson Med 78:1506-1512, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  11. Identification of lysosomal and extralysosomal globotriaosylceramide (Gb3) accumulations before the occurrence of typical pathological changes in the endomyocardial biopsies of Fabry disease patients.

    PubMed

    Hsu, Ming-Jia; Chang, Fu-Pang; Lu, Yung-Hsiu; Hung, Sheng-Che; Wang, Yu-Chen; Yang, An-Hang; Lee, Han-Jui; Sung, Shih-Hsien; Wang, Yen-Feng; Yu, Wen-Chung; Hsu, Ting-Rong; Huang, Po-Hsun; Chang, Sheng-Kai; Dzhagalov, Ivan; Hsu, Chia-Lin; Niu, Dau-Ming

    2018-06-06

    Evaluation standards and treatment initiation timing have been debated for a long time, particularly for late-onset Fabry disease (FD), because of its slow progression. However, early initiation of enzyme replacement therapy (ERT) for FD could be effective in stabilizing the disease progression and potentially preventing irreversible organ damage. We aimed to examine globotriaosylceramide (Gb3) deposits in patients' endomyocardial biopsies to understand the early pathogenesis of FD cardiomyopathy. Immunofluorescent (IF) staining of Gb3 and lysosomal-associated membrane protein 1 (LAMP-1) was performed on endomyocardial biopsies of patients suspected of Fabry cardiomyopathy who had negative or only slight Gb3 accumulation determined by toluidine blue staining and electron microscopic examination. The IF staining results revealed that all patients examined had abundant Gb3 accumulation in their cardiomyocytes, including the ones who are negative for inclusion bodies. Furthermore, we found that early Gb3 deposits were mostly confined within lysosomes, while they appeared extralysosomally at a later stage. A significant amount of lysosomal Gb3 deposits could be detected by IF staining in cardiac tissue before the formation of inclusion bodies, suggesting the cardiomyocytes might have been experiencing cellular stress and damage early on, before the appearance of typical pathological changes of FD during the disease progression.

  12. Epithelium-innate immune cell axis in mucosal responses to SIV.

    PubMed

    Shang, L; Duan, L; Perkey, K E; Wietgrefe, S; Zupancic, M; Smith, A J; Southern, P J; Johnson, R P; Haase, A T

    2017-03-01

    In the SIV (simian immunodeficiency virus)-rhesus macaque model of HIV-1 (human immunodeficiency virus type I) transmission to women, one hallmark of the mucosal response to exposure to high doses of SIV is CD4 T-cell recruitment that fuels local virus expansion in early infection. In this study, we systematically analyzed the cellular events and chemoattractant profiles in cervical tissues that precede CD4 T-cell recruitment. We show that vaginal exposure to the SIV inoculum rapidly induces chemokine expression in cervical epithelium including CCL3, CCL20, and CXCL8. The chemokine expression is associated with early recruitment of macrophages and plasmacytoid dendritic cells that are co-clustered underneath the cervical epithelium. Production of chemokines CCL3 and CXCL8 by these cells in turn generates a chemokine gradient that is spatially correlated with the recruitment of CD4 T cells. We further show that the protection of SIVmac239Δnef vaccination against vaginal challenge is correlated with the absence of this epithelium-innate immune cell-CD4 T-cell axis response in the cervical mucosa. Our results reveal a critical role for cervical epithelium in initiating early mucosal responses to vaginal infection, highlight an important role for macrophages in target cell recruitment, and provide further evidence of a paradoxical dampening effect of a protective vaccine on these early mucosal responses.

  13. Cellular phone use and brain tumor: a meta-analysis.

    PubMed

    Kan, Peter; Simonsen, Sara E; Lyon, Joseph L; Kestle, John R W

    2008-01-01

    The dramatic increase in the use of cellular phones has generated concerns about potential adverse effects, especially the development of brain tumors. We conducted a meta-analysis to examine the effect of cellular phone use on the risk of brain tumor development. We searched the literature using MEDLINE to locate case-control studies on cellular phone use and brain tumors. Odds ratios (ORs) for overall effect and stratified ORs associated with specific brain tumors, long-term use, and analog/digital phones were calculated for each study using its original data. A pooled estimator of each OR was then calculated using a random-effects model. Nine case-control studies containing 5,259 cases of primary brain tumors and 12,074 controls were included. All studies reported ORs according to brain tumor subtypes, and five provided ORs on patients with > or =10 years of follow up. Pooled analysis showed an overall OR of 0.90 (95% confidence interval [CI] 0.81-0.99) for cellular phone use and brain tumor development. The pooled OR for long-term users of > or =10 years (5 studies) was 1.25 (95% CI 1.01-1.54). No increased risk was observed in analog or digital cellular phone users. We found no overall increased risk of brain tumors among cellular phone users. The potential elevated risk of brain tumors after long-term cellular phone use awaits confirmation by future studies.

  14. Computational Model of Secondary Palate Fusion and Disruption

    EPA Science Inventory

    Morphogenetic events are driven by cell-generated physical forces and complex cellular dynamics. To improve our capacity to predict developmental effects from cellular alterations, we built a multi-cellular agent-based model in CompuCell3D that recapitulates the cellular networks...

  15. Antiviral activity of lauryl gallate against animal viruses.

    PubMed

    Hurtado, Carolina; Bustos, Maria Jose; Sabina, Prado; Nogal, Maria Luisa; Granja, Aitor G; González, Maria Eugenia; Gónzalez-Porqué, Pedro; Revilla, Yolanda; Carrascosa, Angel L

    2008-01-01

    Antiviral compounds are needed in the control of many animal and human diseases. We analysed the effect of the antitumoural drug lauryl gallate on the infectivity of the African swine fever virus among other DNA (herpes simplex and vaccinia) and RNA (influenza, porcine transmissible gastroenteritis and Sindbis) viruses, paying attention to its effect on the viability of the corresponding host cells. Viral production was strongly inhibited in different cell lines at non-toxic concentrations of the drug (1-10 microM), reducing the titres 3->5 log units depending on the multiplicity of infection. In our model system (African swine fever virus in Vero cells), the addition of the drug 1 h before virus adsorption completely abolished virus productivity in a one-step growth virus cycle. Interestingly, no inhibitory effect was observed when lauryl gallate was added after 5-8 h post-infection. Both cellular and viral DNA synthesis and late viral transcription were inhibited by the drug; however, the early viral protein synthesis and the virus-mediated increase of p53 remained unaffected. Activation of the apoptotic effector caspase-3 was not detected after lauryl gallate treatment of Vero cells. Furthermore, the presence of the drug abrogated the activation of this protease induced by the virus infection. Lauryl gallate is a powerful antiviral agent against several pathogens of clinical and veterinary importance. The overall results indicate that a cellular factor or function might be the target of the antiviral action of alkyl gallates.

  16. Modulation of GSK-3 provides cellular and functional neuroprotection in the rd10 mouse model of retinitis pigmentosa.

    PubMed

    Sánchez-Cruz, Alonso; Villarejo-Zori, Beatriz; Marchena, Miguel; Zaldivar-Díez, Josefa; Palomo, Valle; Gil, Carmen; Lizasoain, Ignacio; de la Villa, Pedro; Martínez, Ana; de la Rosa, Enrique J; Hernández-Sánchez, Catalina

    2018-04-16

    Retinitis pigmentosa (RP) is a group of hereditary retinal neurodegenerative conditions characterized by primary dysfunction and death of photoreceptor cells, resulting in visual loss and, eventually, blindness. To date, no effective therapies have been transferred to clinic. Given the diverse genetic etiology of RP, targeting common cellular and molecular retinal alterations has emerged as a potential therapeutic strategy. Using the Pde6b rd10/rd10 mouse model of RP, we investigated the effects of daily intraperitoneal administration of VP3.15, a small-molecule heterocyclic GSK-3 inhibitor. Gene expression was analyzed by quantitative PCR and protein expression and phosphorylation by Western blot. Photoreceptor preservation was evaluated by histological analysis and visual function was assessed by electroretinography. In rd10 retinas, increased expression of pro-inflammatory markers and reactive gliosis coincided with the early stages of retinal degeneration. Compared with wild-type controls, GSK-3β expression (mRNA and protein) remained unchanged during the retinal degeneration period. However, levels of GSK-3β Ser9 and its regulator Akt Ser473 were increased in rd10 versus wild-type retinas. In vivo administration of VP3.15 reduced photoreceptor cell loss and preserved visual function. This neuroprotective effect was accompanied by a decrease in the expression of neuroinflammatory markers. These results provide proof of concept of the therapeutic potential of VP3.15 for the treatment of retinal neurodegenerative conditions in general, and RP in particular.

  17. [Effects of several inhibitors of intracellular signaling on production of cytokines and signal proteins in RAW 264.7 cells cultivated with low dose ammonium].

    PubMed

    Novoselova, E G; Parfeniuk, S B; Glushkova, O V; Khrenov, M O; Novoselova, T V; Lunin, S M; Fesenko, E E

    2012-01-01

    Effects of four inhibitors of NF-kappaB, SAPK/JNK and TLR4 signaling, namely, inhibitor XII, SP600125, CLI-095 and Oxpapc on a macrophage response to low dose ammonium were studied in RAW 264.7 cells. Low dose ammonium induced pro-inflammatory response in cells as judged from enhanced production of TNF-alpha, IF-gamma, and IL-6, and by activation of signal cascades. The increase in production of cytokines, namely TNF, IFN, and IL-6, demonstrated that low-dose ammonium induced a pro-inflammatory cellular response. In addition, an activation of NF-kappaB and SAPK/JNK cascades, as well as enhancement of TLR4 expression was shown. Each of used inhibitors reduced to a variable degree the pro-inflammatory response of RAW 264.7 cells on chemical toxin by decreasing cytokine production. The inhibitor of NF-kappaB cascade, IKK Inhibitor XII, was more effective, and not only prevented the development of pro-inflammatory response induced by ammonium, but also decreased cytokine production below control values. The inhibitor of extra cellular domains of TLR2 and TLR4 (OxPAPC) had almost the same anti-inflammatory effect, and an addition of the inhibitor of JNK cascade (SP600125) to cell culture practically neutralized effect of ammonium ions by decreasing cytokine production to control level. Inhibitory analysis showed that activation of RAW 264.7 cells induced by chemical toxin coincide incompletely with intracellular signaling pathways that were early determined regarding macrophage's response to toxin from gram-negative bacteria. Nevertheless, application of the inhibitors defended RAW 264.7 from toxic effect of the low dose ammonium.

  18. Potential pre-cataractous markers induced by low-dose radiation effects in cultured human lens cells

    NASA Astrophysics Data System (ADS)

    Blakely, E.; McNamara, M.; Bjornstad, K.; Chang, P.

    The human lens is one of the most radiosensitive organs of the body. Cataract, the opacification of the lens, is a late-appearing response to radiation damage. Recent evidence indicates that exposure to relatively low doses of space radiation are associated with an increased incidence and early appearance of human cataracts (Cucinotta et al., Radiat. Res. 156:460-466, 2001). Basic research in this area is needed to integrate the early responses of various late-responding tissues into our understanding and estimation of radiation risk for space travel. In addition, these studies may contribute to the development of countermeasures for the early lenticular changes, in order to prevent the late sequelae. Radiation damage to the lens is not life threatening but, if severe, can affect vision unless surgically corrected with synthetic lens replacement. The lens, however, may be a sensitive detector of radiation effects for other cells of ectodermal origin in the body for which there are not currently clear endpoints of low-dose radiation effects. We have investigated the dose-dependent expression of several radiation-responsive endpoints using our in vitro model of differentiating human lens epithelial cells (Blakely et al., Investigative Ophthalmology &Visual Sciences, 41(12):3898-3907, 2000). We have investigated radiation effects on several gene families that include, or relate to, DNA damage, cytokines, cell-cycle regulators, cell adhesion molecules, cell cytoskeletal function and apoptotic cell death. In this paper we will summarize some of our dose-dependent data from several radiation types, and describe the model of molecular and cellular events that we believe may be associated with precataractous events in the human lens after radiation exposure. This work was supported by NASA Grant #T-965W.

  19. Ciprofloxacin Derivatives Affect Parasite Cell Division and Increase the Survival of Mice Infected with Toxoplasma gondii

    PubMed Central

    Martins-Duarte, Erica S.; Dubar, Faustine; Lawton, Philippe; França da Silva, Cristiane; C. Soeiro, Maria de Nazaré; de Souza, Wanderley; Biot, Christophe; Vommaro, Rossiane C.

    2015-01-01

    Toxoplasmosis, caused by the protozoan Toxoplasma gondii, is a worldwide disease whose clinical manifestations include encephalitis and congenital malformations in newborns. Previously, we described the synthesis of new ethyl-ester derivatives of the antibiotic ciprofloxacin with ~40-fold increased activity against T. gondii in vitro, compared with the original compound. Cipro derivatives are expected to target the parasite’s DNA gyrase complex in the apicoplast. The activity of these compounds in vivo, as well as their mode of action, remained thus far uncharacterized. Here, we examined the activity of the Cipro derivatives in vivo, in a model of acute murine toxoplasmosis. In addition, we investigated the cellular effects T. gondii tachyzoites in vitro, by immunofluorescence and transmission electron microscopy (TEM). When compared with Cipro treatment, 7-day treatments with Cipro derivatives increased mouse survival significantly, with 13–25% of mice surviving for up to 60 days post-infection (vs. complete lethality 10 days post-infection, with Cipro treatment). Light microscopy examination early (6 and 24h) post-infection revealed that 6-h treatments with Cipro derivatives inhibited the initial event of parasite cell division inside host cells, in an irreversible manner. By TEM and immunofluorescence, the main cellular effects observed after treatment with Cipro derivatives and Cipro were cell scission inhibition - with the appearance of ‘tethered’ parasites – malformation of the inner membrane complex, and apicoplast enlargement and missegregation. Interestingly, tethered daughter cells resulting from Cipro derivatives, and also Cipro, treatment did not show MORN1 cap or centrocone localization. The biological activity of Cipro derivatives against C. parvum, an apicomplexan species that lacks the apicoplast, is, approximately, 50 fold lower than that in T. gondii tachyzoites, supporting that these compounds targets the apicoplast. Our results show that Cipro derivatives improved the survival of mice acutely infected with T. gondii and inhibited parasite replication early in the first cycle of infection in vitro, highlighting their therapeutic potential for the treatment of toxoplasmosis. PMID:25950173

  20. Pre- and postnatal exposure of mice to concentrated urban PM2.5 decreases the number of alveoli and leads to altered lung function at an early stage of life.

    PubMed

    de Barros Mendes Lopes, Thais; Groth, Espen E; Veras, Mariana; Furuya, Tatiane K; de Souza Xavier Costa, Natalia; Ribeiro Júnior, Gabriel; Lopes, Fernanda Degobbi; de Almeida, Francine M; Cardoso, Wellington V; Saldiva, Paulo Hilario Nascimento; Chammas, Roger; Mauad, Thais

    2018-06-04

    Gestational exposure to air pollution is associated with negative outcomes in newborns and children. In a previous study, we demonstrated a synergistic negative effect of pre- and postnatal exposure to PM 2.5 on lung development in mice. However, the means by which air pollution affects development of the lung have not yet been identified. In this study, we exposed pregnant BALB/c mice and their offspring to concentrated urban PM 2.5 (from São Paulo, Brazil; target dose 600 μg/m 3 for 1 h daily). Exposure was started on embryonic day 5.5 (E5.5, time of placental implantation). Lung tissue of fetuses and offspring was submitted to stereological and transcriptomic analyses at E14.5 (pseudoglandular stage of lung development), E18.5 (saccular stage) and P40 (postnatal day 40, alveolarized lung). Additionally, lung function and cellularity of bronchoalveolar lavage (BAL) fluid were studied in offspring animals at P40. Compared to control animals that were exposed to filtered air throughout gestation and postnatal life, PM-exposed mice exhibited higher lung elastance and a lower alveolar number at P40 whilst the total lung volume and cellularity of BAL fluid were not affected. Glandular and saccular structures of fetal lungs were not altered upon gestational exposure; transcriptomic signatures, however, showed changes related to DNA damage and its regulation, inflammation and regulation of cell proliferation. A differential expression was validated at E14.5 for the candidates Sox8, Angptl4 and Gas1. Our data substantiate the in utero biomolecular effect of gestational exposure to air pollution and provide first-time stereological evidence that pre- and early life-postnatal exposure compromise lung development, leading to a reduced number of alveoli and an impairment of lung function in the adult mouse. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Topical Substance P Increases Inflammatory Cell Density in Genetically Diabetic Murine Wounds

    PubMed Central

    Scott, Jeffrey R; Tamura, Richard N.; Muangman, Pornprom; Isik, F. Frank; Xie, Chengyu; Gibran, Nicole S.

    2008-01-01

    The neuropeptide substance P (SP) is a known inflammatory mediator released from cutaneous peripheral nerve terminals. SP effects on cellular composition in the cutaneous response to injury remain unclear. Based on our previous observations about SP effects on wound repair, we hypothesized that topical SP increases inflammatory cell density infiltration early after injury. A full thickness 1.5×1.5 cm-square wound was created on the dorsum of 8–9 wk old C57BL/6J-m+Leprdb mice (db/db). Wounds were treated daily with 300μl of either normal saline (0.9% NaCl) or 10−9M SP for seven days. Three wounds from each group were harvested at 2,3,7,14, and 28 days. Samples underwent enzymatic digestion and were incubated with fluorescent-labeled antibodies. Using flow cytometry, cellular content and density for each sample was derived. Masson Trichrome stained histology specimens were prepared to confirm results. Cell density in the SP-treated wounds (11.3×107 cells/gram tissue, SD +/−1.5×107) was greater than in NaCl-treated wounds (7×107 cells/gram tissue, SD +/−2.3×107, p<.05) at day 7 post-wounding. Substance P significantly increased the density of leukocytes (2.1×107, SD +/−3.6×106 vs. 1.8×107, SD+/−4.9×105, p<.02) 3 days after wounding and the density of macrophages (2.9 ×107, SD+/−7.5×106 vs. 1.3×107, SD+/−1.4×106, p<.05) 7 days after wounding. There were no significant differences in endothelial cell, leukocyte or macrophage density at later time points. Topical SP treatment increases early inflammatory density in the healing wounds of db/db mice. These data support a role for nerve-mediated inflammation in cutaneous wound repair. PMID:18638272

  2. Efficacy and safety of mitomycin C as an agent to treat corneal scarring in horses using an in vitro model

    PubMed Central

    Buss, Dylan G.; Sharma, Ajay; Giuliano, Elizabeth A.; Mohan, Rajiv R.

    2010-01-01

    Objective Mitomycin C (MMC) is used clinically to treat corneal scarring in human patients. We investigated the safety and efficacy of MMC to treat corneal scarring in horses by examining its effects at the early and late stages of disease using an in-vitro model. Procedure An in-vitro model of equine corneal fibroblast (ECF) developed was used. The equine corneal fibroblast or myofibroblast cultures were produced by growing primary ECF in the presence or absence of transforming growth factor beta-1 (TGFβ1) under serum-free conditions. The MMC dose for the equine cornea was defined with dose-dependent trypan blue exclusion and MTT [(3-4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays after applying MMC to the cultures once for 2 minutes. The efficacy of MMC to control corneal scarring in horses was determined by measuring mRNA and protein expression of corneal scarring markers (α-smooth muscle actin and F-actin) with western blotting, immunocytochemistry and/or quantitative real-time polymerase chain reactions. Results A single 2 minutes treatment of 0.02% or less MMC did not alter ECF phenotype, viability, or cellular proliferation whereas 0.05% or higher MMC doses showed mild-to-moderate cellular toxicity. The TGFβ1 at 1ng/ml showed significant myofibroblast formation in ECF under serum-free conditions. A single 2 minute, 0.02% MMC treatment 24 hours (early) after TGFβ1 stimulation significantly reduced conversion of ECF to myofibroblasts, however, a single 0.02% MMC treatment 11 days after TGFβ1 stimulation showed moderate myofibroblast inhibition. Conclusions That MMC safely and effectively reduced scarring in ECF by reducing the degree of transdifferentiation of corneal fibroblasts to myofibroblasts in vitro. Further clinical in-vivo investigations are warranted using MMC in horses. PMID:20618797

  3. Nutritional deficiency, immunologic function, and disease.

    PubMed Central

    Good, R. A.; Fernandes, G.; Yunis, E. J.; Cooper, W. C.; Jose, D. C.; Kramer, T. R.; Hansen, M. A.

    1976-01-01

    Several experiments conducted by our group over a period of 6 years have shown that nutritional stress, especially protein and/or calorie deprivation, leads to many, often dramatic, changes in the immune responses of mice, rats, and guinea pigs. Chronic protein deprivation (CPD) has been shown to create an enhancing effect on the cell-mediated immune responses of these animals. Humoral responses under CPD conditions were most often found to be depressed, but sometimes were unaffected, depending on the nature of the antigen employed. Chronic protein deprivation, consistent with the pattern just mentioned, improved tumor immunity by depressing production of B-cell blocking factors, and, in at least one instance, resistance to development of mammary adenocarcinoma in C3H mice was associated with evidence of increased numbers of T suppressor cells. Profound nutritional deficits (less than 5% protein per total daily food intake) depressed both cellular and humoral immunity. Early, though temporary, protein deprivation caused a long-term depression of both cellular and humoral immunity also, with the humoral component being the first to recover. Manipulation of protein and calories was found to have a profound effect on certain autoimmune conditions. Diets high in fat and low in protein favored reproduction but shortened the life of NZB mice, whereas diets high in protein and low in fat inhibited development of autoimmunity and prolonged life. Chronic moderate protein restriction permitted NZB mice to maintain their normally waning immunologic functions much longer than mice fed a normal protein intake. Further, the low-protein diet was associated with a delay in development of manifestations of autoimmunity. Decreasing dietary calories by a reduction of fats, carbohydrates, and proteins more than doubled the average life span of (NZB X NZW)F1 mice, a strain prone to early death from autoimmune disease. Histopathologic studies using immunofluorescent microscopy revealed that the development of the renal lesions caused by the deposition of antigen-antibody complexes, which is so characteristic of these mice, was markedly delayed. PMID:8988

  4. Gene, Immune and Cellular Responses to Single and Combined Space Flight Conditions-B (TripleLux-B):

    NASA Image and Video Library

    2015-03-31

    ISS043E070945 (03/31/2015) --- ESA (European Space Agency) astronaut Samantha Cristoforetti, Expedition 43 flight engineer aboard the International Space Station, is seen working on a science experiment that includes photographic documentation of Cellular Responses to Single and Combined Space Flight Conditions. Some effects of the space environment level appear to act at the cellular level and it is important to understand the underlying mechanisms of these effects. This science project uses invertebrate hemocytes to focus on two aspects of cellular function which may have medical importance. The synergy between the effects of the space radiation environment and microgravity on cellular function is the goal of this experiment along with studying the impairment of immune functions under spaceflight conditions.

  5. Multimodal neuroimaging of frontal white matter microstructure in early phase schizophrenia: the impact of early adolescent cannabis use

    PubMed Central

    2013-01-01

    Background A disturbance in connectivity between different brain regions, rather than abnormalities within the separate regions themselves, could be responsible for the clinical symptoms and cognitive dysfunctions observed in schizophrenia. White matter, which comprises axons and their myelin sheaths, provides the physical foundation for functional connectivity in the brain. Myelin sheaths are located around the axons and provide insulation through the lipid membranes of oligodendrocytes. Empirical data suggests oligodendroglial dysfunction in schizophrenia, based on findings of abnormal myelin maintenance and repair in regions of deep white matter. The aim of this in vivo neuroimaging project is to assess the impact of early adolescent onset of regular cannabis use on brain white matter tissue integrity, and to differentiate this impact from the white matter abnormalities associated with schizophrenia. The ultimate goal is to determine the liability of early adolescent use of cannabis on brain white matter, in a vulnerable brain. Methods/Design Young adults with schizophrenia at the early stage of the illness (less than 5 years since diagnosis) will be the focus of this project. Four magnetic resonance imaging measurements will be used to assess different cellular aspects of white matter: a) diffusion tensor imaging, b) localized proton magnetic resonance spectroscopy with a focus on the neurochemical N-acetylaspartate, c) the transverse relaxation time constants of regional tissue water, d) and of N-acetylaspartate. These four neuroimaging indices will be assessed within the same brain region of interest, that is, a large white matter fibre bundle located in the frontal region, the left superior longitudinal fasciculus. Discussion We will expand our knowledge regarding current theoretical models of schizophrenia with a more comprehensive multimodal neuroimaging approach to studying the underlying cellular abnormalities of white matter, while taking into consideration the important confounding variable of early adolescent onset of regular cannabis use. PMID:24131511

  6. Multimodal neuroimaging of frontal white matter microstructure in early phase schizophrenia: the impact of early adolescent cannabis use.

    PubMed

    Bernier, Denise; Cookey, Jacob; McAllindon, David; Bartha, Robert; Hanstock, Christopher C; Newman, Aaron J; Stewart, Sherry H; Tibbo, Philip G

    2013-10-17

    A disturbance in connectivity between different brain regions, rather than abnormalities within the separate regions themselves, could be responsible for the clinical symptoms and cognitive dysfunctions observed in schizophrenia. White matter, which comprises axons and their myelin sheaths, provides the physical foundation for functional connectivity in the brain. Myelin sheaths are located around the axons and provide insulation through the lipid membranes of oligodendrocytes. Empirical data suggests oligodendroglial dysfunction in schizophrenia, based on findings of abnormal myelin maintenance and repair in regions of deep white matter. The aim of this in vivo neuroimaging project is to assess the impact of early adolescent onset of regular cannabis use on brain white matter tissue integrity, and to differentiate this impact from the white matter abnormalities associated with schizophrenia. The ultimate goal is to determine the liability of early adolescent use of cannabis on brain white matter, in a vulnerable brain. Young adults with schizophrenia at the early stage of the illness (less than 5 years since diagnosis) will be the focus of this project. Four magnetic resonance imaging measurements will be used to assess different cellular aspects of white matter: a) diffusion tensor imaging, b) localized proton magnetic resonance spectroscopy with a focus on the neurochemical N-acetylaspartate, c) the transverse relaxation time constants of regional tissue water, d) and of N-acetylaspartate. These four neuroimaging indices will be assessed within the same brain region of interest, that is, a large white matter fibre bundle located in the frontal region, the left superior longitudinal fasciculus. We will expand our knowledge regarding current theoretical models of schizophrenia with a more comprehensive multimodal neuroimaging approach to studying the underlying cellular abnormalities of white matter, while taking into consideration the important confounding variable of early adolescent onset of regular cannabis use.

  7. Neurological Effects of Honey: Current and Future Prospects

    PubMed Central

    Mijanur Rahman, Mohammad; Gan, Siew Hua; Khalil, Md. Ibrahim

    2014-01-01

    Honey is the only insect-derived natural product with therapeutic, traditional, spiritual, nutritional, cosmetic, and industrial value. In addition to having excellent nutritional value, honey is a good source of physiologically active natural compounds, such as polyphenols. Unfortunately, there are very few current research projects investigating the nootropic and neuropharmacological effects of honey, and these are still in their early stages. Raw honey possesses nootropic effects, such as memory-enhancing effects, as well as neuropharmacological activities, such as anxiolytic, antinociceptive, anticonvulsant, and antidepressant activities. Research suggests that the polyphenol constituents of honey can quench biological reactive oxygen species and counter oxidative stress while restoring the cellular antioxidant defense system. Honey polyphenols are also directly involved in apoptotic activities while attenuating microglia-induced neuroinflammation. Honey polyphenols are useful in improving memory deficits and can act at the molecular level. Therefore, the ultimate biochemical impact of honey on specific neurodegenerative diseases, apoptosis, necrosis, neuroinflammation, synaptic plasticity, and behavior-modulating neural circuitry should be evaluated with appropriate mechanistic approaches using biochemical and molecular tools. PMID:24876885

  8. Cellular changes in microgravity and the design of space radiation experiments

    NASA Technical Reports Server (NTRS)

    Morrison, D. R.

    1994-01-01

    Cell metabolism, secretion and cell-cell interactions can be altered during space flight. Early radiobiology experiments have demonstrated synergistic effects of radiation and microgravity as indicated by increased mutagenesis, increased chromosome aberrations, inhibited development, and retarded growth. Microgravity-induced changes in immune cell functions include reduced blastogenesis and cell-mediated, delayed-type hypersensitivity responses, increased cytokine secretions, but inhibited cytotoxic effects an macrophage differentiation. These effects are important because of the high radiosensitivity of immune cells. It is difficult to compare ground studies with space radiation biology experiments because of the complexity of the space radiation environment, types of radiation damage and repair mechanisms. Altered intracellular functions and molecular mechanisms must be considered in the design and interpretation of space radiation experiments. Critical steps in radiocarcinogenesis could be affected. New cell systems and hardware are needed to determine the biological effectiveness of the low dose rate, isotropic, multispectral space radiation and the potential usefulness of radioprotectants during space flight.

  9. Cellular injury evidenced by impedance technology and infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    le Roux, K.; Prinsloo, L. C.; Meyer, D.

    2015-03-01

    Fourier Transform Infrared (FTIR) spectroscopy is finding increasing biological application, for example in the analysis of diseased tissues and cells, cell cycle studies and investigating the mechanisms of action of anticancer drugs. Cancer treatment studies routinely define the types of cell-drug responses as either total cell destruction by the drug (all cells die), moderate damage (cell deterioration where some cells survive) or reversible cell cycle arrest (cytostasis). In this study the loss of viability and related chemical stress experienced by cells treated with the medicinal plant, Plectranthus ciliatus, was investigated using real time cell electronic sensing (RT-CES) technology and FTIR microspectroscopy. The use of plants as medicines is well established and ethnobotany has proven that crude extracts can serve as treatments against various ailments. The aim of this study was to determine whether FTIR microspectroscopy would successfully distinguish between different types of cellular injury induced by a potentially anticancerous plant extract. Cervical adenocarcinoma (HeLa) cells were treated with a crude extract of Pciliatus and cells monitored using RT-CES to characterize the type of cellular responses induced. Cell populations were then investigated using FTIR microspectroscopy and statistically analysed using One-way Analysis of Variance (ANOVA) and Principal Component Analysis (PCA). The plant extract and a cancer drug control (actinomycin D) induced concentration dependent cellular responses ranging from nontoxic, cytostatic or cytotoxic. Thirteen spectral peaks (915 cm-1, 933 cm-1, 989 cm-1, 1192 cm-1, 1369 cm-1, 1437 cm-1, 1450 cm-1, 1546 cm-1, 1634 cm-1, 1679 cm-1 1772 cm-1, 2874 cm-1 and 2962 cm-1) associated with cytotoxicity were significantly (p value < 0.05, one way ANOVA, Tukey test, Bonferroni) altered, while two of the bands were also indicative of early stress related responses. In PCA, poor separation between nontoxic and cytostatic responses was evident while clear separation was linked to cytotoxicity. RT-CES detected morphological changes as indicators of cell injury and could distinguish between viable, cytostatic and cytotoxic responses. FTIR microspectroscopy confirmed that cytostatic cells were viable and could still recover while also describing early cellular stress related responses on a molecular level.

  10. Ultra-sensitive high performance liquid chromatography-laser-induced fluorescence based proteomics for clinical applications.

    PubMed

    Patil, Ajeetkumar; Bhat, Sujatha; Pai, Keerthilatha M; Rai, Lavanya; Kartha, V B; Chidangil, Santhosh

    2015-09-08

    An ultra-sensitive high performance liquid chromatography-laser induced fluorescence (HPLC-LIF) based technique has been developed by our group at Manipal, for screening, early detection, and staging for various cancers, using protein profiling of clinical samples like, body fluids, cellular specimens, and biopsy-tissue. More than 300 protein profiles of different clinical samples (serum, saliva, cellular samples and tissue homogenates) from volunteers (normal, and different pre-malignant/malignant conditions) were recorded using this set-up. The protein profiles were analyzed using principal component analysis (PCA) to achieve objective detection and classification of malignant, premalignant and healthy conditions with high sensitivity and specificity. The HPLC-LIF protein profiling combined with PCA, as a routine method for screening, diagnosis, and staging of cervical cancer and oral cancer, is discussed in this paper. In recent years, proteomics techniques have advanced tremendously in life sciences and medical sciences for the detection and identification of proteins in body fluids, tissue homogenates and cellular samples to understand biochemical mechanisms leading to different diseases. Some of the methods include techniques like high performance liquid chromatography, 2D-gel electrophoresis, MALDI-TOF-MS, SELDI-TOF-MS, CE-MS and LC-MS techniques. We have developed an ultra-sensitive high performance liquid chromatography-laser induced fluorescence (HPLC-LIF) based technique, for screening, early detection, and staging for various cancers, using protein profiling of clinical samples like, body fluids, cellular specimens, and biopsy-tissue. More than 300 protein profiles of different clinical samples (serum, saliva, cellular samples and tissue homogenates) from healthy and volunteers with different malignant conditions were recorded by using this set-up. The protein profile data were analyzed using principal component analysis (PCA) for objective classification and detection of malignant, premalignant and healthy conditions. The method is extremely sensitive to detect proteins with limit of detection of the order of femto-moles. The HPLC-LIF combined with PCA as a potential proteomic method for the diagnosis of oral cancer and cervical cancer has been discussed in this paper. This article is part of a Special Issue entitled: Proteomics in India. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The role of the immune system in central nervous system plasticity after acute injury.

    PubMed

    Peruzzotti-Jametti, Luca; Donegá, Matteo; Giusto, Elena; Mallucci, Giulia; Marchetti, Bianca; Pluchino, Stefano

    2014-12-26

    Acute brain injuries cause rapid cell death that activates bidirectional crosstalk between the injured brain and the immune system. In the acute phase, the damaged CNS activates resident and circulating immune cells via the local and systemic release of soluble mediators. This early immune activation is necessary to confine the injured tissue and foster the clearance of cellular debris, thus bringing the inflammatory reaction to a close. In the chronic phase, a sustained immune activation has been described in many CNS disorders, and the degree of this prolonged response has variable effects on spontaneous brain regenerative processes. The challenge for treating acute CNS damage is to understand how to optimally engage and modify these immune responses, thus providing new strategies that will compensate for tissue lost to injury. Herein we have reviewed the available information regarding the role and function of the innate and adaptive immune responses in influencing CNS plasticity during the acute and chronic phases of after injury. We have examined how CNS damage evolves along the activation of main cellular and molecular pathways that are associated with intrinsic repair, neuronal functional plasticity and facilitation of tissue reorganization. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. N-butylidenephthalide attenuates Alzheimer's disease-like cytopathy in Down syndrome induced pluripotent stem cell-derived neurons.

    PubMed

    Chang, Chia-Yu; Chen, Sheng-Mei; Lu, Huai-En; Lai, Syu-Ming; Lai, Ping-Shan; Shen, Po-Wen; Chen, Pei-Ying; Shen, Ching-I; Harn, Horng-Jyh; Lin, Shinn-Zong; Hwang, Shiaw-Min; Su, Hong-Lin

    2015-03-04

    Down syndrome (DS) patients with early-onset dementia share similar neurodegenerative features with Alzheimer's disease (AD). To recapitulate the AD cell model, DS induced pluripotent stem cells (DS-iPSCs), reprogrammed from mesenchymal stem cells in amniotic fluid, were directed toward a neuronal lineage. Neuroepithelial precursor cells with high purity and forebrain characteristics were robustly generated on day 10 (D10) of differentiation. Accumulated amyloid deposits, Tau protein hyperphosphorylation and Tau intracellular redistribution emerged rapidly in DS neurons within 45 days but not in normal embryonic stem cell-derived neurons. N-butylidenephthalide (Bdph), a major phthalide ingredient of Angelica sinensis, was emulsified by pluronic F127 to reduce its cellular toxicity and promote canonical Wnt signaling. Interestingly, we found that F127-Bdph showed significant therapeutic effects in reducing secreted Aβ40 deposits, the total Tau level and the hyperphosphorylated status of Tau in DS neurons. Taken together, DS-iPSC derived neural cells can serve as an ideal cellular model of DS and AD and have potential for high-throughput screening of candidate drugs. We also suggest that Bdph may benefit DS or AD treatment by scavenging Aβ aggregates and neurofibrillary tangles.

  13. Targeting Neutrophilic Inflammation Using Polymersome-Mediated Cellular Delivery.

    PubMed

    Robertson, James D; Ward, Jon R; Avila-Olias, Milagros; Battaglia, Giuseppe; Renshaw, Stephen A

    2017-05-01

    Neutrophils are key effector cells in inflammation and play an important role in neutralizing invading pathogens. During inflammation resolution, neutrophils undergo apoptosis before they are removed by macrophages, but if apoptosis is delayed, neutrophils can cause extensive tissue damage and chronic disease. Promotion of neutrophil apoptosis is a potential therapeutic approach for treating persistent inflammation, yet neutrophils have proven difficult cells to manipulate experimentally. In this study, we deliver therapeutic compounds to neutrophils using biocompatible, nanometer-sized synthetic vesicles, or polymersomes, which are internalized by binding to scavenger receptors and subsequently escape the early endosome through a pH-triggered disassembly mechanism. This allows polymersomes to deliver molecules into the cell cytosol of neutrophils without causing cellular activation. After optimizing polymersome size, we show that polymersomes can deliver the cyclin-dependent kinase inhibitor (R)-roscovitine into human neutrophils to promote apoptosis in vitro. Finally, using a transgenic zebrafish model, we show that encapsulated (R)-roscovitine can speed up inflammation resolution in vivo more efficiently than the free drug. These results show that polymersomes are effective intracellular carriers for drug delivery into neutrophils. This has important consequences for the study of neutrophil biology and the development of neutrophil-targeted therapeutics. Copyright © 2017 The Authors.

  14. Symbiotic Origin of Aging.

    PubMed

    Greenberg, Edward F; Vatolin, Sergei

    2018-06-01

    Normally aging cells are characterized by an unbalanced mitochondrial dynamic skewed toward punctate mitochondria. Genetic and pharmacological manipulation of mitochondrial fission/fusion cycles can contribute to both accelerated and decelerated cellular or organismal aging. In this work, we connect these experimental data with the symbiotic theory of mitochondrial origin to generate new insight into the evolutionary origin of aging. Mitochondria originated from autotrophic α-proteobacteria during an ancient endosymbiotic event early in eukaryote evolution. To expand beyond individual host cells, dividing α-proteobacteria initiated host cell lysis; apoptosis is a product of this original symbiont cell lytic exit program. Over the course of evolution, the host eukaryotic cell attenuated the harmful effect of symbiotic proto-mitochondria, and modern mitochondria are now functionally interdependent with eukaryotic cells; they retain their own circular genomes and independent replication timing. In nondividing differentiated or multipotent eukaryotic cells, intracellular mitochondria undergo repeated fission/fusion cycles, favoring fission as organisms age. The discordance between cellular quiescence and mitochondrial proliferation generates intracellular stress, eventually leading to a gradual decline in host cell performance and age-related pathology. Hence, aging evolved from a conflict between maintenance of a quiescent, nonproliferative state and the evolutionarily conserved propagation program driving the life cycle of former symbiotic organisms: mitochondria.

  15. The effects of carbon nanotubes on lung and dermal cellular behaviors

    PubMed Central

    Luanpitpong, Sudjit; Wang, Liying; Rojanasakul, Yon

    2016-01-01

    Carbon nanotubes (CNTs) hold great promise to create new and better products, but their adverse health effect is a major concern. Human exposure to CNTs is primarily through inhalation and dermal contact, especially during the manufacturing and handling processes. Numerous animal studies have demonstrated the potential pulmonary and dermal hazards associated with CNT exposure, while in vitro studies have assessed the effects of CNT exposure on various cellular behaviors and have been used to perform mechanistic studies. In this review, we provide an overview of the pathological effects of CNTs and examine the acute and chronic effects of CNT exposure on lung and dermal cellular behaviors, beyond the generally discussed cytotoxicity. We then examine the linkage of cellular behaviors and disease pathogenesis, and discuss the pertinent mechanisms. PMID:24981653

  16. Electrostrictive energy conversion property of cellular electrets after corona discharge

    NASA Astrophysics Data System (ADS)

    Zhang, J. W.; Gao, F. K.; Sun, H. C.; Putson, C.; Liu, R. T.

    2018-03-01

    In this paper, the authors present the electrostrictive energy conversion ability of cellular electrets after the high-voltage corona polarization. Moreover, the electrostrictive effect of such foamed polymer before and after corona polarization has also been compared and discussed. The enhancement of electrostrictive effect of cellular electrets after corona polarization was observed. In particular, the impact on the electrostrictive effect of the macroscopic electric dipoles inside of cellular polymer which are generated by high-voltage corona poling procedure has been investigated. The present research has promoted the development of the application of electret in the field of energy conversion, actuator, transducers, etc.

  17. Video Views and Reviews: Cytokinesis--A Phenomenon Overlooked Too Often

    ERIC Educational Resources Information Center

    Watters, Christopher

    2005-01-01

    In this paper, the author reviews recently published videos that depict the roles played by myosin II in contraction of the cortical ring during cellularization and cytokinesis in early development (Royou et al., 2004), by spindle and astral microtubules in regulating the formation of cleavage furrows during the cleavage of primary spermatocytes…

  18. Tetracycline can induce the expression of invasion factors in multidrug-resistant Salmonella during early-log phase

    USDA-ARS?s Scientific Manuscript database

    The prevalence of multidrug-resistant (MDR) Salmonella continues to be an important health and safety concern in both humans and animals worldwide. Because the response of drug resistant bacteria exposed to antibiotics can affect a variety of cellular processes, such as motility, attachment, and in...

  19. Cellular responses to Mycobacterium avium, subsp. paratuberculosis in colostrum-deprived and colostrum-replete holstein calves supplemented with fat-soluble vitamins

    USDA-ARS?s Scientific Manuscript database

    Immune benefits of colostrum are attributed to passively transferred IgG but also to growth factors, cytokines, antimicrobial peptides, and leukocytes. Non-nutritive compounds in colostrum promote Th2-biased immune responses to early microbial encounters and prevent harmful, inappropriate inflammat...

  20. Integration of gene expression, clinical, and demographic information in relation to asthma status to identify biomarkers associated with subtypes of childhood asthma

    EPA Science Inventory

    Advances in biomarker development have improved our ability to detect early changes at the molecular, cellular, and pre-clinical level that are often predictive of adverse health outcomes. Biomarkers for monitoring the underlying molecular mechanisms of disease are of increasing...

  1. Clones of cells switch from reduction to enhancement of size variability in Arabidopsis sepals

    PubMed Central

    Tsugawa, Satoru; Hervieux, Nathan; Kierzkowski, Daniel; Routier-Kierzkowska, Anne-Lise; Sapala, Aleksandra; Hamant, Olivier; Smith, Richard S.; Boudaoud, Arezki

    2017-01-01

    Organs form with remarkably consistent sizes and shapes during development, whereas a high variability in growth is observed at the cell level. Given this contrast, it is unclear how such consistency in organ scale can emerge from cellular behavior. Here, we examine an intermediate scale, the growth of clones of cells in Arabidopsis sepals. Each clone consists of the progeny of a single progenitor cell. At early stages, we find that clones derived from a small progenitor cell grow faster than those derived from a large progenitor cell. This results in a reduction in clone size variability, a phenomenon we refer to as size uniformization. By contrast, at later stages of clone growth, clones change their growth pattern to enhance size variability, when clones derived from larger progenitor cells grow faster than those derived from smaller progenitor cells. Finally, we find that, at early stages, fast growing clones exhibit greater cell growth heterogeneity. Thus, cellular variability in growth might contribute to a decrease in the variability of clones throughout the sepal. PMID:29183944

  2. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus.

    PubMed

    Brass, Abraham L; Huang, I-Chueh; Benita, Yair; John, Sinu P; Krishnan, Manoj N; Feeley, Eric M; Ryan, Bethany J; Weyer, Jessica L; van der Weyden, Louise; Fikrig, Erol; Adams, David J; Xavier, Ramnik J; Farzan, Michael; Elledge, Stephen J

    2009-12-24

    Influenza viruses exploit host cell machinery to replicate, resulting in epidemics of respiratory illness. In turn, the host expresses antiviral restriction factors to defend against infection. To find host cell modifiers of influenza A H1N1 viral infection, we used a functional genomic screen and identified over 120 influenza A virus-dependency factors with roles in endosomal acidification, vesicular trafficking, mitochondrial metabolism, and RNA splicing. We discovered that the interferon-inducible transmembrane proteins IFITM1, 2, and 3 restrict an early step in influenza A viral replication. The IFITM proteins confer basal resistance to influenza A virus but are also inducible by interferons type I and II and are critical for interferon's virustatic actions. Further characterization revealed that the IFITM proteins inhibit the early replication of flaviviruses, including dengue virus and West Nile virus. Collectively this work identifies a family of antiviral restriction factors that mediate cellular innate immunity to at least three major human pathogens. Copyright 2009 Elsevier Inc. All rights reserved.

  3. WSB1 overcomes oncogene-induced senescence by targeting ATM for degradation

    PubMed Central

    Kim, Jung Jin; Lee, Seung Baek; Yi, Sang-Yeop; Han, Sang-Ah; Kim, Sun-Hyun; Lee, Jong-Min; Tong, Seo-Yun; Yin, Ping; Gao, Bowen; Zhang, Jun; Lou, Zhenkun

    2017-01-01

    Oncogene-induced senescence (OIS) or apoptosis through the DNA-damage response is an important barrier of tumorigenesis. Overcoming this barrier leads to abnormal cell proliferation, genomic instability, and cellular transformation, and finally allows cancers to develop. However, it remains unclear how the OIS barrier is overcome. Here, we show that the E3 ubiquitin ligase WD repeat and SOCS box-containing protein 1 (WSB1) plays a role in overcoming OIS. WSB1 expression in primary cells helps the bypass of OIS, leading to abnormal proliferation and cellular transformation. Mechanistically, WSB1 promotes ATM ubiquitination, resulting in ATM degradation and the escape from OIS. Furthermore, we identify CDKs as the upstream kinase of WSB1. CDK-mediated phosphorylation activates WSB1 by promoting its monomerization. In human cancer tissue and in vitro models, WSB1-induced ATM degradation is an early event during tumorigenic progression. We suggest that WSB1 is one of the key players of early oncogenic events through ATM degradation and destruction of the tumorigenesis barrier. Our work establishes an important mechanism of cancer development and progression in premalignant lesions. PMID:27958289

  4. Design of small confocal endo-microscopic probe working under multiwavelength environment

    NASA Astrophysics Data System (ADS)

    Kim, Young-Duk; Ahn, MyoungKi; Gweon, Dae-Gab

    2010-02-01

    Recently, optical imaging system is widely used in medical purpose. By using optical imaging system specific diseases can be easily diagnosed at early stage because optical imaging system has high resolution performance and various imaging method. These methods are used to get high resolution image of human body and can be used to verify whether the cell is infected by virus. Confocal microscope is one of the famous imaging systems which is used for in-vivo imaging. Because most of diseases are accompanied with cellular level changes, doctors can diagnosis at early stage by observing the cellular image of human organ. Current research is focused in the development of endo-microscope that has great advantage in accessibility to human body. In this research, I designed small probe that is connected to confocal microscope through optical fiber bundle and work as endo-microscope. And this small probe is mainly designed to correct chromatic aberration to use various laser sources for both fluorescence type and reflection type confocal images. By using two kinds of laser sources at the same time we demonstrated multi-modality confocal endo-microscope.

  5. Mitochondrial Energy Metabolism and Redox Signaling in Brain Aging and Neurodegeneration

    PubMed Central

    Yin, Fei; Boveris, Alberto

    2014-01-01

    Abstract Significance: The mitochondrial energy-transducing capacity is essential for the maintenance of neuronal function, and the impairment of energy metabolism and redox homeostasis is a hallmark of brain aging, which is particularly accentuated in the early stages of neurodegenerative diseases. Recent Advances: The communications between mitochondria and the rest of the cell by energy- and redox-sensitive signaling establish a master regulatory device that controls cellular energy levels and the redox environment. Impairment of this regulatory devise is critical for aging and the early stages of neurodegenerative diseases. Critical Issues: This review focuses on a coordinated metabolic network—cytosolic signaling, transcriptional regulation, and mitochondrial function—that controls the cellular energy levels and redox status as well as factors which impair this metabolic network during brain aging and neurodegeneration. Future Directions: Characterization of mitochondrial function and mitochondria-cytosol communications will provide pivotal opportunities for identifying targets and developing new strategies aimed at restoring the mitochondrial energy-redox axis that is compromised in brain aging and neurodegeneration. Antioxid. Redox Signal. 20, 353–371. PMID:22793257

  6. Unique aspects of the perinatal immune system.

    PubMed

    Zhang, Xiaoming; Zhivaki, Dania; Lo-Man, Richard

    2017-08-01

    The early stages of life are associated with increased susceptibility to infection, which is in part due to an ineffective immune system. In the context of infection, the immune system must be stimulated to provide efficient protection while avoiding insufficient or excessive activation. Yet, in early life, age-dependent immune regulation at molecular and cellular levels contributes to a reduced immunological fitness in terms of pathogen clearance and response to vaccines. To enable microbial colonization to be tolerated at birth, epigenetic immune cell programming and early life-specific immune regulatory and effector mechanisms ensure that vital functions and organ development are supported and that tissue damage is avoided. Advancement in our understanding of age-related remodelling of immune networks and the consequent tuning of immune responsiveness will open up new possibilities for immune intervention and vaccine strategies that are designed specifically for early life.

  7. Lifespan adversity and later adulthood telomere length in the nationally representative US Health and Retirement Study

    PubMed Central

    Gemmill, Alison; Weir, David; Adler, Nancy E.; Prather, Aric A.

    2016-01-01

    Stress over the lifespan is thought to promote accelerated aging and early disease. Telomere length is a marker of cell aging that appears to be one mediator of this relationship. Telomere length is associated with early adversity and with chronic stressors in adulthood in many studies. Although cumulative lifespan adversity should have bigger impacts than single events, it is also possible that adversity in childhood has larger effects on later life health than adult stressors, as suggested by models of biological embedding in early life. No studies have examined the individual vs. cumulative effects of childhood and adulthood adversities on adult telomere length. Here, we examined the relationship between cumulative childhood and adulthood adversity, adding up a range of severe financial, traumatic, and social exposures, as well as comparing them to each other, in relation to salivary telomere length. We examined 4,598 men and women from the US Health and Retirement Study. Single adversities tended to have nonsignificant relations with telomere length. In adjusted models, lifetime cumulative adversity predicted 6% greater odds of shorter telomere length. This result was mainly due to childhood adversity. In adjusted models for cumulative childhood adversity, the occurrence of each additional childhood event predicted 11% increased odds of having short telomeres. This result appeared mainly because of social/traumatic exposures rather than financial exposures. This study suggests that the shadow of childhood adversity may reach far into later adulthood in part through cellular aging. PMID:27698131

  8. Lifespan adversity and later adulthood telomere length in the nationally representative US Health and Retirement Study.

    PubMed

    Puterman, Eli; Gemmill, Alison; Karasek, Deborah; Weir, David; Adler, Nancy E; Prather, Aric A; Epel, Elissa S

    2016-10-18

    Stress over the lifespan is thought to promote accelerated aging and early disease. Telomere length is a marker of cell aging that appears to be one mediator of this relationship. Telomere length is associated with early adversity and with chronic stressors in adulthood in many studies. Although cumulative lifespan adversity should have bigger impacts than single events, it is also possible that adversity in childhood has larger effects on later life health than adult stressors, as suggested by models of biological embedding in early life. No studies have examined the individual vs. cumulative effects of childhood and adulthood adversities on adult telomere length. Here, we examined the relationship between cumulative childhood and adulthood adversity, adding up a range of severe financial, traumatic, and social exposures, as well as comparing them to each other, in relation to salivary telomere length. We examined 4,598 men and women from the US Health and Retirement Study. Single adversities tended to have nonsignificant relations with telomere length. In adjusted models, lifetime cumulative adversity predicted 6% greater odds of shorter telomere length. This result was mainly due to childhood adversity. In adjusted models for cumulative childhood adversity, the occurrence of each additional childhood event predicted 11% increased odds of having short telomeres. This result appeared mainly because of social/traumatic exposures rather than financial exposures. This study suggests that the shadow of childhood adversity may reach far into later adulthood in part through cellular aging.

  9. HIV-specific Fc effector function early in infection predicts the development of broadly neutralizing antibodies.

    PubMed

    Richardson, Simone I; Chung, Amy W; Natarajan, Harini; Mabvakure, Batsirai; Mkhize, Nonhlanhla N; Garrett, Nigel; Abdool Karim, Salim; Moore, Penny L; Ackerman, Margaret E; Alter, Galit; Morris, Lynn

    2018-04-01

    While the induction of broadly neutralizing antibodies (bNAbs) is a major goal of HIV vaccination strategies, there is mounting evidence to suggest that antibodies with Fc effector function also contribute to protection against HIV infection. Here we investigated Fc effector functionality of HIV-specific IgG plasma antibodies over 3 years of infection in 23 individuals, 13 of whom developed bNAbs. Antibody-dependent cellular phagocytosis (ADCP), complement deposition (ADCD), cellular cytotoxicity (ADCC) and cellular trogocytosis (ADCT) were detected in almost all individuals with levels of activity increasing over time. At 6 months post-infection, individuals with bNAbs had significantly higher levels of ADCD and ADCT that correlated with antibody binding to C1q and FcγRIIa respectively. In addition, antibodies from individuals with bNAbs showed more IgG subclass diversity to multiple HIV antigens which also correlated with Fc polyfunctionality. Germinal center activity represented by CXCL13 levels and expression of activation-induced cytidine deaminase (AID) was found to be associated with neutralization breadth, Fc polyfunctionality and IgG subclass diversity. Overall, multivariate analysis by random forest classification was able to group bNAb individuals with 85% sensitivity and 80% specificity based on the properties of their antibody Fc early in HIV infection. Thus, the Fc effector function profile predicted the development of neutralization breadth in this cohort, suggesting that intrinsic immune factors within the germinal center provide a mechanistic link between the Fc and Fab of HIV-specific antibodies.

  10. HIV-specific Fc effector function early in infection predicts the development of broadly neutralizing antibodies

    PubMed Central

    Richardson, Simone I.; Mabvakure, Batsirai; Mkhize, Nonhlanhla N.; Moore, Penny L.; Alter, Galit

    2018-01-01

    While the induction of broadly neutralizing antibodies (bNAbs) is a major goal of HIV vaccination strategies, there is mounting evidence to suggest that antibodies with Fc effector function also contribute to protection against HIV infection. Here we investigated Fc effector functionality of HIV-specific IgG plasma antibodies over 3 years of infection in 23 individuals, 13 of whom developed bNAbs. Antibody-dependent cellular phagocytosis (ADCP), complement deposition (ADCD), cellular cytotoxicity (ADCC) and cellular trogocytosis (ADCT) were detected in almost all individuals with levels of activity increasing over time. At 6 months post-infection, individuals with bNAbs had significantly higher levels of ADCD and ADCT that correlated with antibody binding to C1q and FcγRIIa respectively. In addition, antibodies from individuals with bNAbs showed more IgG subclass diversity to multiple HIV antigens which also correlated with Fc polyfunctionality. Germinal center activity represented by CXCL13 levels and expression of activation-induced cytidine deaminase (AID) was found to be associated with neutralization breadth, Fc polyfunctionality and IgG subclass diversity. Overall, multivariate analysis by random forest classification was able to group bNAb individuals with 85% sensitivity and 80% specificity based on the properties of their antibody Fc early in HIV infection. Thus, the Fc effector function profile predicted the development of neutralization breadth in this cohort, suggesting that intrinsic immune factors within the germinal center provide a mechanistic link between the Fc and Fab of HIV-specific antibodies. PMID:29630668

  11. Potency assay development for cellular therapy products: an ISCT review of the requirements and experiences in the industry.

    PubMed

    Bravery, Christopher A; Carmen, Jessica; Fong, Timothy; Oprea, Wanda; Hoogendoorn, Karin H; Woda, Juliana; Burger, Scott R; Rowley, Jon A; Bonyhadi, Mark L; Van't Hof, Wouter

    2013-01-01

    The evaluation of potency plays a key role in defining the quality of cellular therapy products (CTPs). Potency can be defined as a quantitative measure of relevant biologic function based on the attributes that are linked to relevant biologic properties. To achieve an adequate assessment of CTP potency, appropriate in vitro or in vivo laboratory assays and properly controlled clinical data need to be created. The primary objective of a potency assay is to provide a mechanism by which the manufacturing process and the final product for batch release are scrutinized for quality, consistency and stability. A potency assay also provides the basis for comparability assessment after process changes, such as scale-up, site transfer and new starting materials (e.g., a new donor). Potency assays should be in place for early clinical development, and validated assays are required for pivotal clinical trials. Potency is based on the individual characteristics of each individual CTP, and the adequacy of potency assays will be evaluated on a case-by-case basis by regulatory agencies. We provide an overview of the expectations and challenges in development of potency assays specific for CTPs; several real-life experiences from the cellular therapy industry are presented as illustrations. The key observation and message is that aggressive early investment in a solid potency evaluation strategy can greatly enhance eventual CTP deployment because it can mitigate the risk of costly product failure in late-stage development. Copyright © 2013. Published by Elsevier Inc.

  12. Analysis of global gene expression profiles to identify differentially expressed genes critical for embryo development in Brassica rapa.

    PubMed

    Zhang, Yu; Peng, Lifang; Wu, Ya; Shen, Yanyue; Wu, Xiaoming; Wang, Jianbo

    2014-11-01

    Embryo development represents a crucial developmental period in the life cycle of flowering plants. To gain insights into the genetic programs that control embryo development in Brassica rapa L., RNA sequencing technology was used to perform transcriptome profiling analysis of B. rapa developing embryos. The results generated 42,906,229 sequence reads aligned with 32,941 genes. In total, 27,760, 28,871, 28,384, and 25,653 genes were identified from embryos at globular, heart, early cotyledon, and mature developmental stages, respectively, and analysis between stages revealed a subset of stage-specific genes. We next investigated 9,884 differentially expressed genes with more than fivefold changes in expression and false discovery rate ≤ 0.001 from three adjacent-stage comparisons; 1,514, 3,831, and 6,633 genes were detected between globular and heart stage embryo libraries, heart stage and early cotyledon stage, and early cotyledon and mature stage, respectively. Large numbers of genes related to cellular process, metabolism process, response to stimulus, and biological process were expressed during the early and middle stages of embryo development. Fatty acid biosynthesis, biosynthesis of secondary metabolites, and photosynthesis-related genes were expressed predominantly in embryos at the middle stage. Genes for lipid metabolism and storage proteins were highly expressed in the middle and late stages of embryo development. We also identified 911 transcription factor genes that show differential expression across embryo developmental stages. These results increase our understanding of the complex molecular and cellular events during embryo development in B. rapa and provide a foundation for future studies on other oilseed crops.

  13. Host-cell interaction of attenuated and wild-type strains of yellow fever virus can be differentiated at early stages of hepatocyte infection.

    PubMed

    Lefeuvre, Anabelle; Contamin, Hugues; Decelle, Thierry; Fournier, Christophe; Lang, Jean; Deubel, Vincent; Marianneau, Philippe

    2006-05-01

    Yellow fever (YF) virus is currently found in tropical Africa and South America, and is responsible for a febrile to severe illness characterized by organ failure and shock. The attenuated YF 17D strain, used in YF vaccine, was derived from the wild-type strain Asibi. Although studies have been done on genetic markers of YF virulence, differentiation of the two strains in terms of host-cell interaction during infection remains elusive. As YF wild-type strains are hepatotropic, we chose a hepatic cell line (HepG2) to study YF virus-host cell interaction. HepG2 cells rapidly produced high titres of infectious viral particles for 17D and Asibi YF strains. However, HepG2 cells were more susceptible to the attenuated 17D virus infection, and only this virus strain induced early apoptosis in these cells. Molecular markers specific for the 17D virus were identified by microarray analysis and confirmed by quantitative RT-PCR analysis. As early as 1h postinfection, three genes, (IEX-1, IRF-1, DEC-1) all implicated in apoptosis pathways, were upregulated. Later in infection (48 h) two other genes (HSP70-1A and 1B), expressed in cases of cellular stress, were highly upregulated in 17D-infected HepG2 cells. The early specific upregulation of these cellular genes in HepG2 cells may be considered markers of the 17D virus. This study on the YF attenuated strain gives a new approach to the analysis of the factors involved in virus attenuation.

  14. Primordial odontogenic tumor: Subepithelial expression of Syndecan-1 and Ki-67 suggests origin during early odontogenesis.

    PubMed

    Bologna-Molina, R; Mikami, T; Pereira-Prado, V; Tapia-Repetto, G; Pires, F R; Carlos, R; Mosqueda-Taylor, A

    2018-03-01

    Primordial odontogenic tumor (POT) is composed of variably cellular myxoid connective tissue, surrounded by cuboidal to columnar odontogenic epithelium resembling the inner epithelium of the enamel organ, which often invaginates into the underlying connective tissue. The tumor is delimited at least partially by a thin fibrous capsule. It derives from the early stages of tooth development. Syndecan-1 is a heparan sulfate proteoglycan that has a physiological role in several cellular functions, including maintenance of the epithelial architecture, cell-to-cell adhesion and interaction of cells with extracellular matrix, and with diverse growth factors, stimulating cell proliferation. Ki-67 is considered the gold standard as a cell proliferation marker. The aim of this study was to examine the expression of Syndecan-1 and Ki-67 proliferation index in POT and normal tooth germs to better understand the biological behavior of this tumor. Results showed that Syndecan-1 was more intensely expressed in subepithelial mesenchymal areas of POT, in a pattern that resembles the early stages of tooth development. The cell proliferation index (4.1%) suggests that POT is a slow growing tumor. Syndecan-1 expression in tooth germs in late cap and early bell stages was similar to POT, showing immunopositivity in subepithelial mesenchymal condensed areas. The immunohistochemical findings showed a pattern in which the population of subepithelial mesenchymal cells exhibited greater proliferative activity than the central portion of the dental papilla. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Capturing structure and function in an embryonic heart with biophotonic tools

    PubMed Central

    Karunamuni, Ganga H.; Gu, Shi; Ford, Matthew R.; Peterson, Lindsy M.; Ma, Pei; Wang, Yves T.; Rollins, Andrew M.; Jenkins, Michael W.; Watanabe, Michiko

    2014-01-01

    Disturbed cardiac function at an early stage of development has been shown to correlate with cellular/molecular, structural as well as functional cardiac anomalies at later stages culminating in the congenital heart defects (CHDs) that present at birth. While our knowledge of cellular and molecular steps in cardiac development is growing rapidly, our understanding of the role of cardiovascular function in the embryo is still in an early phase. One reason for the scanty information in this area is that the tools to study early cardiac function are limited. Recently developed and adapted biophotonic tools may overcome some of the challenges of studying the tiny fragile beating heart. In this chapter, we describe and discuss our experience in developing and implementing biophotonic tools to study the role of function in heart development with emphasis on optical coherence tomography (OCT). OCT can be used for detailed structural and functional studies of the tubular and looping embryo heart under physiological conditions. The same heart can be rapidly and quantitatively phenotyped at early and again at later stages using OCT. When combined with other tools such as optical mapping (OM) and optical pacing (OP), OCT has the potential to reveal in spatial and temporal detail the biophysical changes that can impact mechanotransduction pathways. This information may provide better explanations for the etiology of the CHDs when interwoven with our understanding of morphogenesis and the molecular pathways that have been described to be involved. Future directions for advances in the creation and use of biophotonic tools are discussed. PMID:25309451

  16. In vitro early changes in intercellular junctions by treatment with a chemical carcinogen.

    PubMed

    Tachikawa, T; Kohno, Y; Matsui, Y; Yoshiki, S

    1986-06-01

    To examine early intercellular junction changes caused by treatment with 9,10-dimethyl-1,2-benzanthracene (DMBA), rat lingual epithelium was cultivated in isolation and observed by electrophysiological, freeze-fracture and whole-mount electron microscopy. Electrophysiological measurements showed a transient decrease in membrane potential of -10.2 mV 6 h after the treatment. It returned to almost the same level as that of the control group 1 day later. Six hours after treatment, input resistance decreased rapidly to 5.3 M omega but increased to 18.0 M omega 12 h after treatment. Transient reduction of input resistance and membrane potential occurred prior to the decrease in the coupling ratio 6 h after treatment with DMBA. In freeze-fracture replicas, the number of gap junctions decreased by approximately 45% of the control value 6 h after treatment with DMBA. At 12 h and thereafter, the number and area of gap junctions subsequently decreased by 60-80% of the control value. Alterations in the number and area of desmosomes were similar to those of the gap junctions. The formation of epithelial cytoskeletons, partially devoid of the 2-4 and 5-8 nm filaments was also observed. A decrease in the density of filament networks beneath the plasma membranes was especially apparent. Treatment with a carcinogen brought about morphological cellular changes as early as 6 h after treatment, and such early changes might trigger metabolic cellular abnormalities. Affected cells appear to move away from normal cells in a process of repeated destruction and revision of intercellular junctions, and cytoskeletons.

  17. EphA2 Is a Potential Player of Malignant Cellular Behavior in Non-Metastatic Renal Cell Carcinoma Cells but Not in Metastatic Renal Cell Carcinoma Cells.

    PubMed

    Cho, Min Chul; Cho, Sung Yong; Yoon, Cheol Yong; Lee, Seung Bae; Kwak, Cheol; Kim, Hyeon Hoe; Jeong, Hyeon

    2015-01-01

    To investigate the role of EphA2 in malignant cellular behavior in renal cell carcinoma (RCC) cells and whether FAK/RhoA signaling can act as downstream effectors of EphA2 on RCC cells. Expression of EphA2 protein in non-metastatic RCC (Caki-2 and A498), metastatic RCC cells (Caki-1 and ACHN), HEK-293 cells and prostate cancer cells (PC-3 and DU-145; positive controls of EphA2 expression) was evaluated by Western blot. Changes in mRNA or protein expression of EphA2, FAK or membrane-bound RhoA following EphA2, FAK or RhoA small interfering RNA (siRNA) transfection were determined by reverse transcription polymerase chain reaction or Western blot. The effect of siRNA treatment on cellular viability, apoptosis and invasion was analyzed by cell counting kit-8, Annexin-V and modified Matrigel-Boyden assays, respectively. In all RCC cell lines, the expression of EphA2 protein was detectable at variable levels; however, in HEK-293 cells, EphA2 expression was very low. Treatment with EphA2 siRNA significantly reduced the expression of EphA2 mRNA and protein in all RCC cell lines. For non-metastatic RCC cells (Caki-2 and A498) but not metastatic RCC cells (Caki-1 and ACHN), cellular viability, invasiveness, resistance to apoptosis, expression of membrane-bound RhoA protein and FAK phosphorylation were significantly decreased in EphA2 siRNA-treated cells compared to the control. In non-metastatic RCC cells, FAK siRNA significantly attenuated the invasiveness, resistance to apoptosis, as well as expression of membrane-bound RhoA protein without changing protein expression of EphA2. RhoA siRNA significantly decreased the malignant cellular behavior and expression of membrane-bound RhoA protein without changing EphA2 protein expression or FAK phosphorylation. Our data provide the first functional evidence that the EphA2/FAK/RhoA signaling pathway plays a critical role in the malignant cellular behavior of RCC and appears to be functional particularly in the early stage of malignant progression of non-metastatic RCC.

  18. Kaposi's Sarcoma-Associated Herpesvirus Hijacks RNA Polymerase II To Create a Viral Transcriptional Factory

    PubMed Central

    Chen, Christopher Phillip; Lyu, Yuanzhi; Chuang, Frank; Nakano, Kazushi; Izumiya, Chie; Jin, Di; Campbell, Mel

    2017-01-01

    ABSTRACT Locally concentrated nuclear factors ensure efficient binding to DNA templates, facilitating RNA polymerase II recruitment and frequent reutilization of stable preinitiation complexes. We have uncovered a mechanism for effective viral transcription by focal assembly of RNA polymerase II around Kaposi's sarcoma-associated herpesvirus (KSHV) genomes in the host cell nucleus. Using immunofluorescence labeling of latent nuclear antigen (LANA) protein, together with fluorescence in situ RNA hybridization (RNA-FISH) of the intron region of immediate early transcripts, we visualized active transcription of viral genomes in naturally infected cells. At the single-cell level, we found that not all episomes were uniformly transcribed following reactivation stimuli. However, those episomes that were being transcribed would spontaneously aggregate to form transcriptional “factories,” which recruited a significant fraction of cellular RNA polymerase II. Focal assembly of “viral transcriptional factories” decreased the pool of cellular RNA polymerase II available for cellular gene transcription, which consequently impaired cellular gene expression globally, with the exception of selected ones. The viral transcriptional factories localized with replicating viral genomic DNAs. The observed colocalization of viral transcriptional factories with replicating viral genomic DNA suggests that KSHV assembles an “all-in-one” factory for both gene transcription and DNA replication. We propose that the assembly of RNA polymerase II around viral episomes in the nucleus may be a previously unexplored aspect of KSHV gene regulation by confiscation of a limited supply of RNA polymerase II in infected cells. IMPORTANCE B cells infected with Kaposi's sarcoma-associated herpesvirus (KSHV) harbor multiple copies of the KSHV genome in the form of episomes. Three-dimensional imaging of viral gene expression in the nucleus allows us to study interactions and changes in the physical distribution of these episomes following stimulation. The results showed heterogeneity in the responses of individual KSHV episomes to stimuli within a single reactivating cell; those episomes that did respond to stimulation, aggregated within large domains that appear to function as viral transcription factories. A significant portion of cellular RNA polymerase II was trapped in these factories and served to transcribe viral genomes, which coincided with an overall decrease in cellular gene expression. Our findings uncover a strategy of KSHV gene regulation through focal assembly of KSHV episomes and a molecular mechanism of late gene expression. PMID:28331082

  19. Metabolomic Markers of Altered Nucleotide Metabolism in Early Stage Adenocarcinoma

    PubMed Central

    Wikoff, William R.; Grapov, Dmitry; Fahrmann, Johannes F.; DeFelice, Brian; Rom, William; Pass, Harvey; Kim, Kyoungmi; Nguyen, UyenThao; Taylor, Sandra L.; Kelly, Karen; Fiehn, Oliver; Miyamoto, Suzanne

    2015-01-01

    Adenocarcinoma, a type of non-small-cell lung cancer (NSCLC), is the most frequently diagnosed lung cancer and the leading cause of lung cancer mortality in the United States. It is well documented that biochemical changes occur early in the transition from normal to cancer cells, but the extent to which these alterations affect tumorigenesis in adenocarcinoma remains largely unknown. Herein we describe the application of mass spectrometry and multivariate statistical analysis in one of the largest biomarker research studies to date aimed at distinguishing metabolic differences between malignant and non-malignant lung tissue. Gas chromatography time-of-flight mass spectrometry was used to measure 462 metabolites in 39 malignant and non-malignant lung tissue pairs from current or former smokers with early stage (Stage IA–IB) adenocarcinoma. Statistical mixed effects models, orthogonal partial least squares discriminant analysis and network integration, were used to identify key cancer-associated metabolic perturbations in adenocarcinoma compared to non-malignant tissue. Cancer-associated biochemical alterations were characterized by: 1) decreased glucose levels, consistent with the Warburg effect, 2) changes in cellular redox status highlighted by elevations in cysteine and antioxidants, alpha- and gamma-tocopherol, 3) elevations in nucleotide metabolites 5,6-dihydrouracil and xanthine suggestive of increased dihydropyrimidine dehydrogenase and xanthine oxidoreductase activity, 4) increased 5'-deoxy-5'-methylthioadenosine levels indicative of reduced purine salvage and increased de novo purine synthesis and 5) coordinated elevations in glutamate and UDP-N-acetylglucosamine suggesting increased protein glycosylation. The present study revealed distinct metabolic perturbations associated with early stage lung adenocarcinoma which may provide candidate molecular targets for personalizing therapeutic interventions and treatment efficacy monitoring. PMID:25657018

  20. Effects of early enteral nutrition on the gastrointestinal motility and intestinal mucosal barrier of patients with burn-induced invasive fungal infection

    PubMed Central

    Zhang, Yu; Gu, Fang; Wang, Fengxian; Zhang, Yuanda

    2016-01-01

    Objective: To evaluate the effects of early enteral nutrition on the gastrointestinal motility and intestinal mucosal barrier of patients with burn-induced invasive fungal infection. Methods: A total of 120 patients with burn-induced invasive fungal infection were randomly divided into an early enteral nutrition (EN) group and a parenteral nutrition (PN) group (n=60). The patients were given nutritional support intervention for 14 days, and the expression levels of serum transferrin, albumin, total protein, endotoxin, D-lactic acid and inflammatory cytokines were detected on the 1st, 7th and 14th days respectively. Results: As the treatment progressed, the levels of serum transferrin, albumin and total protein of the EN group were significantly higher than those of the PN group (P<0.05), while the levels of serum endotoxin and D-lactic acid of the form group were significantly lower (P<0.05). After treatment, the expression levels of IL-6 and TNF-α were decreased in the EN group, which were significantly different from those of the PN group (P<0.05). During treatment, the incidence rates of complications such as abdominal distension, diarrhea, sepsis, nausea, vomiting and gastric retention were similar. The mean healing time of wound surface was 9.34±0.78 days in the EN group and 12.46±2.19 days in the PN group, i.e. such time of the former was significantly shorter than that of the latter (P<0.05). Conclusion: Treating patients having burn-induced invasive fungal infection by early enteral nutrition support with arginine can safely alleviate malnutrition and stress reaction, strengthen cellular immune function and promote wound healing, thereby facilitating the recovery of gastrointestinal motility and the function of intestinal mucosal barrier. PMID:27375697

Top