Sample records for early cellular evolution

  1. Potential Role of Lateral Gene Transfer in the Evolution of Biofilm Communities at the Lost City Hydrothermal Field and in the Earliest Stages of Cellular Evolution

    NASA Astrophysics Data System (ADS)

    Brazelton, W. J.; Mehta, M. P.; Baross, J. A.

    2010-04-01

    DNA sequencing and metabolic activity measurements show that lateral gene transfer promotes phenotypic diversity in single-species archaeal biofilms attached to hydrothermal chimneys. This system may be a useful model for early cellular evolution.

  2. Physiology and Evolution of Voltage-Gated Calcium Channels in Early Diverging Animal Phyla: Cnidaria, Placozoa, Porifera and Ctenophora

    PubMed Central

    Senatore, Adriano; Raiss, Hamad; Le, Phuong

    2016-01-01

    Voltage-gated calcium (Cav) channels serve dual roles in the cell, where they can both depolarize the membrane potential for electrical excitability, and activate transient cytoplasmic Ca2+ signals. In animals, Cav channels play crucial roles including driving muscle contraction (excitation-contraction coupling), gene expression (excitation-transcription coupling), pre-synaptic and neuroendocrine exocytosis (excitation-secretion coupling), regulation of flagellar/ciliary beating, and regulation of cellular excitability, either directly or through modulation of other Ca2+-sensitive ion channels. In recent years, genome sequencing has provided significant insights into the molecular evolution of Cav channels. Furthermore, expanded gene datasets have permitted improved inference of the species phylogeny at the base of Metazoa, providing clearer insights into the evolution of complex animal traits which involve Cav channels, including the nervous system. For the various types of metazoan Cav channels, key properties that determine their cellular contribution include: Ion selectivity, pore gating, and, importantly, cytoplasmic protein-protein interactions that direct sub-cellular localization and functional complexing. It is unclear when these defining features, many of which are essential for nervous system function, evolved. In this review, we highlight some experimental observations that implicate Cav channels in the physiology and behavior of the most early-diverging animals from the phyla Cnidaria, Placozoa, Porifera, and Ctenophora. Given our limited understanding of the molecular biology of Cav channels in these basal animal lineages, we infer insights from better-studied vertebrate and invertebrate animals. We also highlight some apparently conserved cellular functions of Cav channels, which might have emerged very early on during metazoan evolution, or perhaps predated it. PMID:27867359

  3. Untangling the origin of viruses and their impact on cellular evolution.

    PubMed

    Nasir, Arshan; Sun, Feng-Jie; Kim, Kyung Mo; Caetano-Anollés, Gustavo

    2015-04-01

    The origin and evolution of viruses remain mysterious. Here, we focus on the distribution of viral replicons in host organisms, their morphological features, and the evolution of highly conserved protein and nucleic acid structures. The apparent inability of RNA viral replicons to infect contemporary akaryotic species suggests an early origin of RNA viruses and their subsequent loss in akaryotes. A census of virion morphotypes reveals that advanced forms were unique to viruses infecting a specific supergroup, while simpler forms were observed in viruses infecting organisms in all forms of cellular life. Results hint toward an ancient origin of viruses from an ancestral virus harboring either filamentous or spherical virions. Finally, phylogenetic trees built from protein domain and tRNA structures in thousands of genomes suggest that viruses evolved via reductive evolution from ancient cells. The analysis presents a complete account of the evolutionary history of cells and viruses and identifies viruses as crucial agents influencing cellular evolution. © 2015 New York Academy of Sciences.

  4. The evolution of early cellular systems viewed through the lens of biological interactions.

    PubMed

    Poole, Anthony M; Lundin, Daniel; Rytkönen, Kalle T

    2015-01-01

    The minimal cell concept represents a pragmatic approach to the question of how few genes are required to run a cell. This is a helpful way to build a parts-list, and has been more successful than attempts to deduce a minimal gene set for life by inferring the gene repertoire of the last universal common ancestor, as few genes trace back to this hypothetical ancestral state. However, the study of minimal cellular systems is the study of biological outliers where, by practical necessity, coevolutionary interactions are minimized or ignored. In this paper, we consider the biological context from which minimal genomes have been removed. For instance, some of the most reduced genomes are from endosymbionts and are the result of coevolutionary interactions with a host; few such organisms are "free-living." As few, if any, biological systems exist in complete isolation, we expect that, as with modern life, early biological systems were part of an ecosystem, replete with organismal interactions. We favor refocusing discussions of the evolution of cellular systems on processes rather than gene counts. We therefore draw a distinction between a pragmatic minimal cell (an interesting engineering problem), a distributed genome (a system resulting from an evolutionary transition involving more than one cell) and the looser coevolutionary interactions that are ubiquitous in ecosystems. Finally, we consider the distributed genome and coevolutionary interactions between genomic entities in the context of early evolution.

  5. Rab protein evolution and the history of the eukaryotic endomembrane system

    PubMed Central

    Brighouse, Andrew; Dacks, Joel B.

    2010-01-01

    Spectacular increases in the quantity of sequence data genome have facilitated major advances in eukaryotic comparative genomics. By exploiting homology with classical model organisms, this makes possible predictions of pathways and cellular functions currently impossible to address in intractable organisms. Echoing realization that core metabolic processes were established very early following evolution of life on earth, it is now emerging that many eukaryotic cellular features, including the endomembrane system, are ancient and organized around near-universal principles. Rab proteins are key mediators of vesicle transport and specificity, and via the presence of multiple paralogues, alterations in interaction specificity and modification of pathways, contribute greatly to the evolution of complexity of membrane transport. Understanding system-level contributions of Rab proteins to evolutionary history provides insight into the multiple processes sculpting cellular transport pathways and the exciting challenges that we face in delving further into the origins of membrane trafficking specificity. PMID:20582450

  6. Early cellular evolution.

    NASA Technical Reports Server (NTRS)

    Margulis, L.

    1972-01-01

    Study of the evolutionary developments that occurred subsequent to the origin of ancestral cells. Microbial physiology and ecology are potential sharp tools for shaping concepts of microbial evolution. Some popular unjustified assumptions are discussed. It is considered that certain principles derived mainly from the advances of molecular biology can be used to order the natural groups (genera) of extant prokaryotes and their patterns phylogenetically.

  7. Environmental Adaptation from the Origin of Life to the Last Universal Common Ancestor

    NASA Astrophysics Data System (ADS)

    Cantine, Marjorie D.; Fournier, Gregory P.

    2018-03-01

    Extensive fundamental molecular and biological evolution took place between the prebiotic origins of life and the state of the Last Universal Common Ancestor (LUCA). Considering the evolutionary innovations between these two endpoints from the perspective of environmental adaptation, we explore the hypothesis that LUCA was temporally, spatially, and environmentally distinct from life's earliest origins in an RNA world. Using this lens, we interpret several molecular biological features as indicating an environmental transition between a cold, radiation-shielded origin of life and a mesophilic, surface-dwelling LUCA. Cellularity provides motility and permits Darwinian evolution by connecting genetic material and its products, and thus establishing heredity and lineage. Considering the importance of compartmentalization and motility, we propose that the early emergence of cellularity is required for environmental dispersal and diversification during these transitions. Early diversification and the emergence of ecology before LUCA could be an important pre-adaptation for life's persistence on a changing planet.

  8. Interpreting the universal phylogenetic tree

    NASA Technical Reports Server (NTRS)

    Woese, C. R.

    2000-01-01

    The universal phylogenetic tree not only spans all extant life, but its root and earliest branchings represent stages in the evolutionary process before modern cell types had come into being. The evolution of the cell is an interplay between vertically derived and horizontally acquired variation. Primitive cellular entities were necessarily simpler and more modular in design than are modern cells. Consequently, horizontal gene transfer early on was pervasive, dominating the evolutionary dynamic. The root of the universal phylogenetic tree represents the first stage in cellular evolution when the evolving cell became sufficiently integrated and stable to the erosive effects of horizontal gene transfer that true organismal lineages could exist.

  9. The Emergence of Predators in Early Life: There was No Garden of Eden

    PubMed Central

    de Nooijer, Silvester; Holland, Barbara R.; Penny, David

    2009-01-01

    Background Eukaryote cells are suggested to arise somewhere between 0.85∼2.7 billion years ago. However, in the present world of unicellular organisms, cells that derive their food and metabolic energy from larger cells engulfing smaller cells (phagocytosis) are almost exclusively eukaryotic. Combining these propositions, that eukaryotes were the first phagocytotic predators and that they arose only 0.85∼2.7 billion years ago, leads to an unexpected prediction of a long period (∼1–3 billion years) with no phagocytotes – a veritable Garden of Eden. Methodology We test whether such a long period is reasonable by simulating a population of very simple unicellular organisms - given only basic physical, biological and ecological principles. Under a wide range of initial conditions, cellular specialization occurs early in evolution; we find a range of cell types from small specialized primary producers to larger opportunistic or specialized predators. Conclusions Both strategies, specialized smaller cells and phagocytotic larger cells are apparently fundamental biological strategies that are expected to arise early in cellular evolution. Such early predators could have been ‘prokaryotes’, but if the earliest cells on the eukaryote lineage were predators then this explains most of their characteristic features. PMID:19492046

  10. On the origin and early evolution of biological catalysis and other studies on chemical evolution

    NASA Technical Reports Server (NTRS)

    Oro, J.; Lazcano, A.

    1991-01-01

    One of the lines of research in molecular evolution which we have developed for the past three years is related to the experimental and theoretical study of the origin and early evolution of biological catalysis. In an attempt to understand the nature of the first peptidic catalysts and coenzymes, we have achieved the non-enzymatic synthesis of the coenzymes ADPG, GDPG, and CDP-ethanolamine, under conditions considered to have been prevalent on the primitive Earth. We have also accomplished the prebiotic synthesis of histidine, as well as histidyl-histidine, and we have measured the enhancing effects of this catalytic dipeptide on the dephosphorylation of deoxyribonucleotide monophosphates, the hydrolysis of oligo A, and the oligomerization 2', 3' cAMP. We reviewed and further developed the hypothesis that RNA preceded double stranded DNA molecules as a reservoir of cellular genetic information. This led us to undertake the study of extant RNA polymerases in an attempt to discover vestigial sequences preserved from early Archean times. In addition, we continued our studies of on the chemical evolution of organic compounds in the solar system and beyond.

  11. The Evolution of Energy-Transducing Systems. Studies with an Extremely Halophilic Archaebacterium

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga

    1997-01-01

    The F-type ATPases are found in remarkably similar versions in the energy-transducing membranes of bacteria, chloroplasts and mitochondria (1). Thus, it is likely that they have originated early in the evolution of life, which is consistent with their function as key enzymes of cellular metabolism. The archaea (formerly called archaebacteria) are a group of microorganisms which, as shown by molecular sequencing and biochemical data, have diverged early from the main line of prokaryotic evolution (2). From studies of members of all three major groups of archaea, the halophiles, methanogens and thermoacidophiles, it emerged that they possess a membrane ATPase, which differs from the F-ATPases. The goal of this project was a comparison of the ATPase from the halophilic archaebacterium Halobacterium saccharovorum with the well-characterized F-type ATPases on the molecular level. The results were expected to allow a decision about the nature of archaebacterial ATPases, their classification as one of the known or, alternatively, novel enzyme complex, and possibly a deduction of events during the early evolution of energy-transducing systems.

  12. The evolution of energy-transducing systems. Studies with an extremely halophilic archaebacterium

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga

    1992-01-01

    The F-type ATPases are found in remarkably similar versions in the energy-transducing membranes of eubacteria, chloroplasts, and mitochondria. Thus, it is likely that they have originated early in the evolution of life, which is consistent with their function as key enzymes of cellular metabolism. The archaebacteria are a group of microorganisms which, as shown by molecular sequencing and biochemical data, have diverged early from the main line of prokaryotic evolution. From studies of members of all three major groups of archaebacteria - the halophiles, methanogens, and thermoacidophiles - it emerged that they possess a membrane ATPase which differs from the F-ATPases. The goal of this project was a comparison of the ATPase from the halophilic archaebacterium Halobacterium saccharovorum with the well-characterized F-type ATPases on the molecular level. Amino acid sequences of critical regions of the enzyme were to be determined, as well as immunoreactions of single subunits in the search for common epitopes. The results were expected to allow a decision about the nature of archaebacterial ATPases, their classification as one of the known or, alternatively, novel enzyme complexes, and possibly deduction of events during the early evolution of energy-transducing systems.

  13. Draft genome sequence of Pyrodictium occultum PL19 T, a marine hyperthermophilic species of Archaea that grows optimally at 105°C

    DOE PAGES

    Utturkar, Sagar M.; Huber, Harald; Leptihn, Sebastian; ...

    2016-02-25

    We report here the draft genome sequence of Pyrodictium occultum PL19 T, a marine hyperthermophilic archaeon. In addition, the genome provides insights into molecular and cellular adaptation mechanisms to life in extreme environments and the evolution of early organisms on Earth.

  14. Gravity: one of the driving forces for evolution.

    PubMed

    Volkmann, D; Baluska, F

    2006-12-01

    Mechanical load is 10(3) larger for land-living than for water-living organisms. As a consequence, antigravitational material in form of compound materials like lignified cell walls in plants and mineralised bones in animals occurs in land-living organisms preferentially. Besides cellulose, pectic substances of plant cell walls seem to function as antigravitational material in early phases of plant evolution and development. A testable hypothesis including vesicular recycling processes into the tensegrity concept is proposed for both sensing of gravitational force and responding by production of antigravitational material at the cellular level.

  15. Multifunctional enzymes from reduced genomes - model proteins for simple primordial metabolism?

    PubMed

    Seelig, Burckhard

    2017-08-01

    Billions of years of evolution have yielded today's complex metabolic networks driven by efficient and highly specialized enzymes. In contrast, the metabolism of the earliest cellular life forms was likely much simpler with only a few enzymes of comparatively low activity. It has been speculated that these early enzymes had low specificities and in turn were able to perform multiple functions. In this issue of Molecular Microbiology, Ferla et al. describe examples of enzymes that catalyze chemically distinct reactions while using the same active site. Most importantly, the authors demonstrated that the comparatively weak activities of these multifunctional enzymes are each physiologically relevant. These findings contrast with simply promiscuous enzyme activities, which have been described numerous times but are not physiologically relevant. Ferla et al. elegantly combined initial bioinformatics searches for enzyme candidates with sound kinetic measurements, evolutionary considerations and even structural discussions. The phenomenon of multifunctionality appears to be a mechanism for bacteria with reduced genomes to compensate for their lack of certain enzymes. In the broader context of evolution, these organisms could be considered living model systems to study features of long-extinct early cellular life. © 2017 John Wiley & Sons Ltd.

  16. A Phylogenomic Census of Molecular Functions Identifies Modern Thermophilic Archaea as the Most Ancient Form of Cellular Life

    PubMed Central

    Kim, Kyung Mo; Caetano-Anollés, Gustavo

    2014-01-01

    The origins of diversified life remain mysterious despite considerable efforts devoted to untangling the roots of the universal tree of life. Here we reconstructed phylogenies that described the evolution of molecular functions and the evolution of species directly from a genomic census of gene ontology (GO) definitions. We sampled 249 free-living genomes spanning organisms in the three superkingdoms of life, Archaea, Bacteria, and Eukarya, and used the abundance of GO terms as molecular characters to produce rooted phylogenetic trees. Results revealed an early thermophilic origin of Archaea that was followed by genome reduction events in microbial superkingdoms. Eukaryal genomes displayed extraordinary functional diversity and were enriched with hundreds of novel molecular activities not detected in the akaryotic microbial cells. Remarkably, the majority of these novel functions appeared quite late in evolution, synchronized with the diversification of the eukaryal superkingdom. The distribution of GO terms in superkingdoms confirms that Archaea appears to be the simplest and most ancient form of cellular life, while Eukarya is the most diverse and recent. PMID:25249790

  17. Cell-cell adhesion in the cnidaria: insights into the evolution of tissue morphogenesis.

    PubMed

    Magie, Craig R; Martindale, Mark Q

    2008-06-01

    Cell adhesion is a major aspect of cell biology and one of the fundamental processes involved in the development of a multicellular animal. Adhesive mechanisms, both cell-cell and between cell and extracellular matrix, are intimately involved in assembling cells into the three-dimensional structures of tissues and organs. The modulation of adhesive complexes could therefore be seen as a central component in the molecular control of morphogenesis, translating information encoded within the genome into organismal form. The availability of whole genomes from early-branching metazoa such as cnidarians is providing important insights into the evolution of adhesive processes by allowing for the easy identification of the genes involved in adhesion in these organisms. Discovery of the molecular nature of cell adhesion in the early-branching groups, coupled with comparisons across the metazoa, is revealing the ways evolution has tinkered with this vital cellular process in the generation of the myriad forms seen across the animal kingdom.

  18. Evolution of early embryogenesis in rhabditid nematodes

    PubMed Central

    Brauchle, Michael; Kiontke, Karin; MacMenamin, Philip; Fitch, David H. A.; Piano, Fabio

    2009-01-01

    The cell biological events that guide early embryonic development occur with great precision within species but can be quite diverse across species. How these cellular processes evolve and which molecular components underlie evolutionary changes is poorly understood. To begin to address these questions, we systematically investigated early embryogenesis, from the one- to the four-cell embryo, in 34 nematode species related to C. elegans. We found 40 cell-biological characters that captured the phenotypic differences between these species. By tracing the evolutionary changes on a molecular phylogeny, we found that these characters evolved multiple times and independently of one another. Strikingly, all these phenotypes are mimicked by single-gene RNAi experiments in C. elegans. We use these comparisons to hypothesize the molecular mechanisms underlying the evolutionary changes. For example, we predict that a cell polarity module was altered during the evolution of the Protorhabditis group and show that PAR-1, a kinase localized asymmetrically in C. elegans early embryos, is symmetrically localized in the one-cell stage of Protorhabditis group species. Our genome-wide approach identifies candidate molecules—and thereby modules—associated with evolutionary changes in cell-biological phenotypes. PMID:19643102

  19. Comparative Analysis of Proteomes and Functionomes Provides Insights into Origins of Cellular Diversification

    PubMed Central

    Caetano-Anollés, Gustavo

    2013-01-01

    Reconstructing the evolutionary history of modern species is a difficult problem complicated by the conceptual and technical limitations of phylogenetic tree building methods. Here, we propose a comparative proteomic and functionomic inferential framework for genome evolution that allows resolving the tripartite division of cells and sketching their history. Evolutionary inferences were derived from the spread of conserved molecular features, such as molecular structures and functions, in the proteomes and functionomes of contemporary organisms. Patterns of use and reuse of these traits yielded significant insights into the origins of cellular diversification. Results uncovered an unprecedented strong evolutionary association between Bacteria and Eukarya while revealing marked evolutionary reductive tendencies in the archaeal genomic repertoires. The effects of nonvertical evolutionary processes (e.g., HGT, convergent evolution) were found to be limited while reductive evolution and molecular innovation appeared to be prevalent during the evolution of cells. Our study revealed a strong vertical trace in the history of proteins and associated molecular functions, which was reliably recovered using the comparative genomics approach. The trace supported the existence of a stem line of descent and the very early appearance of Archaea as a diversified superkingdom, but failed to uncover a hidden canonical pattern in which Bacteria was the first superkingdom to deploy superkingdom-specific structures and functions. PMID:24492748

  20. Transmitted/Founder Viruses Rapidly Escape from CD8+ T Cell Responses in Acute Hepatitis C Virus Infection.

    PubMed

    Bull, Rowena A; Leung, Preston; Gaudieri, Silvana; Deshpande, Pooja; Cameron, Barbara; Walker, Melanie; Chopra, Abha; Lloyd, Andrew R; Luciani, Fabio

    2015-05-01

    The interaction between hepatitis C virus (HCV) and cellular immune responses during very early infection is critical for disease outcome. To date, the impact of antigen-specific cellular immune responses on the evolution of the viral population establishing infection and on potential escape has not been studied. Understanding these early host-virus dynamics is important for the development of a preventative vaccine. Three subjects who were followed longitudinally from the detection of viremia preseroconversion until disease outcome were analyzed. The evolution of transmitted/founder (T/F) viruses was undertaken using deep sequencing. CD8(+) T cell responses were measured via enzyme-linked immunosorbent spot (ELISpot) assay using HLA class I-restricted T/F epitopes. T/F viruses were rapidly extinguished in all subjects associated with either viral clearance (n = 1) or replacement with viral variants leading to establishment of chronic infection (n = 2). CD8(+) T cell responses against 11 T/F epitopes were detectable by 33 to 44 days postinfection, and 5 of these epitopes had not previously been reported. These responses declined rapidly in those who became chronically infected and were maintained in the subject who cleared infection. Higher-magnitude CD8(+) T cell responses were associated with rapid development of immune escape variants at a rate of up to 0.1 per day. Rapid escape from CD8(+) T cell responses has been quantified for the first time in the early phase of primary HCV infection. These rapid escape dynamics were associated with higher-magnitude CD8(+) T cell responses. These findings raise questions regarding optimal selection of immunogens for HCV vaccine development and suggest that detailed analysis of individual epitopes may be required. A major limitation in our detailed understanding of the role of immune response in HCV clearance has been the lack of data on very early primary infection when the transmitted viral variants successfully establish the acute infection. This study was made possible through the availability of specimens from a unique cohort of asymptomatic primary infection cases in whom the first available viremic samples were collected approximately 3 weeks postinfection and at regular intervals thereafter. The study included detailed examination of both the evolution of the viral population and the host cellular immune responses against the T/F viruses. The findings here provide the first evidence of host cellular responses targeting T/F variants and imposing a strong selective force toward viral escape. The results of this study provide useful insight on how virus escapes the host response and consequently on future analysis of vaccine-induced immunity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Membrane-Based Functions in the Origin of Cellular Life

    NASA Technical Reports Server (NTRS)

    Chipot, Christophe; New, Michael H.; Schweighofer, Karl; Pohorille, Andrew; Wilson, Michael A.

    1999-01-01

    Our objective is to help explain how the earliest ancestors of contemporary cells (protocells) performed their essential functions employing only the molecules available in the protobiological milieu. Our hypothesis is that vesicles, built of amphiphilic, membrane-forming materials, emerged early in protobiological evolution and served as precursors to protocells. We further assume that the cellular functions associated with contemporary membranes, such as capturing and, transducing of energy, signaling, or sequestering organic molecules and ions, evolved in these membrane environments. An alternative hypothesis is that these functions evolved in different environments and were incorporated into membrane-bound structures at some later stage of evolution. We focus on the application of the fundamental principles of physics and chemistry to determine how they apply to the formation of a primitive, functional cell. Rather than attempting to develop specific models for cellular functions and to identify the origin of the molecules which perform these functions, our goal is to define the structural and energetic conditions that any successful model must fulfill, therefore providing physico-chemical boundaries for these models. We do this by carrying out large-scale, molecular level computer simulations on systems of interest.

  2. Genomics and Metagenomics of Extreme Acidophiles in Biomining Environments

    NASA Astrophysics Data System (ADS)

    Holmes, D. S.

    2015-12-01

    Over 160 draft or complete genomes of extreme acidophiles (pH < 3) have been published, many of which are from bioleaching and other biomining environments, or are closely related to such microorganisms. In addition, there are over 20 metagenomic studies of such environments. This provides a rich source of latent data that can be exploited for understanding the biology of biomining environments and for advancing biotechnological applications. Genomic and metagenomic data are already yielding valuable insights into cellular processes, including carbon and nitrogen management, heavy metal and acid resistance, iron and sulfur oxido-reduction, linking biogeochemical processes to organismal physiology. The data also allow the construction of useful models of the ecophysiology of biomining environments and provide insight into the gene and genome evolution of extreme acidophiles. Additionally, since most of these acidophiles are also chemoautolithotrophs that use minerals as energy sources or electron sinks, their genomes can be plundered for clues about the evolution of cellular metabolism and bioenergetic pathways during the Archaean abiotic/biotic transition on early Earth. Acknowledgements: Fondecyt 1130683.

  3. Structure and function of a compound eye, more than half a billion years old.

    PubMed

    Schoenemann, Brigitte; Pärnaste, Helje; Clarkson, Euan N K

    2017-12-19

    Until now, the fossil record has not been capable of revealing any details of the mechanisms of complex vision at the beginning of metazoan evolution. Here, we describe functional units, at a cellular level, of a compound eye from the base of the Cambrian, more than half a billion years old. Remains of early Cambrian arthropods showed the external lattices of enormous compound eyes, but not the internal structures or anything about how those compound eyes may have functioned. In a phosphatized trilobite eye from the lower Cambrian of the Baltic, we found lithified remnants of cellular systems, typical of a modern focal apposition eye, similar to those of a bee or dragonfly. This shows that sophisticated eyes already existed at the beginning of the fossil record of higher organisms, while the differences between the ancient system and the internal structures of a modern apposition compound eye open important insights into the evolution of vision. Copyright © 2017 the Author(s). Published by PNAS.

  4. Early loss of Crebbp confers malignant stem cell properties on lymphoid progenitors.

    PubMed

    Horton, Sarah J; Giotopoulos, George; Yun, Haiyang; Vohra, Shabana; Sheppard, Olivia; Bashford-Rogers, Rachael; Rashid, Mamunur; Clipson, Alexandra; Chan, Wai-In; Sasca, Daniel; Yiangou, Loukia; Osaki, Hikari; Basheer, Faisal; Gallipoli, Paolo; Burrows, Natalie; Erdem, Ayşegül; Sybirna, Anastasiya; Foerster, Sarah; Zhao, Wanfeng; Sustic, Tonci; Petrunkina Harrison, Anna; Laurenti, Elisa; Okosun, Jessica; Hodson, Daniel; Wright, Penny; Smith, Ken G; Maxwell, Patrick; Fitzgibbon, Jude; Du, Ming Q; Adams, David J; Huntly, Brian J P

    2017-09-01

    Loss-of-function mutations of cyclic-AMP response element binding protein, binding protein (CREBBP) are prevalent in lymphoid malignancies. However, the tumour suppressor functions of CREBBP remain unclear. We demonstrate that loss of Crebbp in murine haematopoietic stem and progenitor cells (HSPCs) leads to increased development of B-cell lymphomas. This is preceded by accumulation of hyperproliferative lymphoid progenitors with a defective DNA damage response (DDR) due to a failure to acetylate p53. We identify a premalignant lymphoma stem cell population with decreased H3K27ac, which undergoes transcriptional and genetic evolution due to the altered DDR, resulting in lymphomagenesis. Importantly, when Crebbp is lost later in lymphopoiesis, cellular abnormalities are lost and tumour generation is attenuated. We also document that CREBBP mutations may occur in HSPCs from patients with CREBBP-mutated lymphoma. These data suggest that earlier loss of Crebbp is advantageous for lymphoid transformation and inform the cellular origins and subsequent evolution of lymphoid malignancies.

  5. Coping with cyclic oxygen availability: evolutionary aspects.

    PubMed

    Flück, Martin; Webster, Keith A; Graham, Jeffrey; Giomi, Folco; Gerlach, Frank; Schmitz, Anke

    2007-10-01

    Both the gradual rise in atmospheric oxygen over the Proterozoic Eon as well as episodic fluctuations in oxygen over several million-year time spans during the Phanerozoic Era, have arguably exerted strong selective forces on cellular and organismic respiratory specialization and evolution. The rise in atmospheric oxygen, some 2 billion years after the origin of life, dramatically altered cell biology and set the stage for the appearance of multicelluar life forms in the Vendian (Ediacaran) Period of the Neoproterozoic Era. Over much of the Paleozoic, the level of oxygen in the atmosphere was near the present atmospheric level (21%). In the Late Paleozoic, however, there were extended times during which the level of atmospheric oxygen was either markedly lower or markedly higher than 21%. That these Paleozoic shifts in atmospheric oxygen affected the biota is suggested by the correlations between: (1) Reduced oxygen and the occurrences of extinctions, a lowered biodiversity and shifts in phyletic succession, and (2) During hyperoxia, the corresponding occurrence of phenomena such as arthropod gigantism, the origin of insect flight, and the evolution of vertebrate terrestriality. Basic similarities in features of adaptation to hyopoxia, manifest in living organisms at levels ranging from genetic and cellular to physiological and behavioral, suggest the common and early origin of a suite of adaptive mechanisms responsive to fluctuations in ambient oxygen. Comparative integrative approaches addressing the molecular bases of phenotypic adjustments to cyclic oxygen fluctuation provide broad insight into the incremental steps leading to the early evolution of homeostatic respiratory mechanisms and to the specialization of organismic respiratory function.

  6. The Origin and Early Evolution of Membrane Proteins

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Schweighofer, Karl; Wilson, Michael A.

    2005-01-01

    Membrane proteins mediate functions that are essential to all cells. These functions include transport of ions, nutrients and waste products across cell walls, capture of energy and its transduction into the form usable in chemical reactions, transmission of environmental signals to the interior of the cell, cellular growth and cell volume regulation. In the absence of membrane proteins, ancestors of cell (protocells), would have had only very limited capabilities to communicate with their environment. Thus, it is not surprising that membrane proteins are quite common even in simplest prokaryotic cells. Considering that contemporary membrane channels are large and complex, both structurally and functionally, a question arises how their presumably much simpler ancestors could have emerged, perform functions and diversify in early protobiological evolution. Remarkably, despite their overall complexity, structural motifs in membrane proteins are quite simple, with a-helices being most common. This suggests that these proteins might have evolved from simple building blocks. To explain how these blocks could have organized into functional structures, we performed large-scale, accurate computer simulations of folding peptides at a water-membrane interface, their insertion into the membrane, self-assembly into higher-order structures and function. The results of these simulations, combined with analysis of structural and functional experimental data led to the first integrated view of the origin and early evolution of membrane proteins.

  7. Molecular paleontology and complexity in the last eukaryotic common ancestor

    PubMed Central

    Koumandou, V. Lila; Wickstead, Bill; Ginger, Michael L.; van der Giezen, Mark; Dacks, Joel B.

    2013-01-01

    Eukaryogenesis, the origin of the eukaryotic cell, represents one of the fundamental evolutionary transitions in the history of life on earth. This event, which is estimated to have occurred over one billion years ago, remains rather poorly understood. While some well-validated examples of fossil microbial eukaryotes for this time frame have been described, these can provide only basic morphology and the molecular machinery present in these organisms has remained unknown. Complete and partial genomic information has begun to fill this gap, and is being used to trace proteins and cellular traits to their roots and to provide unprecedented levels of resolution of structures, metabolic pathways and capabilities of organisms at these earliest points within the eukaryotic lineage. This is essentially allowing a molecular paleontology. What has emerged from these studies is spectacular cellular complexity prior to expansion of the eukaryotic lineages. Multiple reconstructed cellular systems indicate a very sophisticated biology, which by implication arose following the initial eukaryogenesis event but prior to eukaryotic radiation and provides a challenge in terms of explaining how these early eukaryotes arose and in understanding how they lived. Here, we provide brief overviews of several cellular systems and the major emerging conclusions, together with predictions for subsequent directions in evolution leading to extant taxa. We also consider what these reconstructions suggest about the life styles and capabilities of these earliest eukaryotes and the period of evolution between the radiation of eukaryotes and the eukaryogenesis event itself. PMID:23895660

  8. The Intracellular Destiny of the Protein Corona: A Study on its Cellular Internalization and Evolution.

    PubMed

    Bertoli, Filippo; Garry, David; Monopoli, Marco P; Salvati, Anna; Dawson, Kenneth A

    2016-11-22

    It has been well established that the early stages of nanoparticle-cell interactions are governed, at least in part, by the layer of proteins and other biomolecules adsorbed and slowly exchanged with the surrounding biological media (biomolecular corona). Subsequent to membrane interactions, nanoparticles are typically internalized into the cell and trafficked along defined pathways such as, in many cases, the endolysosomal pathway. Indeed, if the original corona is partially retained on the nanoparticle surface, the biomolecules in this layer may play an important role in determining subsequent cellular processing. In this work, using a combination of organelle separation and fluorescence labeling of the initial extracellular corona, we clarify its intracellular evolution as nanoparticles travel within the cell. We show that specific proteins present in the original protein corona are retained on the nanoparticles until they accumulate in lysosomes, and, once there, they are degraded. We also report on how different bare surfaces (amino and carboxyl modified) affect the details of this evolution. One overarching discovery is that the same serum proteins can exhibit different intracellular processing when carried inside cells by nanoparticles, as components of their corona, compared to what is observed when they are transported freely from the extracellular medium.

  9. Insects as test systems for assessing the potential role of microgravity in biological development and evolution

    NASA Astrophysics Data System (ADS)

    Vernós, I.; Carratalá, M.; González-Jurado, J.; Valverde, J. R.; Calleja, M.; Domingo, A.; Vinós, J.; Cervera, M.; Marco, R.

    Gravity and radiation are undoubtedly the two major environmental factors altered in space. Gravity is a weak force, which creates a permanent potential field acting on the mass of biological systems and their cellular components, strongly reduced in space flights. Developmental systems, particularly at very early stages, provide the larger cellular compartments known, where the effects of alterations in the size of the gravity vector on living organisms can be more effectively tested. The insects, one of the more highly evolved classes of animals in which early development occurs in a syncytial embryo, are systems particularly well suited to test these effects and the specific developmental mechanisms affected. Furthermore, they share some basic features such as small size, short life cycles, relatively high radio-resistance, etc. and show a diversity of developmental strategies and tempos advantageous in experiments of this type in space. Drosophila melanogaster, the current biological paradigm to study development, with so much genetic and evolutionary background available, is clearly the reference organism for these studies. The current evidence on the effects of the physical parameters altered in space flights on insect development indicate a surprising correlation between effects seen on the fast developing and relatively small Drosophila embryo and the more slowly developing and large Carausius morosus system. In relation to the issue of the importance of developmental and environmental constraints in biological evolution, still the missing link in current evolutionary thinking, insects and space facilities for long-term experiments could provide useful experimental settings where to critically assess how development and evolution may be interconnected. Finally, it has to be pointed out that since there are experimental data indicating a possible synergism between microgravity and space radiation, possible effects of space radiation should be taken into account in the planning and evaluation of experiments designed to test the potential role of microgravity on biological development and evolution.

  10. Insects as test systems for assessing the potential role of microgravity in biological development and evolution.

    PubMed

    Vernós, I; Carratalá, M; González-Jurado, J; Valverde, J R; Calleja, M; Domingo, A; Vinós, J; Cervera, M; Marco, R

    1989-01-01

    Gravity and radiation are undoubtedly the two major environmental factors altered in space. Gravity is a weak force, which creates a permanent potential field acting on the mass of biological systems and their cellular components, strongly reduced in space flights. Developmental systems, particularly at very early stages, provide the larger cellular compartments known, where the effects of alterations in the size of the gravity vector on living organisms can be more effectively tested. The insects, one of the more highly evolved classes of animals in which early development occurs in a syncytial embryo, are systems particularly well suited to test these effects and the specific developmental mechanisms affected. Furthermore, they share some basic features such as small size, short life cycles, relatively high radio-resistance, etc. and show a diversity of developmental strategies and tempos advantageous in experiments of this type in space. Drosophila melanogaster, the current biological paradigm to study development, with so much genetic and evolutionary background available, is clearly the reference organism for these studies. The current evidence on the effects of the physical parameters altered in space flights on insect development indicate a surprising correlation between effects seen on the fast developing and relatively small Drosophila embryo and the more slowly developing and large Carausius morosus system. In relation to the issue of the importance of developmental and environmental constraints in biological evolution, still the missing link in current evolutionary thinking, insects and space facilities for long-term experiments could provide useful experimental settings where to critically assess how development and evolution may be interconnected. Finally, it has to be pointed out that since there are experimental data indicating a possible synergism between microgravity and space radiation, possible effects of space radiation should be taken into account in the planning and evaluation of experiments designed to test the potential role of microgravity on biological developmental and evolution.

  11. Extraterrestrial Organic Chemistry: From the Interstellar Medium to the Origins of Life

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Extraterrestrially delivered organics in the origin of cellular life. Various processes leading to the emergence of cellular life from organics delivered from space to earth or other planetary bodies in the solar system will be reviewed. The focus will be on: (1) self-assembly of amphiphilic material to vesicles and other structures, such as micelles and multilayers, and its role in creating environments suitable for chemical catalysis, (2) a possible role of extraterrestrial delivery of organics in the formation of the simplest bioenergetics (3) mechanisms leading from amino acids or their precursors to simple peptides and, subsequently, to the evolution of metabolism. These issues will be discussed from two opposite points of view: (1) Which molecules could have been particularly useful in the protobiological evolution; this may provide focus for searching for these molecules in interstellar media. (2) Assuming that a considerable part of the inventory of organic matter on the early earth was delivered extraterrestrially, what does relative abundance of different organics in space tell us about the scenario leading to the origin of life.

  12. Molecular Evolution of Aminoacyl tRNA Synthetase Proteins in the Early History of Life

    NASA Astrophysics Data System (ADS)

    Fournier, Gregory P.; Andam, Cheryl P.; Alm, Eric J.; Gogarten, J. Peter

    2011-12-01

    Aminoacyl-tRNA synthetases (aaRS) consist of several families of functionally conserved proteins essential for translation and protein synthesis. Like nearly all components of the translation machinery, most aaRS families are universally distributed across cellular life, being inherited from the time of the Last Universal Common Ancestor (LUCA). However, unlike the rest of the translation machinery, aaRS have undergone numerous ancient horizontal gene transfers, with several independent events detected between domains, and some possibly involving lineages diverging before the time of LUCA. These transfers reveal the complexity of molecular evolution at this early time, and the chimeric nature of genomes within cells that gave rise to the major domains. Additionally, given the role of these protein families in defining the amino acids used for protein synthesis, sequence reconstruction of their pre-LUCA ancestors can reveal the evolutionary processes at work in the origin of the genetic code. In particular, sequence reconstructions of the paralog ancestors of isoleucyl- and valyl- RS provide strong empirical evidence that at least for this divergence, the genetic code did not co-evolve with the aaRSs; rather, both amino acids were already part of the genetic code before their cognate aaRSs diverged from their common ancestor. The implications of this observation for the early evolution of RNA-directed protein biosynthesis are discussed.

  13. Did the Ancient Crenarchaeal Viruses from the Dawn of Life Survive Exceptionally Well the Eons of Meteorite Bombardment?

    NASA Astrophysics Data System (ADS)

    Jalasvuori, Matti; Bamford, Jaana K. H.

    2009-02-01

    The viruses of Crenarchaeota are unexpectedly diverse in their morphologies, and most have no, or few, genes related to bacterial, eukaryal, euryarchaeal, or other crenarchaeal viruses. Though several different virus morphotypes have been discovered in enrichment cultures of microbial communities collected from geothermally heated environments around the world, the origins of such differences are unknown. We present a model that combines consideration of Earth's geological history, the early emergence of hyperthermophiles, and the early formation of viruses from primordial genes with the intent to explain this vast diversity of crenarchaeal viruses. Several meteorite- or flood basalt-induced extinction events in the past resulted in a reduction in the numbers of cellular organisms. Acidophilic hyperthermophiles survived the global thermal rises and, therefore, still host a wide variety of ancient virus morphotypes. In contrast, other, more "recent" cellular lineages have lost the majority of their original viruses, as they have been separated geologically and genetically, and have gone through several near-extinction-level episodes of decimation. This view suggests that, among crenarchaeal viruses, the direct descendants of very early genetic elements are well preserved; thus, their examination would improve our understanding as to how life actually evolved from its origins to the complex cellular systems we see today. We also present a hypothesis that describes the role of viral armadas and extinctions during evolution, as extinctions may have episodically eliminated most of the abusive parasites.

  14. Endosymbiosis and Eukaryotic Cell Evolution.

    PubMed

    Archibald, John M

    2015-10-05

    Understanding the evolution of eukaryotic cellular complexity is one of the grand challenges of modern biology. It has now been firmly established that mitochondria and plastids, the classical membrane-bound organelles of eukaryotic cells, evolved from bacteria by endosymbiosis. In the case of mitochondria, evidence points very clearly to an endosymbiont of α-proteobacterial ancestry. The precise nature of the host cell that partnered with this endosymbiont is, however, very much an open question. And while the host for the cyanobacterial progenitor of the plastid was undoubtedly a fully-fledged eukaryote, how - and how often - plastids moved from one eukaryote to another during algal diversification is vigorously debated. In this article I frame modern views on endosymbiotic theory in a historical context, highlighting the transformative role DNA sequencing played in solving early problems in eukaryotic cell evolution, and posing key unanswered questions emerging from the age of comparative genomics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Host-parasite oscillation dynamics and evolution in a compartmentalized RNA replication system.

    PubMed

    Bansho, Yohsuke; Furubayashi, Taro; Ichihashi, Norikazu; Yomo, Tetsuya

    2016-04-12

    To date, various cellular functions have been reconstituted in vitro such as self-replication systems using DNA, RNA, and proteins. The next important challenges include the reconstitution of the interactive networks of self-replicating species and investigating how such interactions generate complex ecological behaviors observed in nature. Here, we synthesized a simple replication system composed of two self-replicating host and parasitic RNA species. We found that the parasitic RNA eradicates the host RNA under bulk conditions; however, when the system is compartmentalized, a continuous oscillation pattern in the population dynamics of the two RNAs emerges. The oscillation pattern changed as replication proceeded mainly owing to the evolution of the host RNA. These results demonstrate that a cell-like compartment plays an important role in host-parasite ecological dynamics and suggest that the origin of the host-parasite coevolution might date back to the very early stages of the evolution of life.

  16. Origin of life: LUCA and extracellular membrane vesicles (EMVs)

    NASA Astrophysics Data System (ADS)

    Gill, S.; Forterre, P.

    2016-01-01

    Cells from the three domains of life produce extracellular membrane vesicles (EMVs), suggesting that EMV production is an important aspect of cellular physiology. EMVs have been implicated in many aspects of cellular life in all domains, including stress response, toxicity against competing strains, pathogenicity, detoxification and resistance against viral attack. These EMVs represent an important mode of inter-cellular communication by serving as vehicles for transfer of DNA, RNA, proteins and lipids between cells. Here, we review recent progress in the understanding of EMV biology and their various roles. We focus on the role of membrane vesicles in early cellular evolution and how they would have helped shape the nature of the last universal common ancestor. A membrane-protected micro-environment would have been a key to the survival of spontaneous molecular systems and efficient metabolic reactions. Interestingly, the morphology of EMVs is strongly reminiscent of the morphology of some virions. It is thus tempting to make a link between the origin of the first protocell via the formation of vesicles and the origin of viruses.

  17. Diverse mechanisms evolved by DNA viruses to inhibit early host defenses

    PubMed Central

    Sheng, Xinlei; Song, Bokai; Cristea, Ileana M.

    2016-01-01

    In mammalian cells, early defenses against infection by pathogens are mounted through a complex network of signaling pathways shepherded by immune-modulatory pattern-recognition receptors. As obligate parasites, the survival of viruses is dependent upon the evolutionary acquisition of mechanisms that tactfully dismantle and subvert the cellular intrinsic and innate immune responses. Here, we review the diverse mechanisms by which viruses that accommodate DNA genomes are able to circumvent activation of cellular immunity. We start by discussing viral manipulation of host defense protein levels by either transcriptional regulation or protein degradation. We next review viral strategies used to repurpose or inhibit these cellular immune factors by molecular hijacking or by regulating their post-translational modification status. Additionally, we explore the infection-induced temporal modulation of apoptosis to facilitate viral replication and spread. Lastly, the co-evolution of viruses with their hosts is highlighted by the acquisition of elegant mechanisms for suppressing host defenses via viral mimicry of host factors. In closing, we present a perspective on how characterizing these viral evasion tactics both broadens the understanding of virus-host interactions and reveals essential functions of the immune system at the molecular level. This knowledge is critical in understanding the sources of viral pathogenesis, as well as for the design of antiviral therapeutics and autoimmunity treatments. PMID:27650455

  18. Evolution of the new vertebrate head by co-option of an ancient chordate skeletal tissue.

    PubMed

    Jandzik, David; Garnett, Aaron T; Square, Tyler A; Cattell, Maria V; Yu, Jr-Kai; Medeiros, Daniel M

    2015-02-26

    A defining feature of vertebrates (craniates) is a pronounced head that is supported and protected by a robust cellular endoskeleton. In the first vertebrates, this skeleton probably consisted of collagenous cellular cartilage, which forms the embryonic skeleton of all vertebrates and the adult skeleton of modern jawless and cartilaginous fish. In the head, most cellular cartilage is derived from a migratory cell population called the neural crest, which arises from the edges of the central nervous system. Because collagenous cellular cartilage and neural crest cells have not been described in invertebrates, the appearance of cellular cartilage derived from neural crest cells is considered a turning point in vertebrate evolution. Here we show that a tissue with many of the defining features of vertebrate cellular cartilage transiently forms in the larvae of the invertebrate chordate Branchiostoma floridae (Florida amphioxus). We also present evidence that during evolution, a key regulator of vertebrate cartilage development, SoxE, gained new cis-regulatory sequences that subsequently directed its novel expression in neural crest cells. Together, these results suggest that the origin of the vertebrate head skeleton did not depend on the evolution of a new skeletal tissue, as is commonly thought, but on the spread of this tissue throughout the head. We further propose that the evolution of cis-regulatory elements near an ancient regulator of cartilage differentiation was a major factor in the evolution of the vertebrate head skeleton.

  19. Roles for FGF in lamprey pharyngeal pouch formation and skeletogenesis highlight ancestral functions in the vertebrate head.

    PubMed

    Jandzik, David; Hawkins, M Brent; Cattell, Maria V; Cerny, Robert; Square, Tyler A; Medeiros, Daniel M

    2014-02-01

    A defining feature of vertebrates (craniates) is a pronounced head supported and protected by a cellularized endoskeleton. In jawed vertebrates (gnathostomes), the head skeleton is made of rigid three-dimensional elements connected by joints. By contrast, the head skeleton of modern jawless vertebrates (agnathans) consists of thin rods of flexible cellular cartilage, a condition thought to reflect the ancestral vertebrate state. To better understand the origin and evolution of the gnathostome head skeleton, we have been analyzing head skeleton development in the agnathan, lamprey. The fibroblast growth factors FGF3 and FGF8 have various roles during head development in jawed vertebrates, including pharyngeal pouch morphogenesis, patterning of the oral skeleton and chondrogenesis. We isolated lamprey homologs of FGF3, FGF8 and FGF receptors and asked whether these functions are ancestral features of vertebrate development or gnathostome novelties. Using gene expression and pharmacological agents, we found that proper formation of the lamprey head skeleton requires two phases of FGF signaling: an early phase during which FGFs drive pharyngeal pouch formation, and a later phase when they directly regulate skeletal differentiation and patterning. In the context of gene expression and functional studies in gnathostomes, our results suggest that these roles for FGFs arose in the first vertebrates and that the evolution of the jaw and gnathostome cellular cartilage was driven by changes developmentally downstream from pharyngeal FGF signaling.

  20. Examining the Relationship between Pre-Malignant Breast Lesions, Carcinogenesis and Tumor Evolution in the Mammary Epithelium Using an Agent-Based Model.

    PubMed

    Chapa, Joaquin; An, Gary; Kulkarni, Swati A

    2016-01-01

    Breast cancer, the product of numerous rare mutational events that occur over an extended time period, presents numerous challenges to investigators interested in studying the transformation from normal breast epithelium to malignancy using traditional laboratory methods, particularly with respect to characterizing transitional and pre-malignant states. Dynamic computational modeling can provide insight into these pathophysiological dynamics, and as such we use a previously validated agent-based computational model of the mammary epithelium (the DEABM) to investigate the probabilistic mechanisms by which normal populations of ductal cells could transform into states replicating features of both pre-malignant breast lesions and a diverse set of breast cancer subtypes. The DEABM consists of simulated cellular populations governed by algorithms based on accepted and previously published cellular mechanisms. Cells respond to hormones, undergo mitosis, apoptosis and cellular differentiation. Heritable mutations to 12 genes prominently implicated in breast cancer are acquired via a probabilistic mechanism. 3000 simulations of the 40-year period of menstrual cycling were run in wild-type (WT) and BRCA1-mutated groups. Simulations were analyzed by development of hyperplastic states, incidence of malignancy, hormone receptor and HER-2 status, frequency of mutation to particular genes, and whether mutations were early events in carcinogenesis. Cancer incidence in WT (2.6%) and BRCA1-mutated (45.9%) populations closely matched published epidemiologic rates. Hormone receptor expression profiles in both WT and BRCA groups also closely matched epidemiologic data. Hyperplastic populations carried more mutations than normal populations and mutations were similar to early mutations found in ER+ tumors (telomerase, E-cadherin, TGFB, RUNX3, p < .01). ER- tumors carried significantly more mutations and carried more early mutations in BRCA1, c-MYC and genes associated with epithelial-mesenchymal transition. The DEABM generates diverse tumors that express tumor markers consistent with epidemiologic data. The DEABM also generates non-invasive, hyperplastic populations, analogous to atypia or ductal carcinoma in situ (DCIS), via mutations to genes known to be present in hyperplastic lesions and as early mutations in breast cancers. The results demonstrate that agent-based models are well-suited to studying tumor evolution through stages of carcinogenesis and have the potential to be used to develop prevention and treatment strategies.

  1. Inferring the Limit Behavior of Some Elementary Cellular Automata

    NASA Astrophysics Data System (ADS)

    Ruivo, Eurico L. P.; de Oliveira, Pedro P. B.

    Cellular automata locally define dynamical systems, discrete in space, time and in the state variables, capable of displaying arbitrarily complex global emergent behavior. One core question in the study of cellular automata refers to their limit behavior, that is, to the global dynamical features in an infinite time evolution. Previous works have shown that for finite time evolutions, the dynamics of one-dimensional cellular automata can be described by regular languages and, therefore, by finite automata. Such studies have shown the existence of growth patterns in the evolution of such finite automata for some elementary cellular automata rules and also inferred the limit behavior of such rules based upon the growth patterns; however, the results on the limit behavior were obtained manually, by direct inspection of the structures that arise during the time evolution. Here we present the formalization of an automatic method to compute such structures. Based on this, the rules of the elementary cellular automata space were classified according to the existence of a growth pattern in their finite automata. Also, we present a method to infer the limit graph of some elementary cellular automata rules, derived from the analysis of the regular expressions that describe their behavior in finite time. Finally, we analyze some attractors of two rules for which we could not compute the whole limit set.

  2. Developmental Progression in the Coral Acropora digitifera Is Controlled by Differential Expression of Distinct Regulatory Gene Networks

    PubMed Central

    Reyes-Bermudez, Alejandro; Villar-Briones, Alejandro; Ramirez-Portilla, Catalina; Hidaka, Michio; Mikheyev, Alexander S.

    2016-01-01

    Corals belong to the most basal class of the Phylum Cnidaria, which is considered the sister group of bilaterian animals, and thus have become an emerging model to study the evolution of developmental mechanisms. Although cell renewal, differentiation, and maintenance of pluripotency are cellular events shared by multicellular animals, the cellular basis of these fundamental biological processes are still poorly understood. To understand how changes in gene expression regulate morphogenetic transitions at the base of the eumetazoa, we performed quantitative RNA-seq analysis during Acropora digitifera’s development. We collected embryonic, larval, and adult samples to characterize stage-specific transcription profiles, as well as broad expression patterns. Transcription profiles reconstructed development revealing two main expression clusters. The first cluster grouped blastula and gastrula and the second grouped subsequent developmental time points. Consistently, we observed clear differences in gene expression between early and late developmental transitions, with higher numbers of differentially expressed genes and fold changes around gastrulation. Furthermore, we identified three coexpression clusters that represented discrete gene expression patterns. During early transitions, transcriptional networks seemed to regulate cellular fate and morphogenesis of the larval body. In late transitions, these networks seemed to play important roles preparing planulae for switch in lifestyle and regulation of adult processes. Although developmental progression in A. digitifera is regulated to some extent by differential coexpression of well-defined gene networks, stage-specific transcription profiles appear to be independent entities. While negative regulation of transcription is predominant in early development, cell differentiation was upregulated in larval and adult stages. PMID:26941230

  3. Symbiotic Origin of Aging.

    PubMed

    Greenberg, Edward F; Vatolin, Sergei

    2018-06-01

    Normally aging cells are characterized by an unbalanced mitochondrial dynamic skewed toward punctate mitochondria. Genetic and pharmacological manipulation of mitochondrial fission/fusion cycles can contribute to both accelerated and decelerated cellular or organismal aging. In this work, we connect these experimental data with the symbiotic theory of mitochondrial origin to generate new insight into the evolutionary origin of aging. Mitochondria originated from autotrophic α-proteobacteria during an ancient endosymbiotic event early in eukaryote evolution. To expand beyond individual host cells, dividing α-proteobacteria initiated host cell lysis; apoptosis is a product of this original symbiont cell lytic exit program. Over the course of evolution, the host eukaryotic cell attenuated the harmful effect of symbiotic proto-mitochondria, and modern mitochondria are now functionally interdependent with eukaryotic cells; they retain their own circular genomes and independent replication timing. In nondividing differentiated or multipotent eukaryotic cells, intracellular mitochondria undergo repeated fission/fusion cycles, favoring fission as organisms age. The discordance between cellular quiescence and mitochondrial proliferation generates intracellular stress, eventually leading to a gradual decline in host cell performance and age-related pathology. Hence, aging evolved from a conflict between maintenance of a quiescent, nonproliferative state and the evolutionarily conserved propagation program driving the life cycle of former symbiotic organisms: mitochondria.

  4. The Trichoplax Genome and the Nature of Placozoans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Mansi; Begovic, Emina; Chapman, Jarrod

    2008-08-01

    Placozoans are arguably the simplest free-living animals, possibly evoking an early stage in metazoan evolution, yet their biology is poorly understood. Here we report the sequencing and analysis of the {approx}98 million base pair nuclear genome of the placozoan Trichoplax adhaerens. Whole genome phylogenetic analysis suggests that placozoans belong to a 'eumetazoan' clade that includes cnidarians and bilaterians, with sponges as the earliest diverging animals. The compact genome exhibits conserved gene content, gene structure, and synteny relative to the human and other complex eumetazoan genomes. Despite the apparent cellular and organismal simplicity of Trichoplax, its genome encodes a rich arraymore » of transcription factor and signaling pathway genes that are typically associated with diverse cell types and developmental processes in eumetazoans, motivating further searches for cryptic cellular complexity and/or as yet unobserved life history stages.« less

  5. Phylogenetic Tracings of Proteome Size Support the Gradual Accretion of Protein Structural Domains and the Early Origin of Viruses from Primordial Cells

    PubMed Central

    Nasir, Arshan; Kim, Kyung Mo; Caetano-Anollés, Gustavo

    2017-01-01

    Untangling the origin and evolution of viruses remains a challenging proposition. We recently studied the global distribution of protein domain structures in thousands of completely sequenced viral and cellular proteomes with comparative genomics, phylogenomics, and multidimensional scaling methods. A tree of life describing the evolution of proteomes revealed viruses emerging from the base of the tree as a fourth supergroup of life. A tree of domains indicated an early origin of modern viral lineages from ancient cells that co-existed with the cellular ancestors. However, it was recently argued that the rooting of our trees and the basal placement of viruses was artifactually induced by small genome (proteome) size. Here we show that these claims arise from misunderstanding and misinterpretations of cladistic methodology. Trees are reconstructed unrooted, and thus, their topologies cannot be distorted a posteriori by the rooting methodology. Tracing proteome size in trees and multidimensional views of evolutionary relationships as well as tests of leaf stability and exclusion/inclusion of taxa demonstrated that the smallest proteomes were neither attracted toward the root nor caused any topological distortions of the trees. Simulations confirmed that taxa clustering patterns were independent of proteome size and were determined by the presence of known evolutionary relatives in data matrices, highlighting the need for broader taxon sampling in phylogeny reconstruction. Instead, phylogenetic tracings of proteome size revealed a slowdown in innovation of the structural domain vocabulary and four regimes of allometric scaling that reflected a Heaps law. These regimes explained increasing economies of scale in the evolutionary growth and accretion of kernel proteome repertoires of viruses and cellular organisms that resemble growth of human languages with limited vocabulary sizes. Results reconcile dynamic and static views of domain frequency distributions that are consistent with the axiom of spatiotemporal continuity that is tenet of evolutionary thinking. PMID:28690608

  6. Order Matters: The Order of Somatic Mutations Influences Cancer Evolution.

    PubMed

    Kent, David G; Green, Anthony R

    2017-04-03

    Cancers evolve as a consequence of multiple somatic lesions, with competition between subclones and sequential subclonal evolution. Some driver mutations arise either early or late in the evolution of different individual tumors, suggesting that the final malignant properties of a subclone reflect the sum of mutations acquired rather than the order in which they arose. However, very little is known about the cellular consequences of altering the order in which mutations are acquired. Recent studies of human myeloproliferative neoplasms show that the order in which individual mutations are acquired has a dramatic impact on the cell biological and molecular properties of tumor-initiating cells. Differences in clinical presentation, complications, and response to targeted therapy were all observed and implicate mutation order as an important player in cancer biology. These observations represent the first demonstration that the order of mutation acquisition influences stem and progenitor cell behavior and clonal evolution in any cancer. Thus far, the impact of different mutation orders has only been studied in hematological malignancies, and analogous studies of solid cancers are now required. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  7. Cellular Automata and the Humanities.

    ERIC Educational Resources Information Center

    Gallo, Ernest

    1994-01-01

    The use of cellular automata to analyze several pre-Socratic hypotheses about the evolution of the physical world is discussed. These hypotheses combine characteristics of both rigorous and metaphoric language. Since the computer demands explicit instructions for each step in the evolution of the automaton, such models can reveal conceptual…

  8. Origin of the RNA world: The fate of nucleobases in warm little ponds

    PubMed Central

    Pudritz, Ralph E.; Semenov, Dmitry A.; Henning, Thomas K.

    2017-01-01

    Before the origin of simple cellular life, the building blocks of RNA (nucleotides) had to form and polymerize in favorable environments on early Earth. At this time, meteorites and interplanetary dust particles delivered organics such as nucleobases (the characteristic molecules of nucleotides) to warm little ponds whose wet–dry cycles promoted rapid polymerization. We build a comprehensive numerical model for the evolution of nucleobases in warm little ponds leading to the emergence of the first nucleotides and RNA. We couple Earth’s early evolution with complex prebiotic chemistry in these environments. We find that RNA polymers must have emerged very quickly after the deposition of meteorites (less than a few years). Their constituent nucleobases were primarily meteoritic in origin and not from interplanetary dust particles. Ponds appeared as continents rose out of the early global ocean, but this increasing availability of “targets” for meteorites was offset by declining meteorite bombardment rates. Moreover, the rapid losses of nucleobases to pond seepage during wet periods, and to UV photodissociation during dry periods, mean that the synthesis of nucleotides and their polymerization into RNA occurred in just one to a few wet–dry cycles. Under these conditions, RNA polymers likely appeared before 4.17 billion years ago. PMID:28973920

  9. Origin of the RNA world: The fate of nucleobases in warm little ponds.

    PubMed

    Pearce, Ben K D; Pudritz, Ralph E; Semenov, Dmitry A; Henning, Thomas K

    2017-10-24

    Before the origin of simple cellular life, the building blocks of RNA (nucleotides) had to form and polymerize in favorable environments on early Earth. At this time, meteorites and interplanetary dust particles delivered organics such as nucleobases (the characteristic molecules of nucleotides) to warm little ponds whose wet-dry cycles promoted rapid polymerization. We build a comprehensive numerical model for the evolution of nucleobases in warm little ponds leading to the emergence of the first nucleotides and RNA. We couple Earth's early evolution with complex prebiotic chemistry in these environments. We find that RNA polymers must have emerged very quickly after the deposition of meteorites (less than a few years). Their constituent nucleobases were primarily meteoritic in origin and not from interplanetary dust particles. Ponds appeared as continents rose out of the early global ocean, but this increasing availability of "targets" for meteorites was offset by declining meteorite bombardment rates. Moreover, the rapid losses of nucleobases to pond seepage during wet periods, and to UV photodissociation during dry periods, mean that the synthesis of nucleotides and their polymerization into RNA occurred in just one to a few wet-dry cycles. Under these conditions, RNA polymers likely appeared before 4.17 billion years ago.

  10. Cellular Particle Dynamics simulation of biomechanical relaxation processes of multi-cellular systems

    NASA Astrophysics Data System (ADS)

    McCune, Matthew; Kosztin, Ioan

    2013-03-01

    Cellular Particle Dynamics (CPD) is a theoretical-computational-experimental framework for describing and predicting the time evolution of biomechanical relaxation processes of multi-cellular systems, such as fusion, sorting and compression. In CPD, cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through numerical integration of their equations of motion. Here we present CPD simulation results for the fusion of both spherical and cylindrical multi-cellular aggregates. First, we calibrate the relevant CPD model parameters for a given cell type by comparing the CPD simulation results for the fusion of two spherical aggregates to the corresponding experimental results. Next, CPD simulations are used to predict the time evolution of the fusion of cylindrical aggregates. The latter is relevant for the formation of tubular multi-cellular structures (i.e., primitive blood vessels) created by the novel bioprinting technology. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  11. Membrane contact sites, ancient and central hubs of cellular lipid logistics.

    PubMed

    Jain, Amrita; Holthuis, Joost C M

    2017-09-01

    Membrane contact sites (MCSs) are regions where two organelles are closely apposed to facilitate molecular communication and promote a functional integration of compartmentalized cellular processes. There is growing evidence that MCSs play key roles in controlling intracellular lipid flows and distributions. Strikingly, even organelles connected by vesicular trafficking exchange lipids en bulk via lipid transfer proteins that operate at MCSs. Herein, we describe how MCSs developed into central hubs of lipid logistics during the evolution of eukaryotic cells. We then focus on how modern eukaryotes exploit MCSs to help solve a major logistical problem, namely to preserve the unique lipid mixtures of their early and late secretory organelles in the face of extensive vesicular trafficking. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann. Copyright © 2017. Published by Elsevier B.V.

  12. Cellular preservation of musculoskeletal specializations in the Cretaceous bird Confuciusornis

    PubMed Central

    Jiang, Baoyu; Zhao, Tao; Regnault, Sophie; Edwards, Nicholas P.; Kohn, Simon C.; Li, Zhiheng; Wogelius, Roy A.; Benton, Michael J.; Hutchinson, John R.

    2017-01-01

    The hindlimb of theropod dinosaurs changed appreciably in the lineage leading to extant birds, becoming more ‘crouched' in association with changes to body shape and gait dynamics. This postural evolution included anatomical changes of the foot and ankle, altering the moment arms and control of the muscles that manipulated the tarsometatarsus and digits, but the timing of these changes is unknown. Here, we report cellular-level preservation of tendon- and cartilage-like tissues from the lower hindlimb of Early Cretaceous Confuciusornis. The digital flexor tendons passed through cartilages, cartilaginous cristae and ridges on the plantar side of the distal tibiotarsus and proximal tarsometatarsus, as in extant birds. In particular, fibrocartilaginous and cartilaginous structures on the plantar surface of the ankle joint of Confuciusornis may indicate a more crouched hindlimb posture. Recognition of these specialized soft tissues in Confuciusornis is enabled by our combination of imaging and chemical analyses applied to an exceptionally preserved fossil. PMID:28327586

  13. Cellular and Molecular Biological Approaches to Interpreting Ancient Biomarkers

    NASA Astrophysics Data System (ADS)

    Newman, Dianne K.; Neubauer, Cajetan; Ricci, Jessica N.; Wu, Chia-Hung; Pearson, Ann

    2016-06-01

    Our ability to read the molecular fossil record has advanced significantly in the past decade. Improvements in biomarker sampling and quantification methods, expansion of molecular sequence databases, and the application of genetic and cellular biological tools to problems in biomarker research have enabled much of this progress. By way of example, we review how attempts to understand the biological function of 2-methylhopanoids in modern bacteria have changed our interpretation of what their molecular fossils tell us about the early history of life. They were once thought to be biomarkers of cyanobacteria and hence the evolution of oxygenic photosynthesis, but we now believe that 2-methylhopanoid biosynthetic capacity originated in the Alphaproteobacteria, that 2-methylhopanoids are regulated in response to stress, and that hopanoid 2-methylation enhances membrane rigidity. We present a new interpretation of 2-methylhopanes that bridges the gap between studies of the functions of 2-methylhopanoids and their patterns of occurrence in the rock record.

  14. Taming Prebiotic Chemistry: The Role of Heterogeneous and Interfacial Catalysis in the Emergence of a Prebiotic Catalytic/Information Polymer System

    PubMed Central

    Monnard, Pierre-Alain

    2016-01-01

    Cellular life is based on interacting polymer networks that serve as catalysts, genetic information and structural molecules. The complexity of the DNA, RNA and protein biochemistry suggests that it must have been preceded by simpler systems. The RNA world hypothesis proposes RNA as the prime candidate for such a primal system. Even though this proposition has gained currency, its investigations have highlighted several challenges with respect to bulk aqueous media: (1) the synthesis of RNA monomers is difficult; (2) efficient pathways for monomer polymerization into functional RNAs and their subsequent, sequence-specific replication remain elusive; and (3) the evolution of the RNA function towards cellular metabolism in isolation is questionable in view of the chemical mixtures expected on the early Earth. This review will address the question of the possible roles of heterogeneous media and catalysis as drivers for the emergence of RNA-based polymer networks. We will show that this approach to non-enzymatic polymerizations of RNA from monomers and RNA evolution cannot only solve some issues encountered during reactions in bulk aqueous solutions, but may also explain the co-emergence of the various polymers indispensable for life in complex mixtures and their organization into primitive networks. PMID:27827919

  15. Nothing in Evolution Makes Sense Except in the Light of Genomics: Read-Write Genome Evolution as an Active Biological Process.

    PubMed

    Shapiro, James A

    2016-06-08

    The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess "Read-Write Genomes" they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification.

  16. Nothing in Evolution Makes Sense Except in the Light of Genomics: Read–Write Genome Evolution as an Active Biological Process

    PubMed Central

    Shapiro, James A.

    2016-01-01

    The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess “Read–Write Genomes” they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification. PMID:27338490

  17. A virocentric perspective on the evolution of life

    PubMed Central

    Koonin, Eugene V.; Dolja, Valerian V.

    2015-01-01

    Viruses and/or virus-like selfish elements are associated with all cellular life forms and are the most abundant biological entities on Earth, with the number of virus particles in many environments exceeding the number of cells by one to two orders of magnitude. The genetic diversity of viruses is commensurately enormous and might substantially exceed the diversity of cellular organisms. Unlike cellular organisms with their uniform replication-expression scheme, viruses possess either RNA or DNA genomes and exploit all conceivable replication-expression strategies. Although viruses extensively exchange genes with their hosts, there exists a set of viral hallmark genes that are shared by extremely diverse groups of viruses to the exclusion of cellular life forms. Coevolution of viruses and host defense systems is a key aspect in the evolution of both viruses and cells, and viral genes are often recruited for cellular functions. Together with the fundamental inevitability of the emergence of genomic parasites in any evolving replicator system, these multiple lines of evidence reveal the central role of viruses in the entire evolution of life. PMID:23850169

  18. Self assembly properties of primitive organic compounds

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.

    1991-01-01

    A central event in the origin of life was the self-assembly of amphiphilic, lipid-like compounds into closed microenvironments. If a primitive macromolecular replicating system could be encapsulated within a vesicular membrane, the components of the system would share the same microenvironment, and the result would be a step toward true cellular function. The goal of our research has been to determine what amphiphilic molecules might plausibly have been available on the early Earth to participate in the formation of such boundary structures. To this end, we have investigated primitive organic mixtures present in carbonaceous meteorites such as the Murchison meteorite, which contains 1-2 percent of its mass in the form of organic carbon compounds. It is likely that such compounds contributed to the inventory of organic carbon on the prebiotic earth, and were available to participate in chemical evolution leading to the emergence of the first cellular life forms. We found that Murchison components extracted into non-polar solvent systems are surface active, a clear indication of amphiphilic character. One acidic fraction self-assembles into vesicular membranes that provide permeability barriers to polar solutes. Other evidence indicates that the membranes are bimolecular layers similar to those formed by contemporary membrane lipids. We conclude that bilayer membrane formation by primitive amphiphiles on the early Earth is feasible. However, only a minor fraction of acidic amphiphiles assembles into bilayers, and the resulting membranes require narrowly defined conditions of pH and ionic composition to be stable. It seems unlikely, therefore, that meteoritic infall was a direct source of membrane amphiphiles. Instead, the hydrocarbon components and their derivatives more probably would provide an organic stock available for chemical evolution. Our current research is directed at possible reactions which would generate substantial quantities of membranogenic amphiphiles. One possibility is photochemical oxidation of hydrocarbons.

  19. Acid-base and ion balance in fishes with bimodal respiration.

    PubMed

    Shartau, R B; Brauner, C J

    2014-03-01

    The evolution of air breathing during the Devonian provided early fishes with bimodal respiration with a stable O2 supply from air. This was, however, probably associated with challenges and trade-offs in terms of acid-base balance and ionoregulation due to reduced gill:water interaction and changes in gill morphology associated with air breathing. While many aspects of acid-base and ionoregulation in air-breathing fishes are similar to water breathers, the specific cellular and molecular mechanisms involved remain largely unstudied. In general, reduced ionic permeability appears to be an important adaptation in the few bimodal fishes investigated but it is not known if this is a general characteristic. The kidney appears to play an important role in minimizing ion loss to the freshwater environment in the few species investigated, and while ion uptake across the gut is probably important, it has been largely unexplored. In general, air breathing in facultative air-breathing fishes is associated with an acid-base disturbance, resulting in an increased partial pressure of arterial CO2 and a reduction in extracellular pH (pHE ); however, several fishes appear to be capable of tightly regulating tissue intracellular pH (pHI ), despite a large sustained reduction in pHE , a trait termed preferential pHI regulation. Further studies are needed to determine whether preferential pHI regulation is a general trait among bimodal fishes and if this confers reduced sensitivity to acid-base disturbances, including those induced by hypercarbia, exhaustive exercise and hypoxia or anoxia. Additionally, elucidating the cellular and molecular mechanisms may yield insight into whether preferential pHI regulation is a trait ultimately associated with the early evolution of air breathing in vertebrates. © 2014 The Fisheries Society of the British Isles.

  20. The cellular and molecular basis of cnidarian neurogenesis.

    PubMed

    Rentzsch, Fabian; Layden, Michael; Manuel, Michaël

    2017-01-01

    Neurogenesis initiates during early development and it continues through later developmental stages and in adult animals to enable expansion, remodeling, and homeostasis of the nervous system. The generation of nerve cells has been analyzed in detail in few bilaterian model organisms, leaving open many questions about the evolution of this process. As the sister group to bilaterians, cnidarians occupy an informative phylogenetic position to address the early evolution of cellular and molecular aspects of neurogenesis and to understand common principles of neural development. Here we review studies in several cnidarian model systems that have revealed significant similarities and interesting differences compared to neurogenesis in bilaterian species, and between different cnidarian taxa. Cnidarian neurogenesis is currently best understood in the sea anemone Nematostella vectensis, where it includes epithelial neural progenitor cells that express transcription factors of the soxB and atonal families. Notch signaling regulates the number of these neural progenitor cells, achaete-scute and dmrt genes are required for their further development and Wnt and BMP signaling appear to be involved in the patterning of the nervous system. In contrast to many vertebrates and Drosophila, cnidarians have a high capacity to generate neurons throughout their lifetime and during regeneration. Utilizing this feature of cnidarian biology will likely allow gaining new insights into the similarities and differences of embryonic and regenerative neurogenesis. The use of different cnidarian model systems and their expanding experimental toolkits will thus continue to provide a better understanding of evolutionary and developmental aspects of nervous system formation. WIREs Dev Biol 2017, 6:e257. doi: 10.1002/wdev.257 For further resources related to this article, please visit the WIREs website. © 2016 The Authors. WIREs Developmental Biology published by Wiley Periodicals, Inc.

  1. Early photosynthetic microorganisms and environmental evolution

    NASA Technical Reports Server (NTRS)

    Golubic, S.

    1980-01-01

    Microfossils which are preserved as shrivelled kerogenous residues provide little information about cellular organization and almost none about the metabolic properties of the organisms. The distinction between prokaryotic vs eukaryotic, and phototrophic vs chemo- and organotrophic fossil microorganisms rests entirely on morphological comparisons with recent counterparts. The residual nature of the microbial fossil record promotes the conclusion that it must be biased toward (a) most abundant organisms, (b) those most resistant to degradation, and (c) those inhabiting environments with high preservation potential e.g., stromatolites. These criteria support the cyanophyte identity of most Precambrian microbial fossils on the following grounds: (1) as primary producers they dominate prokaryotic communities in modern extreme environments, e.g., intertidal zone; (2) several morphological counterparts of modern cyanophytes and microbial fossils have been established based on structure, cell division patterns and degradation sequences. The impact of anaerobic and oxygenic microbial photosynthesis on the evolution of Precambrian environments is discussed.

  2. Exploring the Early Structure of a Rapidly Decompressed Particle Bed

    NASA Astrophysics Data System (ADS)

    Zunino, Heather; Adrian, R. J.; Clarke, Amanda; Johnson, Blair; Arizona State University Collaboration

    2017-11-01

    Rapid expansion of dense, pressurized beds of fine particles subjected to rapid reduction of the external pressure is studied in a vertical shock tube. A near-sonic expansion wave impinges on the particle bed-gas interface and rapidly unloads the particle bed. A high-speed video camera captures events occurring during bed expansion. The particle bed does not expand homogeneously, but breaks down into horizontal slabs and then transforms into a cellular-type structure. There are several key parameters that affect the particle bed evolution, including particle size and initial bed height. Analyses of this bed structure evolution from experiments with varying particle sizes and initial bed heights is presented. This work is supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science and Academic Alliance Program, under Contract No. DE-NA0002378.

  3. Initiating a regenerative response; cellular and molecular features of wound healing in the cnidarian Nematostella vectensis.

    PubMed

    DuBuc, Timothy Q; Traylor-Knowles, Nikki; Martindale, Mark Q

    2014-03-26

    Wound healing is the first stage of a series of cellular events that are necessary to initiate a regenerative response. Defective wound healing can block regeneration even in animals with a high regenerative capacity. Understanding how signals generated during wound healing promote regeneration of lost structures is highly important, considering that virtually all animals have the ability to heal but many lack the ability to regenerate missing structures. Cnidarians are the phylogenetic sister taxa to bilaterians and are highly regenerative animals. To gain a greater understanding of how early animals generate a regenerative response, we examined the cellular and molecular components involved during wound healing in the anthozoan cnidarian Nematostella vectensis. Pharmacological inhibition of extracellular signal-regulated kinases (ERK) signaling blocks regeneration and wound healing in Nematostella. We characterized early and late wound healing events through genome-wide microarray analysis, quantitative PCR, and in situ hybridization to identify potential wound healing targets. We identified a number of genes directly related to the wound healing response in other animals (metalloproteinases, growth factors, transcription factors) and suggest that glycoproteins (mucins and uromodulin) play a key role in early wound healing events. This study also identified a novel cnidarian-specific gene, for a thiamine biosynthesis enzyme (vitamin B synthesis), that may have been incorporated into the genome by lateral gene transfer from bacteria and now functions during wound healing. Lastly, we suggest that ERK signaling is a shared element of the early wound response for animals with a high regenerative capacity. This research describes the temporal events involved during Nematostella wound healing, and provides a foundation for comparative analysis with other regenerative and non-regenerative species. We have shown that the same genes that heal puncture wounds are also activated after oral-aboral bisection, indicating a clear link with the initiation of regenerative healing. This study demonstrates the strength of using a forward approach (microarray) to characterize a developmental phenomenon (wound healing) at a phylogenetically important crossroad of animal evolution (cnidarian-bilaterian ancestor). Accumulation of data on the early wound healing events across numerous systems may provide clues as to why some animals have limited regenerative abilities.

  4. Initiating a regenerative response; cellular and molecular features of wound healing in the cnidarian Nematostella vectensis

    PubMed Central

    2014-01-01

    Background Wound healing is the first stage of a series of cellular events that are necessary to initiate a regenerative response. Defective wound healing can block regeneration even in animals with a high regenerative capacity. Understanding how signals generated during wound healing promote regeneration of lost structures is highly important, considering that virtually all animals have the ability to heal but many lack the ability to regenerate missing structures. Cnidarians are the phylogenetic sister taxa to bilaterians and are highly regenerative animals. To gain a greater understanding of how early animals generate a regenerative response, we examined the cellular and molecular components involved during wound healing in the anthozoan cnidarian Nematostella vectensis. Results Pharmacological inhibition of extracellular signal-regulated kinases (ERK) signaling blocks regeneration and wound healing in Nematostella. We characterized early and late wound healing events through genome-wide microarray analysis, quantitative PCR, and in situ hybridization to identify potential wound healing targets. We identified a number of genes directly related to the wound healing response in other animals (metalloproteinases, growth factors, transcription factors) and suggest that glycoproteins (mucins and uromodulin) play a key role in early wound healing events. This study also identified a novel cnidarian-specific gene, for a thiamine biosynthesis enzyme (vitamin B synthesis), that may have been incorporated into the genome by lateral gene transfer from bacteria and now functions during wound healing. Lastly, we suggest that ERK signaling is a shared element of the early wound response for animals with a high regenerative capacity. Conclusions This research describes the temporal events involved during Nematostella wound healing, and provides a foundation for comparative analysis with other regenerative and non-regenerative species. We have shown that the same genes that heal puncture wounds are also activated after oral-aboral bisection, indicating a clear link with the initiation of regenerative healing. This study demonstrates the strength of using a forward approach (microarray) to characterize a developmental phenomenon (wound healing) at a phylogenetically important crossroad of animal evolution (cnidarian-bilaterian ancestor). Accumulation of data on the early wound healing events across numerous systems may provide clues as to why some animals have limited regenerative abilities. PMID:24670243

  5. Cellular automata and epidemiological models with spatial dependence

    NASA Astrophysics Data System (ADS)

    Fuentes, M. A.; Kuperman, M. N.

    We present a cellular automata model developed to study the evolution of an infectivity nucleus in several conditions and for two kinds of epidemiologically different diseases. We analyse the role of the model parameters, concerning the epidemiological and demographic aspects of the problem, and of the evolution rules in relation to the spread of such infectious diseases, the arising of periodic temporal modulations related to the infectivity and recovery fronts, and the evolution of travelling waves. Among the obtained results we find analogies to endemic situations and pandemics.

  6. Peptide trafficking and translocation across membranes in cellular signaling and self-defense strategies.

    PubMed

    Abele, Rupert; Tampé, Robert

    2009-08-01

    Cells are metastable per se and a fine-tuned balance of de novo protein synthesis and degradation shapes their proteome. The primary function of peptides is to supply amino acids for de novo protein synthesis or as an energy source during starvation. Peptides are intrinsically short-lived and steadily trimmed by an armada of intra and extracellular peptidases. However, peptides acquired additional, more sophisticated tasks already early in evolution. Here, we summarize current knowledge on intracellular peptide trafficking and translocation mediated by ATP-binding cassette (ABC) transport machineries with a focus on the functions of protein degradation products as important signaling molecules in self-defense mechanisms.

  7. Physical biology of human brain development.

    PubMed

    Budday, Silvia; Steinmann, Paul; Kuhl, Ellen

    2015-01-01

    Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view toward surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales-from phenomena on the cellular level toward form and function on the organ level-to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia.

  8. Cellular packing, mechanical stress and the evolution of multicellularity

    NASA Astrophysics Data System (ADS)

    Jacobeen, Shane; Pentz, Jennifer T.; Graba, Elyes C.; Brandys, Colin G.; Ratcliff, William C.; Yunker, Peter J.

    2018-03-01

    The evolution of multicellularity set the stage for sustained increases in organismal complexity1-5. However, a fundamental aspect of this transition remains largely unknown: how do simple clusters of cells evolve increased size when confronted by forces capable of breaking intracellular bonds? Here we show that multicellular snowflake yeast clusters6-8 fracture due to crowding-induced mechanical stress. Over seven weeks ( 291 generations) of daily selection for large size, snowflake clusters evolve to increase their radius 1.7-fold by reducing the accumulation of internal stress. During this period, cells within the clusters evolve to be more elongated, concomitant with a decrease in the cellular volume fraction of the clusters. The associated increase in free space reduces the internal stress caused by cellular growth, thus delaying fracture and increasing cluster size. This work demonstrates how readily natural selection finds simple, physical solutions to spatial constraints that limit the evolution of group size—a fundamental step in the evolution of multicellularity.

  9. Enhanced cellular preservation by clay minerals in 1 billion-year-old lakes.

    PubMed

    Wacey, David; Saunders, Martin; Roberts, Malcolm; Menon, Sarath; Green, Leonard; Kong, Charlie; Culwick, Timothy; Strother, Paul; Brasier, Martin D

    2014-07-28

    Organic-walled microfossils provide the best insights into the composition and evolution of the biosphere through the first 80 percent of Earth history. The mechanism of microfossil preservation affects the quality of biological information retained and informs understanding of early Earth palaeo-environments. We here show that 1 billion-year-old microfossils from the non-marine Torridon Group are remarkably preserved by a combination of clay minerals and phosphate, with clay minerals providing the highest fidelity of preservation. Fe-rich clay mostly occurs in narrow zones in contact with cellular material and is interpreted as an early microbially-mediated phase enclosing and replacing the most labile biological material. K-rich clay occurs within and exterior to cell envelopes, forming where the supply of Fe had been exhausted. Clay minerals inter-finger with calcium phosphate that co-precipitated with the clays in the sub-oxic zone of the lake sediments. This type of preservation was favoured in sulfate-poor environments where Fe-silicate precipitation could outcompete Fe-sulfide formation. This work shows that clay minerals can provide an exceptionally high fidelity of microfossil preservation and extends the known geological range of this fossilization style by almost 500 Ma. It also suggests that the best-preserved microfossils of this time may be found in low-sulfate environments.

  10. Enhanced cellular preservation by clay minerals in 1 billion-year-old lakes

    PubMed Central

    Wacey, David; Saunders, Martin; Roberts, Malcolm; Menon, Sarath; Green, Leonard; Kong, Charlie; Culwick, Timothy; Strother, Paul; Brasier, Martin D.

    2014-01-01

    Organic-walled microfossils provide the best insights into the composition and evolution of the biosphere through the first 80 percent of Earth history. The mechanism of microfossil preservation affects the quality of biological information retained and informs understanding of early Earth palaeo-environments. We here show that 1 billion-year-old microfossils from the non-marine Torridon Group are remarkably preserved by a combination of clay minerals and phosphate, with clay minerals providing the highest fidelity of preservation. Fe-rich clay mostly occurs in narrow zones in contact with cellular material and is interpreted as an early microbially-mediated phase enclosing and replacing the most labile biological material. K-rich clay occurs within and exterior to cell envelopes, forming where the supply of Fe had been exhausted. Clay minerals inter-finger with calcium phosphate that co-precipitated with the clays in the sub-oxic zone of the lake sediments. This type of preservation was favoured in sulfate-poor environments where Fe-silicate precipitation could outcompete Fe-sulfide formation. This work shows that clay minerals can provide an exceptionally high fidelity of microfossil preservation and extends the known geological range of this fossilization style by almost 500 Ma. It also suggests that the best-preserved microfossils of this time may be found in low-sulfate environments. PMID:25068404

  11. Understanding cellular architecture in cancer cells

    NASA Astrophysics Data System (ADS)

    Bianco, Simone; Tang, Chao

    2011-03-01

    Understanding the development of cancer is an important goal for today's science. The morphology of cellular organelles, such as the nucleus, the nucleoli and the mitochondria, which is referred to as cellular architecture or cytoarchitecture, is an important indicator of the state of the cell. In particular, there are striking difference between the cellular architecture of a healthy cell versus a cancer cell. In this work we present a dynamical model for the evolution of organelles morphology in cancer cells. Using a dynamical systems approach, we describe the evolution of a cell on its way to cancer as a trajectory in a multidimensional morphology state. The results provided by this work may increase our insight on the mechanism of tumorigenesis and help build new therapeutic strategies.

  12. A calibrated chronology of biochemistry reveals a stem line of descent responsible for planetary biodiversity.

    PubMed

    Caetano-Anollés, Gustavo; Mittenthal, Jay E; Caetano-Anollés, Derek; Kim, Kyung Mo

    2014-01-01

    Time-calibrated phylogenomic trees of protein domain structure produce powerful chronologies describing the evolution of biochemistry and life. These timetrees are built from a genomic census of millions of encoded proteins using models of nested accumulation of molecules in evolving proteomes. Here we show that a primordial stem line of descent, a propagating series of pluripotent cellular entities, populates the deeper branches of the timetrees. The stem line produced for the first time cellular grades ~2.9 billion years (Gy)-ago, which slowly turned into lineages of superkingdom Archaea. Prompted by the rise of planetary oxygen and aerobic metabolism, the stem line also produced bacterial and eukaryal lineages. Superkingdom-specific domain repertoires emerged ~2.1 Gy-ago delimiting fully diversified Bacteria. Repertoires specific to Eukarya and Archaea appeared 300 millions years later. Results reconcile reductive evolutionary processes leading to the early emergence of Archaea to superkingdom-specific innovations compatible with a tree of life rooted in Bacteria.

  13. The evolution of cellular deficiency in GATA2 mutation

    PubMed Central

    Dickinson, Rachel E.; Milne, Paul; Jardine, Laura; Zandi, Sasan; Swierczek, Sabina I.; McGovern, Naomi; Cookson, Sharon; Ferozepurwalla, Zaveyna; Langridge, Alexander; Pagan, Sarah; Gennery, Andrew; Heiskanen-Kosma, Tarja; Hämäläinen, Sari; Seppänen, Mikko; Helbert, Matthew; Tholouli, Eleni; Gambineri, Eleonora; Reykdal, Sigrún; Gottfreðsson, Magnús; Thaventhiran, James E.; Morris, Emma; Hirschfield, Gideon; Richter, Alex G.; Jolles, Stephen; Bacon, Chris M.; Hambleton, Sophie; Haniffa, Muzlifah; Bryceson, Yenan; Allen, Carl; Prchal, Josef T.; Dick, John E.; Bigley, Venetia

    2014-01-01

    Constitutive heterozygous GATA2 mutation is associated with deafness, lymphedema, mononuclear cytopenias, infection, myelodysplasia (MDS), and acute myeloid leukemia. In this study, we describe a cross-sectional analysis of 24 patients and 6 relatives with 14 different frameshift or substitution mutations of GATA2. A pattern of dendritic cell, monocyte, B, and natural killer (NK) lymphoid deficiency (DCML deficiency) with elevated Fms-like tyrosine kinase 3 ligand (Flt3L) was observed in all 20 patients phenotyped, including patients with Emberger syndrome, monocytopenia with Mycobacterium avium complex (MonoMAC), and MDS. Four unaffected relatives had a normal phenotype indicating that cellular deficiency may evolve over time or is incompletely penetrant, while 2 developed subclinical cytopenias or elevated Flt3L. Patients with GATA2 mutation maintained higher hemoglobin, neutrophils, and platelets and were younger than controls with acquired MDS and wild-type GATA2. Frameshift mutations were associated with earlier age of clinical presentation than substitution mutations. Elevated Flt3L, loss of bone marrow progenitors, and clonal myelopoiesis were early signs of disease evolution. Clinical progression was associated with increasingly elevated Flt3L, depletion of transitional B cells, CD56bright NK cells, naïve T cells, and accumulation of terminally differentiated NK and CD8+ memory T cells. These studies provide a framework for clinical and laboratory monitoring of patients with GATA2 mutation and may inform therapeutic decision-making. PMID:24345756

  14. Transcriptomic data from panarthropods shed new light on the evolution of insulator binding proteins in insects : Insect insulator proteins.

    PubMed

    Pauli, Thomas; Vedder, Lucia; Dowling, Daniel; Petersen, Malte; Meusemann, Karen; Donath, Alexander; Peters, Ralph S; Podsiadlowski, Lars; Mayer, Christoph; Liu, Shanlin; Zhou, Xin; Heger, Peter; Wiehe, Thomas; Hering, Lars; Mayer, Georg; Misof, Bernhard; Niehuis, Oliver

    2016-11-03

    Body plan development in multi-cellular organisms is largely determined by homeotic genes. Expression of homeotic genes, in turn, is partially regulated by insulator binding proteins (IBPs). While only a few enhancer blocking IBPs have been identified in vertebrates, the common fruit fly Drosophila melanogaster harbors at least twelve different enhancer blocking IBPs. We screened recently compiled insect transcriptomes from the 1KITE project and genomic and transcriptomic data from public databases, aiming to trace the origin of IBPs in insects and other arthropods. Our study shows that the last common ancestor of insects (Hexapoda) already possessed a substantial number of IBPs. Specifically, of the known twelve insect IBPs, at least three (i.e., CP190, Su(Hw), and CTCF) already existed prior to the evolution of insects. Furthermore we found GAF orthologs in early branching insect orders, including Zygentoma (silverfish and firebrats) and Diplura (two-pronged bristletails). Mod(mdg4) is most likely a derived feature of Neoptera, while Pita is likely an evolutionary novelty of holometabolous insects. Zw5 appears to be restricted to schizophoran flies, whereas BEAF-32, ZIPIC and the Elba complex, are probably unique to the genus Drosophila. Selection models indicate that insect IBPs evolved under neutral or purifying selection. Our results suggest that a substantial number of IBPs either pre-date the evolution of insects or evolved early during insect evolution. This suggests an evolutionary history of insulator binding proteins in insects different to that previously thought. Moreover, our study demonstrates the versatility of the 1KITE transcriptomic data for comparative analyses in insects and other arthropods.

  15. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Noise effect in metabolic networks

    NASA Astrophysics Data System (ADS)

    Li, Zheng-Yan; Xie, Zheng-Wei; Chen, Tong; Ouyang, Qi

    2009-12-01

    Constraint-based models such as flux balance analysis (FBA) are a powerful tool to study biological metabolic networks. Under the hypothesis that cells operate at an optimal growth rate as the result of evolution and natural selection, this model successfully predicts most cellular behaviours in growth rate. However, the model ignores the fact that cells can change their cellular metabolic states during evolution, leaving optimal metabolic states unstable. Here, we consider all the cellular processes that change metabolic states into a single term 'noise', and assume that cells change metabolic states by randomly walking in feasible solution space. By simulating a state of a cell randomly walking in the constrained solution space of metabolic networks, we found that in a noisy environment cells in optimal states tend to travel away from these points. On considering the competition between the noise effect and the growth effect in cell evolution, we found that there exists a trade-off between these two effects. As a result, the population of the cells contains different cellular metabolic states, and the population growth rate is at suboptimal states.

  16. Ancestry and evolution of a secretory pathway serpin

    PubMed Central

    2008-01-01

    Background The serpin (serine protease inhibitor) superfamily constitutes a class of functionally highly diverse proteins usually encompassing several dozens of paralogs in mammals. Though phylogenetic classification of vertebrate serpins into six groups based on gene organisation is well established, the evolutionary roots beyond the fish/tetrapod split are unresolved. The aim of this study was to elucidate the phylogenetic relationships of serpins involved in surveying the secretory pathway routes against uncontrolled proteolytic activity. Results Here, rare genomic characters are used to show that orthologs of neuroserpin, a prominent representative of vertebrate group 3 serpin genes, exist in early diverging deuterostomes and probably also in cnidarians, indicating that the origin of a mammalian serpin can be traced back far in the history of eumetazoans. A C-terminal address code assigning association with secretory pathway organelles is present in all neuroserpin orthologs, suggesting that supervision of cellular export/import routes by antiproteolytic serpins is an ancient trait, though subtle functional and compartmental specialisations have developed during their evolution. The results also suggest that massive changes in the exon-intron organisation of serpin genes have occurred along the lineage leading to vertebrate neuroserpin, in contrast with the immediately adjacent PDCD10 gene that is linked to its neighbour at least since divergence of echinoderms. The intron distribution pattern of closely adjacent and co-regulated genes thus may experience quite different fates during evolution of metazoans. Conclusion This study demonstrates that the analysis of microsynteny and other rare characters can provide insight into the intricate family history of metazoan serpins. Serpins with the capacity to defend the main cellular export/import routes against uncontrolled endogenous and/or foreign proteolytic activity represent an ancient trait in eukaryotes that has been maintained continuously in metazoans though subtle changes affecting function and subcellular location have evolved. It is shown that the intron distribution pattern of neuroserpin gene orthologs has undergone substantial rearrangements during metazoan evolution. PMID:18793432

  17. Ancestry and evolution of a secretory pathway serpin.

    PubMed

    Kumar, Abhishek; Ragg, Hermann

    2008-09-15

    The serpin (serine protease inhibitor) superfamily constitutes a class of functionally highly diverse proteins usually encompassing several dozens of paralogs in mammals. Though phylogenetic classification of vertebrate serpins into six groups based on gene organisation is well established, the evolutionary roots beyond the fish/tetrapod split are unresolved. The aim of this study was to elucidate the phylogenetic relationships of serpins involved in surveying the secretory pathway routes against uncontrolled proteolytic activity. Here, rare genomic characters are used to show that orthologs of neuroserpin, a prominent representative of vertebrate group 3 serpin genes, exist in early diverging deuterostomes and probably also in cnidarians, indicating that the origin of a mammalian serpin can be traced back far in the history of eumetazoans. A C-terminal address code assigning association with secretory pathway organelles is present in all neuroserpin orthologs, suggesting that supervision of cellular export/import routes by antiproteolytic serpins is an ancient trait, though subtle functional and compartmental specialisations have developed during their evolution. The results also suggest that massive changes in the exon-intron organisation of serpin genes have occurred along the lineage leading to vertebrate neuroserpin, in contrast with the immediately adjacent PDCD10 gene that is linked to its neighbour at least since divergence of echinoderms. The intron distribution pattern of closely adjacent and co-regulated genes thus may experience quite different fates during evolution of metazoans. This study demonstrates that the analysis of microsynteny and other rare characters can provide insight into the intricate family history of metazoan serpins. Serpins with the capacity to defend the main cellular export/import routes against uncontrolled endogenous and/or foreign proteolytic activity represent an ancient trait in eukaryotes that has been maintained continuously in metazoans though subtle changes affecting function and subcellular location have evolved. It is shown that the intron distribution pattern of neuroserpin gene orthologs has undergone substantial rearrangements during metazoan evolution.

  18. Chance of Necessity: Modeling Origins of Life

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2006-01-01

    The fundamental nature of processes that led to the emergence of life has been a subject of long-standing debate. One view holds that the origin of life is an event governed by chance, and the result of so many random events is unpredictable. This view was eloquently expressed by Jacques Monod in his book Chance or Necessity. In an alternative view, the origin of life is considered a deterministic event. Its details need not be deterministic in every respect, but the overall behavior is predictable. A corollary to the deterministic view is that the emergence of life must have been determined primarily by universal chemistry and biochemistry rather than by subtle details of environmental conditions. In my lecture I will explore two different paradigms for the emergence of life and discuss their implications for predictability and universality of life-forming processes. The dominant approach is that the origin of life was guided by information stored in nucleic acids (the RNA World hypothesis). In this view, selection of improved combinations of nucleic acids obtained through random mutations drove evolution of biological systems from their conception. An alternative hypothesis states that the formation of protocellular metabolism was driven by non-genomic processes. Even though these processes were highly stochastic the outcome was largely deterministic, strongly constrained by laws of chemistry. I will argue that self-replication of macromolecules was not required at the early stages of evolution; the reproduction of cellular functions alone was sufficient for self-maintenance of protocells. In fact, the precise transfer of information between successive generations of the earliest protocells was unnecessary and could have impeded the discovery of cellular metabolism. I will also show that such concepts as speciation and fitness to the environment, developed in the context of genomic evolution also hold in the absence of a genome.

  19. Evolving gene regulation networks into cellular networks guiding adaptive behavior: an outline how single cells could have evolved into a centralized neurosensory system

    PubMed Central

    Fritzsch, Bernd; Jahan, Israt; Pan, Ning; Elliott, Karen L.

    2014-01-01

    Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs, their localized patterning into remarkably different cell types aggregated into variably sized parts of the central nervous system begin to emerge. Insights at the cellular and molecular level begin to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early and not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system. PMID:25416504

  20. Evolving gene regulatory networks into cellular networks guiding adaptive behavior: an outline how single cells could have evolved into a centralized neurosensory system.

    PubMed

    Fritzsch, Bernd; Jahan, Israt; Pan, Ning; Elliott, Karen L

    2015-01-01

    Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs and their localized patterning leading to remarkably different cell types aggregated into variably sized parts of the central nervous system have begun to emerge. Insights at the cellular and molecular level have begun to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early, which were not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system.

  1. Does constructive neutral evolution play an important role in the origin of cellular complexity? Making sense of the origins and uses of biological complexity.

    PubMed

    Speijer, Dave

    2011-05-01

    Recently, constructive neutral evolution has been touted as an important concept for the understanding of the emergence of cellular complexity. It has been invoked to help explain the development and retention of, amongst others, RNA splicing, RNA editing and ribosomal and mitochondrial respiratory chain complexity. The theory originated as a welcome explanation of isolated small scale cellular idiosyncrasies and as a reaction to 'overselectionism'. Here I contend, that in its extended form, it has major conceptual problems, can not explain observed patterns of complex processes, is too easily dismissive of alternative selectionist models, underestimates the creative force of complexity as such, and--if seen as a major evolutionary mechanism for all organisms--could stifle further thought regarding the evolution of highly complex biological processes. Copyright © 2011 WILEY Periodicals, Inc.

  2. The generation of meaningful information in molecular systems.

    PubMed

    Wills, Peter R

    2016-03-13

    The physico-chemical processes occurring inside cells are under the computational control of genetic (DNA) and epigenetic (internal structural) programming. The origin and evolution of genetic information (nucleic acid sequences) is reasonably well understood, but scant attention has been paid to the origin and evolution of the molecular biological interpreters that give phenotypic meaning to the sequence information that is quite faithfully replicated during cellular reproduction. The near universality and age of the mapping from nucleotide triplets to amino acids embedded in the functionality of the protein synthetic machinery speaks to the early development of a system of coding which is still extant in every living organism. We take the origin of genetic coding as a paradigm of the emergence of computation in natural systems, focusing on the requirement that the molecular components of an interpreter be synthesized autocatalytically. Within this context, it is seen that interpreters of increasing complexity are generated by series of transitions through stepped dynamic instabilities (non-equilibrium phase transitions). The early phylogeny of the amino acyl-tRNA synthetase enzymes is discussed in such terms, leading to the conclusion that the observed optimality of the genetic code is a natural outcome of the processes of self-organization that produced it. © 2016 The Author(s).

  3. BioJazz: in silico evolution of cellular networks with unbounded complexity using rule-based modeling.

    PubMed

    Feng, Song; Ollivier, Julien F; Swain, Peter S; Soyer, Orkun S

    2015-10-30

    Systems biologists aim to decipher the structure and dynamics of signaling and regulatory networks underpinning cellular responses; synthetic biologists can use this insight to alter existing networks or engineer de novo ones. Both tasks will benefit from an understanding of which structural and dynamic features of networks can emerge from evolutionary processes, through which intermediary steps these arise, and whether they embody general design principles. As natural evolution at the level of network dynamics is difficult to study, in silico evolution of network models can provide important insights. However, current tools used for in silico evolution of network dynamics are limited to ad hoc computer simulations and models. Here we introduce BioJazz, an extendable, user-friendly tool for simulating the evolution of dynamic biochemical networks. Unlike previous tools for in silico evolution, BioJazz allows for the evolution of cellular networks with unbounded complexity by combining rule-based modeling with an encoding of networks that is akin to a genome. We show that BioJazz can be used to implement biologically realistic selective pressures and allows exploration of the space of network architectures and dynamics that implement prescribed physiological functions. BioJazz is provided as an open-source tool to facilitate its further development and use. Source code and user manuals are available at: http://oss-lab.github.io/biojazz and http://osslab.lifesci.warwick.ac.uk/BioJazz.aspx. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. The protist, Monosiga brevicollis, has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan.

    PubMed

    Manning, Gerard; Young, Susan L; Miller, W Todd; Zhai, Yufeng

    2008-07-15

    Tyrosine kinase signaling has long been considered a hallmark of intercellular communication, unique to multicellular animals. Our genomic analysis of the unicellular choanoflagellate Monosiga brevicollis discovers a remarkable count of 128 tyrosine kinases, 38 tyrosine phosphatases, and 123 phosphotyrosine (pTyr)-binding SH2 proteins, all higher counts than seen in any metazoan. This elaborate signaling network shows little orthology to metazoan counterparts yet displays many innovations reminiscent of metazoans. These include extracellular domains structurally related to those of metazoan receptor kinases, alternative methods for membrane anchoring and phosphotyrosine interaction in cytoplasmic kinases, and domain combinations that link kinases to small GTPase signaling and transcription. These proteins also display a wealth of combinations of known signaling domains. This uniquely divergent and elaborate signaling network illuminates the early evolution of pTyr signaling, explores innovative ways to traverse the cellular signaling circuitry, and shows extensive convergent evolution, highlighting pervasive constraints on pTyr signaling.

  5. Co-evolution between an Endosymbiont and Its Nematode Host: Wolbachia Asymmetric Posterior Localization and AP Polarity Establishment

    PubMed Central

    Landmann, Frederic; Foster, Jeremy M.; Michalski, Michelle L.; Slatko, Barton E.; Sullivan, William

    2014-01-01

    While bacterial symbionts influence a variety of host cellular responses throughout development, there are no documented instances in which symbionts influence early embryogenesis. Here we demonstrate that Wolbachia, an obligate endosymbiont of the parasitic filarial nematodes, is required for proper anterior-posterior polarity establishment in the filarial nematode B. malayi. Characterization of pre- and post-fertilization events in B. malayi reveals that, unlike C. elegans, the centrosomes are maternally derived and produce a cortical-based microtubule organizing center prior to fertilization. We establish that Wolbachia rely on these cortical microtubules and dynein to concentrate at the posterior cortex. Wolbachia also rely on PAR-1 and PAR-3 polarity cues for normal concentration at the posterior cortex. Finally, we demonstrate that Wolbachia depletion results in distinct anterior-posterior polarity defects. These results provide a striking example of endosymbiont-host co-evolution operating on the core initial developmental event of axis determination. PMID:25165813

  6. Expanding the metabolic engineering toolbox with directed evolution.

    PubMed

    Abatemarco, Joseph; Hill, Andrew; Alper, Hal S

    2013-12-01

    Cellular systems can be engineered into factories that produce high-value chemicals from renewable feedstock. Such an approach requires an expanded toolbox for metabolic engineering. Recently, protein engineering and directed evolution strategies have started to play a growing and critical role within metabolic engineering. This review focuses on the various ways in which directed evolution can be applied in conjunction with metabolic engineering to improve product yields. Specifically, we discuss the application of directed evolution on both catalytic and non-catalytic traits of enzymes, on regulatory elements, and on whole genomes in a metabolic engineering context. We demonstrate how the goals of metabolic pathway engineering can be achieved in part through evolving cellular parts as opposed to traditional approaches that rely on gene overexpression and deletion. Finally, we discuss the current limitations in screening technology that hinder the full implementation of a metabolic pathway-directed evolution approach. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Evolution and the complexity of bacteriophages.

    PubMed

    Serwer, Philip

    2007-03-13

    The genomes of both long-genome (> 200 Kb) bacteriophages and long-genome eukaryotic viruses have cellular gene homologs whose selective advantage is not explained. These homologs add genomic and possibly biochemical complexity. Understanding their significance requires a definition of complexity that is more biochemically oriented than past empirically based definitions. Initially, I propose two biochemistry-oriented definitions of complexity: either decreased randomness or increased encoded information that does not serve immediate needs. Then, I make the assumption that these two definitions are equivalent. This assumption and recent data lead to the following four-part hypothesis that explains the presence of cellular gene homologs in long bacteriophage genomes and also provides a pathway for complexity increases in prokaryotic cells: (1) Prokaryotes underwent evolutionary increases in biochemical complexity after the eukaryote/prokaryote splits. (2) Some of the complexity increases occurred via multi-step, weak selection that was both protected from strong selection and accelerated by embedding evolving cellular genes in the genomes of bacteriophages and, presumably, also archaeal viruses (first tier selection). (3) The mechanisms for retaining cellular genes in viral genomes evolved under additional, longer-term selection that was stronger (second tier selection). (4) The second tier selection was based on increased access by prokaryotic cells to improved biochemical systems. This access was achieved when DNA transfer moved to prokaryotic cells both the more evolved genes and their more competitive and complex biochemical systems. I propose testing this hypothesis by controlled evolution in microbial communities to (1) determine the effects of deleting individual cellular gene homologs on the growth and evolution of long genome bacteriophages and hosts, (2) find the environmental conditions that select for the presence of cellular gene homologs, (3) determine which, if any, bacteriophage genes were selected for maintaining the homologs and (4) determine the dynamics of homolog evolution. This hypothesis is an explanation of evolutionary leaps in general. If accurate, it will assist both understanding and influencing the evolution of microbes and their communities. Analysis of evolutionary complexity increase for at least prokaryotes should include analysis of genomes of long-genome bacteriophages.

  8. Coupled pulsating and cellular structure in the propagation of globally planar detonations in free space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Wenhu; Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084; Gao, Yang, E-mail: gaoyang-00@mails.tsinghua.edu.cn

    The globally planar detonation in free space is numerically simulated, with particular interest to understand and quantify the emergence and evolution of the one-dimensional pulsating instability and the two-dimensional cellular structure which is inherently also affected by pulsating instability. It is found that the pulsation includes three stages: rapid decay of the overdrive, approach to the Chapman-Jouguet state and emergence of weak pulsations, and the formation of strong pulsations; while evolution of the cellular structure also exhibits distinct behavior at these three stages: no cell formation, formation of small-scale, irregular cells, and formation of regular cells of a larger scale.more » Furthermore, the average shock pressure in the detonation front consists of fine-scale oscillations reflecting the collision dynamics of the triple-shock structure and large-scale oscillations affected by the global pulsation. The common stages of evolution between the cellular structure and the pulsating behavior, as well as the existence of shock-front pressure oscillation, suggest highly correlated mechanisms between them. Detonations with period doubling, period quadrupling, and chaotic amplitudes were also observed and studied for progressively increasing activation energies.« less

  9. A mechano-biological model of multi-tissue evolution in bone

    NASA Astrophysics Data System (ADS)

    Frame, Jamie; Rohan, Pierre-Yves; Corté, Laurent; Allena, Rachele

    2017-12-01

    Successfully simulating tissue evolution in bone is of significant importance in predicting various biological processes such as bone remodeling, fracture healing and osseointegration of implants. Each of these processes involves in different ways the permanent or transient formation of different tissue types, namely bone, cartilage and fibrous tissues. The tissue evolution in specific circumstances such as bone remodeling and fracturing healing is currently able to be modeled. Nevertheless, it remains challenging to predict which tissue types and organization can develop without any a priori assumptions. In particular, the role of mechano-biological coupling in this selective tissue evolution has not been clearly elucidated. In this work, a multi-tissue model has been created which simultaneously describes the evolution of bone, cartilage and fibrous tissues. The coupling of the biological and mechanical factors involved in tissue formation has been modeled by defining two different tissue states: an immature state corresponding to the early stages of tissue growth and representing cell clusters in a weakly neo-formed Extra Cellular Matrix (ECM), and a mature state corresponding to well-formed connective tissues. This has allowed for the cellular processes of migration, proliferation and apoptosis to be described simultaneously with the changing ECM properties through strain driven diffusion, growth, maturation and resorption terms. A series of finite element simulations were carried out on idealized cantilever bending geometries. Starting from a tissue composition replicating a mid-diaphysis section of a long bone, a steady-state tissue formation was reached over a statically loaded period of 10,000 h (60 weeks). The results demonstrated that bone formation occurred in regions which are optimally physiologically strained. In two additional 1000 h bending simulations both cartilaginous and fibrous tissues were shown to form under specific geometrical and loading cases and cartilage was shown to lead to the formation of bone in a beam replicating a fracture healing initial tissue distribution. This finding is encouraging in that it is corroborated by similar experimental observations of cartilage leading bone formation during the fracture healing process. The results of this work demonstrate that a multi-tissue mechano-biological model of tissue evolution has the potential for predictive analysis in the design and implementations of implants, describing fracture healing and bone remodeling processes.

  10. Chemical evolution and the preservation of organic compounds on Mars

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia; Mancinelli, Rocco L.

    1989-01-01

    Several lines of evidence suggest that the environment on early Mars and early Earth were very similar. Since life is abundant on Earth, it seems likely that conditions on early Earth were conducive to chemical evolution and the origin of life. The similarity between early Mars and early Earth encourages the hypothesis that chemical evolution might have also occurred on Mars, but that decreasing temperatures and the loss of its atmosphere brought the evolution to a halt. The possibility of finding on Mars remnants of organic material dating back to this early clement period is addressed.

  11. Self-organized criticality in forest-landscape evolution

    Treesearch

    J.C. Sprott; Janine Bolliger; David J. Mladenoff

    2002-01-01

    A simple cellular automaton replicates the fractal pattern of a natural forest landscape and predicts its evolution. Spatial distributions and temporal fluctuations in global quantities show power-law spectra, implying scale-invariance, characteristic of self-organized criticality. The evolution toward the SOC state and the robustness of that state to perturbations...

  12. Evolution of Cellular Automata toward a LIFE-Like Rule Guided by 1/ƒ Noise

    NASA Astrophysics Data System (ADS)

    Ninagawa, Shigeru

    There is evidence in favor of a relationship between the presence of 1/ƒ noise and computational universality in cellular automata. To confirm the relationship, we search for two-dimensional cellular automata with a 1/ƒ power spectrum by means of genetic algorithms. The power spectrum is calculated from the evolution of the state of the cell, starting from a random initial configuration. The fitness is estimated by the power spectrum with consideration of the spectral similarity to the 1/ƒ spectrum. The result shows that the rule with the highest fitness over the most runs exhibits a 1/ƒ type spectrum and its transition function and behavior are quite similar to those of the Game of Life, which is known to be a computationally universal cellular automaton. These results support the relationship between the presence of 1/ƒ noise and computational universality.

  13. Delayed transition to new cell fates during cellular reprogramming

    PubMed Central

    Cheng, Xianrui; Lyons, Deirdre C.; Socolar, Joshua E. S.; McClay, David R.

    2014-01-01

    In many embryos specification toward one cell fate can be diverted to a different cell fate through a reprogramming process. Understanding how that process works will reveal insights into the developmental regulatory logic that emerged from evolution. In the sea urchin embryo, cells at gastrulation were found to reprogram and replace missing cell types after surgical dissections of the embryo. Non-skeletogenic mesoderm (NSM) cells reprogrammed to replace missing skeletogenic mesoderm cells and animal caps reprogrammed to replace all endomesoderm. In both cases evidence of reprogramming onset was first observed at the early gastrula stage, even if the cells to be replaced were removed earlier in development. Once started however, the reprogramming occurred with compressed gene expression dynamics. The NSM did not require early contact with the skeletogenic cells to reprogram, but the animal cap cells gained the ability to reprogram early in gastrulation only after extended contact with the vegetal halves prior to that time. If the entire vegetal half was removed at early gastrula, the animal caps reprogrammed and replaced the vegetal half endomesoderm. If the animal caps carried morpholinos to either hox11/13b or foxA (endomesoderm specification genes), the isolated animal caps failed to reprogram. Together these data reveal that the emergence of a reprogramming capability occurs at early gastrulation in the sea urchin embryo and requires activation of early specification components of the target tissues. PMID:24780626

  14. The Evolution of Multicellular Plants and Animals.

    ERIC Educational Resources Information Center

    Valentine, James W.

    1978-01-01

    Traces the evolution of unicellular organisms to the multi-cellular plants and animals in existence today. Major events are depicted in a geologic timetable. Organisms, extinct and recent, are classified by taxonomic group. (MA)

  15. Disruptive chemicals, senescence and immortality

    PubMed Central

    Carnero, Amancio; Blanco-Aparicio, Carmen; Kondoh, Hiroshi; Lleonart, Matilde E.; Martinez-Leal, Juan Fernando; Mondello, Chiara; Ivana Scovassi, A.; Bisson, William H.; Amedei, Amedeo; Roy, Rabindra; Woodrick, Jordan; Colacci, Annamaria; Vaccari, Monica; Raju, Jayadev; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Salem, Hosni K.; Memeo, Lorenzo; Forte, Stefano; Singh, Neetu; Hamid, Roslida A.; Ryan, Elizabeth P.; Brown, Dustin G.; Wise, John Pierce; Wise, Sandra S.; Yasaei, Hemad

    2015-01-01

    Carcinogenesis is thought to be a multistep process, with clonal evolution playing a central role in the process. Clonal evolution involves the repeated ‘selection and succession’ of rare variant cells that acquire a growth advantage over the remaining cell population through the acquisition of ‘driver mutations’ enabling a selective advantage in a particular micro-environment. Clonal selection is the driving force behind tumorigenesis and possesses three basic requirements: (i) effective competitive proliferation of the variant clone when compared with its neighboring cells, (ii) acquisition of an indefinite capacity for self-renewal, and (iii) establishment of sufficiently high levels of genetic and epigenetic variability to permit the emergence of rare variants. However, several questions regarding the process of clonal evolution remain. Which cellular processes initiate carcinogenesis in the first place? To what extent are environmental carcinogens responsible for the initiation of clonal evolution? What are the roles of genotoxic and non-genotoxic carcinogens in carcinogenesis? What are the underlying mechanisms responsible for chemical carcinogen-induced cellular immortality? Here, we explore the possible mechanisms of cellular immortalization, the contribution of immortalization to tumorigenesis and the mechanisms by which chemical carcinogens may contribute to these processes. PMID:26106138

  16. Workshop on Early Crustal Genesis: Implications from Earth

    NASA Technical Reports Server (NTRS)

    Phinney, W. C. (Compiler)

    1981-01-01

    Ways to foster increased study of the early evolution of the Earth, considering the planet as a whole, were explored and recommendations were made to NASA with the intent of exploring optimal ways for integrating Archean studies with problems of planetary evolution. Major themes addressed include: (1) Archean contribution to constraints for modeling planetary evolution; (2) Archean surface conditions and processes as clues to early planetary history; and (3) Archean evidence for physical, chemical and isotopic transfer processes in early planetary crusts. Ten early crustal evolution problems are outlined.

  17. Molecular aspects of eye evolution and development: from the origin of retinal cells to the future of regenerative medicine.

    PubMed

    Ohuchi, Hideyo

    2013-01-01

    A central issue of evolutionary developmental biology is how the eye is diverged morphologically and functionally. However, the unifying mechanisms or schemes that govern eye diversification remain unsolved. In this review, I first introduce the concept of evolutionary developmental biology of the eye with a focus on photoreception, the fundamental property of retinal cells. Second, I summarize the early development of vertebrate eyes and the role of a homeobox gene, Lhx1, in subdivision of the retina into 2 domains, the neural retina and retinal pigmented epithelium of the optic primordium. The 2 retinal domains are essential components of the eye as they are found in such prototypic eyes as the extant planarian eye. Finally, I propose the presence of novel retinal cell subtypes with photosensory functions based on our recent work on atypical photopigments (opsins) in vertebrates. Since human diseases are attributable to the aberration of various types of cells due to alterations in gene expression, understanding the precise mechanisms of cellular diversification and unraveling the molecular profiles of cellular subtypes are essential to future regenerative medicine.

  18. 10 Years of Car-2-X Communication - a Success Story?

    NASA Astrophysics Data System (ADS)

    Wischhof, Lars; Ebner, André

    2012-05-01

    For more than ten years, car-2-x communication has been a major topic of research in the scientific community and an important development focus for the automotive industry. First, this article takes a retrospective look at the evolution of car-2-x and the two different communication paradigms: decentralized car-2-car communication and centralized cellular solutions. Afterwards, a comparison of their technical advantages and limitations is presented, respectively. The result shows that in order to implement safety-relevant applications, car-2-car communication has strong advantages compared to cellular technologies but requires high market penetration. However, its introduction solely for safety applications is difficult since the required penetration will not be achieved until several years after initial deployment. Therefore, car-2-car communication must provide a benefit to the customer, even in the phase of market introduction. For this purpose, the article outlines an approach called SODAD (Segment-Oriented Data Abstraction and Dissemination). It offers a possibility to introduce decentralized vehicular applications with early customer benefit, in order to enable safety applications based on car-2-car communication on a long term.

  19. Reproducing the Photospheric Magnetic Field Evolution during the Rise of Cycle 24 with Flux Transport by Supergranules

    NASA Technical Reports Server (NTRS)

    Hathaway, David; Upton, Lisa

    2012-01-01

    We simulate the transport of magnetic flux in the Sun s photosphere by an evolving pattern of cellular horizontal flows (supergranules). Characteristics of the simulated flow pattern can match observed characteristics including the velocity power spectrum, cell lifetimes, and cell motions in longitude and latitude. Simulations using an average, and north-south symmetric, meridional motion of the cellular pattern produce polar magnetic fields that are too weak in the North and too strong in the South. Simulations using cellular patterns with meridional motions that evolve with the observed changes in strength and north-south asymmetry will be analyzed to see if they reproduce the polar field evolution observed during the rise of Cycle 24.

  20. Reproducing the Photospheric Magnetic Field Evolution During the Rise of Cycle 24 with Flux Transport by Supergranules

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Upton, Lisa

    2012-01-01

    We simulate the transport of magnetic flux in the Sun s photosphere by an evolving pattern of cellular horizontal flows (supergranules). Characteristics of the simulated flow pattern match observed characteristics including the velocity power spectrum, cell lifetimes, and cell pattern motion in longitude and latitude. Simulations using an average, and north-south symmetric, meridional motion of the cellular pattern produce polar magnetic fields that are too weak in the North and too strong in the South. Simulations using cellular patterns with meridional motions that evolve with the observed changes in strength and north-south asymmetry will be analyzed to see if they reproduce the polar field evolution observed during the rise of Cycle 24.

  1. The origin and early evolution of nucleic acid polymerases

    NASA Technical Reports Server (NTRS)

    Lazcano, A.; Cappello, R.; Valverde, V.; Llaca, V.; Oro, J.

    1992-01-01

    The hypothesis that vestiges of the ancestral RNA-dependent RNA polymerase involved in the replication of RNA genomes of Archean cells are present in the eubacterial RNA-polymerase beta-prime subunit and its homologues is discussed. It is shown that, in the DNA-dependent RNA polymerases from three cellular lineages, a very conserved sequence of eight amino acids, also found in a small RNA-binding site previously described for the E. coli polynucleotide phosphorylase and the S1 ribosomal protein, is present. The optimal conditions for the replicase activity of the avian-myeloblastosis-virus reverse transcriptase are presented. The evolutionary significance of the in vitro modifications of substrate and template specificities of RNA polymerases and reverse transcriptases is discussed.

  2. A universal method for detection of amyloidogenic misfolded proteins.

    PubMed

    Yam, Alice Y; Wang, Xuemei; Gao, Carol Man; Connolly, Michael D; Zuckermann, Ronald N; Bleu, Thieu; Hall, John; Fedynyshyn, Joseph P; Allauzen, Sophie; Peretz, David; Salisbury, Cleo M

    2011-05-24

    Diseases associated with the misfolding of endogenous proteins, such as Alzheimer's disease and type II diabetes, are becoming increasingly prevalent. The pathophysiology of these diseases is not totally understood, but mounting evidence suggests that the misfolded protein aggregates themselves may be toxic to cells and serve as key mediators of cell death. As such, an assay that can detect aggregates in a sensitive and selective fashion could provide the basis for early detection of disease, before cellular damage occurs. Here we report the evolution of a reagent that can selectively capture diverse misfolded proteins by interacting with a common supramolecular feature of protein aggregates. By coupling this enrichment tool with protein specific immunoassays, diverse misfolded proteins and sub-femtomole amounts of oligomeric aggregates can be detected in complex biological matrices. We anticipate that this near-universal approach for quantitative misfolded protein detection will become a useful research tool for better understanding amyloidogenic protein pathology as well as serve as the basis for early detection of misfolded protein diseases.

  3. Ca-Pri a Cellular Automata Phenomenological Research Investigation: Simulation Results

    NASA Astrophysics Data System (ADS)

    Iannone, G.; Troisi, A.

    2013-05-01

    Following the introduction of a phenomenological cellular automata (CA) model capable to reproduce city growth and urban sprawl, we develop a toy model simulation considering a realistic framework. The main characteristic of our approach is an evolution algorithm based on inhabitants preferences. The control of grown cells is obtained by means of suitable functions which depend on the initial condition of the simulation. New born urban settlements are achieved by means of a logistic evolution of the urban pattern while urban sprawl is controlled by means of the population evolution function. In order to compare model results with a realistic urban framework we have considered, as the area of study, the island of Capri (Italy) in the Mediterranean Sea. Two different phases of the urban evolution on the island have been taken into account: a new born initial growth as induced by geographic suitability and the simulation of urban spread after 1943 induced by the population evolution after this date.

  4. Simple mechanisms of early life - simulation model on the origin of semi-cells.

    PubMed

    Klein, Adrian; Bock, Martin; Alt, Wolfgang

    2017-01-01

    The development of first cellular structures played an important role in the early evolution of life. Early evolution of life probably took place on a molecular level in a reactive environment. The iron-sulfur theory postulates the formation of cell-like structures on catalytic surfaces. Experiments show that H 2 S together with FeS and other metallic centers drive auto-catalytic surface reactions, in which organic molecules such as pyruvic and amino acids occur. It is questionable which mechanisms are needed to form cell-like structures under these conditions. To address this question, we implemented a model system featuring the fundamentals of molecular dynamics: heat, attraction, repulsion and formation of covalent bonds. Our basic model exhibits a series of essential processes: self-organization of lipid micelles and bilayers, formation of fluid filled cavities, flux of molecules along membranes, transport of energized groups towards sinks and whole colonies of cell-like structures on a larger scale. The results demonstrate that only a few features are sufficient for discovering hitherto non described phenomena of self-assembly and dynamics of cell-like structures as candidates for early evolving proto-cells. Significance statement The quest for a possible origin of life continues to be one of the most fascinating problems in biology. In one theoretical scenario, early life originated from a solution of reactive chemicals in the ancient deep sea, similar to conditions as to be found in thermal vents. Experiments have shown that a variety of organic molecules, the building blocks of life, form under these conditions. Based on such experiments, the iron-sulfur theory postulates the growth of cell-like structures at certain catalytic surfaces. For an explanation and proof of such a process we have developed a computer model simulating molecular assembly of lipid bilayers and formation of semi-cell cavities. The results demonstrate the possibility of cell-like self-organization under appropriate physico-chemical conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Evolution of Courtship Songs in Xenopus : Vocal Pattern Generation and Sound Production.

    PubMed

    Leininger, Elizabeth C; Kelley, Darcy B

    2015-01-01

    The extant species of African clawed frogs (Xenopus and Silurana) provide an opportunity to link the evolution of vocal characters to changes in the responsible cellular and molecular mechanisms. In this review, we integrate several robust lines of research: evolutionary trajectories of Xenopus vocalizations, cellular and circuit-level mechanisms of vocalization in selected Xenopus model species, and Xenopus evolutionary history and speciation mechanisms. Integrating recent findings allows us to generate and test specific hypotheses about the evolution of Xenopus vocal circuits. We propose that reduced vocal sex differences in some Xenopus species result from species-specific losses of sexually differentiated neural and neuromuscular features. Modification of sex-hormone-regulated developmental mechanisms is a strong candidate mechanism for reduced vocal sex differences.

  6. MEVTV study: Early tectonic evolution of Mars: Crustal dichotomy to Valles Marineris

    NASA Technical Reports Server (NTRS)

    Frey, Herbert V.; Schultz, Richard A.

    1990-01-01

    Several fundamental problems were addressed in the early impact, tectonic, and volcanic evolution of the martian lithosphere: (1) origin and evolution of the fundamental crustal dichotomy, including development of the highland/lowland transition zone; (2) growth and evolution of the Valles Marineris; and (3) nature and role of major resurfacing events in early martian history. The results in these areas are briefly summarized.

  7. Early experiences mediate distinct adult gene expression and reproductive programs in Caenorhabditis elegans

    PubMed Central

    Ow, Maria C.; Nichitean, Alexandra M.; Dorus, Steve; Hall, Sarah E.

    2018-01-01

    Environmental stress during early development in animals can have profound effects on adult phenotypes via programmed changes in gene expression. Using the nematode C. elegans, we demonstrated previously that adults retain a cellular memory of their developmental experience that is manifested by differences in gene expression and life history traits; however, the sophistication of this system in response to different environmental stresses, and how it dictates phenotypic plasticity in adults that contribute to increased fitness in response to distinct environmental challenges, was unknown. Using transcriptional profiling, we show here that C. elegans adults indeed retain distinct cellular memories of different environmental conditions. We identified approximately 500 genes in adults that entered dauer due to starvation that exhibit significant opposite (“seesaw”) transcriptional phenotypes compared to adults that entered dauer due to crowding, and are distinct from animals that bypassed dauer. Moreover, we show that two-thirds of the genes in the genome experience a 2-fold or greater seesaw trend in gene expression, and based upon the direction of change, are enriched in large, tightly linked regions on different chromosomes. Importantly, these transcriptional programs correspond to significant changes in brood size depending on the experienced stress. In addition, we demonstrate that while the observed seesaw gene expression changes occur in both somatic and germline tissue, only starvation-induced changes require a functional GLP-4 protein necessary for germline development, and both programs require the Argonaute CSR-1. Thus, our results suggest that signaling between the soma and the germ line can generate phenotypic plasticity as a result of early environmental experience, and likely contribute to increased fitness in adverse conditions and the evolution of the C. elegans genome. PMID:29447162

  8. Conference on Early Mars: Geologic and Hydrologic Evolution, Physical and Chemical Environments, and the Implications for Life

    NASA Technical Reports Server (NTRS)

    Clifford, S. M. (Editor); Treiman, A. H. (Editor); Newsom, H. E. (Editor); Farmer, J. D. (Editor)

    1997-01-01

    Topics considered include: Geology alteration and life in an extreme environment; developing a chemical code to identify magnetic biominerals; effect of impacts on early Martin geologic evolution; spectroscopic identification of minerals in Hematite-bearing soils and sediments; exopaleontology and the search for a Fossil record on Mars; geochemical evolution of the crust of Mars; geological evolution of the early earth;solar-wind-induced erosion of the Mars atmosphere. Also included geological evolution of the crust of Mars.

  9. Energy transduction inside vesicles, photocatalysis by titanium dioxide and formation of NADH

    NASA Astrophysics Data System (ADS)

    Summers, David; Noveron, Juan; Rodoni, David; Basa, Ranor

    A number of theories on the origin and early evolution of life have focused on the role of lipid bilayer membrane structures (vesicles). These vesicles are similar to modern cellular membranes , and have been postulated to have been abiotically formed and spontaneously assemble on the prebiotic Earth to provide compartments for early cellular life. They can contain water-soluble species, concentrate species, and have the potential to catalyze reactions. The origin of the use of photochemical energy to drive metabolism (ie. energy transduction) is also one of the central issues in our attempts to understand the origin and evolution of life. When did energy transduction and photosynthesis begin? What was the original system for capturing photochemical energy? How simple can such a system be? It has been postulated that vesicle structures developed the ability to capture and transduce light, providing energy for reactions. It has been shown that pH gradients can be photo-chemically created, but it has been found difficult to couple these to drive chemical reactions. Minerals can introduce a number of properties to a vesicle system. The incorporation of clay particles into vesicles can provide catalytic activity that mediates both vesicle assembly and RNA oligomerization. It is known that colloidal semiconducting mineral particles can act as photocatalysts and drive redox chemistry. We show that encapsulation of these particles has the potential to provide a source of energy transduction inside vesicles, and thereby drive protocellular chemistry and represent a model system for early photosynthesis. TiO2 particles can be incorporated into vesicles and retain their photoactivity through the dehydration/rehydration cycles that have been shown to be able concentrate species inside a vesicle. It is shown that these can be used to produce biochemical species such as enzymatically active NADH in such structures. This system demonstrates a simple energy source inside vesicles/protocells suitable either for simple prebiotic systems and/or for more complex "protobiochemical" systems. It could act as a precursor to metabolic systems and provide a model of how metabolism could have developed prebiotically in a vesicle based "protocell origin of life". It can provide a source of prebiotic compounds inside vesicles, an environment considered to be of great importance for the origin of life. An energy transduction system that is simple enough to have formed at an early stage of the origin of life (even before the formation of enzymatic or ribozymal activity) makes an autotrophic origin of life easier to envision.

  10. Evolution and the origin of the visual retinoid cycle in vertebrates.

    PubMed

    Kusakabe, Takehiro G; Takimoto, Noriko; Jin, Minghao; Tsuda, Motoyuki

    2009-10-12

    Absorption of a photon by visual pigments induces isomerization of 11-cis-retinaldehyde (RAL) chromophore to all-trans-RAL. Since the opsins lacking 11-cis-RAL lose light sensitivity, sustained vision requires continuous regeneration of 11-cis-RAL via the process called 'visual cycle'. Protostomes and vertebrates use essentially different machinery of visual pigment regeneration, and the origin and early evolution of the vertebrate visual cycle is an unsolved mystery. Here we compare visual retinoid cycles between different photoreceptors of vertebrates, including rods, cones and non-visual photoreceptors, as well as between vertebrates and invertebrates. The visual cycle systems in ascidians, the closest living relatives of vertebrates, show an intermediate state between vertebrates and non-chordate invertebrates. The ascidian larva may use retinochrome-like opsin as the major isomerase. The entire process of the visual cycle can occur inside the photoreceptor cells with distinct subcellular compartmentalization, although the visual cycle components are also present in surrounding non-photoreceptor cells. The adult ascidian probably uses RPE65 isomerase, and trans-to-cis isomerization may occur in distinct cellular compartments, which is similar to the vertebrate situation. The complete transition to the sophisticated retinoid cycle of vertebrates may have required acquisition of new genes, such as interphotoreceptor retinoid-binding protein, and functional evolution of the visual cycle genes.

  11. Adaptation Mechanisms in the Evolution of Moss Defenses to Microbes

    PubMed Central

    Ponce de León, Inés; Montesano, Marcos

    2017-01-01

    Bryophytes, including mosses, liverworts and hornworts are early land plants that have evolved key adaptation mechanisms to cope with abiotic stresses and microorganisms. Microbial symbioses facilitated plant colonization of land by enhancing nutrient uptake leading to improved plant growth and fitness. In addition, early land plants acquired novel defense mechanisms to protect plant tissues from pre-existing microbial pathogens. Due to its evolutionary stage linking unicellular green algae to vascular plants, the non-vascular moss Physcomitrella patens is an interesting organism to explore the adaptation mechanisms developed in the evolution of plant defenses to microbes. Cellular and biochemical approaches, gene expression profiles, and functional analysis of genes by targeted gene disruption have revealed that several defense mechanisms against microbial pathogens are conserved between mosses and flowering plants. P. patens perceives pathogen associated molecular patterns by plasma membrane receptor(s) and transduces the signal through a MAP kinase (MAPK) cascade leading to the activation of cell wall associated defenses and expression of genes that encode proteins with different roles in plant resistance. After pathogen assault, P. patens also activates the production of ROS, induces a HR-like reaction and increases levels of some hormones. Furthermore, alternative metabolic pathways are present in P. patens leading to the production of a distinct metabolic scenario than flowering plants that could contribute to defense. P. patens has acquired genes by horizontal transfer from prokaryotes and fungi, and some of them could represent adaptive benefits for resistance to biotic stress. In this review, the current knowledge related to the evolution of plant defense responses against pathogens will be discussed, focusing on the latest advances made in the model plant P. patens. PMID:28360923

  12. The Skeleton Forming Proteome of an Early Branching Metazoan: A Molecular Survey of the Biomineralization Components Employed by the Coralline Sponge Vaceletia Sp.

    PubMed Central

    Wörheide, Gert; Jackson, Daniel John

    2015-01-01

    The ability to construct a mineralized skeleton was a major innovation for the Metazoa during their evolution in the late Precambrian/early Cambrian. Porifera (sponges) hold an informative position for efforts aimed at unraveling the origins of this ability because they are widely regarded to be the earliest branching metazoans, and are among the first multi-cellular animals to display the ability to biomineralize in the fossil record. Very few biomineralization associated proteins have been identified in sponges so far, with no transcriptome or proteome scale surveys yet available. In order to understand what genetic repertoire may have been present in the last common ancestor of the Metazoa (LCAM), and that may have contributed to the evolution of the ability to biocalcify, we have studied the skeletal proteome of the coralline demosponge Vaceletia sp. and compare this to other metazoan biomineralizing proteomes. We bring some spatial resolution to this analysis by dividing Vaceletia’s aragonitic calcium carbonate skeleton into “head” and “stalk” regions. With our approach we were able to identify 40 proteins from both the head and stalk regions, with many of these sharing some similarity to previously identified gene products from other organisms. Among these proteins are known biomineralization compounds, such as carbonic anhydrase, spherulin, extracellular matrix proteins and very acidic proteins. This report provides the first proteome scale analysis of a calcified poriferan skeletal proteome, and its composition clearly demonstrates that the LCAM contributed several key enzymes and matrix proteins to its descendants that supported the metazoan ability to biocalcify. However, lineage specific evolution is also likely to have contributed significantly to the ability of disparate metazoan lineages to biocalcify. PMID:26536128

  13. Disruptive chemicals, senescence and immortality.

    PubMed

    Carnero, Amancio; Blanco-Aparicio, Carmen; Kondoh, Hiroshi; Lleonart, Matilde E; Martinez-Leal, Juan Fernando; Mondello, Chiara; Scovassi, A Ivana; Bisson, William H; Amedei, Amedeo; Roy, Rabindra; Woodrick, Jordan; Colacci, Annamaria; Vaccari, Monica; Raju, Jayadev; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Salem, Hosni K; Memeo, Lorenzo; Forte, Stefano; Singh, Neetu; Hamid, Roslida A; Ryan, Elizabeth P; Brown, Dustin G; Wise, John Pierce; Wise, Sandra S; Yasaei, Hemad

    2015-06-01

    Carcinogenesis is thought to be a multistep process, with clonal evolution playing a central role in the process. Clonal evolution involves the repeated 'selection and succession' of rare variant cells that acquire a growth advantage over the remaining cell population through the acquisition of 'driver mutations' enabling a selective advantage in a particular micro-environment. Clonal selection is the driving force behind tumorigenesis and possesses three basic requirements: (i) effective competitive proliferation of the variant clone when compared with its neighboring cells, (ii) acquisition of an indefinite capacity for self-renewal, and (iii) establishment of sufficiently high levels of genetic and epigenetic variability to permit the emergence of rare variants. However, several questions regarding the process of clonal evolution remain. Which cellular processes initiate carcinogenesis in the first place? To what extent are environmental carcinogens responsible for the initiation of clonal evolution? What are the roles of genotoxic and non-genotoxic carcinogens in carcinogenesis? What are the underlying mechanisms responsible for chemical carcinogen-induced cellular immortality? Here, we explore the possible mechanisms of cellular immortalization, the contribution of immortalization to tumorigenesis and the mechanisms by which chemical carcinogens may contribute to these processes. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Geometry, packing, and evolutionary paths to increased multicellular size

    NASA Astrophysics Data System (ADS)

    Jacobeen, Shane; Graba, Elyes C.; Brandys, Colin G.; Day, Thomas C.; Ratcliff, William C.; Yunker, Peter J.

    2018-05-01

    The evolutionary transition to multicellularity transformed life on earth, heralding the evolution of large, complex organisms. Recent experiments demonstrated that laboratory-evolved multicellular "snowflake yeast" readily overcome the physical barriers that limit cluster size by modifying cellular geometry [Jacobeen et al., Nat. Phys. 14, 286 (2018), 10.1038/s41567-017-0002-y]. However, it is unclear why this route to large size is observed, rather than an evolved increase in intercellular bond strength. Here, we use a geometric model of the snowflake yeast growth form to examine the geometric efficiency of increasing size by modifying geometry and bond strength. We find that changing geometry is a far more efficient route to large size than evolving increased intercellular adhesion. In fact, increasing cellular aspect ratio is on average ˜13 times more effective than increasing bond strength at increasing the number of cells in a cluster. Modifying other geometric parameters, such as the geometric arrangement of mother and daughter cells, also had larger effects on cluster size than increasing bond strength. Simulations reveal that as cells reproduce, internal stress in the cluster increases rapidly; thus, increasing bond strength provides diminishing returns in cluster size. Conversely, as cells become more elongated, cellular packing density within the cluster decreases, which substantially decreases the rate of internal stress accumulation. This suggests that geometrically imposed physical constraints may have been a key early selective force guiding the emergence of multicellular complexity.

  15. Early evolution of efficient enzymes and genome organization

    PubMed Central

    2012-01-01

    Background Cellular life with complex metabolism probably evolved during the reign of RNA, when it served as both information carrier and enzyme. Jensen proposed that enzymes of primordial cells possessed broad specificities: they were generalist. When and under what conditions could primordial metabolism run by generalist enzymes evolve to contemporary-type metabolism run by specific enzymes? Results Here we show by numerical simulation of an enzyme-catalyzed reaction chain that specialist enzymes spread after the invention of the chromosome because protocells harbouring unlinked genes maintain largely non-specific enzymes to reduce their assortment load. When genes are linked on chromosomes, high enzyme specificity evolves because it increases biomass production, also by reducing taxation by side reactions. Conclusion The constitution of the genetic system has a profound influence on the limits of metabolic efficiency. The major evolutionary transition to chromosomes is thus proven to be a prerequisite for a complex metabolism. Furthermore, the appearance of specific enzymes opens the door for the evolution of their regulation. Reviewers This article was reviewed by Sándor Pongor, Gáspár Jékely, and Rob Knight. PMID:23114029

  16. Dynamics of HIV infection on 2D cellular automata

    NASA Astrophysics Data System (ADS)

    Benyoussef, A.; HafidAllah, N. El; ElKenz, A.; Ez-Zahraouy, H.; Loulidi, M.

    2003-05-01

    We use a cellular automata approach to describe the interactions of the immune system with the human immunodeficiency virus (HIV). We study the evolution of HIV infection, particularly in the clinical latency period. The results we have obtained show the existence of four different behaviours in the plane of death rate of virus-death rate of infected T cell. These regions meet at a critical point, where the virus density and the infected T cell density remain invariant during the evolution of disease. We have introduced two kinds of treatments, the protease inhibitors and the RT inhibitors, in order to study their effects on the evolution of HIV infection. These treatments are powerful in decreasing the density of the virus in the blood and the delay of the AIDS onset.

  17. Being Aquifex aeolicus: Untangling a Hyperthermophile’s Checkered Past

    PubMed Central

    Eveleigh, Robert J.M.; Meehan, Conor J.; Archibald, John M.; Beiko, Robert G.

    2013-01-01

    Lateral gene transfer (LGT) is an important factor contributing to the evolution of prokaryotic genomes. The Aquificae are a hyperthermophilic bacterial group whose genes show affiliations to many other lineages, including the hyperthermophilic Thermotogae, the Proteobacteria, and the Archaea. Previous phylogenomic analyses focused on Aquifex aeolicus identified Thermotogae and Aquificae either as successive early branches or sisters in a rooted bacterial phylogeny, but many phylogenies and cellular traits have suggested a stronger affiliation with the Epsilonproteobacteria. Different scenarios for the evolution of the Aquificae yield different phylogenetic predictions. Here, we outline these scenarios and consider the fit of the available data, including three sequenced Aquificae genomes, to different sets of predictions. Evidence from phylogenetic profiles and trees suggests that the Epsilonproteobacteria have the strongest affinities with the three Aquificae analyzed. However, this pattern is shown by only a minority of encoded proteins, and the Archaea, many lineages of thermophilic bacteria, and members of genus Clostridium and class Deltaproteobacteria also show strong connections to the Aquificae. The phylogenetic affiliations of different functional subsystems showed strong biases: Most but not all genes implicated in the core translational apparatus tended to group Aquificae with Thermotogae, whereas a wide range of metabolic and cellular processes strongly supported the link between Aquificae and Epsilonproteobacteria. Depending on which sets of genes are privileged, either Thermotogae or Epsilonproteobacteria is the most plausible adjacent lineage to the Aquificae. Both scenarios require massive sharing of genes to explain the history of this enigmatic group, whose history is further complicated by specific affinities of different members of Aquificae to different partner lineages. PMID:24281050

  18. Being Aquifex aeolicus: Untangling a hyperthermophile's checkered past.

    PubMed

    Eveleigh, Robert J M; Meehan, Conor J; Archibald, John M; Beiko, Robert G

    2013-01-01

    Lateral gene transfer (LGT) is an important factor contributing to the evolution of prokaryotic genomes. The Aquificae are a hyperthermophilic bacterial group whose genes show affiliations to many other lineages, including the hyperthermophilic Thermotogae, the Proteobacteria, and the Archaea. Previous phylogenomic analyses focused on Aquifex aeolicus identified Thermotogae and Aquificae either as successive early branches or sisters in a rooted bacterial phylogeny, but many phylogenies and cellular traits have suggested a stronger affiliation with the Epsilonproteobacteria. Different scenarios for the evolution of the Aquificae yield different phylogenetic predictions. Here, we outline these scenarios and consider the fit of the available data, including three sequenced Aquificae genomes, to different sets of predictions. Evidence from phylogenetic profiles and trees suggests that the Epsilonproteobacteria have the strongest affinities with the three Aquificae analyzed. However, this pattern is shown by only a minority of encoded proteins, and the Archaea, many lineages of thermophilic bacteria, and members of genus Clostridium and class Deltaproteobacteria also show strong connections to the Aquificae. The phylogenetic affiliations of different functional subsystems showed strong biases: Most but not all genes implicated in the core translational apparatus tended to group Aquificae with Thermotogae, whereas a wide range of metabolic and cellular processes strongly supported the link between Aquificae and Epsilonproteobacteria. Depending on which sets of genes are privileged, either Thermotogae or Epsilonproteobacteria is the most plausible adjacent lineage to the Aquificae. Both scenarios require massive sharing of genes to explain the history of this enigmatic group, whose history is further complicated by specific affinities of different members of Aquificae to different partner lineages.

  19. Records of our Early Biosphere Illuminate our Origins and Guide our Search for Life Beyond Earth

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.

    2003-01-01

    A scientific "mission of exploration to early Earth" will help us chart the distribution of life elsewhere. We must discriminate between attributes of biospheres that are universal versus those attributes that represent principally the outcomes of long-term survival specifically on Earth. In addition to the basic physics and chemistry of matter, the geologic evolution of rocky habitable planets and their climates might be similar elsewhere in the Universe. Certain key agents that drive long-term environmental change (e.g., stellar evolution, impacts, geothermal heat flow, tectonics, etc.) can help us to reconstruct ancient climates and to compare their evolution among populations of Earth- like planets. Early Earth was tectonically more active than today and therefore it exhaled reduced chemical species into the more oxidized surface environment at greater rates. This tectonic activity thus sustained oxidation-reduction reactions that provided the basis for the development of biochemical pathways that harvest chemical energy ("bioenergetics"). Most examples of bioenergetics today that extract energy by reacting oxidized and reduced chemicals in the environment were likely more pervasive among our microbial ancestors than are the presently known examples of photosynthesis. The geologic rock record indicates that, as early as 3.5 billion years ago (3.5 Ga), microbial biofilms were widespread within the coastal environments of small continents and tectonically unstable volcanic islands. Non oxygen-producing (non-oxygenic) photosynthesis preceded oxygenic photosynthesis, but all types of photosynthesis contributed substantially to the long-term increase in global primary biological productivity. Evidence of photosynthesis is tentative by 3.5 Ga and compelling by 2.7 Ga. Evidence of oxygenic photosynthesis is strong by 2.7 Ga and compelling by 2.3 Ga. These successive innovations transformed life from local communities that survived principally by catalyzing chemical equilibration to a globally dominant agent that created and sustained widespread chemical disequilibria in the environment and shallow crust. Major biogeochemical perturbations ca. 2.3 to 2.0 Ga, 1.3 Ga, and also 0.8 to 0.6 Ga, contributed to the irreversible oxidation of the global environment and perhaps also triggered evolutionary innovations (e.g., the development of multi-cellular biota) that became the foundations of our modern biosphere. Understanding the nature and timing of this ascent of life is crucial for discerning our o m beginnings. This understanding also empowers OUT search for the origins, evolution and distribution of life elsewhere in our solar system and beyond.

  20. Evolving binary classifiers through parallel computation of multiple fitness cases.

    PubMed

    Cagnoni, Stefano; Bergenti, Federico; Mordonini, Monica; Adorni, Giovanni

    2005-06-01

    This paper describes two versions of a novel approach to developing binary classifiers, based on two evolutionary computation paradigms: cellular programming and genetic programming. Such an approach achieves high computation efficiency both during evolution and at runtime. Evolution speed is optimized by allowing multiple solutions to be computed in parallel. Runtime performance is optimized explicitly using parallel computation in the case of cellular programming or implicitly taking advantage of the intrinsic parallelism of bitwise operators on standard sequential architectures in the case of genetic programming. The approach was tested on a digit recognition problem and compared with a reference classifier.

  1. Origins of the protein synthesis cycle

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1981-01-01

    Largely derived from experiments in molecular evolution, a theory of protein synthesis cycles has been constructed. The sequence begins with ordered thermal proteins resulting from the self-sequencing of mixed amino acids. Ordered thermal proteins then aggregate to cell-like structures. When they contained proteinoids sufficiently rich in lysine, the structures were able to synthesize offspring peptides. Since lysine-rich proteinoid (LRP) also catalyzes the polymerization of nucleoside triphosphate to polynucleotides, the same microspheres containing LRP could have synthesized both original cellular proteins and cellular nucleic acids. The LRP within protocells would have provided proximity advantageous for the origin and evolution of the genetic code.

  2. RNase MRP and the RNA processing cascade in the eukaryotic ancestor.

    PubMed

    Woodhams, Michael D; Stadler, Peter F; Penny, David; Collins, Lesley J

    2007-02-08

    Within eukaryotes there is a complex cascade of RNA-based macromolecules that process other RNA molecules, especially mRNA, tRNA and rRNA. An example is RNase MRP processing ribosomal RNA (rRNA) in ribosome biogenesis. One hypothesis is that this complexity was present early in eukaryotic evolution; an alternative is that an initial simpler network later gained complexity by gene duplication in lineages that led to animals, fungi and plants. Recently there has been a rapid increase in support for the complexity-early theory because the vast majority of these RNA-processing reactions are found throughout eukaryotes, and thus were likely to be present in the last common ancestor of living eukaryotes, herein called the Eukaryotic Ancestor. We present an overview of the RNA processing cascade in the Eukaryotic Ancestor and investigate in particular, RNase MRP which was previously thought to have evolved later in eukaryotes due to its apparent limited distribution in fungi and animals and plants. Recent publications, as well as our own genomic searches, find previously unknown RNase MRP RNAs, indicating that RNase MRP has a wide distribution in eukaryotes. Combining secondary structure and promoter region analysis of RNAs for RNase MRP, along with analysis of the target substrate (rRNA), allows us to discuss this distribution in the light of eukaryotic evolution. We conclude that RNase MRP can now be placed in the RNA-processing cascade of the Eukaryotic Ancestor, highlighting the complexity of RNA-processing in early eukaryotes. Promoter analyses of MRP-RNA suggest that regulation of the critical processes of rRNA cleavage can vary, showing that even these key cellular processes (for which we expect high conservation) show some species-specific variability. We present our consensus MRP-RNA secondary structure as a useful model for further searches.

  3. Maize early endosperm growth and development: from fertilization through cell type differentiation.

    PubMed

    Leroux, Brian M; Goodyke, Austin J; Schumacher, Katelyn I; Abbott, Chelsi P; Clore, Amy M; Yadegari, Ramin; Larkins, Brian A; Dannenhoffer, Joanne M

    2014-08-01

    • Given the worldwide economic importance of maize endosperm, it is surprising that its development is not the most comprehensively studied of the cereals. We present detailed morphometric and cytological descriptions of endosperm development in the maize inbred line B73, for which the genome has been sequenced, and compare its growth with four diverse Nested Association Mapping (NAM) founder lines.• The first 12 d of B73 endosperm development were described using semithin sections of plastic-embedded kernels and confocal microscopy. Longitudinal sections were used to compare endosperm length, thickness, and area.• Morphometric comparison between Arizona- and Michigan-grown B73 showed a common pattern. Early endosperm development was divided into four stages: coenocytic, cellularization through alveolation, cellularization through partitioning, and differentiation. We observed tightly synchronous nuclear divisions in the coenocyte, elucidated that the onset of cellularization was coincident with endosperm size, and identified a previously undefined cell type (basal intermediate zone, BIZ). NAM founders with small mature kernels had larger endosperms (0-6 d after pollination) than lines with large mature kernels.• Our B73-specific model of early endosperm growth links developmental events to relative endosperm size, while accounting for diverse growing conditions. Maize endosperm cellularizes through alveolation, then random partitioning of the central vacuole. This unique cellularization feature of maize contrasts with the smaller endosperms of Arabidopsis, barley, and rice that strictly cellularize through repeated alveolation. NAM analysis revealed differences in endosperm size during early development, which potentially relates to differences in timing of cellularization across diverse lines of maize. © 2014 Botanical Society of America, Inc.

  4. Selfish cellular networks and the evolution of complex organisms.

    PubMed

    Kourilsky, Philippe

    2012-03-01

    Human gametogenesis takes years and involves many cellular divisions, particularly in males. Consequently, gametogenesis provides the opportunity to acquire multiple de novo mutations. A significant portion of these is likely to impact the cellular networks linking genes, proteins, RNA and metabolites, which constitute the functional units of cells. A wealth of literature shows that these individual cellular networks are complex, robust and evolvable. To some extent, they are able to monitor their own performance, and display sufficient autonomy to be termed "selfish". Their robustness is linked to quality control mechanisms which are embedded in and act upon the individual networks, thereby providing a basis for selection during gametogenesis. These selective processes are equally likely to affect cellular functions that are not gamete-specific, and the evolution of the most complex organisms, including man, is therefore likely to occur via two pathways: essential housekeeping functions would be regulated and evolve during gametogenesis within the parents before being transmitted to their progeny, while classical selection would operate on other traits of the organisms that shape their fitness with respect to the environment. Copyright © 2012 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  5. The cellular immunity and oxidative stress markers in early pregnancy loss.

    PubMed

    Daglar, Korkut; Biberoglu, Ebru; Kirbas, Ayse; Dirican, Aylin Onder; Genc, Metin; Avci, Aslihan; Biberoglu, Kutay

    2016-01-01

    We investigated whether changes in cellular immunity and oxidative stress in pregnancy have any association with spontaneous miscarriage. Circulating adenosine deaminase (ADA) activity as a marker of cellular immunity and malondialdehyde (MDA) and catalase (CAT), glutathione peroxidase (GPx) as markers of T lymphocyte activation and parameters of oxidative stress and antioxidant defense were compared between 40 women with early pregnancy loss and another 40 women with ungoing healthy pregnancy. Women with miscarriage had higher serum ADA and GPx levels when compared with women with normal pregnancy (p = 0.034 and p < 0.001, respectively). Although serum MDA level was slightly higher in women with miscarriage, the difference was not significant (p = 0.083). CAT levels were alike in both groups. We have demonstrated an increased cellular immunity and perhaps a compensated oxidative stress related to increased antioxidant activation in women with early spontaneous pregnancy loss.

  6. The Molecular Basis of Human Brain Evolution.

    PubMed

    Enard, Wolfgang

    2016-10-24

    Humans are a remarkable species, especially because of the remarkable properties of their brain. Since the split from the chimpanzee lineage, the human brain has increased three-fold in size and has acquired abilities for vocal learning, language and intense cooperation. To better understand the molecular basis of these changes is of great biological and biomedical interest. However, all the about 16 million fixed genetic changes that occurred during human evolution are fully correlated with all molecular, cellular, anatomical and behavioral changes that occurred during this time. Hence, as humans and chimpanzees cannot be crossed or genetically manipulated, no direct evidence for linking particular genetic and molecular changes to human brain evolution can be obtained. Here, I sketch a framework how indirect evidence can be obtained and review findings related to the molecular basis of human cognition, vocal learning and brain size. In particular, I discuss how a comprehensive comparative approach, leveraging cellular systems and genomic technologies, could inform the evolution of our brain in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Internal Disequilibria and Phenotypic Diversification during Replication of Hepatitis C Virus in a Noncoevolving Cellular Environment

    PubMed Central

    Moreno, Elena; Gallego, Isabel; Gregori, Josep; Lucía-Sanz, Adriana; Soria, María Eugenia; Castro, Victoria; Beach, Nathan M.; Manrubia, Susanna; Quer, Josep; Esteban, Juan Ignacio; Rice, Charles M.; Gómez, Jordi; Gastaminza, Pablo

    2017-01-01

    ABSTRACT Viral quasispecies evolution upon long-term virus replication in a noncoevolving cellular environment raises relevant general issues, such as the attainment of population equilibrium, compliance with the molecular-clock hypothesis, or stability of the phenotypic profile. Here, we evaluate the adaptation, mutant spectrum dynamics, and phenotypic diversification of hepatitis C virus (HCV) in the course of 200 passages in human hepatoma cells in an experimental design that precluded coevolution of the cells with the virus. Adaptation to the cells was evidenced by increase in progeny production. The rate of accumulation of mutations in the genomic consensus sequence deviated slightly from linearity, and mutant spectrum analyses revealed a complex dynamic of mutational waves, which was sustained beyond passage 100. The virus underwent several phenotypic changes, some of which impacted the virus-host relationship, such as enhanced cell killing, a shift toward higher virion density, and increased shutoff of host cell protein synthesis. Fluctuations in progeny production and failure to reach population equilibrium at the genomic level suggest internal instabilities that anticipate an unpredictable HCV evolution in the complex liver environment. IMPORTANCE Long-term virus evolution in an unperturbed cellular environment can reveal features of virus evolution that cannot be explained by comparing natural viral isolates. In the present study, we investigate genetic and phenotypic changes that occur upon prolonged passage of hepatitis C virus (HCV) in human hepatoma cells in an experimental design in which host cell evolutionary change is prevented. Despite replication in a noncoevolving cellular environment, the virus exhibited internal population disequilibria that did not decline with increased adaptation to the host cells. The diversification of phenotypic traits suggests that disequilibria inherent to viral populations may provide a selective advantage to viruses that can be fully exploited in changing environments. PMID:28275194

  8. 78 FR 69690 - Draft Guidance for Industry: Considerations for the Design of Early-Phase Clinical Trials of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... and Gene Therapy Products; Extension of Comment Period AGENCY: Food and Drug Administration, HHS...: Considerations for the Design of Early-Phase Clinical Trials of Cellular and Gene Therapy Products'' that... sponsors of Investigational New Drug Applications for cellular therapy (CT) and gene therapy (GT) products...

  9. New concept: cellular senescence in pathophysiology of cholangiocarcinoma.

    PubMed

    Sasaki, Motoko; Nakanuma, Yasuni

    2016-01-01

    Cholangiocarcinoma, a malignant tumor arising in the hepatobiliary system, presents with poor prognosis because of difficulty in its early detection/diagnosis. Recent progress revealed that cellular senescence may be involved in the pathophysiology of cholangiocarcinoma. Cellular senescence is defined as permanent growth arrest caused by several cellular injuries, such as oncogenic mutations and oxidative stress. "Oncogene-induced" and/or stress-induced senescence may occur in the process of multi-step cholangiocarcinogenesis, and overexpression of a polycomb group protein EZH2 may play a role in the escape from, and/or bypassing of, senescence. Furthermore, senescent cells may play important roles in tumor development and progression via the production of senescence-associated secretory phenotypes. Cellular senescence may be a new target for the prevention, early diagnosis, and therapy of cholangiocarcinoma in the near future.

  10. What Defines the "Kingdom" Fungi?

    PubMed

    Richards, Thomas A; Leonard, Guy; Wideman, Jeremy G

    2017-06-01

    The application of environmental DNA techniques and increased genome sequencing of microbial diversity, combined with detailed study of cellular characters, has consistently led to the reexamination of our understanding of the tree of life. This has challenged many of the definitions of taxonomic groups, especially higher taxonomic ranks such as eukaryotic kingdoms. The Fungi is an example of a kingdom which, together with the features that define it and the taxa that are grouped within it, has been in a continual state of flux. In this article we aim to summarize multiple lines of data pertinent to understanding the early evolution and definition of the Fungi. These include ongoing cellular and genomic comparisons that, we will argue, have generally undermined all attempts to identify a synapomorphic trait that defines the Fungi. This article will also summarize ongoing work focusing on taxon discovery, combined with phylogenomic analysis, which has identified novel groups that lie proximate/adjacent to the fungal clade-wherever the boundary that defines the Fungi may be. Our hope is that, by summarizing these data in the form of a discussion, we can illustrate the ongoing efforts to understand what drove the evolutionary diversification of fungi.

  11. Differential Activation of Cellular DNA Damage Responses by Replication-Defective and Replication-Competent Adenovirus Mutants

    PubMed Central

    Prakash, Anand; Jayaram, Sumithra

    2012-01-01

    Adenovirus (Ad) mutants that lack early region 4 (E4) activate the phosphorylation of cellular DNA damage response proteins. In wild-type Ad type 5 (Ad5) infections, E1b and E4 proteins target the cellular DNA repair protein Mre11 for redistribution and degradation, thereby interfering with its ability to activate phosphorylation cascades important during DNA repair. The characteristics of Ad infection that activate cellular DNA repair processes are not yet well understood. We investigated the activation of DNA damage responses by a replication-defective Ad vector (AdRSVβgal) that lacks E1 and fails to produce the immediate-early E1a protein. E1a is important for activating early gene expression from the other viral early transcription units, including E4. AdRSVβgal can deliver its genome to the cell, but it is subsequently deficient for viral early gene expression and DNA replication. We studied the ability of AdRSVβgal-infected cells to induce cellular DNA damage responses. AdRSVβgal infection does activate formation of foci containing the Mdc1 protein. However, AdRSVβgal fails to activate phosphorylation of the damage response proteins Nbs1 and Chk1. We found that viral DNA replication is important for Nbs1 phosphorylation, suggesting that this step in the viral life cycle may provide an important trigger for activating at least some DNA repair proteins. PMID:23015708

  12. Alternative splicing produces transcripts coding for alpha and beta chains of a hetero-dimeric phosphagen kinase.

    PubMed

    Ellington, W Ross; Yamashita, Daisuke; Suzuki, Tomohiko

    2004-06-09

    Glycocyamine kinase (GK) catalyzes the reversible phosphorylation of glycocyamine (guanidinoacetate), a reaction central to cellular energy homeostasis in certain animals. GK is a member of the phosphagen kinase enzyme family and appears to have evolved from creatine kinase (CK) early in the evolution of multi-cellular animals. Prior work has shown that GK from the polychaete Neanthes (Nereis) diversicolor exits as a hetero-dimer in vivo and that the two polypeptide chains (termed alpha and beta) are coded for by unique transcripts. In the present study, we demonstrate that the GK from a congener Nereis virens is also hetero-dimeric and is coded for by alpha and beta transcripts, which are virtually identical to the corresponding forms in N. diversicolor. The GK gene from N. diversicolor was amplified by PCR. Sequencing of the PCR products showed that the alpha and beta chains are the result of alternative splicing of the GK primary mRNA transcript. These results also strongly suggest that this gene underwent an early tandem exon duplication event. Full-length cDNAs for N. virens GKalpha and GKbeta were individually ligated into expression vectors and the resulting constructs used to transform Escherichia coli expression hosts. Regardless of expression conditions, minimal GK activity was observed in both GKalpha and GKbeta constructs. Inclusion bodies for both were harvested, unfolded in urea and alpha chains, beta chains and mixtures of alpha and beta chains were refolded by sequential dialysis. Only modest amounts of GK activity were observed when alpha and beta were refolded individually. In contrast, when refolded the alpha and beta mixture yielded highly active hetero-dimers, as validated by size exclusion chromatography, electrophoresis and mass spectrometry, with a specific activity comparable to that of natural GK. The above evidence suggests that there is a preference for hetero-dimer formation in the GKs from these two polychaetes. The evolution of the alternate splicing and an additional exon in these GKs, producing alpha and beta transcripts, can be viewed as a possible compensation for a mutation(s) in the original gene, which most likely coded for a homo-dimeric protein.

  13. In vivo imaging of epithelial wound healing in the cnidarian Clytia hemisphaerica demonstrates early evolution of purse string and cell crawling closure mechanisms.

    PubMed

    Kamran, Zach; Zellner, Katie; Kyriazes, Harry; Kraus, Christine M; Reynier, Jean-Baptiste; Malamy, Jocelyn E

    2017-12-19

    All animals have mechanisms for healing damage to the epithelial sheets that cover the body and line internal cavities. Epithelial wounds heal either by cells crawling over the wound gap, by contraction of a super-cellular actin cable ("purse string") that surrounds the wound, or some combination of the two mechanisms. Both cell crawling and purse string closure of epithelial wounds are widely observed across vertebrates and invertebrates, suggesting early evolution of these mechanisms. Cnidarians evolved ~600 million years ago and are considered a sister group to the Bilateria. They have been much studied for their tremendous regenerative potential, but epithelial wound healing has not been characterized in detail. Conserved elements of wound healing in bilaterians and cnidarians would suggest an evolutionary origin in a common ancestor. Here we test this idea by characterizing epithelial wound healing in live medusae of Clytia hemisphaerica. We identified cell crawling and purse string-mediated mechanisms of healing in Clytia epithelium that appear highly analogous of those seen in higher animals, suggesting that these mechanisms may have emerged in a common ancestor. Interestingly, we found that epithelial wound healing in Clytia is 75 to >600 times faster than in cultured cells or embryos of other animals previously studied, suggesting that Clytia may provide valuable clues about optimized healing efficiency. Finally, in Clytia, we show that damage to the basement membrane in a wound gap causes a rapid shift between the cell crawling and purse string mechanisms for wound closure. This is consistent with work in other systems showing that cells marginal to a wound choose between a super-cellular actin cable or lamellipodia formation to close wounds, and suggests a mechanism underlying this decision. 1. Cell crawling and purse string mechanisms of epithelial wound healing likely evolved before the divergence of Cnidaria from the bilaterian lineage ~ 600mya 2. In Clytia, the choice between cell crawling and purse string mechanisms of wound healing depends on interactions between the epithelial cells and the basement membrane.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisio, Alessandro; D’Ariano, Giacomo Mauro; Tosini, Alessandro, E-mail: alessandro.tosini@unipv.it

    We present a quantum cellular automaton model in one space-dimension which has the Dirac equation as emergent. This model, a discrete-time and causal unitary evolution of a lattice of quantum systems, is derived from the assumptions of homogeneity, parity and time-reversal invariance. The comparison between the automaton and the Dirac evolutions is rigorously set as a discrimination problem between unitary channels. We derive an exact lower bound for the probability of error in the discrimination as an explicit function of the mass, the number and the momentum of the particles, and the duration of the evolution. Computing this bound withmore » experimentally achievable values, we see that in that regime the QCA model cannot be discriminated from the usual Dirac evolution. Finally, we show that the evolution of one-particle states with narrow-band in momentum can be efficiently simulated by a dispersive differential equation for any regime. This analysis allows for a comparison with the dynamics of wave-packets as it is described by the usual Dirac equation. This paper is a first step in exploring the idea that quantum field theory could be grounded on a more fundamental quantum cellular automaton model and that physical dynamics could emerge from quantum information processing. In this framework, the discretization is a central ingredient and not only a tool for performing non-perturbative calculation as in lattice gauge theory. The automaton model, endowed with a precise notion of local observables and a full probabilistic interpretation, could lead to a coherent unification of a hypothetical discrete Planck scale with the usual Fermi scale of high-energy physics. - Highlights: • The free Dirac field in one space dimension as a quantum cellular automaton. • Large scale limit of the automaton and the emergence of the Dirac equation. • Dispersive differential equation for the evolution of smooth states on the automaton. • Optimal discrimination between the automaton evolution and the Dirac equation.« less

  15. Motifs, modules and games in bacteria.

    PubMed

    Wolf, Denise M; Arkin, Adam P

    2003-04-01

    Global explorations of regulatory network dynamics, organization and evolution have become tractable thanks to high-throughput sequencing and molecular measurement of bacterial physiology. From these, a nascent conceptual framework is developing, that views the principles of regulation in term of motifs, modules and games. Motifs are small, repeated, and conserved biological units ranging from molecular domains to small reaction networks. They are arranged into functional modules, genetically dissectible cellular functions such as the cell cycle, or different stress responses. The dynamical functioning of modules defines the organism's strategy to survive in a game, pitting cell against cell, and cell against environment. Placing pathway structure and dynamics into an evolutionary context begins to allow discrimination between those physical and molecular features that particularize a species to its surroundings, and those that provide core physiological function. This approach promises to generate a higher level understanding of cellular design, pathway evolution and cellular bioengineering.

  16. Predictive modeling of multicellular structure formation by using Cellular Particle Dynamics simulations

    NASA Astrophysics Data System (ADS)

    McCune, Matthew; Shafiee, Ashkan; Forgacs, Gabor; Kosztin, Ioan

    2014-03-01

    Cellular Particle Dynamics (CPD) is an effective computational method for describing and predicting the time evolution of biomechanical relaxation processes of multicellular systems. A typical example is the fusion of spheroidal bioink particles during post bioprinting structure formation. In CPD cells are modeled as an ensemble of cellular particles (CPs) that interact via short-range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through integration of their equations of motion. CPD was successfully applied to describe and predict the fusion of 3D tissue construct involving identical spherical aggregates. Here, we demonstrate that CPD can also predict tissue formation involving uneven spherical aggregates whose volumes decrease during the fusion process. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  17. Motifs, modules and games in bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Denise M.; Arkin, Adam P.

    2003-04-01

    Global explorations of regulatory network dynamics, organization and evolution have become tractable thanks to high-throughput sequencing and molecular measurement of bacterial physiology. From these, a nascent conceptual framework is developing, that views the principles of regulation in term of motifs, modules and games. Motifs are small, repeated, and conserved biological units ranging from molecular domains to small reaction networks. They are arranged into functional modules, genetically dissectible cellular functions such as the cell cycle, or different stress responses. The dynamical functioning of modules defines the organism's strategy to survive in a game, pitting cell against cell, and cell against environment.more » Placing pathway structure and dynamics into an evolutionary context begins to allow discrimination between those physical and molecular features that particularize a species to its surroundings, and those that provide core physiological function. This approach promises to generate a higher level understanding of cellular design, pathway evolution and cellular bioengineering.« less

  18. Cellular Radio Telecommunication for Health Care: Benefits and Risks

    PubMed Central

    Sneiderman, Charles A.; Ackerman, Michael J.

    2004-01-01

    Cellular radio telecommunication has increased exponentially with many applications to health care reported. The authors attempt to summarize published applications with demonstrated effect on health care, review briefly the rapid evolution of hardware and software standards, explain current limitations and future potential of data quality and security, and discuss issues of safety. PMID:15298996

  19. The ribosome as a missing link in the evolution of life.

    PubMed

    Root-Bernstein, Meredith; Root-Bernstein, Robert

    2015-02-21

    Many steps in the evolution of cellular life are still mysterious. We suggest that the ribosome may represent one important missing link between compositional (or metabolism-first), RNA-world (or genes-first) and cellular (last universal common ancestor) approaches to the evolution of cells. We present evidence that the entire set of transfer RNAs for all twenty amino acids are encoded in both the 16S and 23S rRNAs of Escherichia coli K12; that nucleotide sequences that could encode key fragments of ribosomal proteins, polymerases, ligases, synthetases, and phosphatases are to be found in each of the six possible reading frames of the 16S and 23S rRNAs; and that every sequence of bases in rRNA has information encoding more than one of these functions in addition to acting as a structural component of the ribosome. Ribosomal RNA, in short, is not just a structural scaffold for proteins, but the vestigial remnant of a primordial genome that may have encoded a self-organizing, self-replicating, auto-catalytic intermediary between macromolecules and cellular life. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Two distinct cellular proteins interact with the EIa-responsive element of an adenovirus early promoter.

    PubMed Central

    Jansen-Durr, P; Wintzerith, M; Reimund, B; Hauss, C; Kédinger, C

    1990-01-01

    EIa-dependent transactivation of the adenovirus EIIa early (EIIaE) promoter is correlated with the activation of the cellular transcription factor E2F. In this study we identified a cellular protein, C alpha, that is distinct from E2F and that binds two sites in the EIIaE promoter, one of which overlaps with the proximal E2F binding site of the EIIaE promoter. The possible involvement of C alpha in the EIa responsiveness of this promoter is discussed. Images PMID:2139142

  1. Evolution of SUMO Function and Chain Formation in Insects.

    PubMed

    Ureña, Enric; Pirone, Lucia; Chafino, Silvia; Pérez, Coralia; Sutherland, James D; Lang, Valérie; Rodriguez, Manuel S; Lopitz-Otsoa, Fernando; Blanco, Francisco J; Barrio, Rosa; Martín, David

    2016-02-01

    SUMOylation, the covalent binding of Small Ubiquitin-like Modifier (SUMO) to target proteins, is a posttranslational modification that regulates critical cellular processes in eukaryotes. In insects, SUMOylation has been studied in holometabolous species, particularly in the dipteran Drosophila melanogaster, which contains a single SUMO gene (smt3). This has led to the assumption that insects contain a single SUMO gene. However, the analysis of insect genomes shows that basal insects contain two SUMO genes, orthologous to vertebrate SUMO1 and SUMO2/3. Our phylogenetical analysis reveals that the SUMO gene has been duplicated giving rise to SUMO1 and SUMO2/3 families early in Metazoan evolution, and that later in insect evolution the SUMO1 gene has been lost after the Hymenoptera divergence. To explore the consequences of this loss, we have examined the characteristics and different biological functions of the two SUMO genes (SUMO1 and SUMO3) in the hemimetabolous cockroach Blattella germanica and compared them with those of Drosophila Smt3. Here, we show that the metamorphic role of the SUMO genes is evolutionary conserved in insects, although there has been a regulatory switch from SUMO1 in basal insects to SUMO3 in more derived ones. We also show that, unlike vertebrates, insect SUMO3 proteins cannot form polySUMO chains due to the loss of critical lysine residues within the N-terminal part of the protein. Furthermore, the formation of polySUMO chains by expression of ectopic human SUMO3 has a deleterious effect in Drosophila. These findings contribute to the understanding of the functional consequences of the evolution of SUMO genes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Early-life stress impacts the developing hippocampus and primes seizure occurrence: cellular, molecular, and epigenetic mechanisms

    PubMed Central

    Huang, Li-Tung

    2014-01-01

    Early-life stress includes prenatal, postnatal, and adolescence stress. Early-life stress can affect the development of the hypothalamic-pituitary-adrenal (HPA) axis, and cause cellular and molecular changes in the developing hippocampus that can result in neurobehavioral changes later in life. Epidemiological data implicate stress as a cause of seizures in both children and adults. Emerging evidence indicates that both prenatal and postnatal stress can prime the developing brain for seizures and an increase in epileptogenesis. This article reviews the cellular and molecular changes encountered during prenatal and postnatal stress, and assesses the possible link between these changes and increases in seizure occurrence and epileptogenesis in the developing hippocampus. In addititon, the priming effect of prenatal and postnatal stress for seizures and epileptogenesis is discussed. Finally, the roles of epigenetic modifications in hippocampus and HPA axis programming, early-life stress, and epilepsy are discussed. PMID:24574961

  3. Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae

    PubMed Central

    Arslan, Defne; Legendre, Matthieu; Seltzer, Virginie; Abergel, Chantal; Claverie, Jean-Michel

    2011-01-01

    Mimivirus, a DNA virus infecting acanthamoeba, was for a long time the largest known virus both in terms of particle size and gene content. Its genome encodes 979 proteins, including the first four aminoacyl tRNA synthetases (ArgRS, CysRS, MetRS, and TyrRS) ever found outside of cellular organisms. The discovery that Mimivirus encoded trademark cellular functions prompted a wealth of theoretical studies revisiting the concept of virus and associated large DNA viruses with the emergence of early eukaryotes. However, the evolutionary significance of these unique features remained impossible to assess in absence of a Mimivirus relative exhibiting a suitable evolutionary divergence. Here, we present Megavirus chilensis, a giant virus isolated off the coast of Chile, but capable of replicating in fresh water acanthamoeba. Its 1,259,197-bp genome is the largest viral genome fully sequenced so far. It encodes 1,120 putative proteins, of which 258 (23%) have no Mimivirus homologs. The 594 Megavirus/Mimivirus orthologs share an average of 50% of identical residues. Despite this divergence, Megavirus retained all of the genomic features characteristic of Mimivirus, including its cellular-like genes. Moreover, Megavirus exhibits three additional aminoacyl-tRNA synthetase genes (IleRS, TrpRS, and AsnRS) adding strong support to the previous suggestion that the Mimivirus/Megavirus lineage evolved from an ancestral cellular genome by reductive evolution. The main differences in gene content between Mimivirus and Megavirus genomes are due to (i) lineages specific gains or losses of genes, (ii) lineage specific gene family expansion or deletion, and (iii) the insertion/migration of mobile elements (intron, intein). PMID:21987820

  4. Evolution of Microbial Quorum Sensing to Human Global Quorum Sensing: An Insight into How Gap Junctional Intercellular Communication Might Be Linked to the Global Metabolic Disease Crisis.

    PubMed

    Trosko, James E

    2016-06-15

    The first anaerobic organism extracted energy for survival and reproduction from its source of nutrients, with the genetic means to ensure protection of its individual genome but also its species survival. While it had a means to communicate with its community via simple secreted molecules ("quorum sensing"), the eventual shift to an aerobic environment led to multi-cellular metazoan organisms, with evolutionary-selected genes to form extracellular matrices, stem cells, stem cell niches, and a family of gap junction or "connexin" genes. These germinal and somatic stem cells responded to extracellular signals that triggered intra-cellular signaling to regulate specific genes out of the total genome. These extra-cellular induced intra-cellular signals also modulated gap junctional intercellular communication (GJIC) in order to regulate the new cellular functions of symmetrical and asymmetrical cell division, cell differentiation, modes of cell death, and senescence. Within the hierarchical and cybernetic concepts, differentiated by neurons organized in the brain of the Homo sapiens, the conscious mind led to language, abstract ideas, technology, myth-making, scientific reasoning, and moral decision-making, i.e., the creation of culture. Over thousands of years, this has created the current collision between biological and cultural evolution, leading to the global "metabolic disease" crisis.

  5. Molecular composition and ultrastructure of Jurassic paravian feathers

    PubMed Central

    Lindgren, Johan; Sjövall, Peter; Carney, Ryan M.; Cincotta, Aude; Uvdal, Per; Hutcheson, Steven W.; Gustafsson, Ola; Lefèvre, Ulysse; Escuillié, François; Heimdal, Jimmy; Engdahl, Anders; Gren, Johan A.; Kear, Benjamin P.; Wakamatsu, Kazumasa; Yans, Johan; Godefroit, Pascal

    2015-01-01

    Feathers are amongst the most complex epidermal structures known, and they have a well-documented evolutionary trajectory across non-avian dinosaurs and basal birds. Moreover, melanosome-like microbodies preserved in association with fossil plumage have been used to reconstruct original colour, behaviour and physiology. However, these putative ancient melanosomes might alternatively represent microorganismal residues, a conflicting interpretation compounded by a lack of unambiguous chemical data. We therefore used sensitive molecular imaging, supported by multiple independent analytical tests, to demonstrate that the filamentous epidermal appendages in a new specimen of the Jurassic paravian Anchiornis comprise remnant eumelanosomes and fibril-like microstructures, preserved as endogenous eumelanin and authigenic calcium phosphate. These results provide novel insights into the early evolution of feathers at the sub-cellular level, and unequivocally determine that melanosomes can be preserved in fossil feathers. PMID:26311035

  6. The radial growth phase of malignant melanoma: multi-phase modelling, numerical simulations and linear stability analysis.

    PubMed

    Ciarletta, P; Foret, L; Ben Amar, M

    2011-03-06

    Cutaneous melanoma is disproportionately lethal despite its relatively low incidence and its potential for cure in the early stages. The aim of this study is to foster understanding of the role of microstructure on the occurrence of morphological changes in diseased skin during melanoma evolution. The authors propose a biomechanical analysis of its radial growth phase, investigating the role of intercellular/stromal connections on the initial stages of epidermis invasion. The radial growth phase of a primary melanoma is modelled within the multi-phase theory of mixtures, reproducing the mechanical behaviour of the skin layers and of the epidermal-dermal junction. The theoretical analysis takes into account those cellular processes that have been experimentally observed to disrupt homeostasis in normal epidermis. Numerical simulations demonstrate that the loss of adhesiveness of the melanoma cells both to the basal laminae, caused by deregulation mechanisms of adherent junctions, and to adjacent keratynocytes, consequent to a downregulation of E-cadherin, are the fundamental biomechanical features for promoting tumour initiation. Finally, the authors provide the mathematical proof of a long wavelength instability of the tumour front during the early stages of melanoma invasion. These results open the perspective to correlate the early morphology of a growing melanoma with the biomechanical characteristics of its micro-environment.

  7. The radial growth phase of malignant melanoma: multi-phase modelling, numerical simulations and linear stability analysis

    PubMed Central

    Ciarletta, P.; Foret, L.; Ben Amar, M.

    2011-01-01

    Cutaneous melanoma is disproportionately lethal despite its relatively low incidence and its potential for cure in the early stages. The aim of this study is to foster understanding of the role of microstructure on the occurrence of morphological changes in diseased skin during melanoma evolution. The authors propose a biomechanical analysis of its radial growth phase, investigating the role of intercellular/stromal connections on the initial stages of epidermis invasion. The radial growth phase of a primary melanoma is modelled within the multi-phase theory of mixtures, reproducing the mechanical behaviour of the skin layers and of the epidermal–dermal junction. The theoretical analysis takes into account those cellular processes that have been experimentally observed to disrupt homeostasis in normal epidermis. Numerical simulations demonstrate that the loss of adhesiveness of the melanoma cells both to the basal laminae, caused by deregulation mechanisms of adherent junctions, and to adjacent keratynocytes, consequent to a downregulation of E-cadherin, are the fundamental biomechanical features for promoting tumour initiation. Finally, the authors provide the mathematical proof of a long wavelength instability of the tumour front during the early stages of melanoma invasion. These results open the perspective to correlate the early morphology of a growing melanoma with the biomechanical characteristics of its micro-environment. PMID:20656740

  8. Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod

    PubMed Central

    Hut, R. A.; Beersma, D. G. M.

    2011-01-01

    Virtually all species have developed cellular oscillations and mechanisms that synchronize these cellular oscillations to environmental cycles. Such environmental cycles in biotic (e.g. food availability and predation risk) or abiotic (e.g. temperature and light) factors may occur on a daily, annual or tidal time scale. Internal timing mechanisms may facilitate behavioural or physiological adaptation to such changes in environmental conditions. These timing mechanisms commonly involve an internal molecular oscillator (a ‘clock’) that is synchronized (‘entrained’) to the environmental cycle by receptor mechanisms responding to relevant environmental signals (‘Zeitgeber’, i.e. German for time-giver). To understand the evolution of such timing mechanisms, we have to understand the mechanisms leading to selective advantage. Although major advances have been made in our understanding of the physiological and molecular mechanisms driving internal cycles (proximate questions), studies identifying mechanisms of natural selection on clock systems (ultimate questions) are rather limited. Here, we discuss the selective advantage of a circadian system and how its adaptation to day length variation may have a functional role in optimizing seasonal timing. We discuss various cases where selective advantages of circadian timing mechanisms have been shown and cases where temporarily loss of circadian timing may cause selective advantage. We suggest an explanation for why a circadian timing system has emerged in primitive life forms like cyanobacteria and we evaluate a possible molecular mechanism that enabled these bacteria to adapt to seasonal variation in day length. We further discuss how the role of the circadian system in photoperiodic time measurement may explain differential selection pressures on circadian period when species are exposed to changing climatic conditions (e.g. global warming) or when they expand their geographical range to different latitudes or altitudes. PMID:21690131

  9. Silencing, positive selection and parallel evolution: busy history of primate cytochromes C.

    PubMed

    Pierron, Denis; Opazo, Juan C; Heiske, Margit; Papper, Zack; Uddin, Monica; Chand, Gopi; Wildman, Derek E; Romero, Roberto; Goodman, Morris; Grossman, Lawrence I

    2011-01-01

    Cytochrome c (cyt c) participates in two crucial cellular processes, energy production and apoptosis, and unsurprisingly is a highly conserved protein. However, previous studies have reported for the primate lineage (i) loss of the paralogous testis isoform, (ii) an acceleration and then a deceleration of the amino acid replacement rate of the cyt c somatic isoform, and (iii) atypical biochemical behavior of human cyt c. To gain insight into the cause of these major evolutionary events, we have retraced the history of cyt c loci among primates. For testis cyt c, all primate sequences examined carry the same nonsense mutation, which suggests that silencing occurred before the primates diversified. For somatic cyt c, maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses yielded the same tree topology. The evolutionary analyses show that a fast accumulation of non-synonymous mutations (suggesting positive selection) occurred specifically on the anthropoid lineage root and then continued in parallel on the early catarrhini and platyrrhini stems. Analysis of evolutionary changes using the 3D structure suggests they are focused on the respiratory chain rather than on apoptosis or other cyt c functions. In agreement with previous biochemical studies, our results suggest that silencing of the cyt c testis isoform could be linked with the decrease of primate reproduction rate. Finally, the evolution of cyt c in the two sister anthropoid groups leads us to propose that somatic cyt c evolution may be related both to COX evolution and to the convergent brain and body mass enlargement in these two anthropoid clades.

  10. Silencing, Positive Selection and Parallel Evolution: Busy History of Primate Cytochromes c

    PubMed Central

    Pierron, Denis; Opazo, Juan C.; Heiske, Margit; Papper, Zack; Uddin, Monica; Chand, Gopi; Wildman, Derek E.; Romero, Roberto; Goodman, Morris; Grossman, Lawrence I.

    2011-01-01

    Cytochrome c (cyt c) participates in two crucial cellular processes, energy production and apoptosis, and unsurprisingly is a highly conserved protein. However, previous studies have reported for the primate lineage (i) loss of the paralogous testis isoform, (ii) an acceleration and then a deceleration of the amino acid replacement rate of the cyt c somatic isoform, and (iii) atypical biochemical behavior of human cyt c. To gain insight into the cause of these major evolutionary events, we have retraced the history of cyt c loci among primates. For testis cyt c, all primate sequences examined carry the same nonsense mutation, which suggests that silencing occurred before the primates diversified. For somatic cyt c, maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses yielded the same tree topology. The evolutionary analyses show that a fast accumulation of non-synonymous mutations (suggesting positive selection) occurred specifically on the anthropoid lineage root and then continued in parallel on the early catarrhini and platyrrhini stems. Analysis of evolutionary changes using the 3D structure suggests they are focused on the respiratory chain rather than on apoptosis or other cyt c functions. In agreement with previous biochemical studies, our results suggest that silencing of the cyt c testis isoform could be linked with the decrease of primate reproduction rate. Finally, the evolution of cyt c in the two sister anthropoid groups leads us to propose that somatic cyt c evolution may be related both to COX evolution and to the convergent brain and body mass enlargement in these two anthropoid clades. PMID:22028846

  11. Solar Radiation as Driving Force In Early Evolution

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Peterson, David L. (Technical Monitor)

    2002-01-01

    Ultraviolet radiation (UVR) has provided an evolutionary challenge to life on Earth in that it is both an agent of mutation and as well as a selective force. Today surface fluxes of UVR vary diurnally, seasonally, etc. Still, the UVR flux was probably substantially higher during the early phases of evolution, suggesting that its role in evolution was even more prominent during this time. In this presentation, the creative role of UVR in evolution is discussed, specifically in connection with the role that UVR may have played in the evolution of early microbial ecosystems. The presentation will include discussions of the direct influence of UVR on such processes as photosynthesis and genetic damage, as well as the indirect influence of UVR as mediated through the production of reactive oxygen species. These biological effects of UVR will be viewed against the backdrop of the physical nature of the early Earth, surely a very different place then than now.

  12. Vigor of survival determinism: subtle evolutionary gradualism interspersed with robust phylogenetic leaping.

    PubMed

    Krsmanovic, Pavle

    2017-12-01

    Discussions of the survival determinism concept have previously focused on its primary role in the evolution of early unicellular organisms in the light of findings which have been reported on a number of diseases. The rationale for such parallel was in the view according to which multicellular organisms could be regarded as sophisticated colonies of semi-autonomous, single-celled entities, whereby various diseases were described as conditions arising upon the activation of the respective survival mechanisms in a milieu unsuitable for such robust stress response. The cellular mechanisms that were discussed in these contexts have been known to play various roles in other biological processes. The proposed notion could thereby be further extended to discussion on mechanisms for the implementation of the respective survival pathways in the development of metazoa, considering that they would have been propagated in their evolution for so long. This manuscript first presents a concise overview of the model previously discussed, followed by the discussion on the role of respective mechanism(s) in origins and development of metazoa. Finally, a reflection on the concept in relation to the prominent evolutionary models is put forward to illustrate a broader context of what is being discussed.

  13. Rapid directed evolution of stabilized proteins with cellular high-throughput encapsulation solubilization and screening (CHESS).

    PubMed

    Yong, K J; Scott, D J

    2015-03-01

    Directed evolution is a powerful method for engineering proteins towards user-defined goals and has been used to generate novel proteins for industrial processes, biological research and drug discovery. Typical directed evolution techniques include cellular display, phage display, ribosome display and water-in-oil compartmentalization, all of which physically link individual members of diverse gene libraries to their translated proteins. This allows the screening or selection for a desired protein function and subsequent isolation of the encoding gene from diverse populations. For biotechnological and industrial applications there is a need to engineer proteins that are functional under conditions that are not compatible with these techniques, such as high temperatures and harsh detergents. Cellular High-throughput Encapsulation Solubilization and Screening (CHESS), is a directed evolution method originally developed to engineer detergent-stable G proteins-coupled receptors (GPCRs) for structural biology. With CHESS, library-transformed bacterial cells are encapsulated in detergent-resistant polymers to form capsules, which serve to contain mutant genes and their encoded proteins upon detergent mediated solubilization of cell membranes. Populations of capsules can be screened like single cells to enable rapid isolation of genes encoding detergent-stable protein mutants. To demonstrate the general applicability of CHESS to other proteins, we have characterized the stability and permeability of CHESS microcapsules and employed CHESS to generate thermostable, sodium dodecyl sulfate (SDS) resistant green fluorescent protein (GFP) mutants, the first soluble proteins to be engineered using CHESS. © 2014 Wiley Periodicals, Inc.

  14. Mapping human pluripotent stem cell differentiation pathways using high throughput single-cell RNA-sequencing.

    PubMed

    Han, Xiaoping; Chen, Haide; Huang, Daosheng; Chen, Huidong; Fei, Lijiang; Cheng, Chen; Huang, He; Yuan, Guo-Cheng; Guo, Guoji

    2018-04-05

    Human pluripotent stem cells (hPSCs) provide powerful models for studying cellular differentiations and unlimited sources of cells for regenerative medicine. However, a comprehensive single-cell level differentiation roadmap for hPSCs has not been achieved. We use high throughput single-cell RNA-sequencing (scRNA-seq), based on optimized microfluidic circuits, to profile early differentiation lineages in the human embryoid body system. We present a cellular-state landscape for hPSC early differentiation that covers multiple cellular lineages, including neural, muscle, endothelial, stromal, liver, and epithelial cells. Through pseudotime analysis, we construct the developmental trajectories of these progenitor cells and reveal the gene expression dynamics in the process of cell differentiation. We further reprogram primed H9 cells into naïve-like H9 cells to study the cellular-state transition process. We find that genes related to hemogenic endothelium development are enriched in naïve-like H9. Functionally, naïve-like H9 show higher potency for differentiation into hematopoietic lineages than primed cells. Our single-cell analysis reveals the cellular-state landscape of hPSC early differentiation, offering new insights that can be harnessed for optimization of differentiation protocols.

  15. The cell's view of animal body-plan evolution.

    PubMed

    Lyons, Deirdre C; Martindale, Mark Q; Srivastava, Mansi

    2014-10-01

    An adult animal's form is shaped by the collective behavior of cells during embryonic development. To understand the forces that drove the divergence of animal body-plans, evolutionary developmental biology has focused largely on studying genetic networks operating during development. However, it is less well understood how these networks modulate characteristics at the cellular level, such as the shape, polarity, or migration of cells. We organized the "Cell's view of animal body plan evolution" symposium for the 2014 The Society for Integrative and Comparative Biology meeting with the explicit goal of bringing together researchers studying the cell biology of embryonic development in diverse animal taxa. Using a broad range of established and emerging technologies, including live imaging, single-cell analysis, and mathematical modeling, symposium participants revealed mechanisms underlying cells' behavior, a few of which we highlight here. Shape, adhesion, and movements of cells can be modulated over the course of evolution to alter adult body-plans and a major theme explored during the symposium was the role of actomyosin in coordinating diverse behaviors of cells underlying morphogenesis in a myriad of contexts. Uncovering whether conserved or divergent genetic mechanisms guide the contractility of actomyosin in these systems will be crucial to understanding the evolution of the body-plans of animals from a cellular perspective. Many speakers presented research describing developmental phenomena in which cell division and tissue growth can control the form of the adult, and other presenters shared work on studying cell-fate specification, an important source of novelty in animal body-plans. Participants also presented studies of regeneration in annelids, flatworms, acoels, and cnidarians, and provided a unifying view of the regulation of cellular behavior during different life-history stages. Additionally, several presentations highlighted technological advances that glean mechanistic insights from new and emerging model systems, thereby providing the phylogenetic breadth so essential for studying animal evolution. Thus, we propose that an explicit study of cellular phenomena is now possible for a wide range of taxa, and that it will be highly informative for understanding the evolution of animal body-plans. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  16. Evolution of altruism in spatial prisoner's dilemma: Intra- and inter-cellular interactions

    NASA Astrophysics Data System (ADS)

    Yokoi, Hiroki; Uehara, Takashi; Sakata, Tomoyuki; Naito, Hiromi; Morita, Satoru; Tainaka, Kei-ichi

    2014-12-01

    Iterated prisoner's dilemma game is carried out on lattice with “colony” structure. Each cell is regarded as a colony which contains plural players with an identical strategy. Both intra- and inter-cellular interactions are assumed. In the former a player plays with all other players in the same colony, while in the latter he plays with one player each from adjacent colonies. Spatial patterns among four typical strategies exhibit various dynamics and winners. Both theory and simulation reveal that All Cooperation (AC) wins, when the members of colony or the intensity of noise increases. This result explains the evolution of altruism in animal societies, even though errors easily occur in animal communications.

  17. ClonEvol: clonal ordering and visualization in cancer sequencing.

    PubMed

    Dang, H X; White, B S; Foltz, S M; Miller, C A; Luo, J; Fields, R C; Maher, C A

    2017-12-01

    Reconstruction of clonal evolution is critical for understanding tumor progression and implementing personalized therapies. This is often done by clustering somatic variants based on their cellular prevalence estimated via bulk tumor sequencing of multiple samples. The clusters, consisting of the clonal marker variants, are then ordered based on their estimated cellular prevalence to reconstruct clonal evolution trees, a process referred to as 'clonal ordering'. However, cellular prevalence estimate is confounded by statistical variability and errors in sequencing/data analysis, and therefore inhibits accurate reconstruction of the clonal evolution. This problem is further complicated by intra- and inter-tumor heterogeneity. Furthermore, the field lacks a comprehensive visualization tool to facilitate the interpretation of complex clonal relationships. To address these challenges we developed ClonEvol, a unified software tool for clonal ordering, visualization, and interpretation. ClonEvol uses a bootstrap resampling technique to estimate the cellular fraction of the clones and probabilistically models the clonal ordering constraints to account for statistical variability. The bootstrapping allows identification of the sample founding- and sub-clones, thus enabling interpretation of clonal seeding. ClonEvol automates the generation of multiple widely used visualizations for reconstructing and interpreting clonal evolution. ClonEvol outperformed three of the state of the art tools (LICHeE, Canopy and PhyloWGS) for clonal evolution inference, showing more robust error tolerance and producing more accurate trees in a simulation. Building upon multiple recent publications that utilized ClonEvol to study metastasis and drug resistance in solid cancers, here we show that ClonEvol rediscovered relapsed subclones in two published acute myeloid leukemia patients. Furthermore, we demonstrated that through noninvasive monitoring ClonEvol recapitulated the emerging subclones throughout metastatic progression observed in the tumors of a published breast cancer patient. ClonEvol has broad applicability for longitudinal monitoring of clonal populations in tumor biopsies, or noninvasively, to guide precision medicine. ClonEvol is written in R and is available at https://github.com/ChrisMaherLab/ClonEvol. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Domain Cell Theory supports the independent evolution of the Eukarya, Bacteria and Archaea and the Nuclear Compartment Commonality hypothesis.

    PubMed

    Staley, James T

    2017-06-01

    In 2015, the Royal Society of London held a meeting to discuss the various hypotheses regarding the origin of the Eukarya. Although not all participants supported a hypothesis, the proposals that did fit into two broad categories: one group favoured 'Prokaryotes First' hypotheses and another addressed 'Eukaryotes First' hypotheses. Those who proposed Prokaryotes First hypotheses advocated either a fusion event between a bacterium and an archaeon that produced the first eukaryote or the direct evolution of the Eukarya from the Archaea. The Eukaryotes First proponents posit that the eukaryotes evolved initially and then, by reductive evolution, produced the Bacteria and Archaea. No mention was made of another previously published hypothesis termed the Nuclear Compartment Commonality (NuCom) hypothesis, which proposed the evolution of the Eukarya and Bacteria from nucleated ancestors (Staley 2013 Astrobiol Outreach 1 , 105 (doi:10.4172/2332-2519.1000105)). Evidence from two studies indicates that the nucleated Planctomycetes-Verrucomicrobia-Chlamydia superphylum members are the most ancient Bacteria known (Brochier & Philippe 2002 Nature 417 , 244 (doi:10.1038/417244a); Jun et al. 2010 Proc. Natl Acad. Sci. USA 107 , 133-138 (doi:10.1073/pnas.0913033107)). This review summarizes the evidence for the NuCom hypothesis and discusses how simple the NuCom hypothesis is in explaining eukaryote evolution relative to the other hypotheses. The philosophical importance of simplicity and its relationship to truth in hypotheses such as NuCom and Domain Cell Theory is presented. Domain Cell Theory is also proposed herein, which contends that each of the three cellular lineages of life, the Archaea, Bacteria and Eukarya domains, evolved independently, in support of the NuCom hypothesis. All other proposed hypotheses violate Domain Cell Theory because they posit the evolution of different cellular descendants from ancestral cellular types. © 2017 The Authors.

  19. The relationship between in vitro cellular aging and in vivo human age.

    PubMed Central

    Schneider, E L; Mitsui, Y

    1976-01-01

    Differences between early and late passage cell cultures on the organelle and macromolecular levels have been attributed to cellular "aging". However, concern has been expressed over whether changes in diploid cell populations after serial passage in vitro accurately reflect human cellular aging in vivo. Studies were therefore undertaken to determine if significant differences would be observed in the in vitro lifespans of skin fibroblast cultures from old and young normal, non-hospitalized volunteers and to examine if parameters that change with in vitro "aging" are altered as a function of age in vivo. Statistically signigificant (P less than 0.05) decreases were found in the rate of fibroblast migration, onset of cell culture senescence, in vitro lifespan, cell population replication rate, and cell number at confluency of fibroblast cultures derived from the old donor group when compared to parallel cultures from young donors. No significant differences were observed in modal cell volumes and cellular macromolecular contents. The differences observed in cell cultures from old and young donors were quantitatively and qualitatively distinct from those cellular alterations observed in early and late passage WI-38 cells (in vitro "aging"). Therefore, although early and late passage cultures of human diploid cells may provide an important cell system for examining loss of replicative potential, fibroblast cultures derived from old and young human donors may be a more appropriate model system for studying human cellular aging. PMID:1068470

  20. Inseparable tandem: evolution chooses ATP and Ca2+ to control life, death and cellular signalling

    PubMed Central

    Verkhratsky, Alexei

    2016-01-01

    From the very dawn of biological evolution, ATP was selected as a multipurpose energy-storing molecule. Metabolism of ATP required intracellular free Ca2+ to be set at exceedingly low concentrations, which in turn provided the background for the role of Ca2+ as a universal signalling molecule. The early-eukaryote life forms also evolved functional compartmentalization and vesicle trafficking, which used Ca2+ as a universal signalling ion; similarly, Ca2+ is needed for regulation of ciliary and flagellar beat, amoeboid movement, intracellular transport, as well as of numerous metabolic processes. Thus, during evolution, exploitation of atmospheric oxygen and increasingly efficient ATP production via oxidative phosphorylation by bacterial endosymbionts were a first step for the emergence of complex eukaryotic cells. Simultaneously, Ca2+ started to be exploited for short-range signalling, despite restrictions by the preset phosphate-based energy metabolism, when both phosphates and Ca2+ interfere with each other because of the low solubility of calcium phosphates. The need to keep cytosolic Ca2+ low forced cells to restrict Ca2+ signals in space and time and to develop energetically favourable Ca2+ signalling and Ca2+ microdomains. These steps in tandem dominated further evolution. The ATP molecule (often released by Ca2+-regulated exocytosis) rapidly grew to be the universal chemical messenger for intercellular communication; ATP effects are mediated by an extended family of purinoceptors often linked to Ca2+ signalling. Similar to atmospheric oxygen, Ca2+ must have been reverted from a deleterious agent to a most useful (intra- and extracellular) signalling molecule. Invention of intracellular trafficking further increased the role for Ca2+ homeostasis that became critical for regulation of cell survival and cell death. Several mutually interdependent effects of Ca2+ and ATP have been exploited in evolution, thus turning an originally unholy alliance into a fascinating success story. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377729

  1. A Technical Review of Cellular Radio and Analysis of a Possible Protocol

    DTIC Science & Technology

    1992-09-01

    9 1. The Pioneers ............. ................................... 9 2. Time line of Radio Evolution...cellular telephone. Advances in low-power radio transmission and the speed with which modern computers can aid in frequency management and signal...lecturer at the Royal Institution in London. He subsequently worked his way up to lecturer and devoted ever increasing amounts of time to experiments

  2. Ancient cellular structures and modern humans: change of survival strategies before prolonged low solar activity period

    NASA Astrophysics Data System (ADS)

    Ragulskaya, Mariya; Rudenchik, Evgeniy; Gromozova, Elena; Voychuk, Sergei; Kachur, Tatiana

    The study of biotropic effects of modern space weather carries the information about the rhythms and features of adaptation of early biological systems to the outer space influence. The influence of cosmic rays, ultraviolet waves and geomagnetic field on early life has its signs in modern biosphere processes. These phenomena could be experimentally studied on present-day biological objects. Particularly inorganic polyphosphates, so-called "fossil molecules", attracts special attention as the most ancient molecules which arose in inanimate nature and have been accompanying biological objects at all stages of evolution. Polyphosphates-containing graves of yeast's cells of Saccharomyces cerevisiae strain Y-517, , from the Ukrainian Collection of Microorganisms was studied by daily measurements during 2000-2013 years. The IZMIRAN daily data base of physiological parameters dynamics during 2000-2013 years were analyzed simultaneously (25 people). The analysis showed significant simultaneous changes of the statistical parameters of the studied biological systems in 2004 -2006. The similarity of simultaneous changes of adaptation strategies of human organism and the cell structures of Saccharomyces cerevisiae during the 23-24 cycles of solar activity are discussed. This phenomenon could be due to a replacement of bio-effective parameters of space weather during the change from 23rd to 24th solar activity cycle and nonstandard geophysical peculiarities of the 24th solar activity cycle. It could be suggested that the observed similarity arose as the optimization of evolution selection of the living systems in expectation of probable prolonged period of low solar activity (4-6 cycles of solar activity).

  3. Internal Disequilibria and Phenotypic Diversification during Replication of Hepatitis C Virus in a Noncoevolving Cellular Environment.

    PubMed

    Moreno, Elena; Gallego, Isabel; Gregori, Josep; Lucía-Sanz, Adriana; Soria, María Eugenia; Castro, Victoria; Beach, Nathan M; Manrubia, Susanna; Quer, Josep; Esteban, Juan Ignacio; Rice, Charles M; Gómez, Jordi; Gastaminza, Pablo; Domingo, Esteban; Perales, Celia

    2017-05-15

    Viral quasispecies evolution upon long-term virus replication in a noncoevolving cellular environment raises relevant general issues, such as the attainment of population equilibrium, compliance with the molecular-clock hypothesis, or stability of the phenotypic profile. Here, we evaluate the adaptation, mutant spectrum dynamics, and phenotypic diversification of hepatitis C virus (HCV) in the course of 200 passages in human hepatoma cells in an experimental design that precluded coevolution of the cells with the virus. Adaptation to the cells was evidenced by increase in progeny production. The rate of accumulation of mutations in the genomic consensus sequence deviated slightly from linearity, and mutant spectrum analyses revealed a complex dynamic of mutational waves, which was sustained beyond passage 100. The virus underwent several phenotypic changes, some of which impacted the virus-host relationship, such as enhanced cell killing, a shift toward higher virion density, and increased shutoff of host cell protein synthesis. Fluctuations in progeny production and failure to reach population equilibrium at the genomic level suggest internal instabilities that anticipate an unpredictable HCV evolution in the complex liver environment. IMPORTANCE Long-term virus evolution in an unperturbed cellular environment can reveal features of virus evolution that cannot be explained by comparing natural viral isolates. In the present study, we investigate genetic and phenotypic changes that occur upon prolonged passage of hepatitis C virus (HCV) in human hepatoma cells in an experimental design in which host cell evolutionary change is prevented. Despite replication in a noncoevolving cellular environment, the virus exhibited internal population disequilibria that did not decline with increased adaptation to the host cells. The diversification of phenotypic traits suggests that disequilibria inherent to viral populations may provide a selective advantage to viruses that can be fully exploited in changing environments. Copyright © 2017 American Society for Microbiology.

  4. Opinion evolution based on cellular automata rules in small world networks

    NASA Astrophysics Data System (ADS)

    Shi, Xiao-Ming; Shi, Lun; Zhang, Jie-Fang

    2010-03-01

    In this paper, we apply cellular automata rules, which can be given by a truth table, to human memory. We design each memory as a tracking survey mode that keeps the most recent three opinions. Each cellular automata rule, as a personal mechanism, gives the final ruling in one time period based on the data stored in one's memory. The key focus of the paper is to research the evolution of people's attitudes to the same question. Based on a great deal of empirical observations from computer simulations, all the rules can be classified into 20 groups. We highlight the fact that the phenomenon shown by some rules belonging to the same group will be altered within several steps by other rules in different groups. It is truly amazing that, compared with the last hundreds of presidential voting in America, the eras of important events in America's history coincide with the simulation results obtained by our model.

  5. RNA fluorescence with light-up aptamers

    NASA Astrophysics Data System (ADS)

    Ouellet, Jonathan

    2016-06-01

    Seeing is not only believing; it also includes understanding. Cellular imaging with GFP in live cells has been transformative in many research fields. Modulation of cellular regulation is tightly regulated and innovative imaging technologies contribute to further understand cellular signaling and physiology. New types of genetically encoded biosensors have been developed over the last decade. They are RNA aptamers that bind with their cognate fluorogen ligands and activate their fluorescence. The emergence and the evolution of these RNA aptamers as well as their conversion into a wide spectrum of applications are examined in a global way.

  6. Evolution of Microbial Quorum Sensing to Human Global Quorum Sensing: An Insight into How Gap Junctional Intercellular Communication Might Be Linked to the Global Metabolic Disease Crisis

    PubMed Central

    Trosko, James E.

    2016-01-01

    The first anaerobic organism extracted energy for survival and reproduction from its source of nutrients, with the genetic means to ensure protection of its individual genome but also its species survival. While it had a means to communicate with its community via simple secreted molecules (“quorum sensing”), the eventual shift to an aerobic environment led to multi-cellular metazoan organisms, with evolutionary-selected genes to form extracellular matrices, stem cells, stem cell niches, and a family of gap junction or “connexin” genes. These germinal and somatic stem cells responded to extracellular signals that triggered intra-cellular signaling to regulate specific genes out of the total genome. These extra-cellular induced intra-cellular signals also modulated gap junctional intercellular communication (GJIC) in order to regulate the new cellular functions of symmetrical and asymmetrical cell division, cell differentiation, modes of cell death, and senescence. Within the hierarchical and cybernetic concepts, differentiated by neurons organized in the brain of the Homo sapiens, the conscious mind led to language, abstract ideas, technology, myth-making, scientific reasoning, and moral decision–making, i.e., the creation of culture. Over thousands of years, this has created the current collision between biological and cultural evolution, leading to the global “metabolic disease” crisis. PMID:27314399

  7. Four domains: The fundamental unicell and Post-Darwinian Cognition-Based Evolution.

    PubMed

    Miller, William B; Torday, John S

    2018-04-13

    Contemporary research supports the viewpoint that self-referential cognition is the proper definition of life. From that initiating platform, a cohesive alternative evolutionary narrative distinct from standard Neodarwinism can be presented. Cognition-Based Evolution contends that biological variation is a product of a self-reinforcing information cycle that derives from self-referential attachment to biological information space-time with its attendant ambiguities. That information cycle is embodied through obligatory linkages among energy, biological information, and communication. Successive reiterations of the information cycle enact the informational architectures of the basic unicellular forms. From that base, inter-domain and cell-cell communications enable genetic and cellular variations through self-referential natural informational engineering and cellular niche construction. Holobionts are the exclusive endpoints of that self-referential cellular engineering as obligatory multicellular combinations of the essential Four Domains: Prokaryota, Archaea, Eukaryota and the Virome. Therefore, it is advocated that these Four Domains represent the perpetual object of the living circumstance rather than the visible macroorganic forms. In consequence, biology and its evolutionary development can be appraised as the continual defense of instantiated cellular self-reference. As the survival of cells is as dependent upon limitations and boundaries as upon any freedom of action, it is proposed that selection represents only one of many forms of cellular constraint that sustain self-referential integrity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Reconstruction of DNA sequences using genetic algorithms and cellular automata: towards mutation prediction?

    PubMed

    Mizas, Ch; Sirakoulis, G Ch; Mardiris, V; Karafyllidis, I; Glykos, N; Sandaltzopoulos, R

    2008-04-01

    Change of DNA sequence that fuels evolution is, to a certain extent, a deterministic process because mutagenesis does not occur in an absolutely random manner. So far, it has not been possible to decipher the rules that govern DNA sequence evolution due to the extreme complexity of the entire process. In our attempt to approach this issue we focus solely on the mechanisms of mutagenesis and deliberately disregard the role of natural selection. Hence, in this analysis, evolution refers to the accumulation of genetic alterations that originate from mutations and are transmitted through generations without being subjected to natural selection. We have developed a software tool that allows modelling of a DNA sequence as a one-dimensional cellular automaton (CA) with four states per cell which correspond to the four DNA bases, i.e. A, C, T and G. The four states are represented by numbers of the quaternary number system. Moreover, we have developed genetic algorithms (GAs) in order to determine the rules of CA evolution that simulate the DNA evolution process. Linear evolution rules were considered and square matrices were used to represent them. If DNA sequences of different evolution steps are available, our approach allows the determination of the underlying evolution rule(s). Conversely, once the evolution rules are deciphered, our tool may reconstruct the DNA sequence in any previous evolution step for which the exact sequence information was unknown. The developed tool may be used to test various parameters that could influence evolution. We describe a paradigm relying on the assumption that mutagenesis is governed by a near-neighbour-dependent mechanism. Based on the satisfactory performance of our system in the deliberately simplified example, we propose that our approach could offer a starting point for future attempts to understand the mechanisms that govern evolution. The developed software is open-source and has a user-friendly graphical input interface.

  9. A New Basal Sauropod Dinosaur from the Middle Jurassic of Niger and the Early Evolution of Sauropoda

    PubMed Central

    Remes, Kristian; Ortega, Francisco; Fierro, Ignacio; Joger, Ulrich; Kosma, Ralf; Marín Ferrer, José Manuel; Ide, Oumarou Amadou; Maga, Abdoulaye

    2009-01-01

    Background The early evolution of sauropod dinosaurs is poorly understood because of a highly incomplete fossil record. New discoveries of Early and Middle Jurassic sauropods have a great potential to lead to a better understanding of early sauropod evolution and to reevaluate the patterns of sauropod diversification. Principal Findings A new sauropod from the Middle Jurassic of Niger, Spinophorosaurus nigerensis n. gen. et sp., is the most complete basal sauropod currently known. The taxon shares many anatomical characters with Middle Jurassic East Asian sauropods, while it is strongly dissimilar to Lower and Middle Jurassic South American and Indian forms. A possible explanation for this pattern is a separation of Laurasian and South Gondwanan Middle Jurassic sauropod faunas by geographic barriers. Integration of phylogenetic analyses and paleogeographic data reveals congruence between early sauropod evolution and hypotheses about Jurassic paleoclimate and phytogeography. Conclusions Spinophorosaurus demonstrates that many putatively derived characters of Middle Jurassic East Asian sauropods are plesiomorphic for eusauropods, while South Gondwanan eusauropods may represent a specialized line. The anatomy of Spinophorosaurus indicates that key innovations in Jurassic sauropod evolution might have taken place in North Africa, an area close to the equator with summer-wet climate at that time. Jurassic climatic zones and phytogeography possibly controlled early sauropod diversification. PMID:19756139

  10. Effect of Boron Doping on Cellular Discontinuous Precipitation for Age-Hardenable Cu–Ti Alloys

    PubMed Central

    Semboshi, Satoshi; Ikeda, Jun; Iwase, Akihiro; Takasugi, Takayuki; Suzuki, Shigeru

    2015-01-01

    The effects of boron doping on the microstructural evolution and mechanical and electrical properties of age-hardenable Cu–4Ti (at.%) alloys are investigated. In the quenched Cu–4Ti–0.03B (at.%) alloy, elemental B (boron) is preferentially segregated at the grain boundaries of the supersaturated solid-solution phase. The aging behavior of the B-doped alloy is mostly similar to that of conventional age-hardenable Cu–Ti alloys. In the early stage of aging at 450 °C, metastable β′-Cu4Ti with fine needle-shaped precipitates continuously form in the matrix phase. Cellular discontinuous precipitates composed of the stable β-Cu4Ti and solid-solution laminates are then formed and grown at the grain boundaries. However, the volume fraction of the discontinuous precipitates is lower in the Cu–4Ti–0.03B alloy than the Cu–4Ti alloy, particularly in the over-aging period of 72–120 h. The suppression of the formation of discontinuous precipitates eventually results in improvement of the hardness and tensile strength. It should be noted that minor B doping of Cu–Ti alloys also effectively enhances the elongation to fracture, which should be attributed to segregation of B at the grain boundaries.

  11. The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture.

    PubMed

    Caetano-Anollés, Gustavo; Kim, Hee Shin; Mittenthal, Jay E

    2007-05-29

    Metabolism represents a complex collection of enzymatic reactions and transport processes that convert metabolites into molecules capable of supporting cellular life. Here we explore the origins and evolution of modern metabolism. Using phylogenomic information linked to the structure of metabolic enzymes, we sort out recruitment processes and discover that most enzymatic activities were associated with the nine most ancient and widely distributed protein fold architectures. An analysis of newly discovered functions showed enzymatic diversification occurred early, during the onset of the modern protein world. Most importantly, phylogenetic reconstruction exercises and other evidence suggest strongly that metabolism originated in enzymes with the P-loop hydrolase fold in nucleotide metabolism, probably in pathways linked to the purine metabolic subnetwork. Consequently, the first enzymatic takeover of an ancient biochemistry or prebiotic chemistry was related to the synthesis of nucleotides for the RNA world.

  12. [Mitochondrial and microcirculatory distress syndrome in the critical patient. Therapeutic implications].

    PubMed

    Navarrete, M L; Cerdeño, M C; Serra, M C; Conejero, R

    2013-10-01

    Mitochondrial and microcirculatory distress syndrome (MMDS) can occur during systemic inflammatory response syndrome (SIRS), and is characterized by cytopathic tissue hypoxia uncorrected by oxygen transport optimization, and associated with an acquired defect in the use of oxygen and energy production in mitochondria, leading to multiple organ dysfunction (MOD). We examine the pathogenesis of MMDS, new diagnostic methods, and recent therapeutic approaches adapted to each of the three phases in the evolution of the syndrome. In the initial phase, the aim is prevention and early reversal of mitochondrial dysfunction. Once the latter is established, the aim is to restore flow of the electron chain, mitochondrial respiration, and to avoid cellular energy collapse. Finally, in the third (resolution) stage, treatment should focus on stimulating mitochondrial biogenesis and the repair or replacement of damaged mitochondria. Copyright © 2012 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  13. In situ architecture of the algal nuclear pore complex.

    PubMed

    Mosalaganti, Shyamal; Kosinski, Jan; Albert, Sahradha; Schaffer, Miroslava; Strenkert, Daniela; Salomé, Patrice A; Merchant, Sabeeha S; Plitzko, Jürgen M; Baumeister, Wolfgang; Engel, Benjamin D; Beck, Martin

    2018-06-18

    Nuclear pore complexes (NPCs) span the nuclear envelope and mediate nucleocytoplasmic exchange. They are a hallmark of eukaryotes and deeply rooted in the evolutionary origin of cellular compartmentalization. NPCs have an elaborate architecture that has been well studied in vertebrates. Whether this architecture is unique or varies significantly in other eukaryotic kingdoms remains unknown, predominantly due to missing in situ structural data. Here, we report the architecture of the algal NPC from the early branching eukaryote Chlamydomonas reinhardtii and compare it to the human NPC. We find that the inner ring of the Chlamydomonas NPC has an unexpectedly large diameter, and the outer rings exhibit an asymmetric oligomeric state that has not been observed or predicted previously. Our study provides evidence that the NPC is subject to substantial structural variation between species. The divergent and conserved features of NPC architecture provide insights into the evolution of the nucleocytoplasmic transport machinery.

  14. Concepts of Cell Lineage in Mammalian Embryos.

    PubMed

    Papaioannou, Virginia E

    2016-01-01

    Cell lineage is the framework for understanding cellular diversity, stability of differentiation, and its relationship to pluripotency. The special condition of in utero development in mammals has presented challenges to developmental biologists in tracing cell lineages but modern imaging and cell marking techniques have allowed the gradual elucidation of lineage relationships. Early experimental embryology approaches had limited resolution and relied of suboptimal cell markers and considerable disturbance to the embryos. Transgenic technology introduced genetic markers, particularly fluorescent proteins that, combined with sophisticated imaging modalities, greatly increase resolution and allow clonal analysis within lineages. The concept of cell lineage has also undergone evolution as it became possible to trace the lineage of cells based not only on their physical location or attributes but also on their gene expression pattern, thus opening up mechanistic lines of investigation into the determinants of cell lineage. © 2016 Elsevier Inc. All rights reserved.

  15. Conflict RNA modification, host-parasite co-evolution, and the origins of DNA and DNA-binding proteins1.

    PubMed

    McLaughlin, Paul J; Keegan, Liam P

    2014-08-01

    Nearly 150 different enzymatically modified forms of the four canonical residues in RNA have been identified. For instance, enzymes of the ADAR (adenosine deaminase acting on RNA) family convert adenosine residues into inosine in cellular dsRNAs. Recent findings show that DNA endonuclease V enzymes have undergone an evolutionary transition from cleaving 3' to deoxyinosine in DNA and ssDNA to cleaving 3' to inosine in dsRNA and ssRNA in humans. Recent work on dsRNA-binding domains of ADARs and other proteins also shows that a degree of sequence specificity is achieved by direct readout in the minor groove. However, the level of sequence specificity observed is much less than that of DNA major groove-binding helix-turn-helix proteins. We suggest that the evolution of DNA-binding proteins following the RNA to DNA genome transition represents the major advantage that DNA genomes have over RNA genomes. We propose that a hypothetical RNA modification, a RRAR (ribose reductase acting on genomic dsRNA) produced the first stretches of DNA in RNA genomes. We discuss why this is the most satisfactory explanation for the origin of DNA. The evolution of this RNA modification and later steps to DNA genomes are likely to have been driven by cellular genome co-evolution with viruses and intragenomic parasites. RNA modifications continue to be involved in host-virus conflicts; in vertebrates, edited cellular dsRNAs with inosine-uracil base pairs appear to be recognized as self RNA and to suppress activation of innate immune sensors that detect viral dsRNA.

  16. Sites of Retroviral DNA Integration: From Basic Research to Clinical Applications

    PubMed Central

    Serrao, Erik; Engelman, Alan N.

    2016-01-01

    One of the most crucial steps in the life cycle of a retrovirus is the integration of the viral DNA (vDNA) copy of the RNA genome into the genome of an infected host cell. Integration provides for efficient viral gene expression as well as for the segregation of the viral genomes to daughter cells upon cell division. Some integrated viruses are not well expressed, and cells latently infected with HIV-1 can resist the action of potent antiretroviral drugs and remain dormant for decades. Intensive research has been dedicated to understanding the catalytic mechanism of integration, as well as the viral and cellular determinants that influence integration site distribution throughout the host genome. In this review we summarize the evolution of techniques that have been used to recover and map retroviral integration sites, from the early days that first indicated that integration could occur in multiple cellular DNA locations, to current technologies that map upwards of millions of unique integration sites from single in vitro integration reactions or cell culture infections. We further review important insights gained from the use of such mapping techniques, including the monitoring of cell clonal expansion in patients treated with retrovirus-based gene therapy vectors, or AIDS patients on suppressive antiretroviral therapy (ART). These insights span from integrase (IN) enzyme sequence preferences within target DNA (tDNA) at the sites of integration, to the roles of host cellular proteins in mediating global integration distribution, to the potential relationship between genomic location of vDNA integration site and retroviral latency. PMID:26508664

  17. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity.

    PubMed

    Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G; Helland, Aslaug; Rye, Inga H; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia

    2014-02-13

    Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and posttreatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of cellular diversity for genetic and phenotypic features

    PubMed Central

    Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G.; Helland, Åslaug; Rye, Inga H.; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L.; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia

    2014-01-01

    SUMMARY Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor subtype-specific and it did not change during treatment in tumors with partial or no response. However, lower pre-treatment genetic diversity was significantly associated with complete pathologic response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution. PMID:24462293

  19. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity

    DOE PAGES

    Almendro, Vanessa; Cheng, Yu -Kang; Randles, Amanda; ...

    2014-02-01

    Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatialmore » distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution.« less

  20. Combining cellular automata and Lattice Boltzmann method to model multiscale avascular tumor growth coupled with nutrient diffusion and immune competition.

    PubMed

    Alemani, Davide; Pappalardo, Francesco; Pennisi, Marzio; Motta, Santo; Brusic, Vladimir

    2012-02-28

    In the last decades the Lattice Boltzmann method (LB) has been successfully used to simulate a variety of processes. The LB model describes the microscopic processes occurring at the cellular level and the macroscopic processes occurring at the continuum level with a unique function, the probability distribution function. Recently, it has been tried to couple deterministic approaches with probabilistic cellular automata (probabilistic CA) methods with the aim to model temporal evolution of tumor growths and three dimensional spatial evolution, obtaining hybrid methodologies. Despite the good results attained by CA-PDE methods, there is one important issue which has not been completely solved: the intrinsic stochastic nature of the interactions at the interface between cellular (microscopic) and continuum (macroscopic) level. CA methods are able to cope with the stochastic phenomena because of their probabilistic nature, while PDE methods are fully deterministic. Even if the coupling is mathematically correct, there could be important statistical effects that could be missed by the PDE approach. For such a reason, to be able to develop and manage a model that takes into account all these three level of complexity (cellular, molecular and continuum), we believe that PDE should be replaced with a statistic and stochastic model based on the numerical discretization of the Boltzmann equation: The Lattice Boltzmann (LB) method. In this work we introduce a new hybrid method to simulate tumor growth and immune system, by applying Cellular Automata Lattice Boltzmann (CA-LB) approach. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Horizontal Transfers and Gene Losses in the Phospholipid Pathway of Bartonella Reveal Clues about Early Ecological Niches

    PubMed Central

    Zhu, Qiyun; Kosoy, Michael; Olival, Kevin J.; Dittmar, Katharina

    2014-01-01

    Bartonellae are mammalian pathogens vectored by blood-feeding arthropods. Although of increasing medical importance, little is known about their ecological past, and host associations are underexplored. Previous studies suggest an influence of horizontal gene transfers in ecological niche colonization by acquisition of host pathogenicity genes. We here expand these analyses to metabolic pathways of 28 Bartonella genomes, and experimentally explore the distribution of bartonellae in 21 species of blood-feeding arthropods. Across genomes, repeated gene losses and horizontal gains in the phospholipid pathway were found. The evolutionary timing of these patterns suggests functional consequences likely leading to an early intracellular lifestyle for stem bartonellae. Comparative phylogenomic analyses discover three independent lineage-specific reacquisitions of a core metabolic gene—NAD(P)H-dependent glycerol-3-phosphate dehydrogenase (gpsA)—from Gammaproteobacteria and Epsilonproteobacteria. Transferred genes are significantly closely related to invertebrate Arsenophonus-, and Serratia-like endosymbionts, and mammalian Helicobacter-like pathogens, supporting a cellular association with arthropods and mammals at the base of extant Bartonella spp. Our studies suggest that the horizontal reacquisitions had a key impact on bartonellae lineage specific ecological and functional evolution. PMID:25106622

  2. Evolution and development of the mammalian cerebral cortex.

    PubMed

    Molnár, Zoltán; Kaas, Jon H; de Carlos, Juan A; Hevner, Robert F; Lein, Ed; Němec, Pavel

    2014-01-01

    Comparative developmental studies of the mammalian brain can identify key changes that can generate the diverse structures and functions of the brain. We have studied how the neocortex of early mammals became organized into functionally distinct areas, and how the current level of cortical cellular and laminar specialization arose from the simpler premammalian cortex. We demonstrate the neocortical organization in early mammals, which helps to elucidate how the large, complex human brain evolved from a long line of ancestors. The radial and tangential enlargement of the cortex was driven by changes in the patterns of cortical neurogenesis, including alterations in the proportions of distinct progenitor types. Some cortical cell populations travel to the cortex through tangential migration whereas others migrate radially. A number of recent studies have begun to characterize the chick, mouse and human and nonhuman primate cortical transcriptome to help us understand how gene expression relates to the development and anatomical and functional organization of the adult neocortex. Although all mammalian forms share the basic layout of cortical areas, the areal proportions and distributions are driven by distinct evolutionary pressures acting on sensory and motor experiences during the individual ontogenies. © 2014 S. Karger AG, Basel.

  3. The early stages of duplicate gene evolution

    PubMed Central

    Moore, Richard C.; Purugganan, Michael D.

    2003-01-01

    Gene duplications are one of the primary driving forces in the evolution of genomes and genetic systems. Gene duplicates account for 8–20% of the genes in eukaryotic genomes, and the rates of gene duplication are estimated at between 0.2% and 2% per gene per million years. Duplicate genes are believed to be a major mechanism for the establishment of new gene functions and the generation of evolutionary novelty, yet very little is known about the early stages of the evolution of duplicated gene pairs. It is unclear, for example, to what extent selection, rather than neutral genetic drift, drives the fixation and early evolution of duplicate loci. Analysis of recently duplicated genes in the Arabidopsis thaliana genome reveals significantly reduced species-wide levels of nucleotide polymorphisms in the progenitor and/or duplicate gene copies, suggesting that selective sweeps accompany the initial stages of the evolution of these duplicated gene pairs. Our results support recent theoretical work that indicates that fates of duplicate gene pairs may be determined in the initial phases of duplicate gene evolution and that positive selection plays a prominent role in the evolutionary dynamics of the very early histories of duplicate nuclear genes. PMID:14671323

  4. Amphimixis and the individual in evolving populations: does Weismann's Doctrine apply to all, most or a few organisms?

    NASA Astrophysics Data System (ADS)

    Niklas, Karl J.; Kutschera, Ulrich

    2014-05-01

    The German biologist August Weismann (1834-1914) proposed that amphimixis (sexual reproduction) creates variability for natural selection to act upon, and hence he became one of the founders of the Neo-Darwinian theory of biological evolution. He is perhaps best known for what is called "Weismann's Doctrine" or "Weismann's Barrier" (i.e. the irreversible separation of somatic and germ cell functionalities early during ontogeny in multicellular organisms). This concept provided an unassailable argument against "soft inheritance" sensu Lamarck and informed subsequent theorists that the only "individual" in the context of evolution is the mature, reproductive organism. Herein, we review representative model organisms whose embryology conforms to Weismann's Doctrine (e.g. flies and mammals) and those that do not (e.g. freshwater hydroids and plants) based on this survey and the Five Kingdoms of Life scheme; we point out that most species (notably bacteria, fungi, protists and plants) are "non-Weismannian" in ways that make a canonical definition of the "individual" problematic if not impossible. We also review critical life history functional traits that allow us to create a matrix of all theoretically conceivable life cycles (for eukaryotic algae, embryophytes, fungi and animals), which permits us to establish where this scheme Weismann's Doctrine holds true and where it does not. In addition, we argue that bacteria, the dominant organisms of the biosphere, exist in super-cellular biofilms but rarely as single (planktonic) microbes. Our analysis attempts to show that competition among genomic variants in cell lineages played a critical part in the evolution of multicellularity and life cycle diversity. This feature was largely ignored during the formulation of the synthetic theory of biological evolution and its subsequent elaborations.

  5. Coiled-Coil Proteins Facilitated the Functional Expansion of the Centrosome

    PubMed Central

    Kuhn, Michael; Hyman, Anthony A.; Beyer, Andreas

    2014-01-01

    Repurposing existing proteins for new cellular functions is recognized as a main mechanism of evolutionary innovation, but its role in organelle evolution is unclear. Here, we explore the mechanisms that led to the evolution of the centrosome, an ancestral eukaryotic organelle that expanded its functional repertoire through the course of evolution. We developed a refined sequence alignment technique that is more sensitive to coiled coil proteins, which are abundant in the centrosome. For proteins with high coiled-coil content, our algorithm identified 17% more reciprocal best hits than BLAST. Analyzing 108 eukaryotic genomes, we traced the evolutionary history of centrosome proteins. In order to assess how these proteins formed the centrosome and adopted new functions, we computationally emulated evolution by iteratively removing the most recently evolved proteins from the centrosomal protein interaction network. Coiled-coil proteins that first appeared in the animal–fungi ancestor act as scaffolds and recruit ancestral eukaryotic proteins such as kinases and phosphatases to the centrosome. This process created a signaling hub that is crucial for multicellular development. Our results demonstrate how ancient proteins can be co-opted to different cellular localizations, thereby becoming involved in novel functions. PMID:24901223

  6. Early evolution of transversally thermalized partons

    NASA Astrophysics Data System (ADS)

    Bialas, Andrzej; Chojnacki, Mikolaj; Florkowski, Wojciech

    2008-03-01

    The idea that the parton system created in relativistic heavy-ion collisions (i) emerges in a state with transverse momenta close to thermodynamic equilibrium and (ii) its evolution at early times is dominated by the 2-dimensional (transverse) hydrodynamics of the ideal fluid is investigated. It is argued that this mechanism may help to solve the problem of early equilibration.

  7. Constraints on Thermal Evolution of Mars from Relaxation Models of Crustal and Topographic Dichotomy

    NASA Technical Reports Server (NTRS)

    Guest, A.; Smrekar, S. E.

    2005-01-01

    The early thermal evolution of Mars is largely unconstrained. Models such as degree one convection [1,2,3], plate tectonics [4], and a transition to stagnant lid [5] have been proposed to explain formation of the dichotomy, the Tharsis rise, crustal production, and dynamo evolution. Here we model both the early deformation of the dichotomy and the long-term preservation as a means of examining the plausibility of a range of early thermal evolution models. Constraints include the preservation of crustal thickness and topographic differences between the northern and southern hemispheres and the geologic history of the dichotomy [6]). Our previous modeling indicates that the lower crust must have been weak enough to allow for relaxation early on, but the Martian interior had to cool fast enough to preserve the crustal difference and the associated topographic difference (5 km) over approx. 3-3.5 Gyr [7].

  8. Enhanced transcription and translation in clay hydrogel and implications for early life evolution

    PubMed Central

    Yang, Dayong; Peng, Songming; Hartman, Mark R.; Gupton-Campolongo, Tiffany; Rice, Edward J.; Chang, Anna Kathryn; Gu, Zi; Lu, G. Q. (Max); Luo, Dan

    2013-01-01

    In most contemporary life forms, the confinement of cell membranes provides localized concentration and protection for biomolecules, leading to efficient biochemical reactions. Similarly, confinement may have also played an important role for prebiotic compartmentalization in early life evolution when the cell membrane had not yet formed. It remains an open question how biochemical reactions developed without the confinement of cell membranes. Here we mimic the confinement function of cells by creating a hydrogel made from geological clay minerals, which provides an efficient confinement environment for biomolecules. We also show that nucleic acids were concentrated in the clay hydrogel and were protected against nuclease, and that transcription and translation reactions were consistently enhanced. Taken together, our results support the importance of localized concentration and protection of biomolecules in early life evolution, and also implicate a clay hydrogel environment for biochemical reactions during early life evolution. PMID:24196527

  9. Expression of voltage-activated calcium channels in the early zebrafish embryo.

    PubMed

    Sanhueza, Dayán; Montoya, Andro; Sierralta, Jimena; Kukuljan, Manuel

    2009-05-01

    Increases in cytosolic calcium concentrations regulate many cellular processes, including aspects of early development. Calcium release from intracellular stores and calcium entry through non-voltage-gated channels account for signalling in non-excitable cells, whereas voltage-gated calcium channels (CaV) are important in excitable cells. We report the expression of multiple transcripts of CaV, identified by its homology to other species, in the early embryo of the zebrafish, Danio rerio, at stages prior to the differentiation of excitable cells. CaV mRNAs and proteins were detected as early as the 2-cell stages, which indicate that they arise from both maternal and zygotic transcription. Exposure of embryos to pharmacological blockers of CaV does not perturb early development significantly, although late effects are appreciable. These results suggest that CaV may have a role in calcium homeostasis and control of cellular process during early embryonic development.

  10. T Cell Adaptive Immunity Proceeds through Environment-Induced Adaptation from the Exposure of Cryptic Genetic Variation

    PubMed Central

    Whitacre, James M.; Lin, Joseph; Harding, Angus

    2011-01-01

    Evolution is often characterized as a process involving incremental genetic changes that are slowly discovered and fixed in a population through genetic drift and selection. However, a growing body of evidence is finding that changes in the environment frequently induce adaptations that are much too rapid to occur by an incremental genetic search process. Rapid evolution is hypothesized to be facilitated by mutations present within the population that are silent or “cryptic” within the first environment but are co-opted or “exapted” to the new environment, providing a selective advantage once revealed. Although cryptic mutations have recently been shown to facilitate evolution in RNA enzymes, their role in the evolution of complex phenotypes has not been proven. In support of this wider role, this paper describes an unambiguous relationship between cryptic genetic variation and complex phenotypic responses within the immune system. By reviewing the biology of the adaptive immune system through the lens of evolution, we show that T cell adaptive immunity constitutes an exemplary model system where cryptic alleles drive rapid adaptation of complex traits. In naive T cells, normally cryptic differences in T cell receptor reveal diversity in activation responses when the cellular population is presented with a novel environment during infection. We summarize how the adaptive immune response presents a well studied and appropriate experimental system that can be used to confirm and expand upon theoretical evolutionary models describing how seemingly small and innocuous mutations can drive rapid cellular evolution. PMID:22363338

  11. Strongly nonlinear theory of rapid solidification near absolute stability

    NASA Astrophysics Data System (ADS)

    Kowal, Katarzyna N.; Altieri, Anthony L.; Davis, Stephen H.

    2017-10-01

    We investigate the nonlinear evolution of the morphological deformation of a solid-liquid interface of a binary melt under rapid solidification conditions near two absolute stability limits. The first of these involves the complete stabilization of the system to cellular instabilities as a result of large enough surface energy. We derive nonlinear evolution equations in several limits in this scenario and investigate the effect of interfacial disequilibrium on the nonlinear deformations that arise. In contrast to the morphological stability problem in equilibrium, in which only cellular instabilities appear and only one absolute stability boundary exists, in disequilibrium the system is prone to oscillatory instabilities and a second absolute stability boundary involving attachment kinetics arises. Large enough attachment kinetics stabilize the oscillatory instabilities. We derive a nonlinear evolution equation to describe the nonlinear development of the solid-liquid interface near this oscillatory absolute stability limit. We find that strong asymmetries develop with time. For uniform oscillations, the evolution equation for the interface reduces to the simple form f''+(βf')2+f =0 , where β is the disequilibrium parameter. Lastly, we investigate a distinguished limit near both absolute stability limits in which the system is prone to both cellular and oscillatory instabilities and derive a nonlinear evolution equation that captures the nonlinear deformations in this limit. Common to all these scenarios is the emergence of larger asymmetries in the resulting shapes of the solid-liquid interface with greater departures from equilibrium and larger morphological numbers. The disturbances additionally sharpen near the oscillatory absolute stability boundary, where the interface becomes deep-rooted. The oscillations are time-periodic only for small-enough initial amplitudes and their frequency depends on a single combination of physical parameters, including the morphological number, as well as the amplitude. The critical amplitude, at which solutions loose periodicity, depends on a single combination of parameters independent of the morphological number that indicate that non-periodic growth is most commonly present for moderate disequilibrium parameters. The spatial distribution of the interface develops deepening roots at late times. Similar spatial distributions are also seen in the limit in which both the cellular and oscillatory modes are close to absolute stability, and the roots deepen with larger departures from the two absolute stability boundaries.

  12. Age of acquisition predicts rate of lexical evolution.

    PubMed

    Monaghan, Padraic

    2014-12-01

    The processes taking place during language acquisition are proposed to influence language evolution. However, evidence demonstrating the link between language learning and language evolution is, at best, indirect, constituting studies of laboratory-based artificial language learning studies or computational simulations of diachronic change. In the current study, a direct link between acquisition and evolution is established, showing that for two hundred fundamental vocabulary items, the age at which words are acquired is a predictor of the rate at which they have changed in studies of language evolution. Early-acquired words are more salient and easier to process than late-acquired words, and these early-acquired words are also more stably represented within the community's language. Analysing the properties of these early-acquired words potentially provides insight into the origins of communication, highlighting features of words that have been ultra-conserved in language. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Early School-Leaving in Spain: Evolution, Intensity and Determinants

    ERIC Educational Resources Information Center

    Fernandez-Macias, Enrique; Anton, Jose-Ignacio; Brana, Francisco-Javier; De Bustillo, Rafael Munoz

    2013-01-01

    Spain has one of the highest levels of early school leaving and educational failure of the European Union. The purpose of this paper is to analyse the anatomy of early school leaving in Spain and its characteristics. In order to do so, in the first part we discuss the measurement problems related with this concept and the evolution of drop-out…

  14. A proteome view of structural, functional, and taxonomic characteristics of major protein domain clusters.

    PubMed

    Sun, Chia-Tsen; Chiang, Austin W T; Hwang, Ming-Jing

    2017-10-27

    Proteome-scale bioinformatics research is increasingly conducted as the number of completely sequenced genomes increases, but analysis of protein domains (PDs) usually relies on similarity in their amino acid sequences and/or three-dimensional structures. Here, we present results from a bi-clustering analysis on presence/absence data for 6,580 unique PDs in 2,134 species with a sequenced genome, thus covering a complete set of proteins, for the three superkingdoms of life, Bacteria, Archaea, and Eukarya. Our analysis revealed eight distinctive PD clusters, which, following an analysis of enrichment of Gene Ontology functions and CATH classification of protein structures, were shown to exhibit structural and functional properties that are taxa-characteristic. For examples, the largest cluster is ubiquitous in all three superkingdoms, constituting a set of 1,472 persistent domains created early in evolution and retained in living organisms and characterized by basic cellular functions and ancient structural architectures, while an Archaea and Eukarya bi-superkingdom cluster suggests its PDs may have existed in the ancestor of the two superkingdoms, and others are single superkingdom- or taxa (e.g. Fungi)-specific. These results contribute to increase our appreciation of PD diversity and our knowledge of how PDs are used in species, yielding implications on species evolution.

  15. Looking for the most "primitive" organism(s) on Earth today: the state of the art.

    PubMed

    Forterre, P

    1995-01-01

    Molecular phylogenetic studies have revealed a tripartite division of the living world into two procaryotic groups, Bacteria and Archaea, and one eucaryotic group, Eucarya. Which group is the most "primitive"? Which groups are sister? The answer to these questions would help to delineate the characters of the last common ancestor to all living beings, as a first step to reconstruct the earliest periods of biological evolution on Earth. The current "Procaryotic dogma" claims that procaryotes are primitive. Since the ancestor of Archaea was most probably a hyperthermophile, and since bacteria too might have originated from hyperthermophiles, the procaryotic dogma has been recently connected to the hot origin of life hypothesis. However, the notion that present-day hyperthermophiles are primitive has been challenged by recent findings, in these unique microorganisms, of very elaborate adaptative devices for life at high temperature. Accordingly, I discuss here alternative hypotheses that challenge the procaryotic dogma, such as the idea of a universal ancestor with molecular features in between those of eucaryotes and procaryotes, or the origin of procaryotes via thermophilic adaptation. Clearly, major evolutionary questions about early cellular evolution on Earth remain to be settled before we can speculate with confidence about which kinds of life might have appeared on other planets.

  16. Lempel-Ziv complexity analysis of one dimensional cellular automata.

    PubMed

    Estevez-Rams, E; Lora-Serrano, R; Nunes, C A J; Aragón-Fernández, B

    2015-12-01

    Lempel-Ziv complexity measure has been used to estimate the entropy density of a string. It is defined as the number of factors in a production factorization of a string. In this contribution, we show that its use can be extended, by using the normalized information distance, to study the spatiotemporal evolution of random initial configurations under cellular automata rules. In particular, the transfer information from time consecutive configurations is studied, as well as the sensitivity to perturbed initial conditions. The behavior of the cellular automata rules can be grouped in different classes, but no single grouping captures the whole nature of the involved rules. The analysis carried out is particularly appropriate for studying the computational processing capabilities of cellular automata rules.

  17. Lempel-Ziv complexity analysis of one dimensional cellular automata

    NASA Astrophysics Data System (ADS)

    Estevez-Rams, E.; Lora-Serrano, R.; Nunes, C. A. J.; Aragón-Fernández, B.

    2015-12-01

    Lempel-Ziv complexity measure has been used to estimate the entropy density of a string. It is defined as the number of factors in a production factorization of a string. In this contribution, we show that its use can be extended, by using the normalized information distance, to study the spatiotemporal evolution of random initial configurations under cellular automata rules. In particular, the transfer information from time consecutive configurations is studied, as well as the sensitivity to perturbed initial conditions. The behavior of the cellular automata rules can be grouped in different classes, but no single grouping captures the whole nature of the involved rules. The analysis carried out is particularly appropriate for studying the computational processing capabilities of cellular automata rules.

  18. Cell evolution and Earth history: stasis and revolution.

    PubMed

    Cavalier-Smith, Thomas

    2006-06-29

    This synthesis has three main parts. The first discusses the overall tree of life and nature of the last common ancestor (cenancestor). I emphasize key steps in cellular evolution important for ordering and timing the major evolutionary innovations in the history of the biosphere, explaining especially the origins of the eukaryote cell and of bacterial flagella and cell envelope novelties. Second, I map the tree onto the fossil record and discuss dates of key events and their biogeochemical impact. Finally, I present a broad synthesis, discussing evidence for a three-phase history of life. The first phase began perhaps ca 3.5 Gyr ago, when the origin of cells and anoxic photosynthesis generated the arguably most primitive prokaryote phylum, Chlorobacteria (= Chloroflexi), the first negibacteria with cells bounded by two acyl ester phospholipid membranes. After this 'chlorobacterial age' of benthic anaerobic evolution protected from UV radiation by mineral grains, two momentous quantum evolutionary episodes of cellular innovation and microbial radiation dramatically transformed the Earth's surface: the glycobacterial revolution initiated an oxygenic 'age of cyanobacteria' and, as the ozone layer grew, the rise of plankton; immensely later, probably as recently as ca 0.9 Gyr ago, the neomuran revolution ushered in the 'age of eukaryotes', Archaebacteria (arguably the youngest bacterial phylum), and morphological complexity. Diversification of glycobacteria ca 2.8 Gyr ago, predominantly inhabiting stratified benthic mats, I suggest caused serial depletion of 13C by ribulose 1,5-bis-phosphate caboxylase/oxygenase (Rubisco) to yield ultralight late Archaean organic carbon formerly attributed to methanogenesis plus methanotrophy. The late origin of archaebacterial methanogenesis ca 720 Myr ago perhaps triggered snowball Earth episodes by slight global warming increasing weathering and reducing CO2 levels, to yield runaway cooling; the origin of anaerobic methane oxidation ca 570 Myr ago reduced methane flux at source, stabilizing Phanerozoic climates. I argue that the major cellular innovations exhibit a pattern of quantum evolution followed by very rapid radiation and then substantial stasis, as described by Simpson. They yielded organisms that are a mosaic of extremely conservative and radically novel features, as characterized by De Beer's phrase 'mosaic evolution'. Evolution is not evenly paced and there are no real molecular clocks.

  19. Robust regression and posterior predictive simulation increase power to detect early bursts of trait evolution.

    PubMed

    Slater, Graham J; Pennell, Matthew W

    2014-05-01

    A central prediction of much theory on adaptive radiations is that traits should evolve rapidly during the early stages of a clade's history and subsequently slowdown in rate as niches become saturated--a so-called "Early Burst." Although a common pattern in the fossil record, evidence for early bursts of trait evolution in phylogenetic comparative data has been equivocal at best. We show here that this may not necessarily be due to the absence of this pattern in nature. Rather, commonly used methods to infer its presence perform poorly when when the strength of the burst--the rate at which phenotypic evolution declines--is small, and when some morphological convergence is present within the clade. We present two modifications to existing comparative methods that allow greater power to detect early bursts in simulated datasets. First, we develop posterior predictive simulation approaches and show that they outperform maximum likelihood approaches at identifying early bursts at moderate strength. Second, we use a robust regression procedure that allows for the identification and down-weighting of convergent taxa, leading to moderate increases in method performance. We demonstrate the utility and power of these approach by investigating the evolution of body size in cetaceans. Model fitting using maximum likelihood is equivocal with regards the mode of cetacean body size evolution. However, posterior predictive simulation combined with a robust node height test return low support for Brownian motion or rate shift models, but not the early burst model. While the jury is still out on whether early bursts are actually common in nature, our approach will hopefully facilitate more robust testing of this hypothesis. We advocate the adoption of similar posterior predictive approaches to improve the fit and to assess the adequacy of macroevolutionary models in general.

  20. Phonation takes precedence over articulation in development as well as evolution of language.

    PubMed

    Oller, D Kimbrough

    2014-12-01

    Early human vocal development is characterized first by emerging control of phonation and later by prosodic and supraglottal articulation. The target article has missed the opportunity to use these facts in the characterization of evolution in language-specific brain mechanisms. Phonation appears to be the initial human-specific brain change for language, and it was presumably a key target of selection in early hominin evolution.

  1. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination

    PubMed Central

    Loubery, Sylvain; Utz-Pugin, Anne; Bailly, Christophe; Mène-Saffrané, Laurent; Lopez-Molina, Luis

    2015-01-01

    Cuticular layers and seeds are prominent plant adaptations to terrestrial life that appeared early and late during plant evolution, respectively. The cuticle is a waterproof film covering plant aerial organs preventing excessive water loss and protecting against biotic and abiotic stresses. Cutin, consisting of crosslinked fatty acid monomers, is the most abundant and studied cuticular component. Seeds are dry, metabolically inert structures promoting plant dispersal by keeping the plant embryo in an arrested protected state. In Arabidopsis thaliana seeds, the embryo is surrounded by a single cell endosperm layer itself surrounded by a seed coat layer, the testa. Whole genome analyses lead us to identify cutin biosynthesis genes as regulatory targets of the phytohormones gibberellins (GA) and abscisic acid (ABA) signaling pathways that control seed germination. Cutin-containing layers are present in seed coats of numerous species, including Arabidopsis, where they regulate permeability to outer compounds. However, the role of cutin in mature seed physiology and germination remains poorly understood. Here we identify in mature seeds a thick cuticular film covering the entire outer surface of the endosperm. This seed cuticle is defective in cutin-deficient bodyguard1 seeds, which is associated with alterations in endospermic permeability. Furthermore, mutants affected in cutin biosynthesis display low seed dormancy and viability levels, which correlates with higher levels of seed lipid oxidative stress. Upon seed imbibition cutin biosynthesis genes are essential to prevent endosperm cellular expansion and testa rupture in response to low GA synthesis. Taken together, our findings suggest that in the course of land plant evolution cuticular structures were co-opted to achieve key physiological seed properties. PMID:26681322

  2. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination.

    PubMed

    De Giorgi, Julien; Piskurewicz, Urszula; Loubery, Sylvain; Utz-Pugin, Anne; Bailly, Christophe; Mène-Saffrané, Laurent; Lopez-Molina, Luis

    2015-12-01

    Cuticular layers and seeds are prominent plant adaptations to terrestrial life that appeared early and late during plant evolution, respectively. The cuticle is a waterproof film covering plant aerial organs preventing excessive water loss and protecting against biotic and abiotic stresses. Cutin, consisting of crosslinked fatty acid monomers, is the most abundant and studied cuticular component. Seeds are dry, metabolically inert structures promoting plant dispersal by keeping the plant embryo in an arrested protected state. In Arabidopsis thaliana seeds, the embryo is surrounded by a single cell endosperm layer itself surrounded by a seed coat layer, the testa. Whole genome analyses lead us to identify cutin biosynthesis genes as regulatory targets of the phytohormones gibberellins (GA) and abscisic acid (ABA) signaling pathways that control seed germination. Cutin-containing layers are present in seed coats of numerous species, including Arabidopsis, where they regulate permeability to outer compounds. However, the role of cutin in mature seed physiology and germination remains poorly understood. Here we identify in mature seeds a thick cuticular film covering the entire outer surface of the endosperm. This seed cuticle is defective in cutin-deficient bodyguard1 seeds, which is associated with alterations in endospermic permeability. Furthermore, mutants affected in cutin biosynthesis display low seed dormancy and viability levels, which correlates with higher levels of seed lipid oxidative stress. Upon seed imbibition cutin biosynthesis genes are essential to prevent endosperm cellular expansion and testa rupture in response to low GA synthesis. Taken together, our findings suggest that in the course of land plant evolution cuticular structures were co-opted to achieve key physiological seed properties.

  3. Approaches to Legacy System Evolution.

    DTIC Science & Technology

    1997-12-01

    such as migrating legacy systems, to more distributed open environments. This framework draws out the important global issues early in the planning...ongoing system evolution initiatives, for drawing out important global issues early in the planning cycle using the checklists as a guide, and for

  4. Integrating Computer/Multimedia Technology in a High School Biology Curriculum.

    ERIC Educational Resources Information Center

    Matray, Paul; Proulx, Steve

    1995-01-01

    Discusses hardware and software used to teach scientific method, ecology, evolution, mitosis and meiosis, photosynthesis, cellular respiration, circulatory and respiratory systems, reproduction and drugs, behavior, and genetics. (MKR)

  5. CD4+ T-cell recovery with suppressive ART-induced rapid sequence evolution in hepatitis C virus envelope but not NS3.

    PubMed

    Liu, Lin; Nardo, David; Li, Eric; Wang, Gary P

    2016-03-13

    CD4 T-cell depletion from HIV infection leads to a global decline in anti-hepatitis C virus (HCV) envelope neutralizing antibody (nAb) response, which may play a role in accelerating liver fibrosis. An increase in anti-HCV nAb titers has been reported during antiretroviral therapy (ART) but its impact on HCV remains poorly understood. The objective of this study is to determine the effects of ART on long-term HCV evolution. We examined HCV quasispecies structure and long-term evolution in HIV/HCV coinfected patients with ART-induced CD4 T-cell recovery, and compared with patients with CD4 T-cell depletion from delayed ART. We applied a single-variant sequencing (SVS) method to construct authentic viral quasispecies and compared sequence evolution in HCV envelope, the primary target for humoral immune responses, and NS3, a target for cellular immunity, between the two cohorts. The SVS method corrected biases known to skew the proportions of viral variants, revealing authentic HCV quasispeices structures. We observed higher rates of HCV envelope sequence evolution in patients with ART-induced CD4 T-cell recovery, compared with patients with CD4 T-cell depletion from delayed ART (P = 0.03). Evolutionary rates for NS3 were considerably lower than the rates for envelope (P < 0.01), with no significant difference observed between the two groups. ART-induced CD4 T-cell recovery results in rapid sequence evolution in HCV envelope, but not in NS3. These results suggest that suppressive ART disproportionally enhances HCV-specific humoral responses more than cellular responses, resulting in rapid sequence evolution in HCV envelope but not NS3.

  6. Early Stages of the Evolution of Life: a Cybernetic Approach

    NASA Astrophysics Data System (ADS)

    Melkikh, Alexey V.; Seleznev, Vladimir D.

    2008-08-01

    Early stages of the evolution of life are considered in terms of control theory. A model is proposed for the transport of substances in a protocell possessing the property of robustness with regard to changes in the environmental concentration of a substance.

  7. Early stages of the evolution of life: a cybernetic approach.

    PubMed

    Melkikh, Alexey V; Seleznev, Vladimir D

    2008-08-01

    Early stages of the evolution of life are considered in terms of control theory. A model is proposed for the transport of substances in a protocell possessing the property of robustness with regard to changes in the environmental concentration of a substance.

  8. Evidence for adaptive radiation from a phylogenetic study of plant defenses

    PubMed Central

    Agrawal, Anurag A.; Fishbein, Mark; Halitschke, Rayko; Hastings, Amy P.; Rabosky, Daniel L.; Rasmann, Sergio

    2009-01-01

    One signature of adaptive radiation is a high level of trait change early during the diversification process and a plateau toward the end of the radiation. Although the study of the tempo of evolution has historically been the domain of paleontologists, recently developed phylogenetic tools allow for the rigorous examination of trait evolution in a tremendous diversity of organisms. Enemy-driven adaptive radiation was a key prediction of Ehrlich and Raven's coevolutionary hypothesis [Ehrlich PR, Raven PH (1964) Evolution 18:586–608], yet has remained largely untested. Here we examine patterns of trait evolution in 51 North American milkweed species (Asclepias), using maximum likelihood methods. We study 7 traits of the milkweeds, ranging from seed size and foliar physiological traits to defense traits (cardenolides, latex, and trichomes) previously shown to impact herbivores, including the monarch butterfly. We compare the fit of simple random-walk models of trait evolution to models that incorporate stabilizing selection (Ornstein-Ulenbeck process), as well as time-varying rates of trait evolution. Early bursts of trait evolution were implicated for 2 traits, while stabilizing selection was implicated for several others. We further modeled the relationship between trait change and species diversification while allowing rates of trait evolution to vary during the radiation. Species-rich lineages underwent a proportionately greater decline in latex and cardenolides relative to species-poor lineages, and the rate of trait change was most rapid early in the radiation. An interpretation of this result is that reduced investment in defensive traits accelerated diversification, and disproportionately so, early in the adaptive radiation of milkweeds. PMID:19805160

  9. Early evolution without a tree of life.

    PubMed

    Martin, William F

    2011-06-30

    Life is a chemical reaction. Three major transitions in early evolution are considered without recourse to a tree of life. The origin of prokaryotes required a steady supply of energy and electrons, probably in the form of molecular hydrogen stemming from serpentinization. Microbial genome evolution is not a treelike process because of lateral gene transfer and the endosymbiotic origins of organelles. The lack of true intermediates in the prokaryote-to-eukaryote transition has a bioenergetic cause.

  10. Selection towards different adaptive optima drove the early diversification of locomotor phenotypes in the radiation of Neotropical geophagine cichlids.

    PubMed

    Astudillo-Clavijo, Viviana; Arbour, Jessica H; López-Fernández, Hernán

    2015-05-01

    Simpson envisaged a conceptual model of adaptive radiation in which lineages diversify into "adaptive zones" within a macroevolutionary adaptive landscape. However, only a handful of studies have empirically investigated this adaptive landscape and its consequences for our interpretation of the underlying mechanisms of phenotypic evolution. In fish radiations the evolution of locomotor phenotypes may represent an important dimension of ecomorphological diversification given the implications of locomotion for feeding and habitat use. Neotropical geophagine cichlids represent a newly identified adaptive radiation and provide a useful system for studying patterns of locomotor diversification and the implications of selective constraints on phenotypic divergence in general. We use multivariate ordination, models of phenotypic evolution and posterior predictive approaches to investigate the macroevolutionary adaptive landscape and test for evidence of early divergence of locomotor phenotypes in Geophagini. The evolution of locomotor phenotypes was characterized by selection towards at least two distinct adaptive peaks and the early divergence of modern morphological disparity. One adaptive peak included the benthic and epibenthic invertivores and was characterized by fishes with deep, laterally compressed bodies that optimize precise, slow-swimming manoeuvres. The second adaptive peak resulted from a shift in adaptive optima in the species-rich ram-feeding/rheophilic Crenicichla-Teleocichla clade and was characterized by species with streamlined bodies that optimize fast starts and rapid manoeuvres. Evolutionary models and posterior predictive approaches favoured an early shift to a new adaptive peak over decreasing rates of evolution as the underlying process driving the early divergence of locomotor phenotypes. The influence of multiple adaptive peaks on the divergence of locomotor phenotypes in Geophagini is compatible with the expectations of an ecologically driven adaptive radiation. This study confirms that the diversification of locomotor phenotypes represents an important dimension of phenotypic evolution in the geophagine adaptive radiation. It also suggests that the commonly observed early burst of phenotypic evolution during adaptive radiations may be better explained by the concentration of shifts to new adaptive peaks deep in the phylogeny rather than overall decreasing rates of evolution.

  11. Astrovirology: Viruses at Large in the Universe.

    PubMed

    Berliner, Aaron J; Mochizuki, Tomohiro; Stedman, Kenneth M

    2018-02-01

    Viruses are the most abundant biological entities on modern Earth. They are highly diverse both in structure and genomic sequence, play critical roles in evolution, strongly influence terran biogeochemistry, and are believed to have played important roles in the origin and evolution of life. However, there is yet very little focus on viruses in astrobiology. Viruses arguably have coexisted with cellular life-forms since the earliest stages of life, may have been directly involved therein, and have profoundly influenced cellular evolution. Viruses are the only entities on modern Earth to use either RNA or DNA in both single- and double-stranded forms for their genetic material and thus may provide a model for the putative RNA-protein world. With this review, we hope to inspire integration of virus research into astrobiology and also point out pressing unanswered questions in astrovirology, particularly regarding the detection of virus biosignatures and whether viruses could be spread extraterrestrially. We present basic virology principles, an inclusive definition of viruses, review current virology research pertinent to astrobiology, and propose ideas for future astrovirology research foci. Key Words: Astrobiology-Virology-Biosignatures-Origin of life-Roadmap. Astrobiology 18, 207-223.

  12. Interpreting phenotypic antibiotic tolerance and persister cells as evolution via epigenetic inheritance.

    PubMed

    Day, Troy

    2016-04-01

    Epigenetic inheritance is the transmission of nongenetic material such as gene expression levels, RNA and other biomolecules from parents to offspring. There is a growing realization that such forms of inheritance can play an important role in evolution. Bacteria represent a prime example of epigenetic inheritance because a large array of cellular components is transmitted to offspring, in addition to genetic material. Interestingly, there is an extensive and growing empirical literature showing that many bacteria can form 'persister' cells that are phenotypically resistant or tolerant to antibiotics, but most of these results are not interpreted within the context of epigenetic inheritance. Instead, persister cells are usually viewed as a genetically encoded bet-hedging strategy that has evolved in response to a fluctuating environment. Here I show, using a relatively simple model, that many of these empirical findings can be more simply understood as arising from a combination of epigenetic inheritance and cellular noise. I therefore suggest that phenotypic drug tolerance in bacteria might represent one of the best-studied examples of evolution under epigenetic inheritance. © 2016 John Wiley & Sons Ltd.

  13. Sustained Photobiological Hydrogen Gas Production upon Reversible Inactivation of Oxygen Evolution in the Green Alga Chlamydomonas reinhardtii1

    PubMed Central

    Melis, Anastasios; Zhang, Liping; Forestier, Marc; Ghirardi, Maria L.; Seibert, Michael

    2000-01-01

    The work describes a novel approach for sustained photobiological production of H2 gas via the reversible hydrogenase pathway in the green alga Chlamydomonas reinhardtii. This single-organism, two-stage H2 production method circumvents the severe O2 sensitivity of the reversible hydrogenase by temporally separating photosynthetic O2 evolution and carbon accumulation (stage 1) from the consumption of cellular metabolites and concomitant H2 production (stage 2). A transition from stage 1 to stage 2 was effected upon S deprivation of the culture, which reversibly inactivated photosystem II (PSII) and O2 evolution. Under these conditions, oxidative respiration by the cells in the light depleted O2 and caused anaerobiosis in the culture, which was necessary and sufficient for the induction of the reversible hydrogenase. Subsequently, sustained cellular H2 gas production was observed in the light but not in the dark. The mechanism of H2 production entailed protein consumption and electron transport from endogenous substrate to the cytochrome b6-f and PSI complexes in the chloroplast thylakoids. Light absorption by PSI was required for H2 evolution, suggesting that photoreduction of ferredoxin is followed by electron donation to the reversible hydrogenase. The latter catalyzes the reduction of protons to molecular H2 in the chloroplast stroma. PMID:10631256

  14. A new hypothesis of dinosaur relationships and early dinosaur evolution.

    PubMed

    Baron, Matthew G; Norman, David B; Barrett, Paul M

    2017-03-22

    For 130 years, dinosaurs have been divided into two distinct clades-Ornithischia and Saurischia. Here we present a hypothesis for the phylogenetic relationships of the major dinosaurian groups that challenges the current consensus concerning early dinosaur evolution and highlights problematic aspects of current cladistic definitions. Our study has found a sister-group relationship between Ornithischia and Theropoda (united in the new clade Ornithoscelida), with Sauropodomorpha and Herrerasauridae (as the redefined Saurischia) forming its monophyletic outgroup. This new tree topology requires redefinition and rediagnosis of Dinosauria and the subsidiary dinosaurian clades. In addition, it forces re-evaluations of early dinosaur cladogenesis and character evolution, suggests that hypercarnivory was acquired independently in herrerasaurids and theropods, and offers an explanation for many of the anatomical features previously regarded as notable convergences between theropods and early ornithischians.

  15. Earlier Detection of Tumor Treatment Response Using Magnetic Resonance Diffusion Imaging with Oscillating Gradients

    PubMed Central

    Colvin, Daniel C.; Loveless, Mary E.; Does, Mark D.; Yue, Zou; Yankeelov, Thomas E.; Gore, John C.

    2011-01-01

    An improved method for detecting early changes in tumors in response to treatment, based on a modification of diffusion-weighted magnetic resonance imaging, has been demonstrated in an animal model. Early detection of therapeutic response in tumors is important both clinically and in pre-clinical assessments of novel treatments. Non-invasive imaging methods that can detect and assess tumor response early in the course of treatment, and before frank changes in tumor morphology are evident, are of considerable interest as potential biomarkers of treatment efficacy. Diffusion-weighted magnetic resonance imaging is sensitive to changes in water diffusion rates in tissues that result from structural variations in the local cellular environment, but conventional methods mainly reflect changes in tissue cellularity and do not convey information specific to micro-structural variations at sub-cellular scales. We implemented a modified imaging technique using oscillating gradients of the magnetic field for evaluating water diffusion rates over very short spatial scales that are more specific for detecting changes in intracellular structure that may precede changes in cellularity. Results from a study of orthotopic 9L gliomas in rat brains indicate that this method can detect changes as early as 24 hours following treatment with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), when conventional approaches do not find significant effects. These studies suggest that diffusion imaging using oscillating gradients may be used to obtain an earlier indication of treatment efficacy than previous magnetic resonance imaging methods. PMID:21190804

  16. Calcification and Silicification: Fossilization Potential of Cyanobacteria from Stromatolites of Niuafo‘ou's Caldera Lakes (Tonga) and Implications for the Early Fossil Record

    PubMed Central

    Kazmierczak, Józef; Łukomska-Kowalczyk, Maja; Kempe, Stephan

    2012-01-01

    Abstract Calcification and silicification processes of cyanobacterial mats that form stromatolites in two caldera lakes of Niuafo‘ou Island (Vai Lahi and Vai Si‘i) were evaluated, and their importance as analogues for interpreting the early fossil record are discussed. It has been shown that the potential for morphological preservation of Niuafo‘ou cyanobacteria is highly dependent on the timing and type of mineral phase involved in the fossilization process. Four main modes of mineralization of cyanobacteria organic parts have been recognized: (i) primary early postmortem calcification by aragonite nanograins that transform quickly into larger needle-like crystals and almost totally destroy the cellular structures, (ii) primary early postmortem silicification of almost intact cyanobacterial cells that leave a record of spectacularly well-preserved cellular structures, (iii) replacement by silica of primary aragonite that has already recrystallized and obliterated the cellular structures, (iv) occasional replacement of primary aragonite precipitated in the mucopolysaccharide sheaths and extracellular polymeric substances by Al-Mg-Fe silicates. These observations suggest that the extremely scarce earliest fossil record may, in part, be the result of (a) secondary replacement by silica of primary carbonate minerals (aragonite, calcite, siderite), which, due to recrystallization, had already annihilated the cellular morphology of the mineralized microbiota or (b) relatively late primary silicification of already highly degraded and no longer morphologically identifiable microbial remains. Key Words: Stromatolites—Cyanobacteria—Calcification—Silicification—Niuafo‘ou (Tonga)—Archean. Astrobiology 12, 535–548. PMID:22794297

  17. In vitro characterization of MG-63 osteoblast-like cells cultured on organic-inorganic lyophilized gelatin sponges for early bone healing.

    PubMed

    Rodriguez, Isaac A; Saxena, Gunjan; Hixon, Katherine R; Sell, Scott A; Bowlin, Gary L

    2016-08-01

    The development of three-dimensional porous scaffolds with enhanced osteogenic and angiogenic potential would be beneficial for inducing early-stage bone regeneration. Previous studies have demonstrated the advantages of mineralized and nonmineralized acellular 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) cross-linked gelatin sponges enhanced with preparations rich in growth factors, hydroxyapatite, and chitin whiskers. In this study, those same scaffolds were mineralized and dynamically seeded with MG-63 cells. Cell proliferation, protein/cytokine secretion, and compressive mechanical properties of scaffolds were evaluated. It was found that mineralization and the addition of growth factors increased cell proliferation compared to gelatin controls. Cells on all scaffolds responded in an appropriate bone regenerative fashion as shown through osteocalcin secretion and little to no secretion of bone resorbing markers. However, compressive mechanical properties of cellularized scaffolds were not significantly different from acellular scaffolds. The combined results of increased cellular attachment, infiltration, and bone regenerative protein/cytokine secretion on scaffolds support the need for the addition of a bone-like mineral surface. Cellularized scaffolds containing growth factors reported similar advantages and mechanical values in the range of native tissues present in the early stages of bone healing. These results suggest that the developed composite sponges exhibited cellular responses and mechanical properties appropriate for promoting early bone healing in various applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2011-2019, 2016. © 2016 Wiley Periodicals, Inc.

  18. Could Martian Strawberries Be? -- Prebiotic Chemical Evolution on an Early Wet Mars

    NASA Astrophysics Data System (ADS)

    Lerman, L.

    2005-03-01

    The universality of chemical physics dictates the ubiquity of bubbles, aerosols, and droplets on planets with water and simple amphiphiles. Their ability to functionally support prebiotic chemical evolution seems critical: on the early Earth and Mars, and quite likely for Titan and Europa.

  19. A new approach to the evolution of the blastic crisis from chronic myelocytic leukemia: dynamic interplay of cellular alterations and a changing microenvironment.

    PubMed Central

    Grossman, Z

    1986-01-01

    The mechanisms responsible for the massive hyperplasia and for the blastic crisis in chronic myelocytic leukemia are poorly understood. The most generally accepted hypothesis proposes that this progression is due to the development of genetic instability in the leukemic cells. In particular, the two phases of the disease are believed to reflect different, discrete genetic events. Such events remain undefined as yet, and the causal significance of observed genetic aberrations is not clear. An alternative hypothesis is presented here. It is assumed that the feedback interactions adjust the relative probabilities of maturation and replication of the 'committed' as well as the pluripotent cells, and further that mitotic cells at all stages possess considerable phenotypic adaptability; in particular their self-renewal capacity can vary in response to changes in the cellular composition of the tissue even within a conventionally defined compartment. On this basis, it is shown that chronic leukemia can arise and evolve into the blastic crisis from a progressive decline in a single clonal characteristic--inducibility to maturation. It is shown, with the help of mathematical considerations, how an initial hereditable event in an early hemopoietic cell can cause a disturbance of the tissue which feeds back onto the individual members of the clone, resulting in a cascade of dynamic changes which can lead to blast cell dominance. PMID:3458586

  20. Application of oncoproteomics to aberrant signalling networks in changing the treatment paradigm in acute lymphoblastic leukaemia.

    PubMed

    López Villar, Elena; Wang, Xiangdong; Madero, Luis; Cho, William C

    2015-01-01

    Oncoproteomics is an important innovation in the early diagnosis, management and development of personalized treatment of acute lymphoblastic leukaemia (ALL). As inherent factors are not completely known - e.g. age or family history, radiation exposure, benzene chemical exposure, certain viral exposures such as infection with the human T-cell lymphoma/leukaemia virus-1, as well as some inherited syndromes may raise the risk of ALL - each ALL patient may modify the susceptibility of therapy. Indeed, we consider these unknown inherent factors could be explained via coupling cytogenetics plus proteomics, especially when proteins are the ones which play function within cells. Innovative proteomics to ALL therapy may help to understand the mechanism of drug resistance and toxicities, which in turn will provide some leads to improve ALL management. Most important of these are shotgun proteomic strategies to unravel ALL aberrant signalling networks. Some shotgun proteomic innovations and bioinformatic tools for ALL therapies will be discussed. As network proteins are distinctive characteristics for ALL patients, unrevealed by cytogenetics, those network proteins are currently an important source of novel therapeutic targets that emerge from shotgun proteomics. Indeed, ALL evolution can be studied for each individual patient via oncoproteomics. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  1. The integrity of the plant Golgi apparatus depends on cell growth-controlled activity of GNL1.

    PubMed

    Du, Wenyan; Tamura, Kentaro; Stefano, Giovanni; Brandizzi, Federica

    2013-05-01

    Membrane traffic and organelle integrity in the plant secretory pathway depend on ARF-GTPases, which are activated by guanine-nucleotide exchange factors (ARF-GEFs). While maintenance of conserved roles, evolution of unique functions as well as tissue-specific roles have been shown for a handful of plant ARF-GEFs, a fundamental yet unanswered question concerns the extent to which their function overlaps during cell growth. To address this, we have characterized pao, a novel allele of GNOM-like 1 (GNL1), a brefeldin A (BFA)-insensitive ARF-GEF, isolated through a confocal microscopy-based forward genetics screen of the Golgi in Arabidopsis thaliana. Specifically, we have analyzed the dependence of the integrity of trafficking routes and secretory organelles on GNL1 availability during expansion stages of cotyledon epidermal cells, an exquisite model system for vegetative cell growth analyses in intact tissues. We show that Golgi traffic is influenced largely by GNL1 availability at early stages of cotyledon cell expansion but by BFA-sensitive GEFs when cell growth terminates. These data reveal an unanticipated level of complexity in the biology of GNL1 by showing that its cellular roles are correlated with cell growth. These results also indicate that the cell growth stage is an important element weighting into functional analyses of the cellular roles of ARF-GEFs.

  2. Diatom genomics: genetic acquisitions and mergers.

    PubMed

    Nisbet, R Ellen R; Kilian, Oliver; McFadden, Geoffrey I

    2004-12-29

    Diatom algae arose by two-step endosymbiosis. The complete genome of the diatom Thalassiosira pseudonana has now been sequenced, allowing us to reconstruct the remarkable intracellular gene transfers that occurred during this convoluted cellular evolution.

  3. The evolution of void-filled cosmological structures

    NASA Technical Reports Server (NTRS)

    Regos, Eniko; Geller, Margaret J.

    1991-01-01

    1D, 2D, and 3D simulations are used here to investigate the salient features in the evolution of void-filled cosmological structures in universes with arbitrary values of Omega. It is found that the growth of a void as a function of time decreases significantly at the time corresponding to Omega = 0.5. In models constructed in 2D and 3D, suitable initial conditions lead to cellular structure with faceted voids similar to those observed in redshift surveys. Matter compressed to planes flows more rapidly toward condensations at the intersections than would be expected for spherical infall. The peculiar streaming velocities for void diameters of 5000 km/s should be observable. The simulations provide a more physical basis and dynamics for the bubbly and Voronois tesselation models used to derive statistical properties of cellular large-scale structure.

  4. When should we expect early bursts of trait evolution in comparative data? Predictions from an evolutionary food web model.

    PubMed

    Ingram, T; Harmon, L J; Shurin, J B

    2012-09-01

    Conceptual models of adaptive radiation predict that competitive interactions among species will result in an early burst of speciation and trait evolution followed by a slowdown in diversification rates. Empirical studies often show early accumulation of lineages in phylogenetic trees, but usually fail to detect early bursts of phenotypic evolution. We use an evolutionary simulation model to assemble food webs through adaptive radiation, and examine patterns in the resulting phylogenetic trees and species' traits (body size and trophic position). We find that when foraging trade-offs result in food webs where all species occupy integer trophic levels, lineage diversity and trait disparity are concentrated early in the tree, consistent with the early burst model. In contrast, in food webs in which many omnivorous species feed at multiple trophic levels, high levels of turnover of species' identities and traits tend to eliminate the early burst signal. These results suggest testable predictions about how the niche structure of ecological communities may be reflected by macroevolutionary patterns. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  5. Are maternal mitochondria the selfish entities that are masters of the cells of eukaryotic multicellular organisms?

    PubMed Central

    Barlow, Peter W; Baldelli, E; Baluška, Frantisek

    2009-01-01

    The Energide concept, as well as the endosymbiotic theory of eukaryotic cell organization and evolution, proposes that present-day cells of eukaryotic organisms are mosaics of specialized and cooperating units, or organelles. Some of these units were originally free-living prokaryotes, which were engulfed during evolutionary time. Mitochondria represent one of these types of previously independent organisms, the Energide, is another type. This new perspective on the organization of the cell has been further expanded to reveal the concept of a public milieu, the cytosol, in which Energides and mitochondria live, each with their own private internal milieu. The present paper discusses how the endosymbiotic theory implicates a new hypothesis about the hierarchical and communicational organization of the integrated prokaryotic components of the eukaryotic cell and provides a new angle from which to consider the theory of evolution and its bearing upon cellular complexity. Thus, it is proposed that the “selfish gene” hypothesis of Dawkins1 is not the only possible perspective for comprehending genomic and cellular evolution. Our proposal is that maternal mitochondria are the selfish “master” entities of the eukaryotic cell with respect not only to their propagation from cell-to-cell and from generation-to-generation but also to their regulation of all other cellular functions. However, it should be recognized that the concept of “master” and “servant” cell components is a metaphor; in present-day living organisms their organellar components are considered to be interdependent and inseparable. PMID:19513277

  6. Oxygen as a driver of early arthropod micro-benthos evolution.

    PubMed

    Williams, Mark; Vannier, Jean; Corbari, Laure; Massabuau, Jean-Charles

    2011-01-01

    We examine the physiological and lifestyle adaptations which facilitated the emergence of ostracods as the numerically dominant Phanerozoic bivalve arthropod micro-benthos. The PO(2) of modern normoxic seawater is 21 kPa (air-equilibrated water), a level that would cause cellular damage if found in the tissues of ostracods and much other marine fauna. The PO(2) of most aquatic breathers at the cellular level is much lower, between 1 and 3 kPa. Ostracods avoid oxygen toxicity by migrating to waters which are hypoxic, or by developing metabolisms which generate high consumption of O(2). Interrogation of the Cambrian record of bivalve arthropod micro-benthos suggests a strong control on ecosystem evolution exerted by changing seawater O(2) levels. The PO(2) of air-equilibrated Cambrian-seawater is predicted to have varied between 10 and 30 kPa. Three groups of marine shelf-dwelling bivalve arthropods adopted different responses to Cambrian seawater O(2). Bradoriida evolved cardiovascular systems that favoured colonization of oxygenated marine waters. Their biodiversity declined during intervals associated with black shale deposition and marine shelf anoxia and their diversity may also have been curtailed by elevated late Cambrian (Furongian) oxygen-levels that increased the PO(2) gradient between seawater and bradoriid tissues. Phosphatocopida responded to Cambrian anoxia differently, reaching their peak during widespread seabed dysoxia of the SPICE event. They lacked a cardiovascular system and appear to have been adapted to seawater hypoxia. As latest Cambrian marine shelf waters became well oxygenated, phosphatocopids went extinct. Changing seawater oxygen-levels and the demise of much of the seabed bradoriid micro-benthos favoured a third group of arthropod micro-benthos, the ostracods. These animals adopted lifestyles that made them tolerant of changes in seawater O(2). Ostracods became the numerically dominant arthropod micro-benthos of the Phanerozoic. Our work has implications from an evolutionary context for understanding how oxygen-level in marine ecosystems drives behaviour.

  7. Oxygen as a Driver of Early Arthropod Micro-Benthos Evolution

    PubMed Central

    Williams, Mark; Vannier, Jean; Corbari, Laure; Massabuau, Jean-Charles

    2011-01-01

    Background We examine the physiological and lifestyle adaptations which facilitated the emergence of ostracods as the numerically dominant Phanerozoic bivalve arthropod micro-benthos. Methodology/Principal Findings The PO2 of modern normoxic seawater is 21 kPa (air-equilibrated water), a level that would cause cellular damage if found in the tissues of ostracods and much other marine fauna. The PO2 of most aquatic breathers at the cellular level is much lower, between 1 and 3 kPa. Ostracods avoid oxygen toxicity by migrating to waters which are hypoxic, or by developing metabolisms which generate high consumption of O2. Interrogation of the Cambrian record of bivalve arthropod micro-benthos suggests a strong control on ecosystem evolution exerted by changing seawater O2 levels. The PO2 of air-equilibrated Cambrian-seawater is predicted to have varied between 10 and 30 kPa. Three groups of marine shelf-dwelling bivalve arthropods adopted different responses to Cambrian seawater O2. Bradoriida evolved cardiovascular systems that favoured colonization of oxygenated marine waters. Their biodiversity declined during intervals associated with black shale deposition and marine shelf anoxia and their diversity may also have been curtailed by elevated late Cambrian (Furongian) oxygen-levels that increased the PO2 gradient between seawater and bradoriid tissues. Phosphatocopida responded to Cambrian anoxia differently, reaching their peak during widespread seabed dysoxia of the SPICE event. They lacked a cardiovascular system and appear to have been adapted to seawater hypoxia. As latest Cambrian marine shelf waters became well oxygenated, phosphatocopids went extinct. Changing seawater oxygen-levels and the demise of much of the seabed bradoriid micro-benthos favoured a third group of arthropod micro-benthos, the ostracods. These animals adopted lifestyles that made them tolerant of changes in seawater O2. Ostracods became the numerically dominant arthropod micro-benthos of the Phanerozoic. Conclusions/Significance Our work has implications from an evolutionary context for understanding how oxygen-level in marine ecosystems drives behaviour. PMID:22164241

  8. Efficient Reverse-Engineering of a Developmental Gene Regulatory Network

    PubMed Central

    Cicin-Sain, Damjan; Ashyraliyev, Maksat; Jaeger, Johannes

    2012-01-01

    Understanding the complex regulatory networks underlying development and evolution of multi-cellular organisms is a major problem in biology. Computational models can be used as tools to extract the regulatory structure and dynamics of such networks from gene expression data. This approach is called reverse engineering. It has been successfully applied to many gene networks in various biological systems. However, to reconstitute the structure and non-linear dynamics of a developmental gene network in its spatial context remains a considerable challenge. Here, we address this challenge using a case study: the gap gene network involved in segment determination during early development of Drosophila melanogaster. A major problem for reverse-engineering pattern-forming networks is the significant amount of time and effort required to acquire and quantify spatial gene expression data. We have developed a simplified data processing pipeline that considerably increases the throughput of the method, but results in data of reduced accuracy compared to those previously used for gap gene network inference. We demonstrate that we can infer the correct network structure using our reduced data set, and investigate minimal data requirements for successful reverse engineering. Our results show that timing and position of expression domain boundaries are the crucial features for determining regulatory network structure from data, while it is less important to precisely measure expression levels. Based on this, we define minimal data requirements for gap gene network inference. Our results demonstrate the feasibility of reverse-engineering with much reduced experimental effort. This enables more widespread use of the method in different developmental contexts and organisms. Such systematic application of data-driven models to real-world networks has enormous potential. Only the quantitative investigation of a large number of developmental gene regulatory networks will allow us to discover whether there are rules or regularities governing development and evolution of complex multi-cellular organisms. PMID:22807664

  9. Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease.

    PubMed

    Ogino, Shuji; Lochhead, Paul; Chan, Andrew T; Nishihara, Reiko; Cho, Eunyoung; Wolpin, Brian M; Meyerhardt, Jeffrey A; Meissner, Alexander; Schernhammer, Eva S; Fuchs, Charles S; Giovannucci, Edward

    2013-04-01

    Epigenetics acts as an interface between environmental/exogenous factors, cellular responses, and pathological processes. Aberrant epigenetic signatures are a hallmark of complex multifactorial diseases (including neoplasms and malignancies such as leukemias, lymphomas, sarcomas, and breast, lung, prostate, liver, and colorectal cancers). Epigenetic signatures (DNA methylation, mRNA and microRNA expression, etc) may serve as biomarkers for risk stratification, early detection, and disease classification, as well as targets for therapy and chemoprevention. In particular, DNA methylation assays are widely applied to formalin-fixed, paraffin-embedded archival tissue specimens as clinical pathology tests. To better understand the interplay between etiological factors, cellular molecular characteristics, and disease evolution, the field of 'molecular pathological epidemiology (MPE)' has emerged as an interdisciplinary integration of 'molecular pathology' and 'epidemiology'. In contrast to traditional epidemiological research including genome-wide association studies (GWAS), MPE is founded on the unique disease principle, that is, each disease process results from unique profiles of exposomes, epigenomes, transcriptomes, proteomes, metabolomes, microbiomes, and interactomes in relation to the macroenvironment and tissue microenvironment. MPE may represent a logical evolution of GWAS, termed 'GWAS-MPE approach'. Although epigenome-wide association study attracts increasing attention, currently, it has a fundamental problem in that each cell within one individual has a unique, time-varying epigenome. Having a similar conceptual framework to systems biology, the holistic MPE approach enables us to link potential etiological factors to specific molecular pathology, and gain novel pathogenic insights on causality. The widespread application of epigenome (eg, methylome) analyses will enhance our understanding of disease heterogeneity, epigenotypes (CpG island methylator phenotype, LINE-1 (long interspersed nucleotide element-1; also called long interspersed nuclear element-1; long interspersed element-1; L1) hypomethylation, etc), and host-disease interactions. In this article, we illustrate increasing contribution of modern pathology to broader public health sciences, which attests pivotal roles of pathologists in the new integrated MPE science towards our ultimate goal of personalized medicine and prevention.

  10. Molecular Pathological Epidemiology of Epigenetics: Emerging Integrative Science to Analyze Environment, Host, and Disease

    PubMed Central

    Ogino, Shuji; Lochhead, Paul; Chan, Andrew T.; Nishihara, Reiko; Cho, Eunyoung; Wolpin, Brian M.; Meyerhardt, Jeffrey A.; Meissner, Alexander; Schernhammer, Eva S.; Fuchs, Charles S.; Giovannucci, Edward

    2013-01-01

    Epigenetics acts as an interface between environmental / exogenous factors, cellular responses and pathological processes. Aberrant epigenetic signatures are a hallmark of complex multifactorial diseases, including non-neoplastic disorders (e.g., cardiovascular diseases, hypertension, diabetes mellitus, autoimmune diseases, and some infectious diseases) and neoplasms (e.g., leukemias, lymphomas, sarcomas, and breast, lung, prostate, liver and colorectal cancers). Epigenetic signatures (DNA methylation, mRNA and microRNA expression, etc.) may serve as biomarkers for risk stratification, early detection, and disease classification, as well as targets for therapy and chemoprevention. DNA methylation assays are widely applied to formalin-fixed paraffin-embedded archival tissue specimens as clinical pathology tests. To better understand the interplay between etiologic factors, cellular molecular characteristics, and disease evolution, the field of “Molecular Pathological Epidemiology (MPE)” has emerged as an interdisciplinary integration of “molecular pathology” and “epidemiology”, with a similar conceptual framework to systems biology and network medicine. In contrast to traditional epidemiologic research including genome-wide association studies (GWAS), MPE is founded on the unique disease principle; that is, each disease process results from unique profiles of exposomes, epigenomes, transcriptomes, proteomes, metabolomes, microbiomes, and interactomes in relation to the macro-environment and tissue microenvironment. The widespread application of epigenomics (e.g., methylome) analyses will enhance our understanding of disease heterogeneity, epigenotypes (CpG island methylator phenotype, LINE-1 hypomethylation, etc.), and host-disease interactions. MPE may represent a logical evolution of GWAS, termed “GWAS-MPE approach”. Though epigenome-wide association study attracts increasing attention, currently, it has a fundamental problem in that each cell within one individual has a unique, time-varying epigenome. This article will illustrate increasing contribution of modern pathology to broader public health sciences, which attests pivotal roles of pathologists in the new integrated MPE science towards our ultimate goal of personalized medicine and prevention. PMID:23307060

  11. Physiological differentiation within a single-species biofilm fueled by serpentinization.

    PubMed

    Brazelton, William J; Mehta, Mausmi P; Kelley, Deborah S; Baross, John A

    2011-01-01

    Carbonate chimneys at the Lost City hydrothermal field are coated in biofilms dominated by a single phylotype of archaea known as Lost City Methanosarcinales. In this study, we have detected surprising physiological complexity in single-species biofilms, which is typically indicative of multispecies biofilm communities. Multiple cell morphologies were visible within the biofilms by transmission electron microscopy, and some cells contained intracellular membranes that may facilitate methane oxidation. Both methane production and oxidation were detected at 70 to 80°C and pH 9 to 10 in samples containing the single-species biofilms. Both processes were stimulated by the presence of hydrogen (H(2)), indicating that methane production and oxidation are part of a syntrophic interaction. Metagenomic data included a sequence encoding AMP-forming acetyl coenzyme A synthetase, indicating that acetate may play a role in the methane-cycling syntrophy. A wide range of nitrogen fixation genes were also identified, many of which were likely acquired via lateral gene transfer (LGT). Our results indicate that cells within these single-species biofilms may have differentiated into multiple physiological roles to form multicellular communities linked by metabolic interactions and LGT. Communities similar to these Lost City biofilms are likely to have existed early in the evolution of life, and we discuss how the multicellular characteristics of ancient hydrogen-fueled biofilm communities could have stimulated ecological diversification, as well as unity of biochemistry, during the earliest stages of cellular evolution. Our previous work at the Lost City hydrothermal field has shown that its carbonate chimneys host microbial biofilms dominated by a single uncultivated "species" of archaea. In this paper, we integrate evidence from these previous studies with new data on the metabolic activity and cellular morphology of these archaeal biofilms. We conclude that the archaeal biofilm must contain cells that are physiologically and possibly genetically differentiated with respect to each other. These results are especially interesting considering the possibility that the first cells originated and evolved in hydrothermal systems similar to Lost City.

  12. Instability-driven electromagnetic fields in coronal plasmas

    DOE PAGES

    Manuel, M. J.-E.; Li, C. K.; Seguin, F. H.; ...

    2013-04-15

    Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. S eguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of 210 lm throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature andmore » density profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.« less

  13. The Atmospheres of the Terrestrial Planets:Clues to the Origins and Early Evolution of Venus, Earth, and Mars

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin

    2015-01-01

    We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.

  14. Second Symposium on Chemical Evolution and the Origin of Life

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L. (Editor); model. (Editor)

    1986-01-01

    Recent findings by NASA Exobiology investigators are reported. Scientific papers are presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).

  15. Second Symposium on Chemical Evolution and the Origin of Life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devincenzi, D.L.; Dufour, P.A.

    1986-05-01

    Recent findings by NASA Exobiology investigators are reported. Scientific papers are presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).

  16. Determinants of the rate of protein sequence evolution

    PubMed Central

    Zhang, Jianzhi; Yang, Jian-Rong

    2015-01-01

    The rate and mechanism of protein sequence evolution have been central questions in evolutionary biology since the 1960s. Although the rate of protein sequence evolution depends primarily on the level of functional constraint, exactly what constitutes functional constraint has remained unclear. The increasing availability of genomic data has allowed for much needed empirical examinations on the nature of functional constraint. These studies found that the evolutionary rate of a protein is predominantly influenced by its expression level rather than functional importance. A combination of theoretical and empirical analyses have identified multiple mechanisms behind these observations and demonstrated a prominent role that selection against errors in molecular and cellular processes plays in protein evolution. PMID:26055156

  17. Bi-SOC-states in one-dimensional random cellular automaton

    NASA Astrophysics Data System (ADS)

    Czechowski, Zbigniew; Budek, Agnieszka; Białecki, Mariusz

    2017-10-01

    Two statistically stationary states with power-law scaling of avalanches are found in a simple 1 D cellular automaton. Features of the fixed points, the spiral saddle and the saddle with index 1, are investigated. The migration of states of the automaton between these two self-organized criticality states is demonstrated during evolution of the system in computer simulations. The automaton, being a slowly driven system, can be applied as a toy model of earthquake supercycles.

  18. Evolutionary Specialization of Tactile Perception in Vertebrates.

    PubMed

    Schneider, Eve R; Gracheva, Elena O; Bagriantsev, Slav N

    2016-05-01

    Evolution has endowed vertebrates with the remarkable tactile ability to explore the world through the perception of physical force. Yet the sense of touch remains one of the least well understood senses at the cellular and molecular level. Vertebrates specializing in tactile perception can highlight general principles of mechanotransduction. Here, we review cellular and molecular adaptations that underlie the sense of touch in typical and acutely mechanosensitive vertebrates. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.

  19. Pivotal Impacts of Retrotransposon Based Invasive RNAs on Evolution.

    PubMed

    Habibi, Laleh; Salmani, Hamzeh

    2017-01-01

    RNAs have long been described as the mediators of gene expression; they play a vital role in the structure and function of cellular complexes. Although the role of RNAs in the prokaryotes is mainly confined to these basic functions, the effects of these molecules in regulating the gene expression and enzymatic activities have been discovered in eukaryotes. Recently, a high-resolution analysis of the DNA obtained from different organisms has revealed a fundamental impact of the RNAs in shaping the genomes, heterochromatin formation, and gene creation. Deep sequencing of the human genome revealed that about half of our DNA is comprised of repetitive sequences (remnants of transposable element movements) expanded mostly through RNA-mediated processes. ORF2 encoded by L1 retrotransposons is a cellular reverse transcriptase which is mainly responsible for RNA invasion of various transposable elements (L1s, Alus, and SVAs) and cellular mRNAs in to the genomic DNA. In addition to increasing retroelements copy number; genomic expansion in association with centromere, telomere, and heterochromatin formation as well as pseudogene creation are the evolutionary consequences of this RNA-based activity. Threatening DNA integrity by disrupting the genes and forming excessive double strand breaks is another effect of this invasion. Therefore, repressive mechanisms have been evolved to control the activities of these invasive intracellular RNAs. All these mechanisms now have essential roles in the complex cellular functions. Therefore, it can be concluded that without direct action of RNA networks in shaping the genome and in the development of different cellular mechanisms, the evolution of higher eukaryotes would not be possible.

  20. Pivotal Impacts of Retrotransposon Based Invasive RNAs on Evolution

    PubMed Central

    Habibi, Laleh; Salmani, Hamzeh

    2017-01-01

    RNAs have long been described as the mediators of gene expression; they play a vital role in the structure and function of cellular complexes. Although the role of RNAs in the prokaryotes is mainly confined to these basic functions, the effects of these molecules in regulating the gene expression and enzymatic activities have been discovered in eukaryotes. Recently, a high-resolution analysis of the DNA obtained from different organisms has revealed a fundamental impact of the RNAs in shaping the genomes, heterochromatin formation, and gene creation. Deep sequencing of the human genome revealed that about half of our DNA is comprised of repetitive sequences (remnants of transposable element movements) expanded mostly through RNA-mediated processes. ORF2 encoded by L1 retrotransposons is a cellular reverse transcriptase which is mainly responsible for RNA invasion of various transposable elements (L1s, Alus, and SVAs) and cellular mRNAs in to the genomic DNA. In addition to increasing retroelements copy number; genomic expansion in association with centromere, telomere, and heterochromatin formation as well as pseudogene creation are the evolutionary consequences of this RNA-based activity. Threatening DNA integrity by disrupting the genes and forming excessive double strand breaks is another effect of this invasion. Therefore, repressive mechanisms have been evolved to control the activities of these invasive intracellular RNAs. All these mechanisms now have essential roles in the complex cellular functions. Therefore, it can be concluded that without direct action of RNA networks in shaping the genome and in the development of different cellular mechanisms, the evolution of higher eukaryotes would not be possible. PMID:29067016

  1. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate?

    PubMed Central

    Koonin, Eugene V

    2006-01-01

    Background Ever since the discovery of 'genes in pieces' and mRNA splicing in eukaryotes, origin and evolution of spliceosomal introns have been considered within the conceptual framework of the 'introns early' versus 'introns late' debate. The 'introns early' hypothesis, which is closely linked to the so-called exon theory of gene evolution, posits that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. Under this scenario, the absence of spliceosomal introns in prokaryotes is considered to be a result of "genome streamlining". The 'introns late' hypothesis counters that spliceosomal introns emerged only in eukaryotes, and moreover, have been inserted into protein-coding genes continuously throughout the evolution of eukaryotes. Beyond the formal dilemma, the more substantial side of this debate has to do with possible roles of introns in the evolution of eukaryotes. Results I argue that several lines of evidence now suggest a coherent solution to the introns-early versus introns-late debate, and the emerging picture of intron evolution integrates aspects of both views although, formally, there seems to be no support for the original version of introns-early. Firstly, there is growing evidence that spliceosomal introns evolved from group II self-splicing introns which are present, usually, in small numbers, in many bacteria, and probably, moved into the evolving eukaryotic genome from the α-proteobacterial progenitor of the mitochondria. Secondly, the concept of a primordial pool of 'virus-like' genetic elements implies that self-splicing introns are among the most ancient genetic entities. Thirdly, reconstructions of the ancestral state of eukaryotic genes suggest that the last common ancestor of extant eukaryotes had an intron-rich genome. Thus, it appears that ancestors of spliceosomal introns, indeed, have existed since the earliest stages of life's evolution, in a formal agreement with the introns-early scenario. However, there is no evidence that these ancient introns ever became widespread before the emergence of eukaryotes, hence, the central tenet of introns-early, the role of introns in early evolution of proteins, has no support. However, the demonstration that numerous introns invaded eukaryotic genes at the outset of eukaryotic evolution and that subsequent intron gain has been limited in many eukaryotic lineages implicates introns as an ancestral feature of eukaryotic genomes and refutes radical versions of introns-late. Perhaps, most importantly, I argue that the intron invasion triggered other pivotal events of eukaryogenesis, including the emergence of the spliceosome, the nucleus, the linear chromosomes, the telomerase, and the ubiquitin signaling system. This concept of eukaryogenesis, in a sense, revives some tenets of the exon hypothesis, by assigning to introns crucial roles in eukaryotic evolutionary innovation. Conclusion The scenario of the origin and evolution of introns that is best compatible with the results of comparative genomics and theoretical considerations goes as follows: self-splicing introns since the earliest stages of life's evolution – numerous spliceosomal introns invading genes of the emerging eukaryote during eukaryogenesis – subsequent lineage-specific loss and gain of introns. The intron invasion, probably, spawned by the mitochondrial endosymbiont, might have critically contributed to the emergence of the principal features of the eukaryotic cell. This scenario combines aspects of the introns-early and introns-late views. Reviewers this article was reviewed by W. Ford Doolittle, James Darnell (nominated by W. Ford Doolittle), William Martin, and Anthony Poole. PMID:16907971

  2. Oxygen and Early Animal Evolution

    NASA Astrophysics Data System (ADS)

    Xiao, S.

    2012-12-01

    It is often hypothesized that the rise of animals was triggered by an increase in O2 levels in the atmosphere and oceans. However, this hypothesis is remarkably difficult to test, because the timing of animal divergences is poorly resolved, the physiology of early animals is often unknown, estimates of past pO2 levels come with large error bars, and causal relationships between oxygenation and animal evolution are difficult to establish. Nonetheless, existing phylogenetic, paleontological, and geochemical data indicate that the evolution of macroscopic animals and motile macrometazoans with energetically expensive lifestyles may be temporally coupled with ocean oxygenation events in the Ediacaran Period. Thus, it is plausible that ocean oxygenation may have been a limiting factor in the early evolution of macroscopic, complex, and metabolically aggressive animals (particularly bilaterian animals). However, ocean oxygenation and animal evolution were likely engaged in two-way interactions: Ediacaran oxygenation may have initially lifted a physiological barrier for the evolution of animal size, motility, and active lifestyles, but subsequent animal diversification in the Paleozoic may have also changed oceanic redox structures. Viewed in a broader context, the early evolutionary history of animals was contingent upon a series of events, including genetic preparation (developmental genetics), environmental facilitation (oceanic oxygenation), and ecological escalation (Cambrian explosion), but the rise of animals to ecological importance also had important geobiological impacts on oceanic redox structures, sedimentary fabrics, and global geochemical cycles.

  3. Safe use of cellular telephones in hospitals: fundamental principles and case studies.

    PubMed

    Cohen, Ted; Ellis, Willard S; Morrissey, Joseph J; Bakuzonis, Craig; David, Yadin; Paperman, W David

    2005-01-01

    Many industries and individuals have embraced cellular telephones. They provide mobile, synchronous communication, which could hypothetically increase the efficiency and safety of inpatient healthcare. However, reports of early analog cellular telephones interfering with critical life-support machines had led many hospitals to strictly prohibit cellular telephones. A literature search revealed that individual hospitals now are allowing cellular telephone use with various policies to prevent electromagnetic interference with medical devices. The fundamental principles underlying electromagnetic interference are immunity, frequency, modulation technology, distance, and power Electromagnetic interference risk mitigation methods based on these principles have been successfully implemented. In one case study, a minimum distance between cellular telephones and medical devices is maintained, with restrictions in critical areas. In another case study, cellular telephone coverage is augmented to automatically control the power of the cellular telephone. While no uniform safety standard yet exists, cellular telephones can be safely used in hospitals when their use is managed carefully.

  4. Characterizing early molecular biomarkers of zinc-induced adaptive and adverseoxidative stress responses in human bronchial epithelial cells

    EPA Science Inventory

    Determining mechanism-based biomarkers that distinguish adaptive and adverse cellular processes is critical to understanding the health effects of environmental exposures. Here, we examined cellular responses of the tracheobronchial airway to zinc (Zn) exposure. A pharmacokinetic...

  5. Five rules for the evolution of cooperation

    PubMed Central

    Nowak, Martin A.

    2011-01-01

    Cooperation is needed for evolution to construct new levels of organization. The emergence of genomes, cells, multi-cellular organisms, social insects and human society are all based on cooperation. Cooperation means that selfish replicators forgo some of their reproductive potential to help one another. But natural selection implies competition and therefore opposes cooperation unless a specific mechanism is at work. Here I discuss five mechanisms for the evolution of cooperation: kin selection, direct reciprocity, indirect reciprocity, network reciprocity and group selection. For each mechanism, a simple rule is derived which specifies whether natural selection can lead to cooperation. PMID:17158317

  6. [Molecular aspects of human papillomaviruses and their relation to uterine cervix cancer].

    PubMed

    García-Carrancá, A; Gariglio, P V

    1993-01-01

    Papillomaviruses (wart viruses) are responsible for the development of benign and malignant epithelial lesions in mammals. More than 60 different types of human papillomaviruses (HPVs) have been isolated to date. Some of them are major candidates as etiologic agents in cervical cancer. DNA from HPV types 16, 18 and 33 is usually found integrated in about 90 percent of genital carcinomas. Integration of the viral DNA into the cellular genome may be an important step towards the development of malignancy. Two early genes of HPVs (E6 y E7) are involved in cellular transformation. Another early gene (E2) participates in gene control by directly binding to conserved DNA motifs in the viral genome. Several protein factors of viral and cellular origin interact with the regulatory region of HPVs and participate in the regulation transcription of oncogenes E6 and E7. Cellular factors, such as immune system and oncogene and anti-oncogene alterations, seem to play an important role in papillomavirus-associated cervical carcinogenesis.

  7. Evolution, learning, and cognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.C.

    1988-01-01

    The book comprises more than fifteen articles in the areas of neural networks and connectionist systems, classifier systems, adaptive network systems, genetic algorithm, cellular automata, artificial immune systems, evolutionary genetics, cognitive science, optical computing, combinatorial optimization, and cybernetics.

  8. Evolutionary Relationships Based on Cellular Structure.

    ERIC Educational Resources Information Center

    Van Winkle, Lon J.

    1979-01-01

    This laboratory exercise integrates the topics of cell structure, classification of living organisms, and evolution. It is suitable for secondary or college biology courses and was used in an interdisciplinary science course for nonscience majors. (BB)

  9. Beta and Gamma Human Herpesviruses: Agonistic and Antagonistic Interactions with the Host Immune System

    PubMed Central

    Cruz-Muñoz, Mario E.; Fuentes-Pananá, Ezequiel M.

    2018-01-01

    Viruses are the most abundant and diverse biological entities in the planet. Historically, our main interest in viruses has focused on their pathogenic role, recognized by pandemics that have decimated the world population. However, viral infections have also played a major role in the evolution of cellular organisms, both through interchanging of genes with novel functions and shaping the immune system. Examples abound of infections that seriously compromise the host integrity, but evidence of plant and insect viruses mutualistic relationships have recently surfaced in which infected hosts are better suited for survival, arguing that virus-host interactions are initially parasitic but become mutualistic over years of co-evolution. A similar mutual help scenario has emerged with commensal gut bacteria. EBV is a herpesvirus that shares more than a hundred million years of co-evolution with humans, today successfully infecting close to 100% of the adult world population. Infection is usually acquired early in childhood persisting for the host lifetime mostly without apparent clinical symptoms. Disturbance of this homeostasis is rare and results in several diseases, of which the best understood are infectious mononucleosis and several EBV-associated cancers. Less understood are recently found inborn errors of the immune system that result in primary immunodeficiencies with an increased predisposition almost exclusive to EBV-associated diseases. Puzzling to these scenarios of broken homeostasis is the co-existence of immunosuppression, inflammation, autoimmunity and cancer. Homologous to EBV, HCMV, HHV-6 and HHV-7 are herpesviruses that also latently infect most individuals. Several lines of evidence support a mutualistic equilibrium between HCMV/EBV and hosts, that when altered trigger diseases in which the immune system plays a critical role. Interestingly, these beta and gamma herpesviruses persistently infect all immune lineages and early precursor cells. In this review, we will discuss the evidence of the benefits that infection of immune cells with these herpesviruses brings to the host. Also, the circumstances in which this positive relationship is broken, predisposing the host to diseases characterized by an abnormal function of the host immune system. PMID:29354096

  10. Sponge cell reaggregation: Cellular structure and morphogenetic potencies of multicellular aggregates.

    PubMed

    Lavrov, Andrey I; Kosevich, Igor A

    2016-02-01

    Sponges (phylum Porifera) are one of the most ancient extant multicellular animals and can provide valuable insights into origin and early evolution of Metazoa. High plasticity of cell differentiations and anatomical structure is characteristic feature of sponges. Present study deals with sponge cell reaggregation after dissociation as the most outstanding case of sponge plasticity. Dynamic of cell reaggregation and structure of multicellular aggregates of three demosponge species (Halichondria panicea (Pallas, 1766), Haliclona aquaeductus (Sсhmidt, 1862), and Halisarca dujardinii Johnston, 1842) were studied. Sponge tissue dissociation was performed mechanically. Resulting cell suspensions were cultured at 8-10°C for at least 5 days. Structure of multicellular aggregates was studied by light, transmission and scanning electron microscopy. Studied species share common stages of cell reaggregation-primary multicellular aggregates, early-stage primmorphs and primmorphs, but the rate of reaggregation varies considerably among species. Only cells of H. dujardinii are able to reconstruct functional and viable sponge after primmorphs formation. Sponge reconstruction in this species occurs due to active cell locomotion. Development of H. aquaeductus and H. panicea cells ceases at the stages of early primmorphs and primmorphs, respectively. Development of aggregates of these species is most likely arrested due to immobility of the majority of cells inside them. However, the inability of certain sponge species to reconstruct functional and viable individuals during cell reaggregation may be not a permanent species-specific characteristic, but depends on various factors, including the stage of the life cycle and experimental conditions. © 2016 Wiley Periodicals, Inc.

  11. Complex Homology and the Evolution of Nervous Systems

    PubMed Central

    Liebeskind, Benjamin J.; Hillis, David M.; Zakon, Harold H.; Hofmann, Hans A.

    2016-01-01

    We examine the complex evolution of animal nervous systems and discuss the ramifications of this complexity for inferring the nature of early animals. Although reconstructing the origins of nervous systems remains a central challenge in biology, and the phenotypic complexity of early animals remains controversial, a compelling picture is emerging. We now know that the nervous system and other key animal innovations contain a large degree of homoplasy, at least on the molecular level. Conflicting hypotheses about early nervous system evolution are due primarily to differences in the interpretation of this homoplasy. We highlight the need for explicit discussion of assumptions and discuss the limitations of current approaches for inferring ancient phenotypic states. PMID:26746806

  12. Homology and Potential Cellular and Molecular Mechanisms for the Development of Unique Feather Morphologies in Early Birds

    PubMed Central

    O’Connor, Jingmai K.; Chiappe, Luis M.; Chuong, Cheng-ming; Bottjer, David J.; You, Hailu

    2013-01-01

    At least two lineages of Mesozoic birds are known to have possessed a distinct feather morphotype for which there is no neornithine (modern) equivalent. The early stepwise evolution of apparently modern feathers occurred within Maniraptora, basal to the avian transition, with asymmetrical pennaceous feathers suited for flight present in the most basal recognized avian, Archaeopteryx lithographica. The number of extinct primitive feather morphotypes recognized among non-avian dinosaurs continues to increase with new discoveries; some of these resemble feathers present in basal birds. As a result, feathers between phylogenetically widely separated taxa have been described as homologous. Here we examine the extinct feather morphotypes recognized within Aves and compare these structures with those found in non-avian dinosaurs. We conclude that the “rachis dominated” tail feathers of Confuciusornis sanctus and some enantiornithines are not equivalent to the “proximally ribbon-like” pennaceous feathers of the juvenile oviraptorosaur Similicaudipteryx yixianensis. Close morphological analysis of these unusual rectrices in basal birds supports the interpretation that they are modified pennaceous feathers. Because this feather morphotype is not seen in living birds, we build on current understanding of modern feather molecular morphogenesis to suggest a hypothetical molecular developmental model for the formation of the rachis dominated feathers of extinct basal birds. PMID:24003379

  13. Permeation of membranes by the neutral form of amino acids and peptides: relevance to the origin of peptide translocation

    NASA Technical Reports Server (NTRS)

    Chakrabarti, A. C.; Deamer, D. W.; Miller, S. L. (Principal Investigator)

    1994-01-01

    The flux of amino acids and other nutrient solutes such as phosphate across lipid bilayers (liposomes) is 10(5) slower than facilitated inward transport across biological membranes. This suggest that primitive cells lacking highly evolved transport systems would have difficulty transporting sufficient nutrients for cell growth to occur. There are two possible ways by which early life may have overcome this difficulty: (1) The membranes of the earliest cellular life-forms may have been intrinsically more permeable to solutes; or (2) some transport mechanism may have been available to facilitate transbilayer movement of solutes essential for cell survival and growth prior to the evolution of membrane transport proteins. Translocation of neutral species represents one such mechanism. The neutral forms of amino acids modified by methylation (creating protonated weak bases) permeate membranes up to 10(10) times faster than charged forms. This increased permeability when coupled to a transmembrane pH gradient can result in significantly increased rates of net unidirectional transport. Such pH gradients can be generated in vesicles used to model protocells that preceded and were presumably ancestral to early forms of life. This transport mechanism may still play a role in some protein translocation processes (e.g. for certain signal sequences, toxins and thylakoid proteins) in vivo.

  14. New Postcranial Material of the Early Caseid Casea broilii Williston, 1910 (Synapsida: Caseidae) with a Review of the Evolution of the Sacrum in Paleozoic Non-Mammalian Synapsids

    PubMed Central

    LeBlanc, Aaron R. H.; Reisz, Robert R.

    2014-01-01

    Here we use the description of a new specimen of the small caseid synapsid Casea broilii that preserves the sacral, pelvic and hind limb regions in great detail and in three dimensions, as a unique opportunity to reevaluate the early stages in the evolution of the sacrum in the lineage that led to mammals. We place this new material in the context of sacral evolution in early caseid synapsids and conclude that the transition from two to three sacral vertebrae occurred in small-bodied species, suggesting that it was not an adaptation to heavy weight bearing. Furthermore, we compare descriptions of sacral anatomy among known early synapsids, including caseids, ophiacodontids, edaphosaurids, varanopids, and sphenacodontians and review sacral evolution in early synapsids. Based on the descriptions of new species of caseids, edaphosaurids, and varanopids over the past several decades, it is clear that a sacrum consisting of three vertebrae evolved independently at least four times in synapsids during the Late Carboniferous and Early Permian. Furthermore, similarities in the morphologies of the sacral vertebrae and ribs of these early synapsids lead us to conclude that an anterior caudal vertebra had been incorporated into the sacral series convergently in these groups. Given the repeated acquisition of a three-vertebra sacrum in early synapsids and no apparent link to body size, we argue that this sacral anatomy was related to more efficient terrestrial locomotion than to increased weight bearing. PMID:25545624

  15. A MODELING AND SIMULATION LANGUAGE FOR BIOLOGICAL CELLS WITH COUPLED MECHANICAL AND CHEMICAL PROCESSES

    PubMed Central

    Somogyi, Endre; Glazier, James A.

    2017-01-01

    Biological cells are the prototypical example of active matter. Cells sense and respond to mechanical, chemical and electrical environmental stimuli with a range of behaviors, including dynamic changes in morphology and mechanical properties, chemical uptake and secretion, cell differentiation, proliferation, death, and migration. Modeling and simulation of such dynamic phenomena poses a number of computational challenges. A modeling language describing cellular dynamics must naturally represent complex intra and extra-cellular spatial structures and coupled mechanical, chemical and electrical processes. Domain experts will find a modeling language most useful when it is based on concepts, terms and principles native to the problem domain. A compiler must then be able to generate an executable model from this physically motivated description. Finally, an executable model must efficiently calculate the time evolution of such dynamic and inhomogeneous phenomena. We present a spatial hybrid systems modeling language, compiler and mesh-free Lagrangian based simulation engine which will enable domain experts to define models using natural, biologically motivated constructs and to simulate time evolution of coupled cellular, mechanical and chemical processes acting on a time varying number of cells and their environment. PMID:29303160

  16. A MODELING AND SIMULATION LANGUAGE FOR BIOLOGICAL CELLS WITH COUPLED MECHANICAL AND CHEMICAL PROCESSES.

    PubMed

    Somogyi, Endre; Glazier, James A

    2017-04-01

    Biological cells are the prototypical example of active matter. Cells sense and respond to mechanical, chemical and electrical environmental stimuli with a range of behaviors, including dynamic changes in morphology and mechanical properties, chemical uptake and secretion, cell differentiation, proliferation, death, and migration. Modeling and simulation of such dynamic phenomena poses a number of computational challenges. A modeling language describing cellular dynamics must naturally represent complex intra and extra-cellular spatial structures and coupled mechanical, chemical and electrical processes. Domain experts will find a modeling language most useful when it is based on concepts, terms and principles native to the problem domain. A compiler must then be able to generate an executable model from this physically motivated description. Finally, an executable model must efficiently calculate the time evolution of such dynamic and inhomogeneous phenomena. We present a spatial hybrid systems modeling language, compiler and mesh-free Lagrangian based simulation engine which will enable domain experts to define models using natural, biologically motivated constructs and to simulate time evolution of coupled cellular, mechanical and chemical processes acting on a time varying number of cells and their environment.

  17. Histological evolution of pleuroparenchymal fibroelastosis

    PubMed Central

    Hirota, Takako; Yoshida, Yuji; Kitasato, Yasuhiko; Yoshimi, Michihiro; Koga, Takaomi; Tsuruta, Nobuko; Minami, Masato; Harada, Taishi; Ishii, Hiroshi; Fujita, Masaki; Nabeshima, Kazuki; Nagata, Nobuhiko; Watanabe, Kentaro

    2015-01-01

    Aims To investigate the histological evolution in the development of pleuroparenchymal fibroelastosis (PPFE). Methods and results We examined four patients who had undergone surgical lung biopsy twice, or who had undergone surgical lung biopsy and had been autopsied, and in whom the histological diagnosis of the first biopsy was not PPFE, but the diagnosis of the second biopsy or of the autopsy was PPFE. The histological patterns of the first biopsy were cellular and fibrotic interstitial pneumonia, cellular interstitial pneumonia (CIP) with organizing pneumonia, CIP with granulomas and acute lung injury in cases 1, 2, 3, and 4, respectively. Septal elastosis was already present in the non-specific interstitial pneumonia-like histology of case 1, but a few additional years were necessary to reach consolidated subpleural fibroelastosis. In case 3, subpleural fibroelastosis was already present in the first biopsy, but only to a small extent. Twelve years later, it was replaced by a long band of fibroelastosis. The septal inflammation and fibrosis and airspace organization observed in the first biopsies were replaced by less cellular subpleural fibroelastosis within 3–12 years. Conclusions Interstitial inflammation or acute lung injury may be an initial step in the development of PPFE. PMID:25234959

  18. Open Listening: Creative Evolution in Early Childhood Settings

    ERIC Educational Resources Information Center

    Davies, Bronwyn

    2011-01-01

    This article sketches out a philosophy and practice of open listening, linking open listening to Bergson's (1998) concept of creative evolution. I draw on examples of small children at play from a variety of sources, including Reggio-Emilia-inspired preschools in Sweden. The article offers a challenge to early childhood educators to listen and to…

  19. Vestibular evidence for the evolution of aquatic behaviour in early cetaceans.

    PubMed

    Spoor, F; Bajpai, S; Hussain, S T; Kumar, K; Thewissen, J G M

    2002-05-09

    Early cetaceans evolved from terrestrial quadrupeds to obligate swimmers, a change that is traditionally studied by functional analysis of the postcranial skeleton. Here we assess the evolution of cetacean locomotor behaviour from an independent perspective by looking at the semicircular canal system, one of the main sense organs involved in neural control of locomotion. Extant cetaceans are found to be unique in that their canal arc size, corrected for body mass, is approximately three times smaller than in other mammals. This reduces the sensitivity of the canal system, most plausibly to match the fast body rotations that characterize cetacean behaviour. Eocene fossils show that the new sensory regime, incompatible with terrestrial competence, developed quickly and early in cetacean evolution, as soon as the taxa are associated with marine environments. Dedicated agile swimming of cetaceans thus appeared to have originated as a rapid and fundamental shift in locomotion rather than as the gradual transition suggested by postcranial evidence. We hypothesize that the unparalleled modification of the semicircular canal system represented a key 'point of no return' event in early cetacean evolution, leading to full independence from life on land.

  20. Evolution of Cellular Inclusions in Bietti's Crystalline Dystrophy.

    PubMed

    Furusato, Emiko; Cameron, J Douglas; Chan, Chi-Chao

    2010-03-09

    Bietti's crystalline dystrophy (BCD) consists of small, yellow-white, glistening intraretinal crystals in the posterior pole, tapetoretinal degeneration with atrophy of the retinal pigment epithelium (RPE) and "sclerosis" of the choroid; in addition, sparking yellow crystals in the superficial marginal cornea are also found in many patients. BCD is inherited as an autosomal-recessive trait (4q35-tel) and usually has its onset in the third decade of life. This review focuses on the ultrastructure of cellular crystals and lipid inclusions of BCD.

  1. a Predator-Prey Model Based on the Fully Parallel Cellular Automata

    NASA Astrophysics Data System (ADS)

    He, Mingfeng; Ruan, Hongbo; Yu, Changliang

    We presented a predator-prey lattice model containing moveable wolves and sheep, which are characterized by Penna double bit strings. Sexual reproduction and child-care strategies are considered. To implement this model in an efficient way, we build a fully parallel Cellular Automata based on a new definition of the neighborhood. We show the roles played by the initial densities of the populations, the mutation rate and the linear size of the lattice in the evolution of this model.

  2. Primitive control of cellular metabolism

    NASA Technical Reports Server (NTRS)

    Mitz, M. A.

    1974-01-01

    It is pointed out that control substances must have existed from the earliest times in the evolution of life and that the same control mechanisms must exist today. The investigation reported is concerned with the concept that carbon dioxide is a primitive regulator of cell function. The effects of carbon dioxide on cellular materials are examined, taking into account questions of solubilization, dissociation, changes of charge, stabilization, structural changes, wettability, the exclusion of other gases, the activation of compounds, changes in plasticity, and changes in membrane permeability.

  3. A novel subfamily of monomeric inorganic pyrophosphatases in photosynthetic eukaryotes

    PubMed Central

    Gómez-García, María R.; Losada, Manuel; Serrano, Aurelio

    2005-01-01

    Two sPPases (soluble inorganic pyrophosphatases, EC 3.6.1.1) have been isolated from the microalga Chlamydomonas reinhardtii. Both are monomeric proteins of organellar localization, the chloroplastic sPPase I [Cr (Ch. reinhardtii)-sPPase I, 30 kDa] is a major isoform and slightly larger protein than the mitochondrial sPPase II (Cr-sPPase II, 24 kDa). They are members of sPPase family I and are encoded by two different cDNAs, as demonstrated by peptide mass fingerprint analysis. Molecular phylogenetic analyses indicated that Cr-sPPase I is closely related to other eukaryotic sPPases, whereas Cr-sPPase II resembles its prokaryotic counterparts. Chloroplastic sPPase I may have replaced a cyanobacterial ancestor very early during plastid evolution. Cr-sPPase II orthologues are found in members of the green photosynthetic lineage, but not in animals or fungi. These two sPPases from photosynthetic eukaryotes are novel monomeric family I sPPases with different molecular phylogenies and cellular localizations. PMID:16313235

  4. Evolution of the Study of Methylphenidate and Its Actions on the Adult Versus Juvenile Brain.

    PubMed

    Urban, Kimberly R; Gao, Wen-Jun

    2015-07-01

    Methylphenidate (MPH) is the most often prescribed medication for treatment of ADHD. However, many of its specific cellular and molecular mechanisms of action, as well as developmental consequences of treatment, are largely unknown. This review provides an overview of current understanding of MPH efficacy, safety, and dosage in adult and pediatric ADHD patients, as well as adult animal studies and pioneering studies in juvenile animals treated with MPH. A thorough review of the current literature on MPH efficacy and safety in children, adults, and animal models was included. Results of studies were compared and contrasted. While MPH is currently considered safe, there is a lack of knowledge of potential developmental consequences of early treatment, as well as differences in drug actions in the developing versus mature brain system. This review emphasizes the need for further research into the age-dependent activities and potency of MPH, and a need for tighter control and clinical relevance in future studies. © 2012 SAGE Publications.

  5. Sequence features and phylogenetic analysis of the stress protein Hsp90α in chinook salmon Oncorhynchus tshawytscha, a poikilothermic vertebrate

    USGS Publications Warehouse

    Palmisano, Aldo N.; Winton, James R.; Dickhoff, Walton W.

    1999-01-01

    We cloned and sequenced a chinook salmon Hsp90 cDNA; sequence analysis shows it to be Hsp90??. Phylogenetic analysis supports the hypothesis that ?? and ?? paralogs of Hsp90 arose as a result of a gene duplication event and that they diverged early in the evolution of vertebrates, before tetrapods separated from the teleost lineage. Among several differences distinguishing poikilothermic Hsp90?? sequences from their bird and mammal orthologs, the teleost versions specifically lack a characteristic QTQDQP phosphorylation site near the N-terminus. We used the cDNA to develop an RNA (Northern) blot to quantify cellular Hsp90 mRNA levels. Chinook salmon embryonic (CHSE-214) cells responded to heat shock with a rapid rise in Hsp90 mRNA through 4 h, followed by a gradual decline over the next 20 h. Hsp90 mRNA level may be useful as a stress indicator, especially in a laboratory setting or in response to acute heat stress.

  6. Space Station evolution

    NASA Technical Reports Server (NTRS)

    Black, David C.

    1987-01-01

    The Space Station that will be launched and made operational in the early 1990s should be viewed as a beginning, a facility that will evolve with the passing of time to better meet the needs and requirements of a diverse set of users. Evolution takes several forms, ranging from simple growth through addition of infrastructure elements to upgrading of system capability through inclusion of advanced technologies. Much of the early considerations of Space Station evolution focused on physical growth. However, a series of recent workshops have revealed that the more likely mode of Space Station evolution will not be through growth but rather through a process known as 'branching'.

  7. Cellular structure of lean hydrogen flames in microgravity

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    1990-01-01

    Detailed, time-dependent, two-dimensional numerical simulations of premixed laminar flames have been used to study the initiation and subsequent development of cellular structures in lean hydrogen-air flames. The model includes detailed hydrogen-oxygen combustion with 24 elementary reactions of eight reactive species and a nitrogen diluent, molecular diffusion of all species, thermal conduction, viscosity, and convection. This model has been used to study the nonlinear evolution of cellular flame structure and shows that cell splitting, as observed in experiments, can be predicted numerically for sufficiently reactive mixtures. The structures that evolved also resembled the cellular structures observed in experiments. The present study shows that the 'cell-split limit' postulated from experimental observations is an intrinsic property of the mixture and that external factors such as heat losses are not necessary to cause this limit.

  8. 5S rRNA-derived and tRNA-derived SINEs in fruit bats.

    PubMed

    Gogolevsky, Konstantin P; Vassetzky, Nikita S; Kramerov, Dmitri A

    2009-05-01

    Most short retroposons (SINEs) descend from cellular tRNA of 7SL RNA. Here, four new SINEs were found in megabats (Megachiroptera) but neither in microbats nor in other mammals. Two of them, MEG-RS and MEG-RL, descend from another cellular RNA, 5S rRNA; one (MEG-T2) is a tRNA-derived SINE; and MEG-TR is a hybrid tRNA/5S rRNA SINE. Insertion locus analysis suggests that these SINEs were active in the recent fruit bat evolution. Analysis of MEG-RS and MEG-RL in comparison with other few 5S rRNA-derived SINEs demonstrates that the internal RNA polymerase III promoter is their most invariant region, while the secondary structure is more variable. The mechanisms underlying the modular structure of these and other SINEs as well as their variation are discussed. The scenario of evolution of MEG SINEs is proposed.

  9. An evolution-based strategy for engineering allosteric regulation

    NASA Astrophysics Data System (ADS)

    Pincus, David; Resnekov, Orna; Reynolds, Kimberly A.

    2017-04-01

    Allosteric regulation provides a way to control protein activity at the time scale of milliseconds to seconds inside the cell. An ability to engineer synthetic allosteric systems would be of practical utility for the development of novel biosensors, creation of synthetic cell signaling pathways, and design of small molecule pharmaceuticals with regulatory impact. To this end, we outline a general approach—termed rational engineering of allostery at conserved hotspots (REACH)—to introduce novel regulation into a protein of interest by exploiting latent allostery that has been hard-wired by evolution into its structure. REACH entails the use of statistical coupling analysis (SCA) to identify ‘allosteric hotspots’ on protein surfaces, the development and implementation of experimental assays to test hotspots for functionality, and a toolkit of allosteric modulators to impinge on endogenous cellular circuitry. REACH can be broadly applied to rewire cellular processes to respond to novel inputs.

  10. Cellular automaton model for molecular traffic jams

    NASA Astrophysics Data System (ADS)

    Belitsky, V.; Schütz, G. M.

    2011-07-01

    We consider the time evolution of an exactly solvable cellular automaton with random initial conditions both in the large-scale hydrodynamic limit and on the microscopic level. This model is a version of the totally asymmetric simple exclusion process with sublattice parallel update and thus may serve as a model for studying traffic jams in systems of self-driven particles. We study the emergence of shocks from the microscopic dynamics of the model. In particular, we introduce shock measures whose time evolution we can compute explicitly, both in the thermodynamic limit and for open boundaries where a boundary-induced phase transition driven by the motion of a shock occurs. The motion of the shock, which results from the collective dynamics of the exclusion particles, is a random walk with an internal degree of freedom that determines the jump direction. This type of hopping dynamics is reminiscent of some transport phenomena in biological systems.

  11. Wood-feeding cockroaches as models for termite evolution (Insecta: Dictyoptera): Cryptocercus vs. Parasphaeria boleiriana.

    PubMed

    Klass, Klaus-Dieter; Nalepa, Christine; Lo, Nathan

    2008-03-01

    Isoptera are highly specialized cockroaches and are one of the few eusocial insect lineages. Cryptocercus cockroaches have appeared to many as ideal models for inference on the early evolution of termites, due to their possible phylogenetic relationship and several shared key attributes in life history. Recently, Pellens, Grandcolas, and colleagues have proposed the blaberid cockroach Parasphaeria boleiriana to be an alternative model for the early evolution in termites. We compare the usefulness of Cryptocercus and P. boleiriana as models for termite evolution. Cryptocercus and lower Isoptera (1) can both feed on comparatively recalcitrant wood, (2) have an obligate, rich and unique hypermastigid and oxymonadid fauna in the hindgut, (3) transfer these flagellates to the next generation by anal trophallaxis, (4) have social systems that involve long-lasting biparental care, and, finally, (5) are strongly suggested to be sister groups, so that the key attributes (1)-(4) appear to be homologous between the two taxa. On the other hand, P. boleiriana (1) feeds on soft, ephemeral wood sources, (2) shows no trace of the oxymonadid and hypermastigid hindgut fauna unique to Cryptocercus and lower Isoptera, nor does it have any other demonstrated obligate relationship with hindgut flagellates, (3) is likely to lack anal trophallaxis, (4) has only a short period of uniparental brood care, and (5) is phylogenetically remote from the Cryptocercus+Isoptera clade. These facts would argue against any reasonable usage of P. boleiriana as a model for the early evolution of Isoptera or even of the clade Cryptocercus+Isoptera. Cryptocercus thus remains an appropriate model-taxon-by-homology for early termite evolution. As compared to P. boleiriana, some other Blaberidae (such as the Panesthiinae Salganea) appear more useful as model-taxa-by-homoplasy for the early evolution of the Cryptocercus+Isoptera clade, as their brooding behavior is more elaborate than in P. boleiriana.

  12. Early evolution of Tubulogenerina during the Paleogene of Europe

    USGS Publications Warehouse

    Gibson, T.G.; Barbin, V.; Poignant, A.; Sztrakos, K.

    1991-01-01

    The early evolution of Tubulogenerina took place in Europe where eight species occur in lower Eocene to uppermost Oligocene or lower Miocene strata. Species diversity within Tubulogenerina dropped significantly in the early Oligocne; only a single species persisted from the late Eocene, and it became extinct before the end of the early Oligocene. Morphologic changes during the European phylogeny of Tubulogenerina include (1) the development of costate and more complex tubulopore ornamentation, and (2) the change from a single elongated apertural slit with a single toothplate to multiple apertures and toothplates. Three new Tubulogenerina species are described. -from Authors

  13. Reductionist versus holistic approaches to the study of river meandering: An ideal dialogue

    NASA Astrophysics Data System (ADS)

    Seminara, G.; Pittaluga, M. Bolla

    2012-08-01

    We discuss some recent attempts to apply the theory of nonlinear dynamical systems to the interpretation of the long term morphodynamic evolution of meandering rivers. To make the discussion attractive for the reader, we employ the method of a Socratic dialogue between a member of the so called 'reductionist community', who is inclined to support only theories based on physical principles and who is skeptical about fashionable new paradigms, and a member of the 'holistic community', who supports the idea that new paradigms are needed because rivers are complex systems, whose response can only be interpreted using tools that analyze the system "as a whole". The dialogue focuses on a selection of recent contributions which assesses the progress in understanding of meander dynamics achieved by the use of the above new paradigms. The discussion suggests that some consensus has been reached on the fractal nature of meandering patterns, with the fractal dimension playing the role of a morphometric parameter. On the contrary, despite different early suggestions, recent thorough analysis has been unable to detect any clear evidence that the evolution of meanders displays the characters of either a chaotic or a self organized critical process. The dialogue is concluded with some consensus on the perspective that well founded cellular models may possibly help reconciling the reductionist and holistic viewpoints.

  14. Lineage-specific expansion of IFIT gene family: an insight into coevolution with IFN gene family.

    PubMed

    Liu, Ying; Zhang, Yi-Bing; Liu, Ting-Kai; Gui, Jian-Fang

    2013-01-01

    In mammals, IFIT (Interferon [IFN]-induced proteins with Tetratricopeptide Repeat [TPR] motifs) family genes are involved in many cellular and viral processes, which are tightly related to mammalian IFN response. However, little is known about non-mammalian IFIT genes. In the present study, IFIT genes are identified in the genome databases from the jawed vertebrates including the cartilaginous elephant shark but not from non-vertebrates such as lancelet, sea squirt and acorn worm, suggesting that IFIT gene family originates from a vertebrate ancestor about 450 million years ago. IFIT family genes show conserved gene structure and gene arrangements. Phylogenetic analyses reveal that this gene family has expanded through lineage-specific and species-specific gene duplication. Interestingly, IFN gene family seem to share a common ancestor and a similar evolutionary mechanism; the function link of IFIT genes to IFN response is present early since the origin of both gene families, as evidenced by the finding that zebrafish IFIT genes are upregulated by fish IFNs, poly(I:C) and two transcription factors IRF3/IRF7, likely via the IFN-stimulated response elements (ISRE) within the promoters of vertebrate IFIT family genes. These coevolution features creates functional association of both family genes to fulfill a common biological process, which is likely selected by viral infection during evolution of vertebrates. Our results are helpful for understanding of evolution of vertebrate IFN system.

  15. Studying the Evolution of the Vertebrate Circadian Clock: The Power of Fish as Comparative Models.

    PubMed

    Foulkes, N S; Whitmore, D; Vallone, D; Bertolucci, C

    2016-01-01

    The utility of any model species cannot be judged solely in terms of the tools and approaches it provides for genetic analysis. A fundamental consideration is also how its biology has been shaped by the environment and the ecological niche which it occupies. By comparing different species occupying very different habitats we can learn how molecular and cellular mechanisms change during evolution in order to optimally adapt to their environment. Such knowledge is as important as understanding how these mechanisms work. This is illustrated by the use of fish models for studying the function and evolution of the circadian clock. In this review we outline our current understanding of how fish clocks sense and respond to light and explain how this differs fundamentally from the situation with mammalian clocks. In addition, we present results from comparative studies involving two species of blind cavefish, Astyanax mexicanus and Phreatichthys andruzzii. This work reveals the consequences of evolution in perpetual darkness for the circadian clock and its regulation by light as well as for other mechanisms such as DNA repair, sleep, and metabolism which directly or indirectly are affected by regular exposure to sunlight. Major differences in the cave habitats inhabited by these two cavefish species have a clear impact on shaping the molecular and cellular adaptations to life in complete darkness. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Comparison between reflectance confocal microscopy and two-photon microscopy in early detection of cutaneous radiation injury in a mouse model in-vivo.

    PubMed

    Jang, Won Hyuk; Kwon, Soonjae; Shim, Sehwan; Jang, Won-Suk; Myung, Jae Kyung; Yang, Sejung; Park, Sunhoo; Kim, Ki Hean

    2018-05-12

    Cutaneous radiation injury (CRI) is a skin injury caused by high dose exposure of ionizing radiation (IR). For proper treatment, early detection of CRI before clinical symptoms is important. Optical microscopic techniques such as reflectance confocal microscopy (RCM) and two-photon microscopy (TPM) have been tested as the early diagnosis method by detecting cellular changes. In this study, RCM and TPM were compared in the detection of cellular changes caused by CRI in an in-vivo mouse model. CRI was induced on the mouse hindlimb skin with various IR doses and the injured skin regions were imaged longitudinally by both modalities until the onset of clinical symptoms. Both RCM and TPM detected the changes of epidermal cells and sebaceous glands before clinical symptoms in different optical contrasts. RCM detected changes of cell morphology and scattering property based on light reflection. TPM detected detail changes of cellular structures based on autofluorescence of cells. Since both RCM and TPM were sensitive to the early-stage CRI by using different contrasts, the optimal method for clinical CRI diagnosis could be either individual methods or their combination. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Reviewing the current evidence supporting early B-cells as the cellular origin of Merkel cell carcinoma.

    PubMed

    Sauer, C M; Haugg, A M; Chteinberg, E; Rennspiess, D; Winnepenninckx, V; Speel, E-J; Becker, J C; Kurz, A K; Zur Hausen, A

    2017-08-01

    Merkel cell carcinoma (MCC) is a highly malignant skin cancer characterized by early metastases and poor survival. Although MCC is a rare malignancy, its incidence is rapidly increasing in the U.S. and Europe. The discovery of the Merkel cell polyomavirus (MCPyV) has enormously impacted our understanding of its etiopathogenesis and biology. MCCs are characterized by trilinear differentiation, comprising the expression of neuroendocrine, epithelial and B-lymphoid lineage markers. To date, it is generally accepted that the initial assumption of MCC originating from Merkel cells (MCs) is unlikely. This is owed to their post-mitotic character, absence of MCPyV in MCs and discrepant protein expression pattern in comparison to MCC. Evidence from mouse models suggests that epidermal/dermal stem cells might be of cellular origin in MCC. The recently formulated hypothesis of MCC originating from early B-cells is based on morphology, the consistent expression of early B-cell lineage markers and the finding of clonal immunoglobulin chain rearrangement in MCC cells. In this review we elaborate on the cellular ancestry of MCC, the identification of which could pave the way for novel and more effective therapeutic regimens. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. 78 FR 39736 - Draft Guidance for Industry: Considerations for the Design of Early-Phase Clinical Trials of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ..., choosing a study population, using a control group and blinding, dose selection, treatment plans...] Draft Guidance for Industry: Considerations for the Design of Early-Phase Clinical Trials of Cellular... document entitled ``Guidance for Industry: Considerations for the Design of Early-Phase Clinical Trials of...

  19. [Outline on the phylogenetic history of Metazoa aging phenomenon (to the study of number of dominating pseudo-scientific concepts in biology of aging)].

    PubMed

    Boĭko, A G; Labas, Iu A; Gordeeva, A V

    2009-01-01

    Natural selection is just one of the factors determining genome evolution of Metazoa. But it's not a domineering one along with non-adaptive processes: horizontal gene transfer and input of egoistic genetic elements. That's why in phylogenesis (1) there are more genes of first Metazoa lost than new ones acquired; (2) the appearance of new genes among Metazoa branches is a very rare occasion; (3) genetically Metazoa is a homogeneous group of species with similar set of cellular mechanisms which was established in the course of evolution. The genome of first Metazoa turned to be so successful that evolution connected with organism amplification didn't demand radical changes in the genetic repertoire but it demanded changes in DNA sites regulating genes work. These facts along with the fact of existence of species of Metazoa with negligible aging overturn the core theories of aging biology which consider this or that cellular mechanism to be the initiating factor of organism's aging as sets of cellular mechanisms in aging and non-aging Metazoa forms are practically identical. That's why the basis of aging biology is in essence a collection of theories and dogmas that have never been proved but which are still in use and which have since long ago turned into a dangerous myth standing in the way of progress. If we are interested in progress of biogerontology a number of domineering pseudo scientific dogmas must be revisited. The matter of conservatism in this issue is inappropriate.

  20. Complex Homology and the Evolution of Nervous Systems.

    PubMed

    Liebeskind, Benjamin J; Hillis, David M; Zakon, Harold H; Hofmann, Hans A

    2016-02-01

    We examine the complex evolution of animal nervous systems and discuss the ramifications of this complexity for inferring the nature of early animals. Although reconstructing the origins of nervous systems remains a central challenge in biology, and the phenotypic complexity of early animals remains controversial, a compelling picture is emerging. We now know that the nervous system and other key animal innovations contain a large degree of homoplasy, at least on the molecular level. Conflicting hypotheses about early nervous system evolution are due primarily to differences in the interpretation of this homoplasy. We highlight the need for explicit discussion of assumptions and discuss the limitations of current approaches for inferring ancient phenotypic states. Copyright © 2015. Published by Elsevier Ltd.

  1. Terminal addition in a cellular world.

    PubMed

    Torday, J S; Miller, William B

    2018-07-01

    Recent advances in our understanding of evolutionary development permit a reframed appraisal of Terminal Addition as a continuous historical process of cellular-environmental complementarity. Within this frame of reference, evolutionary terminal additions can be identified as environmental induction of episodic adjustments to cell-cell signaling patterns that yield the cellular-molecular pathways that lead to differing developmental forms. Phenotypes derive, thereby, through cellular mutualistic/competitive niche constructions in reciprocating responsiveness to environmental stresses and epigenetic impacts. In such terms, Terminal Addition flows according to a logic of cellular needs confronting environmental challenges over space-time. A reconciliation of evolutionary development and Terminal Addition can be achieved through a combined focus on cell-cell signaling, molecular phylogenies and a broader understanding of epigenetic phenomena among eukaryotic organisms. When understood in this manner, Terminal Addition has an important role in evolutionary development, and chronic disease might be considered as a form of 'reverse evolution' of the self-same processes. Copyright © 2017. Published by Elsevier Ltd.

  2. Long-distance communication by specialized cellular projections during pigment pattern development and evolution

    PubMed Central

    Eom, Dae Seok; Bain, Emily J; Patterson, Larissa B; Grout, Megan E; Parichy, David M

    2015-01-01

    Changes in gene activity are essential for evolutionary diversification. Yet, elucidating the cellular behaviors that underlie modifications to adult form remains a profound challenge. We use neural crest-derived adult pigmentation of zebrafish and pearl danio to uncover cellular bases for alternative pattern states. We show that stripes in zebrafish require a novel class of thin, fast cellular projection to promote Delta-Notch signaling over long distances from cells of the xanthophore lineage to melanophores. Projections depended on microfilaments and microtubules, exhibited meandering trajectories, and stabilized on target cells to which they delivered membraneous vesicles. By contrast, the uniformly patterned pearl danio lacked such projections, concomitant with Colony stimulating factor 1-dependent changes in xanthophore differentiation that likely curtail signaling available to melanophores. Our study reveals a novel mechanism of cellular communication, roles for differentiation state heterogeneity in pigment cell interactions, and an unanticipated morphogenetic behavior contributing to a striking difference in adult form. DOI: http://dx.doi.org/10.7554/eLife.12401.001 PMID:26701906

  3. MEVTV Workshop on Early Tectonic and Volcanic Evolution of Mars

    NASA Technical Reports Server (NTRS)

    Frey, H. (Editor)

    1988-01-01

    Although not ignored, the problems of the early tectonic and volcanic evolution of Mars have generally received less attention than those later in the evolution of the planet. Specifically, much attention was devoted to the evolution of the Tharsis region of Mars and to the planet itself at the time following the establishment of this major tectonic and volcanic province. By contrast, little attention was directed at fundamental questions, such as the conditions that led to the development of Tharsis and the cause of the basic fundamental dichotomy of the Martian crust. It was to address these and related questions of the earliest evolution of Mars that a workshop was organized under the auspices of the Mars: Evolution of Volcanism, Tectonism, and Volatiles (MEVTV) Program. Four sessions were held: crustal dichotomy; crustal differentiation/volcanism; Tharsis, Elysium, and Valles Marineris; and ridges and fault tectonics.

  4. Cellular Automaton Study of Hydrogen Porosity Evolution Coupled with Dendrite Growth During Solidification in the Molten Pool of Al-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Gu, Cheng; Wei, Yanhong; Yu, Fengyi; Liu, Xiangbo; She, Lvbo

    2017-09-01

    Welding porosity defects significantly reduce the mechanical properties of welded joints. In this paper, the hydrogen porosity evolution coupled with dendrite growth during solidification in the molten pool of Al-4.0 wt pct Cu alloy was modeled and simulated. Three phases, including a liquid phase, a solid phase, and a gas phase, were considered in this model. The growth of dendrites and hydrogen gas pores was reproduced using a cellular automaton (CA) approach. The diffusion of solute and hydrogen was calculated using the finite difference method (FDM). Columnar and equiaxed dendrite growth with porosity evolution were simulated. Competitive growth between different dendrites and porosities was observed. Dendrite morphology was influenced by porosity formation near dendrites. After solidification, when the porosities were surrounded by dendrites, they could not escape from the liquid, and they made pores that existed in the welded joints. With the increase in the cooling rate, the average diameter of porosities decreased, and the average number of porosities increased. The average diameter of porosities and the number of porosities in the simulation results had the same trend as the experimental results.

  5. Algorithm for cellular reprogramming.

    PubMed

    Ronquist, Scott; Patterson, Geoff; Muir, Lindsey A; Lindsly, Stephen; Chen, Haiming; Brown, Markus; Wicha, Max S; Bloch, Anthony; Brockett, Roger; Rajapakse, Indika

    2017-11-07

    The day we understand the time evolution of subcellular events at a level of detail comparable to physical systems governed by Newton's laws of motion seems far away. Even so, quantitative approaches to cellular dynamics add to our understanding of cell biology. With data-guided frameworks we can develop better predictions about, and methods for, control over specific biological processes and system-wide cell behavior. Here we describe an approach for optimizing the use of transcription factors (TFs) in cellular reprogramming, based on a device commonly used in optimal control. We construct an approximate model for the natural evolution of a cell-cycle-synchronized population of human fibroblasts, based on data obtained by sampling the expression of 22,083 genes at several time points during the cell cycle. To arrive at a model of moderate complexity, we cluster gene expression based on division of the genome into topologically associating domains (TADs) and then model the dynamics of TAD expression levels. Based on this dynamical model and additional data, such as known TF binding sites and activity, we develop a methodology for identifying the top TF candidates for a specific cellular reprogramming task. Our data-guided methodology identifies a number of TFs previously validated for reprogramming and/or natural differentiation and predicts some potentially useful combinations of TFs. Our findings highlight the immense potential of dynamical models, mathematics, and data-guided methodologies for improving strategies for control over biological processes. Copyright © 2017 the Author(s). Published by PNAS.

  6. On the holistic approach in cellular and cancer biology: nonlinearity, complexity, and quasi-determinism of the dynamic cellular network.

    PubMed

    Waliszewski, P; Molski, M; Konarski, J

    1998-06-01

    A keystone of the molecular reductionist approach to cellular biology is a specific deductive strategy relating genotype to phenotype-two distinct categories. This relationship is based on the assumption that the intermediary cellular network of actively transcribed genes and their regulatory elements is deterministic (i.e., a link between expression of a gene and a phenotypic trait can always be identified, and evolution of the network in time is predetermined). However, experimental data suggest that the relationship between genotype and phenotype is nonbijective (i.e., a gene can contribute to the emergence of more than just one phenotypic trait or a phenotypic trait can be determined by expression of several genes). This implies nonlinearity (i.e., lack of the proportional relationship between input and the outcome), complexity (i.e. emergence of the hierarchical network of multiple cross-interacting elements that is sensitive to initial conditions, possesses multiple equilibria, organizes spontaneously into different morphological patterns, and is controlled in dispersed rather than centralized manner), and quasi-determinism (i.e., coexistence of deterministic and nondeterministic events) of the network. Nonlinearity within the space of the cellular molecular events underlies the existence of a fractal structure within a number of metabolic processes, and patterns of tissue growth, which is measured experimentally as a fractal dimension. Because of its complexity, the same phenotype can be associated with a number of alternative sequences of cellular events. Moreover, the primary cause initiating phenotypic evolution of cells such as malignant transformation can be favored probabilistically, but not identified unequivocally. Thermodynamic fluctuations of energy rather than gene mutations, the material traits of the fluctuations alter both the molecular and informational structure of the network. Then, the interplay between deterministic chaos, complexity, self-organization, and natural selection drives formation of malignant phenotype. This concept offers a novel perspective for investigation of tumorigenesis without invalidating current molecular findings. The essay integrates the ideas of the sciences of complexity in a biological context.

  7. Evolution and modulation of intracellular calcium release during long-lasting, depleting depolarization in mouse muscle

    PubMed Central

    Royer, Leandro; Pouvreau, Sandrine; Ríos, Eduardo

    2008-01-01

    Intracellular calcium signals regulate multiple cellular functions. They depend on release of Ca2+ from cellular stores into the cytosol, a process that in many types of cells appears to be tightly controlled by changes in [Ca2+] within the store. In contrast with cardiac muscle, where depletion of Ca2+ in the sarcoplasmic reticulum is a crucial determinant of termination of Ca2+ release, in skeletal muscle there is no agreement regarding the sign, or even the existence of an effect of SR Ca2+ level on Ca2+ release. To address this issue we measured Ca2+ transients in mouse flexor digitorum brevis (FDB) skeletal muscle fibres under voltage clamp, using confocal microscopy and the Ca2+ monitor rhod-2. The evolution of Ca2+ release flux was quantified during long-lasting depolarizations that reduced severely the Ca2+ content of the SR. As in all previous determinations in mammals and non-mammals, release flux consisted of an early peak, relaxing to a lower level from which it continued to decay more slowly. Decay of flux in this second stage, which has been attributed largely to depletion of SR Ca2+, was studied in detail. A simple depletion mechanism without change in release permeability predicts an exponential decay with time. In contrast, flux decreased non-exponentially, to a finite, measurable level that could be maintained for the longest pulses applied (1.8 s). An algorithm on the flux record allowed us to define a quantitative index, the normalized flux rate of change (NFRC), which was shown to be proportional to the ratio of release permeability P and inversely proportional to Ca2+ buffering power B of the SR, thus quantifying the ‘evacuability’ or ability of the SR to empty its content. When P and B were constant, flux then decayed exponentially, and NFRC was equal to the exponential rate constant. Instead, in most cases NFRC increased during the pulse, from a minimum reached immediately after the early peak in flux, to a time between 200 and 250 ms, when the index was no longer defined. NFRC increased by 111% on average (in 27 images from 18 cells), reaching 300% in some cases. The increase may reflect an increase in P, a decrease in B, or both. On experimental and theoretical grounds, both changes are to be expected upon SR depletion. A variable evacuability helps maintain a constant Ca2+ output under conditions of diminishing store Ca2+ load. PMID:18687715

  8. OncoNEM: inferring tumor evolution from single-cell sequencing data.

    PubMed

    Ross, Edith M; Markowetz, Florian

    2016-04-15

    Single-cell sequencing promises a high-resolution view of genetic heterogeneity and clonal evolution in cancer. However, methods to infer tumor evolution from single-cell sequencing data lag behind methods developed for bulk-sequencing data. Here, we present OncoNEM, a probabilistic method for inferring intra-tumor evolutionary lineage trees from somatic single nucleotide variants of single cells. OncoNEM identifies homogeneous cellular subpopulations and infers their genotypes as well as a tree describing their evolutionary relationships. In simulation studies, we assess OncoNEM's robustness and benchmark its performance against competing methods. Finally, we show its applicability in case studies of muscle-invasive bladder cancer and essential thrombocythemia.

  9. Early evolution without a tree of life

    PubMed Central

    2011-01-01

    Life is a chemical reaction. Three major transitions in early evolution are considered without recourse to a tree of life. The origin of prokaryotes required a steady supply of energy and electrons, probably in the form of molecular hydrogen stemming from serpentinization. Microbial genome evolution is not a treelike process because of lateral gene transfer and the endosymbiotic origins of organelles. The lack of true intermediates in the prokaryote-to-eukaryote transition has a bioenergetic cause. This article was reviewed by Dan Graur, W. Ford Doolittle, Eugene V. Koonin and Christophe Malaterre. PMID:21714942

  10. Fourth Symposium on Chemical Evolution and the Origin and Evolution of Life

    NASA Technical Reports Server (NTRS)

    Wharton, Robert A., Jr. (Editor); Andersen, Dale T. (Editor); Bzik, Sara E. (Editor); Rummel, John D. (Editor)

    1991-01-01

    This symposium was held at the NASA Ames Research Center, Moffett Field, California, July 24-27, 1990. The NASA exobiology investigators reported their recent research findings. Scientific papers were presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).

  11. Evolution of olfaction in non-avian theropod dinosaurs and birds

    PubMed Central

    Zelenitsky, Darla K.; Therrien, François; Ridgely, Ryan C.; McGee, Amanda R.; Witmer, Lawrence M.

    2011-01-01

    Little is known about the olfactory capabilities of extinct basal (non-neornithine) birds or the evolutionary changes in olfaction that occurred from non-avian theropods through modern birds. Although modern birds are known to have diverse olfactory capabilities, olfaction is generally considered to have declined during avian evolution as visual and vestibular sensory enhancements occurred in association with flight. To test the hypothesis that olfaction diminished through avian evolution, we assessed relative olfactory bulb size, here used as a neuroanatomical proxy for olfactory capabilities, in 157 species of non-avian theropods, fossil birds and living birds. We show that relative olfactory bulb size increased during non-avian maniraptoriform evolution, remained stable across the non-avian theropod/bird transition, and increased during basal bird and early neornithine evolution. From early neornithines through a major part of neornithine evolution, the relative size of the olfactory bulbs remained stable before decreasing in derived neoavian clades. Our results show that, rather than decreasing, the importance of olfaction actually increased during early bird evolution, representing a previously unrecognized sensory enhancement. The relatively larger olfactory bulbs of earliest neornithines, compared with those of basal birds, may have endowed neornithines with improved olfaction for more effective foraging or navigation skills, which in turn may have been a factor allowing them to survive the end-Cretaceous mass extinction. PMID:21490022

  12. Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis

    PubMed Central

    2012-01-01

    Background Membrane-bound organelles are a defining feature of eukaryotic cells, and play a central role in most of their fundamental processes. The Rab G proteins are the single largest family of proteins that participate in the traffic between organelles, with 66 Rabs encoded in the human genome. Rabs direct the organelle-specific recruitment of vesicle tethering factors, motor proteins, and regulators of membrane traffic. Each organelle or vesicle class is typically associated with one or more Rab, with the Rabs present in a particular cell reflecting that cell's complement of organelles and trafficking routes. Results Through iterative use of hidden Markov models and tree building, we classified Rabs across the eukaryotic kingdom to provide the most comprehensive view of Rab evolution obtained to date. A strikingly large repertoire of at least 20 Rabs appears to have been present in the last eukaryotic common ancestor (LECA), consistent with the 'complexity early' view of eukaryotic evolution. We were able to place these Rabs into six supergroups, giving a deep view into eukaryotic prehistory. Conclusions Tracing the fate of the LECA Rabs revealed extensive losses with many extant eukaryotes having fewer Rabs, and none having the full complement. We found that other Rabs have expanded and diversified, including a large expansion at the dawn of metazoans, which could be followed to provide an account of the evolutionary history of all human Rabs. Some Rab changes could be correlated with differences in cellular organization, and the relative lack of variation in other families of membrane-traffic proteins suggests that it is the changes in Rabs that primarily underlies the variation in organelles between species and cell types. PMID:22873208

  13. Sox2+ progenitors in sharks link taste development with the evolution of regenerative teeth from denticles

    PubMed Central

    Martin, Kyle J.; Rasch, Liam J.; Cooper, Rory L.; Johanson, Zerina; Fraser, Gareth J.

    2016-01-01

    Teeth and denticles belong to a specialized class of mineralizing epithelial appendages called odontodes. Although homology of oral teeth in jawed vertebrates is well supported, the evolutionary origin of teeth and their relationship with other odontode types is less clear. We compared the cellular and molecular mechanisms directing development of teeth and skin denticles in sharks, where both odontode types are retained. We show that teeth and denticles are deeply homologous developmental modules with equivalent underlying odontode gene regulatory networks (GRNs). Notably, the expression of the epithelial progenitor and stem cell marker sex-determining region Y-related box 2 (sox2) was tooth-specific and this correlates with notable differences in odontode regenerative ability. Whereas shark teeth retain the ancestral gnathostome character of continuous successional regeneration, new denticles arise only asynchronously with growth or after wounding. Sox2+ putative stem cells associated with the shark dental lamina (DL) emerge from a field of epithelial progenitors shared with anteriormost taste buds, before establishing within slow-cycling cell niches at the (i) superficial taste/tooth junction (T/TJ), and (ii) deep successional lamina (SL) where tooth regeneration initiates. Furthermore, during regeneration, cells from the superficial T/TJ migrate into the SL and contribute to new teeth, demonstrating persistent contribution of taste-associated progenitors to tooth regeneration in vivo. This data suggests a trajectory for tooth evolution involving cooption of the odontode GRN from nonregenerating denticles by sox2+ progenitors native to the oral taste epithelium, facilitating the evolution of a novel regenerative module of odontodes in the mouth of early jawed vertebrates: the teeth. PMID:27930309

  14. Senescence in the wild: Insights from a long-term study on Seychelles warblers.

    PubMed

    Hammers, Martijn; Kingma, Sjouke A; Bebbington, Kat; van de Crommenacker, Janske; Spurgin, Lewis G; Richardson, David S; Burke, Terry; Dugdale, Hannah L; Komdeur, Jan

    2015-11-01

    Senescence--the progressive age-dependent decline in performance--occurs in most organisms. There is considerable variation in the onset and rate of senescence between and within species. Yet the causes of this variation are still poorly understood, despite being central to understanding the evolution of senescence. Long-term longitudinal studies on wild animals are extremely well-suited to studying the impact of environmental and individual characteristics (and the interaction between the two) on senescence, and can help us to understand the mechanisms that shape the evolution of senescence. In this review, we summarize and discuss the insights gained from our comprehensive long-term individual-based study of the Seychelles warbler (Acrocephalus sechellensis). This species provides an excellent model system in which to investigate the evolution of senescence in the wild. We found that Seychelles warblers show senescent declines in survival and reproduction, and discuss how individual characteristics (body condition, body size) and environmental effects (low- versus high-quality environments) may affect the onset and rate of senescence. Further, we highlight the evidence for trade-offs between early-life investment and senescence. We describe how key cellular and physiological processes (oxidative stress and telomere shortening) underpinning senescence are affected by individual and environmental characteristics in the Seychelles warbler (e.g. food availability, reproductive investment, disease) and we discuss how such physiological variation may mediate the relationship between environmental characteristics and senescence. Based on our work using Seychelles warblers as a model system, we show how insights from long-term studies of wild animals may help unravel the causes of the remarkable variation in senescence observed in natural systems, and highlight areas for promising future research.

  15. Evolution of the acyl-CoA binding protein (ACBP)

    PubMed Central

    Burton, Mark; Rose, Timothy M.; Færgeman, Nils J.; Knudsen, Jens

    2005-01-01

    Acyl-CoA-binding protein (ACBP) is a 10 kDa protein that binds C12–C22 acyl-CoA esters with high affinity. In vitro and in vivo experiments suggest that it is involved in multiple cellular tasks including modulation of fatty acid biosynthesis, enzyme regulation, regulation of the intracellular acyl-CoA pool size, donation of acyl-CoA esters for β-oxidation, vesicular trafficking, complex lipid synthesis and gene regulation. In the present study, we delineate the evolutionary history of ACBP to get a complete picture of its evolution and distribution among species. ACBP homologues were identified in all four eukaryotic kingdoms, Animalia, Plantae, Fungi and Protista, and eleven eubacterial species. ACBP homologues were not detected in any other known bacterial species, or in archaea. Nearly all of the ACBP-containing bacteria are pathogenic to plants or animals, suggesting that an ACBP gene could have been acquired from a eukaryotic host by horizontal gene transfer. Many bacterial, fungal and higher eukaryotic species only harbour a single ACBP homologue. However, a number of species, ranging from protozoa to vertebrates, have evolved two to six lineage-specific paralogues through gene duplication and/or retrotransposition events. The ACBP protein is highly conserved across phylums, and the majority of ACBP genes are subjected to strong purifying selection. Experimental evidence indicates that the function of ACBP has been conserved from yeast to humans and that the multiple lineage-specific paralogues have evolved altered functions. The appearance of ACBP very early on in evolution points towards a fundamental role of ACBP in acyl-CoA metabolism, including ceramide synthesis and in signalling. PMID:16018771

  16. Toward a comprehensive phylogenetic reconstruction of the evolutionary history of mitogen-activated protein kinases in the plant kingdom.

    PubMed

    Janitza, Philipp; Ullrich, Kristian Karsten; Quint, Marcel

    2012-01-01

    The mitogen-activated protein kinase (MAPK) pathway is a three-tier signaling cascade that transmits cellular information from the plasma membrane to the cytoplasm where it triggers downstream responses. The MAPKs represent the last step in this cascade and are activated when both tyrosine and threonine residues in a conserved TxY motif are phosphorylated by MAPK kinases, which in turn are themselves activated by phosphorylation by MAPK kinase kinases. To understand the molecular evolution of MAPKs in the plant kingdom, we systematically conducted a Hidden-Markov-Model based screen to identify MAPKs in 13 completely sequenced plant genomes. In this analysis, we included green algae, bryophytes, lycophytes, and several mono- and eudicotyledonous species covering >800 million years of evolution. The phylogenetic relationships of the 204 identified MAPKs based on Bayesian inference facilitated the retraction of the sequence of emergence of the four major clades that are characterized by the presence of a TDY or TEY-A/TEY-B/TEY-C type kinase activation loop. We present evidence that after the split of TDY- and TEY-type MAPKs, initially the TEY-C clade emerged. This was followed by the TEY-B clade in early land plants until the TEY-A clade finally emerged in flowering plants. In addition to these well characterized clades, we identified another highly conserved clade of 45 MAPK-likes, members of which were previously described as Mak-homologous kinases. In agreement with their essential functions, molecular population genetic analysis of MAPK genes in Arabidopsis thaliana accessions reveal that purifying selection drove the evolution of the MAPK family, implying strong functional constraints on MAPK genes. Closely related MAPKs most likely subfunctionalized, a process in which differential transcriptional regulation of duplicates may be involved.

  17. Molecular evolution of the vertebrate mechanosensory cell and ear.

    PubMed

    Fritzsch, Bernd; Beisel, Kirk W; Pauley, Sarah; Soukup, Garrett

    2007-01-01

    The molecular basis of mechanosensation, mechanosensory cell development and mechanosensory organ development is reviewed with an emphasis on its evolution. In contrast to eye evolution and development, which apparently modified a genetic program through intercalation of genes between the master control genes on the top (Pax6, Eya1, Six1) of the hierarchy and the structural genes (rhodopsin) at the bottom, the as yet molecularly unknown mechanosensory channel precludes such a firm conclusion for mechanosensors. However, recent years have seen the identification of several structural genes which are involved in mechanosensory tethering and several transcription factors controlling mechanosensory cell and organ development; these warrant the interpretation of available data in very much the same fashion as for eye evolution: molecular homology combined with potential morphological parallelism. This assertion of molecular homology is strongly supported by recent findings of a highly conserved set of microRNAs that appear to be associated with mechanosensory cell development across phyla. The conservation of transcription factors and their regulators fits very well to the known or presumed mechanosensory specializations which can be mostly grouped as variations of a common cellular theme. Given the widespread distribution of the molecular ability to form mechanosensory cells, it comes as no surprise that structurally different mechanosensory organs evolved in different phyla, presenting a variation of a common theme specified by a conserved set of transcription factors in their cellular development. Within vertebrates and arthropods, some mechanosensory organs evolved into auditory organs, greatly increasing sensitivity to sound through modifications of accessory structures to direct sound to the specific sensory epithelia. However, while great attention has been paid to the evolution of these accessory structures in vertebrate fossils, comparatively less attention has been spent on the evolution of the inner ear and the central auditory system. Recent advances in our molecular understanding of ear and brain development provide novel avenues to this neglected aspect of auditory neurosensory evolution.

  18. Archean komatiite volcanism controlled by the evolution of early continents.

    PubMed

    Mole, David R; Fiorentini, Marco L; Thebaud, Nicolas; Cassidy, Kevin F; McCuaig, T Campbell; Kirkland, Christopher L; Romano, Sandra S; Doublier, Michael P; Belousova, Elena A; Barnes, Stephen J; Miller, John

    2014-07-15

    The generation and evolution of Earth's continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50-30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean-Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits.

  19. Archean komatiite volcanism controlled by the evolution of early continents

    PubMed Central

    Mole, David R.; Fiorentini, Marco L.; Thebaud, Nicolas; Cassidy, Kevin F.; McCuaig, T. Campbell; Kirkland, Christopher L.; Romano, Sandra S.; Doublier, Michael P.; Belousova, Elena A.; Barnes, Stephen J.; Miller, John

    2014-01-01

    The generation and evolution of Earth’s continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50–30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean–Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits. PMID:24958873

  20. Expression and significance of Ki-67 in lung cancer.

    PubMed

    Folescu, Roxana; Levai, Codrina Mihaela; Grigoraş, Mirela Loredana; Arghirescu, Teodora Smaranda; Talpoş, Ioana Cristina; Gîndac, Ciprian Mihai; Zamfir, Carmen Lăcrămioara; Poroch, Vladimir; Anghel, Mirella Dorina

    2018-01-01

    Ki-67 parameter is a proliferation marker in malignant tumors. The increased proliferation activity and the decreased prognosis in lung cancer determined us to investigate different parameters connected to the tumor's aggression, such as cellularity, Ki-67 positivity rate, and proliferating cell nuclear antigen (PCNA). We evaluated the proliferative activity in 62 primary lung tumors by determining the cell's percentage of Ki-67 and immunoreactive PCNA (using MIB-1 and PCNA monoclonal antibodies), classifying Ki-67 and PCNA immunoreactivity into three score groups. The results obtained emphasized a linkage between Ki-67 score with the histological tumor subtype, tumor cellularity and degree of differentiation and with other proliferation immunohistochemistry (IHC) markers, such as p53 cellular tumor antigen. The tumor's cellularity, the Ki-67 positivity rate and PCNA, together with the clinical stage and the histological differentiation bring extra pieces of useful information in order to anticipate the evolution and the prognosis of lung cancer.

  1. Mother Knows Best: Epigenetic Inheritance, Maternal Effects, and the Evolution of Human Intelligence

    ERIC Educational Resources Information Center

    Bjorklund, David F.

    2006-01-01

    Contemporary evolution biology has recognized the role of development in evolution. Evolutionarily oriented psychologists have similarly recognized the role that behavioral plasticity, particularly early in development, may have had on the evolution of species, harking back to the ideas of Baldwin (the Baldwin effect). Epigenetic theories of…

  2. Effect of the stellar spin history on the tidal evolution of close-in planets

    NASA Astrophysics Data System (ADS)

    Bolmont, E.; Raymond, S. N.; Leconte, J.; Matt, S. P.

    2012-08-01

    Context. The spin rate of stars evolves substantially during their lifetime, owing to the evolution of their internal structure and to external torques arising from the interaction of stars with their environments and stellar winds. Aims: We investigate how the evolution of the stellar spin rate affects, and is affected by, planets in close orbits via star-planet tidal interactions. Methods: We used a standard equilibrium tidal model to compute the orbital evolution of single planets orbiting both Sun-like stars and very low-mass stars (0.1 M⊙). We tested two stellar spin evolution profiles, one with fast initial rotation (1.2 day rotation period) and one with slow initial rotation (8 day period). We tested the effect of varying the stellar and planetary dissipations, and the planet's mass and initial orbital radius. Results: For Sun-like stars, the different tidal evolution between initially rapidly and slowly rotating stars is only evident for extremely close-in gas giants orbiting highly dissipative stars. However, for very low-mass stars the effect of the initial rotation of the star on the planet's evolution is apparent for less massive (1 M⊕) planets and typical dissipation values. We also find that planetary evolution can have significant effects on the stellar spin history. In particular, when a planet falls onto the star, it can cause the star to spin up. Conclusions: Tidal evolution allows us to differentiate between the early behaviors of extremely close-in planets orbiting either a rapidly rotating star or a slowly rotating star. The early spin-up of the star allows the close-in planets around fast rotators to survive the early evolution. For planets around M-dwarfs, surviving the early evolution means surviving on Gyr timescales, whereas for Sun-like stars the spin-down brings about late mergers of Jupiter planets. In the light of this study, we can say that differentiating one type of spin evolution from another given the present position of planets can be very tricky. Unless we can observe some markers of former evolution, it is nearly impossible to distinguish the two very different spin profiles, let alone intermediate spin-profiles. Nevertheless, some conclusions can still be drawn about statistical distributions of planets around fully convective M-dwarfs. If tidal evolution brings about a merger late in the stellar history, it can also entail a noticeable acceleration of the star at late ages, so that it is possible to have old stars that spin rapidly. This raises the question of how the age of stars can be more tightly constrained.

  3. Chimeric antigen receptor engineering: a right step in the evolution of adoptive cellular immunotherapy.

    PubMed

    Figueroa, Jose A; Reidy, Adair; Mirandola, Leonardo; Trotter, Kayley; Suvorava, Natallia; Figueroa, Alejandro; Konala, Venu; Aulakh, Amardeep; Littlefield, Lauren; Grizzi, Fabio; Rahman, Rakhshanda Layeequr; Jenkins, Marjorie R; Musgrove, Breeanna; Radhi, Saba; D'Cunha, Nicholas; D'Cunha, Luke N; Hermonat, Paul L; Cobos, Everardo; Chiriva-Internati, Maurizio

    2015-03-01

    Cancer immunotherapy comprises different therapeutic strategies that exploit the use of distinct components of the immune system, with the common goal of specifically targeting and eradicating neoplastic cells. These varied approaches include the use of specific monoclonal antibodies, checkpoint inhibitors, cytokines, therapeutic cancer vaccines and cellular anticancer strategies such as activated dendritic cell (DC) vaccines, tumor-infiltrating lymphocytes (TILs) and, more recently, genetically engineered T cells. Each one of these approaches has demonstrated promise, but their generalized success has been hindered by the paucity of specific tumor targets resulting in suboptimal tumor responses and unpredictable toxicities. This review will concentrate on recent advances on the use of engineered T cells for adoptive cellular immunotherapy (ACI) in cancer.

  4. Vocal Development as a Guide to Modeling the Evolution of Language.

    PubMed

    Oller, D Kimbrough; Griebel, Ulrike; Warlaumont, Anne S

    2016-04-01

    Modeling of evolution and development of language has principally utilized mature units of spoken language, phonemes and words, as both targets and inputs. This approach cannot address the earliest phases of development because young infants are unable to produce such language features. We argue that units of early vocal development-protophones and their primitive illocutionary/perlocutionary forces-should be targeted in evolutionary modeling because they suggest likely units of hominin vocalization/communication shortly after the split from the chimpanzee/bonobo lineage, and because early development of spontaneous vocal capability is a logically necessary step toward vocal language, a root capability without which other crucial steps toward vocal language capability are impossible. Modeling of language evolution/development must account for dynamic change in early communicative units of form/function across time. We argue for interactive contributions of sender/infants and receiver/caregivers in a feedback loop involving both development and evolution and propose to begin computational modeling at the hominin break from the primate communicative background. Copyright © 2016 Cognitive Science Society, Inc.

  5. A korarchaeal genome reveals insights into the evolution of the Archaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Iain J; Elkins, James G.; Podar, Mircea

    2008-06-05

    The candidate division Korarchaeota comprises a group of uncultivated microorganisms that, by their small subunit rRNA phylogeny, may have diverged early from the major archaeal phyla Crenarchaeota and Euryarchaeota. Here, we report the initial characterization of a member of the Korarchaeota with the proposed name,"Candidatus Korarchaeum cryptofilum," which exhibits an ultrathin filamentous morphology. To investigate possible ancestral relationships between deep-branching Korarchaeota and other phyla, we used whole-genome shotgun sequencing to construct a complete composite korarchaeal genome from enriched cells. The genome was assembled into a single contig 1.59 Mb in length with a G + C content of 49percent. Ofmore » the 1,617 predicted protein-coding genes, 1,382 (85percent) could be assigned to a revised set of archaeal Clusters of Orthologous Groups (COGs). The predicted gene functions suggest that the organism relies on a simple mode of peptide fermentation for carbon and energy and lacks the ability to synthesize de novo purines, CoA, and several other cofactors. Phylogenetic analyses based on conserved single genes and concatenated protein sequences positioned the korarchaeote as a deep archaeal lineage with an apparent affinity to the Crenarchaeota. However, the predicted gene content revealed that several conserved cellular systems, such as cell division, DNA replication, and tRNA maturation, resemble the counterparts in the Euryarchaeota. In light of the known composition of archaeal genomes, the Korarchaeota might have retained a set of cellular features that represents the ancestral archaeal form.« less

  6. A Korarchael Genome Reveals Insights into the Evolution of the Archaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapidus, Alla; Elkins, James G.; Podar, Mircea

    2008-01-07

    The candidate division Korarchaeota comprises a group of uncultivated microorganisms that, by their small subunit rRNA phylogeny, may have diverged early from the major archaeal phyla Crenarchaeota and Euryarchaeota. Here, we report the initial characterization of a member of the Korarchaeota with the proposed name, ?Candidatus Korarchaeum cryptofilum,? which exhibits an ultrathin filamentous morphology. To investigate possible ancestral relationships between deep-branching Korarchaeota and other phyla, we used whole-genome shotgun sequencing to construct a complete composite korarchaeal genome from enriched cells. The genome was assembled into a single contig 1.59 Mb in length with a G + C content of 49percent.more » Of the 1,617 predicted protein-coding genes, 1,382 (85percent) could be assigned to a revised set of archaeal Clusters of Orthologous Groups (COGs). The predicted gene functions suggest that the organism relies on a simple mode of peptide fermentation for carbon and energy and lacks the ability to synthesize de novo purines, CoA, and several other cofactors. Phylogenetic analyses based on conserved single genes and concatenated protein sequences positioned the korarchaeote as a deep archaeal lineage with an apparent affinity to the Crenarchaeota. However, the predicted gene content revealed that several conserved cellular systems, such as cell division, DNA replication, and tRNA maturation, resemble the counterparts in the Euryarchaeota. In light of the known composition of archaeal genomes, the Korarchaeota might have retained a set of cellular features that represents the ancestral archaeal form.« less

  7. Localization and Quantification of Callose in the Streptophyte Green Algae Zygnema and Klebsormidium: Correlation with Desiccation Tolerance

    PubMed Central

    Herburger, Klaus; Holzinger, Andreas

    2015-01-01

    Freshwater green algae started to colonize terrestrial habitats about 460 million years ago, giving rise to the evolution of land plants. Today, several streptophyte green algae occur in aero-terrestrial habitats with unpredictable fluctuations in water availability, serving as ideal models for investigating desiccation tolerance. We tested the hypothesis that callose, a β-d-1,3-glucan, is incorporated specifically in strained areas of the cell wall due to cellular water loss, implicating a contribution to desiccation tolerance. In the early diverging genus Klebsormidium, callose was drastically increased already after 30 min of desiccation stress. Localization studies demonstrated an increase in callose in the undulating cross cell walls during cellular water loss, allowing a regulated shrinkage and expansion after rehydration. This correlates with a high desiccation tolerance demonstrated by a full recovery of the photosynthetic yield visualized at the subcellular level by Imaging-PAM. Furthermore, abundant callose in terminal cell walls might facilitate cell detachment to release dispersal units. In contrast, in the late diverging Zygnema, the callose content did not change upon desiccation for up to 3.5 h and was primarily localized in the corners between individual cells and at terminal cells. While these callose deposits still imply reduction of mechanical damage, the photosynthetic yield did not recover fully in the investigated young cultures of Zygnema upon rehydration. The abundance and specific localization of callose correlates with the higher desiccation tolerance in Klebsormidium when compared with Zygnema. PMID:26412780

  8. Developmental biology and tissue engineering.

    PubMed

    Marga, Francoise; Neagu, Adrian; Kosztin, Ioan; Forgacs, Gabor

    2007-12-01

    Morphogenesis implies the controlled spatial organization of cells that gives rise to tissues and organs in early embryonic development. While morphogenesis is under strict genetic control, the formation of specialized biological structures of specific shape hinges on physical processes. Tissue engineering (TE) aims at reproducing morphogenesis in the laboratory, i.e., in vitro, to fabricate replacement organs for regenerative medicine. The classical approach to generate tissues/organs is by seeding and expanding cells in appropriately shaped biocompatible scaffolds, in the hope that the maturation process will result in the desired structure. To accomplish this goal more naturally and efficiently, we set up and implemented a novel TE method that is based on principles of developmental biology and employs bioprinting, the automated delivery of cellular composites into a three-dimensional (3D) biocompatible environment. The novel technology relies on the concept of tissue liquidity according to which multicellular aggregates composed of adhesive and motile cells behave in analogy with liquids: in particular, they fuse. We emphasize the major role played by tissue fusion in the embryo and explain how the parameters (surface tension, viscosity) that govern tissue fusion can be used both experimentally and theoretically to control and simulate the self-assembly of cellular spheroids into 3D living structures. The experimentally observed postprinting shape evolution of tube- and sheet-like constructs is presented. Computer simulations, based on a liquid model, support the idea that tissue liquidity may provide a mechanism for in vitro organ building. Copyright 2008 Wiley-Liss, Inc.

  9. Female gametophyte development and double fertilization in Balsas teosinte, Zea mays subsp. parviglumis (Poaceae).

    PubMed

    Wu, Chi-Chih; Diggle, Pamela K; Friedman, William E

    2011-09-01

    Over the course of maize evolution, domestication played a major role in the structural transition of the vegetative and reproductive characteristics that distinguish it from its closest wild relative, Zea mays subsp. parviglumis (Balsas teosinte). Little is known, however, about impacts of the domestication process on the cellular features of the female gametophyte and the subsequent reproductive events after fertilization, even though they are essential components of plant sexual reproduction. In this study, we investigated the developmental and cellular features of the Balsas teosinte female gametophyte and early developing seed in order to unravel the key structural and evolutionary transitions of the reproductive process associated with the domestication of the ancestor of maize. Our results show that the female gametophyte of Balsas teosinte is a variation of the Polygonum type with proliferative antipodal cells and is similar to that of maize. The fertilization process of Balsas teosinte also is basically similar to domesticated maize. In contrast to maize, many events associated with the development of the embryo and endosperm appear to be initiated earlier in Balsas teosinte. Our study suggests that the pattern of female gametophyte development with antipodal proliferation is common among species and subspecies of Zea and evolved before maize domestication. In addition, we propose that the relatively longer duration of the free nuclear endosperm phase in maize is correlated with the development of a larger fruit (kernel or caryopsis) and with a bigger endosperm compared with Balsas teosinte.

  10. Early spatiotemporal-specific changes in intermediate signals are predictive of cytotoxic sensitivity to TNFα and co-treatments

    NASA Astrophysics Data System (ADS)

    Loo, Lit-Hsin; Bougen-Zhukov, Nicola Michelle; Tan, Wei-Ling Cecilia

    2017-03-01

    Signaling pathways can generate different cellular responses to the same cytotoxic agents. Current quantitative models for predicting these differential responses are usually based on large numbers of intracellular gene products or signals at different levels of signaling cascades. Here, we report a study to predict cellular sensitivity to tumor necrosis factor alpha (TNFα) using high-throughput cellular imaging and machine-learning methods. We measured and compared 1170 protein phosphorylation events in a panel of human lung cancer cell lines based on different signals, subcellular regions, and time points within one hour of TNFα treatment. We found that two spatiotemporal-specific changes in an intermediate signaling protein, p90 ribosomal S6 kinase (RSK), are sufficient to predict the TNFα sensitivity of these cell lines. Our models could also predict the combined effects of TNFα and other kinase inhibitors, many of which are not known to target RSK directly. Therefore, early spatiotemporal-specific changes in intermediate signals are sufficient to represent the complex cellular responses to these perturbations. Our study provides a general framework for the development of rapid, signaling-based cytotoxicity screens that may be used to predict cellular sensitivity to a cytotoxic agent, or identify co-treatments that may sensitize or desensitize cells to the agent.

  11. Early spatiotemporal-specific changes in intermediate signals are predictive of cytotoxic sensitivity to TNFα and co-treatments

    PubMed Central

    Loo, Lit-Hsin; Bougen-Zhukov, Nicola Michelle; Tan, Wei-Ling Cecilia

    2017-01-01

    Signaling pathways can generate different cellular responses to the same cytotoxic agents. Current quantitative models for predicting these differential responses are usually based on large numbers of intracellular gene products or signals at different levels of signaling cascades. Here, we report a study to predict cellular sensitivity to tumor necrosis factor alpha (TNFα) using high-throughput cellular imaging and machine-learning methods. We measured and compared 1170 protein phosphorylation events in a panel of human lung cancer cell lines based on different signals, subcellular regions, and time points within one hour of TNFα treatment. We found that two spatiotemporal-specific changes in an intermediate signaling protein, p90 ribosomal S6 kinase (RSK), are sufficient to predict the TNFα sensitivity of these cell lines. Our models could also predict the combined effects of TNFα and other kinase inhibitors, many of which are not known to target RSK directly. Therefore, early spatiotemporal-specific changes in intermediate signals are sufficient to represent the complex cellular responses to these perturbations. Our study provides a general framework for the development of rapid, signaling-based cytotoxicity screens that may be used to predict cellular sensitivity to a cytotoxic agent, or identify co-treatments that may sensitize or desensitize cells to the agent. PMID:28272488

  12. Control of human adenovirus type 5 gene expression by cellular Daxx/ATRX chromatin-associated complexes

    PubMed Central

    Schreiner, Sabrina; Bürck, Carolin; Glass, Mandy; Groitl, Peter; Wimmer, Peter; Kinkley, Sarah; Mund, Andreas; Everett, Roger D.; Dobner, Thomas

    2013-01-01

    Death domain–associated protein (Daxx) cooperates with X-linked α-thalassaemia retardation syndrome protein (ATRX), a putative member of the sucrose non-fermentable 2 family of ATP-dependent chromatin-remodelling proteins, acting as the core ATPase subunit in this complex, whereas Daxx is the targeting factor, leading to histone deacetylase recruitment, H3.3 deposition and transcriptional repression of cellular promoters. Despite recent findings on the fundamental importance of chromatin modification in host-cell gene regulation, it remains unclear whether adenovirus type 5 (Ad5) transcription is regulated by cellular chromatin remodelling to allow efficient virus gene expression. Here, we focus on the repressive role of the Daxx/ATRX complex during Ad5 replication, which depends on intact protein–protein interaction, as negative regulation could be relieved with a Daxx mutant that is unable to interact with ATRX. To ensure efficient viral replication, Ad5 E1B-55K protein inhibits Daxx and targets ATRX for proteasomal degradation in cooperation with early region 4 open reading frame protein 6 and cellular components of a cullin-dependent E3-ubiquitin ligase. Our studies illustrate the importance and diversity of viral factors antagonizing Daxx/ATRX-mediated repression of viral gene expression and shed new light on the modulation of cellular chromatin remodelling factors by Ad5. We show for the first time that cellular Daxx/ATRX chromatin remodelling complexes play essential roles in Ad gene expression and illustrate the importance of early viral proteins to counteract cellular chromatin remodelling. PMID:23396441

  13. Some basic properties of immune selection.

    PubMed

    Iwasa, Yoh; Michor, Franziska; Nowak, Martin

    2004-07-21

    We analyze models for the evolutionary dynamics of viral or other infectious agents within a host. We study how the invasion of a new strain affects the composition and diversity of the viral population. We show that--under strain-specific immunity--the equilibrium abundance of uninfected cells declines during viral evolution. In addition, for cytotoxic immunity the absolute force of infection, and for non-cytotoxic immunity the absolute cellular virulence increases during viral evolution. We prove global stability by means of Lyapunov functions. These unidirectional trends of virus evolution under immune selection do not hold for general cross-reactive immune responses, which introduce frequency-dependent selection among viral strains. Therefore, appropriate cross-reactive immunity can lead to a viral evolution within a host which limits the extent of the disease.

  14. New Gene Evolution: Little Did We Know

    PubMed Central

    Long, Manyuan; VanKuren, Nicholas W.; Chen, Sidi; Vibranovski, Maria D.

    2014-01-01

    Genes are perpetually added to and deleted from genomes during evolution. Thus, it is important to understand how new genes are formed and evolve as critical components of the genetic systems determining the biological diversity of life. Two decades of effort have shed light on the process of new gene origination, and have contributed to an emerging comprehensive picture of how new genes are added to genomes, ranging from the mechanisms that generate new gene structures to the presence of new genes in different organisms to the rates and patterns of new gene origination and the roles of new genes in phenotypic evolution. We review each of these aspects of new gene evolution, summarizing the main evidence for the origination and importance of new genes in evolution. We highlight findings showing that new genes rapidly change existing genetic systems that govern various molecular, cellular and phenotypic functions. PMID:24050177

  15. Cyclophilin B facilitates the replication of Orf virus.

    PubMed

    Zhao, Kui; Li, Jida; He, Wenqi; Song, Deguang; Zhang, Ximu; Zhang, Di; Zhou, Yanlong; Gao, Feng

    2017-06-15

    Viruses interact with host cellular factors to construct a more favourable environment for their efficient replication. Expression of cyclophilin B (CypB), a cellular peptidyl-prolyl cis-trans isomerase (PPIase), was found to be significantly up-regulated. Recently, a number of studies have shown that CypB is important in the replication of several viruses, including Japanese encephalitis virus (JEV), hepatitis C virus (HCV) and human papillomavirus type 16 (HPV 16). However, the function of cellular CypB in ORFV replication has not yet been explored. Suppression subtractive hybridization (SSH) technique was applied to identify genes differentially expressed in the ORFV-infected MDBK cells at an early phase of infection. Cellular CypB was confirmed to be significantly up-regulated by quantitative reverse transcription-PCR (qRT-PCR) analysis and Western blotting. The role of CypB in ORFV infection was further determined using Cyclosporin A (CsA) and RNA interference (RNAi). Effect of CypB gene silencing on ORFV replication by 50% tissue culture infectious dose (TCID 50 ) assay and qRT-PCR detection. In the present study, CypB was found to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection. Cyclosporin A (CsA) exhibited suppressive effects on ORFV replication through the inhibition of CypB. Silencing of CypB gene inhibited the replication of ORFV in MDBK cells. In conclusion, these data suggest that CypB is critical for the efficient replication of the ORFV genome. Cellular CypB was confirmed to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection, which could effectively facilitate the replication of ORFV.

  16. RNase H As Gene Modifier, Driver of Evolution and Antiviral Defense.

    PubMed

    Moelling, Karin; Broecker, Felix; Russo, Giancarlo; Sunagawa, Shinichi

    2017-01-01

    Retroviral infections are 'mini-symbiotic' events supplying recipient cells with sequences for viral replication, including the reverse transcriptase (RT) and ribonuclease H (RNase H). These proteins and other viral or cellular sequences can provide novel cellular functions including immune defense mechanisms. Their high error rate renders RT-RNases H drivers of evolutionary innovation. Integrated retroviruses and the related transposable elements (TEs) have existed for at least 150 million years, constitute up to 80% of eukaryotic genomes and are also present in prokaryotes. Endogenous retroviruses regulate host genes, have provided novel genes including the syncytins that mediate maternal-fetal immune tolerance and can be experimentally rendered infectious again. The RT and the RNase H are among the most ancient and abundant protein folds. RNases H may have evolved from ribozymes, related to viroids, early in the RNA world, forming ribosomes, RNA replicases and polymerases. Basic RNA-binding peptides enhance ribozyme catalysis. RT and ribozymes or RNases H are present today in bacterial group II introns, the precedents of TEs. Thousands of unique RTs and RNases H are present in eukaryotes, bacteria, and viruses. These enzymes mediate viral and cellular replication and antiviral defense in eukaryotes and prokaryotes, splicing, R-loop resolvation, DNA repair. RNase H-like activities are also required for the activity of small regulatory RNAs. The retroviral replication components share striking similarities with the RNA-induced silencing complex (RISC), the prokaryotic CRISPR-Cas machinery, eukaryotic V(D)J recombination and interferon systems. Viruses supply antiviral defense tools to cellular organisms. TEs are the evolutionary origin of siRNA and miRNA genes that, through RISC, counteract detrimental activities of TEs and chromosomal instability. Moreover, piRNAs, implicated in transgenerational inheritance, suppress TEs in germ cells. Thus, virtually all known immune defense mechanisms against viruses, phages, TEs, and extracellular pathogens require RNase H-like enzymes. Analogous to the prokaryotic CRISPR-Cas anti-phage defense possibly originating from TEs termed casposons, endogenized retroviruses ERVs and amplified TEs can be regarded as related forms of inheritable immunity in eukaryotes. This survey suggests that RNase H-like activities of retroviruses, TEs, and phages, have built up innate and adaptive immune systems throughout all domains of life.

  17. Linking micro- and macro-evolution at the cell type level: a view from the lophotrochozoan Platynereis dumerilii.

    PubMed

    Simakov, Oleg; Larsson, Tomas A; Arendt, Detlev

    2013-09-01

    Ever since the origin of the first metazoans over 600 million years ago, cell type diversification has been driven by micro-evolutionary processes at population level, leading to macro-evolution changes above species level. In this review, we introduce the marine annelid Platynereis dumerilii, a member of the lophotrochozoan clade (a key yet most understudied superphylum of bilaterians), as a suitable model system for the simultaneous study, at cellular resolution, of macro-evolutionary processes across phyla and of micro-evolutionary processes across highly polymorphic populations collected worldwide. Recent advances in molecular and experimental techniques, easy maintenance and breeding, and the fast, synchronous and stereotypical development have facilitated the establishment of Platynereis as one of the leading model species in the eco-evo-devo field. Most importantly, Platynereis allows the combination of expression profiling, morphological and physiological characterization at the single cell level. Here, we discuss recent advances in the collection of -omics data for the lab strain and for natural populations collected world-wide that can be integrated with population-specific cellular analyses to result in a cellular atlas integrating genetic, phenotypic and ecological variation. This makes Platynereis a tractable system to begin understanding the interplay between macro- and micro-evolutionary processes and cell type diversity.

  18. The Mosasaur Tooth Attachment Apparatus as Paradigm for the Evolution of the Gnathostome Periodontium

    PubMed Central

    Luan, Xianghong; Walker, Cameron; Dangaria, Smit; Ito, Yoshihiro; Druzinsky, Robert; Jarosius, Kristina; Lesot, Herve; Rieppel, Olivier

    2009-01-01

    Vertebrate teeth are attached to jaws by a variety of mechanisms, including acrodont, pleurodont, and thecodont modes of attachment. Recent studies have suggested that various modes of attachment exist within each sub-category. Especially squamates feature a broad diversity of modes of attachment. Here we have investigated tooth attachment tissues in the late cretaceous mosasaur Clidastes and compared mosasaur tooth attachment with modes of attachment found in other extant reptiles. Using histologic analysis of ultrathin ground sections, four distinct mineralized tissues that anchor mosasaur teeth to the jaw were identified: (i) an acellular cementum layer at the interface between root and cellular cementum, (ii) a massive cone consisting of trabecular cellular cementum, (iii) the mineralized periodontal ligament containing mineralized Sharpey’s fibers, and (iv) the interdental ridges connecting adjacent teeth. The complex, multilayered attachment apparatus in mosasaurs was compared with attachment tissues in extant reptiles, including Iguana and Caiman. Based on our comparative analysis we postulate the presence of a quadruple-layer tissue architecture underlying reptilian tooth attachment, comprised of acellular cementum, cellular cementum, mineralized periodontal ligament, and interdental ridge (alveolar bone). We propose that the mineralization status of the periodontal ligament is a dynamic feature in vertebrate evolution subject to functional adaptation. PMID:19469852

  19. Regulation of Ion Gradients across Myocardial Ischemic Border Zones: A Biophysical Modelling Analysis

    PubMed Central

    Niederer, Steven

    2013-01-01

    The myocardial ischemic border zone is associated with the initiation and sustenance of arrhythmias. The profile of ionic concentrations across the border zone play a significant role in determining cellular electrophysiology and conductivity, yet their spatial-temporal evolution and regulation are not well understood. To investigate the changes in ion concentrations that regulate cellular electrophysiology, a mathematical model of ion movement in the intra and extracellular space in the presence of ionic, potential and material property heterogeneities was developed. The model simulates the spatial and temporal evolution of concentrations of potassium, sodium, chloride, calcium, hydrogen and bicarbonate ions and carbon dioxide across an ischemic border zone. Ischemia was simulated by sodium-potassium pump inhibition, potassium channel activation and respiratory and metabolic acidosis. The model predicted significant disparities in the width of the border zone for each ionic species, with intracellular sodium and extracellular potassium having discordant gradients, facilitating multiple gradients in cellular properties across the border zone. Extracellular potassium was found to have the largest border zone and this was attributed to the voltage dependence of the potassium channels. The model also predicted the efflux of from the ischemic region due to electrogenic drift and diffusion within the intra and extracellular space, respectively, which contributed to depletion in the ischemic region. PMID:23577101

  20. Phylogeny of the "forgotten" cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta.

    PubMed

    Brown, Matthew W; Spiegel, Frederick W; Silberman, Jeffrey D

    2009-12-01

    The shared ancestry between Fungi and animals has been unequivocally demonstrated by abundant molecular and morphological data for well over a decade. Along with the animals and Fungi, multiple protists have been placed in the supergroup Opisthokonta making it exceptionally diverse. In an effort to place the cellular slime mold Fonticula alba, an amoeboid protist with aggregative, multicellular fruiting, we sequenced five nuclear encoded genes; small subunit ribosomal RNA, actin, beta-tubulin, elongation factor 1-alpha, and the cytosolic isoform of heat shock protein 70 for phylogenetic analyses. Molecular trees demonstrate that Fonticula is an opisthokont that branches sister to filose amoebae in the genus Nuclearia. Fonticula plus Nuclearia are sister to Fungi. We propose a new name for this well-supported clade, Nucletmycea, incorporating Nuclearia, Fonticula, and Fungi. Fonticula represents the first example of a cellular slime mold morphology within Opisthokonta. Thus, there are four types of multicellularity in the supergroup-animal, fungal, colonial, and now aggregative. Our data indicate that multicellularity in Fonticula evolved independent of that found in the fungal and animal radiations. With the rapidly expanding sequence and genomic data becoming available from many opisthokont lineages, Fonticula may be fundamental to understanding opisthokont evolution as well as any possible commonalities involved with the evolution of multicellularity.

  1. The cellular immune response of Daphnia magna under host-parasite genetic variation and variation in initial dose.

    PubMed

    Auld, Stuart K J R; Edel, Kai H; Little, Tom J

    2012-10-01

    In invertebrate-parasite systems, the likelihood of infection following parasite exposure is often dependent on the specific combination of host and parasite genotypes (termed genetic specificity). Genetic specificity can maintain diversity in host and parasite populations and is a major component of the Red Queen hypothesis. However, invertebrate immune systems are thought to only distinguish between broad classes of parasite. Using a natural host-parasite system with a well-established pattern of genetic specificity, the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we found that only hosts from susceptible host-parasite genetic combinations mounted a cellular response following exposure to the parasite. These data are compatible with the hypothesis that genetic specificity is attributable to barrier defenses at the site of infection (the gut), and that the systemic immune response is general, reporting the number of parasite spores entering the hemocoel. Further supporting this, we found that larger cellular responses occurred at higher initial parasite doses. By studying the natural infection route, where parasites must pass barrier defenses before interacting with systemic immune responses, these data shed light on which components of invertebrate defense underlie genetic specificity. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  2. The Origin and Early Evolution of Membrane Proteins

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Schweighofter, Karl; Wilson, Michael A.

    2006-01-01

    The origin and early evolution of membrane proteins, and in particular ion channels, are considered from the point of view that the transmembrane segments of membrane proteins are structurally quite simple and do not require specific sequences to fold. We argue that the transport of solute species, especially ions, required an early evolution of efficient transport mechanisms, and that the emergence of simple ion channels was protobiologically plausible. We also argue that, despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. These properties can be subtly modulated by local modifications to the sequence rather than global changes in molecular architecture. In order to address the evolution and development of ion channels, we focus on identifying those protein domains that are commonly associated with ion channel proteins and are conserved throughout the three main domains of life (Eukarya, Prokarya, and Archaea). We discuss the potassium-sodium-calcium superfamily of voltage-gated ion channels, mechanosensitive channels, porins, and ABC-transporters and argue that these families of membrane channels have sufficiently universal architectures that they can readily adapt to the diverse functional demands arising during evolution.

  3. The influence of an innovative locomotor strategy on the phenotypic diversification of triggerfish (family: Balistidae).

    PubMed

    Dornburg, Alex; Sidlauskas, Brian; Santini, Francesco; Sorenson, Laurie; Near, Thomas J; Alfaro, Michael E

    2011-07-01

    Innovations in locomotor morphology have been invoked as important drivers of vertebrate diversification, although the influence of novel locomotion strategies on marine fish diversification remains largely unexplored. Using triggerfish as a case study, we determine whether the evolution of the distinctive synchronization of enlarged dorsal and anal fins that triggerfish use to swim may have catalyzed the ecological diversification of the group. By adopting a comparative phylogenetic approach to quantify median fin and body shape integration and to assess the tempo of functional and morphological evolution in locomotor traits, we find that: (1) functional and morphological components of the locomotive system exhibit a strong signal of correlated evolution; (2) triggerfish partitioned locomotor morphological and functional spaces early in their history; and (3) there is no strong evidence that a pulse of lineage diversification accompanied the major episode of phenotypic diversification. Together these findings suggest that the acquisition of a distinctive mode of locomotion drove an early radiation of shape and function in triggerfish, but not an early radiation of species. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  4. A role for autophagic protein beclin 1 early in lymphocyte development.

    PubMed

    Arsov, Ivica; Adebayo, Adeola; Kucerova-Levisohn, Martina; Haye, Joanna; MacNeil, Margaret; Papavasiliou, F Nina; Yue, Zhenyu; Ortiz, Benjamin D

    2011-02-15

    Autophagy is a highly regulated and evolutionarily conserved process of cellular self-digestion. Recent evidence suggests that this process plays an important role in regulating T cell homeostasis. In this study, we used Rag1(-/-) (recombination activating gene 1(-/-)) blastocyst complementation and in vitro embryonic stem cell differentiation to address the role of Beclin 1, one of the key autophagic proteins, in lymphocyte development. Beclin 1-deficient Rag1(-/-) chimeras displayed a dramatic reduction in thymic cellularity compared with control mice. Using embryonic stem cell differentiation in vitro, we found that the inability to maintain normal thymic cellularity is likely caused by impaired maintenance of thymocyte progenitors. Interestingly, despite drastically reduced thymocyte numbers, the peripheral T cell compartment of Beclin 1-deficient Rag1(-/-) chimeras is largely normal. Peripheral T cells displayed normal in vitro proliferation despite significantly reduced numbers of autophagosomes. In addition, these chimeras had greatly reduced numbers of early B cells in the bone marrow compared with controls. However, the peripheral B cell compartment was not dramatically impacted by Beclin 1 deficiency. Collectively, our results suggest that Beclin 1 is required for maintenance of undifferentiated/early lymphocyte progenitor populations. In contrast, Beclin 1 is largely dispensable for the initial generation and function of the peripheral T and B cell compartments. This indicates that normal lymphocyte development involves Beclin 1-dependent, early-stage and distinct, Beclin 1-independent, late-stage processes.

  5. The phylogenomic roots of modern biochemistry: origins of proteins, cofactors and protein biosynthesis.

    PubMed

    Caetano-Anollés, Gustavo; Kim, Kyung Mo; Caetano-Anollés, Derek

    2012-02-01

    The complexity of modern biochemistry developed gradually on early Earth as new molecules and structures populated the emerging cellular systems. Here, we generate a historical account of the gradual discovery of primordial proteins, cofactors, and molecular functions using phylogenomic information in the sequence of 420 genomes. We focus on structural and functional annotations of the 54 most ancient protein domains. We show how primordial functions are linked to folded structures and how their interaction with cofactors expanded the functional repertoire. We also reveal protocell membranes played a crucial role in early protein evolution and show translation started with RNA and thioester cofactor-mediated aminoacylation. Our findings allow elaboration of an evolutionary model of early biochemistry that is firmly grounded in phylogenomic information and biochemical, biophysical, and structural knowledge. The model describes how primordial α-helical bundles stabilized membranes, how these were decorated by layered arrangements of β-sheets and α-helices, and how these arrangements became globular. Ancient forms of aminoacyl-tRNA synthetase (aaRS) catalytic domains and ancient non-ribosomal protein synthetase (NRPS) modules gave rise to primordial protein synthesis and the ability to generate a code for specificity in their active sites. These structures diversified producing cofactor-binding molecular switches and barrel structures. Accretion of domains and molecules gave rise to modern aaRSs, NRPS, and ribosomal ensembles, first organized around novel emerging cofactors (tRNA and carrier proteins) and then more complex cofactor structures (rRNA). The model explains how the generation of protein structures acted as scaffold for nucleic acids and resulted in crystallization of modern translation.

  6. Arabidopsis thaliana GEX1 has dual functions in gametophyte development and early embryogenesis

    USDA-ARS?s Scientific Manuscript database

    GEX1 is a plasma membrane protein conserved among plant species, and was previously shown to be expressed in sperm cells and some sporophytic tissues. Here we show that GEX1 is also expressed in the embryo sac before cellularization, in the egg cell after cellularization, in the zygote/embryo immedi...

  7. Assessment of oral cytological features in smokers and nonsmokers after application of toluidine blue.

    PubMed

    Sharbatdaran, Majid; Abbaszadeh, Hamid; Siadati, Sepideh; Ranaee, Mohammad; Hajian-Tilaki, Karimollah; Rajabi-Moghaddam, Mahdieh

    2017-06-01

    Smoking is the most important etiologic factor of oral cancer. Exfoliative cytology is the best method for early detection of oral cancer. Toluidine blue staining is used for detection of oral premalignant and malignant lesions. The aim of this study was to enhance the accuracy of oral exfoliative cytology in evaluating dysplastic features using toluidine blue staining. This clinical trials study was performed on 60 male smokers and nonsmokers without clinically oral lesion. Oral exfoliative cytological smears were prepared before and after application of toluidine blue and stained with Papanicolaou and evaluated under light microscope. Cytological features such as cellular clumping nuclear-to-cytoplasmic ratio, cellular and nuclear pleomorphism, micronuclei, binucleation, presence of bacterial colonies, and keratin flakes were assessed and compared before and after application of toluidine blue. Results showed that cellular clumping and micronuclei were significantly decreased after application of toluidine blue and conversely cellular and nuclear pleomorphisms were significantly increased. Frequency of micronuclei and binucleation were greater in smokers than nonsmokers which were insignificant. Cellular and nuclear pleomorphisms were significantly higher in smokers than nonsmokers after application of toluidine blue. Toluidine blue improved cellular, nuclear, and structural features of oral cytological smears and filtered false-positive or false-negative results. Thus, application of toluidine blue in combination with oral exfoliative cytology for early detection of oral cancer is recommended. Diagn. Cytopathol. 2017;45:513-519. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Gene expression profiling in the Cynomolgus macaque Macaca fascicularis shows variation within the normal birth range

    PubMed Central

    2011-01-01

    Background Although an adverse early-life environment has been linked to an increased risk of developing the metabolic syndrome, the molecular mechanisms underlying altered disease susceptibility as well as their relevance to humans are largely unknown. Importantly, emerging evidence suggests that these effects operate within the normal range of birth weights and involve mechanisms of developmental palsticity rather than pathology. Method To explore this further, we utilised a non-human primate model Macaca fascicularis (Cynomolgus macaque) which shares with humans the same progressive history of the metabolic syndrome. Using microarray we compared tissues from neonates in the average birth weight (50-75th centile) to those of lower birth weight (5-25th centile) and studied the effect of different growth trajectories within the normal range on gene expression levels in the umbilical cord, neonatal liver and skeletal muscle. Results We identified 1973 genes which were differentially expressed in the three tissue types between average and low birth weight animals (P < 0.05). Gene ontology analysis identified that these genes were involved in metabolic processes including cellular lipid metabolism, cellular biosynthesis, cellular macromolecule synthesis, cellular nitrogen metabolism, cellular carbohydrate metabolism, cellular catabolism, nucleotide and nucleic acid metabolism, regulation of molecular functions, biological adhesion and development. Conclusion These differences in gene expression levels between animals in the upper and lower percentiles of the normal birth weight range may point towards early life metabolic adaptations that in later life result in differences in disease risk. PMID:21999700

  9. The early evolution of feathers: fossil evidence from Cretaceous amber of France

    PubMed Central

    Perrichot, Vincent; Marion, Loïc; Néraudeau, Didier; Vullo, Romain; Tafforeau, Paul

    2008-01-01

    The developmental stages of feathers are of major importance in the evolution of body covering and the origin of avian flight. Until now, there were significant gaps in knowledge of early morphologies in theoretical stages of feathers as well as in palaeontological material. Here we report fossil evidence of an intermediate and critical stage in the incremental evolution of feathers which has been predicted by developmental theories but hitherto undocumented by evidence from both the recent and the fossil records. Seven feathers have been found in an Early Cretaceous (Late Albian, ca 100 Myr) amber of western France, which display a flattened shaft composed by the still distinct and incompletely fused bases of the barbs forming two irregular vanes. Considering their remarkably primitive features, and since recent discoveries have yielded feathers of modern type in some derived theropod dinosaurs, the Albian feathers from France might have been derived either from an early bird or from a non-avian dinosaur. PMID:18285280

  10. Early post-metamorphic, Carboniferous blastoid reveals the evolution and development of the digestive system in echinoderms.

    PubMed

    Rahman, Imran A; Waters, Johnny A; Sumrall, Colin D; Astolfo, Alberto

    2015-10-01

    Inferring the development of the earliest echinoderms is critical to uncovering the evolutionary assembly of the phylum-level body plan but has long proven problematic because early ontogenetic stages are rarely preserved as fossils. Here, we use synchrotron tomography to describe a new early post-metamorphic blastoid echinoderm from the Carboniferous (approx. 323 Ma) of China. The resulting three-dimensional reconstruction reveals a U-shaped tubular structure in the fossil interior, which is interpreted as the digestive tract. Comparisons with the developing gut of modern crinoids demonstrate that crinoids are an imperfect analogue for many extinct groups. Furthermore, consideration of our findings in a phylogenetic context allows us to reconstruct the evolution and development of the digestive system in echinoderms more broadly; there was a transition from a straight to a simple curved gut early in the phylum's evolution, but additional loops and coils of the digestive tract (as seen in crinoids) were not acquired until much later. © 2015 The Author(s).

  11. Evolution of neurotransmitter receptor systems.

    PubMed

    Venter, J C; di Porzio, U; Robinson, D A; Shreeve, S M; Lai, J; Kerlavage, A R; Fracek, S P; Lentes, K U; Fraser, C M

    1988-01-01

    The presence of hormones, neurotransmitters, their receptors and biosynthetic and degradative enzymes is clearly not only associated with the present and the recent past but with the past several hundred million years. Evidence is mounting which indicates substantial conservation of protein structure and function of these receptors and enzymes over these tremendous periods of time. These findings indicate that the evolution and development of the nervous system was not dependent upon the formation of new or better transmitter substances, receptor proteins, transducers and effector proteins but involved better utilization of these highly developed elements in creating advanced and refined circuitry. This is not a new concept; it is one that is now substantiated by increasingly sophisticated studies. In a 1953 article discussing chemical aspects of evolution (Danielli, 1953) Danielli quotes Medawar, "... endocrine evolution is not an evolution of hormones but an evolution of the uses to which they are put; an evolution not, to put it crudely, of chemical formulae but of reactivities, reaction patterns and tissue competences." To also quote Danielli, "In terms of comparative biochemistry, one must ask to what extent the evolution of these reactivities, reaction patterns and competences is conditional upon the evolution of methods of synthesis of new proteins, etc., and to what extent the proteins, etc., are always within the synthetic competence of an organism. In the latter case evolution is the history of changing uses of molecules, and not of changing synthetic abilities." (Danielli, 1953). Figure 4 outlines a phylogenetic tree together with an indication of where evidence exists for both the enzymes that determine the biosynthesis and metabolism of the cholinergic and adrenergic transmitters and their specific cholinergic and adrenergic receptors. This figure illustrates a number of important points. For example, the evidence appears to show that the transmitters and their associated enzymes existed for a substantial period before their respective receptor proteins. While the transmitters and enzymes appear to exist in single cellular organisms, there is no solid evidence for the presence of adrenergic or cholinergic receptors until multicellular organisms where the receptors appear to be clearly associated with specific cellular and neuronal communication (Fig. 4). One can only speculate as to the possible role for acetylcholine and the catecholamine in single cell organisms.(ABSTRACT TRUNCATED AT 400 WORDS)

  12. Remnants of an ancient forest provide ecological context for Early Miocene fossil apes.

    PubMed

    Michel, Lauren A; Peppe, Daniel J; Lutz, James A; Driese, Steven G; Dunsworth, Holly M; Harcourt-Smith, William E H; Horner, William H; Lehmann, Thomas; Nightingale, Sheila; McNulty, Kieran P

    2014-01-01

    The lineage of apes and humans (Hominoidea) evolved and radiated across Afro-Arabia in the early Neogene during a time of global climatic changes and ongoing tectonic processes that formed the East African Rift. These changes probably created highly variable environments and introduced selective pressures influencing the diversification of early apes. However, interpreting the connection between environmental dynamics and adaptive evolution is hampered by difficulties in locating taxa within specific ecological contexts: time-averaged or reworked deposits may not faithfully represent individual palaeohabitats. Here we present multiproxy evidence from Early Miocene deposits on Rusinga Island, Kenya, which directly ties the early ape Proconsul to a widespread, dense, multistoried, closed-canopy tropical seasonal forest set in a warm and relatively wet, local climate. These results underscore the importance of forested environments in the evolution of early apes.

  13. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size

    PubMed Central

    Herculano-Houzel, Suzana; Manger, Paul R.; Kaas, Jon H.

    2014-01-01

    Enough species have now been subject to systematic quantitative analysis of the relationship between the morphology and cellular composition of their brain that patterns begin to emerge and shed light on the evolutionary path that led to mammalian brain diversity. Based on an analysis of the shared and clade-specific characteristics of 41 modern mammalian species in 6 clades, and in light of the phylogenetic relationships among them, here we propose that ancestral mammal brains were composed and scaled in their cellular composition like modern afrotherian and glire brains: with an addition of neurons that is accompanied by a decrease in neuronal density and very little modification in glial cell density, implying a significant increase in average neuronal cell size in larger brains, and the allocation of approximately 2 neurons in the cerebral cortex and 8 neurons in the cerebellum for every neuron allocated to the rest of brain. We also propose that in some clades the scaling of different brain structures has diverged away from the common ancestral layout through clade-specific (or clade-defining) changes in how average neuronal cell mass relates to numbers of neurons in each structure, and how numbers of neurons are differentially allocated to each structure relative to the number of neurons in the rest of brain. Thus, the evolutionary expansion of mammalian brains has involved both concerted and mosaic patterns of scaling across structures. This is, to our knowledge, the first mechanistic model that explains the generation of brains large and small in mammalian evolution, and it opens up new horizons for seeking the cellular pathways and genes involved in brain evolution. PMID:25157220

  14. Cellular scaling rules for the brain of afrotherians

    PubMed Central

    Neves, Kleber; Ferreira, Fernanda M.; Tovar-Moll, Fernanda; Gravett, Nadine; Bennett, Nigel C.; Kaswera, Consolate; Gilissen, Emmanuel; Manger, Paul R.; Herculano-Houzel, Suzana

    2014-01-01

    Quantitative analysis of the cellular composition of rodent, primate and eulipotyphlan brains has shown that non-neuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in evolution in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of afrotherians, believed to be the first clade to radiate from the common eutherian ancestor. We find that afrotherians share non-neuronal scaling rules with rodents, primates and eulipotyphlans, as well as the coordinated scaling of numbers of neurons in the cerebral cortex and cerebellum. Afrotherians share with rodents and eulipotyphlans, but not with primates, the scaling of number of neurons in the cortex and in the cerebellum as a function of the number of neurons in the rest of the brain. Afrotheria also share with rodents and eulipotyphlans the neuronal scaling rules that apply to the cerebral cortex. Afrotherians share with rodents, but not with eulipotyphlans nor primates, the neuronal scaling rules that apply to the cerebellum. Importantly, the scaling of the folding index of the cerebral cortex with the number of neurons in the cerebral cortex is not shared by either afrotherians, rodents, or primates. The sharing of some neuronal scaling rules between afrotherians and rodents, and of some additional features with eulipotyphlans and primates, raise the interesting possibility that these shared characteristics applied to the common eutherian ancestor. In turn, the clade-specific characteristics that relate to the distribution of neurons along the surface of the cerebral cortex and to its degree of gyrification suggest that these characteristics compose an evolutionarily plastic suite of features that may have defined and distinguished mammalian groups in evolution. PMID:24596544

  15. Multiscale modeling of the dynamics of multicellular systems

    NASA Astrophysics Data System (ADS)

    Kosztin, Ioan

    2011-03-01

    Describing the biomechanical properties of cellular systems, regarded as complex highly viscoelastic materials, is a difficult problem of great conceptual and practical value. Here we present a novel approach, referred to as the Cellular Particle Dynamics (CPD) method, for: (i) quantitatively relating biomechanical properties at the cell level to those at the multicellular and tissue level, and (ii) describing and predicting the time evolution of multicellular systems that undergo biomechanical relaxations. In CPD cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through integration of their equations of motion. Cell and multicellular level biomechanical properties (e.g., viscosity, surface tension and shear modulus) are determined through the combined use of experiments and theory of continuum viscoelastic media. The same biomechanical properties are also ``measured'' computationally by employing the CPD method, the results being expressed in terms of CPD parameters. Once these parameters have been calibrated experimentally, the formalism provides a systematic framework to predict the time evolution of complex multicellular systems during shape-changing biomechanical transformations. By design, the CPD method is rather flexible and most suitable for multiscale modeling of multicellular system. The spatial level of detail of the system can be easily tuned by changing the number of CPs in a cell. Thus, CPD can be used equally well to describe both cell level processes (e.g., the adhesion of two cells) and tissue level processes (e.g., the formation of 3D constructs of millions of cells through bioprinting). Work supported by NSF [FIBR-0526854 and PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  16. Deriving urban dynamic evolution rules from self-adaptive cellular automata with multi-temporal remote sensing images

    NASA Astrophysics Data System (ADS)

    He, Yingqing; Ai, Bin; Yao, Yao; Zhong, Fajun

    2015-06-01

    Cellular automata (CA) have proven to be very effective for simulating and predicting the spatio-temporal evolution of complex geographical phenomena. Traditional methods generally pose problems in determining the structure and parameters of CA for a large, complex region or a long-term simulation. This study presents a self-adaptive CA model integrated with an artificial immune system to discover dynamic transition rules automatically. The model's parameters are allowed to be self-modified with the application of multi-temporal remote sensing images: that is, the CA can adapt itself to the changed and complex environment. Therefore, urban dynamic evolution rules over time can be efficiently retrieved by using this integrated model. The proposed AIS-based CA model was then used to simulate the rural-urban land conversion of Guangzhou city, located in the core of China's Pearl River Delta. The initial urban land was directly classified from TM satellite image in the year 1990. Urban land in the years 1995, 2000, 2005, 2009 and 2012 was correspondingly used as the observed data to calibrate the model's parameters. With the quantitative index figure of merit (FoM) and pattern similarity, the comparison was further performed between the AIS-based model and a Logistic CA model. The results indicate that the AIS-based CA model can perform better and with higher precision in simulating urban evolution, and the simulated spatial pattern is closer to the actual development situation.

  17. Perspectives and Open Problems in the Early Phases of Left-Right Patterning

    PubMed Central

    Vandenberg, Laura N.; Levin, Michael

    2009-01-01

    Summary Embryonic left-right (LR) patterning is a fascinating aspect of embryogenesis. The field currently faces important questions about the origin of LR asymmetry, the mechanisms by which consistent asymmetry is imposed on the scale of the whole embryo, and the degree of conservation of early phases of LR patterning among model systems. Recent progress on planar cell polarity and cellular asymmetry in a variety of tissues and species provides a new perspective on the early phases of LR patterning. Despite the huge diversity in body-plans over which consistent LR asymmetry is imposed, and the apparent divergence in molecular pathways that underlie laterality, the data reveal conservation of physiological modules among phyla and a basic scheme of cellular chirality amplified by a planar cell polarity-like pathway over large cell fields. PMID:19084609

  18. pH-Controlled Two-Step Uncoating of Influenza Virus

    PubMed Central

    Li, Sai; Sieben, Christian; Ludwig, Kai; Höfer, Chris T.; Chiantia, Salvatore; Herrmann, Andreas; Eghiaian, Frederic; Schaap, Iwan A.T.

    2014-01-01

    Upon endocytosis in its cellular host, influenza A virus transits via early to late endosomes. To efficiently release its genome, the composite viral shell must undergo significant structural rearrangement, but the exact sequence of events leading to viral uncoating remains largely speculative. In addition, no change in viral structure has ever been identified at the level of early endosomes, raising a question about their role. We performed AFM indentation on single viruses in conjunction with cellular assays under conditions that mimicked gradual acidification from early to late endosomes. We found that the release of the influenza genome requires sequential exposure to the pH of both early and late endosomes, with each step corresponding to changes in the virus mechanical response. Step 1 (pH 7.5–6) involves a modification of both hemagglutinin and the viral lumen and is reversible, whereas Step 2 (pH <6.0) involves M1 dissociation and major hemagglutinin conformational changes and is irreversible. Bypassing the early-endosomal pH step or blocking the envelope proton channel M2 precludes proper genome release and efficient infection, illustrating the importance of viral lumen acidification during the early endosomal residence for influenza virus infection. PMID:24703306

  19. Toward Multiscale Models of Cyanobacterial Growth: A Modular Approach

    PubMed Central

    Westermark, Stefanie; Steuer, Ralf

    2016-01-01

    Oxygenic photosynthesis dominates global primary productivity ever since its evolution more than three billion years ago. While many aspects of phototrophic growth are well understood, it remains a considerable challenge to elucidate the manifold dependencies and interconnections between the diverse cellular processes that together facilitate the synthesis of new cells. Phototrophic growth involves the coordinated action of several layers of cellular functioning, ranging from the photosynthetic light reactions and the electron transport chain, to carbon-concentrating mechanisms and the assimilation of inorganic carbon. It requires the synthesis of new building blocks by cellular metabolism, protection against excessive light, as well as diurnal regulation by a circadian clock and the orchestration of gene expression and cell division. Computational modeling allows us to quantitatively describe these cellular functions and processes relevant for phototrophic growth. As yet, however, computational models are mostly confined to the inner workings of individual cellular processes, rather than describing the manifold interactions between them in the context of a living cell. Using cyanobacteria as model organisms, this contribution seeks to summarize existing computational models that are relevant to describe phototrophic growth and seeks to outline their interactions and dependencies. Our ultimate aim is to understand cellular functioning and growth as the outcome of a coordinated operation of diverse yet interconnected cellular processes. PMID:28083530

  20. Modeling of Microstructure Evolution During Alloy Solidification

    NASA Astrophysics Data System (ADS)

    Zhu, Mingfang; Pan, Shiyan; Sun, Dongke

    In recent years, considerable advances have been achieved in the numerical modeling of microstructure evolution during solidification. This paper presents the models based on the cellular automaton (CA) technique and lattice Boltzmann method (LBM), which can reproduce a wide variety of solidification microstructure features observed experimentally with an acceptable computational efficiency. The capabilities of the models are addressed by presenting representative examples encompassing a broad variety of issues, such as the evolution of dendritic structure and microsegregation in two and three dimensions, dendritic growth in the presence of convection, divorced eutectic solidification of spheroidal graphite irons, and gas porosity formation. The simulations offer insights into the underlying physics of microstructure formation during alloy solidification.

  1. The progamic phase of an early-divergent angiosperm, Annona cherimola (Annonaceae)

    PubMed Central

    Lora, J.; Hormaza, J. I.; Herrero, M.

    2010-01-01

    Background and Aims Recent studies of reproductive biology in ancient angiosperm lineages are beginning to shed light on the early evolution of flowering plants, but comparative studies are restricted by fragmented and meagre species representation in these angiosperm clades. In the present study, the progamic phase, from pollination to fertilization, is characterized in Annona cherimola, which is a member of the Annonaceae, the largest extant family among early-divergent angiosperms. Beside interest due to its phylogenetic position, this species is also an ancient crop with a clear niche for expansion in subtropical climates. Methods The kinetics of the reproductive process was established following controlled pollinations and sequential fixation. Gynoecium anatomy, pollen tube pathway, embryo sac and early post-fertilization events were characterized histochemically. Key Results A plesiomorphic gynoecium with a semi-open carpel shows a continuous secretory papillar surface along the carpel margins, which run from the stigma down to the obturator in the ovary. The pollen grains germinate in the stigma and compete in the stigma-style interface to reach the narrow secretory area that lines the margins of the semi-open stylar canal and is able to host just one to three pollen tubes. The embryo sac has eight nuclei and is well provisioned with large starch grains that are used during early cellular endosperm development. Conclusions A plesiomorphic simple gynoecium hosts a simple pollen–pistil interaction, based on a support–control system of pollen tube growth. Support is provided through basipetal secretory activity in the cells that line the pollen tube pathway. Spatial constraints, favouring pollen tube competition, are mediated by a dramatic reduction in the secretory surface available for pollen tube growth at the stigma–style interface. This extramural pollen tube competition contrasts with the intrastylar competition predominant in more recently derived lineages of angiosperms. PMID:19939980

  2. Imaging the morphological change of tissue structure during the early phase of esophageal tumor progression using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Kang, Deyong; Xu, Meifang; Zhu, Xiaoqin; Zhuo, Shuangmu; Chen, Jianxin

    2012-12-01

    Esophageal cancer is a common malignancy with a very poor prognosis. Successful strategies for primary prevention and early detection are critically needed to control this disease. Multiphoton microscopy (MPM) is becoming a novel optical tool of choice for imaging tissue architecture and cellular morphology by two-photon excited fluorescence. In this study, we used MPM to image microstructure of human normal esophagus, carcinoma in situ (CIS), and early invasive carcinoma in order to establish the morphological features to differentiate these tissues. The diagnostic features such as the appearance of cancerous cells, the significant loss of stroma, the absence of the basement membrane were extracted to distinguish between normal and cancerous esophagus tissue. These results correlated well with the paired histological findings. With the advancement of clinically miniaturized MPM and the multi-photon probe, combining MPM with standard endoscopy will therefore allow us to make a real-time in vivo diagnosis of early esophageal cancer at the cellular level.

  3. An Impaired View of Earth's Early History

    NASA Astrophysics Data System (ADS)

    Vervoort, J. D.; Kemp, A. I.; Bauer, A.; Bowring, S. A.; Fisher, C.

    2014-12-01

    The Hf and Nd isotope records of Earth's early history are sparse, difficult to interpret, and controversial, much like the few remnants of crust older than 4 Ga. New analytical techniques have been brought to bear on this problem but despite this recent work­-or, perhaps, because of it-the record is no clearer than it was 15 years ago. Several studies, based on highly variable calculated initial isotopic compositions, have argued for highly heterogeneous crust and mantle reservoirs in the early Earth1,2 and an ultra-depleted Eoarchean mantle3. These data come mostly from two sources: Hf-Nd isotope analyses of ultramafic rocks and Hf isotope analyses of zircons by solution or laser ablation. An important question for understanding the chemical evolution of the early Earth is: Do these data offer a unique window into the early Earth or are they artefacts not representative of crust/mantle evolution, giving an impaired view of the Earth's early history? In complex samples, measured isotopic compositions can result from open-system behavior in easily altered ultramafic compositions, in multicomponent, polymetamorphic gneisses, or in zircons with multiple generations of growth. Perhaps most importantly, accurate age assignment is often lacking, compromised, or impossible in these rocks, making calculation of initial epsilon Hf and Nd values ambiguous at best. In order to gain insight into crust mantle evolution in the early Earth we need, above all, a robust and unambiguous isotopic record to work with. This can be achieved by integrating zircon U-Pb and Hf and whole-rock Hf and Nd isotope compositions in relatively undisturbed igneous rocks with well-constrained ages. When this approach is used apparent isotopic heterogeneity decreases and a simpler model for crust-mantle evolution in the early Earth emerges. Careful screening of geological relationships, petrology, and geochemistry of samples from the early Earth should be done before interpreting isotopic data. Indiscriminate inclusion of isotope data from disturbed and multicomponent rocks and zircons will do more to obscure our understanding of the Hf-Nd isotope evolution of the Earth than to clarify it. [1] Harrison et al. 2005, Science 310, 1947-1950. [2] Blichert-Toft and Albarède, 2008, EPSL 265, 686-702. [3] Hoffmann et al., 2010, GCA, 74, 7236-7260.

  4. Microbes, Mineral Evolution, and the Rise of Microcontinents-Origin and Coevolution of Life with Early Earth.

    PubMed

    Grosch, Eugene G; Hazen, Robert M

    2015-10-01

    Earth is the most mineralogically diverse planet in our solar system, the direct consequence of a coevolving geosphere and biosphere. We consider the possibility that a microbial biosphere originated and thrived in the early Hadean-Archean Earth subseafloor environment, with fundamental consequences for the complex evolution and habitability of our planet. In this hypothesis paper, we explore possible venues for the origin of life and the direct consequences of microbially mediated, low-temperature hydrothermal alteration of the early oceanic lithosphere. We hypothesize that subsurface fluid-rock-microbe interactions resulted in more efficient hydration of the early oceanic crust, which in turn promoted bulk melting to produce the first evolved fragments of felsic crust. These evolved magmas most likely included sialic or tonalitic sheets, felsic volcaniclastics, and minor rhyolitic intrusions emplaced in an Iceland-type extensional setting as the earliest microcontinents. With the further development of proto-tectonic processes, these buoyant felsic crustal fragments formed the nucleus of intra-oceanic tonalite-trondhjemite-granitoid (TTG) island arcs. Thus microbes, by facilitating extensive hydrothermal alteration of the earliest oceanic crust through bioalteration, promoted mineral diversification and may have been early architects of surface environments and microcontinents on young Earth. We explore how the possible onset of subseafloor fluid-rock-microbe interactions on early Earth accelerated metavolcanic clay mineral formation, crustal melting, and subsequent metamorphic mineral evolution. We also consider environmental factors supporting this earliest step in geosphere-biosphere coevolution and the implications for habitability and mineral evolution on other rocky planets, such as Mars.

  5. Leaf evolution in early-diverging ferns: insights from a new fern-like plant from the Late Devonian of China

    PubMed Central

    Wang, De-Ming; Xu, Hong-He; Xue, Jin-Zhuang; Wang, Qi; Liu, Le

    2015-01-01

    Background and Aims With the exception of angiosperms, the main euphyllophyte lineages (i.e. ferns sensu lato, progymnosperms and gymnosperms) had evolved laminate leaves by the Late Devonian. The evolution of laminate leaves, however, remains unclear for early-diverging ferns, largely represented by fern-like plants. This study presents a novel fern-like taxon with pinnules, which provides new insights into the early evolution of laminate leaves in early-diverging ferns. Methods Macrofossil specimens were collected from the Upper Devonian (Famennian) Wutong Formation of Anhui and Jiangsu Provinces, South China. A standard degagement technique was employed to uncover compressed plant portions within the rock matrix. Key Results A new fern-like taxon, Shougangia bella gen. et sp. nov., is described and represents an early-diverging fern with highly derived features. It has a partially creeping stem with adventitious roots only on one side, upright primary and secondary branches arranged in helices, tertiary branches borne alternately or (sub)oppositely, laminate and usually lobed leaves with divergent veins, and complex fertile organs terminating tertiary branches and possessing multiple divisions and numerous terminal sporangia. Conclusions Shougangia bella provides unequivocal fossil evidence for laminate leaves in early-diverging ferns. It suggests that fern-like plants, along with other euphyllophyte lineages, had independently evolved megaphylls by the Late Devonian, possibly in response to a significant decline in atmospheric CO2 concentration. Among fern-like plants, planate ultimate appendages are homologous with laminate pinnules, and in the evolution of megaphylls, fertile organs tend to become complex. PMID:25979918

  6. Gauss-Bonnet cosmology unifying late and early-time acceleration eras with intermediate eras

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.

    2016-07-01

    In this paper we demonstrate that with vacuum F(G) gravity it is possible to describe the unification of late and early-time acceleration eras with the radiation and matter domination era. The Hubble rate of the unified evolution contains two mild singularities, so called Type IV singularities, and the evolution itself has some appealing features, such as the existence of a deceleration-acceleration transition at late times. We also address quantitatively a fundamental question related to modified gravity models description of cosmological evolution: Is it possible for all modified gravity descriptions of our Universe evolution, to produce a nearly scale invariant spectrum of primordial curvature perturbations? As we demonstrate, the answer for the F(G) description is no, since the resulting power spectrum is not scale invariant, in contrast to the F(R) description studied in the literature. Therefore, although the cosmological evolution can be realized in the context of vacuum F(G) gravity, the evolution is not compatible with the observational data, in contrast to the F(R) gravity description of the same cosmological evolution.

  7. The First Molecular Phylogeny of Strepsiptera (Insecta) Reveals an Early Burst of Molecular Evolution Correlated with the Transition to Endoparasitism

    PubMed Central

    McMahon, Dino P.; Hayward, Alexander; Kathirithamby, Jeyaraney

    2011-01-01

    A comprehensive model of evolution requires an understanding of the relationship between selection at the molecular and phenotypic level. We investigate this in Strepsiptera, an order of endoparasitic insects whose evolutionary biology is poorly studied. We present the first molecular phylogeny of Strepsiptera, and use this as a framework to investigate the association between parasitism and molecular evolution. We find evidence of a significant burst in the rate of molecular evolution in the early history of Strepsiptera. The evolution of morphological traits linked to parasitism is significantly correlated with the pattern in molecular rate. The correlated burst in genotypic-phenotypic evolution precedes the main phase of strepsipteran diversification, which is characterised by the return to a low and even molecular rate, and a period of relative morphological stability. These findings suggest that the transition to endoparasitism led to relaxation of selective constraint in the strepsipteran genome. Our results indicate that a parasitic lifestyle can affect the rate of molecular evolution, although other causal life-history traits correlated with parasitism may also play an important role. PMID:21738621

  8. Evolution of microbes and viruses: a paradigm shift in evolutionary biology?

    PubMed Central

    Koonin, Eugene V.; Wolf, Yuri I.

    2012-01-01

    When Charles Darwin formulated the central principles of evolutionary biology in the Origin of Species in 1859 and the architects of the Modern Synthesis integrated these principles with population genetics almost a century later, the principal if not the sole objects of evolutionary biology were multicellular eukaryotes, primarily animals and plants. Before the advent of efficient gene sequencing, all attempts to extend evolutionary studies to bacteria have been futile. Sequencing of the rRNA genes in thousands of microbes allowed the construction of the three- domain “ribosomal Tree of Life” that was widely thought to have resolved the evolutionary relationships between the cellular life forms. However, subsequent massive sequencing of numerous, complete microbial genomes revealed novel evolutionary phenomena, the most fundamental of these being: (1) pervasive horizontal gene transfer (HGT), in large part mediated by viruses and plasmids, that shapes the genomes of archaea and bacteria and call for a radical revision (if not abandonment) of the Tree of Life concept, (2) Lamarckian-type inheritance that appears to be critical for antivirus defense and other forms of adaptation in prokaryotes, and (3) evolution of evolvability, i.e., dedicated mechanisms for evolution such as vehicles for HGT and stress-induced mutagenesis systems. In the non-cellular part of the microbial world, phylogenomics and metagenomics of viruses and related selfish genetic elements revealed enormous genetic and molecular diversity and extremely high abundance of viruses that come across as the dominant biological entities on earth. Furthermore, the perennial arms race between viruses and their hosts is one of the defining factors of evolution. Thus, microbial phylogenomics adds new dimensions to the fundamental picture of evolution even as the principle of descent with modification discovered by Darwin and the laws of population genetics remain at the core of evolutionary biology. PMID:22993722

  9. Simulation of Corrosion Process for Structure with the Cellular Automata Method

    NASA Astrophysics Data System (ADS)

    Chen, M. C.; Wen, Q. Q.

    2017-06-01

    In this paper, from the mesoscopic point of view, under the assumption of metal corrosion damage evolution being a diffusive process, the cellular automata (CA) method was proposed to simulate numerically the uniform corrosion damage evolution of outer steel tube of concrete filled steel tubular columns subjected to corrosive environment, and the effects of corrosive agent concentration, dissolution probability and elapsed etching time on the corrosion damage evolution were also investigated. It was shown that corrosion damage increases nonlinearly with increasing elapsed etching time, and the longer the etching time, the more serious the corrosion damage; different concentration of corrosive agents had different impacts on the corrosion damage degree of the outer steel tube, but the difference between the impacts was very small; the heavier the concentration, the more serious the influence. The greater the dissolution probability, the more serious the corrosion damage of the outer steel tube, but with the increase of dissolution probability, the difference between its impacts on the corrosion damage became smaller and smaller. To validate present method, corrosion damage measurements for concrete filled square steel tubular columns (CFSSTCs) sealed at both their ends and immersed fully in a simulating acid rain solution were conducted, and Faraday’s law was used to predict their theoretical values. Meanwhile, the proposed CA mode was applied for the simulation of corrosion damage evolution of the CFSSTCs. It was shown by the comparisons of results from the three methods aforementioned that they were in good agreement, implying that the proposed method used for the simulation of corrosion damage evolution of concrete filled steel tubular columns is feasible and effective. It will open a new approach to study and evaluate further the corrosion damage, loading capacity and lifetime prediction of concrete filled steel tubular structures.

  10. Evolution of senescence in nature: physiological evolution in populations of garter snake with divergent life histories.

    PubMed

    Robert, Kylie A; Bronikowski, Anne M

    2010-02-01

    Evolutionary theories of aging are linked to life-history theory in that age-specific schedules of reproduction and survival determine the trajectory of age-specific mutation/selection balances across the life span and thus the rate of senescence. This is predicted to manifest at the organismal level in the evolution of energy allocation strategies of investing in somatic maintenance and robust stress responses in less hazardous environments in exchange for energy spent on growth and reproduction. Here we report experiments from long-studied populations of western terrestrial garter snakes (Thamnophis elegans) that reside in low and high extrinsic mortality environments, with evolved long and short life spans, respectively. Laboratory common-environment colonies of these two ecotypes were tested for a suite of physiological traits after control and stressed gestations. In offspring derived from control and corticosterone-treated dams, we measured resting metabolism; mitochondrial oxygen consumption, ATP and free radical production rates; and erythrocyte DNA damage and repair ability. We evaluated whether these aging biomarkers mirrored the evolution of life span and whether they were sensitive to stress. Neonates from the long-lived ecotype (1) were smaller, (2) consumed equal amounts of oxygen when corrected for body mass, (3) had DNA that damaged more readily but repaired more efficiently, and (4) had more efficient mitochondria and more efficient cellular antioxidant defenses than short-lived snakes. Many ecotype differences were enhanced in offspring derived from stress-treated dams, which supports the conclusion that nongenetic maternal effects may further impact the cellular stress defenses of offspring. Our findings reveal that physiological evolution underpins reptilian life histories and sheds light on the connectedness between stress response and aging pathways in wild-dwelling organisms.

  11. On the origin of POU5F1

    PubMed Central

    2013-01-01

    Background Pluripotency is a fundamental property of early mammalian development but it is currently unclear to what extent its cellular mechanisms are conserved in vertebrates or metazoans. POU5F1 and POU2 are the two principle members constituting the class V POU domain family of transcription factors, thought to have a conserved role in the regulation of pluripotency in vertebrates as well as germ cell maintenance and neural patterning. They have undergone a complex pattern of evolution which is poorly understood and controversial. Results By analyzing the sequences of POU5F1, POU2 and their flanking genes, we provide strong indirect evidence that POU5F1 originated at least as early as a common ancestor of gnathostomes but became extinct in a common ancestor of teleost fishes, while both POU5F1 and POU2 survived in the sarcopterygian lineage leading to tetrapods. Less divergent forms of POU5F1 and POU2 appear to have persisted among cartilaginous fishes. Conclusions Our study resolves the controversial evolutionary relationship between teleost pou2 and tetrapod POU2 and POU5F1, and shows that class V POU transcription factors have existed at least since the common ancestor of gnathostome vertebrates. It provides a framework for elucidating the basis for the lineage-specific extinctions of POU2 and POU5F1. PMID:23659605

  12. Networks of Learning

    NASA Astrophysics Data System (ADS)

    Bettencourt, Luis; Kaiser, David

    2004-03-01

    Based on an a historically documented example of scientific discovery - Feynman diagrams as the main calculational tool of theoretical high energy Physics - we map the time evolution of the social network of early adopters through in the US, UK, Japan and the USSR. The spread of the technique for total number of users in each region is then modelled in terms of epidemic models, highlighting parallel and divergent aspects of this analogy. We also show that transient social arrangements develop as the idea is introduced and learned, which later disappear as the technique becomes common knowledge. Such early transient is characterized by abnormally low connectivity distribution powers and by high clustering. This interesting early non-equilibrium stage of network evolution is captured by a new dynamical model for network evolution, which coincides in its long time limit with familiar preferential aggregation dynamics.

  13. Nuclear and cytoplasmic dynamics of sperm penetration, pronuclear formation and microtubule organization during fertilization and early preimplantation development in the human.

    PubMed

    Van Blerkom, J; Davis, P; Merriam, J; Sinclair, J

    1995-09-01

    This report describes spatial and temporal aspects of sperm penetration and intracytoplasmic migration, pronuclear evolution and the specificity of presyngamic opposition, stage-specific changes in cytoskeletal organization and the relative contribution of maternal and paternal components to mitotic spindle formation. These studies involved observations of living human oocytes during conventional insemination in vitro and after intracytoplasmic deposition of spermatozoa, analysis of chromatin organization and distribution during pronuclear evolution, and detection of actin and alpha-, beta- and gamma-tubulin by confocal immunofluorescence microscopy. Immature and mature oocytes, penetrated but unfertilized oocytes, fertilized but arrested eggs, and cleavage-stage embryos from normal and dispermic fertilizations were examined. The results demonstrate that sperm nuclear migration to the maternal perinuclear region is rapid and linear, occurs in the absence of a detectable cytoskeletal system and appears to be assisted by an unusual configuration of the sperm tail principal piece which results from either retained intracytoplasmic motility or the process by which the sperm tail is progressively incorporated into the oocyte. Our findings also show a specificity of pronuclear alignment that is associated with a polarized distribution of both maternal and paternal chromatin, and with the position of the sperm centrosome and the presence of microtubules nucleated from this structure. The results also indicate that a maternal microtubule nucleating capacity is present in the immature oocyte but is apparently inactive until spindle formation. The poles of the first mitotic spindle appear to be derived from the sperm centrosome, although some maternal contribution cannot be excluded. The sperm tail and centrosome persist in a single cell through the cleavage stages, and the latter serves as a prominent site of cytoplasmic microtubule nucleation. The results provide a detailed understanding of the cellular and nuclear morphodynamics of the human fertilization process and indicate subtle defects that may be responsible for early developmental failure.

  14. Imaging biomarkers in multiple Sclerosis: From image analysis to population imaging.

    PubMed

    Barillot, Christian; Edan, Gilles; Commowick, Olivier

    2016-10-01

    The production of imaging data in medicine increases more rapidly than the capacity of computing models to extract information from it. The grand challenges of better understanding the brain, offering better care for neurological disorders, and stimulating new drug design will not be achieved without significant advances in computational neuroscience. The road to success is to develop a new, generic, computational methodology and to confront and validate this methodology on relevant diseases with adapted computational infrastructures. This new concept sustains the need to build new research paradigms to better understand the natural history of the pathology at the early phase; to better aggregate data that will provide the most complete representation of the pathology in order to better correlate imaging with other relevant features such as clinical, biological or genetic data. In this context, one of the major challenges of neuroimaging in clinical neurosciences is to detect quantitative signs of pathological evolution as early as possible to prevent disease progression, evaluate therapeutic protocols or even better understand and model the natural history of a given neurological pathology. Many diseases encompass brain alterations often not visible on conventional MRI sequences, especially in normal appearing brain tissues (NABT). MRI has often a low specificity for differentiating between possible pathological changes which could help in discriminating between the different pathological stages or grades. The objective of medical image analysis procedures is to define new quantitative neuroimaging biomarkers to track the evolution of the pathology at different levels. This paper illustrates this issue in one acute neuro-inflammatory pathology: Multiple Sclerosis (MS). It exhibits the current medical image analysis approaches and explains how this field of research will evolve in the next decade to integrate larger scale of information at the temporal, cellular, structural and morphological levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Did Life Emerge in Thermo-Acidic Conditions?

    NASA Astrophysics Data System (ADS)

    Holmes, D. S.

    2017-12-01

    There is widespread, but not unanimous, agreement that life emerged in hot conditions by exploiting redox and pH disequilibria found on early earth. Although there are several hypotheses to explain the postulated pH disequilibria, few of these consider that life evolved at very low pH (<4). Such environments are thought to be hostile to life and certainly a poor area to search for clues for the abiotic to biotic transition and the early evolution of energetic pathways. However, low pH environments offer some remarkable opportunities for early biological evolution. This presentation will evaluate the pros and cons of the hypothesis that the early evolution of life occurred in thermo-acidic conditions. Such environments are thought to have been abundant on early earth and were probably rich in hydrogen and soluble metals including iron and sulfur that could have served as sources and sinks of electrons. Extant thermo-acidophiles thrive in such conditions. Low pH environments are rich in protons that are the major drivers of energy conservation by coupling to phosphorylation in virtually all organisms on earth; this may be a "biochemical fossil" reflecting the use of protons (low pH) in primitive energy conservation. It has also been proposed that acidic conditions favored the evolution of an RNA world with expanded catalytic activities. On the other hand, the idea that life emerged in thermo-acidic conditions can be challenged because of the proposed difficulties of folding and stabilizing proteins simultaneously exposed to high temperature and low pH. In addition, although thermo-acidophiles root to the base of the phylogenetic tree of life, consistent with the proposition that they evolved early, yet there are problems of interpretation of their subsequent evolution that cloud this simplistic phylogenetic view. We propose solutions to these problems and hypothesize that life evolved in thermo-acidic conditions.

  16. The tectonometamorphic evolution of the Apuseni Mountains (Romania): Geodynamic constraints for the evolution of the Alps-Carpathians-Dinaride system of orogens

    NASA Astrophysics Data System (ADS)

    Reiser, Martin; Schuster, Ralf; Fügenschuh, Bernhard

    2015-04-01

    New structural, thermobarometric and geochronological data allow integrating kinematics, timing and intensity of tectonic phases into a geodynamic model of the Apuseni Mountain, which provides new constraints for the evolution of the Alps-Carpathians-Dinaride system of orogens. Strong differences in terms of deformation directions between Early and Late Cretaceous events provide new constraints on the regional geodynamic evolution during the Cretaceous. Geochronological and structural data evidence a Late Jurassic emplacement of the South Apuseni Ophiolites on top of the Biharia Nappe System (Dacia Mega-Unit), situated in an external position at the European margin. Following the emplacement of the ophiolites, three compressive deformation phases affected the Apuseni Mountains during Alpine orogeny: a) NE-directed in-sequence nappe stacking and regional metamorphic overprinting under amphibolite-facies conditions during the Early Cretaceous ("Austrian Phase"), b) NW-directed thrusting and folding, associated with greenschist-facies overprinting, during the early Late Cretaceous ("Turonian Phase") and c) E-W internal folding together with brittle thrusting during the latest Cretaceous ("Laramian Phase"). Major tectonic unroofing and exhumation at the transition from Early to Late Cretaceous times is documented through new Sm-Nd Grt, Ar-Ar Ms and Rb-Sr Bt ages from the study area and resulted in a complex thermal structure with strong lateral and vertical thermal gradients. Nappe stacking and medium-grade metamorphic overprinting during the Early Cretaceous exhibits striking parallels between the evolution of the Tisza-Dacia Mega-Units and the Austroalpine Nappes (ALCAPA Mega-Unit) and evidences a close connection. However, Late Cretaceous tectonic events in the study area exhibit strong similarities with the Dinarides. Thus, the Apuseni Mountains represent the "missing link" between the Early Cretaceous Meliata subduction (associated with obduction of ophiolites) and the Neotethys subduction during Late Cretaceous times.

  17. Developing improved durum wheat germplasm by altering the cytoplasmic genome

    USDA-ARS?s Scientific Manuscript database

    In eukaryotic organisms, nuclear and cytoplasmic genomes interact to drive cellular functions. These genomes have co-evolved to form specific nuclear-cytoplasmic interactions that are essential to the origin, success, and evolution of diploid and polyploid species. Hundreds of genetic diseases in h...

  18. Mobile Computing and Ubiquitous Networking: Concepts, Technologies and Challenges.

    ERIC Educational Resources Information Center

    Pierre, Samuel

    2001-01-01

    Analyzes concepts, technologies and challenges related to mobile computing and networking. Defines basic concepts of cellular systems. Describes the evolution of wireless technologies that constitute the foundations of mobile computing and ubiquitous networking. Presents characterization and issues of mobile computing. Analyzes economical and…

  19. Recombinant modified vaccinia virus Ankara generating excess early double-stranded RNA transiently activates protein kinase R and triggers enhanced innate immune responses.

    PubMed

    Wolferstätter, Michael; Schweneker, Marc; Späth, Michaela; Lukassen, Susanne; Klingenberg, Marieken; Brinkmann, Kay; Wielert, Ursula; Lauterbach, Henning; Hochrein, Hubertus; Chaplin, Paul; Suter, Mark; Hausmann, Jürgen

    2014-12-01

    Double-stranded RNA (dsRNA) is an important molecular pattern associated with viral infection and is detected by various extra- and intracellular recognition molecules. Poxviruses have evolved to avoid producing dsRNA early in infection but generate significant amounts of dsRNA late in infection due to convergent transcription of late genes. Protein kinase R (PKR) is activated by dsRNA and triggers major cellular defenses against viral infection, including protein synthesis shutdown, apoptosis, and type I interferon (IFN-I) production. The poxviral E3 protein binds and sequesters viral dsRNA and is a major antagonist of the PKR pathway. We found that the highly replication-restricted modified vaccinia virus Ankara (MVA) engineered to produce excess amounts of dsRNA early in infection showed enhanced induction of IFN-β in murine and human cells in the presence of an intact E3L gene. IFN-β induction required a minimum overlap length of 300 bp between early complementary transcripts and was strongly PKR dependent. Excess early dsRNA produced by MVA activated PKR early but transiently in murine cells and induced enhanced systemic levels of IFN-α, IFN-γ, and other cytokines and chemokines in mice in a largely PKR-dependent manner. Replication-competent chorioallantois vaccinia virus Ankara (CVA) generating excess early dsRNA also enhanced IFN-I production and was apathogenic in mice even at very high doses but showed no in vitro host range defect. Thus, genetically adjuvanting MVA and CVA to generate excess early dsRNA is an effective method to enhance innate immune stimulation by orthopoxvirus vectors and to attenuate replicating vaccinia virus in vivo. Efficient cellular sensing of pathogen-specific components, including double-stranded RNA (dsRNA), is an important prerequisite of an effective antiviral immune response. The prototype poxvirus vaccinia virus (VACV) and its derivative modified vaccinia virus Ankara (MVA) produce dsRNA as a by-product of viral transcription. We found that inhibition of cellular dsRNA recognition established by the virus-encoded proteins E3 and K3 can be overcome by directing viral overexpression of dsRNA early in infection without compromising replication of MVA in permissive cells. Early dsRNA induced transient activation of the cellular dsRNA sensor protein kinase R (PKR), resulting in enhanced production of interferons and cytokines in cells and mice. Enhancing the capacity of MVA to activate the innate immune system is an important approach to further improve the immunogenicity of this promising vaccine vector. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Long-Term Evolution of the Sun and our Biosphere: Causes and Effects?

    NASA Astrophysics Data System (ADS)

    Des Marais, D. J.

    2000-05-01

    The course of early biological evolution felt the environmental consequences of changes in the solar output (discussed here), as well as long-term decreases in planetary heat flow and the flux of extraterrestrial impactors. A large, early UV flux fueled the photodissociation of atmospheric water vapor, sustaining a significant hydrogen flux to space. This flux caused Earth's crust to become oxidized, relative to its mantle. Accordingly, reduced gases and aqueous solutes that were erupted volcanically into the relatively more oxidized surface environment created sources of chemical redox energy for the origin and early evolution of life. Although the solar constant has increased some 30 percent over Earth's lifetime, oceans remained remarkably stable for more than 3.8 billion years. Thus a very effective climate regulation was probably achieved by decreasing over time the atmospheric inventories of greenhouse gases such as carbon dioxide and methane. Such decreases probably had major consequences for the biosphere. Substantial early marine bicarbonate and carbon dioxide inventories sustained abundant abiotic precipitation of carbonates, with consequences for the stability and habitability of key aqueous environments. A long-term decline in carbon dioxide levels increased the bioenergetic requirements for carbon dioxide as well as other aspects of the physiology of photosynthetic microorganisms. The long-term trend of global mean surface temperature is still debated, as is the role of the sun's evolution in that trend. Future increases in the solar constant will drive atmospheric carbon dioxide levels down further, challenging plants to cope with ever-dwindling concentrations of carbon substrates. Climate regulation will be achieved by modulating an increasing abundance of high-albedo water vapor clouds. Future biological evolution defies precise predictions, however it is certain that the sun's continuing evolution will play a key role.

  1. Achieving high energy absorption capacity in cellular bulk metallic glasses

    PubMed Central

    Chen, S. H.; Chan, K. C.; Wu, F. F.; Xia, L.

    2015-01-01

    Cellular bulk metallic glasses (BMGs) have exhibited excellent energy-absorption performance by inheriting superior strength from the parent BMGs. However, how to achieve high energy absorption capacity in cellular BMGs is vital but mysterious. In this work, using step-by-step observations of the deformation evolution of a series of cellular BMGs, the underlying mechanisms for the remarkable energy absorption capacity have been investigated by studying two influencing key factors: the peak stress and the decay of the peak stress during the plastic-flow plateau stages. An analytical model of the peak stress has been proposed, and the predicted results agree well with the experimental data. The decay of the peak stress has been attributed to the geometry change of the macroscopic cells, the formation of shear bands in the middle of the struts, and the “work-softening” nature of BMGs. The influencing factors such as the effect of the strut thickness and the number of unit cells have also been investigated and discussed. Strategies for achieving higher energy absorption capacity in cellular BMGs have been proposed. PMID:25973781

  2. Haemoglobin function in vertebrates: evolutionary changes in cellular regulation in hypoxia.

    PubMed

    Nikinmaa, M

    2001-11-15

    The evolution of erythrocytic hypoxia responses is reviewed by comparing the cellular control of haemoglobin-oxygen affinity in agnathans, teleost fish and terrestrial vertebrates. The most ancient response to hypoxic conditions appears to be an increase in cell volume, which increases the haemoglobin-oxygen affinity in lampreys. In teleost fish, an increase of cell volume in hypoxic conditions is also evident. The volume increase is coupled to an increase in erythrocyte pH. These changes are caused by an adrenergic activation of sodium/proton exchange across the erythrocyte membrane. The mechanism is important in acute hypoxia and is followed by a decrease in cellular adenosine triphosphate (ATP) and guanosine triphosphate (GTP) concentrations in continued hypoxia. In hypoxic bird embryos, the ATP levels are also reduced. The mechanisms by which hypoxia decreases cellular ATP and GTP concentrations remains unknown, although at least in bird embryos cAMP-dependent mechanisms have been implicated. In mammals, hypoxia responses appear to occur mainly via modulation of cellular organic phosphate concentrations. In moderate hypoxia, 2,3-diphosphoglycerate levels are increased as a result of alkalosis caused by increased ventilation.

  3. A living mesoscopic cellular automaton made of skin scales.

    PubMed

    Manukyan, Liana; Montandon, Sophie A; Fofonjka, Anamarija; Smirnov, Stanislav; Milinkovitch, Michel C

    2017-04-12

    In vertebrates, skin colour patterns emerge from nonlinear dynamical microscopic systems of cell interactions. Here we show that in ocellated lizards a quasi-hexagonal lattice of skin scales, rather than individual chromatophore cells, establishes a green and black labyrinthine pattern of skin colour. We analysed time series of lizard scale colour dynamics over four years of their development and demonstrate that this pattern is produced by a cellular automaton (a grid of elements whose states are iterated according to a set of rules based on the states of neighbouring elements) that dynamically computes the colour states of individual mesoscopic skin scales to produce the corresponding macroscopic colour pattern. Using numerical simulations and mathematical derivation, we identify how a discrete von Neumann cellular automaton emerges from a continuous Turing reaction-diffusion system. Skin thickness variation generated by three-dimensional morphogenesis of skin scales causes the underlying reaction-diffusion dynamics to separate into microscopic and mesoscopic spatial scales, the latter generating a cellular automaton. Our study indicates that cellular automata are not merely abstract computational systems, but can directly correspond to processes generated by biological evolution.

  4. Theoretical Model for Cellular Shapes Driven by Protrusive and Adhesive Forces

    PubMed Central

    Kabaso, Doron; Shlomovitz, Roie; Schloen, Kathrin; Stradal, Theresia; Gov, Nir S.

    2011-01-01

    The forces that arise from the actin cytoskeleton play a crucial role in determining the cell shape. These include protrusive forces due to actin polymerization and adhesion to the external matrix. We present here a theoretical model for the cellular shapes resulting from the feedback between the membrane shape and the forces acting on the membrane, mediated by curvature-sensitive membrane complexes of a convex shape. In previous theoretical studies we have investigated the regimes of linear instability where spontaneous formation of cellular protrusions is initiated. Here we calculate the evolution of a two dimensional cell contour beyond the linear regime and determine the final steady-state shapes arising within the model. We find that shapes driven by adhesion or by actin polymerization (lamellipodia) have very different morphologies, as observed in cells. Furthermore, we find that as the strength of the protrusive forces diminish, the system approaches a stabilization of a periodic pattern of protrusions. This result can provide an explanation for a number of puzzling experimental observations regarding cellular shape dependence on the properties of the extra-cellular matrix. PMID:21573201

  5. A living mesoscopic cellular automaton made of skin scales

    NASA Astrophysics Data System (ADS)

    Manukyan, Liana; Montandon, Sophie A.; Fofonjka, Anamarija; Smirnov, Stanislav; Milinkovitch, Michel C.

    2017-04-01

    In vertebrates, skin colour patterns emerge from nonlinear dynamical microscopic systems of cell interactions. Here we show that in ocellated lizards a quasi-hexagonal lattice of skin scales, rather than individual chromatophore cells, establishes a green and black labyrinthine pattern of skin colour. We analysed time series of lizard scale colour dynamics over four years of their development and demonstrate that this pattern is produced by a cellular automaton (a grid of elements whose states are iterated according to a set of rules based on the states of neighbouring elements) that dynamically computes the colour states of individual mesoscopic skin scales to produce the corresponding macroscopic colour pattern. Using numerical simulations and mathematical derivation, we identify how a discrete von Neumann cellular automaton emerges from a continuous Turing reaction-diffusion system. Skin thickness variation generated by three-dimensional morphogenesis of skin scales causes the underlying reaction-diffusion dynamics to separate into microscopic and mesoscopic spatial scales, the latter generating a cellular automaton. Our study indicates that cellular automata are not merely abstract computational systems, but can directly correspond to processes generated by biological evolution.

  6. Conceptual Ecology of the Evolution Acceptance among Greek Education Students: Knowledge, Religious Practices and Social Influences

    ERIC Educational Resources Information Center

    Athanasiou, Kyriacos; Papadopoulou, Penelope

    2012-01-01

    In this study, we explored some of the factors related to the acceptance of evolution theory among Greek university students training to be teachers in early childhood education, using conceptual ecology for biological evolution as a theoretical framework. We examined the acceptance of evolution theory and we also looked into the relationship…

  7. Cell evolution and Earth history: stasis and revolution

    PubMed Central

    Cavalier-Smith, Thomas

    2006-01-01

    This synthesis has three main parts. The first discusses the overall tree of life and nature of the last common ancestor (cenancestor). I emphasize key steps in cellular evolution important for ordering and timing the major evolutionary innovations in the history of the biosphere, explaining especially the origins of the eukaryote cell and of bacterial flagella and cell envelope novelties. Second, I map the tree onto the fossil record and discuss dates of key events and their biogeochemical impact. Finally, I present a broad synthesis, discussing evidence for a three-phase history of life. The first phase began perhaps ca 3.5 Gyr ago, when the origin of cells and anoxic photosynthesis generated the arguably most primitive prokaryote phylum, Chlorobacteria (=Chloroflexi), the first negibacteria with cells bounded by two acyl ester phospholipid membranes. After this ‘chlorobacterial age’ of benthic anaerobic evolution protected from UV radiation by mineral grains, two momentous quantum evolutionary episodes of cellular innovation and microbial radiation dramatically transformed the Earth's surface: the glycobacterial revolution initiated an oxygenic ‘age of cyanobacteria’ and, as the ozone layer grew, the rise of plankton; immensely later, probably as recently as ca 0.9 Gyr ago, the neomuran revolution ushered in the ‘age of eukaryotes’, Archaebacteria (arguably the youngest bacterial phylum), and morphological complexity. Diversification of glycobacteria ca 2.8 Gyr ago, predominantly inhabiting stratified benthic mats, I suggest caused serial depletion of 13C by ribulose 1,5-bis-phosphate caboxylase/oxygenase (Rubisco) to yield ultralight late Archaean organic carbon formerly attributed to methanogenesis plus methanotrophy. The late origin of archaebacterial methanogenesis ca 720 Myr ago perhaps triggered snowball Earth episodes by slight global warming increasing weathering and reducing CO2 levels, to yield runaway cooling; the origin of anaerobic methane oxidation ca 570 Myr ago reduced methane flux at source, stabilizing Phanerozoic climates. I argue that the major cellular innovations exhibit a pattern of quantum evolution followed by very rapid radiation and then substantial stasis, as described by Simpson. They yielded organisms that are a mosaic of extremely conservative and radically novel features, as characterized by De Beer's phrase ‘mosaic evolution’. Evolution is not evenly paced and there are no real molecular clocks. PMID:16754610

  8. Mesozoic mammals from Arizona: new evidence on Mammalian evolution.

    PubMed

    Jenkins, F A; Crompton, A W; Downs, W R

    1983-12-16

    Knowledge of early mammalian evolution has been based on Old World Late Triassic-Early Jurassic faunas. The discovery of mammalian fossils of approximately equivalent age in the Kayenta Formation of northeastern Arizona gives evidence of greater diversity than known previously. A new taxon documents the development of an angular region of the jaw as a neomorphic process, and represents an intermediate stage in the origin of mammalian jaw musculature.

  9. Early Pleistocene third metacarpal from Kenya and the evolution of modern human-like hand morphology

    PubMed Central

    Ward, Carol V.; Tocheri, Matthew W.; Plavcan, J. Michael; Brown, Francis H.; Manthi, Fredrick Kyalo

    2014-01-01

    Despite discoveries of relatively complete hands from two early hominin species (Ardipithecus ramidus and Australopithecus sediba) and partial hands from another (Australopithecus afarensis), fundamental questions remain about the evolution of human-like hand anatomy and function. These questions are driven by the paucity of hand fossils in the hominin fossil record between 800,000 and 1.8 My old, a time interval well documented for the emergence and subsequent proliferation of Acheulian technology (shaped bifacial stone tools). Modern and Middle to Late Pleistocene humans share a suite of derived features in the thumb, wrist, and radial carpometacarpal joints that is noticeably absent in early hominins. Here we show that one of the most distinctive features of this suite in the Middle Pleistocene to recent human hand, the third metacarpal styloid process, was present ∼1.42 Mya in an East African hominin from Kaitio, West Turkana, Kenya. This fossil thus provides the earliest unambiguous evidence for the evolution of a key shared derived characteristic of modern human and Neandertal hand morphology and suggests that the distinctive complex of radial carpometacarpal joint features in the human hand arose early in the evolution of the genus Homo and probably in Homo erectus sensu lato. PMID:24344276

  10. Early Precambrian crustal evolution of south India

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.

    1986-01-01

    The Early Precambrian sequence in Karnataka, South India provides evidences for a distinct trend of evolution which differs from trends exhibited in many other Early Precambrian regions of the world. The supracrustal rock associations preserved in greenstone belts and as inclusions in gneisses and granulites suggest the evolution of the terrain from a stable to a mobile regime. The stable regime is represented by (1) layered ultramafic-mafic complexes, (2) orthoquartzite-basalt-rhyodacite-iron formation, and (30 ortho-quartzite-carbonate-Mn-Fe formation. The mobile regime, which can be shown on sedimentological grounds to have succeeded the stable regime, witnessed the accumulation of a greywacke-pillow basalt-dacite-rhyolite-iron formation association. Detrital sediments of the stable zone accumulated dominantly in fluvial environment and the associated volcanics are ubaerial. The volcanics of the stable regime are tholeiites derived from a zirconium and LREE-enriched sources. The greywackes of the mobile regime are turbidities, and the volcanic rocks possess continental margin (island-arc or back-arc) affinity; they show a LREE depleted to slightly LREE-enriched pattern. The evolution from a stable to a mobile regime is in contrast to the trend seen in most other regions of the world, where an early dominantly volcanic association of a mobile regime gives way upward in the sequence to sediments characteristic of a stable regime.

  11. Least dissipation cost as a design principle for robustness and function of cellular networks

    NASA Astrophysics Data System (ADS)

    Han, Bo; Wang, Jin

    2008-03-01

    From a study of the budding yeast cell cycle, we found that the cellular network evolves to have the least cost for realizing its biological function. We quantify the cost in terms of the dissipation or heat loss characterized through the steady-state properties: the underlying landscape and the associated flux. We found that the dissipation cost is intimately related to the stability and robustness of the network. With the least dissipation cost, the network becomes most stable and robust under mutations and perturbations on the sharpness of the response from input to output as well as self-degradations. The least dissipation cost may provide a general design principle for the cellular network to survive from the evolution and realize the biological function.

  12. Origin and early evolution of photosynthetic eukaryotes in freshwater environments: reinterpreting proterozoic paleobiology and biogeochemical processes in light of trait evolution.

    PubMed

    Blank, Carrine E

    2013-12-01

    Phylogenetic analyses were performed on concatenated data sets of 31 genes and 11,789 unambiguously alignable characters from 37 cyanobacterial and 35 chloroplast genomes. The plastid lineage emerged somewhat early in the cyanobacterial tree, at a time when Cyanobacteria were likely unicellular and restricted to freshwater ecosystems. Using relaxed molecular clocks and 22 age constraints spanning cyanobacterial and eukaryote nodes, the common ancestor to the photosynthetic eukaryotes was predicted to have also inhabited freshwater environments around the time that oxygen appeared in the atmosphere (2.0-2.3 Ga). Early diversifications within each of the three major plastid clades were also inferred to have occurred in freshwater environments, through the late Paleoproterozoic and into the middle Mesoproterozoic. The colonization of marine environments by photosynthetic eukaryotes may not have occurred until after the middle Mesoproterozoic (1.2-1.5 Ga). The evolutionary hypotheses proposed here predict that early photosynthetic eukaryotes may have never experienced the widespread anoxia or euxinia suggested to have characterized marine environments in the Paleoproterozoic to early Mesoproterozoic. It also proposes that earliest acritarchs (1.5-1.7 Ga) may have been produced by freshwater taxa. This study highlights how the early evolution of habitat preference in photosynthetic eukaryotes, along with Cyanobacteria, could have contributed to changing biogeochemical conditions on the early Earth. © 2013 Phycological Society of America.

  13. Mutagens and carcinogens - Occurrence and role during chemical and biological evolution

    NASA Technical Reports Server (NTRS)

    Giner-Sorolla, A.; Oro, J.

    1981-01-01

    The roles of mutagenic and carcinogenic substances in early biologic evolution is examined, along with terrestrial and extraterrestrial sources of mutagens and carcinogens. UV solar radiation is noted to have served to stimulate prebiotic life while also causing harmful effects in plants and animals. Aromatic compounds have been found in meteorites, and comprise leukemogens, polycyclic hydrocarbons, and nitrasamine precursors. Other mutagenic sources are volcanoes, and the beginning of evolution with mutagenic substances is complicated by the appearance of malignancies due to the presence of carcinogens. The atmosphere of the Precambrian period contained both mutagens and early carcinogens and, combined with volcanic activity discharges, formed an atmospheric chemical background analogous to the background ionizing radiation. Carcinogenesis is concluded to be intrinsic to nature, having initiated evolution and, eventually, cancer cells.

  14. Microbial metabolism of Tholin

    NASA Technical Reports Server (NTRS)

    Stoker, C. R.; Mancinelli, R. L.; Boston, P. J.; Segal, W.; Khare, B. N.

    1990-01-01

    Tholin, a class of complex organic heteropolymers hypothesized to possess wide solar system distribution, is shown to furnish the carbon and energy requirements of a wide variety of common soil bacteria which encompasses aerobic, anaerobic, and facultatively anaerobic bacteria. Some of these bacteria are able to derive not merely their carbon but also their nitrogen requirements from tholin. The palatability of tholins to modern microbes is speculated to have implications for the early evolution of microbial life on earth; tholins may have formed the base of the food chain for an early heterotrophic biosphere, prior to the evolution of autotrophy on the early earth.

  15. Potomacapnos apeleutheron gen. et sp. nov., a new Early Cretaceous angiosperm from the Potomac Group and its implications for the evolution of eudicot leaf architecture.

    PubMed

    Jud, Nathan A; Hickey, Leo J

    2013-12-01

    Eudicots diverged early in the evolution of flowering plants and now comprise more than 70% of angiosperm species. In spite of the importance of eudicots, our understanding of the early evolution of this clade is limited by a poor fossil record and uncertainty about the order of early phylogenetic branching. The study of Lower Cretaceous fossils can reveal much about the evolution, morphology, and ecology of the eudicots. Fossils described here were collected from Aptian sediments of the Potomac Group exposed at the Dutch Gap locality in Virginia, USA. Specimens were prepared by degaging, then described and compared with leaves of relevant extant and fossil plants. We conducted a phylogenetic analysis of morphological characters using parsimony while constraining the tree search with the topology found through molecular phylogenetic analyses. The new species is closely related to ranunculalean eudicots and has leaf architecture remarkably similar to some living Fumarioideae (Papaveraceae). These are the oldest eudicot megafossils from North America, and they show complex leaf architecture reflecting developmental pathways unique to extant eudicots. The morphology and small size of the fossils suggest that they were herbaceous plants, as is seen in other putative early eudicots. The absence of co-occurring tricolpate pollen at Dutch Gap either (1) reflects low preservation probability for pollen of entomophilous herbs or (2) indicates that some leaf features of extant eudicots appeared before the origin of tricolpate pollen.

  16. A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds.

    PubMed

    Knoll, Fabien; Chiappe, Luis M; Sanchez, Sophie; Garwood, Russell J; Edwards, Nicholas P; Wogelius, Roy A; Sellers, William I; Manning, Phillip L; Ortega, Francisco; Serrano, Francisco J; Marugán-Lobón, Jesús; Cuesta, Elena; Escaso, Fernando; Sanz, Jose Luis

    2018-03-05

    Fossils of juvenile Mesozoic birds provide insight into the early evolution of avian development, however such fossils are rare. The analysis of the ossification sequence in these early-branching birds has the potential to address important questions about their comparative developmental biology and to help understand their morphological evolution and ecological differentiation. Here we report on an early juvenile enantiornithine specimen from the Early Cretaceous of Europe, which sheds new light on the osteogenesis in this most species-rich clade of Mesozoic birds. Consisting of a nearly complete skeleton, it is amongst the smallest known Mesozoic avian fossils representing post-hatching stages of development. Comparisons between this new specimen and other known early juvenile enantiornithines support a clade-wide asynchronous pattern of osteogenesis in the sternum and the vertebral column, and strongly indicate that the hatchlings of these phylogenetically basal birds varied greatly in size and tempo of skeletal maturation.

  17. Not just black and white: pigment pattern development and evolution in vertebrates

    PubMed Central

    Mills, Margaret G.; Patterson, Larissa B.

    2009-01-01

    Animals display diverse colors and patterns that vary within and between species. Similar phenotypes appear in both closely related and widely divergent taxa. Pigment patterns thus provide an opportunity to explore how development is altered to produce differences in form and whether similar phenotypes share a common genetic basis. Understanding the development and evolution of pigment patterns requires knowledge of the cellular interactions and signaling pathways that produce those patterns. These complex traits provide unparalleled opportunities for integrating studies from ecology and behavior to molecular biology and biophysics. PMID:19073271

  18. Formal Definitions of Unbounded Evolution and Innovation Reveal Universal Mechanisms for Open-Ended Evolution in Dynamical Systems.

    PubMed

    Adams, Alyssa; Zenil, Hector; Davies, Paul C W; Walker, Sara Imari

    2017-04-20

    Open-ended evolution (OEE) is relevant to a variety of biological, artificial and technological systems, but has been challenging to reproduce in silico. Most theoretical efforts focus on key aspects of open-ended evolution as it appears in biology. We recast the problem as a more general one in dynamical systems theory, providing simple criteria for open-ended evolution based on two hallmark features: unbounded evolution and innovation. We define unbounded evolution as patterns that are non-repeating within the expected Poincare recurrence time of an isolated system, and innovation as trajectories not observed in isolated systems. As a case study, we implement novel variants of cellular automata (CA) where the update rules are allowed to vary with time in three alternative ways. Each is capable of generating conditions for open-ended evolution, but vary in their ability to do so. We find that state-dependent dynamics, regarded as a hallmark of life, statistically out-performs other candidate mechanisms, and is the only mechanism to produce open-ended evolution in a scalable manner, essential to the notion of ongoing evolution. This analysis suggests a new framework for unifying mechanisms for generating OEE with features distinctive to life and its artifacts, with broad applicability to biological and artificial systems.

  19. Ion transport across the biological membrane by computational protein design

    NASA Astrophysics Data System (ADS)

    Grigoryan, Gevorg

    The cellular membrane is impermeable to most of the chemicals the cell needs to take in or discard to survive. Therefore, transporters-a class of transmembrane proteins tasked with shuttling cargo chemicals in and out of the cell-are essential to all cellular life. From existing crystal structures, we know transporters to be complex machines, exquisitely tuned for specificity and controllability. But how could membrane-bound life have evolved if it needed such complex machines to exist first? To shed light onto this question, we considered the task of designing a transporter de novo. As our guiding principle, we took the ``alternating-access model''-a conceptual mechanism stating that transporters work by rocking between two conformations, each exposing the cargo-binding site to either the intra- or the extra-cellular environment. A computational design framework was developed to encode an anti-parallel four-helix bundle that rocked between two alternative states to orchestrate the movement of Zn(II) ions across the membrane. The ensemble nature of both states was accounted for using a free energy-based approach, and sequences were chosen based on predicted formation of the targeted topology in the membrane and bi-stability. A single sequence was prepared experimentally and shown to function as a Zn(II) transporter in lipid vesicles. Further, transport was specific to Zn(II) ions and several control peptides supported the underlying design principles. This included a mutant designed to retain all properties but with reduced rocking, which showed greatly depressed transport ability. These results suggest that early transporters could have evolved in the context of simple topologies, to be later tuned by evolution for improved properties and controllability. Our study also serves as an important advance in computational protein design, showing the feasibility of designing functional membrane proteins and of tuning conformational landscapes for desired function. Alfred P. Sloan Foundation Research Fellowship.

  20. "The Only 13-Year-Old on Planet Earth without a Cell Phone": Meanings of Cell Phones in Early Adolescents' Everyday Lives

    ERIC Educational Resources Information Center

    Blair, Bethany L.; Fletcher, Anne C.

    2011-01-01

    Cellular telephones have become an increasingly prevalent feature of contemporary American life, with usage often beginning during early adolescence. With this in mind, twenty 7th graders and their mothers participated in separate qualitative interviews regarding early adolescents' use of cell phones as well as perceived risks and benefits of such…

  1. Life on Mars? II. Physical restrictions

    NASA Technical Reports Server (NTRS)

    Mancinelli, R. L.; Banin, A.

    1995-01-01

    The primary physical factors important to life's evolution on a planet include its temperature, pressure and radiation regimes. Temperature and pressure regulate the presence and duration of liquid water on the surface of Mars. The prolonged presence of liquid water is essential for the evolution and sustained presence of life on a planet. It has been postulated that Mars has always been a cold dry planet; it has also been postulated that early mars possessed a dense atmosphere of CO2 (> or = 1 bar) and sufficient water to cut large channels across its surface. The degree to which either of these postulates is true correlates with the suitability of Mars for life's evolution. Although radiation can destroy living systems, the high fluxes of UV radiation on the martian surface do not necessarily stop the origin and early evolution of life. The probability for life to have arisen and evolved to a significant degree on Mars, based on the postulated ranges of early martian physical factors, is almost solely related to the probability of liquid water existing on the planet for at least hundreds of millions to billions of years.

  2. Physiological Differentiation within a Single-Species Biofilm Fueled by Serpentinization

    PubMed Central

    Brazelton, William J.; Mehta, Mausmi P.; Kelley, Deborah S.; Baross, John A.

    2011-01-01

    ABSTRACT Carbonate chimneys at the Lost City hydrothermal field are coated in biofilms dominated by a single phylotype of archaea known as Lost City Methanosarcinales. In this study, we have detected surprising physiological complexity in single-species biofilms, which is typically indicative of multispecies biofilm communities. Multiple cell morphologies were visible within the biofilms by transmission electron microscopy, and some cells contained intracellular membranes that may facilitate methane oxidation. Both methane production and oxidation were detected at 70 to 80°C and pH 9 to 10 in samples containing the single-species biofilms. Both processes were stimulated by the presence of hydrogen (H2), indicating that methane production and oxidation are part of a syntrophic interaction. Metagenomic data included a sequence encoding AMP-forming acetyl coenzyme A synthetase, indicating that acetate may play a role in the methane-cycling syntrophy. A wide range of nitrogen fixation genes were also identified, many of which were likely acquired via lateral gene transfer (LGT). Our results indicate that cells within these single-species biofilms may have differentiated into multiple physiological roles to form multicellular communities linked by metabolic interactions and LGT. Communities similar to these Lost City biofilms are likely to have existed early in the evolution of life, and we discuss how the multicellular characteristics of ancient hydrogen-fueled biofilm communities could have stimulated ecological diversification, as well as unity of biochemistry, during the earliest stages of cellular evolution. PMID:21791580

  3. Cancer heterogeneity: converting a limitation into a source of biologic information.

    PubMed

    Rübben, Albert; Araujo, Arturo

    2017-09-08

    Analysis of spatial and temporal genetic heterogeneity in human cancers has revealed that somatic cancer evolution in most cancers is not a simple linear process composed of a few sequential steps of mutation acquisitions and clonal expansions. Parallel evolution has been observed in many early human cancers resulting in genetic heterogeneity as well as multilineage progression. Moreover, aneuploidy as well as structural chromosomal aberrations seems to be acquired in a non-linear, punctuated mode where most aberrations occur at early stages of somatic cancer evolution. At later stages, the cancer genomes seem to get stabilized and acquire only few additional rearrangements. While parallel evolution suggests positive selection of driver mutations at early stages of somatic cancer evolution, stabilization of structural aberrations at later stages suggests that negative selection takes effect when cancer cells progressively lose their tolerance towards additional mutation acquisition. Mixing of genetically heterogeneous subclones in cancer samples reduces sensitivity of mutation detection. Moreover, driver mutations present only in a fraction of cancer cells are more likely to be mistaken for passenger mutations. Therefore, genetic heterogeneity may be considered a limitation negatively affecting detection sensitivity of driver mutations. On the other hand, identification of subclones and subclone lineages in human cancers may lead to a more profound understanding of the selective forces which shape somatic cancer evolution in human cancers. Identification of parallel evolution by analyzing spatial heterogeneity may hint to driver mutations which might represent additional therapeutic targets besides driver mutations present in a monoclonal state. Likewise, stabilization of cancer genomes which can be identified by analyzing temporal genetic heterogeneity might hint to genes and pathways which have become essential for survival of cancer cell lineages at later stages of cancer evolution. These genes and pathways might also constitute patient specific therapeutic targets.

  4. Evidence for network evolution in an arabidopsis interactome map

    USDA-ARS?s Scientific Manuscript database

    Plants have unique features that evolved in response to their environments and ecosystems. A full account of the complex cellular networks that underlie plant-specific functions is still missing. We describe a proteome-wide binary protein-protein interaction map for the interactome network of the pl...

  5. Designing Composite Resins in the 21st Century: Ending the End Group Fallacy

    DTIC Science & Technology

    2015-09-30

    unlimited. Network Automata • In correspondence with cellular automata , a system of differential equations describes the evolution of structures...LLNL). 11Distribution A: Approved for public release; distribution is unlimited. “State of the Art” Network Automata Example • Cure kinetics

  6. 75 FR 2877 - Center For Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... Group; Molecular Neurogenetics Study Section. Date: February 11, 2010. Time: 7 a.m. to 6 p.m. Agenda: To...- 0902, [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience..., Genomes, and Genetics Integrated Review Group; Genetic Variation and Evolution Study Section. Date...

  7. Convergent evolution of heat-inducibility during subfunctionalization of the Hsp70 gene family

    PubMed Central

    2013-01-01

    Background Heat-shock proteins of the 70 kDa family (Hsp70s) are essential chaperones required for key cellular functions. In eukaryotes, four subfamilies can be distinguished according to their function and localisation in different cellular compartments: cytosol, endoplasmic reticulum, mitochondria and chloroplasts. Generally, multiple cytosol-type Hsp70s can be found in metazoans that show either constitutive expression and/or stress-inducibility, arguing for the evolution of different tasks and functions. Information about the hsp70 copy number and diversity in microbial eukaryotes is, however, scarce, and detailed knowledge about the differential gene expression in most protists is lacking. Therefore, we have characterised the Hsp70 gene family of Paramecium caudatum to gain insight into the evolution and differential heat stress response of the distinct family members in protists and to investigate the diversification of eukaryotic hsp70s focusing on the evolution of heat-inducibility. Results Eleven putative hsp70 genes could be detected in P. caudatum comprising homologs of three major Hsp70-subfamilies. Phylogenetic analyses revealed five evolutionarily distinct Hsp70-groups, each with a closer relationship to orthologous sequences of Paramecium tetraurelia than to another P. caudatum Hsp70-group. These highly diverse, paralogous groups resulted from duplications preceding Paramecium speciation, underwent divergent evolution and were subject to purifying selection. Heat-shock treatments were performed to test for differential expression patterns among the five Hsp70-groups as well as for a functional conservation within Paramecium. These treatments induced exceptionally high mRNA up-regulations in one cytosolic group with a low basal expression, indicative for the major heat inducible hsp70s. All other groups showed comparatively high basal expression levels and moderate heat-inducibility, signifying constitutively expressed genes. Comparative EST analyses for P. tetraurelia hsp70s unveiled a corresponding expression pattern, which supports a functionally conserved evolution of the Hsp70 gene family in Paramecium. Conclusions Our analyses suggest an independent evolution of the heat-inducible cytosol-type hsp70s in Paramecium and in its close relative Tetrahymena, as well as within higher eukaryotes. This result indicates convergent evolution during hsp70 subfunctionalization and implies that heat-inducibility evolved several times during the course of eukaryotic evolution. PMID:23433225

  8. Three Decades of Anti-Evolution Campaign and Its Results: Turkish Undergraduates' Acceptance and Understanding of the Biological Evolution Theory

    ERIC Educational Resources Information Center

    Peker, Deniz; Comert, Gulsum Gul; Kence, Aykut

    2010-01-01

    Even though in the early years of the Republic of Turkey Darwin's theory of evolution was treated as a scientific theory and taught fairly in schools, despite all the substantial evidence accumulated supporting the theory of evolution since then, Darwin and his ideas today have been scorned by curriculum and education policy makers. Furthermore,…

  9. Early-life estrogen exposure and uterine pathogenesis: ?A model for gene-environment interactions

    EPA Science Inventory

    Aberrant cellular differentiation early in life can contribute to increased cancer risk later in life. In a classic model of this effect, female mice exposed on postnatal day (PND) 1-5 to the synthetic estrogen diethylstilbestrol (DES) have a high incidence of uterine carcinoma. ...

  10. Iterative adaptive radiations of fossil canids show no evidence for diversity-dependent trait evolution.

    PubMed

    Slater, Graham J

    2015-04-21

    A long-standing hypothesis in adaptive radiation theory is that ecological opportunity constrains rates of phenotypic evolution, generating a burst of morphological disparity early in clade history. Empirical support for the early burst model is rare in comparative data, however. One possible reason for this lack of support is that most phylogenetic tests have focused on extant clades, neglecting information from fossil taxa. Here, I test for the expected signature of adaptive radiation using the outstanding 40-My fossil record of North American canids. Models implying time- and diversity-dependent rates of morphological evolution are strongly rejected for two ecologically important traits, body size and grinding area of the molar teeth. Instead, Ornstein-Uhlenbeck processes implying repeated, and sometimes rapid, attraction to distinct dietary adaptive peaks receive substantial support. Diversity-dependent rates of morphological evolution seem uncommon in clades, such as canids, that exhibit a pattern of replicated adaptive radiation. Instead, these clades might best be thought of as deterministic radiations in constrained Simpsonian subzones of a major adaptive zone. Support for adaptive peak models may be diagnostic of subzonal radiations. It remains to be seen whether early burst or ecological opportunity models can explain broader adaptive radiations, such as the evolution of higher taxa.

  11. Iterative adaptive radiations of fossil canids show no evidence for diversity-dependent trait evolution

    NASA Astrophysics Data System (ADS)

    Slater, Graham J.

    2015-04-01

    A long-standing hypothesis in adaptive radiation theory is that ecological opportunity constrains rates of phenotypic evolution, generating a burst of morphological disparity early in clade history. Empirical support for the early burst model is rare in comparative data, however. One possible reason for this lack of support is that most phylogenetic tests have focused on extant clades, neglecting information from fossil taxa. Here, I test for the expected signature of adaptive radiation using the outstanding 40-My fossil record of North American canids. Models implying time- and diversity-dependent rates of morphological evolution are strongly rejected for two ecologically important traits, body size and grinding area of the molar teeth. Instead, Ornstein-Uhlenbeck processes implying repeated, and sometimes rapid, attraction to distinct dietary adaptive peaks receive substantial support. Diversity-dependent rates of morphological evolution seem uncommon in clades, such as canids, that exhibit a pattern of replicated adaptive radiation. Instead, these clades might best be thought of as deterministic radiations in constrained Simpsonian subzones of a major adaptive zone. Support for adaptive peak models may be diagnostic of subzonal radiations. It remains to be seen whether early burst or ecological opportunity models can explain broader adaptive radiations, such as the evolution of higher taxa.

  12. Ecological variation in South American geophagine cichlids arose during an early burst of adaptive morphological and functional evolution

    PubMed Central

    Arbour, Jessica Hilary; López-Fernández, Hernán

    2013-01-01

    Diversity and disparity are unequally distributed both phylogenetically and geographically. This uneven distribution may be owing to differences in diversification rates between clades resulting from processes such as adaptive radiation. We examined the rate and distribution of evolution in feeding biomechanics in the extremely diverse and continentally distributed South American geophagine cichlids. Evolutionary patterns in multivariate functional morphospace were examined using a phylomorphospace approach, disparity-through-time analyses and by comparing Brownian motion (BM) and adaptive peak evolutionary models using maximum likelihood. The most species-rich and functionally disparate clade (CAS) expanded more efficiently in morphospace and evolved more rapidly compared with both BM expectations and its sister clade (GGD). Members of the CAS clade also exhibited an early burst in functional evolution that corresponds to the development of modern ecological roles and may have been related to the colonization of a novel adaptive peak characterized by fast oral jaw mechanics. Furthermore, reduced ecological opportunity following this early burst may have restricted functional evolution in the GGD clade, which is less species-rich and more ecologically specialized. Patterns of evolution in ecologically important functional traits are consistent with a pattern of adaptive radiation within the most diverse clade of Geophagini. PMID:23740780

  13. Fragmentary Solar System History

    NASA Technical Reports Server (NTRS)

    Marti, Kurt

    1997-01-01

    The objective of this research is an improved understanding of the early solar system environment and of the processes involved in the nebula and in the evolution of solid bodies. We present results of our studies on the isotopic signatures in selected primitive solar system objects and on the evaluation of the cosmic ray records and of inferred collisional events. Furthermore, we report data of trapped martian atmospheric gases in meteorites and the inferred early evolution of Mars' atmosphere.

  14. The search for and analysis of direct samples of early Solar System aqueous fluids.

    PubMed

    Zolensky, Michael E; Bodnar, Robert J; Yurimoto, Hisayoshi; Itoh, Shoichi; Fries, Marc; Steele, Andrew; Chan, Queenie H-S; Tsuchiyama, Akira; Kebukawa, Yoko; Ito, Motoo

    2017-05-28

    We describe the current state of the search for direct, surviving samples of early, inner Solar System fluids-fluid inclusions in meteorites. Meteoritic aqueous fluid inclusions are not rare, but they are very tiny and their characterization is at the state of the art for most analytical techniques. Meteoritic fluid inclusions offer us a unique opportunity to study early Solar System brines in the laboratory. Inclusion-by-inclusion analyses of the trapped fluids in carefully selected samples will, in the immediate future, provide us detailed information on the evolution of fluids as they interacted with anhydrous solid materials. Thus, real data can replace calculated fluid compositions in thermochemical calculations of the evolution of water and aqueous reactions in comets, asteroids, moons and the terrestrial planets.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  15. Extracellular matrix motion and early morphogenesis

    PubMed Central

    Loganathan, Rajprasad; Rongish, Brenda J.; Smith, Christopher M.; Filla, Michael B.; Czirok, Andras; Bénazéraf, Bertrand

    2016-01-01

    For over a century, embryologists who studied cellular motion in early amniotes generally assumed that morphogenetic movement reflected migration relative to a static extracellular matrix (ECM) scaffold. However, as we discuss in this Review, recent investigations reveal that the ECM is also moving during morphogenesis. Time-lapse studies show how convective tissue displacement patterns, as visualized by ECM markers, contribute to morphogenesis and organogenesis. Computational image analysis distinguishes between cell-autonomous (active) displacements and convection caused by large-scale (composite) tissue movements. Modern quantification of large-scale ‘total’ cellular motion and the accompanying ECM motion in the embryo demonstrates that a dynamic ECM is required for generation of the emergent motion patterns that drive amniote morphogenesis. PMID:27302396

  16. A Carboniferous insect gall: insight into early ecologic history of the Holometabola.

    PubMed Central

    Labandeira, C C; Phillips, T L

    1996-01-01

    Although the prevalence or even occurrence of insect herbivory during the Late Carboniferous (Pennsylvanian) has been questioned, we present the earliest-known ecologic evidence showing that by Late Pennsylvanian times (302 million years ago) a larva of the Holometabola was galling the internal tissue of Psaronius tree-fern fronds. Several diagnostic cellular and histological features of these petiole galls have been preserved in exquisite detail, including an excavated axial lumen filled with fecal pellets and comminuted frass, plant-produced response tissue surrounding the lumen, and specificity by the larval herbivore for a particular host species and tissue type. Whereas most suggestions over-whelmingly support the evolution of such intimate and reciprocal plant-insect interactions 175 million years later, we provide documentation that before the demise of Pennsylvanian age coal-swamp forests, a highly stereotyped life cycle was already established between an insect that was consuming internal plant tissue and a vascular plant host responding to that herbivory. This and related discoveries of insect herbivore consumption of Psaronius tissues indicate that modern-style herbivores were established in Late Pennsylvanian coal-swamp forests. Images Fig. 1 PMID:11607697

  17. Chromosome nondisjunction during bipolar mitoses of binucleated intermediates promote aneuploidy formation along with multipolar mitoses rather than chromosome loss in micronuclei induced by asbestos

    PubMed Central

    Zhang, Tianwei; Lv, Lei; Huang, Yun; Ren, Xiaohui; Shi, Qinghua

    2017-01-01

    Asbestos is a well-known occupational carcinogen that can cause aneuploidy during the early stages of neoplastic development. To explore the origins of asbestos-induced aneuploidy, we performed long-term live-cell imaging followed by fluorescence in situ hybridization of chromosomes 8 and 12 in human bronchial epithelial (HBEC) and mesothelial (MeT5A) cells. We demonstrate that asbestos induces aneuploidy via binucleated intermediates resulting from cytokinesis failure. On the one hand, asbestos increases chromosome nondisjunction during bipolar divisions of binucleated intermediates and produces near-tetraploidy. On the other hand, asbestos increases multipolar divisions of binucleated intermediates to produce aneuploidy. Surprisingly, chromosomes in asbestos-induced micronucleated cells are not truly lost by the cells, and do not contribute to aneuploid cell formation in either cell type. These results clarify the cellular source of asbestos-induced aneuploidy. In particular, they show the asbestos-induced disruption of bipolar chromosomal segregation in tetraploid cells, thereby demonstrating the causality between binucleated intermediates and aneuploidy evolution, rather than chromosome loss in micronuclei. PMID:28038458

  18. The resurrection genome of Boea hygrometrica: A blueprint for survival of dehydration.

    PubMed

    Xiao, Lihong; Yang, Ge; Zhang, Liechi; Yang, Xinhua; Zhao, Shuang; Ji, Zhongzhong; Zhou, Qing; Hu, Min; Wang, Yu; Chen, Ming; Xu, Yu; Jin, Haijing; Xiao, Xuan; Hu, Guipeng; Bao, Fang; Hu, Yong; Wan, Ping; Li, Legong; Deng, Xin; Kuang, Tingyun; Xiang, Chengbin; Zhu, Jian-Kang; Oliver, Melvin J; He, Yikun

    2015-05-05

    "Drying without dying" is an essential trait in land plant evolution. Unraveling how a unique group of angiosperms, the Resurrection Plants, survive desiccation of their leaves and roots has been hampered by the lack of a foundational genome perspective. Here we report the ∼1,691-Mb sequenced genome of Boea hygrometrica, an important resurrection plant model. The sequence revealed evidence for two historical genome-wide duplication events, a compliment of 49,374 protein-coding genes, 29.15% of which are unique (orphan) to Boea and 20% of which (9,888) significantly respond to desiccation at the transcript level. Expansion of early light-inducible protein (ELIP) and 5S rRNA genes highlights the importance of the protection of the photosynthetic apparatus during drying and the rapid resumption of protein synthesis in the resurrection capability of Boea. Transcriptome analysis reveals extensive alternative splicing of transcripts and a focus on cellular protection strategies. The lack of desiccation tolerance-specific genome organizational features suggests the resurrection phenotype evolved mainly by an alteration in the control of dehydration response genes.

  19. Stochastic modeling and experimental analysis of phenotypic switching and survival of cancer cells under stress

    NASA Astrophysics Data System (ADS)

    Zamani Dahaj, Seyed Alireza; Kumar, Niraj; Sundaram, Bala; Celli, Jonathan; Kulkarni, Rahul

    The phenotypic heterogeneity of cancer cells is critical to their survival under stress. A significant contribution to heterogeneity of cancer calls derives from the epithelial-mesenchymal transition (EMT), a conserved cellular program that is crucial for embryonic development. Several studies have investigated the role of EMT in growth of early stage tumors into invasive malignancies. Also, EMT has been closely associated with the acquisition of chemoresistance properties in cancer cells. Motivated by these studies, we analyze multi-phenotype stochastic models of the evolution of cancers cell populations under stress. We derive analytical results for time-dependent probability distributions that provide insights into the competing rates underlying phenotypic switching (e.g. during EMT) and the corresponding survival of cancer cells. Experimentally, we evaluate these model-based predictions by imaging human pancreatic cancer cell lines grown with and without cytotoxic agents and measure growth kinetics, survival, morphological changes and (terminal evaluation of) biomarkers with associated epithelial and mesenchymal phenotypes. The results derived suggest approaches for distinguishing between adaptation and selection scenarios for survival in the presence of external stresses.

  20. Detecting early signs of heat and drought stress in Phoenix dactylifera (date palm)

    PubMed Central

    Safronov, Omid; Kreuzwieser, Jürgen; Haberer, Georg; Alyousif, Mohamed S.; Schulze, Waltraud; Al-Harbi, Naif; Arab, Leila; Ache, Peter; Stempfl, Thomas; Kruse, Joerg; Mayer, Klaus X.; Hedrich, Rainer; Rennenberg, Heinz

    2017-01-01

    Plants adapt to the environment by either long-term genome evolution or by acclimatization processes where the cellular processes and metabolism of the plant are adjusted within the existing potential in the genome. Here we studied the adaptation strategies in date palm, Phoenix dactylifera, under mild heat, drought and combined heat and drought by transcriptomic and metabolomic profiling. In transcriptomics data, combined heat and drought resembled heat response, whereas in metabolomics data it was more similar to drought. In both conditions, soluble carbohydrates, such as fucose, and glucose derivatives, were increased, suggesting a switch to carbohydrate metabolism and cell wall biogenesis. This result is consistent with the evidence from transcriptomics and cis-motif analysis. In addition, transcriptomics data showed transcriptional activation of genes related to reactive oxygen species in all three conditions (drought, heat, and combined heat and drought), suggesting increased activity of enzymatic antioxidant systems in cytosol, chloroplast and peroxisome. Finally, the genes that were differentially expressed in heat and combined heat and drought stresses were significantly enriched for circadian and diurnal rhythm motifs, suggesting new stress avoidance strategies. PMID:28570677

  1. Primal Eukaryogenesis: On the Communal Nature of Precellular States, Ancestral to Modern Life

    PubMed Central

    Egel, Richard

    2012-01-01

    This problem-oriented, exploratory and hypothesis-driven discourse toward the unknown combines several basic tenets: (i) a photo-active metal sulfide scenario of primal biogenesis in the porespace of shallow sedimentary flats, in contrast to hot deep-sea hydrothermal vent conditions; (ii) an inherently complex communal system at the common root of present life forms; (iii) a high degree of internal compartmentalization at this communal root, progressively resembling coenocytic (syncytial) super-cells; (iv) a direct connection from such communal super-cells to proto-eukaryotic macro-cell organization; and (v) multiple rounds of micro-cellular escape with streamlined reductive evolution-leading to the major prokaryotic cell lines, as well as to megaviruses and other viral lineages. Hopefully, such nontraditional concepts and approaches will contribute to coherent and plausible views about the origins and early life on Earth. In particular, the coevolutionary emergence from a communal system at the common root can most naturally explain the vast discrepancy in subcellular organization between modern eukaryotes on the one hand and both archaea and bacteria on the other. PMID:25382122

  2. Chromosome nondisjunction during bipolar mitoses of binucleated intermediates promote aneuploidy formation along with multipolar mitoses rather than chromosome loss in micronuclei induced by asbestos.

    PubMed

    Zhang, Tianwei; Lv, Lei; Huang, Yun; Ren, Xiaohui; Shi, Qinghua

    2017-02-14

    Asbestos is a well-known occupational carcinogen that can cause aneuploidy during the early stages of neoplastic development. To explore the origins of asbestos-induced aneuploidy, we performed long-term live-cell imaging followed by fluorescence in situ hybridization of chromosomes 8 and 12 in human bronchial epithelial (HBEC) and mesothelial (MeT5A) cells. We demonstrate that asbestos induces aneuploidy via binucleated intermediates resulting from cytokinesis failure. On the one hand, asbestos increases chromosome nondisjunction during bipolar divisions of binucleated intermediates and produces near-tetraploidy. On the other hand, asbestos increases multipolar divisions of binucleated intermediates to produce aneuploidy. Surprisingly, chromosomes in asbestos-induced micronucleated cells are not truly lost by the cells, and do not contribute to aneuploid cell formation in either cell type. These results clarify the cellular source of asbestos-induced aneuploidy. In particular, they show the asbestos-induced disruption of bipolar chromosomal segregation in tetraploid cells, thereby demonstrating the causality between binucleated intermediates and aneuploidy evolution, rather than chromosome loss in micronuclei.

  3. ABCdb: an online resource for ABC transporter repertories from sequenced archaeal and bacterial genomes.

    PubMed

    Fichant, Gwennaele; Basse, Marie-Jeanne; Quentin, Yves

    2006-03-01

    The ATP-binding cassette (ABC) transporters are one of the major classes of active transporters. They are widespread in archaea, bacteria, and eukaryota, indicating that they have arisen early in evolution. They are involved in many essential physiological processes, but the majority import or export a wide variety of compounds across cellular membranes. These systems share a common architecture composed of four (exporters) or five (importers) domains. To identify and reconstruct functional ABC transporters encoded by archaeal and bacterial genomes, we have developed a bioinformatic strategy. Cross-reference to the transport classification system is used to predict the type of compound transported. A high quality of annotation is achieved by manual verification of the predictions. However, in order to face the rapid increase in the number of published genomes, we also include analyses of genomes issuing directly from the automated strategy. Querying the database (http://www-abcdb.biotoul.fr) allows to easily retrieve ABC transporter repertories and related data. Additional query tools have been developed for the analysis of the ABC family from both functional and evolutionary perspectives.

  4. Remote Monitoring of Cardiac Implantable Electronic Devices.

    PubMed

    Cheung, Christopher C; Deyell, Marc W

    2018-01-08

    Over the past decade, technological advancements have transformed the delivery of care for arrhythmia patients. From early transtelephonic monitoring to new devices capable of wireless and cellular transmission, remote monitoring has revolutionized device care. In this article, we review the current evolution and evidence for remote monitoring in patients with cardiac implantable electronic devices. From passive transmission of device diagnostics, to active transmission of patient- and device-triggered alerts, remote monitoring can shorten the time to diagnosis and treatment. Studies have shown that remote monitoring can reduce hospitalization and emergency room visits, and improve survival. Remote monitoring can also reduce the health care costs, while providing increased access to patients living in rural or marginalized communities. Unfortunately, as many as two-thirds of patients with remote monitoring-capable devices do not use, or are not offered, this feature. Current guidelines recommend remote monitoring and interrogation, combined with annual in-person evaluation in all cardiac device patients. Remote monitoring should be considered in all eligible device patients and should be considered standard of care. Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  5. Evolutionary origins of mechanosensitive ion channels.

    PubMed

    Martinac, Boris; Kloda, Anna

    2003-01-01

    According to the recent revision, the universal phylogenetic tree is composed of three domains: Eukarya (eukaryotes), Bacteria (eubacteria) and Archaea (archaebacteria). Mechanosensitive (MS) ion channels have been documented in cells belonging to all three domains suggesting their very early appearance during evolution of life on Earth. The channels show great diversity in conductance, selectivity and voltage dependence, while sharing the property of being gated by mechanical stimuli exerted on cell membranes. In prokaryotes, MS channels were first documented in Bacteria followed by their discovery in Archaea. The finding of MS channels in archaeal cells helped to recognize and establish the evolutionary relationship between bacterial and archaeal MS channels and to show that this relationship extends to eukaryotic Fungi (Schizosaccharomyces pombe) and Plants (Arabidopsis thaliana). Similar to their bacterial and archaeal homologues, MS channels in eukaryotic cell-walled Fungi and Plants may serve in protecting the cellular plasma membrane from excessive dilation and rupture that may occur during osmotic stress. This review summarizes briefly some of the recent developments in the MS channel research field that may ultimately lead to elucidation of the biophysical and evolutionary principles underlying the mechanosensory transduction in living cells.

  6. Cellular automata and its applications in protein bioinformatics.

    PubMed

    Xiao, Xuan; Wang, Pu; Chou, Kuo-Chen

    2011-09-01

    With the explosion of protein sequences generated in the postgenomic era, it is highly desirable to develop high-throughput tools for rapidly and reliably identifying various attributes of uncharacterized proteins based on their sequence information alone. The knowledge thus obtained can help us timely utilize these newly found protein sequences for both basic research and drug discovery. Many bioinformatics tools have been developed by means of machine learning methods. This review is focused on the applications of a new kind of science (cellular automata) in protein bioinformatics. A cellular automaton (CA) is an open, flexible and discrete dynamic model that holds enormous potentials in modeling complex systems, in spite of the simplicity of the model itself. Researchers, scientists and practitioners from different fields have utilized cellular automata for visualizing protein sequences, investigating their evolution processes, and predicting their various attributes. Owing to its impressive power, intuitiveness and relative simplicity, the CA approach has great potential for use as a tool for bioinformatics.

  7. 3D-HST+CANDELS: The Evolution of the Galaxy Size-Mass Distribution since z = 3

    NASA Astrophysics Data System (ADS)

    van der Wel, A.; Franx, M.; van Dokkum, P. G.; Skelton, R. E.; Momcheva, I. G.; Whitaker, K. E.; Brammer, G. B.; Bell, E. F.; Rix, H.-W.; Wuyts, S.; Ferguson, H. C.; Holden, B. P.; Barro, G.; Koekemoer, A. M.; Chang, Yu-Yen; McGrath, E. J.; Häussler, B.; Dekel, A.; Behroozi, P.; Fumagalli, M.; Leja, J.; Lundgren, B. F.; Maseda, M. V.; Nelson, E. J.; Wake, D. A.; Patel, S. G.; Labbé, I.; Faber, S. M.; Grogin, N. A.; Kocevski, D. D.

    2014-06-01

    Spectroscopic+photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift range 0 < z < 3. Separating early- and late-type galaxies on the basis of star-formation activity, we confirm that early-type galaxies are on average smaller than late-type galaxies at all redshifts, and we find a significantly different rate of average size evolution at fixed galaxy mass, with fast evolution for the early-type population, R effvprop(1 + z)-1.48, and moderate evolution for the late-type population, R effvprop(1 + z)-0.75. The large sample size and dynamic range in both galaxy mass and redshift, in combination with the high fidelity of our measurements due to the extensive use of spectroscopic data, not only fortify previous results but also enable us to probe beyond simple average galaxy size measurements. At all redshifts the slope of the size-mass relation is shallow, R_{eff}\\propto M_*^{0.22}, for late-type galaxies with stellar mass >3 × 109 M ⊙, and steep, R_{eff}\\propto M_*^{0.75}, for early-type galaxies with stellar mass >2 × 1010 M ⊙. The intrinsic scatter is lsim0.2 dex for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric but is skewed toward small sizes: at all redshifts and masses, a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (~1011 M ⊙), compact (R eff < 2 kpc) early-type galaxies increases from z = 3 to z = 1.5-2 and then strongly decreases at later cosmic times.

  8. Leaf evolution in early-diverging ferns: insights from a new fern-like plant from the Late Devonian of China.

    PubMed

    Wang, De-Ming; Xu, Hong-He; Xue, Jin-Zhuang; Wang, Qi; Liu, Le

    2015-06-01

    With the exception of angiosperms, the main euphyllophyte lineages (i.e. ferns sensu lato, progymnosperms and gymnosperms) had evolved laminate leaves by the Late Devonian. The evolution of laminate leaves, however, remains unclear for early-diverging ferns, largely represented by fern-like plants. This study presents a novel fern-like taxon with pinnules, which provides new insights into the early evolution of laminate leaves in early-diverging ferns. Macrofossil specimens were collected from the Upper Devonian (Famennian) Wutong Formation of Anhui and Jiangsu Provinces, South China. A standard degagement technique was employed to uncover compressed plant portions within the rock matrix. A new fern-like taxon, SHOUGANGIA BELLA GEN ET SP NOV: , is described and represents an early-diverging fern with highly derived features. It has a partially creeping stem with adventitious roots only on one side, upright primary and secondary branches arranged in helices, tertiary branches borne alternately or (sub)oppositely, laminate and usually lobed leaves with divergent veins, and complex fertile organs terminating tertiary branches and possessing multiple divisions and numerous terminal sporangia. Shougangia bella provides unequivocal fossil evidence for laminate leaves in early-diverging ferns. It suggests that fern-like plants, along with other euphyllophyte lineages, had independently evolved megaphylls by the Late Devonian, possibly in response to a significant decline in atmospheric CO2 concentration. Among fern-like plants, planate ultimate appendages are homologous with laminate pinnules, and in the evolution of megaphylls, fertile organs tend to become complex. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Workshop on Evolution of Martian Volatiles. Part 2

    NASA Technical Reports Server (NTRS)

    Jakosky, B. (Editor); Treiman, A. (Editor)

    1996-01-01

    Different aspects of martian science are discussed. Topics covered include: early Mars volatile inventory, evolution through time, geological influences, present atmospheric properties, soils, exobiology, polar volatiles, and seasonal and diurnal cycles

  10. Enterprise Framework for the Disciplined Evolution of Legacy Systems

    DTIC Science & Technology

    1997-10-01

    out important global issues early in the planning cycle and provides insight for developing a synergistic set of management and technical practices to achieve a disciplined approach to system evolution.

  11. Genomic basis for the convergent evolution of electric organs

    PubMed Central

    Gallant, Jason R.; Traeger, Lindsay L.; Volkening, Jeremy D.; Moffett, Howell; Chen, Po-Hao; Novina, Carl D.; Phillips, George N.; Anand, Rene; Wells, Gregg B.; Pinch, Matthew; Güth, Robert; Unguez, Graciela A.; Albert, James S.; Zakon, Harold H.; Samanta, Manoj P.; Sussman, Michael R.

    2017-01-01

    Little is known about the genetic basis of convergent traits that originate repeatedly over broad taxonomic scales. The myogenic electric organ has evolved six times in fishes to produce electric fields used in communication, navigation, predation, or defense. We have examined the genomic basis of the convergent anatomical and physiological origins of these organs by assembling the genome of the electric eel (Electrophorus electricus) and sequencing electric organ and skeletal muscle transcriptomes from three lineages that have independently evolved electric organs. Our results indicate that, despite millions of years of evolution and large differences in the morphology of electric organ cells, independent lineages have leveraged similar transcription factors and developmental and cellular pathways in the evolution of electric organs. PMID:24970089

  12. Resistance to Bacillus thuringiensis linked with a cadherin transmembrane mutation affecting cellular trafficking in pink bollworm from China

    USDA-ARS?s Scientific Manuscript database

    Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) are cultivated extensively worldwide. However, their benefits are being eroded by increasingly rapid evolution of resistance in pests. In some previously analyzed strains of three major lepidopteran pests, resistance t...

  13. Modern mammal origins: evolutionary grades in the Early Cretaceous of North America.

    PubMed

    Jacobs, L L; Winkler, D A; Murry, P A

    1989-07-01

    Major groups of modern mammals have their origins in the Mesozoic Era, yet the mammalian fossil record is generally poor for that time interval. Fundamental morphological changes that led to modern mammals are often represented by small samples of isolated teeth. Fortunately, functional wear facets on teeth allow prediction of the morphology of occluding teeth that may be unrepresented by fossils. A major step in mammalian evolution occurred in the Early Cretaceous with the evolution of tribosphenic molars, which characterize marsupials and placentals, the two most abundant and diverse extant groups of mammals. A tooth from the Early Cretaceous (110 million years before present) of Texas tests previous predictions (based on lower molars) of the morphology of upper molars in early tribosphenic dentitions. The lingual cusp (protocone) is primitively without shear facets, as expected, but the cheek side of the tooth is derived (advanced) in having distinctive cusps along the margin. The tooth, although distressingly inadequate to define many features of the organism, demonstrates unexpected morphological diversity at a strategic stage of mammalian evolution and falsifies previous claims of the earliest occurrence of true marsupials.

  14. Origin and early evolution of photosynthesis

    NASA Technical Reports Server (NTRS)

    Blankenship, R. E.

    1992-01-01

    Photosynthesis was well-established on the earth at least 3.5 thousand million years ago, and it is widely believed that these ancient organisms had similar metabolic capabilities to modern cyanobacteria. This requires that development of two photosystems and the oxygen evolution capability occurred very early in the earth's history, and that a presumed phase of evolution involving non-oxygen evolving photosynthetic organisms took place even earlier. The evolutionary relationships of the reaction center complexes found in all the classes of currently existing organisms have been analyzed using sequence analysis and biophysical measurements. The results indicate that all reaction centers fall into two basic groups, those with pheophytin and a pair of quinones as early acceptors, and those with iron sulfur clusters as early acceptors. No simple linear branching evolutionary scheme can account for the distribution patterns of reaction centers in existing photosynthetic organisms, and lateral transfer of genetic information is considered as a likely possibility. Possible scenarios for the development of primitive reaction centers into the heterodimeric protein structures found in existing reaction centers and for the development of organisms with two linked photosystems are presented.

  15. Polyamines and Their Metabolites as Diagnostic Markers of Human Diseases

    PubMed Central

    Park, Myung Hee; Igarashi, Kazuei

    2013-01-01

    Polyamines, putrescine, spermidine and spermine, are ubiquitous in living cells and are essential for eukaryotic cell growth. These polycations interact with negatively charged molecules such as DNA, RNA, acidic proteins and phospholipids and modulate various cellular functions including macromolecular synthesis. Dysregulation of the polyamine pathway leads to pathological conditions including cancer, inflammation, stroke, renal failure and diabetes. Increase in polyamines and polyamine synthesis enzymes is often associated with tumor growth, and urinary and plasma contents of polyamines and their metabolites have been investigated as diagnostic markers for cancers. Of these, diacetylated derivatives of spermidine and spermine are elevated in the urine of cancer patients and present potential markers for early detection. Enhanced catabolism of cellular polyamines by polyamine oxidases (PAO), spermine oxidase (SMO) or acetylpolyamine oxidase (AcPAO), increases cellular oxidative stress and generates hydrogen peroxide and a reactive toxic metabolite, acrolein, which covalently incorporates into lysine residues of cellular proteins. Levels of protein-conjuagated acrolein (PC-Acro) and polyamine oxidizing enzymes were increased in the locus of brain infarction and in plasma in a mouse model of stroke and also in the plasma of stroke patients. When the combined measurements of PC-Acro, interleukin 6 (IL-6), and C-reactive protein (CRP) were evaluated, even silent brain infarction (SBI) was detected with high sensitivity and specificity. Considering that there are no reliable biochemical markers for early stage of stroke, PC-Acro and PAOs present promising markers. Thus the polyamine metabolites in plasma or urine provide useful tools in early diagnosis of cancer and stroke. PMID:24009852

  16. Microfossils of the Early Archean Apex chert - New evidence of the antiquity of life

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1993-01-01

    Eleven taxa (including eight heretofore undescribed species) of cellularly preserved filamentous microbes, among the oldest fossils known, have been discovered in a bedded chert unit of the Early Archean Apex Basalt of northwestern Western Australia. This prokaryotic assemblage establishes that trichomic cyanobacteriumlike microorganisms were extant and morphologically diverse at least as early as about 3465 million years ago and suggests that oxygen-producing photoautotrophy may have already evolved by this early stage in biotic history.

  17. Evolution of the bilaterian body plan: what have we learned from annelids?

    NASA Technical Reports Server (NTRS)

    Shankland, M.; Seaver, E. C.

    2000-01-01

    Annelids, unlike their vertebrate or fruit fly cousins, are a bilaterian taxon often overlooked when addressing the question of body plan evolution. However, recent data suggest that annelids offer unique insights on the early evolution of spiral cleavage, anteroposterior axis formation, body axis segmentation, and head versus trunk distinction.

  18. The 1st Symposium on Chemical Evolution and the Origin and Evolution of Life

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L. (Editor); Pleasant, L. G. (Editor)

    1982-01-01

    This symposium provided an opportunity for all NASA Exobiology principal investigators to present their most recent research in a scientific meeting forum. Papers were presented in the following exobiology areas: extraterrestrial chemistry primitive earth, information transfer, solar system exploration, planetary protection, geological record, and early biological evolution.

  19. A continued role for signaling functions in the early evolution of feathers.

    PubMed

    Ruxton, Graeme D; Persons Iv, W Scott; Currie, Philip J

    2017-03-01

    Persons and Currie (2015) argued against either flight, thermoregulation, or signaling as a functional benefit driving the earliest evolution of feathers; rather, they favored simple feathers having an initial tactile sensory function, which changed to a thermoregulatory function as density increased. Here, we explore the relative merits of early simple feathers that may have originated as tactile sensors progressing instead toward a signaling, rather than (or in addition to) a thermoregulatory function. We suggest that signaling could act in concert with a sensory function more naturally than could thermoregulation. As such, the dismissal of a possible signaling function and the presumption that an initial sensory function led directly to a thermoregulatory function (implicit in the title "bristles before down") are premature. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  20. pH-Controlled two-step uncoating of influenza virus.

    PubMed

    Li, Sai; Sieben, Christian; Ludwig, Kai; Höfer, Chris T; Chiantia, Salvatore; Herrmann, Andreas; Eghiaian, Frederic; Schaap, Iwan A T

    2014-04-01

    Upon endocytosis in its cellular host, influenza A virus transits via early to late endosomes. To efficiently release its genome, the composite viral shell must undergo significant structural rearrangement, but the exact sequence of events leading to viral uncoating remains largely speculative. In addition, no change in viral structure has ever been identified at the level of early endosomes, raising a question about their role. We performed AFM indentation on single viruses in conjunction with cellular assays under conditions that mimicked gradual acidification from early to late endosomes. We found that the release of the influenza genome requires sequential exposure to the pH of both early and late endosomes, with each step corresponding to changes in the virus mechanical response. Step 1 (pH 7.5-6) involves a modification of both hemagglutinin and the viral lumen and is reversible, whereas Step 2 (pH <6.0) involves M1 dissociation and major hemagglutinin conformational changes and is irreversible. Bypassing the early-endosomal pH step or blocking the envelope proton channel M2 precludes proper genome release and efficient infection, illustrating the importance of viral lumen acidification during the early endosomal residence for influenza virus infection. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Self-organisation in Cellular Automata with Coalescent Particles: Qualitative and Quantitative Approaches

    NASA Astrophysics Data System (ADS)

    Hellouin de Menibus, Benjamin; Sablik, Mathieu

    2017-06-01

    This article introduces new tools to study self-organisation in a family of simple cellular automata which contain some particle-like objects with good collision properties (coalescence) in their time evolution. We draw an initial configuration at random according to some initial shift-ergodic measure, and use the limit measure to describe the asymptotic behaviour of the automata. We first take a qualitative approach, i.e. we obtain information on the limit measure(s). We prove that only particles moving in one particular direction can persist asymptotically. This provides some previously unknown information on the limit measures of various deterministic and probabilistic cellular automata: 3 and 4-cyclic cellular automata [introduced by Fisch (J Theor Probab 3(2):311-338, 1990; Phys D 45(1-3):19-25, 1990)], one-sided captive cellular automata [introduced by Theyssier (Captive Cellular Automata, 2004)], the majority-traffic cellular automaton, a self stabilisation process towards a discrete line [introduced by Regnault and Rémila (in: Mathematical Foundations of Computer Science 2015—40th International Symposium, MFCS 2015, Milan, Italy, Proceedings, Part I, 2015)]. In a second time we restrict our study to a subclass, the gliders cellular automata. For this class we show quantitative results, consisting in the asymptotic law of some parameters: the entry times [generalising K ůrka et al. (in: Proceedings of AUTOMATA, 2011)], the density of particles and the rate of convergence to the limit measure.

  2. Publications of the exobiology program for 1986: A special bibliography

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A list of 1986 publications resulting from research pursued under the auspices of NASA's Exobiology Program is contained. Research supported by the program is explored in the areas of cosmic evolution of biogenic compounds, prebiotic evolution, early evolution of life, and evolution of advanced life. Premission and preproject activities supporting these areas are supported in the areas of solar system exploration and search for extraterrestrial intelligence.

  3. Publications of the exobiology program for 1990: A special bibliography

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Exobiology Program is an integrated program designed to investigate and understand those processes related to the origin, evolution, and distribution of life in the universe. The Exobiology Program is broad in scope, covering the following subject areas: cosmic evolution of biogenic compounds; prebiotic evolution; early evolution of life; evolution of advanced life; solar system exploration; search for extraterrestrial intelligence; planetary protection; and advanced programs in biological systems research. A listing of the 1990 publications resulting from research supported by the Exobiology Program is presented.

  4. Early to Middle Jurassic tectonic evolution of the Bogda Mountains, Northwest China: Evidence from sedimentology and detrital zircon geochronology

    NASA Astrophysics Data System (ADS)

    Ji, Hongjie; Tao, Huifei; Wang, Qi; Qiu, Zhen; Ma, Dongxu; Qiu, Junli; Liao, Peng

    2018-03-01

    The Bogda Mountains, as an important intracontinental orogenic belt, are situated in the southern part of the Central Asian Orogenic Belt (CAOB), and are a key area for understanding the Mesozoic evolution of the CAOB. However, the tectonic evolution of the Bogda Mountains remains controversial during the Mesozoic Era, especially the Early to Middle Jurassic Periods. The successive Lower to Middle Jurassic strata are well preserved and exposed along the northern flank of the Western Bogda Mountains and record the uplift processes of the Bogda Mountains. In this study, we analysed sedimentary facies combined with detrital zircon U-Pb geochronology at five sections of Lower to Middle Jurassic strata to detect the tectonic evolution and changes of provenance in the Bogda area. During Early to Middle Jurassic times, the fluvial, deltaic and lacustrine environments dominated in the western section of the Bogda area. The existence of Early Triassic peak age indicates that the Bogda Mountains did not experience uplift during the period of early Badaowan Formation deposition. The Early Triassic to Late Permian granitoid plutons and Carboniferous volcanic rocks from the Barkol and Santanghu areas were the main provenances. The significant change in the U-Pb age spectrum implies that the Eastern Bogda Mountains initiated uplift in the period of late Badaowan Formation deposition, and the Eastern Junggar Basin and the Turpan-Hami Basin were partially partitioned. The Eastern Bogda Mountains gradually became the major provenance. From the period of early Sangonghe to early Toutunhe Formations deposition, the provenance of the sediments and basin-range frame were similar to that of late Badaowan. However, the Eastern Bogda Mountains suffered intermittent uplift three times, and successive denudation. The uplifts respectively happened in early Sangonghe, late Sangonghe to early Xishanyao, and late Xishanyao to early Toutunhe. During the deposition stage of Toutunhe Formation, a relatively strong tectonic reactivation took place along the Late Palaeozoic Bogda rift belt accompanied by relatively large-scale magmatism. The distinct basement structure between the eastern and western Bogda rift could be the structure basis of difference uplift in the Bogda area during the Mesozoic Era. The Early to Middle Jurassic episodic uplift of Eastern Bogda Mountains perhaps was related to the post-collisional convergence of the Qiangtang Block from late Badaowan to early Sangonghe, the closure of the western Mongol-Okhotsk Ocean at the Early-Middle Jurassic boundary and the tectonic accretion at the south Asian margin of Pamir Block during late Middle Jurassic times.

  5. Recent Structural Evolution of Early-Type Galaxies: Size Growth from z = 1 to z = 0

    NASA Astrophysics Data System (ADS)

    van der Wel, Arjen; Holden, Bradford P.; Zirm, Andrew W.; Franx, Marijn; Rettura, Alessandro; Illingworth, Garth D.; Ford, Holland C.

    2008-11-01

    Strong size and internal density evolution of early-type galaxies between z ~ 2 and the present has been reported by several authors. Here we analyze samples of nearby and distant (z ~ 1) galaxies with dynamically measured masses in order to confirm the previous, model-dependent results and constrain the uncertainties that may play a role. Velocity dispersion (σ) measurements are taken from the literature for 50 morphologically selected 0.8 < z < 1.2 field and cluster early-type galaxies with typical masses Mdyn = 2 × 1011 M⊙. Sizes (Reff) are determined with Advanced Camera for Surveys imaging. We compare the distant sample with a large sample of nearby (0.04 < z < 0.08) early-type galaxies extracted from the Sloan Digital Sky Survey for which we determine sizes, masses, and densities in a consistent manner, using simulations to quantify systematic differences between the size measurements of nearby and distant galaxies. We find a highly significant difference between the σ - Reff distributions of the nearby and distant samples, regardless of sample selection effects. The implied evolution in Reff at fixed mass between z = 1 and the present is a factor of 1.97 +/- 0.15. This is in qualitative agreement with semianalytic models; however, the observed evolution is much faster than the predicted evolution. Our results reinforce and are quantitatively consistent with previous, photometric studies that found size evolution of up to a factor of 5 since z ~ 2. A combination of structural evolution of individual galaxies through the accretion of companions and the continuous formation of early-type galaxies through increasingly gas-poor mergers is one plausible explanation of the observations. Based on observations with the Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555, and observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. Based on observations collected at the European Southern Observatory, Chile (169.A-0458). Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  6. At a glance: cellular biology for engineers.

    PubMed

    Khoshmanesh, K; Kouzani, A Z; Nahavandi, S; Baratchi, S; Kanwar, J R

    2008-10-01

    Engineering contributions have played an important role in the rise and evolution of cellular biology. Engineering technologies have helped biologists to explore the living organisms at cellular and molecular levels, and have created new opportunities to tackle the unsolved biological problems. There is now a growing demand to further expand the role of engineering in cellular biology research. For an engineer to play an effective role in cellular biology, the first essential step is to understand the cells and their components. However, the stumbling block of this step is to comprehend the information given in the cellular biology literature because it best suits the readers with a biological background. This paper aims to overcome this bottleneck by describing the human cell components as micro-plants that form cells as micro-bio-factories. This concept can accelerate the engineers' comprehension of the subject. In this paper, first the structure and function of different cell components are described. In addition, the engineering attempts to mimic various cell components through numerical modelling or physical implementation are highlighted. Next, the interaction of different cell components that facilitate complicated chemical processes, such as energy generation and protein synthesis, are described. These complex interactions are translated into simple flow diagrams, generally used by engineers to represent multi-component processes.

  7. Drosophila cellular immunity: a story of migration and adhesion.

    PubMed

    Fauvarque, Marie-Odile; Williams, Michael J

    2011-05-01

    Research during the past 15 years has led to significant breakthroughs, providing evidence of a high degree of similarity between insect and mammalian innate immune responses, both humoural and cellular, and highlighting Drosophila melanogaster as a model system for studying the evolution of innate immunity. In a manner similar to cells of the mammalian monocyte and macrophage lineage, Drosophila immunosurveillance cells (haemocytes) have a number of roles. For example, they respond to wound signals, are involved in wound healing and contribute to the coagulation response. Moreover, they participate in the phagocytosis and encapsulation of invading pathogens, are involved in the removal of apoptotic bodies and produce components of the extracellular matrix. There are several reasons for using the Drosophila cellular immune response as a model to understand cell signalling during adhesion and migration in vivo: many genes involved in the regulation of Drosophila haematopoiesis and cellular immunity have been maintained across taxonomic groups ranging from flies to humans, many aspects of Drosophila and mammalian innate immunity seem to be conserved, and Drosophila is a simplified and well-studied genetic model system. In the present Commentary, we will discuss what is known about cellular adhesion and migration in the Drosophila cellular immune response, during both embryonic and larval development, and where possible compare it with related mechanisms in vertebrates.

  8. Evolution of cellular automata with memory: The Density Classification Task.

    PubMed

    Stone, Christopher; Bull, Larry

    2009-08-01

    The Density Classification Task is a well known test problem for two-state discrete dynamical systems. For many years researchers have used a variety of evolutionary computation approaches to evolve solutions to this problem. In this paper, we investigate the evolvability of solutions when the underlying Cellular Automaton is augmented with a type of memory based on the Least Mean Square algorithm. To obtain high performance solutions using a simple non-hybrid genetic algorithm, we design a novel representation based on the ternary representation used for Learning Classifier Systems. The new representation is found able to produce superior performance to the bit string traditionally used for representing Cellular automata. Moreover, memory is shown to improve evolvability of solutions and appropriate memory settings are able to be evolved as a component part of these solutions.

  9. Evolution of the Arctic-North Atlantic and the Western Tethys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziegler, P.A.

    1988-01-01

    This volume provides an overview of the late Paleozoic to recent geological evolution of the continents and shelves bordering the North Atlantic Ocean, the Norwegian-Greenland Sea, the Arctic Ocean, and the Mediterranean Sea. The evolution of these seas has been the subject of many studies and compilations, which discuss the evolution of oceanic basins on the basis of their magnetic sea-floor anomalies. The volume presented combines this information with geological data from the adjacent shelf and onshore areas. It retraces the evolution of sedimentary basins developed during the rifting phases that preceded the opening of these oceans and highlights themore » scope of the associated intra-plate phenomena. The author presents a reconstruction of the late Paleozoic and early Mesozoic development of Europe, northernmost Africa and northeastern North America-Greenland and discusses the different orogenic cycles that accompanied the stepwise assembly of Pangea and the early rifting phases heralding its break-up.« less

  10. Symbiosis in cell evolution: Life and its environment on the early earth

    NASA Technical Reports Server (NTRS)

    Margulis, L.

    1981-01-01

    The book treats cell evolution from the viewpoint of the serial endosymbiosis theory of the origin of organelles. Following a brief outline of the symbiotic theory, which holds that eukaryotes evolved by the association of free-living bacteria with a host prokaryote, the diversity of life is considered, and five kingdoms of organisms are distinguished: the prokaryotic Monera and the eukaryotic Protoctista, Animalia, Fungi and Plantae. Symbiotic and traditional direct filiation theories of cell evolution are compared. Recent observations of cell structure and biochemistry are reviewed in relation to early cell evolution, with attention given to the geological context for the origin of eukaryotic cells, the origin of major bacterial anaerobic pathways, the relationship between aerobic metabolism and atmospheric oxygen, criteria for distinguishing symbiotic organelles from those that originated by differentiation, and the major classes of eukaryotic organelles: mitochondria, cilia, microtubules, the mitotic and meiotic apparatuses, and pastids. Cell evolution during the Phanerozoic is also discussed with emphasis on the effects of life on the biosphere

  11. Occurrence of Cyclic di-GMP-Modulating Output Domains in Cyanobacteria: an Illuminating Perspective

    PubMed Central

    Agostoni, Marco; Koestler, Benjamin J.; Waters, Christopher M.; Williams, Barry L.; Montgomery, Beronda L.

    2013-01-01

    ABSTRACT Microorganisms use a variety of metabolites to respond to external stimuli, including second messengers that amplify primary signals and elicit biochemical changes in a cell. Levels of the second messenger cyclic dimeric GMP (c-di-GMP) are regulated by a variety of environmental stimuli and play a critical role in regulating cellular processes such as biofilm formation and cellular motility. Cyclic di-GMP signaling systems have been largely characterized in pathogenic bacteria; however, proteins that can impact the synthesis or degradation of c-di-GMP are prominent in cyanobacterial species and yet remain largely underexplored. In cyanobacteria, many putative c-di-GMP synthesis or degradation domains are found in genes that also harbor light-responsive signal input domains, suggesting that light is an important signal for altering c-di-GMP homeostasis. Indeed, c-di-GMP-associated domains are often the second most common output domain in photoreceptors—outnumbered only by a histidine kinase output domain. Cyanobacteria differ from other bacteria regarding the number and types of photoreceptor domains associated with c-di-GMP domains. Due to the widespread distribution of c-di-GMP domains in cyanobacteria, we investigated the evolutionary origin of a subset of genes. Phylogenetic analyses showed that c-di-GMP signaling systems were present early in cyanobacteria and c-di-GMP genes were both vertically and horizontally inherited during their evolution. Finally, we compared intracellular levels of c-di-GMP in two cyanobacterial species under different light qualities, confirming that light is an important factor for regulating this second messenger in vivo. PMID:23943760

  12. Pancreatic cellular injury after cardiac surgery with cardiopulmonary bypass: frequency, time course and risk factors.

    PubMed

    Nys, Monique; Venneman, Ingrid; Deby-Dupont, Ginette; Preiser, Jean-Charles; Vanbelle, Sophie; Albert, Adelin; Camus, Gérard; Damas, Pierre; Larbuisson, Robert; Lamy, Maurice

    2007-05-01

    Although often clinically silent, pancreatic cellular injury (PCI) is relatively frequent after cardiac surgery with cardiopulmonary bypass; and its etiology and time course are largely unknown. We defined PCI as the simultaneous presence of abnormal values of pancreatic isoamylase and immunoreactive trypsin (IRT). The frequency and time evolution of PCI were assessed in this condition using assays for specific exocrine pancreatic enzymes. Correlations with inflammatory markers were searched for preoperative risk factors. One hundred ninety-three patients submitted to cardiac surgery were enrolled prospectively. Blood IRT, amylase, pancreatic isoamylase, lipase, and markers of inflammation (alpha1-protease inhibitor, alpha2-macroglobulin, myeloperoxidase) were measured preoperatively and postoperatively until day 8. The postoperative increase in plasma levels of pancreatic enzymes and urinary IRT was biphasic in all patients: early after surgery and later (from day 4 to 8 after surgery). One hundred thirty-three patients (69%) experienced PCI, with mean IRT, isoamylase, and alpha1-protease inhibitor values higher for each sample than that in patients without PCI. By multiple regression analysis, we found preoperative values of plasma IRT >or=40 ng/mL, amylase >or=42 IU/mL, and pancreatic isoamylase >or=20 IU/L associated with a higher incidence of postsurgery PCI (P < 0.005). In the PCI patients, a significant correlation was found between the 4 pancreatic enzymes and urinary IRT, total calcium, myeloperoxidase, alpha1-protease inhibitor, and alpha2-macroglobulin. These data support a high prevalence of postoperative PCI after cardiac surgery with cardiopulmonary bypass, typically biphasic and clinically silent, especially when pancreatic enzymes were elevated preoperatively.

  13. A Novel Pattern of Yolk Processing in Developing Snake Eggs (Colubridae: Lampropeltini) and its Functional and Evolutionary Implications.

    PubMed

    Powers, Kathryn G; Blackburn, Daniel G

    2017-07-01

    Early amniotic vertebrates evolved large-yolked eggs that permitted production of well-developed, terrestrial hatchlings. This reproductive pattern required new mechanisms for cellularizing the yolk and mobilizing it for embryonic use. In birds, cells that line the yolk sac cavity phagocytose and digest the yolk material, a pattern that is commonly assumed to be universal among oviparous amniotes. However, recent evidence challenges the assumption that all squamate reptiles conform to the avian developmental pattern. In this paper, scanning electron microscopy and histology were used to study mechanisms of yolk processing in two colubrid snakes, the kingsnake Lampropeltis getula and the milksnake L. triangulum. Endodermal cells from the yolk sac splanchnopleure proliferate massively as they invade the yolk sac cavity, forming elaborate chains of interlinked cells. These cells grow in size as they phagocytose yolk material. Subsequently, vitelline capillaries invade the masses of yolk-laden cells and become coated with the endodermal cells, forming an elaborate meshwork of cell-coated strands. The close association of cells, yolk, and blood vessels allows yolk material to be cellularized, digested, and transported for embryonic use. The overall pattern is like that of the corn snake Pantherophis guttatus, but contrasts markedly with that of birds. Given recent evidence that this developmental pattern may also occur in certain lizards, we postulate that it is ancestral for squamates. Studies of lizards, crocodilians, and turtles are needed to clarify the evolutionary history of this pattern and its implications for the evolution of the amniotic (terrestrial) vertebrate egg. © 2017 Wiley Periodicals, Inc.

  14. Occurrence of plastids in the sperm cells of Caprifoliaceae: biparental plastid inheritance in angiosperms is unilaterally derived from maternal inheritance.

    PubMed

    Hu, Yingchun; Zhang, Quan; Rao, Guangyuan; Sodmergen

    2008-06-01

    It is widely held that organelles inherit from the maternal lineage. However, the plastid genome in quite a few angiosperms appears to be biparentally transmitted. It is unclear how and why biparental inheritance of the genome became activated. Here, we detected widespread occurrence of plastids in the sperm cells (a cellular prerequisite for biparental inheritance) of traditional Caprifoliaceae. Of the 12 genera sampled, the sperm cells of Abelia, Dipelta, Heptacodium, Kolkwitzia, Leycesteria, Linnaea, Lonicera, Symphoricarpos, Triosteum and Weigela possessed inheritable plastids. The other genera, Sambucus and Viburnum, lacked plastids in sperm cells. Interestingly, such exclusion of plastids in the sperm cells of some Caprifoliaceae appeared to be associated with the divergence of Dipsacales phylogeny. Closer examination of Weigela florida revealed that both plastids and plastid DNA were highly duplicated in the generative cells. This implies that the appearance of plastids in sperm cells involved cellular mechanisms. Because such mechanisms must enhance the strength of plastid transmission through the paternal lineage and appear ubiquitous in species exhibiting biparental or potential biparental plastid inheritance, we presume that biparental plastid genetics may be a derived trait in angiosperms. This is consistent with our extended phylogenetic analysis using species with recently discovered modes of potential plastid inheritance. The results show that basal and early angiosperms have maternal plastid transmission, whereas all potential biparental transmission occurs at terminal branches of the tree. Thus, unlike previous studies, we suggest that biparental plastid inheritance in angiosperms was unilaterally converted from the maternal transmission mode during late angiosperm evolution.

  15. Growth and setting of gas bubbles in a viscoelastic matrix imaged by X-ray microtomography: the evolution of cellular structures in fermenting wheat flour dough.

    PubMed

    Turbin-Orger, A; Babin, P; Boller, E; Chaunier, L; Chiron, H; Della Valle, G; Dendievel, R; Réguerre, A L; Salvo, L

    2015-05-07

    X-ray tomography is a relevant technique for the dynamic follow-up of gas bubbles in an opaque viscoelastic matrix, especially using image analysis. It has been applied here to pieces of fermenting wheat flour dough of various compositions, at two different voxel sizes (15 and 5 μm). The resulting evolution of the main cellular features shows that the creation of cellular structures follows two regimes that are defined by a characteristic time of connectivity, tc [30 and 80 min]: first (t ≤ tc), bubbles grow freely and then (t ≥ tc) they become connected since the percolation of the gas phase is limited by liquid films. During the first regime, bubbles can be tracked and the local strain rate can be measured. Its values (10(-4)-5 × 10(-4) s(-1)) are in agreement with those computed from dough viscosity and internal gas pressure, both of which depend on the composition. For higher porosity, P = 0.64 in our case, and thus occurring in the second regime, different cellular structures are obtained and XRT images show deformed gas cells that display complex shapes. The comparison of these images with confocal laser scanning microscopy images suggests the presence of liquid films that separate these cells. The dough can therefore be seen as a three-phase medium: viscoelastic matrix/gas cell/liquid phase. The contributions of the different levels of matter organization can be integrated by defining a capillary number (C = 0.1-1) that makes it possible to predict the macroscopic dough behavior.

  16. Gorilla and Orangutan Brains Conform to the Primate Cellular Scaling Rules: Implications for Human Evolution

    PubMed Central

    Herculano-Houzel, Suzana; Kaas, Jon H.

    2011-01-01

    Gorillas and orangutans are primates at least as large as humans, but their brains amount to about one third of the size of the human brain. This discrepancy has been used as evidence that the human brain is about 3 times larger than it should be for a primate species of its body size. In contrast to the view that the human brain is special in its size, we have suggested that it is the great apes that might have evolved bodies that are unusually large, on the basis of our recent finding that the cellular composition of the human brain matches that expected for a primate brain of its size, making the human brain a linearly scaled-up primate brain in its number of cells. To investigate whether the brain of great apes also conforms to the primate cellular scaling rules identified previously, we determine the numbers of neuronal and other cells that compose the orangutan and gorilla cerebella, use these numbers to calculate the size of the brain and of the cerebral cortex expected for these species, and show that these match the sizes described in the literature. Our results suggest that the brains of great apes also scale linearly in their numbers of neurons like other primate brains, including humans. The conformity of great apes and humans to the linear cellular scaling rules that apply to other primates that diverged earlier in primate evolution indicates that prehistoric Homo species as well as other hominins must have had brains that conformed to the same scaling rules, irrespective of their body size. We then used those scaling rules and published estimated brain volumes for various hominin species to predict the numbers of neurons that composed their brains. We predict that Homo heidelbergensis and Homo neanderthalensis had brains with approximately 80 billion neurons, within the range of variation found in modern Homo sapiens. We propose that while the cellular scaling rules that apply to the primate brain have remained stable in hominin evolution (since they apply to simians, great apes and modern humans alike), the Colobinae and Pongidae lineages favored marked increases in body size rather than brain size from the common ancestor with the Homo lineage, while the Homo lineage seems to have favored a large brain instead of a large body, possibly due to the metabolic limitations to having both. PMID:21228547

  17. Gorilla and orangutan brains conform to the primate cellular scaling rules: implications for human evolution.

    PubMed

    Herculano-Houzel, Suzana; Kaas, Jon H

    2011-01-01

    Gorillas and orangutans are primates at least as large as humans, but their brains amount to about one third of the size of the human brain. This discrepancy has been used as evidence that the human brain is about 3 times larger than it should be for a primate species of its body size. In contrast to the view that the human brain is special in its size, we have suggested that it is the great apes that might have evolved bodies that are unusually large, on the basis of our recent finding that the cellular composition of the human brain matches that expected for a primate brain of its size, making the human brain a linearly scaled-up primate brain in its number of cells. To investigate whether the brain of great apes also conforms to the primate cellular scaling rules identified previously, we determine the numbers of neuronal and other cells that compose the orangutan and gorilla cerebella, use these numbers to calculate the size of the brain and of the cerebral cortex expected for these species, and show that these match the sizes described in the literature. Our results suggest that the brains of great apes also scale linearly in their numbers of neurons like other primate brains, including humans. The conformity of great apes and humans to the linear cellular scaling rules that apply to other primates that diverged earlier in primate evolution indicates that prehistoric Homo species as well as other hominins must have had brains that conformed to the same scaling rules, irrespective of their body size. We then used those scaling rules and published estimated brain volumes for various hominin species to predict the numbers of neurons that composed their brains. We predict that Homo heidelbergensis and Homo neanderthalensis had brains with approximately 80 billion neurons, within the range of variation found in modern Homo sapiens. We propose that while the cellular scaling rules that apply to the primate brain have remained stable in hominin evolution (since they apply to simians, great apes and modern humans alike), the Colobinae and Pongidae lineages favored marked increases in body size rather than brain size from the common ancestor with the Homo lineage, while the Homo lineage seems to have favored a large brain instead of a large body, possibly due to the metabolic limitations to having both. Copyright © 2011 S. Karger AG, Basel.

  18. Inflaton and metric fluctuations in the early universe from a 5D vacuum state

    NASA Astrophysics Data System (ADS)

    Membiela, Agustin; Bellini, Mauricio

    2006-04-01

    In this Letter we complete a previously introduced formalism to study the gauge-invariant metric fluctuations from a noncompact Kaluza Klein theory of gravity, to study the evolution of the early universe. The evolution of both, metric and inflaton field fluctuations are reciprocally related. We obtain that <δρ>/ρ depends on the coupling of Φ with δφ and the spectral index of its spectrum is 0.9483

  19. Early-late life trade-offs and the evolution of ageing in the wild.

    PubMed

    Lemaître, Jean-François; Berger, Vérane; Bonenfant, Christophe; Douhard, Mathieu; Gamelon, Marlène; Plard, Floriane; Gaillard, Jean-Michel

    2015-05-07

    Empirical evidence for declines in fitness components (survival and reproductive performance) with age has recently accumulated in wild populations, highlighting that the process of senescence is nearly ubiquitous in the living world. Senescence patterns are highly variable among species and current evolutionary theories of ageing propose that such variation can be accounted for by differences in allocation to growth and reproduction during early life. Here, we compiled 26 studies of free-ranging vertebrate populations that explicitly tested for a trade-off between performance in early and late life. Our review brings overall support for the presence of early-late life trade-offs, suggesting that the limitation of available resources leads individuals to trade somatic maintenance later in life for high allocation to reproduction early in life. We discuss our results in the light of two closely related theories of ageing-the disposable soma and the antagonistic pleiotropy theories-and propose that the principle of energy allocation roots the ageing process in the evolution of life-history strategies. Finally, we outline research topics that should be investigated in future studies, including the importance of natal environmental conditions in the study of trade-offs between early- and late-life performance and the evolution of sex-differences in ageing patterns. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. The Moon as a recorder of organic evolution in the early solar system: a lunar regolith analog study.

    PubMed

    Matthewman, Richard; Court, Richard W; Crawford, Ian A; Jones, Adrian P; Joy, Katherine H; Sephton, Mark A

    2015-02-01

    The organic record of Earth older than ∼3.8 Ga has been effectively erased. Some insight is provided to us by meteorites as well as remote and direct observations of asteroids and comets left over from the formation of the Solar System. These primitive objects provide a record of early chemical evolution and a sample of material that has been delivered to Earth's surface throughout the past 4.5 billion years. Yet an effective chronicle of organic evolution on all Solar System objects, including that on planetary surfaces, is more difficult to find. Fortunately, early Earth would not have been the only recipient of organic matter-containing objects in the early Solar System. For example, a recently proposed model suggests the possibility that volatiles, including organic material, remain archived in buried paleoregolith deposits intercalated with lava flows on the Moon. Where asteroids and comets allow the study of processes before planet formation, the lunar record could extend that chronicle to early biological evolution on the planets. In this study, we use selected free and polymeric organic materials to assess the hypothesis that organic matter can survive the effects of heating in the lunar regolith by overlying lava flows. Results indicate that the presence of lunar regolith simulant appears to promote polymerization and, therefore, preservation of organic matter. Once polymerized, the mineral-hosted newly formed organic network is relatively protected from further thermal degradation. Our findings reveal the thermal conditions under which preservation of organic matter on the Moon is viable.

  1. Form, function and environments of the early angiosperms: merging extant phylogeny and ecophysiology with fossils.

    PubMed

    Feild, Taylor S; Arens, Nan Crystal

    2005-05-01

    The flowering plants--angiosperms--appeared during the Early Cretaceous period and within 10-30 Myr dominated the species composition of many floras worldwide. Emerging insights into the phylogenetics of development and discoveries of early angiosperm fossils are shedding increased light on the patterns and processes of early angiosperm evolution. However, we also need to integrate ecology, in particular how early angiosperms established a roothold in pre-existing Mesozoic plant communities. These events were critical in guiding subsequent waves of angiosperm diversification during the Aptian-Albian. Previous pictures of the early flowering plant ecology have been diverse, ranging from large tropical rainforest trees, weedy drought-adapted and colonizing shrubs, disturbance- and sun-loving rhizomatous herbs, and, more recently, aquatic herbs; however, none of these images were tethered to a robust hypothesis of angiosperm phylogeny. Here, we synthesize our current understanding of early angiosperm ecology, focusing on patterns of functional ecology, by merging recent molecular phylogenetic studies and functional studies on extant 'basal angiosperms' with the picture of early angiosperm evolution drawn by the fossil record.

  2. A palaeoequatorial ornithischian and new constraints on early dinosaur diversification.

    PubMed

    Barrett, Paul M; Butler, Richard J; Mundil, Roland; Scheyer, Torsten M; Irmis, Randall B; Sánchez-Villagra, Marcelo R

    2014-09-22

    Current characterizations of early dinosaur evolution are incomplete: existing palaeobiological and phylogenetic scenarios are based on a fossil record dominated by saurischians and the implications of the early ornithischian record are often overlooked. Moreover, the timings of deep phylogenetic divergences within Dinosauria are poorly constrained owing to the absence of a rigorous chronostratigraphical framework for key Late Triassic-Early Jurassic localities. A new dinosaur from the earliest Jurassic of the Venezuelan Andes is the first basal ornithischian recovered from terrestrial deposits directly associated with a precise radioisotopic date and the first-named dinosaur from northern South America. It expands the early palaeogeographical range of Ornithischia to palaeoequatorial regions, an area sometimes thought to be devoid of early dinosaur taxa, and offers insights into early dinosaur growth rates, the evolution of sociality and the rapid tempo of the global dinosaur radiation following the end-Triassic mass extinction, helping to underscore the importance of the ornithischian record in broad-scale discussions of early dinosaur history. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Diet and the evolution of the earliest human ancestors

    PubMed Central

    Teaford, Mark F.; Ungar, Peter S.

    2000-01-01

    Over the past decade, discussions of the evolution of the earliest human ancestors have focused on the locomotion of the australopithecines. Recent discoveries in a broad range of disciplines have raised important questions about the influence of ecological factors in early human evolution. Here we trace the cranial and dental traits of the early australopithecines through time, to show that between 4.4 million and 2.3 million years ago, the dietary capabilities of the earliest hominids changed dramatically, leaving them well suited for life in a variety of habitats and able to cope with significant changes in resource availability associated with long-term and short-term climatic fluctuations. PMID:11095758

  4. Early animal evolution: emerging views from comparative biology and geology

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.; Carroll, S. B.

    1999-01-01

    The Cambrian appearance of fossils representing diverse phyla has long inspired hypotheses about possible genetic or environmental catalysts of early animal evolution. Only recently, however, have data begun to emerge that can resolve the sequence of genetic and morphological innovations, environmental events, and ecological interactions that collectively shaped Cambrian evolution. Assembly of the modern genetic tool kit for development and the initial divergence of major animal clades occurred during the Proterozoic Eon. Crown group morphologies diversified in the Cambrian through changes in the genetic regulatory networks that organize animal ontogeny. Cambrian radiation may have been triggered by environmental perturbation near the Proterozoic-Cambrian boundary and subsequently amplified by ecological interactions within reorganized ecosystems.

  5. Blood-Brain Barrier Permeability and Monocyte Infiltration in Experimental Allergic Encephalomyelitis

    ERIC Educational Resources Information Center

    Floris, S.; Blezer, E. L. A.; Schreibelt, G.; Dopp, E.; van der Pol, S. M. A.; Schadee-Eestermans, I. L.; Nicolay, K.; Dijkstra, C. D.; de Vries, H. E.

    2004-01-01

    Enhanced cerebrovascular permeability and cellular infiltration mark the onset of early multiple sclerosis lesions. So far, the precise sequence of these events and their role in lesion formation and disease progression remain unknown. Here we provide quantitative evidence that blood-brain barrier leakage is an early event and precedes massive…

  6. DNA Methylation: A Mechanism for Embedding Early Life Experiences in the Genome

    ERIC Educational Resources Information Center

    Szyf, Moshe; Bick, Johanna

    2013-01-01

    Although epidemiological data provide evidence that early life experience plays a critical role in human development, the mechanism of how this works remains in question. Recent data from human and animal literature suggest that epigenetic changes, such as DNA methylation, are involved not only in cellular differentiation but also in the…

  7. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging.

    PubMed

    Ben-Zvi, Anat; Miller, Elizabeth A; Morimoto, Richard I

    2009-09-01

    Protein damage contributes prominently to cellular aging. To address whether this occurs at a specific period during aging or accumulates gradually, we monitored the biochemical, cellular, and physiological properties of folding sensors expressed in different tissues of C. elegans. We observed the age-dependent misfolding and loss of function of diverse proteins harboring temperature-sensitive missense mutations in all somatic tissues at the permissive condition. This widespread failure in proteostasis occurs rapidly at an early stage of adulthood, and coincides with a severely reduced activation of the cytoprotective heat shock response and the unfolded protein response. Enhancing stress responsive factors HSF-1 or DAF-16 suppresses misfolding of these metastable folding sensors and restores the ability of the cell to maintain a functional proteome. This suggests that a compromise in the regulation of proteostatic stress responses occurs early in adulthood and tips the balance between the load of damaged proteins and the proteostasis machinery. We propose that the collapse of proteostasis represents an early molecular event of aging that amplifies protein damage in age-associated diseases of protein conformation.

  8. The Ecology and Evolution of Cancer: The Ultra-Microevolutionary Process.

    PubMed

    Wu, Chung-I; Wang, Hurng-Yi; Ling, Shaoping; Lu, Xuemei

    2016-11-23

    Although tumorigenesis has been accepted as an evolutionary process ( 20 , 102 ), many forces may operate differently in cancers than in organisms, as they evolve at vastly different time scales. Among such forces, natural selection, here defined as differential cellular proliferation among distinct somatic cell genotypes, is particularly interesting because its action might be thwarted in multicellular organisms ( 20 , 29 ). In this review, selection is analyzed in two stages of cancer evolution: Stage I is the evolution between tumors and normal tissues, and Stage II is the evolution within tumors. The Cancer Genome Atlas (TCGA) data show a low degree of convergent evolution in Stage I, where genetic changes are not extensively shared among cases. An equally important, albeit much less highlighted, discovery using TCGA data is that there is almost no net selection in cancer evolution. Both positive and negative selection are evident but they neatly cancel each other out, rendering total selection ineffective in the absence of recombination. The efficacy of selection is even lower in Stage II, where neutral (non-Darwinian) evolution is increasingly supported by high-density sampling studies ( 81 , 123 ). Because natural selection is not a strong deterministic force, cancers usually evolve divergently even in similar tissue environments.

  9. Galapagos III World Evolution Summit: why evolution matters

    PubMed Central

    Paz-y-Miño-C, Guillermo; Espinosa, Avelina

    2016-01-01

    There is no place on Earth like the Galapagos Islands and no better destination to discuss the reality of evolution. Under the theme ‘Why Does Evolution Matter’, the University San Francisco of Quito (USFQ), Ecuador, and its Galapagos Institute for the Arts and Sciences (GAIAS), organized the III World Evolution Summit in San Cristóbal Island. The 200-attendee meeting took place on 1 to 5 June 2013; it included 12 keynote speakers, 20 oral presentations by international scholars, and 31 posters by faculty, postdocs, and graduate and undergraduate students. The Summit encompassed five sessions: evolution and society, pre-cellular evolution and the RNA world, behavior and environment, genome, and microbes and diseases. USFQ and GAIAS launched officially the Lynn Margulis Center for Evolutionary Biology and showcased the Galapagos Science Center, in San Cristóbal, an impressive research facility conceptualized in partnership with the University of North Carolina at Chapel Hill, USA. USFQ and GAIAS excelled at managing the conference with exceptional vision and at highlighting the relevance of Galapagos in the history of modern evolutionary thinking; Charles Darwin’s visit to this volcanic archipelago in 1835 unfolded unprecedented scientific interest in what today is a matchless World Heritage. PMID:26925190

  10. Non-Genomic Origins of Proteins and Metabolism

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2003-01-01

    It is proposed that evolution of inanimate matter to cells endowed with a nucleic acid- based coding of genetic information was preceded by an evolutionary phase, in which peptides not coded by nucleic acids were able to self-organize into networks capable of evolution towards increasing metabolic complexity. Recent findings that truly different, simple peptides (Keefe and Szostak, 2001) can perform the same function (such as ATP binding) provide experimental support for this mechanism of early protobiological evolution. The central concept underlying this mechanism is that the reproduction of cellular functions alone was sufficient for self-maintenance of protocells, and that self- replication of macromolecules was not required at this stage of evolution. The precise transfer of information between successive generations of the earliest protocells was unnecessary and, possibly, undesirable. The key requirement in the initial stage of protocellular evolution was an ability to rapidly explore a large number of protein sequences in order to discover a set of molecules capable of supporting self- maintenance and growth of protocells. Undoubtedly, the essential protocellular functions were carried out by molecules not nearly as efficient or as specific as contemporary proteins. Many, potentially unrelated sequences could have performed each of these functions at an evolutionarily acceptable level. As evolution progressed, however proteins must have performed their functions with increasing efficiency and specificity. This, in turn, put additional constraints on protein sequences and the fraction of proteins capable of performing their functions at the required level decreased. At some point, the likelihood of generating a sufficiently efficient set of proteins through a non-coded synthesis was so small that further evolution was not possible without storing information about the sequences of these proteins. Beyond this point, further evolution required coupling between proteins and informational polymers that is characteristic to all known forms of life. The emergence of such coupling must be postulated in any scenario of the origin of life, no matter whether it starts with RNA or proteins. To examine the evolutionary potential of non-genomic systems, a simple, computationally tractable model, which is still capable of capturing the essential features of the real system, has been studied computationally. Both constructive and destructive processes have been introduced into the model in a stochastic manner. Instead of assuming random reaction sets, only a suite of protobiologically plausible reactions has been considered. Peptides have been explicitly considered as protoenzymes and their catalytic efficiencies have been assigned on the basis of biochemical principles and experimental estimates. Simulations have been carried out using a novel approach (The Next Reaction Method) that is appropriate even for very low concentrations of reactants. Studies have focused on global autocatalytic processes and their diversity.

  11. Hydra myc2, a unique pre-bilaterian member of the myc gene family, is activated in cell proliferation and gametogenesis

    PubMed Central

    Hartl, Markus; Glasauer, Stella; Valovka, Taras; Breuker, Kathrin; Hobmayer, Bert; Bister, Klaus

    2014-01-01

    ABSTRACT The myc protooncogene encodes the Myc transcription factor which is the essential part of the Myc–Max network controlling fundamental cellular processes. Deregulation of myc leads to tumorigenesis and is a hallmark of many human cancers. We have recently identified homologs of myc (myc1, myc2) and max in the early diploblastic cnidarian Hydra and have characterized myc1 in detail. Here we show that myc2 is transcriptionally activated in the interstitial stem cell system. Furthermore, in contrast to myc1, myc2 expression is also detectable in proliferating epithelial stem cells throughout the gastric region. myc2 but not myc1 is activated in cycling precursor cells during early oogenesis and spermatogenesis, suggesting that the Hydra Myc2 protein has a possible non-redundant function in cell cycle progression. The Myc2 protein displays the principal design and properties of vertebrate Myc proteins. In complex with Max, Myc2 binds to DNA with similar affinity as Myc1–Max heterodimers. Immunoprecipitation of Hydra chromatin revealed that both Myc1 and Myc2 bind to the enhancer region of CAD, a classical Myc target gene in mammals. Luciferase reporter gene assays showed that Myc1 but not Myc2 transcriptionally activates the CAD promoter. Myc2 has oncogenic potential when tested in primary avian fibroblasts but to a lower degree as compared to Myc1. The identification of an additional myc gene in Cnidaria, a phylum that diverged prior to bilaterians, with characteristic expression patterns in tissue homeostasis and developmental processes suggests that principle functions of myc genes have arisen very early in metazoan evolution. PMID:24771621

  12. The Vitamin Nicotinamide: Translating Nutrition into Clinical Care

    PubMed Central

    Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen

    2009-01-01

    Nicotinamide, the amide form of vitamin B3 (niacin), is changed to its mononucleotide compound with the enzyme nicotinic acide/nicotinamide adenylyl-transferase, and participates in the cellular energy metabolism that directly impacts normal physiology. However, nicotinamide also influences oxidative stress and modulates multiple pathways tied to both cellular survival and death. During disorders that include immune system dysfunction, diabetes, and aging-related diseases, nicotinamide is a robust cytoprotectant that blocks cellular inflammatory cell activation, early apoptotic phosphatidylserine exposure, and late nuclear DNA degradation. Nicotinamide relies upon unique cellular pathways that involve forkhead transcription factors, sirtuins, protein kinase B (Akt), Bad, caspases, and poly (ADP-ribose) polymerase that may offer a fine line with determining cellular longevity, cell survival, and unwanted cancer progression. If one is cognizant of the these considerations, it becomes evident that nicotinamide holds great potential for multiple disease entities, but the development of new therapeutic strategies rests heavily upon the elucidation of the novel cellular pathways that nicotinamide closely governs. PMID:19783937

  13. Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte

    PubMed Central

    Matsunaga, Kelly K. S.; Tomescu, Alexandru M. F.

    2016-01-01

    Background and Aims The evolution of complex rooting systems during the Devonian had significant impacts on global terrestrial ecosystems and the evolution of plant body plans. However, detailed understanding of the pathways of root evolution and the architecture of early rooting systems is currently lacking. We describe the architecture and resolve the structural homology of the rooting system of an Early Devonian basal lycophyte. Insights gained from these fossils are used to address lycophyte root evolution and homology. Methods Plant fossils are preserved as carbonaceous compressions at Cottonwood Canyon (Wyoming), in the Lochkovian–Pragian (∼411 Ma; Early Devonian) Beartooth Butte Formation. We analysed 177 rock specimens and documented morphology, cuticular anatomy and structural relationships, as well as stratigraphic position and taphonomic conditions. Key Results The rooting system of the Cottonwood Canyon lycophyte is composed of modified stems that bear fine, dichotomously branching lateral roots. These modified stems, referred to as root-bearing axes, are produced at branching points of the above-ground shoot system. Root-bearing axes preserved in growth position exhibit evidence of positive gravitropism, whereas the lateral roots extend horizontally. Consistent recurrence of these features in successive populations of the plant preserved in situ demonstrates that they represent constitutive structural traits and not opportunistic responses of a flexible developmental programme. Conclusions This is the oldest direct evidence for a rooting system preserved in growth position. These rooting systems, which can be traced to a parent plant, include some of the earliest roots known to date and demonstrate that substantial plant–substrate interactions were under way by Early Devonian time. The morphological relationships between stems, root-bearing axes and roots corroborate evidence that positive gravitropism and root identity were evolutionarily uncoupled in lycophytes, and challenge the hypothesis that roots evolved from branches of the above-ground axial system, suggesting instead that lycophyte roots arose as a novel organ. PMID:26921730

  14. Considering Planetary Constraints and Dynamic Screening in Solar Evolution Modeling

    NASA Astrophysics Data System (ADS)

    Wood, Suzannah R.; Mussack, Katie; Guzik, Joyce A.

    2018-01-01

    The ‘faint early sun problem’ remains unsolved. This problem consists of the apparent contradiction between the standard solar model prediction of lower luminosity (70% of current luminosity) and the observations of liquid water on early Earth and Mars. The presence of liquid water on early Earth and Mars should not be neglected and should be used as a constraint for solar evolution modeling. In addition, modifications to standard solar models are needed to address the discrepancy with solar structure inferred from helioseismology given the latest solar abundance determinations. Here, we will utilize the three different solar abundances: GN93 (Grevesse & Noels, 1993), AGS05 (Asplund et al., 2005), AGSS09 (Asplund et al., 2009). Here, we propose an early mass loss model with an initial solar mass between 1.07 and 1.15 solar masses and an exponentially decreasing mass-loss rate to meet conditions in the early solar system (Wood et al, submitted). Additionally, we investigate the effects of dynamic screening and the new OPLIB opacities from Los Alamos (Colgan et al., 2016). We show the effects of these modifications to the standard solar evolution models on the interior structure, neutrino fluxes, sound speed, p-mode frequencies, convection zone depth, and envelope helium and element abundance of the model sun at the present day.

  15. Interface Pattern Selection in Directional Solidification

    NASA Technical Reports Server (NTRS)

    Trivedi, Rohit; Tewari, Surendra N.

    2001-01-01

    The central focus of this research is to establish key scientific concepts that govern the selection of cellular and dendritic patterns during the directional solidification of alloys. Ground-based studies have established that the conditions under which cellular and dendritic microstructures form are precisely where convection effects are dominant in bulk samples. Thus, experimental data can not be obtained terrestrially under pure diffusive regime. Furthermore, reliable theoretical models are not yet possible which can quantitatively incorporate fluid flow in the pattern selection criterion. Consequently, microgravity experiments on cellular and dendritic growth are designed to obtain benchmark data under diffusive growth conditions that can be quantitatively analyzed and compared with the rigorous theoretical model to establish the fundamental principles that govern the selection of specific microstructure and its length scales. In the cellular structure, different cells in an array are strongly coupled so that the cellular pattern evolution is controlled by complex interactions between thermal diffusion, solute diffusion and interface effects. These interactions give infinity of solutions, and the system selects only a narrow band of solutions. The aim of this investigation is to obtain benchmark data and develop a rigorous theoretical model that will allow us to quantitatively establish the physics of this selection process.

  16. Generation of anti-porcine CD69 monoclonal antibodies and their usefulness to evaluate early activation of cellular immunity by flow cytometric analysis.

    PubMed

    Hayashi, Yumiko; Okutani, Mie; Ogawa, Shohei; Tsukahara, Takamitsu; Inoue, Ryo

    2018-05-01

    T cell-mediated cellular immunity and humoral immunity are equally important for the prevention of diseases. To assess activation of human and mouse cellular immunity, early activation markers of lymphocytes are often used in flow cytometry targeting expression of CD69 molecules. Response of humoral immunity against infection or vaccination has been well investigated in pigs, but that of cellular immunity has been largely neglected due to lack of direct evaluation tools. Thus, in pig research a proper assay of antibody reacted with porcine CD69 is still unavailable. In the present study, two anti-porcine CD69 mAb-producing mouse hybridomas, 01-14-22-51 (IgG2b-κ) and 01-22-44-102 (IgG2a-κ), both showing fine reactivity with phorbol 12-myristate 13-acetate (PMA) and ionomycin-stimulated porcine peripheral blood lymphocytes in flow cytometry, were established. When porcine peripheral blood lymphocytes were activated with PMA and ionomycin and analyzed by flow cytometry, it was found that both mAbs generated in this study stained about 70% of lymphocytes. In contrast, after an identical procedure, only 5% and 13.5% of lymphocytes were stained with anti-interferon-γ mAb and anti-tumor necrosis factor-α mAb, respectively. These results indicate that evaluation of cellular immunity activation turns more sensitive after using our newly generated mAbs. © 2018 Japanese Society of Animal Science.

  17. Early Functional Deficit and Microglial Disturbances in a Mouse Model of Amyotrophic Lateral Sclerosis

    PubMed Central

    Rabano, Miriam; Vivanco, Maria d M; Perrin, Florence Evelyne

    2012-01-01

    Background Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by selective motoneurons degeneration. There is today no clear-cut pathogenesis sequence nor any treatment. However growing evidences are in favor of the involvement, besides neurons, of several partners such as glia and muscles. To better characterize the time course of pathological events in an animal model that recapitulates human ALS symptoms, we investigated functional and cellular characteristics of hSOD1G93A mice. Methods and Findings We have evaluated locomotor function of hSOD1G93A mice through dynamic walking patterns and spontaneous motor activity analysis. We detected early functional deficits that redefine symptoms onset at 60 days of age, i.e. 20 days earlier than previously described. Moreover, sequential combination of these approaches allows monitoring of motor activity up to disease end stage. To tentatively correlate early functional deficit with cellular alterations we have used flow cytometry and immunohistochemistry approaches to characterize neuromuscular junctions, astrocytes and microglia. We show that (1) decrease in neuromuscular junction's number correlates with motor impairment, (2) astrocytes number is not altered at pre- and early-symptomatic ages but intraspinal repartition is modified at symptoms onset, and (3) microglia modifications precede disease onset. At pre-symptomatic age, we show a decrease in microglia number whereas at onset of the disease two distinct microglia sub-populations emerge. Conclusions In conclusion, precise motor analysis updates the onset of the disease in hSOD1G93A mice and allows locomotor monitoring until the end stage of the disease. Early functional deficits coincide with alterations of neuromuscular junctions. Importantly, we identify different sets of changes in microglia before disease onset as well as at early-symptomatic stage. This finding not only brings a new sequence of cellular events in the natural history of the disease, but it may also provide clues in the search for biomarkers of the disease, and potential therapeutic targets. PMID:22558300

  18. Pathways to Earth-like atmospheres. Extreme ultraviolet (EUV)-powered escape of hydrogen-rich protoatmospheres.

    PubMed

    Lammer, Helmut; Kislyakova, K G; Odert, P; Leitzinger, M; Schwarz, R; Pilat-Lohinger, E; Kulikov, Yu N; Khodachenko, M L; Güdel, M; Hanslmeier, M

    2011-12-01

    We discuss the evolution of the atmosphere of early Earth and of terrestrial exoplanets which may be capable of sustaining liquid water oceans and continents where life may originate. The formation age of a terrestrial planet, its mass and size, as well as the lifetime in the EUV-saturated early phase of its host star play a significant role in its atmosphere evolution. We show that planets even in orbits within the habitable zone of their host stars might not lose nebular- or catastrophically outgassed initial protoatmospheres completely and could end up as water worlds with CO2 and hydrogen- or oxygen-rich upper atmospheres. If an atmosphere of a terrestrial planet evolves to an N2-rich atmosphere too early in its lifetime, the atmosphere may be lost. We show that the initial conditions set up by the formation of a terrestrial planet and by the evolution of the host star's EUV and plasma environment are very important factors owing to which a planet may evolve to a habitable world. Finally we present a method for studying the discussed atmosphere evolution hypotheses by future UV transit observations of terrestrial exoplanets.

  19. Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution.

    PubMed

    Gu, Xun; Wang, Yufeng; Gu, Jianying

    2002-06-01

    The classical (two-round) hypothesis of vertebrate genome duplication proposes two successive whole-genome duplication(s) (polyploidizations) predating the origin of fishes, a view now being seriously challenged. As the debate largely concerns the relative merits of the 'big-bang mode' theory (large-scale duplication) and the 'continuous mode' theory (constant creation by small-scale duplications), we tested whether a significant proportion of paralogous genes in the contemporary human genome was indeed generated in the early stage of vertebrate evolution. After an extensive search of major databases, we dated 1,739 gene duplication events from the phylogenetic analysis of 749 vertebrate gene families. We found a pattern characterized by two waves (I, II) and an ancient component. Wave I represents a recent gene family expansion by tandem or segmental duplications, whereas wave II, a rapid paralogous gene increase in the early stage of vertebrate evolution, supports the idea of genome duplication(s) (the big-bang mode). Further analysis indicated that large- and small-scale gene duplications both make a significant contribution during the early stage of vertebrate evolution to build the current hierarchy of the human proteome.

  20. Modular evolution of phosphorylation-based signalling systems

    PubMed Central

    Jin, Jing; Pawson, Tony

    2012-01-01

    Phosphorylation sites are formed by protein kinases (‘writers’), frequently exert their effects following recognition by phospho-binding proteins (‘readers’) and are removed by protein phosphatases (‘erasers’). This writer–reader–eraser toolkit allows phosphorylation events to control a broad range of regulatory processes, and has been pivotal in the evolution of new functions required for the development of multi-cellular animals. The proteins that comprise this system of protein kinases, phospho-binding targets and phosphatases are typically modular in organization, in the sense that they are composed of multiple globular domains and smaller peptide motifs with binding or catalytic properties. The linkage of these binding and catalytic modules in new ways through genetic recombination, and the selection of particular domain combinations, has promoted the evolution of novel, biologically useful processes. Conversely, the joining of domains in aberrant combinations can subvert cell signalling and be causative in diseases such as cancer. Major inventions such as phosphotyrosine (pTyr)-mediated signalling that flourished in the first multi-cellular animals and their immediate predecessors resulted from stepwise evolutionary progression. This involved changes in the binding properties of interaction domains such as SH2 and their linkage to new domain types, and alterations in the catalytic specificities of kinases and phosphatases. This review will focus on the modular aspects of signalling networks and the mechanism by which they may have evolved. PMID:22889906

  1. Extracellular matrix motion and early morphogenesis.

    PubMed

    Loganathan, Rajprasad; Rongish, Brenda J; Smith, Christopher M; Filla, Michael B; Czirok, Andras; Bénazéraf, Bertrand; Little, Charles D

    2016-06-15

    For over a century, embryologists who studied cellular motion in early amniotes generally assumed that morphogenetic movement reflected migration relative to a static extracellular matrix (ECM) scaffold. However, as we discuss in this Review, recent investigations reveal that the ECM is also moving during morphogenesis. Time-lapse studies show how convective tissue displacement patterns, as visualized by ECM markers, contribute to morphogenesis and organogenesis. Computational image analysis distinguishes between cell-autonomous (active) displacements and convection caused by large-scale (composite) tissue movements. Modern quantification of large-scale 'total' cellular motion and the accompanying ECM motion in the embryo demonstrates that a dynamic ECM is required for generation of the emergent motion patterns that drive amniote morphogenesis. © 2016. Published by The Company of Biologists Ltd.

  2. Extant-only comparative methods fail to recover the disparity preserved in the bird fossil record.

    PubMed

    Mitchell, Jonathan S

    2015-09-01

    Most extant species are in clades with poor fossil records, and recent studies of comparative methods show they have low power to infer even highly simplified models of trait evolution without fossil data. Birds are a well-studied radiation, yet their early evolutionary patterns are still contentious. The fossil record suggests that birds underwent a rapid ecological radiation after the end-Cretaceous mass extinction, and several smaller, subsequent radiations. This hypothesized series of repeated radiations from fossil data is difficult to test using extant data alone. By uniting morphological and phylogenetic data on 604 extant genera of birds with morphological data on 58 species of extinct birds from 50 million years ago, the "halfway point" of avian evolution, I have been able to test how well extant-only methods predict the diversity of fossil forms. All extant-only methods underestimate the disparity, although the ratio of within- to between-clade disparity does suggest high early rates. The failure of standard models to predict high early disparity suggests that recent radiations are obscuring deep time patterns in the evolution of birds. Metrics from different models can be used in conjunction to provide more valuable insights than simply finding the model with the highest relative fit. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  3. Emergence of cooperativity in a model biofilm

    NASA Astrophysics Data System (ADS)

    Rotrattanadumrong, Rachapun; Endres, Robert G.

    2017-06-01

    Evolution to multicellularity from an aggregate of cells involves altruistic cooperation between individual cells, which is in conflict with Darwinian evolution. How cooperation arises and how a cell community resolves such conflicts remains unclear. In this study, we investigated the spontaneous emergence of cell differentiation and the subsequent division of labour in evolving cellular metabolic networks. In spatially extended cell aggregates, our findings reveal that resource limitation can lead to the formation of subpopulations and cooperation of cells, and hence multicellular communities. A specific example of our model can explain the recently observed oscillatory growth in Bacillus subtilis biofilms.

  4. Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes.

    PubMed

    Win, Joe; Kamoun, Sophien

    2008-04-01

    Plant pathogenic microbes deliver effector proteins inside host cells to modulate plant defense circuitry and enable parasitic colonization. As genome sequences from plant pathogens become available, genome-wide evolutionary analyses will shed light on how pathogen effector genes evolved and adapted to the cellular environment of their host plants. In the August 2007 issue of Plant Cell, we described adaptive evolution (positive selection) in the cytoplasmic RXLR effectors of three recently sequenced oomycete plant pathogens. Here, we summarize our findings and describe additional data that further validate our approach.

  5. A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds

    DOE PAGES

    Knoll, Fabien; Chiappe, Luis M.; Sanchez, Sophie; ...

    2018-03-05

    Fossils of juvenile Mesozoic birds provide insight into the early evolution of avian development, however such fossils are rare. The analysis of the ossification sequence in these early-branching birds has the potential to address important questions about their comparative developmental biology and to help understand their morphological evolution and ecological differentiation. Here we report on an early juvenile enantiornithine specimen from the Early Cretaceous of Europe, which sheds new light on the osteogenesis in this most species-rich clade of Mesozoic birds. Consisting of a nearly complete skeleton, it is amongst the smallest known Mesozoic avian fossils representing post-hatching stages ofmore » development. Finally, comparisons between this new specimen and other known early juvenile enantiornithines support a clade-wide asynchronous pattern of osteogenesis in the sternum and the vertebral column, and strongly indicate that the hatchlings of these phylogenetically basal birds varied greatly in size and tempo of skeletal maturation.« less

  6. A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoll, Fabien; Chiappe, Luis M.; Sanchez, Sophie

    Fossils of juvenile Mesozoic birds provide insight into the early evolution of avian development, however such fossils are rare. The analysis of the ossification sequence in these early-branching birds has the potential to address important questions about their comparative developmental biology and to help understand their morphological evolution and ecological differentiation. Here we report on an early juvenile enantiornithine specimen from the Early Cretaceous of Europe, which sheds new light on the osteogenesis in this most species-rich clade of Mesozoic birds. Consisting of a nearly complete skeleton, it is amongst the smallest known Mesozoic avian fossils representing post-hatching stages ofmore » development. Finally, comparisons between this new specimen and other known early juvenile enantiornithines support a clade-wide asynchronous pattern of osteogenesis in the sternum and the vertebral column, and strongly indicate that the hatchlings of these phylogenetically basal birds varied greatly in size and tempo of skeletal maturation.« less

  7. Origin and tectonic evolution of early Paleozoic arc terranes abutting the northern margin of North China Craton

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Pei, Fu-Ping; Zhang, Ying; Zhou, Zhong-Biao; Xu, Wen-Liang; Wang, Zhi-Wei; Cao, Hua-Hua; Yang, Chuan

    2017-12-01

    The origin and tectonic evolution of the early Paleozoic arc terranes abutting the northern margin of the North China Craton (NCC) are widely debated. This paper presents detrital zircon U-Pb and Hf isotopic data of early Paleozoic strata in the Zhangjiatun arc terrane of central Jilin Province, northeast (NE) China, and compares them with the Bainaimiao and Jiangyu arc terranes abutting the northern margin of the NCC. Detrital zircons from early Paleozoic strata in three arc terranes exhibit comparable age groupings of 539-430, 1250-577, and 2800-1600 Ma. The Paleoproterozoic to Neoarchean ages and Hf isotopic composition of the detrital zircons imply the existence of the Precambrian fragments beneath the arc terranes. Given the evidences from geology, igneous rocks, and detrital zircons, we proposed that the early Paleozoic arc terranes abutting the northern margin of the NCC are a united arc terrane including the exotic Precambrian fragments, and these fragments shared a common evolutionary history from Neoproterozoic to early-middle Paleozoic.

  8. Crustal evolution of the early earth: The role of major impacts

    NASA Technical Reports Server (NTRS)

    Frey, H.

    1979-01-01

    The role of major impact basins (such as those which formed on the moon before 4 billion years ago) is examined to determine the effects of such impacts on the early crustal evolution of the earth. Specifically addressed is the fundamental problem of what is the origin of the earth's fundamental crustal dichotomy of low density continental and high density oceanic crust and its relationship to the superficially similar highlands/maria crustal dichotomies of the moon, Mercury and Mars.

  9. Biologist Edwin Grant Conklin and the idea of the religious direction of human evolution in the early 1920s.

    PubMed

    Pavuk, Alexander

    2017-01-01

    Edwin Grant Conklin, renowned US embryologist and evolutionary popularizer, publicly advocated a social vision of evolution that intertwined science and modernist Protestant theology in the early 1920s. The moral prestige of professional science in American culture - along with Conklin's own elite scientific status - diverted attention from the frequency with which his work crossed boundaries between natural science, religion and philosophy. Writing for broad audiences, Conklin was one of the most significant of the religious and modernist biological scientists whose rhetoric went well beyond simply claiming that certain kinds of religion were amenable to evolutionary science; he instead incorporated religion itself into evolution's broadest workings. A sampling of Conklin's widely-resonant discourse suggests that there was substantially more to the religion-evolution story in the 1920s US than many creationist-centred narratives of the era imply.

  10. Integrated Multiregional Analysis Proposing a New Model of Colorectal Cancer Evolution.

    PubMed

    Uchi, Ryutaro; Takahashi, Yusuke; Niida, Atsushi; Shimamura, Teppei; Hirata, Hidenari; Sugimachi, Keishi; Sawada, Genta; Iwaya, Takeshi; Kurashige, Junji; Shinden, Yoshiaki; Iguchi, Tomohiro; Eguchi, Hidetoshi; Chiba, Kenichi; Shiraishi, Yuichi; Nagae, Genta; Yoshida, Kenichi; Nagata, Yasunobu; Haeno, Hiroshi; Yamamoto, Hirofumi; Ishii, Hideshi; Doki, Yuichiro; Iinuma, Hisae; Sasaki, Shin; Nagayama, Satoshi; Yamada, Kazutaka; Yachida, Shinichi; Kato, Mamoru; Shibata, Tatsuhiro; Oki, Eiji; Saeki, Hiroshi; Shirabe, Ken; Oda, Yoshinao; Maehara, Yoshihiko; Komune, Shizuo; Mori, Masaki; Suzuki, Yutaka; Yamamoto, Ken; Aburatani, Hiroyuki; Ogawa, Seishi; Miyano, Satoru; Mimori, Koshi

    2016-02-01

    Understanding intratumor heterogeneity is clinically important because it could cause therapeutic failure by fostering evolutionary adaptation. To this end, we profiled the genome and epigenome in multiple regions within each of nine colorectal tumors. Extensive intertumor heterogeneity is observed, from which we inferred the evolutionary history of the tumors. First, clonally shared alterations appeared, in which C>T transitions at CpG site and CpG island hypermethylation were relatively enriched. Correlation between mutation counts and patients' ages suggests that the early-acquired alterations resulted from aging. In the late phase, a parental clone was branched into numerous subclones. Known driver alterations were observed frequently in the early-acquired alterations, but rarely in the late-acquired alterations. Consistently, our computational simulation of the branching evolution suggests that extensive intratumor heterogeneity could be generated by neutral evolution. Collectively, we propose a new model of colorectal cancer evolution, which is useful for understanding and confronting this heterogeneous disease.

  11. Sixth Symposium on Chemical Evolution and the Origin and Evolution of Life

    NASA Technical Reports Server (NTRS)

    Acevedo, Sara (Editor); DeVincenzi, Donald L. (Editor); Chang, Sherwood (Editor)

    1998-01-01

    The 6th Symposium on Chemical Evolution and the Origin and Evolution of Life was convened at NASA Ames Research Center, November 17-20, 1997. This Symposium is convened every three years under the auspices of NASA's Exobiology Program Office. All Principal Investigators funded by this Program present their most recent research accomplishments at the Symposium. Scientific papers were presented in the following areas: cosmic evolution of the biogenic elements, prebiotic evolution (both planetary and chemical), evolution of early organisms and evolution of organisms in extreme environments, solar system exploration, and star and planet formation. The Symposium was attended by over 200 scientists from NASA centers and Universities nationwide.

  12. Agent-based models of cellular systems.

    PubMed

    Cannata, Nicola; Corradini, Flavio; Merelli, Emanuela; Tesei, Luca

    2013-01-01

    Software agents are particularly suitable for engineering models and simulations of cellular systems. In a very natural and intuitive manner, individual software components are therein delegated to reproduce "in silico" the behavior of individual components of alive systems at a given level of resolution. Individuals' actions and interactions among individuals allow complex collective behavior to emerge. In this chapter we first introduce the readers to software agents and multi-agent systems, reviewing the evolution of agent-based modeling of biomolecular systems in the last decade. We then describe the main tools, platforms, and methodologies available for programming societies of agents, possibly profiting also of toolkits that do not require advanced programming skills.

  13. Energy Intake and Exercise as Determinants of Brain Health and Vulnerability to Injury and Disease

    PubMed Central

    Mattson, Mark P.

    2012-01-01

    Evolution favored individuals with superior cognitive and physical abilities under conditions of limited food sources, and brain function can therefore be optimized by intermittent dietary energy restriction (ER) and exercise. Such energetic challenges engage adaptive cellular stress response signaling pathways in neurons involving neurotrophic factors, protein chaperones, DNA repair proteins, autophagy and mitochondrial biogenesis. By suppressing adaptive cellular stress responses, overeating and a sedentary lifestyle may increase the risk of Alzheimer’s and Parkinson’s diseases, stroke, and depression. Intense concerted efforts of governments, families, schools and physicians will be required to successfully implement brain-healthy lifestyles that incorporate ER and exercise. PMID:23168220

  14. Workshop summary. Biomedical and Space-Related Research with Heavy Ions at the BEVALAC

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Curtis, S. B.

    1989-01-01

    The authors provide an overview of papers presented at a workshop on Biomedical and Space-Related Research with Heavy Ions at the BEVALAC at Lawrence Berkeley Laboratory. Goals of the meeting were to determine the critical experiments using heavy ions as probes in radiation physics, radiation chemistry, macromolecular and cellular biology, evolution science, basic neurophysiology, and medical therapies; how beam lines and facilities at Lawrence Berkeley Laboratory can be improved for these experiments; and implications in priorities and funding for national policy. Workshop topics included physics and facilities, cellular and molecular biology, tissue radiobiology, and the future of heavy ion research.

  15. Biomolecule-Mineral Interactions in the Geochemical Environment on Early Earth and in the Human Body

    NASA Astrophysics Data System (ADS)

    Sahai, N.

    2011-12-01

    We worked on four projects consistent with the broad goals of the grant to investigate (i) the potential impacts of mineral surface chemistry and particle size on the stability and viability of cell membranes, bacteria and human cells and (ii) the influence of biomolecules on mineral nucleation and growth. The projects are of relevance to the origin and early evolution of life, biomineralization, medical mineralogy, and environmental biogeochemistry. The freedom enabled by the five-year grant to explore high-risk scientific areas, and the resulting high impact outcomes, cannot be overstated. We developed an almost entirely new field of Medical Mineralogyy and extended our concepts and knowledge-base to the potential roles of mineral surfaces in the evolution of protocells and the earliest cells. These exciting connections to medical mineralogy, and to the origin and evolution of life on early Earth are fascinating topics to the general public and even to other scientists, especially when the links to mineralogy and geochemistry are highlighted. In brief, we examined the stability of lipid bilayers representing model protocell membranes comprised of phospholipid bilayers with mineral surfaces. We found that the stability of lipid bilayers depends on mineral surface charge and increases as silica glass ~ quartz < rutile ~ mica < corundum. In a second project, we investigated whether the evolution of bacterial extra-cellular polymeric substances (EPS) may have been driven by nanomineral toxicity. Results showed that EPS does protect against mineral toxicity, and toxicity increases as amorphous SiO2 < β-TiO2 (anatase) < γ-Al2O3. A commonly accepted mechanism for Biomineralization is protein-templated nucleation. We used Molecular Dynamics and Bioinformatics computational chemistry approaches and showed that the random coil structure of a specific peptide promotes formation of an amorphous Ca-PO4 cluster, but not direct templation of hydroxyapatite. The consistency between our Ca-PO4 and previous experimental Ca-CO3 studies indicates that universal principles underly biomineralization processes of relevance to environmental biogeochemistry as well as to medical mineralogy. Minerals can enter the human either inadvertently as inhaled dusts or are inserted by design such as in components of orthopedic implants. It is important to know how the mineral surface properties affect the body's immune system response. We found that adhesion/detachment force of the Jurkat -line of T-lymphocytes increased as SiO2 glass ~ quartz < rutile (100) ~ mica (001) < polycrystalline corundum, and was related to the unraveling of cell surface glycoproteins, and to mineral surface charge. The studies described above have resulted in 23 peer-reviewed publications to date (published or in review or in prep.); one MSA volume and one Elements issue edited by the P.I.; trained five graduate students, three post-doctoral research scientists and 4 undergraduate students; numerous invited presentations at international conferences and at Universities; and numerous outreach activities including interviews on National Public Radio and on Hungarian national newspapers and television at the International Mineralogical Association's Annual Meeting.

  16. Integrating remote sensing, GIS and dynamic models for landscape-level simulation of forest insect disturbance

    USDA-ARS?s Scientific Manuscript database

    Cellular automata (CA) is a powerful tool in modeling the evolution of macroscopic scale phenomena as it couples time, space, and variable together while remaining in a simplified form. However, such application has remained challenging in landscape-level chronic forest insect epidemics due to the h...

  17. Neoproterozoic-Early Paleozoic Peri-Pacific Accretionary Evolution of the Mongolian Collage System: Insights From Geochemical and U-Pb Zircon Data From the Ordovician Sedimentary Wedge in the Mongolian Altai

    NASA Astrophysics Data System (ADS)

    Jiang, Y. D.; Schulmann, K.; Kröner, A.; Sun, M.; Lexa, O.; Janoušek, V.; Buriánek, D.; Yuan, C.; Hanžl, P.

    2017-11-01

    Neoproterozoic to early Paleozoic accretionary processes of the Central Asian Orogenic Belt have been evaluated so far mainly using the geology of ophiolites and/or magmatic arcs. Thus, the knowledge of the nature and evolution of associated sedimentary prisms remains fragmentary. We carried out an integrated geological, geochemical, and zircon U-Pb geochronological study on a giant Ordovician metasedimentary succession of the Mongolian Altai Mountains. This succession is characterized by dominant terrigenous components mixed with volcanogenic material. It is chemically immature, compositionally analogous to graywacke, and marked by significant input of felsic to intermediate arc components, pointing to an active continental margin depositional setting. Detrital zircon U-Pb ages suggest a source dominated by products of early Paleozoic magmatism prevailing during the Cambrian-Ordovician and culminating at circa 500 Ma. We propose that the Ordovician succession forms an "Altai sedimentary wedge," the evolution of which can be linked to the geodynamics of the margins of the Mongolian Precambrian Zavhan-Baydrag blocks. This involved subduction reversal from southward subduction of a passive continental margin (Early Cambrian) to the development of the "Ikh-Mongol Magmatic Arc System" and the giant Altai sedimentary wedge above a north dipping subduction zone (Late Cambrian-Ordovician). Such a dynamic process resembles the tectonic evolution of the peri-Pacific accretionary Terra Australis Orogen. A new model reconciling the Baikalian metamorphic belt along the southern Siberian Craton with peri-Pacific Altai accretionary systems fringing the Mongolian microcontinents is proposed to explain the Cambro-Ordovician geodynamic evolution of the Mongolian collage system.

  18. A Nanoflare-Based Cellular Automaton Model and the Observed Properties of the Coronal Plasma

    NASA Technical Reports Server (NTRS)

    Lopez-Fuentes, Marcelo; Klimchuk, James Andrew

    2016-01-01

    We use the cellular automaton model described in Lopez Fuentes and Klimchuk to study the evolution of coronal loop plasmas. The model, based on the idea of a critical misalignment angle in tangled magnetic fields, produces nanoflares of varying frequency with respect to the plasma cooling time. We compare the results of the model with active region (AR) observations obtained with the Hinode/XRT and SDOAIA instruments. The comparison is based on the statistical properties of synthetic and observed loop light curves. Our results show that the model reproduces the main observational characteristics of the evolution of the plasma in AR coronal loops. The typical intensity fluctuations have amplitudes of 10 percent - 15 percent both for the model and the observations. The sign of the skewness of the intensity distributions indicates the presence of cooling plasma in the loops. We also study the emission measure (EM) distribution predicted by the model and obtain slopes in log(EM) versus log(T) between 2.7 and 4.3, in agreement with published observational values.

  19. The great billion-year war between ribosome- and capsid-encoding organisms (cells and viruses) as the major source of evolutionary novelties.

    PubMed

    Forterre, Patrick; Prangishvili, David

    2009-10-01

    Our conceptions on the origin, nature, and role of viruses have been shaken recently by several independent lines of research. There are many reasons to believe now that viruses are more ancient than modern cells and have always been more abundant and diverse than their cellular targets. Viruses can be defined as capsid-encoding organisms that transform their "host" cell into a viral factory. If capsid-encoding organisms (viruses) and ribosome-encoding organisms (cells) are the major types of living entities on our planet, it seems logical to conclude that their conflict has been a major engine of biological evolution (in the framework of natural selection). In particular, many novelties first selected in the viral world might have been transferred to cells as a consequence of the continuous flow of viral genes into cellular genomes. We discuss recent observations and hypotheses suggesting that viruses have played a major role at different stages of biological evolution, such as the RNA to DNA transition, the origin of the eukaryotic nucleus, or, alternatively, the origin of unique features in multicellular macrobes.

  20. 2012 Gordon Research Conference on Mutagenesis - Formal Schedule and Speaker/Poster Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demple, Bruce

    2012-08-24

    The delicate balance among cellular pathways that control mutagenic changes in DNA will be the focus of the 2012 Mutagenesis Gordon Research Conference. Mutagenesis is essential for evolution, while genetic stability maintains cellular functions in all organisms from microbes to metazoans. Different systems handle DNA lesions at various times of the cell cycle and in different places within the nucleus, and inappropriate actions can lead to mutations. While mutation in humans is closely linked to disease, notably cancers, mutational systems can also be beneficial. The conference will highlight topics of beneficial mutagenesis, including full establishment of the immune system, cellmore » survival mechanisms, and evolution and adaptation in microbial systems. Equal prominence will be given to detrimental mutation processes, especially those involved in driving cancer, neurological diseases, premature aging, and other threats to human health. Provisional session titles include Branching Pathways in Mutagenesis; Oxidative Stress and Endogenous DNA Damage; DNA Maintenance Pathways; Recombination, Good and Bad; Problematic DNA Structures; Localized Mutagenesis; Hypermutation in the Microbial World; and Mutation and Disease.« less

  1. A NANOFLARE-BASED CELLULAR AUTOMATON MODEL AND THE OBSERVED PROPERTIES OF THE CORONAL PLASMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuentes, Marcelo López; Klimchuk, James A., E-mail: lopezf@iafe.uba.ar

    2016-09-10

    We use the cellular automaton model described in López Fuentes and Klimchuk to study the evolution of coronal loop plasmas. The model, based on the idea of a critical misalignment angle in tangled magnetic fields, produces nanoflares of varying frequency with respect to the plasma cooling time. We compare the results of the model with active region (AR) observations obtained with the Hinode /XRT and SDO /AIA instruments. The comparison is based on the statistical properties of synthetic and observed loop light curves. Our results show that the model reproduces the main observational characteristics of the evolution of the plasmamore » in AR coronal loops. The typical intensity fluctuations have amplitudes of 10%–15% both for the model and the observations. The sign of the skewness of the intensity distributions indicates the presence of cooling plasma in the loops. We also study the emission measure (EM) distribution predicted by the model and obtain slopes in log(EM) versus log(T) between 2.7 and 4.3, in agreement with published observational values.« less

  2. [Stress-induced cellular adaptive mutagenesis].

    PubMed

    Zhu, Linjiang; Li, Qi

    2014-04-01

    The adaptive mutations exist widely in the evolution of cells, such as antibiotic resistance mutations of pathogenic bacteria, adaptive evolution of industrial strains, and cancerization of human somatic cells. However, how these adaptive mutations are generated is still controversial. Based on the mutational analysis models under the nonlethal selection conditions, stress-induced cellular adaptive mutagenesis is proposed as a new evolutionary viewpoint. The hypothetic pathway of stress-induced mutagenesis involves several intracellular physiological responses, including DNA damages caused by accumulation of intracellular toxic chemicals, limitation of DNA MMR (mismatch repair) activity, upregulation of general stress response and activation of SOS response. These responses directly affect the accuracy of DNA replication from a high-fidelity manner to an error-prone one. The state changes of cell physiology significantly increase intracellular mutation rate and recombination activity. In addition, gene transcription under stress condition increases the instability of genome in response to DNA damage, resulting in transcription-associated DNA mutagenesis. In this review, we summarize these two molecular mechanisms of stress-induced mutagenesis and transcription-associated DNA mutagenesis to help better understand the mechanisms of adaptive mutagenesis.

  3. Biophysical Aspects of Spindle Evolution

    NASA Astrophysics Data System (ADS)

    Farhadifar, Reza; Baer, Charlie; Needleman, Daniel

    2011-03-01

    The continual propagation of genetic material from one generation to the next is one of the most basic characteristics of all organisms. In eukaryotes, DNA is segregated into the two daughter cells by a highly dynamic, self-organizing structure called the mitotic spindle. Mitotic spindles can show remarkable variability between tissues and organisms, but there is currently little understanding of the biophysical and evolutionary basis of this diversity. We are studying how spontaneous mutations modify cell division during nematode development. By comparing the mutational variation - the raw material of evolution - with the variation present in nature, we are investigating how the mitotic spindle is shaped over the course of evolution. This combination of quantitative genetics and cellular biophysics gives insight into how the structure and dynamics of the spindle is formed through selection, drift, and biophysical constraints.

  4. Nonhuman genetics. Genomic basis for the convergent evolution of electric organs.

    PubMed

    Gallant, Jason R; Traeger, Lindsay L; Volkening, Jeremy D; Moffett, Howell; Chen, Po-Hao; Novina, Carl D; Phillips, George N; Anand, Rene; Wells, Gregg B; Pinch, Matthew; Güth, Robert; Unguez, Graciela A; Albert, James S; Zakon, Harold H; Samanta, Manoj P; Sussman, Michael R

    2014-06-27

    Little is known about the genetic basis of convergent traits that originate repeatedly over broad taxonomic scales. The myogenic electric organ has evolved six times in fishes to produce electric fields used in communication, navigation, predation, or defense. We have examined the genomic basis of the convergent anatomical and physiological origins of these organs by assembling the genome of the electric eel (Electrophorus electricus) and sequencing electric organ and skeletal muscle transcriptomes from three lineages that have independently evolved electric organs. Our results indicate that, despite millions of years of evolution and large differences in the morphology of electric organ cells, independent lineages have leveraged similar transcription factors and developmental and cellular pathways in the evolution of electric organs. Copyright © 2014, American Association for the Advancement of Science.

  5. Evolving Ideas on the Origin and Evolution of Flowers: New Perspectives in the Genomic Era

    PubMed Central

    Chanderbali, Andre S.; Berger, Brent A.; Howarth, Dianella G.; Soltis, Pamela S.; Soltis, Douglas E.

    2016-01-01

    The origin of the flower was a key innovation in the history of complex organisms, dramatically altering Earth’s biota. Advances in phylogenetics, developmental genetics, and genomics during the past 25 years have substantially advanced our understanding of the evolution of flowers, yet crucial aspects of floral evolution remain, such as the series of genetic and morphological changes that gave rise to the first flowers; the factors enabling the origin of the pentamerous eudicot flower, which characterizes ∼70% of all extant angiosperm species; and the role of gene and genome duplications in facilitating floral innovations. A key early concept was the ABC model of floral organ specification, developed by Elliott Meyerowitz and Enrico Coen and based on two model systems, Arabidopsis thaliana and Antirrhinum majus. Yet it is now clear that these model systems are highly derived species, whose molecular genetic-developmental organization must be very different from that of ancestral, as well as early, angiosperms. In this article, we will discuss how new research approaches are illuminating the early events in floral evolution and the prospects for further progress. In particular, advancing the next generation of research in floral evolution will require the development of one or more functional model systems from among the basal angiosperms and basal eudicots. More broadly, we urge the development of “model clades” for genomic and evolutionary-developmental analyses, instead of the primary use of single “model organisms.” We predict that new evolutionary models will soon emerge as genetic/genomic models, providing unprecedented new insights into floral evolution. PMID:27053123

  6. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution.

    PubMed

    Hopkins, Melanie J; Smith, Andrew B

    2015-03-24

    How ecological and morphological diversity accrues over geological time has been much debated by paleobiologists. Evidence from the fossil record suggests that many clades reach maximal diversity early in their evolutionary history, followed by a decline in evolutionary rates as ecological space fills or due to internal constraints. Here, we apply recently developed methods for estimating rates of morphological evolution during the post-Paleozoic history of a major invertebrate clade, the Echinoidea. Contrary to expectation, rates of evolution were lowest during the initial phase of diversification following the Permo-Triassic mass extinction and increased over time. Furthermore, although several subclades show high initial rates and net decreases in rates of evolution, consistent with "early bursts" of morphological diversification, at more inclusive taxonomic levels, these bursts appear as episodic peaks. Peak rates coincided with major shifts in ecological morphology, primarily associated with innovations in feeding strategies. Despite having similar numbers of species in today's oceans, regular echinoids have accrued far less morphological diversity than irregular echinoids due to lower intrinsic rates of morphological evolution and less morphological innovation, the latter indicative of constrained or bounded evolution. These results indicate that rates of evolution are extremely heterogenous through time and their interpretation depends on the temporal and taxonomic scale of analysis.

  7. Gene length as a biological timer to establish temporal transcriptional regulation

    PubMed Central

    Kirkconnell, Killeen S.; Magnuson, Brian; Paulsen, Michelle T.; Lu, Brian; Bedi, Karan; Ljungman, Mats

    2017-01-01

    ABSTRACT Transcriptional timing is inherently influenced by gene length, thus providing a mechanism for temporal regulation of gene expression. While gene size has been shown to be important for the expression timing of specific genes during early development, whether it plays a role in the timing of other global gene expression programs has not been extensively explored. Here, we investigate the role of gene length during the early transcriptional response of human fibroblasts to serum stimulation. Using the nascent sequencing techniques Bru-seq and BruUV-seq, we identified immediate genome-wide transcriptional changes following serum stimulation that were linked to rapid activation of enhancer elements. We identified 873 significantly induced and 209 significantly repressed genes. Variations in gene size allowed for a large group of genes to be simultaneously activated but produce full-length RNAs at different times. The median length of the group of serum-induced genes was significantly larger than the median length of all expressed genes, housekeeping genes, and serum-repressed genes. These gene length relationships were also observed in corresponding mouse orthologs, suggesting that relative gene size is evolutionarily conserved. The sizes of transcription factor and microRNA genes immediately induced after serum stimulation varied dramatically, setting up a cascade mechanism for temporal expression arising from a single activation event. The retention and expansion of large intronic sequences during evolution have likely played important roles in fine-tuning the temporal expression of target genes in various cellular response programs. PMID:28055303

  8. Assessment of nutrient remobilization through structural changes of palisade and spongy parenchyma in oilseed rape leaves during senescence.

    PubMed

    Sorin, Clément; Musse, Maja; Mariette, François; Bouchereau, Alain; Leport, Laurent

    2015-02-01

    Differential palisade and spongy parenchyma structural changes in oilseed rape leaf were demonstrated. These dismantling processes were linked to early senescence events and associated to remobilization processes. During leaf senescence, an ordered cell dismantling process allows efficient nutrient remobilization. However, in Brassica napus plants, an important amount of nitrogen (N) in fallen leaves is associated with low N remobilization efficiency (NRE). The leaf is a complex organ mainly constituted of palisade and spongy parenchyma characterized by different structures and functions concerning water relations and carbon fixation. The aim of the present study was to demonstrate a specific structural evolution of these parenchyma throughout natural senescence in B. napus, probably linked to differential nutrient remobilization processes. The study was performed on 340 leaves from 32 plants during an 8-week development period under controlled growing conditions. Water distribution and status at the cellular level were investigated by low-field proton nuclear magnetic resonance (NMR), while light and electron microscopy were used to observe cell and plast structure. Physiological parameters were determined on all leaves studied and used as indicators of leaf development and remobilization progress. The results revealed a process of hydration and cell enlargement of leaf tissues associated with senescence. Wide variations were observed in the palisade parenchyma while spongy cells changed only very slightly. The major new functional information revealed was the link between the early senescence events and specific tissue dismantling processes.

  9. Human evolution. Evolution of early Homo: an integrated biological perspective.

    PubMed

    Antón, Susan C; Potts, Richard; Aiello, Leslie C

    2014-07-04

    Integration of evidence over the past decade has revised understandings about the major adaptations underlying the origin and early evolution of the genus Homo. Many features associated with Homo sapiens, including our large linear bodies, elongated hind limbs, large energy-expensive brains, reduced sexual dimorphism, increased carnivory, and unique life history traits, were once thought to have evolved near the origin of the genus in response to heightened aridity and open habitats in Africa. However, recent analyses of fossil, archaeological, and environmental data indicate that such traits did not arise as a single package. Instead, some arose substantially earlier and some later than previously thought. From ~2.5 to 1.5 million years ago, three lineages of early Homo evolved in a context of habitat instability and fragmentation on seasonal, intergenerational, and evolutionary time scales. These contexts gave a selective advantage to traits, such as dietary flexibility and larger body size, that facilitated survival in shifting environments. Copyright © 2014, American Association for the Advancement of Science.

  10. Life sciences and space research XXIII(2): Planetary biology and origins of life; Proceedings of the Topical Meeting and Workshops XX, XXI and XXIII of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Technical Reports Server (NTRS)

    Schwartz, A. W. (Editor); Dose, K. (Editor); Raup, D. M. (Editor); Klein, H. P. (Editor); Devincenzi, D. L. (Editor)

    1989-01-01

    This volume includes chapters on exobiology in space, chemical and early biochemical evolution, life without oxygen, potential for chemical evolution in the early environment of Mars, planetary protection issues and sample return missions, and the modulation of biological evolution by astrophysical phenomena. Papers are presented on the results of spaceflight missions, the action of some factors of space medium on the abiogenic synthesis of nucleotides, early peptidic enzymes, microbiology and biochemistry of the methanogenic archaeobacteria, and present-day biogeochemical activities of anaerobic bacteria and their relevance to future exobiological investigations. Consideration is also given to the development of the Alba Patera volcano on Mars, biological nitrogen fixation under primordial Martian partial pressures of dinitrogen, the planetary protection issues in advance of human exploration of Mars, and the difficulty with astronomical explanations of periodic mass extinctions.

  11. Three neuropeptide Y receptor genes in the spiny dogfish, Squalus acanthias, support en bloc duplications in early vertebrate evolution.

    PubMed

    Salaneck, Erik; Ardell, David H; Larson, Earl T; Larhammar, Dan

    2003-08-01

    It has been debated whether the increase in gene number during early vertebrate evolution was due to multiple independent gene duplications or synchronous duplications of many genes. We describe here the cloning of three neuropeptide Y (NPY) receptor genes belonging to the Y1 subfamily in the spiny dogfish, Squalus acanthias, a cartilaginous fish. The three genes are orthologs of the mammalian subtypes Y1, Y4, and Y6, which are located in paralogous gene regions on different chromosomes in mammals. Thus, these genes arose by duplications of a chromosome region before the radiation of gnathostomes (jawed vertebrates). Estimates of duplication times from linearized trees together with evidence from other gene families supports two rounds of chromosome duplications or tetraploidizations early in vertebrate evolution. The anatomical distribution of mRNA was determined by reverse-transcriptase PCR and was found to differ from mammals, suggesting differential functional diversification of the new gene copies during the radiation of the vertebrate classes.

  12. Use of Microcomputers and Personal Computers in Pacing

    PubMed Central

    Sasmor, L.; Tarjan, P.; Mumford, V.; Smith, E.

    1983-01-01

    This paper describes the evolution from the early discrete circuit pacemaker of the past to the sophisticated microprocessor based pacemakers of today. The necessary computerized supporting instrumentation is also described. Technological and economical reasons for this evolution are discussed.

  13. Workshop on Early Crustal Genesis: The World's Oldest Rocks

    NASA Technical Reports Server (NTRS)

    Ashwal, L. D. (Editor)

    1986-01-01

    Topics addressed include: a general review of Precambrain crustal evolution; geology and geochemistry of the Archean Craton in Greenland and Labrador; Precambrian crustal evolution in North and South America; and the field excursion to the Ameralik Fjord.

  14. Nipah virus matrix protein: expert hacker of cellular machines.

    PubMed

    Watkinson, Ruth E; Lee, Benhur

    2016-08-01

    Nipah virus (NiV, Henipavirus) is a highly lethal emergent zoonotic paramyxovirus responsible for repeated human outbreaks of encephalitis in South East Asia. There are no approved vaccines or treatments, thus improved understanding of NiV biology is imperative. NiV matrix protein recruits a plethora of cellular machinery to scaffold and coordinate virion budding. Intriguingly, matrix also hijacks cellular trafficking and ubiquitination pathways to facilitate transient nuclear localization. While the biological significance of matrix nuclear localization for an otherwise cytoplasmic virus remains enigmatic, the molecular details have begun to be characterized, and are conserved among matrix proteins from divergent paramyxoviruses. Matrix protein appropriation of cellular machinery will be discussed in terms of its early nuclear targeting and later role in virion assembly. © 2016 Federation of European Biochemical Societies.

  15. RNase H As Gene Modifier, Driver of Evolution and Antiviral Defense

    PubMed Central

    Moelling, Karin; Broecker, Felix; Russo, Giancarlo; Sunagawa, Shinichi

    2017-01-01

    Retroviral infections are ‘mini-symbiotic’ events supplying recipient cells with sequences for viral replication, including the reverse transcriptase (RT) and ribonuclease H (RNase H). These proteins and other viral or cellular sequences can provide novel cellular functions including immune defense mechanisms. Their high error rate renders RT-RNases H drivers of evolutionary innovation. Integrated retroviruses and the related transposable elements (TEs) have existed for at least 150 million years, constitute up to 80% of eukaryotic genomes and are also present in prokaryotes. Endogenous retroviruses regulate host genes, have provided novel genes including the syncytins that mediate maternal-fetal immune tolerance and can be experimentally rendered infectious again. The RT and the RNase H are among the most ancient and abundant protein folds. RNases H may have evolved from ribozymes, related to viroids, early in the RNA world, forming ribosomes, RNA replicases and polymerases. Basic RNA-binding peptides enhance ribozyme catalysis. RT and ribozymes or RNases H are present today in bacterial group II introns, the precedents of TEs. Thousands of unique RTs and RNases H are present in eukaryotes, bacteria, and viruses. These enzymes mediate viral and cellular replication and antiviral defense in eukaryotes and prokaryotes, splicing, R-loop resolvation, DNA repair. RNase H-like activities are also required for the activity of small regulatory RNAs. The retroviral replication components share striking similarities with the RNA-induced silencing complex (RISC), the prokaryotic CRISPR-Cas machinery, eukaryotic V(D)J recombination and interferon systems. Viruses supply antiviral defense tools to cellular organisms. TEs are the evolutionary origin of siRNA and miRNA genes that, through RISC, counteract detrimental activities of TEs and chromosomal instability. Moreover, piRNAs, implicated in transgenerational inheritance, suppress TEs in germ cells. Thus, virtually all known immune defense mechanisms against viruses, phages, TEs, and extracellular pathogens require RNase H-like enzymes. Analogous to the prokaryotic CRISPR-Cas anti-phage defense possibly originating from TEs termed casposons, endogenized retroviruses ERVs and amplified TEs can be regarded as related forms of inheritable immunity in eukaryotes. This survey suggests that RNase H-like activities of retroviruses, TEs, and phages, have built up innate and adaptive immune systems throughout all domains of life. PMID:28959243

  16. Preparing Preservice K-8 Teachers for the Public School: Improving Evolution Attitudes, Misconceptions, and Legal Confusion

    ERIC Educational Resources Information Center

    Vaughn, Ashley R.; Robbins, Jennifer R.

    2017-01-01

    Evolutionary theory is a central tenet of biological science, and it is essential for all science teachers, early childhood through secondary, to have a clear understanding of not only the science behind evolution, but also the legal precedents for teaching evolution in the classroom. This study examines the effectiveness of a curriculum on…

  17. The Genomic Evolution of Prostate Cancer

    DTIC Science & Technology

    2017-06-01

    management and grant writing skills. 15. SUBJECT TERMS Cancer genetics , tumor evolution, tumor heterogeneity, prostate cancer, exome sequencing 16...aggressive disease, it is unclear if the genetic alterations more common in late disease are present early on, but at low frequency, or if they only...from localized to metastatic prostate cancer. 2. KEYWORDS: Cancer genetics , tumor evolution, tumor heterogeneity, prostate cancer, exome sequencing

  18. Differentiated adaptive evolution, episodic relaxation of selective constraints, and pseudogenization of umami and sweet taste genes TAS1Rs in catarrhine primates.

    PubMed

    Liu, Guangjian; Walter, Lutz; Tang, Suni; Tan, Xinxin; Shi, Fanglei; Pan, Huijuan; Roos, Christian; Liu, Zhijin; Li, Ming

    2014-01-01

    Umami and sweet tastes are two important basic taste perceptions that allow animals to recognize diets with nutritious carbohydrates and proteins, respectively. Until recently, analyses of umami and sweet taste were performed on various domestic and wild animals. While most of these studies focused on the pseudogenization of taste genes, which occur mostly in carnivores and species with absolute feeding specialization, omnivores and herbivores were more or less neglected. Catarrhine primates are a group of herbivorous animals (feeding mostly on plants) with significant divergence in dietary preference, especially the specialized folivorous Colobinae. Here, we conducted the most comprehensive investigation to date of selection pressure on sweet and umami taste genes (TAS1Rs) in catarrhine primates to test whether specific adaptive evolution occurred during their diversification, in association with particular plant diets. We documented significant relaxation of selective constraints on sweet taste gene TAS1R2 in the ancestral branch of Colobinae, which might correlate with their unique ingestion and digestion of leaves. Additionally, we identified positive selection acting on Cercopithecidae lineages for the umami taste gene TAS1R1, on the Cercopithecinae and extant Colobinae and Hylobatidae lineages for TAS1R2, and on Macaca lineages for TAS1R3. Our research further identified several site mutations in Cercopithecidae, Colobinae and Pygathrix, which were detected by previous studies altering the sensitivity of receptors. The positively selected sites were located mostly on the extra-cellular region of TAS1Rs. Among these positively selected sites, two vital sites for TAS1R1 and four vital sites for TAS1R2 in extra-cellular region were identified as being responsible for the binding of certain sweet and umami taste molecules through molecular modelling and docking. Our results suggest that episodic and differentiated adaptive evolution of TAS1Rs pervasively occurred in catarrhine primates, most concentrated upon the extra-cellular region of TAS1Rs.

  19. Cosmic Evolution: The History of an Idea

    NASA Astrophysics Data System (ADS)

    Dick, S. J.

    2004-12-01

    Cosmic evolution has become the conceptual framework within which modern astronomy is undertaken, and is the guiding principle of major NASA programs such as Origins and Astrobiology. While there are 19th- and early 20th century antecedents, as in the work of Robert Chambers, Herbert Spencer and Lawrence Henderson, it was only at mid-20th century that full-blown cosmic evolution began to be articulated and accepted as a research paradigm extending from the Big Bang to life, intelligence and the evolution of culture. Harlow Shapley was particularly important in spreading the idea to the public in the 1950s, and NASA embraced the idea in the 1970s as part of its SETI program and later its exobiology and astrobiology programs. Eric Chaisson, Carl Sagan and others were early proponents of cosmic evolution, and it continues to be elaborated in ever more subtle form as a research program and a philosophy. It has even been termed "Genesis for the 21st century." This paper documents the origin and development of the idea and offers a glimpse of where it could lead if cultural evolution is taken seriously, possibly leading to the concept of a postbiological universe.

  20. CAM: A high-performance cellular-automaton machine

    NASA Astrophysics Data System (ADS)

    Toffoli, Tommaso

    1984-01-01

    CAM is a high-performance machine dedicated to the simulation of cellular automata and other distributed dynamical systems. Its speed is about one-thousand times greater than that of a general-purpose computer programmed to do the same task; in practical terms, this means that CAM can show the evolution of cellular automata on a color monitor with an update rate, dynamic range, and spatial resolution comparable to those of a Super-8 movie, thus permitting intensive interactive experimentation. Machines of this kind can open up novel fields of research, and in this context it is important that results be easy to obtain, reproduce, and transmit. For these reasons, in designing CAM it was important to achieve functional simplicity, high flexibility, and moderate production cost. We expect that many research groups will be able to own their own copy of the machine to do research with.

Top