Science.gov

Sample records for early cenozoic origin

  1. Early cenozoic differentiation of polar marine faunas.

    PubMed

    Crame, J Alistair

    2013-01-01

    The widespread assumption that the origin of polar marine faunas is linked to the onset of major global cooling in the Late Eocene-Early Oligocene is being increasingly challenged. The Antarctic fossil record in particular is suggesting that some modern Southern Ocean taxa may have Early Eocene or even Paleocene origins, i.e. well within the Early Cenozoic greenhouse world. A global analysis of one of the largest marine clades at the present day, the Neogastropoda, indicates that not only is there a decrease in the number of species from the tropics to the poles but also a decrease in the evenness of their distribution. A small number of neogastropod families with predominantly generalist trophic strategies at both poles points to the key role of seasonality in structuring the highest latitude marine assemblages. A distinct latitudinal gradient in seasonality is temperature-invariant and would have operated through periods of global warmth such as the Early Cenozoic. To test this concept a second global analysis was undertaken of earliest Cenozoic (Paleocene) neogastropods and this does indeed show a certain degree of faunal differentiation at both poles. The Buccinidae, s.l. is especially well developed at this time, and this is a major generalist taxon at the present day. There is an element of asymmetry associated with this development of Paleocene polar faunas in that those in the south are more strongly differentiated than their northern counterparts; this can in turn be linked to the already substantial isolation of the southern high latitudes. The key role of seasonality in the formation of polar marine faunas has implications for contemporary ecosystem structure and stability.

  2. Early Cenozoic Differentiation of Polar Marine Faunas

    PubMed Central

    Crame, J. Alistair

    2013-01-01

    The widespread assumption that the origin of polar marine faunas is linked to the onset of major global cooling in the Late Eocene – Early Oligocene is being increasingly challenged. The Antarctic fossil record in particular is suggesting that some modern Southern Ocean taxa may have Early Eocene or even Paleocene origins, i.e. well within the Early Cenozoic greenhouse world. A global analysis of one of the largest marine clades at the present day, the Neogastropoda, indicates that not only is there a decrease in the number of species from the tropics to the poles but also a decrease in the evenness of their distribution. A small number of neogastropod families with predominantly generalist trophic strategies at both poles points to the key role of seasonality in structuring the highest latitude marine assemblages. A distinct latitudinal gradient in seasonality is temperature-invariant and would have operated through periods of global warmth such as the Early Cenozoic. To test this concept a second global analysis was undertaken of earliest Cenozoic (Paleocene) neogastropods and this does indeed show a certain degree of faunal differentiation at both poles. The Buccinidae, s.l. is especially well developed at this time, and this is a major generalist taxon at the present day. There is an element of asymmetry associated with this development of Paleocene polar faunas in that those in the south are more strongly differentiated than their northern counterparts; this can in turn be linked to the already substantial isolation of the southern high latitudes. The key role of seasonality in the formation of polar marine faunas has implications for contemporary ecosystem structure and stability. PMID:23342090

  3. The origin of Cenozoic magmatism of Libya

    NASA Astrophysics Data System (ADS)

    Stuart, Finlay; Masoud, Abdelmoniem; Mark, Darren

    2014-05-01

    Cenozoic volcanic provinces cover 66,000 km2 of Libya. The main fields are aligned NNW-SSE where NE-SW trending structural features intersect the main regional uplift structures. They form some of the largest volcanic provinces in North Africa yet despite their size and relative accessibility they have been not studied in detail. We are engaged in a new study of the geochemistry (major-trace elements, REE, Sr-Nd-Pb isotopes) and geochronology (40Ar/39Ar and cosmogenic 3He) of basalts of the four main Cenozoic volcanic provinces (Garian, Jabal Al Hasawinah, Jabal As Sawda and Jabal Al Haruj) in order to elucidate the nature and origin of the volcanism. The volcanic fields are dominated by basaltic flows, with small volumes of phonolites present at Garian and Jabal Al Hasawinah. Basalt piles rarely exceed a few 10s metres thick and the presence of NW-SE trending dykes on the periphery of most fields implies that existing flows probably represent the latest phase of a protracted volcanic history in each region. The basalts tend to be alkali to mildly alkali. Compositional variation is dominated by fractional crystalisation with little indication of crustal contamination. Trace element and REE support an origin in 5 to 15 % melts of heterogeneous sub-lithosphere mantle. Nd and Sr isotopic composition of the Garian and Jabal Al Haruj basalts (0.5128-0.51294 and 0.703-0.704) overlap the Cenozoic volcanism of southern Italy characterized by Etna and Pantelleria. This is typical of the common European asthenosphere mantle reservoir, and lacks the influence of enriched mantle present in other North African Cenozoic basalt provinces. There has been no systematic change in the location of volcanism with time that is indicative of plate movement over a fixed mantle hotspot. The major pulse of basaltic volcanism in the northern (Garian) and southern (Jabal Al Haruj) provinces overlap in time (6-1 Ma,) while Jabal Al Hasawinah and Jabal As Sawda basalts were erupted

  4. Origin, migration, and accumulation of petroleum in Gulf Coast Cenozoic

    SciTech Connect

    Jones, R.W.

    1986-05-01

    Explanations of the origin, migration, and accumulation of petroleum in the Gulf Coast upper Cenozoic must accommodate the following facts. (1) No specific source of the petroleum has ever been identified. (2) The most probable source section is 10,000-20,000 ft of low TOC (0.4-1.0 wt %) shale that underlies the reservoirs. (3) Tremendous volumes of dry gas have been generated in the middle and basal part of the source section. (4) More gas than oil is in the reservoirs. (5) The distribution of oil and gas accumulations in the Cenozoic is not primarily controlled by the distribution of terrestrial gas-prone organic facies and marine oil-prone organic facies, but by the relative ease of migration of the two hydrocarbon phases. For example, gas preferentially accumulates in the simpler structures, oil in the intrusive salt domes. (6) High pressure and high porosity in the source rock indicates that neither water movement nor continuous phase oil movement out of the source rock are likely to be significant factors in primary migration. (7) The situation is very dynamic, with generation, migration, and accumulation occurring today. (8) Faults are very important as controls on migration and accumulation of the petroleum. The interaction of these (and other) factors suggests that most oil reservoirs in the Gulf Coast upper Cenozoic sediments probably initially became mobile after being dissolved in gas in the source rock. The gas-oil mixture moved toward lower pressure areas adjacent to and in faults, and moved upward into reservoirs and traps along faults.

  5. Eocene Arctic Ocean and earth's Early Cenozoic climate

    SciTech Connect

    Clark, D.L.

    1985-01-01

    Seasonal changes of the Arctic Ocean are an approximate microcosm of the present advanced interglacial climate of the Earth. A similar relationship has existed for several million years but was the Early Cenozoic Arctic Ocean an analog of Earth's climate, as well. Absence of polar ice during the Cretaceous is relatively well established. During the Cenozoic a worldwide decrease in mean annual ocean temperature resulted from such factors as altered oceanic circulation and lower atmospheric CO/sub 2/ levels. Limited Arctic Ocean data for the middle or late Eocene indicate the presence of upwelling conditions and accompanying high productivity of diatoms, ebridians, silicoflagellates and archaeomonads. During this interval, some seasonality is suggested from the varve-like nature of a single sediment core. However, the absence of drop stones or any ice-rafted sediment supports the idea of an open water, ice-free central Arctic Ocean during this time. Latest Cretaceous Arctic Ocean sediment is interpreted to represent approximately the same conditions as those suggested for the Eocene and together with that data suggest that the central Arctic Ocean was ice-free during part if not all of the first 20 my of the Cenozoic. Sediment representing the succeeding 30 my has not been recovered but by latest Miocene or earl Pliocene, ice-rafted sediment was accumulating, both pack ice and icebergs covered the Arctic Ocean reflecting cyclic glacial climate.

  6. Early Cenozoic "dome like" exhumation around the Irish Sea

    NASA Astrophysics Data System (ADS)

    Doepke, Daniel; Cogné, Nathan; Chew, David; Stuart, Fin

    2016-04-01

    Despite decades of research the Early Cenozoic exhumation history of Ireland and Britain is still poorly understood and subject to contentious debate (see Davis et al., 2012 and subsequent comments). Previous studies have attributed the Cenozoic exhumation history of Ireland and Britain mainly to: (a) Paleogene - Neogene far-field stress between the opening of the North Atlantic Ocean and the Alpine collision (Ziegler et al., 1995; Hillis et al., 2008) or (b) early Paleogene mantle driven magmatic underplating associated with the development of the proto-Iceland mantle plume beneath the Irish Sea (Brodie and White, 1994; Al-Kindi et al., 2003). The major differences between the two hypotheses are the pattern and timing of spatial exhumation. This project thus seeks to investigate the timing and mechanisms of late Mesozoic - early Cenozoic exhumation on the onshore part of the British Isles by using a combination of apatite fission track (AFT) and apatite (U-Th-Sm)/He (AHe) data, which we then model using the QTQt program of Gallagher (2012) to better constrain the modelled thermal histories. Our studied area centres on the margins of the Irish Sea, but includes all Ireland and western Britain. Overall we analysed 74 samples for AFT and 66 samples for AHe dating. In particular, our results include ten pseudo-vertical profiles. The AFT ages display a wide range of ages from early Carboniferous in Scotland to early Eocene in central Ireland. Our AHe ages range from mid Permian on Shetland to Eocene Ft-corrected. The AFT data do not show any specific spatial distribution, however, the Ft-corrected AHe ages around the Irish Sea only focus around late Cretaceous to Eocene suggesting an important thermal event around this time. The modelled thermal histories of samples located around the Irish Sea and western Scotland show a clear late Cretaceous to early Paleogene cooling event which is not present elsewhere. The distribution of this cooling event is broadly consistent

  7. Equatorial convergence of India and early Cenozoic climate trends

    PubMed Central

    Kent, Dennis V.; Muttoni, Giovanni

    2008-01-01

    India's northward flight and collision with Asia was a major driver of global tectonics in the Cenozoic and, we argue, of atmospheric CO2 concentration (pCO2) and thus global climate. Subduction of Tethyan oceanic crust with a carpet of carbonate-rich pelagic sediments deposited during transit beneath the high-productivity equatorial belt resulted in a component flux of CO2 delivery to the atmosphere capable to maintain high pCO2 levels and warm climate conditions until the decarbonation factory shut down with the collision of Greater India with Asia at the Early Eocene climatic optimum at ≈50 Ma. At about this time, the India continent and the highly weatherable Deccan Traps drifted into the equatorial humid belt where uptake of CO2 by efficient silicate weathering further perturbed the delicate equilibrium between CO2 input to and removal from the atmosphere toward progressively lower pCO2 levels, thus marking the onset of a cooling trend over the Middle and Late Eocene that some suggest triggered the rapid expansion of Antarctic ice sheets at around the Eocene-Oligocene boundary. PMID:18809910

  8. Equatorial convergence of India and early Cenozoic climate trends.

    PubMed

    Kent, Dennis V; Muttoni, Giovanni

    2008-10-21

    India's northward flight and collision with Asia was a major driver of global tectonics in the Cenozoic and, we argue, of atmospheric CO(2) concentration (pCO(2)) and thus global climate. Subduction of Tethyan oceanic crust with a carpet of carbonate-rich pelagic sediments deposited during transit beneath the high-productivity equatorial belt resulted in a component flux of CO(2) delivery to the atmosphere capable to maintain high pCO(2) levels and warm climate conditions until the decarbonation factory shut down with the collision of Greater India with Asia at the Early Eocene climatic optimum at approximately 50 Ma. At about this time, the India continent and the highly weatherable Deccan Traps drifted into the equatorial humid belt where uptake of CO(2) by efficient silicate weathering further perturbed the delicate equilibrium between CO(2) input to and removal from the atmosphere toward progressively lower pCO(2) levels, thus marking the onset of a cooling trend over the Middle and Late Eocene that some suggest triggered the rapid expansion of Antarctic ice sheets at around the Eocene-Oligocene boundary.

  9. Flexural analysis of two broken foreland basins; Late Cenozoic Bermejo basin and Early Cenozoic Green River basin

    SciTech Connect

    Flemings, P.B.; Jordan, T.E.; Reynolds, S.

    1986-05-01

    Lithospheric flexure that generates basin in a broke foreland setting (e.g., the Laramide foreland of Wyoming) is a three-dimensional system related to shortening along basin-bounding faults. The authors modeled the elastic flexure in three dimensions for two broken foreland basins: the early Cenozoic Green River basin and the analogous late Cenozoic Bermejo basin of Argentina. Each basin is located between a thrust belt and a reverse-fault-bounded basement uplift. Both basins are asymmetric toward the basement uplifts and have a central basement high: the Rock Springs uplift and the Pie de Palo uplift, respectively. The model applies loads generated by crustal thickening to an elastic lithosphere overlying a fluid mantle. Using the loading conditions of the Bermejo basin based on topography, limited drilling, and reflection and earthquake seismology, the model predicts the current Bermejo basin geometry. Similarly, flexure under the loading conditions in the Green River basin, which are constrained by stratigraphy, well logs, and seismic profiling and summed for Late Cretaceous (Lance Formation) through Eocene (Wasatch Formation), successfully models the observed geometry of the pre-Lance surface. Basin depocenters (> 4 km for the Green River basin; > 7 km for the Bermejo basin) and central uplifts are predicted to result from constructive interference of the nonparallel applied loads. Their Bermejo model implies that instantaneous basin geometry is successfully modeled by crustal loading, whereas the Green River basin analysis suggests that basin evolution can be modeled over large time steps (e.g., 20 Ma). This result links instantaneous basin geometry to overall basin evolution and is a first step in predicting stratigraphic development.

  10. Fagaceae pollen from the early Cenozoic of West Greenland: revisiting Engler's and Chaney's Arcto-Tertiary hypotheses.

    PubMed

    Grímsson, Friðgeir; Zetter, Reinhard; Grimm, Guido W; Pedersen, Gunver Krarup; Pedersen, Asger Ken; Denk, Thomas

    In this paper we document Fagaceae pollen from the Eocene of western Greenland. The pollen record suggests a remarkable diversity of the family in the early Cenozoic of Greenland. Extinct Fagaceae pollen types include Eotrigonobalanus, which extends at least back to the Paleocene, and two ancestral pollen types with affinities to the Eurasian Quercus Group Ilex and the western North American Quercus Group Protobalanus. In addition, modern lineages of Fagaceae are unambiguously represented by pollen of Fagus, Quercus Group Lobatae/Quercus, and three Castaneoideae pollen types. These findings corroborate earlier findings from Axel Heiberg Island that Fagaceae were a dominant element at high latitudes during the early Cenozoic. Comparison with coeval or older mid-latitude records of modern lineages of Fagaceae shows that modern lineages found in western Greenland and Axel Heiberg likely originated at lower latitudes. Further examples comprise (possibly) Acer, Aesculus, Alnus, Ulmus, and others. Thus, before fossils belonging to modern northern temperate lineages will have been recovered from older (early Eocene, Paleocene) strata from high latitudes, Engler's hypothesis of an Arctic origin of the modern temperate woody flora of Eurasia, termed 'Arcto-Tertiary Element', and later modification by R. W. Chaney and H. D. Mai ('Arcto-Tertiary Geoflora') needs to be modified.

  11. Did high Neo-Tethys subduction rates contribute to early Cenozoic warming?

    NASA Astrophysics Data System (ADS)

    Hoareau, G.; Bomou, B.; van Hinsbergen, D. J. J.; Carry, N.; Marquer, D.; Donnadieu, Y.; Le Hir, G.; Vrielynck, B.; Walter-Simonnet, A.-V.

    2015-12-01

    The 58-51 Ma interval was characterized by a long-term increase of global temperatures (+4 to +6 °C) up to the Early Eocene Climate Optimum (EECO, 52.9-50.7 Ma), the warmest interval of the Cenozoic. It was recently suggested that sustained high atmospheric pCO2, controlling warm early Cenozoic climate, may have been released during Neo-Tethys closure through the subduction of large amounts of pelagic carbonates and their recycling as CO2 at arc volcanoes. To analyze the impact of Neo-Tethys closure on early Cenozoic warming, we have modeled the volume of subducted sediments and the amount of CO2 emitted along the northern Tethys margin. The impact of calculated CO2 fluxes on global temperature during the early Cenozoic have then been tested using a climate carbon cycle model (GEOCLIM). We show that CO2 production may have reached up to 1.55 × 1018 mol Ma-1 specifically during the EECO, ~ 4 to 37 % higher that the modern global volcanic CO2 output, owing to a dramatic India-Asia plate convergence increase. The subduction of thick Greater Indian continental margin carbonate sediments at ~ 55-50 Ma may also have led to additional CO2 production of 3.35 × 1018 mol Ma-1 during the EECO, making a total of 85 % of the global volcanic CO2 outgassed. However, climate modeling demonstrates that timing of maximum CO2 release only partially fits with the EECO, and that corresponding maximum pCO2 values (750 ppm) and surface warming (+2 °C) do not reach values inferred from geochemical proxies, a result consistent with conclusions arising from modeling based on other published CO2 fluxes. These results demonstrate that CO2 derived from decarbonation of Neo-Tethyan lithosphere may have possibly contributed to, but certainly cannot account alone for early Cenozoic warming. Other commonly cited sources of excess CO2 such as enhanced igneous province volcanism also appear to be up to 1 order of magnitude below fluxes required by the model to fit with proxy data of pCO2 and

  12. Did high Neo-Tethys subduction rates contribute to early Cenozoic warming?

    NASA Astrophysics Data System (ADS)

    Hoareau, G.; Bomou, B.; van Hinsbergen, D. J. J.; Carry, N.; Marquer, D.; Donnadieu, Y.; Le Hir, G.; Vrielynck, B.; Walter-Simonnet, A.-V.

    2015-07-01

    The 58-51 Ma interval was characterized by a long-term increase of global temperatures (+4 to +6 °C) up to the Early Eocene Climate Optimum (EECO, 52.9-50.7 Ma), the warmest interval of the Cenozoic. It was recently suggested that sustained high atmospheric pCO2, controlling warm early Cenozoic climate, may have been released during Neo-Tethys closure through the subduction of large amounts of pelagic carbonates and their recycling as CO2 at arc volcanoes ("carbonate subduction factory"). To analyze the impact of Neo-Tethys closure on early Cenozoic warming, we have modeled the volume of subducted sediments and the amount of CO2 emitted at active arc volcanoes along the northern Tethys margin. The impact of calculated CO2 fluxes on global temperature during the early Cenozoic have then been tested using a climate carbon cycle model (GEOCLIM). We first show that CO2 production may have reached up to 1.55 × 1018 mol Ma-1 specifically during the EECO, ~ 4 to 37 % higher that the modern global volcanic CO2 output, owing to a dramatic India-Asia plate convergence increase. In addition to the background CO2 degassing, the subduction of thick Greater Indian continental margin carbonate sediments at ~ 55-50 Ma may also have led to additional CO2 production of 3.35 × 1018 mol Ma-1 during the EECO, making a total of 85 % of the global volcanic CO2 outgassed. However, climate modelling demonstrates that timing of maximum CO2 release only partially fit with the EECO, and that corresponding maximum pCO2 values (750 ppm) and surface warming (+2 °C) do not reach values inferred from geochemical proxies, a result consistent with conclusions arise from modelling based on other published CO2 fluxes. These results demonstrate that CO2 derived from decarbonation of Neo-Tethyan lithosphere may have possibly contributed to, but certainly cannot account alone for early Cenozoic warming, including the EECO. Other commonly cited sources of excess CO2 such as enhanced igneous province

  13. Did high Neo-Tethys subduction rates contribute to early Cenozoic warming?

    NASA Astrophysics Data System (ADS)

    Hoareau, G.; Bomou, B.; Van Hinsbergen, D. J. J.; Nicolas, C.; Marquer, D.; Donnadieu, Y.; Le Hir, G.; Bruno, V.; Walter, A. V.

    2015-12-01

    The 58-51 Ma interval was characterized by an increase of global temperatures (+4 to +6°C) up to the Early Eocene Climate Optimum (EECO, 52.9-50.7 Ma), the warmest interval of the Cenozoic. It was recently suggested that sustained high atmospheric pCO2, controlling warm early Cenozoic climate, may have been released during Neo-Tethys closure through the subduction of large amounts of pelagic carbonates and their recycling as CO2 at arc volcanoes. To analyze the impact of Neo-Tethys closure on early Cenozoic warming, we have modeled the volume of subducted sediments and the amount of CO2 emitted along the northern Tethys margin. The impact of calculated CO2 fluxes on early Cenozoic climate have then been tested using a climate carbon cycle model (GEOCLIM). We show that CO2 production may have reached up to 1.55x1018 mol/Ma specifically during the EECO, ~4 to 37% higher that the modern global volcanic CO2 output, owing to a dramatic India-Asia plate convergence increase. The subduction of thick Greater Indian continental margin carbonate sediments at ~55-50 Ma may also have led to additional CO2 production of 3.35x1018 mol/Ma during the EECO, making a total of 85% of the global volcanic CO2 outgassed. However, climate modelling demonstrates that timing of maximum CO2 release only partially fit with the EECO, and that corresponding maximum pCO2 values (750 ppm) and surface warming (+2°C) do not reach values inferred from geochemical proxies, a result consistent with conclusions arise from modelling based on other published CO2 fluxes. These results demonstrate that CO2 derived from decarbonation of Neo-Tethyan lithosphere may have possibly contributed to, but certainly cannot account alone for early Cenozoic warming, including the EECO. Other commonly cited sources of excess CO2 such as enhanced igneous province volcanism also appear to be up to one order of magnitude below fluxes required by the model to fit with proxy data of pCO2 and temperature at that time.

  14. Early Cenozoic radiations in the Antarctic marine realm and their evolutionary implications

    NASA Astrophysics Data System (ADS)

    Crame, Alistair

    2014-05-01

    The extensive and very well exposed Late Cretaceous - Early Paleogene sedimentary succession of Seymour Island, NE Antarctic Peninsula presents a unique opportunity to examine Early Cenozoic evolutionary radiations in a variety of macrofaunal taxa. Building on the extensive pioneer studies by US and Argentinian palaeontologists, recent investigations have focused on refining litho-, bio- and chronostratigraphies, and taxonomic revisions to a number of key groups. Within the numerically dominant Mollusca, the balance of faunas changes significantly across the Cretaceous/Paleogene boundary, with gastropods becoming numerically dominant for the first time in the Early Paleocene Sobral Formation (SF). At this level seven of the 31 gastropod genera present (= 23%) can be referred to modern Southern Ocean taxa and the same figure is maintained in the Early Eocene La Meseta Formation (LMF) where 21 of 63 genera are modern. A major reason for the rise of the gastropods in the earliest Cenozoic of Antarctica is a significant radiation of the Neogastropoda, which today forms one of the largest clades in the sea. 50% of the SF gastropod fauna and 53% of the LMF at the species level are neogastropods. This important burst of speciation is linked to a major pulse of global warming from ~63 - 43Ma when warm temperate conditions prevailed for long intervals of time at 65ºS. The marked Early Paleogene radiation of neogastropods in Antarctica represents a distinct pulse of southern high-latitude taxa that was coeval with similar tropical/subtropical radiations in localities such as the US Gulf Coast and NW Europe. Thus it would appear that the Early Cenozoic radiation of this major taxon was truly global in scale and not just confined to one latitudinal belt. Whereas it is possible to regard a significant proportion of the modern bivalve fauna as relicts, and thus Antarctica as an evolutionary refugium, or sink, it is much less easy to do so for the Neogastropoda. At least in the

  15. Early Cenozoic tectonic quiescence at the southern Levant continental margin, eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Schattner, Uri; Segev, Amit; Lyakhovsky, Vladimir

    2010-05-01

    The geological record of the easternmost Mediterranean shows almost continuous tectonic activity across the Levant continental margin since its formation during the early Mesozoic until the Recent. The margin developed as part of the Gondwana super continent breakup. Since mid Cenozoic onwards Gondwana descendants, the African and Arabian plates, progressively collided with Eurasia. This collision along with the initiation activity of the Afar plume led to the Cenozoic reactivation of the Levant margin. We explore the geodynamic development of the Levant region between its formation and reactivation through one of the poorly understood time periods in its history. Geological evidence shows that tectonomagmatic processes associated with the formation of the Levant margin and later geodynamic events lasted until the Maastrichtian. During the following ~25 Myr exclusively, thick pelagic and deep sea sediments accumulated on the submerged northwestern Arabian plate. We interpret this early-to-middle Paleogene time window as a unique interval of tectonic and magmatic quiescence. During this mature post continental, breakup stage, thermal equilibrium and isostatic compensation were achieved. A three-dimensional layered lithosphere model was constructed to describe this Middle-Late Eocene geodynamic scene of the Levant area before its reactivation. Layers of the model include the Moho, top of the basement interfaces and the top Avedat Group (Upper Eocene) interfaces. The model was established after a 100 km horizontal restoration along the Dead Sea transform and vertical correction by isostatic compensation to achieve the paleo structure which prevailed in the study area at the end of the Eocene. The reconstructed elevation defines a ramp-shaped structure compatible with independent geological evidence. Results show that most parts of the central Levant margin were submerged ~200 m to ~1800 m, while the paleo bathymetric slopes ranged from ~2° (shelf) to ~6° (slope

  16. Origin of low δ26Mg Cenozoic basalts from South China Block and their geodynamic implications

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Li, Shu-Guang; Xiao, Yilin; Ke, Shan; Li, Wang-Ye; Tian, Ye

    2015-09-01

    Origin of low δ26Mg basalts is a controversial subject and has been attributed to interaction of isotopically light carbonatitic melts derived from a subducted oceanic slab with the mantle (Yang et al., 2012), or alternatively, to accumulation of isotopically light ilmenite (FeTiO3) in their mantle source (Sedaghatpour et al., 2013). To study the origin of low δ26Mg basalts and evaluate whether Mg isotope ratios of basalts can be used to trace deeply recycled carbon, high-precision major and trace element and Mg isotopic analyses on the Cenozoic alkaline and tholeiitic basalts from the South China Block (SCB), eastern China have been carried out in this study. The basalts show light Mg isotopic compositions, with δ26Mg ranging from -0.60 to -0.35. The relatively low TiO2 contents (<2.7 wt.%) of our basalts, roughly positive correlations between δ26Mg and Ti/Ti∗ and their constant Nb/Ta ratios (16.4-20) irrespective of variable TiO2 contents indicate no significant amounts of isotopically light ilmenite accumulation in their mantle source. Notably, the basalts display negative correlations between δ26Mg and the amounts of total alkalis (i.e., Na2O + K2O) and incompatible trace elements (e.g., Ti, La, Nd, Nb, Th) and trace element abundance ratios (e.g., Sm/Yb, Nb/Y). Generally, with decrease of δ26Mg values, their Hf/Hf∗ and Ti/Ti∗ ratios decrease, whereas Ca/Al and Zr/Hf ratios increase. These features are consistent with incongruent partial melting of an isotopically light carbonated mantle, suggesting that large variations in Mg isotope ratios occurred during partial melting of such carbonated mantle under high temperatures. The isotopically light carbonated mantle were probably formed by interaction of the mantle with low δ26Mg carbonatitic melts derived from the deeply subducted low δ26Mg carbonated eclogite transformed from carbonate-bearing oceanic crust during plate subduction. As only the Pacific slab has an influence on both the North China

  17. Improved Late Cretaceous and early Cenozoic Paleomagnetic apparent polar wander path for the Pacific plate

    NASA Astrophysics Data System (ADS)

    Beaman, Melissa; Sager, William W.; Acton, Gary D.; Lanci, Luca; Pares, Josep

    2007-10-01

    Understanding of Pacific plate tectonics and geodynamics is aided by refinement of the plate's apparent polar wander path (APWP). We improved the Late Cretaceous and early Cenozoic APWP by analyzing a large, diverse paleomagnetic data set that combines core sample, seamount magnetic anomaly model, and marine magnetic anomaly skewness data. Our preferred APWP has five mean paleomagnetic poles representing the Oligocene (30 Ma), Late (39 Ma) and Early (49 Ma) Eocene, and Paleocene (61 Ma) epochs and the Maastrichtian (68 Ma) stage. Along with a published 80 Ma pole, the APWP shows a stillstand from ˜ 80 to ˜ 49 Ma punctuating the large overall northward drift of the plate. The two youngest poles imply resumption of northward motion during mid-Eocene time with another change of polar motion after ˜ 30 Ma. If unaffected by other phenomena (e.g., true polar wander or change in time-averaged magnetic field geometry), the stillstand implies negligible northward plate motion during the period of Emperor Seamounts formation, contrary to most accepted plate motion models. The stillstand is consistent with paleomagnetic data from the Emperor Seamounts, which imply southward motion of the Hawaiian melting anomaly. It also implies significant westward drift of the hotspot if the Pacific plate was moving west at rates similar to the later Cenozoic. In addition, changes in polar wander after ˜ 49 Ma are consistent with changes of north Pacific plate boundaries.

  18. Lower crustal flow: The origin of Late Cenozoic extension north of the eastern Snake River Plain

    SciTech Connect

    Anders, M.H.; Hopper, J.R.; Abad, R.; Spiegelman, M. . Lamont-Doherty Earth Observatory)

    1993-04-01

    Recent work has shown that the initiation of late Cenozoic faulting and concomitant footwall uplift north of the eastern Snake River Plain (eSRP) are much younger than previously thought. Examples of these young ages include the Centennial Range (< 2.0 Ma), Gravely Range (< 2.0 Ma), Lemhi Range (< 6.6 Ma), Beaverhead Mts. (< 6.6 Ma), Tendoy Mts. (< 6.6 Ma). Basins south of the eSRP exhibit a bi-modal distribution of growth ages during the Neogene. Seismic moment tensor and earthquake rupture data define extension directions that are both oblique to and symmetric about the axis of the eSRP. However, extension directions on the eSRP itself are parallel to the axis. The authors propose that the orientations of extension are a response to lower crustal flow in a conduit formed between the mid-crust and the upper mantle. Estimates of the lower crustal pressure gradients, geothermal gradient, and channel dimensions are used calculate a lower crustal flux between the extending regions north of the eSRP and the eSRP. This value is three orders of magnitude greater than the estimated flux based on geologically determined strain rates. These calculations suggest that lower crustal flow is a viable mechanism to explain extension north of the eSRP as well as to explain the origin of the extension throughout the Intermountain seismic belt. The advantage of this model is that upper crustal extension does not have to couple with upper mantle extension and thereby it is not necessary to invoke far field stress changes to explain changes in the local stress field.

  19. Origin and geodynamic setting of Late Cenozoic granitoids in Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Maulana, Adi; Imai, Akira; Van Leeuwen, Theo; Watanabe, Koichiro; Yonezu, Kotaro; Nakano, Takanori; Boyce, Adrian; Page, Laurence; Schersten, Anders

    2016-07-01

    Late Cenozoic granitoids are widespread in a 1600 km long belt forming the Western and Northern Sulawesi tectono-magmatic provinces. They can be divided into three rock series: shoshonitic (HK), high-K felsic calc-alkaline (CAK), and normal calc-alkaline to tholeiitic (CA-TH). Representative samples collected from eleven plutons, which were subjected to petrography, major element, trace element, Sr, Nd, Pb isotope and whole-rock δ18O analyses, are all I-type and metaluminous to weakly peraluminous. The occurrence of the two K-rich series is restricted to Western Sulawesi, where they formed in an extensional, post-subduction tectonic setting with astenospheric upwelling providing thermal perturbation and adiabatic decompression. Two parental magma sources are proposed: enriched mantle or lower crustal equivalent for HK magmas, and Triassic igneous rocks in a Gondwana-derived fragment thrust beneath the cental and northern parts of Western Sulawesi for CAK magmas. The latter interpretation is based on striking similarities in radiogenic isotope and trace element signatures. CA-TH granitoids are found mostly in Northern Sulawesi. Partial melting of lower-middle crust amphibolites in an active subduction environment is the proposed origin of these rocks. Fractional crystallization and crustal contamination have played a significant role in magma petrogenesis, particularly in the case of the HK and CAK series. Contamination by organic carbon-bearing sedimentary rocks of the HK and CAK granitoids in the central part of Western Sulawesi is suggested by their ilmenite-series (reduced) character. The CAK granitoids further to the north and CA-TH granitoids in Northern Sulawesi are typical magnetite-series (oxidized). This may explain differences in mineralization styles in the two regions.

  20. Early Cenozoic uplift of the SE margin of Tibet: implications for the lower crustal flow hypothesis

    NASA Astrophysics Data System (ADS)

    Hoke, G. D.; Liu-Zeng, J.; Hren, M. T.; Garzione, C. N.; Wissink, G. K.

    2012-12-01

    The SE margin of the Tibetan Plateau lacks the steep topographic front typical of its northern, eastern and southern margins. Instead, the SE Plateau margin is an anomalous, long-wavelength, low-gradient topographic feature spanning some 5 km of relief over some 1,500 km of distance. A portion of the plateau margin comprises a low-relief, relict landscape, which is bracketed to be at least early to middle Miocene in age and is incised by the present-day courses of the Red, Yangtze and Mekong Rivers. Ductile flow of the lower crust from the center of the plateau towards the SE margin has been proposed as an elegant means to explain the low-gradient nature of the plateau margin in this area. Geomorphic estimates based on river incision suggest 1.5 to 2 km of post middle Miocene surface uplift, an amount detectible by stable isotope paleoaltimetry. This study presents new Paleogene to Neogene carbonate and compound-specific stable isotope data from a string of NW-SE oriented Cenozoic terrestrial sedimentary basins in China's Yunnan Province spanning nearly 700 km distance and 1.5 km of relief. In locations were we have Paleogene and Neogene deposits in close geographic proximity (< 100 km), and at similar elevations, little change in isotopic value is observed over time, which suggests that the SE Margin of the Tibetan Plateau has been at or near its present elevation over much, if not all, of the Cenozoic. This assumes that the modern isotope-elevation gradient in this area remained roughly similar throughout the Cenozoic and that elevation dominates the isotopic signature of meteoric water. The implication of our study is that lower crustal flow of a magnitude sufficient to result in such relief generation could not have occurred during the middle to late Miocene as predicted by earlier studies. This conclusion is consistent with a host of recent studies in the southern and central parts of Tibet that place the plateau at high elevation since at least the Oligocene

  1. Cenozoic analogues support a plate tectonic origin for the Earth’s earliest continental crust

    NASA Astrophysics Data System (ADS)

    Hastie, A. R.; Kerr, A. C.; Mitchell, S. F.; McDonald, I.; Pearce, J. A.; Millar, I. L.; Wolstencroft, M.

    2009-12-01

    crust. The Newcastle magmas ascended and erupted without coming into contact with a mantle wedge thus forming the low MgO, Ni and Cr contents. Most Cenozoic adakites have compositions similar to the middle-late Archaean TTG suite of igneous rocks. In contrast, early (>3.5 Ga) Archaean TTG crustal rocks have lower Sr, MgO, Ni and Cr concentrations and prior to this study had no modern adakite analogue. However, the Newcastle adakites have similar compositions to the, early Archaean TTG. The discovery of these rocks has important implications for our understanding of the formation of the Earth’s earliest continental crust and so it is proposed that the Newcastle lavas be classified as a unique sub-group of adakites: Jamaican-type adakite.

  2. Evidence of a Cooler Continental Climate in East China during the Warm Early Cenozoic

    PubMed Central

    Zhang, Qian-Qian; Smith, Thierry; Yang, Jian; Li, Cheng-Sen

    2016-01-01

    The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800–1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years. PMID:27196048

  3. Evidence of a Cooler Continental Climate in East China during the Warm Early Cenozoic.

    PubMed

    Zhang, Qian-Qian; Smith, Thierry; Yang, Jian; Li, Cheng-Sen

    2016-01-01

    The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800-1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years.

  4. Late Cenozoic intraplate faulting in eastern Australia

    NASA Astrophysics Data System (ADS)

    Babaahmadi, Abbas; Rosenbaum, Gideon

    2014-12-01

    The intensity and tectonic origin of late Cenozoic intraplate deformation in eastern Australia is relatively poorly understood. Here we show that Cenozoic volcanic rocks in southeast Queensland have been deformed by numerous faults. Using gridded aeromagnetic data and field observations, structural investigations were conducted on these faults. Results show that faults have mainly undergone strike-slip movement with a reverse component, displacing Cenozoic volcanic rocks ranging in ages from ˜31 to ˜21 Ma. These ages imply that faulting must have occurred after the late Oligocene. Late Cenozoic deformation has mostly occurred due to the reactivation of major faults, which were active during episodes of basin formation in the Jurassic-Early Cretaceous and later during the opening of the Tasman and Coral Seas from the Late Cretaceous to the early Eocene. The wrench reactivation of major faults in the late Cenozoic also gave rise to the occurrence of brittle subsidiary reverse strike-slip faults that affected Cenozoic volcanic rocks. Intraplate transpressional deformation possibly resulted from far-field stresses transmitted from the collisional zones at the northeast and southeast boundaries of the Australian plate during the late Oligocene-early Miocene and from the late Miocene to the Pliocene. These events have resulted in the hitherto unrecognized reactivation of faults in eastern Australia.

  5. Latest Mesozoic-Early Cenozoic Continental Extension and Related Alkaline Magmatism in Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Kadioglu, Y. K.

    2009-04-01

    The Central Anatolian crystalline complex (CACC) in Turkey includes a suite of latest Mesozoic-early Cenozoic plutonic rocks intruding the metamorphic and ophiolitic basement rocks. The intrusive rocks consist of three groups of granitoid, syenitoid, and gabbroids plutons. The granitoid units occur around the periphery of the CACC as large plutonic bodies, whereas the syenitoid assemblages crop out in the inner part of the CACC as small plutons. All the felsic plutons are crosscut by the gabbroid rocks in the region. The alkaline rocks of the CACC change in composition from nordmarkite through pulaskite to lusitanite, and are made of silica-saturated and silica-undersaturated magmas. The silica under-saturated alkaline rocks have gradual contacts with the silica-saturated alkaline rocks and constitute the main component of the alkaline rocks in the CACC. Nepheline, pseudoleucite, cancrinite, nosean, melanite and arfvedsonite are the main typical mineral compositions of the silica-undersaturated alkaline rocks. The leucite- and pseudoleucite-bearing rocks have porphyritic textures intruding the other main subunits of the alkaline rocks at high topographic elevations in the region. They are mostly composed of foid syenite, monzosyenite, monzodiorite and include rare amount of monzogabbro and foidolite. Each subunit has a transitional contact with the others and is crosscut by alkali feldspar foid syenite veins. Felsic dykes intrude the alkaline rock units and fluorite-bearing hydrothermal veins, which manifest themselves as alteration zones. The alkaline rocks have an abundance of xenolithic enclaves but lack any magma mixing-mingling produced enclaves. Normalized elemental patterns of the analyzed alkaline rocks show a slight enrichment in large ion lithophile elements (LILE) and light rare earth elements relatively to high field strength elements (HFSE) and heavy rare earth elements (HREE). The less fluid mobile, LILE and LREE concentration in the alkaline rocks

  6. Constraining Early Cenozoic exhumation of the British Isles with vertical profile modelling

    NASA Astrophysics Data System (ADS)

    Doepke, Daniel; Cogné, Nathan; Chew, David

    2016-04-01

    Despite decades of research is the Early Cenozoic exhumation history of Ireland and Britain still poorly understood and subject to contentious debate (e.g., Davis et al., 2012 and subsequent comments). One reason for this debate is the difficultly of constraining the evolution of onshore parts of the British Isles in both time and space. The paucity of Mesozoic and Cenozoic onshore outcrops makes direct analysis of this time span difficult. Furthermore, Ireland and Britain are situated at a passive margin, where the amount of post-rift exhumation is generally very low. Classical thermochronological tools are therefore near the edge of their resolution and make precise dating of post-rift cooling events challenging. In this study we used the established apatite fission track and (U-Th-Sm)/He techniques, but took advantage of the vertical profile approach of Gallagher et al. (2005) implemented in the QTQt modelling package (Gallagher, 2012), to better constrain the thermal histories. This method allowed us to define the geographical extent of a Late Cretaceous - Early Tertiary cooling event and to show that it was centered around the Irish Sea. Thus, we argue that this cooling event is linked to the underplating of hot material below the crust centered on the Irish Sea (Jones et al., 2002; Al-Kindi et al., 2003), and demonstrate that such conclusion would have been harder, if not impossible, to draw by modelling the samples individually without the use of the vertical profile approach. References Al-Kindi, S., White, N., Sinha, M., England, R., and Tiley, R., 2003, Crustal trace of a hot convective sheet: Geology, v. 31, no. 3, p. 207-210. Davis, M.W., White, N.J., Priestley, K.F., Baptie, B.J., and Tilmann, F.J., 2012, Crustal structure of the British Isles and its epeirogenic consequences: Geophysical Journal International, v. 190, no. 2, p. 705-725. Jones, S.M., White, N., Clarke, B.J., Rowley, E., and Gallagher, K., 2002, Present and past influence of the Iceland

  7. Pacific Plate slab pull and intraplate deformation in the early Cenozoic

    NASA Astrophysics Data System (ADS)

    Butterworth, N. P.; Müller, R. D.; Quevedo, L.; O'Connor, J. M.; Hoernle, K.; Morra, G.

    2014-01-01

    Large tectonic plates are known to be susceptible to internal deformation, leading to a range of phenomena including intraplate volcanism. However, the space and time dependence of intraplate deformation and its relationship with changing plate boundary configurations, subducting slab geometries, and absolute plate motion is poorly understood. We utilise a buoyancy driven Stokes flow solver, BEM-Earth, to investigate the contribution of subducting slabs through time on Pacific Plate motion and plate-scale deformation, and how this is linked to intraplate volcanism. We produce a series of geodynamic models from 62 to 42 Ma in which the plates are driven by the attached subducting slabs and mantle drag/suction forces. We compare our modelled intraplate deformation history with those types of intraplate volcanism that lack a clear age progression. Our models suggest that changes in Cenozoic subduction zone topology caused intraplate deformation to trigger volcanism along several linear seafloor structures, mostly by reactivation of existing seamount chains, but occasionally creating new volcanic chains on crust weakened by fracture zones and extinct ridges. Around 55 Ma subduction of the Pacific-Izanagi ridge reconfigured the major tectonic forces acting on the plate by replacing ridge push with slab pull along its north-western perimeter, causing lithospheric extension along pre-existing weaknesses. Large scale deformation observed in the models coincides with the seamount chains of Hawaii, Louisville, Tokelau, and Gilbert during our modelled time period of 62 to 42 Ma. We suggest that extensional stresses between 72 and 52 Ma are the likely cause of large parts of the formation of the Gilbert chain and that localised extension between 62 and 42 Ma could cause late-stage volcanism along the Musicians Volcanic Ridges. Our models demonstrate that early Cenozoic changes in Pacific plate driving forces only cause relatively minor changes in Pacific absolute plate motions

  8. Pacific plate slab pull and intraplate deformation in the early Cenozoic

    NASA Astrophysics Data System (ADS)

    Butterworth, N. P.; Müller, R. D.; Quevedo, L.; O'Connor, J. M.; Hoernle, K.; Morra, G.

    2014-08-01

    Large tectonic plates are known to be susceptible to internal deformation, leading to a~range of phenomena including intraplate volcanism. However, the space and time dependence of intraplate deformation and its relationship with changing plate boundary configurations, subducting slab geometries, and absolute plate motion is poorly understood. We utilise a buoyancy-driven Stokes flow solver, BEM-Earth, to investigate the contribution of subducting slabs through time on Pacific plate motion and plate-scale deformation, and how this is linked to intraplate volcanism. We produce a series of geodynamic models from 62 to 42 Ma in which the plates are driven by the attached subducting slabs and mantle drag/suction forces. We compare our modelled intraplate deformation history with those types of intraplate volcanism that lack a clear age progression. Our models suggest that changes in Cenozoic subduction zone topology caused intraplate deformation to trigger volcanism along several linear seafloor structures, mostly by reactivation of existing seamount chains, but occasionally creating new volcanic chains on crust weakened by fracture zones and extinct ridges. Around 55 Ma, subduction of the Pacific-Izanagi ridge reconfigured the major tectonic forces acting on the plate by replacing ridge push with slab pull along its northwestern perimeter, causing lithospheric extension along pre-existing weaknesses. Large-scale deformation observed in the models coincides with the seamount chains of Hawaii, Louisville, Tokelau and Gilbert during our modelled time period of 62 to 42 Ma. We suggest that extensional stresses between 72 and 52 Ma are the likely cause of large parts of the formation of the Gilbert chain and that localised extension between 62 and 42 Ma could cause late-stage volcanism along the Musicians volcanic ridges. Our models demonstrate that early Cenozoic changes in Pacific plate driving forces only cause relatively minor changes in Pacific absolute plate motion

  9. Was the Antarctic glaciation delayed by a high degassing rate during the early Cenozoic?

    NASA Astrophysics Data System (ADS)

    Donnadieu, Yannick; Lefebvre, Vincent; Goddéris, Yves; Fluteau, Frederic

    2013-04-01

    The Cenozoic is a period of drastic environmental changes marked by the formation of the Antarctica ice sheet at the Eocene/Oligocene (E/O) boundary. The opening of the southern ocean seaways and the decrease in atmospheric pCO2 are two processes generally evoked to explain this change. The debate is still opened but modeling studies tend to demonstrate that the decrease in atmospheric pCO2 is the main driver of the cooling. This decrease in atmospheric pCO2 is shown by CO2 datasets and begins near the E/O boundary. However the main driver of this decrease remains unknown. In this study, we test the impact of the continental drift, of the lithology and of the degassed CO2 on the atmospheric carbon dioxide concentration during the Cenozoic with a coupled climate-carbon model (GEOCLIM). The tectonic forcing induces low atmospheric CO2 levels except for a part of the Miocene period during which the northward drifting of the African plate and of India have decreased the continental surface exposed to the chemical weathering and have generated high atmospheric CO2 levels. Drifting of India and of the Deccan traps across the intertropical convergence zone associated to the outpouring of the Ethiopian trap substantially contribute to modeled low atmospheric CO2 levels for the Eocene and the early Oligocene (around 350 ppm). A high degassing flux, such an increase of 50 %, is required to simulate atmospheric CO2 levels above 840 ppm during the Eocene to prevent the build up of the Antarctic ice-sheet at this time. We conclude that the decrease in atmospheric pCO2 from the Eocene to the Oligocene may be due to a decrease in the source of CO2 rather than an increase in the silicate weathering. Finally, the uplift of the Tibetan plateau from the Miocene to the present-day induces an increase in silicate weathering through the intensification of the South-Eastern Asian monsoon and brings back the atmospheric CO2 level to the preindustrial value.

  10. Paleoclimate from fossil plants and application to the early Cenozoic Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Wing, S. L.

    2011-12-01

    Wladimir Köppen called vegetation "crystallized, visible climate," and his metaphor encouraged paleobotanists to climb the chain of inference from fossil plants to paleovegetation to paleoclimate. Inferring paleovegetation from fossils has turned out to be very difficult, however, and today most paleobotanical methods for inferring paleoclimate do not try to reconstruct paleovegetation as a first step. Three major approaches are widely use to infer paleoclimate from plant fossils: 1) phylogenetic inferences rely on the climatic distributions of extant relatives of fossils, 2) morphological inferences use present-day correlations of climate with plant morphology (e.g, leaf shape, wood anatomy), and 3) chemical inferences rely on correlations between climate and the stable isotopic composition of plants or organic compounds. Each approach makes assumptions that are hard to verify. Phylogenetic inference depends on accurate identification of fossils, and also assumes that evolution and/or extinction has not shifted the climatic distributions of plant lineages through time. On average this assumption is less valid for older time periods, but probably it is not radically wrong for the early Cenozoic. Morphological approaches don't require taxonomic identification of plant fossils, but do assume that correlations between plant form and climate have been constant over time. This assumption is bolstered if the ecophysiological cause of the morphology-climate correlation is well understood, but often it isn't. Stable isotopic approaches assume that present-day correlations between isotopic composition and climate apply to the past. Commonly the chemical and physiological mechanisms responsible for the correlation are moderately well known, but often the variation among different taxonomic and functional groups of plants is poorly characterized. In spite of limitations and uncertainties on all methods for inferring paleoclimate from fossil plants, broad patterns emerge from

  11. High but not Super High Atmospheric CO2 During the Early Cenozoic

    NASA Astrophysics Data System (ADS)

    Anagnostou, E.; John, E. H.; Edgar, K. M.; Pearson, P. N.; Ridgwell, A. J.; Palike, H.; Foster, G. L.

    2014-12-01

    The early Cenozoic (~53-33Ma) marks the most recent climatic shift in Earth's history from a greenhouse to an icehouse world. This interval is characterized by a gradual deep-sea [1] and high-latitude [2, 3] cooling of ~10oC, and only moderate cooling of the tropics [e.g. 2] leading to the Eocene/Oligocene transition (EOT) marked by widespread continental Antarctic glaciation. The cause of long-term Eocene cooling is currently poorly known but a gradual decline in the concentration of atmospheric CO2 is most frequently invoked. However, the majority of available early Eocene CO2 records are uncertain and only weakly correlated with climate variability. The exception to that is the final transition into the icehouse [4] where a decline in the CO2 content of the atmosphere has been suggested as the trigger. Therefore we generated new records of boron isotopes (δ11B) in planktonic foraminifera, a proven proxy of seawater pH [e.g. 5], using multicollector ICPMS [6]. We utilised depth profiles of very well preserved multi-species planktonic foraminifera recovered by the Tanzanian Drilling Project for five time slices spanning 53-37 Ma. Additionlly, we generated approximately 0.8My resolution planktonic foraminifera δ11B records from the Ocean Drilling Program (ODP) Sites 865 and 1258/1260. Our new records show consistent results of elevated atmospheric CO2 in the early Eocene that decreases through to the late Eocene. We will discuss our new reconstructions of seawater pH and derived atmospheric CO2 concentrations, not only in view of diagenesis, but also of estimates of seawater δ11B composition and alkalinity and their significance for Eocene Antarctic glaciation, in light of potential mechanisms for modulating climate. [1] Zachos et al. (2001) Science 292. [2] Bijl et al. (2009) Nature 461. [3] Brassell (2014) Paleoceanography 29. [4] Pearson et al. (2009) Nature 461. [5] Sanyal et al. (1996) Paleoceanography 11. [6] Foster (2008) EPSL 271.

  12. A chilling perspective on Greenland's early Cenozoic climate from coupled Hf-Nd isotopes

    NASA Astrophysics Data System (ADS)

    Scher, H. D.; Bizimis, M.; Buckley, W. P., Jr.; Duggan, B.; Bohaty, S. M.; Wilson, P. A.

    2015-12-01

    The prevailing view of northern hemisphere glaciation has been of ice sheets forming on Greenland after 2.7 Ma, with iceberg rafting as early as 15 Ma. This view is incompatible with recent results from global climate/ice sheet models that predict northern hemisphere glaciation only after CO2 falls below ~280 ppmv (occurring at 25 Ma) and with recent sediment evidence for Arctic iceberg rafting as early as the middle Eocene. However, the amount of northern hemisphere ice represented by these sediments is ambiguous and global ice budget calculations for the early Cenozoic are controversial. Here we use coupled Hf-Nd isotopes of oxyhydroxides in sediments from the upper Eocene to lower Oligocene section in ODP Site U1411 (Newfoundland Ridge) to determine when the circum-North Atlantic came under the influence of a mechanical weathering regime. Leached oxyhydroxide Hf-Nd isotopes are an indicator of weathering intensity because mechanical weathering by ice sheets mobilizes the zircon-bound Hf reservoir in the crust, which has extreme unradiogenic eHf values. Chemical weathering produces a distinct seawater array on Hf-Nd diagrams, while seawater exposed to the products of mechanical weathering plot on divergent arrays closer to the Terrestrial Array. Hf-Nd isotopes of Site U1411 leachates are grouped in a near vertical trend between the seawater and terrestrial global reference arrays. Within this group there are four distinct arrays that can be delineated by age. Samples that are late Eocene in age fall along an array that is slightly divergent from the seawater array. The aspect of the Hf-Nd isotope data changes permanently after the first step of the EOT, falling along arrays that are systematically offset in the direction of the terrestrial arrays. The steepest array, most proximal to the terrestrial array, is comprised of samples deposited between 33.7 and 32.2 Ma. These results indicate a circum-North Atlantic weathering regime appeared in the earliest Oligocene.

  13. Origin of north Queensland Cenozoic volcanism: Relationships to long lava flow basaltic fields, Australia

    NASA Astrophysics Data System (ADS)

    Sutherland, F. L.

    1998-11-01

    A plume model proposed for north Queensland late Cenozoic volcanism and long lava flow distribution combines basalt ages with recent seismic studies of Australia's mantle, regional stress fields, and plate motion. Several basalt fields overlie mantle "thermal" anomalies, and other fields outside these anomalies can be traced to them through past lithospheric motion. Elsewhere, anomalies close to Australia's eastern rift margin show little volcanism, probably due to gravity-enhanced compression. Since final collision of north Queensland with New Guinea, areas of basaltic volcanism have developed over 10 Myr, and episodes appear to migrate southward from 15° to 20°S. Long lava flows increase southward as area/volume of fields increases, but topography, vent distributions, and uplifts play a role. This is attributed to magmatic plume activation within a tensional zone, as lithosphere moves over mantle thermal anomalies. The plume model predicts peak magmatism under the McBride field, coincident with the Undara long lava flow and that long lava flow fields will erupt for another 5-10 Myr. Queensland's movement over a major N-S thermal system imparts a consistent isotopic signature to its northern younger basalts, distinct to basalts from older or more southern thermal systems. Australia's motion toward this northern thermal system will give north Queensland fields continued vigorous volcanism, in contrast to the Victorian field which is leaving its southern thermal system.

  14. The deformation and tectonic evolution of the Huahui Basin, northeast China, during the Cretaceous-Early Cenozoic

    NASA Astrophysics Data System (ADS)

    Huang, Shiqi; Dong, Shuwen; Zhang, Yueqiao; Zhang, Fuqin; Huang, Dezhi; Wei, Shi; Li, Zhenhong; Miao, Laicheng; Zhu, Mingshuai

    2015-12-01

    The Cretaceous Huahui basin lies along the Dunhua-Mishan fault (Dun-Mi fault), which is one of the northern branches of Tan-Lu fault in northeastern China. The study of the formation and the tectonic movements that took place in the basin can provide very important information for deciphering the tectonic evolution of northeastern China during Cretaceous-Early Cenozoic. The field analysis of fault-slip data collected from different units in the basin, demonstrates changes in the paleo-stress state that reveals a three-stage tectonic movement during the Cretaceous-Early Cenozoic. The earliest tectonic movement was NW-SE extension, which was responsible for the formation of the basin and sedimentary infilling during the Early Cretaceous. Dating of the andesite in the fill indicates it began during about 119.17 ± 0.80 Ma. The extensional structures formed in the Latest Early Cretaceous imply that this tectonic movement lasted until the beginning of the Late Cretaceous. The second stage began during the Late Cretaceous when the tectonic stress state changed and was dominated by NW-SE compression and NE-SW extension, which caused the inversion of the extensional basin. This compression folded the Early Cretaceous deposits and reactivated pre-existing faults and uplifted pre-existing granite in the basin. The strata and the unconformity in the basin shows that this compressive phase probably took place during the Late Cretaceous and ended in the Early Paleogene by a compressional regime with NE-SW compression and NW-SE extension that constitutes the third stage. The tectonic stress fields documented in the Huahui basin provide insight into the influences of plate tectonics on the crustal evolution of northeastern China during the Cretaceous to Early Cenozoic. These results show that the development of Huahui basin was controlled by the northwestward subduction of the paleo-Pacific plate during the Cretaceous, and later by the far-field effects of India-Asia collision in

  15. New data on the Late Cenozoic basaltic volcanism in Syria, applied to its origin

    NASA Astrophysics Data System (ADS)

    Trifonov, V. G.; Dodonov, A. E.; Sharkov, E. V.; Golovin, D. I.; Chernyshev, I. V.; Lebedev, V. A.; Ivanova, T. P.; Bachmanov, D. M.; Rukieh, M.; Ammar, O.; Minini, H.; Al Kafri, A.-M.; Ali, O.

    2011-01-01

    New data on geology and 21 K-Ar dates of the Late Oligocene-Quaternary basalts in Syria, combined with analysis of the new and previous data are used to reconstruct the volcanic history and relations between it and tectonic events. Volcanism began at the end of Oligocene (26-24 Ma) and was concentrated in the Late Oligocene-Early Miocene along a N-trending band, which stretches from the Jebel Arab (Harrat Ash Shaam) up to Kurd Dagh and southern Turkey. Activity waned in the Middle Miocene (17-12 Ma), but was resumed in the same band in the Tortonian and increased in the Messinian and Early Pliocene (6.3-4 Ma), when volcanism spread to the Shin Plateau and its coastal extension. After a brief hiatus ˜ 4-3.5 Ma, volcanism became still more intensive and spread from the N-trending band to the east into the northern margin of the Mesopotamian Foredeep and to the west into the Dead Sea Transform zone. Additional eruptions continued into the Holocene. Volcanism lasted > 25 million years in the Jebel Arab Highland and > 15 million years in the Aleppo Plateau. The long duration of volcanism in the same parts of the moving Arabian plate and absence of records of one-way migration of the activity mean that the magmatic sources moved together with the plate, i.e., they were situated within the lithosphere mantle. Coincidence of the tectonic and volcanic stages of the Arabian plate development proves that volcanic activity depended on the geodynamic situation, caused by the plate motion. Situated within the lithosphere, magmatic sources within this transverse band were possibly caused by thermal and deforming influences of the asthenospheric lateral flow, moved laterally from the Ethiopia-Afar deep superplume.

  16. Was the Antarctic glaciation delayed by a high degassing rate during the early Cenozoic?

    NASA Astrophysics Data System (ADS)

    Lefebvre, Vincent; Donnadieu, Yannick; Goddéris, Yves; Fluteau, Frédéric; Hubert-Théou, Lucie

    2013-06-01

    The Cenozoic is a period of major climatic changes marked by the formation of the Antarctic ice sheet at the Eocene/Oligocene (E/O) boundary. The opening of the southern ocean seaways and the decrease in atmospheric CO2 are two processes generally evoked to explain this E/O cooling. The debate is still ongoing but modeling studies tend to demonstrate that the decrease in atmospheric CO2 is the main driver of the cooling. However, uncertainties persist on what drove the decrease in atmospheric CO2 during the Cenozoic. In this study, we investigate the impact of continental drift, lithology distribution and volcanic degassing rates on the atmospheric carbon dioxide concentration over the Cenozoic within a coupled climate-carbon model (GEOCLIM). In the model, the continental drift results in driving low atmospheric CO2 levels during the Eocene and the Oligocene. The dispersed configuration and the location of a large continental area (North Africa, northern South America) within the Inter Tropical Convergence Zone (ITCZ) promote CO2 consumption by weathering, forcing CO2 to remain low. Icehouse conditions are also promoted by the drifting of India and the weathering of the Deccan basalts in the ITCZ during the Eocene, and by the weathering of the Ethiopian traps during the Oligocene. To prevent the building up of the Antarctic ice sheet at the Eocene, the model needs enhanced solid Earth degassing flux by 50% so that atmospheric CO2 levels stay above the glacial threshold (750 ppm). We find that the decrease in atmospheric CO2 from the Eocene to the Oligocene is probably due to a reduction in the source of volcanic CO2 rather than an increase in silicate weathering. The model results furthermore suggest that during the Miocene period, the northward drifting of both the African plate and India (including the Deccan traps) might have decreased the continental surface exposed to chemical weathering, therefore generating higher CO2 values. Finally, the uplift of the

  17. Measuring plume-related exhumation of the British Isles in Early Cenozoic times

    NASA Astrophysics Data System (ADS)

    Cogné, Nathan; Doepke, Daniel; Chew, David; Stuart, Finlay M.; Mark, Chris

    2016-12-01

    Mantle plumes have been proposed to exert a first-order control on the morphology of Earth's surface. However, there is little consensus on the lifespan of the convectively supported topography. Here, we focus on the Cenozoic uplift and exhumation history of the British Isles. While uplift in the absence of major regional tectonic activity has long been documented, the causative mechanism is highly controversial, and direct exhumation estimates are hindered by the near-complete absence of onshore post-Cretaceous sediments (outside Northern Ireland) and the truncated stratigraphic record of many offshore basins. Two main hypotheses have been developed by previous studies: epeirogenic exhumation driven by the proto-Iceland plume, or multiple phases of Cenozoic compression driven by far-field stresses. Here, we present a new thermochronological dataset comprising 43 apatite fission track (AFT) and 102 (U-Th-Sm)/He (AHe) dates from the onshore British Isles. Inverse modelling of vertical sample profiles allows us to define well-constrained regional cooling histories. Crucially, during the Paleocene, the thermal history models show that a rapid exhumation pulse (1-2.5 km) occurred, focused on the Irish Sea. Exhumation is greatest in the north of the Irish Sea region, and decreases in intensity to the south and west. The spatial pattern of Paleocene exhumation is in agreement with the extent of magmatic underplating inferred from geophysical studies, and the timing of uplift and exhumation is synchronous with emplacement of the plume-related British and Irish Paleogene Igneous Province (BIPIP). Prior to the Paleocene exhumation pulse, the Mesozoic onshore exhumation pulse is mainly linked to the uplift and erosion of the hinterland during the complex and long-lived rifting history of the neighbouring offshore basins. The extent of Neogene exhumation is difficult to constrain due to the poor sensitivity of the AHe and AFT systems at low temperatures. We conclude that the

  18. Geochemical Evidence for Early to Mid-Cenozoic “Flat-Slab” Subduction Beneath the Western North American Interior

    NASA Astrophysics Data System (ADS)

    Farmer, G.; Fornash, K. F.

    2009-12-01

    The voluminous intermediate to silicic composition magmatism that occurred during the mid-Cenozoic ignimbrite flare-up in western North America is generally attributed to a melting event in the upper mantle, related in some fashion to shallowing and resteepening of the subduction angle of oceanic lithosphere underthrust beneath the continent. The exact trigger mechanism for melting is unclear, but one possibility is that the addition of slab-derived volatiles, and the refrigeration of, the uppermost mantle during early Cenozoic “flat” subduction primed the upper mantle for melting during a later period of slab rollback. But is this mechanism viable for portions of the ignimbrite flare-up found in the Rocky Mountains region of the western United States, some 1,000 km inboard of the western edge of the continent? Did slab-related volatile addition occur in the mantle source region of this essentially intraplate magmatism? To address this issue we reexamined space-time-composition patterns in mid-Cenozoic magmatism in the Rocky Mountain region, using >5,500 individual rock chemical analyses now compiled in the on-line North American Volcanic and Intrusive Rock Database (NAVDAT) for rocks of this age. We divided the Rocky Mountains region and northern Mexico into fifteen 5o x 5o grid elements and interrogated volcanic rock ages and compositions from each. At this scale, the ignimbrite flare- up clearly occurs in two pulses; from 40-60 Ma north of ~ 45oN latitude and from 20-40 Ma to the south in Colorado, New Mexico, west Texas and northern Mexico. The chemical compositions of the mid-Cenozoic volcanic rocks, in contrast, vary little with latitude (age) but instead show longitudinal variations, from largely calc-alkaline (Challis, San Juan and Mogollon-Datil volcanic fields) in the west to alkaline (Trans Pecos V. F.) compositions to the east, as noted by many previous workers. Large ion lithophile element/high field strength element (LILE/HFSE) ratios in more

  19. Eukaryotic evolution: early origin of canonical introns.

    PubMed

    Simpson, Alastair G B; MacQuarrie, Erin K; Roger, Andrew J

    2002-09-19

    Spliceosomal introns, one of the hallmarks of eukaryotic genomes, were thought to have originated late in evolution and were assumed not to exist in eukaryotes that diverged early -- until the discovery of a single intron with an aberrant splice boundary in the primitive 'protozoan' Giardia. Here we describe introns from a close relative of Giardia, Carpediemonas membranifera, that have boundary sequences of the normal eukaryotic type, indicating that canonical introns are likely to have arisen very early in eukaryotic evolution.

  20. The origin of Cenozoic continental basalts in east-central China: Constrained by linking Pb isotopes to other geochemical variables

    NASA Astrophysics Data System (ADS)

    Xu, Zheng; Zheng, Yong-Fei; Zhao, Zi-Fu

    2017-01-01

    Cenozoic continental basalts in east-central China are characterized by OIB-like trace element patterns with more depleted to less enriched Sr-Nd isotope compositions. Such geochemical signatures are attributable to variable contributions to their mantle sources from crustal components in the oceanic subduction zone. A combined study of basalt Pb isotope variations with other geochemical variables indicates that four mantle and crustal components were involved in the basalt petrogenesis. Model calculations verify the geochemical transfer from the subducted crustal components to the mantle sources. The depleted MORB mantle component is indicated by the depleted Sr-Nd isotope compositions of basalts. Relatively high 206Pb/204Pb and low Δ8/4 ratios are ascribed to contributions from the igneous oceanic crust with high U/Pb and low Th/U ratios, low 206Pb/204Pb and high Δ8/4 ratios are ascribed to the lower continental crust, and high 206Pb/204Pb and high Δ8/4 ratios are linked to the seafloor sediment. This generates different compositions of mantle sources for these OIB-like continental basalts. The basalts with the most depleted Sr-Nd isotope compositions show Pb isotope compositions distinct from Pacific MORB but similar to Indian MORB, suggesting the occurrence of Indian type asthenospheric mantle beneath the continental lithosphere of eastern China. The depleted MORB mantle would be metasomatized by the three crustal components at the slab-mantle interface in oceanic subduction channel, generating the mantle sources that are enriched in melt-mobile incompatible trace elements and their pertinent radiogenic isotopes. Nevertheless, the crustal components were not directly incorporated in the forms of crustal rocks into the mantle sources, but underwent partial melting to produce the felsic melts that predominate the composition of those trace elements and their pertinent radiogenic isotopes in the basalts. As such, the depleted MORB mantle component was

  1. Revised Late Cretaceous and Early Cenozoic Apparent Polar Wander Path for the Pacific Plate

    NASA Astrophysics Data System (ADS)

    Beaman, M. A.; Sager, W. W.; Lanci, L.; Parés, J. M.

    2005-12-01

    The current apparent polar wander path (APWP) of the Pacific plate suffers from a general lack of detail and has been calculated using some data with questionable reliability. This is especially true of the data set for the Late Cretaceous and Cenozoic which has come largely from seamount anomaly inversions and seafloor magnetic anomaly skewness. In an effort to increase the detail and reliability of the Pacific plate APWP, we used a larger and more diverse data set to calculate four mean poles for the latest Cretaceous and Paleogene. We combined four types of data in order to test data reliability and consistency, and found good agreement among different data types. Over half of the data comes from piston and DSDP/ODP sediment core paleocolatitudes, with the rest made up of paleocolatitudes from DSDP/ODP basalt cores, declinations from seamount anomaly inversions and effective inclinations from magnetic anomaly skewness analyses. Our four mean paleomagnetic poles represent the Oligocene, Eocene, Paleocene and Maastrichtian at 29, 44, 61 and 69 Ma, respectively. The 29 Ma pole is located at 80.1° N, 24.4° E, the 44 Ma pole at 74.4° N, 356.0° E, the 61 Ma pole at 72.2° N, 5.8° E, and the 69 Ma pole at 72.3° N, 355.7° E. The large numbers of data included in this compilation allow for reasonably compact error bounds and the good agreement between data types implies small systematic error. Although a significant percentage of the data are from azimuthally-unoriented cores, which do not provide constraint on paleodeclination, a wide longitudinal distribution of sites, as well as the use of declinations from seamount anomaly inversions gave reasonably good control on pole paleolongitude. While the new APWP exhibits the expected northward motion of the Pacific plate, it also shows a stillstand from the Late Cretaceous until approximately 44 Ma. This stillstand suggests no northward motion of the Pacific plate during this time, a concept at odds with accepted

  2. Improving the Ginkgo CO2 barometer: Implications for the early Cenozoic atmosphere

    NASA Astrophysics Data System (ADS)

    Barclay, Richard S.; Wing, Scott L.

    2016-04-01

    Stomatal properties of fossil Ginkgo have been used widely to infer the atmospheric concentration of CO2 in the geological past (paleo-pCO2). Many of these estimates of paleo-pCO2 have relied on the inverse correlation between pCO2 and stomatal index (SI - the proportion of epidermal cells that are stomata) observed in recent Ginkgo biloba, and therefore depend on the accuracy of this relationship. The SI - pCO2 relationship in G. biloba has not been well documented, however. Here we present new measurements of SI for leaves of G. biloba that grew under pCO2 from 290 to 430 ppm. We prepared and imaged all specimens using a consistent procedure and photo-documented each count. As in prior studies, we found a significant inverse relationship between SI and pCO2, however, the relationship is more linear, has a shallower slope, and a lower correlation coefficient than previously reported. We examined leaves of G. biloba grown under pCO2 of 1500 ppm, but found they had highly variable SI and a large proportion of malformed stomata. We also measured stomatal dimensions, stomatal density, and the carbon isotope composition of G. biloba leaves in order to test a mechanistic model for inferring pCO2. This model overestimated observed pCO2, performing less well than the SI method between 290 and 430 ppm. We used our revised SI-pCO2 response curve, and new observations of selected fossils, to estimate late Cretaceous and Cenozoic pCO2 from fossil Ginkgo adiantoides. All but one of the new estimates is below 800 ppm, and together they show little long-term change in pCO2 or relation to global temperature. The low Paleogene pCO2 levels indicated by the Ginkgo SI proxy are not consistent with the high pCO2 inferred by some climate and carbon cycle models. We cannot currently resolve the discrepancy, but greater agreement between proxy data and models may come from a better understanding of the stomatal response of G. biloba to elevated pCO2, better counts and measurements of

  3. Molecular phylogenetic analysis of nuclear genes suggests a Cenozoic over-water dispersal origin for the Cuban solenodon

    PubMed Central

    Sato, Jun J.; Ohdachi, Satoshi D.; Echenique-Diaz, Lazaro M.; Borroto-Páez, Rafael; Begué-Quiala, Gerardo; Delgado-Labañino, Jorge L.; Gámez-Díez, Jorgelino; Alvarez-Lemus, José; Nguyen, Son Truong; Yamaguchi, Nobuyuki; Kita, Masaki

    2016-01-01

    The Cuban solenodon (Solenodon cubanus) is one of the most enigmatic mammals and is an extremely rare species with a distribution limited to a small part of the island of Cuba. Despite its rarity, in 2012 seven individuals of S. cubanus were captured and sampled successfully for DNA analysis, providing new insights into the evolutionary origin of this species and into the origins of the Caribbean fauna, which remain controversial. We conducted molecular phylogenetic analyses of five nuclear genes (Apob, Atp7a, Bdnf, Brca1 and Rag1; total, 4,602 bp) from 35 species of the mammalian order Eulipotyphla. Based on Bayesian relaxed molecular clock analyses, the family Solenodontidae diverged from other eulipotyphlan in the Paleocene, after the bolide impact on the Yucatan Peninsula, and S. cubanus diverged from the Hispaniolan solenodon (S. paradoxus) in the Early Pliocene. The strikingly recent divergence time estimates suggest that S. cubanus and its ancestral lineage originated via over-water dispersal rather than vicariance events, as had previously been hypothesised. PMID:27498968

  4. Molecular phylogenetic analysis of nuclear genes suggests a Cenozoic over-water dispersal origin for the Cuban solenodon.

    PubMed

    Sato, Jun J; Ohdachi, Satoshi D; Echenique-Diaz, Lazaro M; Borroto-Páez, Rafael; Begué-Quiala, Gerardo; Delgado-Labañino, Jorge L; Gámez-Díez, Jorgelino; Alvarez-Lemus, José; Nguyen, Son Truong; Yamaguchi, Nobuyuki; Kita, Masaki

    2016-08-08

    The Cuban solenodon (Solenodon cubanus) is one of the most enigmatic mammals and is an extremely rare species with a distribution limited to a small part of the island of Cuba. Despite its rarity, in 2012 seven individuals of S. cubanus were captured and sampled successfully for DNA analysis, providing new insights into the evolutionary origin of this species and into the origins of the Caribbean fauna, which remain controversial. We conducted molecular phylogenetic analyses of five nuclear genes (Apob, Atp7a, Bdnf, Brca1 and Rag1; total, 4,602 bp) from 35 species of the mammalian order Eulipotyphla. Based on Bayesian relaxed molecular clock analyses, the family Solenodontidae diverged from other eulipotyphlan in the Paleocene, after the bolide impact on the Yucatan Peninsula, and S. cubanus diverged from the Hispaniolan solenodon (S. paradoxus) in the Early Pliocene. The strikingly recent divergence time estimates suggest that S. cubanus and its ancestral lineage originated via over-water dispersal rather than vicariance events, as had previously been hypothesised.

  5. An Early Cenozoic Ichthyolith Record from Demerara Rise (ODP Site 1258: Equatorial Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Bryant, R. M.; Sibert, E. C.; Norris, R. D.

    2014-12-01

    Peak global warmth during the early Eocene is a partial analog to the future structure of marine ecosystems in a high pCO2 world. Early Eocene oceans are generally regarded as supporting warmer oceans with lower overall productivity than today owing to the low concentrations of preserved organic matter in pelagic sediments. It has also been proposed that Eocene oceans were about as productive as now, but higher respiration rates in a warmer-than-modern ocean more efficiently recycled organic matter and nutrients. We investigated Eocene export productivity and its link to taxonomic diversity using the pelagic ichthyolith record. Ichthyoliths are calcium phosphate microfossils including fish teeth and shark denticles and their fragments, and are a unique paleoceanographic proxy because they represent a fossil record for marine vertebrates, a charismatic and tangible part of the ecosystem that generally goes unrepresented in the fossil record. Analysis of the ichthyolith record in Ocean Drilling Program Site 1258 (NE South America) shows a remarkable increase in accumulation rate of ichthyoliths from the Paleocene into the Eocene, suggesting that onset of the Early Eocene Climatic Optimum in the equatorial Atlantic was favorable to fish production. Our results suggest that, if anything, the early Eocene maintained higher productivity than in the late Paleocene. These results compare favorably with a record of ichthyolith accumulation in the South Pacific (DSDP 596), which also indicates unusually high rates of fish productivity in the peak of Eocene warm climates. Low resolution data sets from the Pacific suggest an explosion of morphotypes during the warm period associated with an increase in ichthyolith mass accumulation rates. Peak global warmth, therefore, appears to be associated with both higher fish production and higher taxonomic diversity than suggested by previous reconstructions of Eocene primary production. Increasing the amount of continuous records of

  6. Reconstructing early Cenozoic topography of the North American Cordillera from authigenic mineral δ18O-Moving beyond Rayleigh distillation

    NASA Astrophysics Data System (ADS)

    Feng, R.; Poulsen, C. J.; Werner, M.

    2012-12-01

    Elevation reconstructions of the North American Cordillera, inferred from the oxygen isotope composition (δ18O) of terrestrial sediments, suggest fast north-to-south migration of topography in the early Cenozoic (pre-49Ma to 28Ma). This interpretation assumes that sediments accurately record the δ18O of ancient precipitation, and that the isotopic fractionation of precipitating air masses are represented by a Rayleigh distillation model (RDM) with a single moisture source from the Pacific. In this study, we test this latter assumption using a global climate model with isotope tracking capability (ECHAM5-wiso). Four Eocene experiments are performed, with topography inferred from proxy δ18O, to investigate how southward propagation of topography affects the climate and δ18O of precipitation over North America. Our ECHAM5-wiso simulations, with prescribed topography scenarios, predict precipitation δ18O distributions that are consistent with maps of temporally binned proxy δ18O. At face value, these simulations confirm the paleoelevation inferences based on proxy δ18O. However, detailed analyses of our GCM results demonstrate that in response to surface uplift, precipitation δ18O is substantially affected by precipitation processes and climate changes that are not captured by Rayleigh distillation. These processes include shifts in local precipitation type between convective and large-scale and between rain and snow; intensification of low-level vapor recycling particularly on leeward slopes; changes in wind direction and moisture source; and changes in upward mixing intensity. Each of these processes can have large (≥ 2‰) influences on precipitation δ18O that are comparable in magnitude to surface uplift of hundreds to thousands of meters. In many regions, these processes compensate each other, explaining the apparent agreement between ECHAM5-wiso and proxy δ18O and, more broadly, between Rayleigh distillation estimates and observed δ18O

  7. Polyphase exhumation in the western Qinling Mountains, China: Rapid Early Cretaceous cooling along a lithospheric-scale tear fault and pulsed Cenozoic uplift

    PubMed Central

    Heberer, Bianca; Anzenbacher, Thomas; Neubauer, Franz; Genser, Johann; Dong, Yunpeng; Dunkl, István

    2014-01-01

    The western sector of the Qinling–Dabie orogenic belt plays a key role in both Late Jurassic to Early Cretaceous “Yanshanian” intracontinental tectonics and Cenozoic lateral escape triggered by India–Asia collision. The Taibai granite in the northern Qinling Mountains is located at the westernmost tip of a Yanshanian granite belt. It consists of multiple intrusions, constrained by new Late Jurassic and Early Cretaceous U–Pb zircon ages (156 ± 3 Ma and 124 ± 1 Ma). Applying various geochronometers (40Ar/39Ar on hornblende, biotite and K-feldspar, apatite fission-track, apatite [U–Th–Sm]/He) along a vertical profile of the Taibai Mountain refines the cooling and exhumation history. The new age constraints record the prolonged pre-Cenozoic intracontinental deformation as well as the cooling history mostly related to India–Asia collision. We detected rapid cooling for the Taibai granite from ca. 800 to 100 °C during Early Cretaceous (ca. 123 to 100 Ma) followed by a period of slow cooling from ca. 100 Ma to ca. 25 Ma, and pulsed exhumation of the low-relief Cretaceous peneplain during Cenozoic times. We interpret the Early Cretaceous rapid cooling and exhumation as a result from activity along the southern sinistral lithospheric scale tear fault of the recently postulated intracontinental subduction of the Archean/Palaeoproterozoic North China Block beneath the Alashan Block. A Late Oligocene to Early Miocene cooling phase might be triggered either by the lateral motion during India–Asia collision and/or the Pacific subduction zone. Late Miocene intensified cooling is ascribed to uplift of the Tibetan Plateau. PMID:27065503

  8. Polyphase exhumation in the western Qinling Mountains, China: Rapid Early Cretaceous cooling along a lithospheric-scale tear fault and pulsed Cenozoic uplift.

    PubMed

    Heberer, Bianca; Anzenbacher, Thomas; Neubauer, Franz; Genser, Johann; Dong, Yunpeng; Dunkl, István

    2014-03-17

    The western sector of the Qinling-Dabie orogenic belt plays a key role in both Late Jurassic to Early Cretaceous "Yanshanian" intracontinental tectonics and Cenozoic lateral escape triggered by India-Asia collision. The Taibai granite in the northern Qinling Mountains is located at the westernmost tip of a Yanshanian granite belt. It consists of multiple intrusions, constrained by new Late Jurassic and Early Cretaceous U-Pb zircon ages (156 ± 3 Ma and 124 ± 1 Ma). Applying various geochronometers ((40)Ar/(39)Ar on hornblende, biotite and K-feldspar, apatite fission-track, apatite [U-Th-Sm]/He) along a vertical profile of the Taibai Mountain refines the cooling and exhumation history. The new age constraints record the prolonged pre-Cenozoic intracontinental deformation as well as the cooling history mostly related to India-Asia collision. We detected rapid cooling for the Taibai granite from ca. 800 to 100 °C during Early Cretaceous (ca. 123 to 100 Ma) followed by a period of slow cooling from ca. 100 Ma to ca. 25 Ma, and pulsed exhumation of the low-relief Cretaceous peneplain during Cenozoic times. We interpret the Early Cretaceous rapid cooling and exhumation as a result from activity along the southern sinistral lithospheric scale tear fault of the recently postulated intracontinental subduction of the Archean/Palaeoproterozoic North China Block beneath the Alashan Block. A Late Oligocene to Early Miocene cooling phase might be triggered either by the lateral motion during India-Asia collision and/or the Pacific subduction zone. Late Miocene intensified cooling is ascribed to uplift of the Tibetan Plateau.

  9. Polyphase exhumation in the western Qinling Mountains, China: Rapid Early Cretaceous cooling along a lithospheric-scale tear fault and pulsed Cenozoic uplift

    NASA Astrophysics Data System (ADS)

    Heberer, Bianca; Anzenbacher, Thomas; Neubauer, Franz; Genser, Johann; Dong, Yunpeng; Dunkl, István

    2014-03-01

    The western sector of the Qinling-Dabie orogenic belt plays a key role in both Late Jurassic to Early Cretaceous "Yanshanian" intracontinental tectonics and Cenozoic lateral escape triggered by India-Asia collision. The Taibai granite in the northern Qinling Mountains is located at the westernmost tip of a Yanshanian granite belt. It consists of multiple intrusions, constrained by new Late Jurassic and Early Cretaceous U-Pb zircon ages (156 ± 3 Ma and 124 ± 1 Ma). Applying various geochronometers (40Ar/39Ar on hornblende, biotite and K-feldspar, apatite fission-track, apatite [U-Th-Sm]/He) along a vertical profile of the Taibai Mountain refines the cooling and exhumation history. The new age constraints record the prolonged pre-Cenozoic intracontinental deformation as well as the cooling history mostly related to India-Asia collision. We detected rapid cooling for the Taibai granite from ca. 800 to 100 °C during Early Cretaceous (ca. 123 to 100 Ma) followed by a period of slow cooling from ca. 100 Ma to ca. 25 Ma, and pulsed exhumation of the low-relief Cretaceous peneplain during Cenozoic times. We interpret the Early Cretaceous rapid cooling and exhumation as a result from activity along the southern sinistral lithospheric scale tear fault of the recently postulated intracontinental subduction of the Archean/Palaeoproterozoic North China Block beneath the Alashan Block. A Late Oligocene to Early Miocene cooling phase might be triggered either by the lateral motion during India-Asia collision and/or the Pacific subduction zone. Late Miocene intensified cooling is ascribed to uplift of the Tibetan Plateau.

  10. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate.

    PubMed

    Anagnostou, Eleni; John, Eleanor H; Edgar, Kirsty M; Foster, Gavin L; Ridgwell, Andy; Inglis, Gordon N; Pancost, Richard D; Lunt, Daniel J; Pearson, Paul N

    2016-05-19

    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ(11)B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the

  11. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate

    NASA Astrophysics Data System (ADS)

    Anagnostou, Eleni; John, Eleanor H.; Edgar, Kirsty M.; Foster, Gavin L.; Ridgwell, Andy; Inglis, Gordon N.; Pancost, Richard D.; Lunt, Daniel J.; Pearson, Paul N.

    2016-05-01

    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ11B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the

  12. Cenozoic planktonic marine diatom diversity and correlation to climate change.

    PubMed

    Lazarus, David; Barron, John; Renaudie, Johan; Diver, Patrick; Türke, Andreas

    2014-01-01

    Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂(18)O (climate) and carbon cycle records (∂(13)C, and 20-0 Ma pCO2). Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p<.001; detrended, r = .6, p = .01). Diatoms were 20% less diverse in the early late Miocene, when temperatures and pCO2 were only moderately higher than today. Diversity is strongly correlated to both ∂(13)C and pCO2 over the last 15 my (for both: r>.9, detrended r>.6, all p<.001), but only weakly over the earlier Cenozoic, suggesting increasingly strong linkage of diatom and climate evolution in the Neogene. Our results suggest that many living marine planktonic diatom species may be at risk of extinction in future warm oceans, with an unknown but potentially substantial negative impact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic

  13. New Early Cenozoic ghost shrimps (Decapoda, Axiidea, Callianassidae) from Pakistan and their palaeobiogeographic implications.

    PubMed

    Hyžný, Matúš; Charbonnier, Sylvain; Merle, Didier; Lashari, Rafique Ahmed; Bartolini, Annachiara; Mètais, Grégoire

    2016-09-01

    A new set of Paleocene and Eocene decapod crustaceans is described from the Kirthar Range of Pakistan. Two new ghost shrimps (Crustacea, Decapoda, Callianassidae) are described: Neocallichirus khadroensis Hyžný & Charbonnier, n. sp. from the Paleocene (Danian, Khadro Formation) of Gawar Band, Ranikot District, and Neocallichirus lakhraensis Hyžný & Charbonnier, n. sp. from the Early Eocene (Ypresian, Lakhra Formation) of Rbod Nala, Jhirak District. Both new species exhibit chelipeds which are morphologically surprisingly close to extant Neocallichirus karumba (Poore & Griffin, 1979) from the Indo-West Pacific. A group of species sharing this same cheliped morphology is provisionally called the "karumba group" based on Neocallichirus karumba, best documented species. The "karumba group" encompasses seven fossil species: the two new Pakistani species, Neocallichirus tuberculatus (Lőrenthey in Lőrenthey & Beurlen, 1929) n. comb. from the Eocene of Hungary, Neocallichirus borensis Beschin, De Angeli, Checchi & Mietto, 2006 from the Eocene of Italy, Neocallichirus birmanicus (Noetling, 1901) n. comb. from the Miocene of Myanmar, Neocallichirus dijki (Martin, 1883) from the Miocene of Java and Philippines, and the subfossil Neocallichirus maximus (A. Milne-Edwards, 1870) from Thailand. Based upon the extant and fossil occurrences, it is difficult to reconstruct migration pattern of the "karumba group". For now, it can be concluded, that at the genus level, a relative homogeneity of the ghost shrimps is observed between the Eastern and the Western Tethyan regions, as already suggested by Merle et al. (2014) for the assemblage of volutid gastropods from the Lakhra Formation.

  14. New Early Cenozoic ghost shrimps (Decapoda, Axiidea, Callianassidae) from Pakistan and their palaeobiogeographic implications

    PubMed Central

    Hyžný, Matúš; Charbonnier, Sylvain; Merle, Didier; Lashari, Rafique Ahmed; Bartolini, Annachiara; Mètais, Grégoire

    2017-01-01

    A new set of Paleocene and Eocene decapod crustaceans is described from the Kirthar Range of Pakistan. Two new ghost shrimps (Crustacea, Decapoda, Callianassidae) are described: Neocallichirus khadroensis Hyžný & Charbonnier, n. sp. from the Paleocene (Danian, Khadro Formation) of Gawar Band, Ranikot District, and Neocallichirus lakhraensis Hyžný & Charbonnier, n. sp. from the Early Eocene (Ypresian, Lakhra Formation) of Rbod Nala, Jhirak District. Both new species exhibit chelipeds which are morphologically surprisingly close to extant Neocallichirus karumba (Poore & Griffin, 1979) from the Indo-West Pacific. A group of species sharing this same cheliped morphology is provisionally called the “karumba group” based on Neocallichirus karumba, best documented species. The “karumba group” encompasses seven fossil species: the two new Pakistani species, Neocallichirus tuberculatus (Lőrenthey in Lőrenthey & Beurlen, 1929) n. comb. from the Eocene of Hungary, Neocallichirus borensis Beschin, De Angeli, Checchi & Mietto, 2006 from the Eocene of Italy, Neocallichirus birmanicus (Noetling, 1901) n. comb. from the Miocene of Myanmar, Neocallichirus dijki (Martin, 1883) from the Miocene of Java and Philippines, and the subfossil Neocallichirus maximus (A. Milne-Edwards, 1870) from Thailand. Based upon the extant and fossil occurrences, it is difficult to reconstruct migration pattern of the “karumba group”. For now, it can be concluded, that at the genus level, a relative homogeneity of the ghost shrimps is observed between the Eastern and the Western Tethyan regions, as already suggested by Merle et al. (2014) for the assemblage of volutid gastropods from the Lakhra Formation. PMID:28255262

  15. The Cenozoic Diversity of Agglutinated Foraminifera - Evidence for a late Oligocene to early Miocene diversification event

    NASA Astrophysics Data System (ADS)

    Kaminski, Michael; Setoyama, Eiichi; Kender, Sev; Cetean, Claudia

    2014-05-01

    their poorly established taxonomy. Genera such as Alveovalvulina, Guppyella, Goesella, and Alveovalvulinella, are typical of assemblages found in subtropical oxygen minimum zones, especially in West Africa and the Caribbean. These agglutinated genera are not found in coeval assemblages from the northern high latitudes (Kaminski et al. 2005), suggesting they are restricted to the low-latitude OMZ. It is likely that the global warming of the latest Oligocene to Early Miocene contributed to intensification of dysoxic conditions in low-latitude upwelling regions, possibly from enhanced productivity and reduced deep-sea ventilation, creating an expanded niche for these organisms that flourished in low-oxygen conditions with high particulate organic matter input. We believe a more detailed phylogenetic approach to these agglutinated genera would result in the description of new genera for individual lineages and refinement of the foraminiferal diversity record.

  16. Origin and early evolution of angiosperms.

    PubMed

    Soltis, Douglas E; Bell, Charles D; Kim, Sangtae; Soltis, Pamela S

    2008-01-01

    Contributions from paleobotany, phylogenetics, genomics, developmental biology, and developmental genetics have yielded tremendous insight into Darwin's "abominable mystery"--the origin and rapid diversification of the angiosperms. Analyses of morphological and molecular data reveal a revised "anthophyte clade" consisting of the fossils glossopterids, Pentoxylon, Bennettitales, and Caytonia as sister to angiosperms. Molecular estimates of the age of crown group angiosperms have converged on 140-180 million years ago (Ma), older than the oldest fossils (132 Ma), suggesting that older fossils remain to be discovered. Whether the first angiosperms were forest shrubs (dark-and-disturbed hypothesis) or aquatic herbs (wet-and-wild hypothesis) remains unclear. The near-basal phylogenetic position of Nymphaeales (water lilies), which may include the well-known fossil Archaefructus, certainly indicates that the aquatic habit arose early. After initial, early "experiments," angiosperms radiated rapidly (origin and subsequent diversification remain major questions. Variation in spatial expression of floral regulators may control major differences in floral morphology between basal angiosperms and eudicot models.

  17. The origin and early radiation of dinosaurs

    NASA Astrophysics Data System (ADS)

    Brusatte, Stephen L.; Nesbitt, Sterling J.; Irmis, Randall B.; Butler, Richard J.; Benton, Michael J.; Norell, Mark A.

    2010-07-01

    Dinosaurs were remarkably successful during the Mesozoic and one subgroup, birds, remain an important component of modern ecosystems. Although the extinction of non-avian dinosaurs at the end of the Cretaceous has been the subject of intense debate, comparatively little attention has been given to the origin and early evolution of dinosaurs during the Late Triassic and Early Jurassic, one of the most important evolutionary radiations in earth history. Our understanding of this keystone event has dramatically changed over the past 25 years, thanks to an influx of new fossil discoveries, reinterpretations of long-ignored specimens, and quantitative macroevolutionary analyses that synthesize anatomical and geological data. Here we provide an overview of the first 50 million years of dinosaur history, with a focus on the large-scale patterns that characterize the ascent of dinosaurs from a small, almost marginal group of reptiles in the Late Triassic to the preeminent terrestrial vertebrates of the Jurassic and Cretaceous. We provide both a biological and geological background for early dinosaur history. Dinosaurs are deeply nested among the archosaurian reptiles, diagnosed by only a small number of characters, and are subdivided into a number of major lineages. The first unequivocal dinosaurs are known from the late Carnian of South America, but the presence of their sister group in the Middle Triassic implies that dinosaurs possibly originated much earlier. The three major dinosaur lineages, theropods, sauropodomorphs, and ornithischians, are all known from the Triassic, when continents were joined into the supercontinent Pangaea and global climates were hot and arid. Although many researchers have long suggested that dinosaurs outcompeted other reptile groups during the Triassic, we argue that the ascent of dinosaurs was more of a matter of contingency and opportunism. Dinosaurs were overshadowed in most Late Triassic ecosystems by crocodile-line archosaurs and

  18. Evidence for deep-water production in the North Pacific Ocean during the early Cenozoic warm interval.

    PubMed

    Thomas, Deborah J

    2004-07-01

    The deep-ocean circulation is responsible for a significant component of global heat transport. In the present mode of circulation, deep waters form in the North Atlantic and Southern oceans where surface water becomes sufficiently cold and dense to sink. Polar temperatures during the warmest climatic interval of the Cenozoic era (approximately 65 to 40 million years (Myr) ago) were significantly warmer than today, and this may have been a consequence of enhanced oceanic heat transport. However, understanding the relationship between deep-ocean circulation and ancient climate is complicated by differences in oceanic gateways, which affect where deep waters form and how they circulate. Here I report records of neodymium isotopes from two cores in the Pacific Ocean that indicate a shift in deep-water production from the Southern Ocean to the North Pacific approximately 65 Myr ago. The source of deep waters reverted back to the Southern Ocean 40 Myr ago. The relative timing of changes in the neodymium and oxygen isotope records indicates that changes in Cenozoic deep-water circulation patterns were the consequence, not the cause, of extreme Cenozoic warmth.

  19. Timing of Cenozoic Basin Formation in Northern Sundaland, Southeast Asia

    SciTech Connect

    Liew, K.K. )

    1994-07-01

    The present shorelines of northern Sundaland show preferential northwest-southeast elongation. This trend is parallel for subparallel to major faults and suture in this region. Continental wrench/shear basins developed on the western portion of this region and back-arc basins developed on the western portion of this region and back-arc basins in the rest of the region are also aligned to this trend. Different basin geometries and structural patterns among Cenozoic basins in northern Sundaland indicate different origins and/or timing of basin formation. Wrench faulting has played a significant role in the formation of these Cenozoic basins. The continued collision of the Indian subplate with the Eurasian plate during early Cenozoic has caused a redistribution of stress within this region. Zones of weakness have been reactivated or created with large lateral displacements by these changes, thus initiating the subsidence of these basins. The episodic initiation of Cenozoic basins may have begun as early as Jurassic and continued till Oligocene.

  20. Diversity history of Cenozoic marine siliceous plankton

    NASA Astrophysics Data System (ADS)

    Lazarus, David; Renaudie, Johan

    2014-05-01

    Marine planktonic diatoms and polycystine radiolarians, both with shells of opaline silica, make up a large part of the deep-sea sediment fossil record. Diatom export of organic material to the deep ocean and sediments strongly affects the global carbon cycle; while both groups compete for, and are regulated by the availability of, dissolved silica derived from global weathering. Diatoms and radiolarians also both have a relatively (compared to foraminifera or coccolithophores) complex biogeography, with diverse, endemic polar and tropical assemblages. Changes in past diatom and radiolarian diversity can be used to understand how the ocean's biologic pump has evolved, how co-evolution between groups occurs, and how nutrient availability controls evolutionary change. Lazarus et al. (2014) recently showed that diatom diversity increased by a factor of ca 3.5X over the Cenozoic, with a temporary peak in the latest Eocene, a late Oligocene-early Miocene low interval, very strong diversification in the late Miocene-early Pliocene, and minor decline in the late Pliocene-Recent. Only Phanerozoic scale radiolarian diversity estimates have been available until now, and these are strongly biased by sample size. We employed similar data (NSB database) and methods (1 my bins, 'sqs' subsampling, outlier removal using Pacman trims) as Lazarus et al. (2014) to calculate, for the first time, a detailed estimate of radiolarian diversity history, and origination and extinction rates over the last 50 my, the period for which sufficient NSB data is available. Radiolarian diversity increases almost monotonically by a factor of 5, with relatively rapid increases in the mid Eocene (high relative origination) and early Miocene (due to low extinction rates), and a moderate decline in the Plio-Pleistocene due to high extinction rates. Combined high rates of both extinction and origination, with little diversity change, are seen at the Eocene-Oligocene boundary. Most of these events can be

  1. The origin and early evolution of dinosaurs.

    PubMed

    Langer, Max C; Ezcurra, Martin D; Bittencourt, Jonathas S; Novas, Fernando E

    2010-02-01

    The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis, and Panphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as "all descendants of the most recent common ancestor of birds and Triceratops". Recent cladistic analyses of early dinosaurs agree that Pisanosaurus mertii is a basal ornithischian; that Herrerasaurus ischigualastensis and Staurikosaurus pricei belong in a monophyletic Herrerasauridae; that herrerasaurids, Eoraptor lunensis, and Guaibasaurus candelariensis are saurischians; that Saurischia includes two main groups, Sauropodomorpha and Theropoda; and that Saturnalia tupiniquim is a basal member of the sauropodomorph lineage. On the contrary, several aspects of basal dinosaur phylogeny remain controversial, including the position of herrerasaurids, E. lunensis, and G. candelariensis as basal theropods or basal saurischians, and the affinity and/or validity of more fragmentary taxa such as Agnosphitys cromhallensis, Alwalkeria maleriensis, Chindesaurus bryansmalli, Saltopus elginensis, and

  2. Cretaceous to Cenozoic evolution of the northern Lhasa Terrane and the Early Paleogene development of peneplains at Nam Co, Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Haider, Vicky L.; Dunkl, István; von Eynatten, Hilmar; Ding, Lin; Frei, Dirk; Zhang, Liyun

    2013-07-01

    Highly elevated and well-preserved peneplains are characteristic geomorphic features of the Tibetan plateau in the northern Lhasa Terrane, north-northwest of Nam Co. The peneplains were carved in granitoids and in their metasedimentary host formations. We use multi-method geochronology (zircon U-Pb and [U-Th]/He dating and apatite fission track and [U-Th]/He dating) to constrain the post-emplacement thermal history of the granitoids and the timing and rate of final exhumation of the peneplain areas. LA-ICP-MS U-Pb geochronology of zircons yields two narrow age groups for the intrusions at around 118 Ma and 85 Ma, and a third group records Paleocene volcanic activity (63-58 Ma) in the Nam Co area. The low-temperature thermochronometers indicate common age groups for the entire Nam Co area: zircon (U-Th)/He ages cluster around 75 Ma, apatite fission track ages around 60 Ma and apatite (U-Th)/He ages around 50 Ma. Modelling of the thermochronological data indicates that exhumation of the basement blocks took place in latest Cretaceous to earliest Paleogene time. By Middle Eocene time the relief was already flat, documented by a thin alluvial sediment sequence covering a part of the planated area. The present-day horst and graben structure of the peneplains is a Late Cenozoic feature triggered by E-W extension of the Tibetan Plateau. The new thermochronological data precisely bracket the age of the planation to Early Eocene, i.e. between ca. 55 and 45 Ma. The erosional base level can be deduced from the presence of Early Cretaceous zircon grains in Eocene strata of Bengal Basin. The sediment generated during exhumation of the Nam Co area was transported by an Early Cenozoic river system into the ocean, suggesting that planation occurred at low elevation.

  3. Upper mantle structure under western Saudi Arabia from Rayleigh wave tomography and the origin of Cenozoic uplift and volcanism on the Arabian Shield

    SciTech Connect

    Park, Y; Nyblade, A; Rodgers, A; Al-Amri, A

    2007-11-09

    The shear velocity structure of the shallow upper mantle beneath the Arabian Shield has been modeled by inverting new Rayleigh wave phase velocity measurements between 45 and 140 s together with previously published Rayleigh wave group velocity measurement between 10 and 45 s. For measuring phase velocities, we applied a modified array method that minimizes the distortion of raypaths by lateral heterogeneity. The new shear velocity model shows a broad low velocity region in the lithospheric mantle across the Shield and a low velocity region at depths {ge} 150 km localized along the Red Sea coast and Makkah-Madinah-Nafud (MMN) volcanic line. The velocity reduction in the upper mantle corresponds to a temperature anomaly of {approx}250-330 K. These finding, in particular the region of continuous low velocities along the Red Sea and MMN volcanic line, do not support interpretations for the origin of the Cenozoic plateau uplift and volcanism on the Shield invoking two separate plumes. When combined with images of the 410 and 660 km discontinuities beneath the southern part of the Arabian Shield, body wave tomographic models, a S-wave polarization analysis, and SKS splitting results, our new model supports an interpretation invoking a thermal upwelling of warm mantle rock originating in the lower mantle under Africa that crosses through the transition zone beneath Ethiopia and moves to the north and northwest under the eastern margin of the Red Sea and the Arabian Shield. In this interpretation, the difference in mean elevation between the Platform and Shield can be attributed to isostatic uplift caused by heating of the lithospheric mantle under the Shield, with significantly higher region along the Red Sea possibly resulting from a combination of lithosphere thinning and dynamic uplift.

  4. Origin of the oceanic basalt basement of the Solomon Islands arc and its relationship to the Ontong Java Plateau-insights from Cenozoic plate motion models

    USGS Publications Warehouse

    Wells, R.E.

    1989-01-01

    Cenozoic global plate motion models based on a hotspot reference frame may provide a useful framework for analyzing the tectonic evolution of the Solomon Islands convergent margin. A postulated late Miocene collision of the Ontong Java Plateau (OJP) with a NE-facing arc is consistent with the predicted path of the OJP across the Pacific Basin and its Miocene arrival at the trench. Late-stage igneous activity (65-30 Ma) predicted for the OJP as it rode over the Samoan hotspot occurred in correlative stratigraphic sections on Malaita, the supposed accreted flake of OJP in the Solomon Islands arc. Convergence similar to the present velocities between Australia and the Pacific plates was characteristic of the last 43 million years. Prior to 43 Ma Pacific-Australia plate motions were divergent, seemingly at odds with geologic evidence for early Tertiary convergence, particularly in Papua New Guinea. A postulated South Pacific plate may have existed between Australia and the Pacific plate and would have allowed implied northward subduction along the northeastern Australia plate boundary that lasted into the early Eocene. Subsequent reorganization of plate motions in the middle Eocene correlates with middle Eocene marginal basin formation along ridges oblique to the main plate boundary. Cessation of spreading on the Pacific-South Pacific Ridge and its subsequent subduction beneath Asia followed the change in Pacific plate motion at 43 Ma. A trapped remnant of the extinct, NW-trending ridge may still lie beneath the western Philippine Sea. The terminal deformation, metamorphism and ophiolite obduction in the Eocene orogen of the southwest Pacific also correlates with the major change in Pacific plate motion at 43 Ma and the subsequent compression of the dying Eocene arc against outlying continental and oceanic crustal blocks of the Australian plate. The Solomon Islands oceanic basement may represent juxtaposition of oceanic plateaus of the Australian plate beneath

  5. Early origin of adult renal disease.

    PubMed

    Maringhini, Silvio; Corrado, Ciro; Maringhini, Guido; Cusumano, Rosa; Azzolina, Vitalba; Leone, Francesco

    2010-10-01

    Observational studies in humans and experimental studies in animals have clearly shown that renal failure may start early in life. 'Fetal programming' is regulated by adaptations occurring in uterus including maternal nutrition, placental blood supply, and epigenetic changes. Low birth weight predisposes to hypertension and renal insufficiency. Congenital abnormalities of the kidney and urinary tract, adverse postnatal events, wrong nutritional habits may produce renal damage that will become clinically relevant in adulthood. Prevention should start early in children at risk of renal disease.

  6. Action Research: Its Origins and Early Application.

    ERIC Educational Resources Information Center

    Cook, Stuart W.

    This paper contains informal remarks on action research in social psychology from its post World War II origins to its current status. Kurt Lewin first described action research in the 1946 article, "Action Research and Minority Problems," as a three-step process of program planning, program execution, and follow-up evaluation. Ronald Lippitt and…

  7. Origin and early evolution of photosynthesis

    NASA Technical Reports Server (NTRS)

    Blankenship, R. E.

    1992-01-01

    Photosynthesis was well-established on the earth at least 3.5 thousand million years ago, and it is widely believed that these ancient organisms had similar metabolic capabilities to modern cyanobacteria. This requires that development of two photosystems and the oxygen evolution capability occurred very early in the earth's history, and that a presumed phase of evolution involving non-oxygen evolving photosynthetic organisms took place even earlier. The evolutionary relationships of the reaction center complexes found in all the classes of currently existing organisms have been analyzed using sequence analysis and biophysical measurements. The results indicate that all reaction centers fall into two basic groups, those with pheophytin and a pair of quinones as early acceptors, and those with iron sulfur clusters as early acceptors. No simple linear branching evolutionary scheme can account for the distribution patterns of reaction centers in existing photosynthetic organisms, and lateral transfer of genetic information is considered as a likely possibility. Possible scenarios for the development of primitive reaction centers into the heterodimeric protein structures found in existing reaction centers and for the development of organisms with two linked photosystems are presented.

  8. European Cenozoic rift system

    NASA Astrophysics Data System (ADS)

    Ziegler, Peter A.

    1992-07-01

    The European Cenozoic rift system extends from the coast of the North Sea to the Mediterranean over a distance of some 1100 km; it finds its southern prolongation in the Valencia Trough and a Plio-Pleistocene volcanic chain crossing the Atlas ranges. Development of this mega-rift was paralleled by orogenic activity in the Alps and Pyrenees. Major rift domes, accompanied by subsidence reversal of their axial grabens, developed 20-40 Ma after beginning of rifting. Uplift of the Rhenish Shield is related to progressive thermal lithospheric thinning; the Vosges-Black Forest and the Massif Central domes are probably underlain by asthenoliths emplaced at the crust/mantle boundary. Evolution of this rift system, is thought to be governed by the interaction of the Eurasian and African plates and by early phases of a plate-boundary reorganization that may lead to the break-up of the present continent assembly.

  9. The Armorican Massif (Western France) - A buried relief two times exhumed in response to Iberia-Eurasia movements (Early Cretaceous, base of Cenozoic)

    NASA Astrophysics Data System (ADS)

    Bessin, Paul; Guillocheau, François; Robin, Cécile; Bauer, Hugues; Schroëtter, Jean-Michel

    2014-05-01

    The Armorican Massif is an outcropping Variscan basement located in Western France. The age of its exhumation is debated, as most of the outcropping European basements: Is this relief a remnant of the planation of the Variscan Belt or a buried and then exhumed relief at time of the North-Atlantic (Biscay Bay) opening during Early Cretaceous or/and during the Africa-Eurasia convergence? We performed a geomorphological study (based on DEM analysis and field controls) of the different landforms of the Armorican Massif. The dating of those relief forms is based on their geometrical relationships with the weatherings and dated preserved sediments. Our results allow to propose a model of evolution of the Armorican Massif and of its relief for the Mesozoic to Cenozoic period and underscore four main points: (1) The Armorican relief preserved old landforms - planation surfaces (mainly pediments and pediplains) - of Triassic (?) to Early Cretaceous age buried by Jurassic and Upper Cretaceous (chalk) carbonate platforms. (2) Those paleo-landforms were exhumed at two periods (i) Early Cretaceous in response to the opening of the Biscay Bay and (ii) Upermost Cretaceous-Paleocene at time of the Iberia-Eurasia increasing of convergence. (3) A major planation surface - called the Armorican Surface - result from the Early Cretaceous physical and chemical (laterite) erosion when the Armorican Massif was the North rift shoulder of the Biscay Bay. This planation surface is later deformed (buckling?) and eroded during Uppermost Cretaceous and Paleocene. (4) During Paleogene times, a last generation of pediments is shaped and then flooded by the Mid-Miocene eustatic sea-level rise. (5) The Armorican relief and landforms is later incised by rivers, (i) during Upper Miocene to Pliocene and (ii) at the Early to Middle Pleistocene transition with the incision of the present-day valleys in both response to uplift (Apulia-Eurasia convergence) and climate (precipitation) change.

  10. The Border Ranges fault system in Glacier Bay National Park, Alaska: Evidence for major early Cenozoic dextral strike-slip motion

    USGS Publications Warehouse

    Smart, K.J.; Pavlis, T.L.; Sisson, V.B.; Roeske, S.M.; Snee, L.W.

    1996-01-01

    The Border Ranges fault system of southern Alaska, the fundamental break between the arc basement and the forearc accretionary complex, is the boundary between the Peninsular-Alexander-Wrangellia terrane and the Chugach terrane. The fault system separates crystalline rocks of the Alexander terrane from metamorphic rocks of the Chugach terrane in Glacier Bay National Park. Mylonitic rocks in the zone record abundant evidence for dextral strike-slip motion along north-northwest-striking subvertical surfaces. Geochronologic data together with regional correlations of Chugach terrane rocks involved in the deformation constrain this movement between latest Cretaceous and Early Eocene (???50 Ma). These findings are in agreement with studies to the northwest and southeast along the Border Ranges fault system which show dextral strike-slip motion occurring between 58 and 50 Ma. Correlations between Glacier Bay plutons and rocks of similar ages elsewhere along the Border Ranges fault system suggest that as much as 700 km of dextral motion may have been accommodated by this structure. These observations are consistent with oblique convergence of the Kula plate during early Cenozoic and forearc slivering above an ancient subduction zone following late Mesozoic accretion of the Peninsular-Alexander-Wrangellia terrane to North America.

  11. Marine origin of retroviruses in the early Palaeozoic Era

    NASA Astrophysics Data System (ADS)

    Aiewsakun, Pakorn; Katzourakis, Aris

    2017-01-01

    Very little is known about the ancient origin of retroviruses, but owing to the discovery of their ancient endogenous viral counterparts, their early history is beginning to unfold. Here we report 36 lineages of basal amphibian and fish foamy-like endogenous retroviruses (FLERVs). Phylogenetic analyses reveal that ray-finned fish FLERVs exhibit an overall co-speciation pattern with their hosts, while amphibian FLERVs might not. We also observe several possible ancient viral cross-class transmissions, involving lobe-finned fish, shark and frog FLERVs. Sequence examination and analyses reveal two major lineages of ray-finned fish FLERVs, one of which had gained two novel accessory genes within their extraordinarily large genomes. Our phylogenetic analyses suggest that this major retroviral lineage, and therefore retroviruses as a whole, have an ancient marine origin and originated together with, if not before, their jawed vertebrate hosts >450 million years ago in the Ordovician period, early Palaeozoic Era.

  12. Marine origin of retroviruses in the early Palaeozoic Era.

    PubMed

    Aiewsakun, Pakorn; Katzourakis, Aris

    2017-01-10

    Very little is known about the ancient origin of retroviruses, but owing to the discovery of their ancient endogenous viral counterparts, their early history is beginning to unfold. Here we report 36 lineages of basal amphibian and fish foamy-like endogenous retroviruses (FLERVs). Phylogenetic analyses reveal that ray-finned fish FLERVs exhibit an overall co-speciation pattern with their hosts, while amphibian FLERVs might not. We also observe several possible ancient viral cross-class transmissions, involving lobe-finned fish, shark and frog FLERVs. Sequence examination and analyses reveal two major lineages of ray-finned fish FLERVs, one of which had gained two novel accessory genes within their extraordinarily large genomes. Our phylogenetic analyses suggest that this major retroviral lineage, and therefore retroviruses as a whole, have an ancient marine origin and originated together with, if not before, their jawed vertebrate hosts >450 million years ago in the Ordovician period, early Palaeozoic Era.

  13. Deep-sea food bonanzas: early Cenozoic whale-fall communities resemble wood-fall rather than seep communities.

    PubMed

    Kiel, Steffen; Goedert, James L

    2006-10-22

    The evolutionary history of invertebrate communities utilizing whale carcasses and sunken wood in the deep-sea is explored using fossil evidence. Compared to modern whale-fall communities, the Eo-Oligocene examples lack those vent-type taxa that most heavily rely on sulphide produced by anaerobic breakdown of bone lipids, but are very similar in their trophic structure to contemporaneous wood-falls. This sheds doubt on the hypothesis that whale-falls were evolutionary stepping stones for taxa that now inhabit hydrothermal vents and seeps. We suggest that the whale-fall communities reported here represent a new ecologic stage among whale-falls, which we have coined the 'chemosymbiotic opportunist stage' and that the 'sulphophilic stage' of modern whale-falls developed during the Early Miocene, resulting from a significant increase in both body size and/or oil content of bones among cetaceans during this time.

  14. Early origin of parental care in Mesozoic carrion beetles

    PubMed Central

    Cai, Chen-Yang; Thayer, Margaret K.; Engel, Michael S.; Newton, Alfred F.; Ortega-Blanco, Jaime; Wang, Bo; Wang, Xiang-Dong; Huang, Di-Ying

    2014-01-01

    The reconstruction and timing of the early stages of social evolution, such as parental care, in the fossil record is a challenge, as these behaviors often do not leave concrete traces. One of the intensely investigated examples of modern parental care are the modern burying beetles (Silphidae: Nicrophorus), a lineage that includes notable endangered species. Here we report diverse transitional silphids from the Mesozoic of China and Myanmar that provide insights into the origins of parental care. Jurassic silphids from Daohugou, sharing many defining characters of Nicrophorinae, primitively lack stridulatory files significant for parental care communications; although morphologically similar, Early Cretaceous nicrophorines from the Jehol biota possess such files, indicating that a system of parental care had evolved by this early date. More importantly, burying beetles of the genus Nicrophorus have their earliest first record in mid-Cretaceous Burmese amber, and document early evolution of elaborate biparental care and defense of small vertebrate carcasses for their larvae. Parental care in the Early Cretaceous may have originated from competition between silphids and their predators. The rise of the Cretaceous Nicrophorinae implies a biology similar to modern counterparts that typically feed on carcasses of small birds and mammals. PMID:25225362

  15. Early origin of parental care in Mesozoic carrion beetles.

    PubMed

    Cai, Chen-Yang; Thayer, Margaret K; Engel, Michael S; Newton, Alfred F; Ortega-Blanco, Jaime; Wang, Bo; Wang, Xiang-Dong; Huang, Di-Ying

    2014-09-30

    The reconstruction and timing of the early stages of social evolution, such as parental care, in the fossil record is a challenge, as these behaviors often do not leave concrete traces. One of the intensely investigated examples of modern parental care are the modern burying beetles (Silphidae: Nicrophorus), a lineage that includes notable endangered species. Here we report diverse transitional silphids from the Mesozoic of China and Myanmar that provide insights into the origins of parental care. Jurassic silphids from Daohugou, sharing many defining characters of Nicrophorinae, primitively lack stridulatory files significant for parental care communications; although morphologically similar, Early Cretaceous nicrophorines from the Jehol biota possess such files, indicating that a system of parental care had evolved by this early date. More importantly, burying beetles of the genus Nicrophorus have their earliest first record in mid-Cretaceous Burmese amber, and document early evolution of elaborate biparental care and defense of small vertebrate carcasses for their larvae. Parental care in the Early Cretaceous may have originated from competition between silphids and their predators. The rise of the Cretaceous Nicrophorinae implies a biology similar to modern counterparts that typically feed on carcasses of small birds and mammals.

  16. The Origin of Dust in the Early Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2010-01-01

    In this talk I will describe the origin of dust in the early universe. I will be presenting observations of the spectral energy distribution of the galaxy J1148+5251, and present estimates of the dust mass in this high redshift (z=6.4) object. I will then discuss the origin of this dust, and the role of SN and AGB stars as dust sources, and the effect of SNRs on the destruction of dust in the interstellar medium of this galaxy.

  17. The Origin of Dust in the Early Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2011-01-01

    In this talk I will describe the origin of dust in the early universe. I will be presenting observations of the spectral energy distribution of the galaxy J1148+5251, and present estimates of the dust mass in this high redshift (z=6.4) object. I will then discuss the origin of this dust, and the role of SN and AGB stars as dust sources, and the effect of SNRs on the destruction of dust in the interstellar medium of this galaxy.

  18. An atmosphere-ocean GCM modelling study of the climate response to changing Arctic seaways in the early Cenozoic.

    NASA Astrophysics Data System (ADS)

    Roberts, C. D.; Legrande, A. N.; Tripati, A. K.

    2008-12-01

    The report of fossil Azolla (a freshwater aquatic fern) in sediments from the Lomonosov Ridge suggests low salinity conditions occurred in the Arctic Ocean in the early Eocene. Restricted passages between the Arctic Ocean and the surrounding oceans are hypothesized to have caused this Arctic freshening. We investigate this scenario using a water-isotope enabled atmosphere-ocean general circulation model with Eocene boundary conditions including 4xCO2, 7xCH4, altered bathymetry and topography, and an estimated distribution of Eocene vegetational types. In one experiment, oceanic exchange between the Arctic Ocean and other ocean basins was restricted to two shallow (~250 m) seaways, one in the North Atlantic, the Greenland-Norwegian seaway, and the second connecting the Arctic Ocean with the Tethys Ocean, the Turgai Straits. In the restricted configuration, the Greenland-Norwegian seaway was closed and exchange through the Turgai Straits was limited to a depth of ~60 m. The simulations suggest that the severe restriction of Arctic seaways in the early Eocene may have been sufficient to freshen Arctic Ocean surface waters, conducive to Azolla blooms. When exchange with the Arctic Ocean is limited, salinities in the upper several hundred meters of the water column decrease by ~10 psu. In some regions, surface salinity is within 2-3 psu of the reported maximum modern conditions tolerated by Azolla (~5 psu). In the restricted scenario, salt is stored preferentially in the North Atlantic and Tethys oceans, resulting in enhanced meridional overturning, increased poleward heat transport in the North Atlantic western boundary current, and warming of surface and intermediate waters in the North Atlantic by several degrees. Increased sensible and latent heat fluxes from the North Atlantic Ocean, combined with a reduction in cloud albedo, also lead to an increase in surface air temperature of over much of North America, Greenland and Eurasia. Our work is consistent with

  19. The origin of Cenozoic basalts from central Inner Mongolia, East China: The consequence of recent mantle metasomatism genetically associated with seismically observed paleo-Pacific slab in the mantle transition zone

    NASA Astrophysics Data System (ADS)

    Guo, Pengyuan; Niu, Yaoling; Sun, Pu; Ye, Lei; Liu, Jinju; Zhang, Yu; Feng, Yue-xing; Zhao, Jian-xin

    2016-01-01

    We present new major element, trace element and Sr-Nd-Hf isotope data on Cenozoic basalts from central Inner Mongolia (CIM) in eastern China to study the origin of the incompatible-element enriched component in these basalts by testing whether or not the paleo-Pacific plate lying in the mantle transition zone beneath eastern China is the immediate cause. The Cenozoic CIM basalts have a large variation in major element, trace element and isotope compositions. Fractional crystallization of olivine and clinopyroxene can readily explain much of the major element compositional variation, while trace element and isotope ratio variation largely reflect source heterogeneities and source histories. The variably low 87Sr/86Sr, high εNd, high εHf and elevated ratios of high field strength element over large ion lithophile element (HFSE/LILE, e.g., Nb/U, Nb/La) indicate that the CIM basalts are of asthenospheric origin, which is characterized by mixing between DMM and EM1. However, the CIM basalts are enriched in incompatible elements and enriched in the progressively more incompatible elements (e.g., variably high [La/Sm]N = 1.66-3.38), suggesting that the magma source(s) must have been enriched prior to the major episode of the magmatism. Participation of subducted ocean crust in the mantle source region of these basalts is recognized, but cannot be the major source material because the subducted ocean crust is expectedly too depleted in incompatible elements (e.g., [La/Sm]N ≪ 1) to produce magmas highly enriched in incompatible elements with [La/Sm]N ≫ 1. With the new data, we consider that low mass fraction (low-F) melt metasomatism in the seismic low velocity zone (LVZ) beneath eastern China as the most likely process to generate incompatible-element enriched source(s) for mantle melts parental to the Cenozoic CIM basalts. The low-F metasomatic agent most likely resulted from dehydration melting of the transition-zone paleo-Pacific slab, which has been taking place

  20. Magnetostratigraphy of the Lowermost Paleocene Fort Union Formation in the Williston Basin of North Dakota: Base of a Terrestrial Reference Section for Early Cenozoic Global Change

    NASA Astrophysics Data System (ADS)

    Peppe, D. J.; Evans, D. D.

    2006-05-01

    lead to more accurate and detailed correlations of the terrestrial and marine climate records through the early Cenozoic.

  1. The origin and early evolution of life on earth

    NASA Technical Reports Server (NTRS)

    Oro, J.; Miller, Stanley L.; Lazcano, Antonio

    1990-01-01

    Results of the studies that have provided insights into the cosmic and primitive earth environments are reviewed with emphasis on those environments in which life is thought to have originated. The evidence bearing on the antiquity of life on the earth and the prebiotic significance of organic compounds found in interstellar clouds and in primitive solar-system bodies such as comets, dark asteroids, and carbonaceous chondrites are assessed. The environmental models of the Hadean and early Archean earth are discussed, as well as the prebiotic formation of organic monomers and polymers essential to life. The processes that may have led to the appearance in the Archean of the first cells are considered, and possible effects of these processes on the early steps of biological evolution are analyzed. The significance of these results to the study of the distribution of life in the universe is evaluated.

  2. The origin and early phylogenetic history of jawed vertebrates.

    PubMed

    Brazeau, Martin D; Friedman, Matt

    2015-04-23

    Fossils of early gnathostomes (or jawed vertebrates) have been the focus of study for nearly two centuries. They yield key clues about the evolutionary assembly of the group's common body plan, as well the divergence of the two living gnathostome lineages: the cartilaginous and bony vertebrates. A series of remarkable new palaeontological discoveries, analytical advances and innovative reinterpretations of existing fossil archives have fundamentally altered a decades-old consensus on the relationships of extinct gnathostomes, delivering a new evolutionary framework for exploring major questions that remain unanswered, including the origin of jaws.

  3. Early and multiple origins of metastatic lineages within primary tumors

    PubMed Central

    Zhao, Zi-Ming; Zhao, Bixiao; Bai, Yalai; Iamarino, Atila; Gaffney, Stephen G.; Schlessinger, Joseph; Lifton, Richard P.; Rimm, David L.; Townsend, Jeffrey P.

    2016-01-01

    Many aspects of the evolutionary process of tumorigenesis that are fundamental to cancer biology and targeted treatment have been challenging to reveal, such as the divergence times and genetic clonality of metastatic lineages. To address these challenges, we performed tumor phylogenetics using molecular evolutionary models, reconstructed ancestral states of somatic mutations, and inferred cancer chronograms to yield three conclusions. First, in contrast to a linear model of cancer progression, metastases can originate from divergent lineages within primary tumors. Evolved genetic changes in cancer lineages likely affect only the proclivity toward metastasis. Single genetic changes are unlikely to be necessary or sufficient for metastasis. Second, metastatic lineages can arise early in tumor development, sometimes long before diagnosis. The early genetic divergence of some metastatic lineages directs attention toward research on driver genes that are mutated early in cancer evolution. Last, the temporal order of occurrence of driver mutations can be inferred from phylogenetic analysis of cancer chronograms, guiding development of targeted therapeutics effective against primary tumors and metastases. PMID:26858460

  4. The Origin of Dwarf Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Toloba, Elisa

    2012-10-01

    Abridge. We have conducted a spectrophotometric study of dwarf early-type galaxies (dEs) in the Virgo cluster and in regions of lower density. We have found that these galaxies show many properties in common with late-type galaxies but not with more massive early-types (E/S0). The properties of the dEs in Virgo show gradients within the cluster. dEs in the outer parts of the Virgo cluster are kinematically supported by rotation, while those in the center are supported by the random motions of their stars (i.e. pressure supported). The rotationally supported dEs have disky isophotes and faint underlying spiral/irregular substructures, they also show younger ages than those pressure supported, which have boxy isophotes and are smooth and regular, without any substructure. We compare the position of these dEs with massive early-type galaxies in the Faber-Jackson and Fundamental Plane relations, and we find that, although there is no difference between the position of rotationally and pressure supported dEs, both deviate from the relations of massive early-type galaxies in the direction of dwarf spheroidal systems (dSphs). We have used their offset with respect to the Fundamental Plane of E/S0 galaxies to estimate their dark matter fraction. All the properties studied in this work agree with a ram pressure stripping scenario, where late-type galaxies infall into the cluster, their interaction with the intergalactic medium blows away their gas and, as a result, they are quenched in a small amount of time. However, those dEs in the center of the cluster seem to have been fully transformed leaving no trace of their possible spiral origin, thus, if that is the case, they must have experienced a more violent mechanism in combination with ram pressure stripping.

  5. The epilog of the western paleo-Pacific subduction: Inferred from spatial and temporal variations and geochemistry of the Late Cretaceous to Early Cenozoic silicic magmatism in coastal South China

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Hong; Lee, Chi-Yu; Shinjo, Ryuichi

    2016-01-01

    The Late Cretaceous to Early Cenozoic magmatism in the South China coastal area produced some amounts of rhyolitic rocks in two phases, which may be used to unravel the geohistory of the epilog of the paleo-Pacific plate subduction system. Essence of the Phase I rocks is the high temperature rhyolite (A-type)-trachydacite association in north Fujian (95-91 Ma) that was coeval with regional A-type granites. They succeeded the vast rhyolite-dacite-andesite (RDA) associations and I-type granitoids (113.5-96 Ma) and preceded the silicic-dominating rhyolite/basalt bimodal suites or monolithologic rhyolite in Zhejiang (89-86 Ma). Phase II rocks include (a) the RDA association or rhyolite alone in some drifted continental fragments nearby (83-56 Ma) and (b) the following rift-basin related rhyolite-trachyte/basalt bimodal suites in Guangdong and west Taiwan (56-38 Ma). The silicic volcanism, spatially changed from a NE-SW to the nearly E-W direction after 83 Ma, may reflect tectonic-driven eruptions occurred in the post-orogenic extensional (Phase I), resumed plate subducting (Phase IIa) and continental margin rifting (Phase IIb) stages. Rhyolitic rocks basically are shoshonitic to high-K calc-alkaline affinities while the Phase IIa RDA associations are mostly concentrated in the high-K to medium-K calc-alkaline series. All these rocks generally possess a continental arc character in tectonic discrimination diagrams, except shoshonitic rocks that have within-plate signatures. Based on the trace element and Nd-Pb isotope data, A-type rocks are suggested to have derived from mixing between trachydacitic (or syenitic) magmas and crustal melts of various sources under the high temperature condition (±metasomatism), and the succeeding silicic rocks are derivatives of the contaminated lithospheric mantle melts through crystal fractionation. On the other hand, Phase II silicic rocks are mainly the fractionation products of mafic magmas originated either from the lithospheric or

  6. Early Archean Spherule Beds-Confirmation of Impact Origin

    NASA Technical Reports Server (NTRS)

    Shukolyukov, A.; Kyte, F. T.; Lugmair, G. W.; Lowe, D. R.; Byerly, G. R.

    2000-01-01

    The oldest record of major impact events on Earth may be a number of early Archean (3.5 to 3.2 Ga) spherule beds that have been identified in the Barberton Greenstone Belt, South Africa. Several field, petrographic, and geochemical criteria distinguish these beds from typical volcanic and clastic sediments. These criteria include the wide geographic distribution of two beds in a variety of depositional environments, the presence of relict quench textures, absence of juvenile volcaniclastic debris within the beds, and extreme enrichment of Ir and other platinum group elements (PGE) as compared to surrounding sediments. Some researchers, however, argued for a terrestrial origin for spherule bed formation, possibly related to volcanism and gold mineralization.

  7. The origin and early phylogenetic history of jawed vertebrates

    PubMed Central

    Brazeau, Martin D.; Friedman, Matt

    2015-01-01

    The focus of study for nearly two centuries1, fossils of early gnathostomes—or jawed vertebrates—yield key clues about the evolutionary assembly of the bodyplan common to the group, as well the divergence of the two living gnathostome lineages: the cartilaginous and bony fishes2,3. A series of remarkable new palaeontological discoveries4-10, analytical advances and innovative reinterpretations of old fossils11-14 have fundamentally altered a decades-old consensus on the relationships of extinct gnathostomes15,16, delivering a new evolutionary framework3,6,10-14 for exploring major questions which remain unanswered, including the origin of jaws17-19. PMID:25903631

  8. Triassic origin and early radiation of multicellular volvocine algae.

    PubMed

    Herron, Matthew D; Hackett, Jeremiah D; Aylward, Frank O; Michod, Richard E

    2009-03-03

    Evolutionary transitions in individuality (ETIs) underlie the watershed events in the history of life on Earth, including the origins of cells, eukaryotes, plants, animals, and fungi. Each of these events constitutes an increase in the level of complexity, as groups of individuals become individuals in their own right. Among the best-studied ETIs is the origin of multicellularity in the green alga Volvox, a model system for the evolution of multicellularity and cellular differentiation. Since its divergence from unicellular ancestors, Volvox has evolved into a highly integrated multicellular organism with cellular specialization, a complex developmental program, and a high degree of coordination among cells. Remarkably, all of these changes were previously thought to have occurred in the last 50-75 million years. Here we estimate divergence times using a multigene data set with multiple fossil calibrations and use these estimates to infer the times of developmental changes relevant to the evolution of multicellularity. Our results show that Volvox diverged from unicellular ancestors at least 200 million years ago. Two key innovations resulting from an early cycle of cooperation, conflict and conflict mediation led to a rapid integration and radiation of multicellular forms in this group. This is the only ETI for which a detailed timeline has been established, but multilevel selection theory predicts that similar changes must have occurred during other ETIs.

  9. Origin of Bacteriochlorophyll a and the Early Diversification of Photosynthesis

    PubMed Central

    Cardona, Tanai

    2016-01-01

    Photosynthesis originated in the domain Bacteria billions of years ago; however, the identity of the last common ancestor to all phototrophic bacteria remains undetermined and speculative. Here I present the evolution of BchF or 3-vinyl-bacteriochlorophyll hydratase, an enzyme exclusively found in bacteria capable of synthetizing bacteriochlorophyll a. I show that BchF exists in two forms originating from an early divergence, one found in the phylum Chlorobi, including its paralogue BchV, and a second form that was ancestral to the enzyme found in the remaining anoxygenic phototrophic bacteria. The phylogeny of BchF is consistent with bacteriochlorophyll a evolving in an ancestral phototrophic bacterium that lived before the radiation event that gave rise to the phylum Chloroflexi, Chlorobi, Acidobacteria, Proteobacteria, and Gemmatimonadetes, but only after the divergence of Type I and Type II reaction centers. Consequently, it is suggested that the lack of phototrophy in many groups of extant bacteria is a derived trait. PMID:26953697

  10. Mechanical origins of rightward torsion in early chick brain development

    NASA Astrophysics Data System (ADS)

    Chen, Zi; Guo, Qiaohang; Dai, Eric; Taber, Larry

    2015-03-01

    During early development, the neural tube of the chick embryo undergoes a combination of progressive ventral bending and rightward torsion. This torsional deformation is one of the major organ-level left-right asymmetry events in development. Previous studies suggested that bending is mainly due to differential growth, however, the mechanism for torsion remains poorly understood. Since the heart almost always loops rightwards that the brain twists, researchers have speculated that heart looping affects the direction of brain torsion. However, direct evidence is lacking, nor is the mechanical origin of such torsion understood. In our study, experimental perturbations show that the bending and torsional deformations in the brain are coupled and that the vitelline membrane applies an external load necessary for torsion to occur. Moreover, the asymmetry of the looping heart gives rise to the chirality of the twisted brain. A computational model and a 3D printed physical model are employed to help interpret these findings. Our work clarifies the mechanical origins of brain torsion and the associated left-right asymmetry, and further reveals that the asymmetric development in one organ can induce the asymmetry of another developing organ through mechanics, reminiscent of D'Arcy Thompson's view of biological form as ``diagram of forces''. Z.C. is supported by the Society in Science - Branco Weiss fellowship, administered by ETH Zurich. L.A.T acknowledges the support from NIH Grants R01 GM075200 and R01 NS070918.

  11. The Origin and Early Evolution of Membrane Proteins

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Schweighofer, Karl; Wilson, Michael A.

    2005-01-01

    Membrane proteins mediate functions that are essential to all cells. These functions include transport of ions, nutrients and waste products across cell walls, capture of energy and its transduction into the form usable in chemical reactions, transmission of environmental signals to the interior of the cell, cellular growth and cell volume regulation. In the absence of membrane proteins, ancestors of cell (protocells), would have had only very limited capabilities to communicate with their environment. Thus, it is not surprising that membrane proteins are quite common even in simplest prokaryotic cells. Considering that contemporary membrane channels are large and complex, both structurally and functionally, a question arises how their presumably much simpler ancestors could have emerged, perform functions and diversify in early protobiological evolution. Remarkably, despite their overall complexity, structural motifs in membrane proteins are quite simple, with a-helices being most common. This suggests that these proteins might have evolved from simple building blocks. To explain how these blocks could have organized into functional structures, we performed large-scale, accurate computer simulations of folding peptides at a water-membrane interface, their insertion into the membrane, self-assembly into higher-order structures and function. The results of these simulations, combined with analysis of structural and functional experimental data led to the first integrated view of the origin and early evolution of membrane proteins.

  12. The Origin and Early Evolution of Membrane Proteins

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Schweighofter, Karl; Wilson, Michael A.

    2006-01-01

    The origin and early evolution of membrane proteins, and in particular ion channels, are considered from the point of view that the transmembrane segments of membrane proteins are structurally quite simple and do not require specific sequences to fold. We argue that the transport of solute species, especially ions, required an early evolution of efficient transport mechanisms, and that the emergence of simple ion channels was protobiologically plausible. We also argue that, despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. These properties can be subtly modulated by local modifications to the sequence rather than global changes in molecular architecture. In order to address the evolution and development of ion channels, we focus on identifying those protein domains that are commonly associated with ion channel proteins and are conserved throughout the three main domains of life (Eukarya, Prokarya, and Archaea). We discuss the potassium-sodium-calcium superfamily of voltage-gated ion channels, mechanosensitive channels, porins, and ABC-transporters and argue that these families of membrane channels have sufficiently universal architectures that they can readily adapt to the diverse functional demands arising during evolution.

  13. The origin and early evolution of life on Earth.

    PubMed

    Oró, J; Miller, S L; Lazcano, A

    1990-01-01

    We do not have a detailed knowledge of the processes that led to the appearance of life on Earth. In this review we bring together some of the most important results that have provided insights into the cosmic and primitive Earth environments, particularly those environments in which life is thought to have originated. To do so, we first discuss the evidence bearing on the antiquity of life on our planet and the prebiotic significance of organic compounds found in interstellar clouds and in primitive solar system bodies such as comets, dark asteroids, and carbonaceous chondrites. This is followed by a discussion on the environmental models of the Hadean and early Archean Earth, as well as on the prebiotic formation of organic monomers and polymers essential to life. We then consider the processes that may have led to the appearance in the Archean of the first cells, and how these processes may have affected the early steps of biological evolution. Finally, the significance of these results to the study of the distribution of life in the Universe is discussed.

  14. Marine ecosystem responses to Cenozoic global change.

    PubMed

    Norris, R D; Turner, S Kirtland; Hull, P M; Ridgwell, A

    2013-08-02

    The future impacts of anthropogenic global change on marine ecosystems are highly uncertain, but insights can be gained from past intervals of high atmospheric carbon dioxide partial pressure. The long-term geological record reveals an early Cenozoic warm climate that supported smaller polar ecosystems, few coral-algal reefs, expanded shallow-water platforms, longer food chains with less energy for top predators, and a less oxygenated ocean than today. The closest analogs for our likely future are climate transients, 10,000 to 200,000 years in duration, that occurred during the long early Cenozoic interval of elevated warmth. Although the future ocean will begin to resemble the past greenhouse world, it will retain elements of the present "icehouse" world long into the future. Changing temperatures and ocean acidification, together with rising sea level and shifts in ocean productivity, will keep marine ecosystems in a state of continuous change for 100,000 years.

  15. The origin of dwarf early-type galaxies

    NASA Astrophysics Data System (ADS)

    Toloba, E.

    2013-05-01

    We have conducted a spectrophotometric study of dwarf early-type galaxies (dEs) in the Virgo cluster and in regions of lower density. We have found that these galaxies show many properties in common with late-type galaxies but not with more massive early-types (E/S0). The properties of the dEs in Virgo show gradients within the cluster. dEs in the outer parts of the Virgo cluster are kinematically supported by rotation, while those in the center are supported by the random motions of their stars (i.e. pressure supported). The rotationally supported dEs have disky isophotes and faint underlying spiral/irregular substructures, they also show younger ages than those pressure supported, which have boxy isophotes and are smooth and regular, without any substructure. We compare the position of these dEs with massive early-type galaxies in the Faber-Jackson and Fundamental Plane relations, and we find that, although there is no difference between the position of rotationally and pressure supported dEs, both deviate from the relations of massive early-type galaxies in the direction of dwarf spheroidal systems (dSphs). We have used their offset with respect to the Fundamental Plane of E/S0 galaxies to estimate their dark matter fraction. All the properties studied in this work agree with a ram pressure stripping scenario, where late-type galaxies infall into the cluster, their interaction with the intergalactic medium blows away their gas and, as a result, they are quenched in a small amount of time. However, those dEs in the center of the cluster seem to have been fully transformed leaving no trace of their possible spiral origin, thus, if that is the case, they must have experienced a more violent mechanism in combination with ram pressure stripping, the open problem is that even galaxy harassment does not fully explain the observed properties for the pressure supported dEs in the center of the Virgo cluster.

  16. On the origin and early diagenesis of early Triassic carbonate mud (Dolomites, Italy)

    NASA Astrophysics Data System (ADS)

    Preto, Nereo; Westphal, Hildegard; Birgel, Daniel; Carampin, Raul; Dal Corso, Jacopo; Gattolin, Giovanni; Montinaro, Alice; Peckmann, Jörn

    2015-04-01

    The earliest Triassic (early Induan) deposits of the Italian Southern Alps are shallow water oolites, and lime-mudstone formed in an open shelf (mid to outer carbonate ramp) sedimentary environment, deposited after the end-Permian extinction that killed all carbonate producers. The origin of these lime-mudstones is thus enigmatic. We used a multidisciplinary petrographic and geochemical approach to identify the origin and early diagenesis of early Triassic lime-mudstones of the Dolomites (Northern Italy). This fine carbonate is made of pitted crystals of microsparite, ~ 25 μm in diameter, exhibiting zonation both in fluorescence and cathodoluminescence. Field and standard petrographic observations exclude an origin from fragmentation or abrasion of carbonate grains. Strontium content, measured in-situ with electron microprobe, has a bimodal distribution with values locally as high as > 4000 ppm. Lipid biomarker analysis revealed molecular fossils of bacteria (terminally-branched alkanes, hopanes, and scarce methylhopanes) along with compounds of low source specificity (n-alkanes), whereas biomarkers of algae (steranes) were not detected. This suggests that, differently from modern Caribbean shelfs, this fine carbonate did not originate from the disgregation of green algae. A Pristane to Phytane ratio < 1 also suggests deposition under anoxic conditions, in agreement with the known status of "superanoxia" of earliest Triassic oceans. Overall, our observations suggest an aragonitic mineralogy of the carbonate mud, followed by calcite replacement and cementation in the marine burial early diagenetic environment. Our data strongly suggest that the early Triassic carbonate mud of the Dolomites was precipitated in the water column, similarly to the modern whitings of the Bahamas, and then settled on a shelf bottom below wave base. Our study shows that these lime-mudstones contain aragonite replaced by calcite and calcite cement, in variable proportions. The δ13C of

  17. Early origins and adult correlates of psychosomatic distress.

    PubMed

    Cheung, Yin Bun

    2002-09-01

    Previous studies have demonstrated associations between fetal insults and psychological and developmental outcomes in children and adolescents. It is not clear whether psychosomatic problems in adults also have early origins. This study involved full-term live-born singletons free of congenital anomaly in the 1970 British Birth Cohort Study. Birthweight, gestational age, maternal smoking, parental social class and birth order were recorded around the time of birth. Psychological and somatic distresses were measured by the Malaise Inventory at age 26. A number of socio-behavioural covariates were also measured at this time. Multiple (least square) regression analysis showed that birthweight standardised for gestational age had a "reverse J" relation with psychological distress (p < 0.05); gestational age was inversely related to psychological distress (each p < 0.05); levels of maternal smoking were positively related to both psychological distress and somatic distress (each p < 0.01). Logistic regression analyses of high levels of psychological distress and somatic distress gave similar results. The findings were not strongly affected by adjustment for various adult correlates. In supplementary analyses multiple imputation was used to handle loss to follow-up and missing values at age 26. Approximately, the same patterns of associations were found. The results support the hypothesis of a biological link between perinatal factors and psychological distress in adults. The strengths of the associations were compared with those between the outcome and adult correlates.

  18. Milgram's Obedience to Authority experiments: origins and early evolution.

    PubMed

    Russell, Nestar John Charles

    2011-03-01

    Stanley Milgram's Obedience to Authority experiments remain one of the most inspired contributions in the field of social psychology. Although Milgram undertook more than 20 experimental variations, his most (in)famous result was the first official trial run - the remote condition and its 65% completion rate. Drawing on many unpublished documents from Milgram's personal archive at Yale University, this article traces the historical origins and early evolution of the obedience experiments. Part 1 presents the previous experiences that led to Milgram's conception of his rudimentary research idea and then details the role of his intuition in its refinement. Part 2 traces the conversion of Milgram's evolving idea into a reality, paying particular attention to his application of the exploratory method of discovery during several pilot studies. Both parts illuminate Milgram's ad hoc introduction of various manipulative techniques and subtle tension-resolving refinements. The procedural adjustments continued until Milgram was confident that the first official experiment would produce a high completion rate, a result contrary to expectations of people's behaviour. Showing how Milgram conceived of, then arrived at, this first official result is important because the insights gained may help others to determine theoretically why so many participants completed this experiment.

  19. Early-life origin of adult insomnia: does prenatal-early-life stress play a role?

    PubMed

    Palagini, Laura; Drake, Christopher L; Gehrman, Philip; Meerlo, Peter; Riemann, Dieter

    2015-04-01

    Insomnia is very common in the adult population and it includes a wide spectrum of sequelae, that is, neuroendocrine and cardiovascular alterations as well as psychiatric and neurodegenerative disorders. According to the conceptualization of insomnia in the context of the 3-P model, the importance of predisposing, precipitating, and perpetuating factors has been stressed. Predisposing factors are present before insomnia is manifested and they are hypothesized to interact with precipitating factors, such as environmental stressful events, contributing to the onset of insomnia. Understanding the early-life origins of insomnia may be particularly useful in order to prevent and treat this costly phenomenon. Based on recent evidence, prenatal-early-life stress exposure results in a series of responses that involve the stress system in the child and could persist into adulthood. This may encompass an activation of the hypothalamic-pituitary-adrenal axis accompanied by long-lasting modifications in stress reactivity. Furthermore, early-life stress exposure might play an important role in predisposing to a vulnerability to hyperarousal reactions to negative life events in the adult contributing to the development of chronic insomnia. Epigenetic mechanisms may also be involved in the development of maladaptive stress responses in the newborn, ultimately predisposing to develop a variety of (psycho-) pathological states in adult life.

  20. Late Mesozoic to Early Cenozoic components of vertical separation across the Møre Trøndelag Fault complex, Norway

    NASA Astrophysics Data System (ADS)

    Redfield, T. F.; Braathen, A.; Gabrielsen, R. H.; Osmundsen, P. T.; Torsvik, T. H.; Andriessen, P. A. M.

    2005-01-01

    Low temperature apatite fission track (AFT) data from two horizontal transects across the Møre-Trøndelag Fault Complex (MTFC) and along the coast of the Fosen peninsula have defined a complicated series of structural blocks whose exhumation to temperatures cooler than the uppermost apatite Partial Annealing Zone (PAZ) occurred during a broad Mesozoic to Cenozoic time span. The ˜100 million year cooling difference between the innermost and outermost blocks indicates they were subjected to very different exhumation pathways. Track length histograms and inverse model results also suggest that significant differences in thermal histories are present over very short horizontal distances. In conjunction with the offshore geological evidence, the AFT data and models strongly suggest that the innermost zones of the MTFC underwent between 2 and 4 km of structurally controlled net vertical rock column uplift/subsidence following latest Cretaceous time, and potentially much of the Tertiary as well. The up-to-the-east down-to-the-west relative offset at the Norwegian margin is interpreted in terms of a flexed, nearly broken lithospheric plate architectural model for late Mesozoic and Tertiary Scandes mountain building, whose driving force was likely dominanted by erosionally induced loading/unloading at the margin.

  1. Origin and early history of the dental mouthpiece.

    PubMed

    Reed, R V

    1994-06-25

    For 42 years, the author perused and searched dental literature for the true origin of the mouthpiece. This manuscript is the culmination of that search: identifying the originator, reviewing the contributions of several pioneering dentists in mouthpiece creation, and interviewing two of many notable boxing participants.

  2. Cenozoic climates: evidence from the North Atlantic

    SciTech Connect

    Berggren, W.A.

    1985-01-01

    Cenozoic biostratigraphy and climatology of the North Atlantic and adjacent land areas reflects the continuing fragmentation of Eurasia and concomitant changes on ocean-continent geometry. A latitudinal (zonal) Mesozoic circulation pattern evolved into a predominantly longitudinal (meridional) pattern during the Cenozoic in which the development of oceanic gateways and barriers gradually decreased the efficiency of poleward heat transfer resulting in the progressive climatic change which has taken place over the past 50 million years. Cenozoic distributional data from the North Atlantic and adjacent land areas will be reviewed from the following fields: a) terrestrial vertebrates and floras: b) marine calcareous microplankton and benthic foraminifera; c) other marine invertebrates. Available data suggests that the present climate in the northern hemisphere has resulted from a gradual, but inexorable, strengthening of latitudinal and vertical temperature gradients punctuated by several brief intervals of accelerated change. The absence of evidence for northern hemisphere polar glaciation prior to the late Neogene does not preclude seasonal cooling near the freezing point in post-Eocene time. Evidence for early Paleogene cold climates is not reflected in the fossil record.

  3. Cenozoic motion between East and West Antarctica

    PubMed

    Cande; Stock; Muller; Ishihara

    2000-03-09

    The West Antarctic rift system is the result of late Mesozoic and Cenozoic extension between East and West Antarctica, and represents one of the largest active continental rift systems on Earth. But the timing and magnitude of the plate motions leading to the development of this rift system remain poorly known, because of a lack of magnetic anomaly and fracture zone constraints on seafloor spreading. Here we report on magnetic data, gravity data and swath bathymetry collected in several areas of the south Tasman Sea and northern Ross Sea. These results enable us to calculate mid-Cenozoic rotation parameters for East and West Antarctica. These rotations show that there was roughly 180 km of separation in the western Ross Sea embayment in Eocene and Oligocene time. This episode of extension provides a tectonic setting for several significant Cenozoic tectonic events in the Ross Sea embayment including the uplift of the Transantarctic Mountains and the deposition of large thicknesses of Oligocene sediments. Inclusion of this East-West Antarctic motion in the plate circuit linking the Australia, Antarctic and Pacific plates removes a puzzling gap between the Lord Howe rise and Campbell plateau found in previous early Tertiary reconstructions of the New Zealand region. Determination of this East-West Antarctic motion also resolves a long standing controversy regarding the contribution of deformation in this region to the global plate circuit linking the Pacific to the rest of the world.

  4. Thresholds for Cenozoic bipolar glaciation.

    PubMed

    Deconto, Robert M; Pollard, David; Wilson, Paul A; Pälike, Heiko; Lear, Caroline H; Pagani, Mark

    2008-10-02

    The long-standing view of Earth's Cenozoic glacial history calls for the first continental-scale glaciation of Antarctica in the earliest Oligocene epoch ( approximately 33.6 million years ago), followed by the onset of northern-hemispheric glacial cycles in the late Pliocene epoch, about 31 million years later. The pivotal early Oligocene event is characterized by a rapid shift of 1.5 parts per thousand in deep-sea benthic oxygen-isotope values (Oi-1) within a few hundred thousand years, reflecting a combination of terrestrial ice growth and deep-sea cooling. The apparent absence of contemporaneous cooling in deep-sea Mg/Ca records, however, has been argued to reflect the growth of more ice than can be accommodated on Antarctica; this, combined with new evidence of continental cooling and ice-rafted debris in the Northern Hemisphere during this period, raises the possibility that Oi-1 represents a precursory bipolar glaciation. Here we test this hypothesis using an isotope-capable global climate/ice-sheet model that accommodates both the long-term decline of Cenozoic atmospheric CO(2) levels and the effects of orbital forcing. We show that the CO(2) threshold below which glaciation occurs in the Northern Hemisphere ( approximately 280 p.p.m.v.) is much lower than that for Antarctica ( approximately 750 p.p.m.v.). Therefore, the growth of ice sheets in the Northern Hemisphere immediately following Antarctic glaciation would have required rapid CO(2) drawdown within the Oi-1 timeframe, to levels lower than those estimated by geochemical proxies and carbon-cycle models. Instead of bipolar glaciation, we find that Oi-1 is best explained by Antarctic glaciation alone, combined with deep-sea cooling of up to 4 degrees C and Antarctic ice that is less isotopically depleted (-30 to -35 per thousand) than previously suggested. Proxy CO(2) estimates remain above our model's northern-hemispheric glaciation threshold of approximately 280 p.p.m.v. until approximately 25 Myr

  5. Early animal evolution and the origins of nervous systems.

    PubMed

    Budd, Graham E

    2015-12-19

    Understanding the evolution of early nervous systems is hazardous because we lack good criteria for determining homology between the systems of distant taxa; the timing of the evolutionary events is contested, and thus the relevant ecological and geological settings for them are also unclear. Here I argue that no simple approach will resolve the first issue, but that it remains likely that animals evolved relatively late, and that their nervous systems thus arose during the late Ediacaran, in a context provided by the changing planktonic and benthic environments of the time. The early trace fossil provides the most concrete evidence for early behavioural diversification, but it cannot simply be translated into increasing nervous system complexity: behavioural complexity does not map on a one-to-one basis onto nervous system complexity, both because of possible limitations to behaviour caused by the environment and because we know that even organisms without nervous systems are capable of relatively complex behaviour.

  6. Early animal evolution and the origins of nervous systems

    PubMed Central

    Budd, Graham E.

    2015-01-01

    Understanding the evolution of early nervous systems is hazardous because we lack good criteria for determining homology between the systems of distant taxa; the timing of the evolutionary events is contested, and thus the relevant ecological and geological settings for them are also unclear. Here I argue that no simple approach will resolve the first issue, but that it remains likely that animals evolved relatively late, and that their nervous systems thus arose during the late Ediacaran, in a context provided by the changing planktonic and benthic environments of the time. The early trace fossil provides the most concrete evidence for early behavioural diversification, but it cannot simply be translated into increasing nervous system complexity: behavioural complexity does not map on a one-to-one basis onto nervous system complexity, both because of possible limitations to behaviour caused by the environment and because we know that even organisms without nervous systems are capable of relatively complex behaviour. PMID:26554037

  7. Early-Life Origins of the Race Gap in Men's Mortality

    ERIC Educational Resources Information Center

    Warner, David F.; Hayward, Mark D.

    2006-01-01

    Using a life course framework, we examine the early life origins of the race gap in men's all-cause mortality. Using the National Longitudinal Survey of Older Men (1966-1990), we evaluate major social pathways by which early life conditions differentiate the mortality experiences of blacks and whites. Our findings indicate that early life…

  8. Cenozoic planktonic marine diatom diversity and correlation to climate change

    USGS Publications Warehouse

    Lazarus, David; Barron, John; Renaudie, Johan; Diver, Patrick; Türke, Andreas

    2014-01-01

    Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂18O (climate) and carbon cycle records (∂13C, and 20-0 Ma pCO2). Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p2 were only moderately higher than today. Diversity is strongly correlated to both ∂13C and pCO2 over the last 15 my (for both: r>.9, detrended r>.6, all p<.001), but only weakly over the earlier Cenozoic, suggesting increasingly strong linkage of diatom and climate evolution in the Neogene. Our results suggest that many living marine planktonic diatom species may be at risk of extinction in future warm oceans, with an unknown but potentially substantial negative impact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic controls.

  9. Variations in Cenozoic seawater uranium reconstructed from well preserved aragonitic fossil corals

    NASA Astrophysics Data System (ADS)

    Gothmann, A. O.; Higgins, J. A.; Bender, M. L.; Stolarski, J.; Adkins, J. F.; McKeon, R. E.; Farley, K. A.; Wang, X.; Planavsky, N.

    2015-12-01

    U/Ca ratios were measured in a subset (n ≈ 30) of well preserved scleractinian fossil corals previously described by Gothmann et al. (2015) in order to investigate Cenozoic changes in seawater [U]. He/U dating studies and measurements of 234U/238U and δ238/235U provide constraints on fossil coral U preservation. He/U ages also demonstrate the ability of well preserved coral aragonite to retain most of its radiogenic He over million year timescales. We find that fossil coral U/Ca has increased by a factor of ~4 between the Early Cenozoic and today. This number is calculated from the change in seawater [Ca2+] implied by brine inclusions and other proxies, and the assumption that the U/Ca in shallow water corals equals the seawater ratio. The change cannot be attributed to a dependence of coral U uptake on seawater pH or [CO32-] (e.g., Inoue et al., 2011), which would lead to a decrease in U/Ca going forward in time. Instead, we suggest that seawater [U] has increased since the Early Cenozoic. Possible explanations for the inferred change include: (1) a small decrease in uranium uptake in suboxic and anoxic sediments over the Cenozoic, (2) a decrease in the rate of low-temperature hydrothermal alteration, and associated U uptake, over the Cenozoic, and (3) a decrease in U removal from seawater resulting from an increase in UO2-CO3 complexation, as originally suggested by Broecker (1971). References: Broecker, W. S. (1971) A Kinetic Model for the Chemical Composition of Sea Water. Quaternary Research, 1, 188-207. Gothmann, A.M., Stolarski, J., Adkins, J.F., Dennis, K.J., Schrag, D.P., Schoene, B., Bender, M.L. (2015) Fossil corals as an archive of secular variations in seawater chemistry. Geochimica et Cosmochimica Acta, 160, 188-208. Inoue, M., Suwa, R., Suzuki, A., Sakai, K., and Kawahata, H., (2011) Effects of seawater pH on growth and skeletal U/Ca ratios of Acropora digitifera coral polyps. Geophysical Research Letters 38, 12801-12804.

  10. The early sociability of toddlers: The origins of teaching.

    PubMed

    Kawakami, Kiyobumi

    2014-05-01

    Toddlers' person-directed behaviors were recorded longitudinally in a naturalistic preschool setting. An observer (O, the author) recorded children's behaviors with an IC recorder during play sessions. Seventeen children, as a group, were observed once a week in 3 blocks of 7 weeks (21 total hours). Person-directed behaviors toward the observer increased with each block. Toddlers' teaching behaviors were classified precisely. This teaching classification should be the first event of the origins of teaching.

  11. The origins and early histories of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Owen, T.

    1979-01-01

    Ancient dry river beds detected on Mars by the Viking spacecraft suggest that the early Martian atmosphere may have been much more massive than at present. Degassing of a late-accreting, volatile-rich veneer may account for the primitive atmosphere of both Mars and earth. The primitive earth atmosphere could have produced a greenhouse effect sufficient to maintain temperatures above 273 K without NH3 and with low solar luminosity. The Venutian veneer, according to preliminary Pioneer results, was probably richer in noble gases relative to carbon and nitrogen than were the Martian and earth veneers. The highly evolved atmosphere of Titan, the large satellite of Saturn, is also discussed.

  12. Early chordate origins of the vertebrate second heart field.

    PubMed

    Stolfi, Alberto; Gainous, T Blair; Young, John J; Mori, Alessandro; Levine, Michael; Christiaen, Lionel

    2010-07-30

    The vertebrate heart is formed from diverse embryonic territories, including the first and second heart fields. The second heart field (SHF) gives rise to the right ventricle and outflow tract, yet its evolutionary origins are unclear. We found that heart progenitor cells of the simple chordate Ciona intestinalis also generate precursors of the atrial siphon muscles (ASMs). These precursors express Islet and Tbx1/10, evocative of the splanchnic mesoderm that produces the lower jaw muscles and SHF of vertebrates. Evidence is presented that the transcription factor COE is a critical determinant of ASM fate. We propose that the last common ancestor of tunicates and vertebrates possessed multipotent cardiopharyngeal muscle precursors, and that their reallocation might have contributed to the emergence of the SHF.

  13. Origin of uranium isotope variations in early solar nebula condensates.

    PubMed

    Tissot, François L H; Dauphas, Nicolas; Grossman, Lawrence

    2016-03-01

    High-temperature condensates found in meteorites display uranium isotopic variations ((235)U/(238)U), which complicate dating the solar system's formation and whose origin remains mysterious. It is possible that these variations are due to the decay of the short-lived radionuclide (247)Cm (t 1/2 = 15.6 My) into (235)U, but they could also be due to uranium kinetic isotopic fractionation during condensation. We report uranium isotope measurements of meteoritic refractory inclusions that reveal excesses of (235)U reaching ~+6% relative to average solar system composition, which can only be due to the decay of (247)Cm. This allows us to constrain the (247)Cm/(235)U ratio at solar system formation to (1.1 ± 0.3) × 10(-4). This value provides new clues on the universality of the nucleosynthetic r-process of rapid neutron capture.

  14. The Origin and Early Evolution of Roots1

    PubMed Central

    Kenrick, Paul; Strullu-Derrien, Christine

    2014-01-01

    Geological sites of exceptional fossil preservation are becoming a focus of research on root evolution because they retain edaphic and ecological context, and the remains of plant soft tissues are preserved in some. New information is emerging on the origins of rooting systems, their interactions with fungi, and their nature and diversity in the earliest forest ecosystems. Remarkably well-preserved fossils prove that mycorrhizal symbionts were diverse in simple rhizoid-based systems. Roots evolved in a piecemeal fashion and independently in several major clades through the Devonian Period (416 to 360 million years ago), rapidly extending functionality and complexity. Evidence from extinct arborescent clades indicates that polar auxin transport was recruited independently in several to regulate wood and root development. The broader impact of root evolution on the geochemical carbon cycle is a developing area and one in which the interests of the plant physiologist intersect with those of the geochemist. PMID:25187527

  15. Origin of uranium isotope variations in early solar nebula condensates

    PubMed Central

    Tissot, François L. H.; Dauphas, Nicolas; Grossman, Lawrence

    2016-01-01

    High-temperature condensates found in meteorites display uranium isotopic variations (235U/238U), which complicate dating the solar system’s formation and whose origin remains mysterious. It is possible that these variations are due to the decay of the short-lived radionuclide 247Cm (t1/2 = 15.6 My) into 235U, but they could also be due to uranium kinetic isotopic fractionation during condensation. We report uranium isotope measurements of meteoritic refractory inclusions that reveal excesses of 235U reaching ~+6% relative to average solar system composition, which can only be due to the decay of 247Cm. This allows us to constrain the 247Cm/235U ratio at solar system formation to (1.1 ± 0.3) × 10−4. This value provides new clues on the universality of the nucleosynthetic r-process of rapid neutron capture. PMID:26973874

  16. Early Chordate Origins of the Vertebrate Second Heart Field

    PubMed Central

    Stolfi, Alberto; Gainous, T. Blair; Young, John J.; Mori, Alessandro; Levine, Michael; Christiaen, Lionel

    2016-01-01

    The vertebrate heart is formed from diverse embryonic territories, including the first and second heart fields. The second heart field (SHF) gives rise to the right ventricle and outflow tract, yet its evolutionary origins are unclear. We found that heart progenitor cells of the simple chordate Ciona intestinalis also generate precursors of the atrial siphon muscles (ASMs). These precursors express Islet and Tbx1/10, evocative of the splanchnic mesoderm that produces the lower jaw muscles and SHF of vertebrates. Evidence is presented that the transcription factor COE is a critical determinant of ASM fate. We propose that the last common ancestor of tunicates and vertebrates possessed multipotent cardiopharyngeal muscle precursors, and that their reallocation might have contributed to the emergence of the SHF. PMID:20671188

  17. On the origin of asteroids. [early solar system scenario

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1979-01-01

    A general scenario is described for the early history of the solar system. The primitive solar nebula is formed from the infall of gas from a collapsing interstellar cloud fragment. It becomes repeatedly unstable against collapse to form giant gaseous protoplanets. In the course of protoplanet evolution the center of the protoplanet enters a thermodynamic regime in which common rocky minerals become liquids; convection brings solids to the central region where a substantial fraction of them rain out to form a protoplanetary core. In the inner solar system protoplanetary envelopes are tidally stripped away, thus injecting into the solar nebula large equantities of chondrules and inclusions. Late in the development of the solar nebula, after most of the gas has disappeared, turbulence dies out and the small solids settle into a thin layer at midplane of the nebula. Gravitational instabilities in this layer form asteroidal and cometary bodies. Some further consequences of this scenario are discussed.

  18. The origins and early history of the National Chiropractic Association

    PubMed Central

    Keating, Joseph C; Rehm, William S

    1993-01-01

    Early organization in chiropractic was prompted by the profession’s need to promote itself and to defend against the onslaught of political medicine and organized osteopathy. The first priorities were legal defense against prosecution for unlicensed practice and malpractice insurance. The Universal Chiropractors’ Association (UCA), organized at the Palmer School of Chiropractic (PSC) in 1906, sought to meet these needs by insuring its members and by developing a legal department under the supervision of attorney Tom Morris, one time lieutenant governor of Wisconsin. The public relations and marketing needs of chiropractors were largely served by the PSC and its legendary leader. However, as chiropractors increasingly sought to avoid prosecution by passage of chiropractic laws, Palmer’s efforts to direct this legislation so as to limit chiropractors’ scope of practice increasingly alienated many in the profession. The American Chiropractic Association (ACA) was founded in 1922 to provide a broadscope alternative to BJ’s UCA. With Palmer’s departure from the UCA following the neurocalometer debacle, ACA and UCA sought amalgamation. Simultaneously, organized medicine renewed its attack on the profession by introducing basic science legislation, which prompted chiropractors to try to upgrade and standardize chiropractic education. Early efforts to bring about the needed consensus were centered in the International Chiropractic Congress (ICC), particularly its division of state examining boards. In 1930 the ACA and UCA combined to form the National Chiropractic Association (NCA), and by 1934 the ICC had merged with the NCA to form part of its council structure. With this modicum of solidarity the NCA began the process of educational boot-strapping at its 1935 convention in Los Angeles, when its Committee on Education, a forerunner of today’s Council on Chiropractic Education, was proposed by C.O. Watkins of Montana. ImagesFigure 2Figure 3Figure 4Figure 5

  19. Early Pleistocene origin of reefs around Lanai, Hawaii

    USGS Publications Warehouse

    Webster, Jody M.; Clague, David A.; Faichney, Iain D.E.; Fullagar, Paul D.; Hein, James R.; Moore, James G.; Paull, Charles K.

    2010-01-01

    A sequence of submerged terraces (L1–L12) offshore Lanai was previously interpreted as reefal, and correlated with a similar series of reef terraces offshore Hawaii island, whose ages are known to be <500 ka. We present bathymetric, observational, lithologic and 51 87Sr/86Sr isotopic measurements for the submerged Lanai terraces ranging from −300 to −1000 m (L3–L12) that indicate that these terraces are drowned reef systems that grew in shallow coral reef to intermediate and deeper fore-reef slope settings since the early Pleistocene. Age estimates based on 87Sr/86Sr isotopic measurements on corals, coralline algae, echinoids, and bulk sediments, although lacking the precision (∼±0.23 Ma) to distinguish the age–depth relationship and drowning times of individual reefs, indicate that the L12–L3 reefs range in age from ∼1.3–0.5 Ma and are therefore about 0.5–0.8 Ma older than the corresponding reefs around the flanks of Hawaii. These new age data, despite their lack of precision and the influence of later-stage submarine diagenesis on some analyzed corals, clearly revise the previous correlations between the reefs off Lanai and Hawaii. Soon after the end of major shield building (∼1.3–1.2 Ma), the Lanai reefs initiated growth and went through a period of rapid subsidence and reef drowning associated with glacial/interglacial cycles similar to that experienced by the Hawaii reefs. However, their early Pleistocene initiation means they experienced a longer, more complex growth history than their Hawaii counterparts.

  20. Cenozoic stratigraphy of the Sahara, Northern Africa

    USGS Publications Warehouse

    Swezey, Christopher S.

    2009-01-01

    This paper presents an overview of the Cenozoic stratigraphic record in the Sahara, and shows that the strata display some remarkably similar characteristics across much of the region. In fact, some lithologies of certain ages are exceptionally widespread and persistent, and many of the changes from one lithology to another appear to have been relatively synchronous across the Sahara. The general stratigraphic succession is that of a transition from early Cenozoic carbonate strata to late Cenozoic siliciclastic strata. This transition in lithology coincides with a long-term eustatic fall in sea level since the middle Cretaceous and with a global climate transition from a Late Cretaceous–Early Eocene “warm mode” to a Late Eocene–Quaternary “cool mode”. Much of the shorter-term stratigraphic variability in the Sahara (and even the regional unconformities) also can be correlated with specific changes in sea level, climate, and tectonic activity during the Cenozoic. Specifically, Paleocene and Eocene carbonate strata and phosphate are suggestive of a warm and humid climate, whereas latest Eocene evaporitic strata (and an end-Eocene regional unconformity) are correlated with a eustatic fall in sea level, the build-up of ice in Antarctica, and the appearance of relatively arid climates in the Sahara. The absence of Oligocene strata throughout much of the Sahara is attributed to the effects of generally low eustatic sea level during the Oligocene and tectonic uplift in certain areas during the Late Eocene and Oligocene. Miocene sandstone and conglomerate are attributed to the effects of continued tectonic uplift around the Sahara, generally low eustatic sea level, and enough rainfall to support the development of extensive fluvial systems. Middle–Upper Miocene carbonate strata accumulated in northern Libya in response to a eustatic rise in sea level, whereas Upper Miocene mudstone accumulated along the south side of the Atlas Mountains because uplift of the

  1. Origins and early development of human body knowledge.

    PubMed

    Slaughter, Virginia; Heron, Michelle

    2004-01-01

    As a knowable object, the human body is highly complex. Evidence from several converging lines of research, including psychological studies, neuroimaging and clinical neuropsychology, indicates that human body knowledge is widely distributed in the adult brain, and is instantiated in at least three partially independent levels of representation. Sensorimotor body knowledge is responsible for on-line control and movement of one's own body and may also contribute to the perception of others' moving bodies; visuo-spatial body knowledge specifies detailed structural descriptions of the spatial attributes of the human body; and lexical-semantic body knowledge contains language-based knowledge about the human body. In the first chapter of this Monograph, we outline the evidence for these three hypothesized levels of human body knowledge, then review relevant literature on infants' and young children's human body knowledge in terms of the three-level framework. In Chapters II and III, we report two complimentary series of studies that specifically investigate the emergence of visuo-spatial body knowledge in infancy. Our technique is to compare infants'responses to typical and scrambled human bodies, in order to evaluate when and how infants acquire knowledge about the canonical spatial layout of the human body. Data from a series of visual habituation studies indicate that infants first discriminate scrambled from typical human body picture sat 15 to 18 months of age. Data from object examination studies similarly indicate that infants are sensitive to violations of three-dimensional human body stimuli starting at 15-18 months of age. The overall pattern of data supports several conclusions about the early development of human body knowledge: (a) detailed visuo-spatial knowledge about the human body is first evident in the second year of life, (b) visuo-spatial knowledge of human faces and human bodies are at least partially independent in infancy and (c) infants' initial

  2. Early Miocene origin and cryptic diversification of South American salamanders

    PubMed Central

    2013-01-01

    Background The currently recognized species richness of South American salamanders is surprisingly low compared to North and Central America. In part, this low richness may be due to the salamanders being a recent arrival to South America. Additionally, the number of South American salamander species may be underestimated because of cryptic diversity. The aims of our present study were to infer evolutionary relationships, lineage diversity, and timing of divergence of the South American Bolitoglossa using mitochondrial and nuclear sequence data from specimens primarily from localities in the Andes and upper Amazon Basin. We also estimated time of colonization of South America to test whether it is consistent with arrival via the Panamanian Isthmus, or land bridge connection, at its traditionally assumed age of 3 million years. Results Divergence time estimates suggest that Bolitoglossa arrived in South America from Central America by at least the Early Miocene, ca. 23.6 MYA (95% HPD 15.9-30.3 MYA), and subsequently diversified. South American salamanders of the genus Bolitoglossa show strong phylogeographic structure at fine geographic scales and deep divergences at the mitochondrial gene cytochrome b (Cytb) and high diversity at the nuclear recombination activating gene-1 (Rag1). Species often contain multiple genetically divergent lineages that are occasionally geographically overlapping. Single specimens from two southeastern localities in Ecuador are sister to the equatoriana-peruviana clade and genetically distinct from all other species investigated to date. Another single exemplar from the Andes of northwestern Ecuador is highly divergent from all other specimens and is sister to all newly studied samples. Nevertheless, all sampled species of South American Bolitoglossa are members of a single clade that is one of several constituting the subgenus Eladinea, one of seven subgenera in this large genus. Conclusions The ancestors of South American salamanders

  3. Resilience to adversity and the early origins of disease.

    PubMed

    Brody, Gene H; Yu, Tianyi; Beach, Steven R H

    2016-11-01

    For the past quarter century, scientists at the Center for Family Research at the University of Georgia have conducted research designed to promote understanding of normative developmental trajectories among low socioeconomic status African American children, youths, and young adults. In this paper, we describe a recent expansion of this research program using longitudinal, epidemiological studies and randomized prevention trials to test hypotheses about the origins of disease among rural African American youths. The contributions of economic hardship, downward mobility, neighborhood poverty, and racial discrimination to allostatic load and epigenetic aging are illustrated. The health benefits of supportive family relationships in protecting youths from these challenges are also illustrated. A cautionary set of studies is presented showing that some psychosocially resilient youths demonstrate high allostatic loads and accelerated epigenetic aging, suggesting that, for some, "resilience is just skin deep." Finally, we end on an optimistic note by demonstrating that family-centered prevention programs can have health benefits by reducing inflammation, helping to preserve telomere length, and inhibiting epigenetic aging.

  4. Models of progressive neurological dysfunction originating early in life.

    PubMed

    Marriott, Amber L; Rojas-Mancilla, Edgardo; Morales, Paola; Herrera-Marschitz, Mario; Tasker, R Andrew

    2015-10-17

    It is now well established that many of society's most devastating and costly neurological diseases and disorders arise from trauma at, or shortly after birth. In some cases deficits are seen in childhood and in others they are substantially delayed; arising in adolescence or young adulthood. In either case the initial insult initiates a metabolic and/or neurodegenerative cascade that proceeds, often undetected, for a considerable period of time before diagnosable symptoms appear. This affords a potential for detecting and slowing or arresting degenerative and/or malfunctioning processes prior to the appearance of symptoms, but requires an understanding of the mechanisms involved in the progressive dysfunction that characterizes the disease progression process. While numerous preclinical models of end-stage symptoms of neurological disease are established, animal models of progressive neurological dysfunction have received comparatively less attention. This review attempts to introduce the concept of modelling progressive dysfunction in animals and provides descriptions of the current status of several representative examples of models that have been developed and partially characterized for understanding diseases of the brain that arise either at or near the time of birth in rodents. It is our belief that such models are essential to understanding the underlying mechanisms responsible for progressive neurological dysfunction and hold the potential for identifying targets for early detection and presymptomatic therapy of these conditions.

  5. Early Roman military fortifications and the origin of Trieste, Italy.

    PubMed

    Bernardini, Federico; Vinci, Giacomo; Horvat, Jana; De Min, Angelo; Forte, Emanuele; Furlani, Stefano; Lenaz, Davide; Pipan, Michele; Zhao, Wenke; Sgambati, Alessandro; Potleca, Michele; Micheli, Roberto; Fragiacomo, Andrea; Tuniz, Claudio

    2015-03-31

    An interdisciplinary study of the archaeological landscape of the Trieste area (northeastern Italy), mainly based on airborne light detection and ranging (LiDAR), ground penetrating radar (GPR), and archaeological surveys, has led to the discovery of an early Roman fortification system, composed of a big central camp (San Rocco) flanked by two minor forts. The most ancient archaeological findings, including a Greco-Italic amphora rim produced in Latium or Campania, provide a relative chronology for the first installation of the structures between the end of the third century B.C. and the first decades of the second century B.C. whereas other materials, such as Lamboglia 2 amphorae and a military footwear hobnail (type D of Alesia), indicate that they maintained a strategic role at least up to the mid first century B.C. According to archaeological data and literary sources, the sites were probably established in connection with the Roman conquest of the Istria peninsula in 178-177 B.C. They were in use, perhaps not continuously, at least until the foundation of Tergeste, the ancestor of Trieste, in the mid first century B.C. The San Rocco site, with its exceptional size and imposing fortifications, is the main known Roman evidence of the Trieste area during this phase and could correspond to the location of the first settlement of Tergeste preceding the colony foundation. This hypothesis would also be supported by literary sources that describe it as a phrourion (Strabo, V, 1, 9, C 215), a term used by ancient writers to designate the fortifications of the Roman army.

  6. Early Roman military fortifications and the origin of Trieste, Italy

    PubMed Central

    Bernardini, Federico; Vinci, Giacomo; Horvat, Jana; De Min, Angelo; Forte, Emanuele; Furlani, Stefano; Lenaz, Davide; Pipan, Michele; Zhao, Wenke; Sgambati, Alessandro; Potleca, Michele; Micheli, Roberto; Fragiacomo, Andrea; Tuniz, Claudio

    2015-01-01

    An interdisciplinary study of the archaeological landscape of the Trieste area (northeastern Italy), mainly based on airborne light detection and ranging (LiDAR), ground penetrating radar (GPR), and archaeological surveys, has led to the discovery of an early Roman fortification system, composed of a big central camp (San Rocco) flanked by two minor forts. The most ancient archaeological findings, including a Greco–Italic amphora rim produced in Latium or Campania, provide a relative chronology for the first installation of the structures between the end of the third century B.C. and the first decades of the second century B.C. whereas other materials, such as Lamboglia 2 amphorae and a military footwear hobnail (type D of Alesia), indicate that they maintained a strategic role at least up to the mid first century B.C. According to archaeological data and literary sources, the sites were probably established in connection with the Roman conquest of the Istria peninsula in 178–177 B.C. They were in use, perhaps not continuously, at least until the foundation of Tergeste, the ancestor of Trieste, in the mid first century B.C. The San Rocco site, with its exceptional size and imposing fortifications, is the main known Roman evidence of the Trieste area during this phase and could correspond to the location of the first settlement of Tergeste preceding the colony foundation. This hypothesis would also be supported by literary sources that describe it as a phrourion (Strabo, V, 1, 9, C 215), a term used by ancient writers to designate the fortifications of the Roman army. PMID:25775558

  7. Formal and Informal Early Education of Turkish-Origin Children in Germany

    ERIC Educational Resources Information Center

    Becker, Birgit; Boldin, Elena; Klein, Oliver

    2016-01-01

    A lack of adequate German language skills is often discussed as a major reason for the disadvantage of children of immigrants in the German educational system. This article analyses the access to formal and informal early education of Turkish-origin children in Germany and the influence of these early education contexts on the children's German…

  8. Early Iapetus and the origin of its odd shape

    NASA Astrophysics Data System (ADS)

    Robuchon, G.; Choblet, G.; Tobie, G.; Čadek, O.; Sotin, C.

    2008-09-01

    The Cassini mission revealed two spectacular characteristics of Iapetus: (i) a high, equatorial ridge, which is unique in the Solar System and (ii) a large flattening (a-c = 35 km) inconsistent with its current spin rate. In order to explain these two striking observations, Castillo-Rogez et al. [1] proposed that Iapetus froze its shape as it despan from a rapid spin rate of a few hours to the present synchronous rotation (~79 days). Such a despinning is possible if an additional heat component was present during its early history, including short-lived radiogenic elements such as 26Al, and if heat transfer is inefficient to cool down the interior. The efficiency of heat removal is mainly controlled by the occurrence of thermal convective instabilities, which is determined by the rheological structure of the interior. The rheological profile also controls the despinning rate and the shape relaxation. In this study, we investigate the onset of convection during the early evolution of Iapetus and its consequences on the scenario proposed by Castillo- Rogez et al. [1] convection for fluids with large viscosity contrasts in 3-D spherical geometry, using the numerical tool OEDIPUS ([2], [3]). Our goals are to evaluate for a large range of plausible initial conditions (1) the onset time of convection, (2) the evolution of the viscosity structure, (3) the resulting despinning rate and (4) the relaxation of Iapetus' flattening. The despinning rate due to dissipation of the rotational energy in the interior is computed using the method of Tobie et al. [4] and the relaxation rate are calculated using the spectral approach developed by Čadek [5] and Tobie et al. [6]. Two different viscoelastic linear rheologies are considered: (i) a Maxwell model which is described by an elastic shear modulus, μ, and longterm viscosity, η, and (ii) a Burger model, which includes a transient shear modulus, μB, and a shortterm viscosity, ηB, in addition to the two Maxwell parameters. Our

  9. Cenozoic intracontinental deformation of the Kopeh Dagh Belt, Northeastern Iran

    NASA Astrophysics Data System (ADS)

    Chu, Yang; Wan, Bo; Chen, Ling; Talebian, Morteza

    2016-04-01

    Compressional intracontinental orogens represent large tectonic zones far from plate boundaries. Since intracontinental mountain belts cannot be framed in the conventional plate tectonics theory, several hypotheses have been proposed to account for the formations of these mountain belts. The far-field effect of collision/subduction at plate margins is now well accepted for the origin and evolution of the intracontinental crust thickening, as exemplified by the Miocene tectonics of central Asia. In northern Iran, the Binalud-Alborz mountain belt witnessed the Triassic tectonothermal events (Cimmerian orogeny), which are interpreted as the result of the Paleotethys Ocean closure between the Eurasia and Central Iran blocks. The Kopeh Dagh Belt, located to the north of the Binalud-Alborz Belt, has experienced two significant tectonic phases: (1) Jurassic to Eocene rifting with more than 7 km of sediments; and (2) Late Eocene-Early Oligocene to Quaternary continuous compression. Due to the high seismicity, deformation associated with earthquakes has received more and more attention; however, the deformation pattern and architecture of this range remain poorly understood. Detailed field observations on the Cenozoic deformation indicate that the Kopeh Dagh Belt can be divided into a western zone and an eastern zone, separated by a series of dextral strike-slip faults, i.e. the Bakharden-Quchan Fault System. The eastern zone characterized by km-scale box-fold structures, associated with southwest-dipping reverse faults and top-to-the NE kinematics. In contrast, the western zone shows top-to-the SW kinematics, and the deformation intensifies from NE to SW. In the northern part of this zone, large-scale asymmetrical anticlines exhibit SW-directed vergence with subordinate thrusts and folds, whereas symmetrical anticlines are observed in the southern part. In regard to its tectonic feature, the Kopeh Dagh Belt is a typical Cenozoic intracontinental belt without ophiolites or

  10. The Miocene mammal Necrolestes demonstrates the survival of a Mesozoic nontherian lineage into the late Cenozoic of South America.

    PubMed

    Rougier, Guillermo W; Wible, John R; Beck, Robin M D; Apesteguía, Sebastian

    2012-12-04

    The early Miocene mammal Necrolestes patagonensis from Patagonia, Argentina, was described in 1891 as the only known extinct placental "insectivore" from South America (SA). Since then, and despite the discovery of additional well-preserved material, the systematic status of Necrolestes has remained in flux, with earlier studies leaning toward placental affinities and more recent ones endorsing either therian or specifically metatherian relationships. We have further prepared the best-preserved specimens of Necrolestes and compared them with newly discovered nontribosphenic Mesozoic mammals from Argentina; based on this, we conclude that Necrolestes is related neither to marsupials nor placentals but is a late-surviving member of the recently recognized nontherian clade Meridiolestida, which is currently known only from SA. This conclusion is supported by a morphological phylogenetic analysis that includes a broad sampling of therian and nontherian taxa and that places Necrolestes within Meridiolestida. Thus, Necrolestes is a remnant of the highly endemic Mesozoic fauna of nontribosphenic mammals in SA and extends the known record of meridiolestidans by almost 45 million years. Together with other likely relictual mammals from earlier in the Cenozoic of SA and Antarctica, Necrolestes demonstrates the ecological diversity of mammals and the mosaic pattern of fauna replacement in SA during the Cenozoic. In contrast to northern continents, the Cenozoic faunal history of SA was characterized by a long period of interaction between endemic mammalian lineages of Mesozoic origin and metatherian and eutherian lineages that probably dispersed to SA during the latest Cretaceous or earliest Paleocene.

  11. The Miocene mammal Necrolestes demonstrates the survival of a Mesozoic nontherian lineage into the late Cenozoic of South America

    NASA Astrophysics Data System (ADS)

    Rougier, Guillermo W.; Wible, John R.; Beck, Robin M. D.; Apesteguía, Sebastian

    2012-12-01

    The early Miocene mammal Necrolestes patagonensis from Patagonia, Argentina, was described in 1891 as the only known extinct placental "insectivore" from South America (SA). Since then, and despite the discovery of additional well-preserved material, the systematic status of Necrolestes has remained in flux, with earlier studies leaning toward placental affinities and more recent ones endorsing either therian or specifically metatherian relationships. We have further prepared the best-preserved specimens of Necrolestes and compared them with newly discovered nontribosphenic Mesozoic mammals from Argentina; based on this, we conclude that Necrolestes is related neither to marsupials nor placentals but is a late-surviving member of the recently recognized nontherian clade Meridiolestida, which is currently known only from SA. This conclusion is supported by a morphological phylogenetic analysis that includes a broad sampling of therian and nontherian taxa and that places Necrolestes within Meridiolestida. Thus, Necrolestes is a remnant of the highly endemic Mesozoic fauna of nontribosphenic mammals in SA and extends the known record of meridiolestidans by almost 45 million years. Together with other likely relictual mammals from earlier in the Cenozoic of SA and Antarctica, Necrolestes demonstrates the ecological diversity of mammals and the mosaic pattern of fauna replacement in SA during the Cenozoic. In contrast to northern continents, the Cenozoic faunal history of SA was characterized by a long period of interaction between endemic mammalian lineages of Mesozoic origin and metatherian and eutherian lineages that probably dispersed to SA during the latest Cretaceous or earliest Paleocene.

  12. The Cenozoic palaeoenvironment of the Arctic Ocean.

    PubMed

    Moran, Kathryn; Backman, Jan; Brinkhuis, Henk; Clemens, Steven C; Cronin, Thomas; Dickens, Gerald R; Eynaud, Frédérique; Gattacceca, Jérôme; Jakobsson, Martin; Jordan, Richard W; Kaminski, Michael; King, John; Koc, Nalan; Krylov, Alexey; Martinez, Nahysa; Matthiessen, Jens; McInroy, David; Moore, Theodore C; Onodera, Jonaotaro; O'Regan, Matthew; Pälike, Heiko; Rea, Brice; Rio, Domenico; Sakamoto, Tatsuhiko; Smith, David C; Stein, Ruediger; St John, Kristen; Suto, Itsuki; Suzuki, Noritoshi; Takahashi, Kozo; Watanabe, Mahito; Yamamoto, Masanobu; Farrell, John; Frank, Martin; Kubik, Peter; Jokat, Wilfried; Kristoffersen, Yngve

    2006-06-01

    The history of the Arctic Ocean during the Cenozoic era (0-65 million years ago) is largely unknown from direct evidence. Here we present a Cenozoic palaeoceanographic record constructed from >400 m of sediment core from a recent drilling expedition to the Lomonosov ridge in the Arctic Ocean. Our record shows a palaeoenvironmental transition from a warm 'greenhouse' world, during the late Palaeocene and early Eocene epochs, to a colder 'icehouse' world influenced by sea ice and icebergs from the middle Eocene epoch to the present. For the most recent approximately 14 Myr, we find sedimentation rates of 1-2 cm per thousand years, in stark contrast to the substantially lower rates proposed in earlier studies; this record of the Neogene reveals cooling of the Arctic that was synchronous with the expansion of Greenland ice (approximately 3.2 Myr ago) and East Antarctic ice (approximately 14 Myr ago). We find evidence for the first occurrence of ice-rafted debris in the middle Eocene epoch (approximately 45 Myr ago), some 35 Myr earlier than previously thought; fresh surface waters were present at approximately 49 Myr ago, before the onset of ice-rafted debris. Also, the temperatures of surface waters during the Palaeocene/Eocene thermal maximum (approximately 55 Myr ago) appear to have been substantially warmer than previously estimated. The revised timing of the earliest Arctic cooling events coincides with those from Antarctica, supporting arguments for bipolar symmetry in climate change.

  13. Cenozoic rift tectonics of the Japan Sea

    SciTech Connect

    Kimura, K.

    1988-08-01

    The Japan Sea is one of the back-arc basins in trench-arc systems bordering the western Pacific. Recent paleomagnetic works suggest the Japan Sea opened during early to middle Miocene. Radiometric and microfossil ages of the Cenozoic onland sequences in the Japanese Islands elucidate the rift tectonics of the Japan Sea. The rifting history is summarized as follows: nonmarine volcanic formations of prerift stage before 50 Ma, rift-onset unconformity at 40 Ma, nonmarine volcanic formations of synrift stage 20-33 Ma, breakup unconformity 19 Ma showing the opening of the Japan Sea, marine volcanic and sedimentary formations of synrift stage 14.5-18 Ma, beginning of regional subsidence 14.5 Ma corresponding to the end of the Japan Sea opening, marine sedimentary formations of postdrift stage after 14.5 Ma. Rifting is not limited to the synrift stage but is continued to the syndrift stage. Rifting led to a horst-and-graben structure. Thus, the Cenozoic onland sequences in the Japanese Islands are suited for a study of rift tectonics because the sequences were subaerially exposed by the late Miocene-Holocene island-arc tectonics. Rift tectonics cannot be studied as easily in most Atlantic-type passive margins.

  14. The Cenozoic palaeoenvironment of the Arctic Ocean

    USGS Publications Warehouse

    Moran, K.; Backman, J.; Brinkhuis, H.; Clemens, S.C.; Cronin, T.; Dickens, G.R.; Eynaud, F.; Gattacceca, J.; Jakobsson, M.; Jordan, R.W.; Kaminski, M.; King, J.; Koc, N.; Krylov, A.; Martinez, N.; Matthiessen, J.; McInroy, D.; Moore, T.C.; Onodera, J.; O'Regan, M.; Palike, H.; Rea, B.; Rio, D.; Sakamoto, T.; Smith, D.C.; Stein, R.; St, John K.; Suto, I.; Suzuki, N.; Takahashi, K.; Watanabe, M. E.; Yamamoto, M.; Farrell, J.; Frank, M.; Kubik, P.; Jokat, W.; Kristoffersen, Y.

    2006-01-01

    The history of the Arctic Ocean during the Cenozoic era (0-65 million years ago) is largely unknown from direct evidence. Here we present a Cenozoic palaeoceanographic record constructed from >400 m of sediment core from a recent drilling expedition to the Lomonosov ridge in the Arctic Ocean. Our record shows a palaeoenvironmental transition from a warm 'greenhouse' world, during the late Palaeocene and early Eocene epochs, to a colder 'icehouse' world influenced by sea ice and icebergs from the middle Eocene epoch to the present. For the most recent ???14 Myr, we find sedimentation rates of 1-2 cm per thousand years, in stark contrast to the substantially lower rates proposed in earlier studies; this record of the Neogene reveals cooling of the Arctic that was synchronous with the expansion of Greenland ice (???3.2 Myr ago) and East Antarctic ice (???14 Myr ago). We find evidence for the first occurrence of ice-rafted debris in the middle Eocene epoch (???45 Myr ago), some 35 Myr earlier than previously thought; fresh surface waters were present at ???49 Myr ago, before the onset of ice-rafted debris. Also, the temperatures of surface waters during the Palaeocene/Eocene thermal maximum (???55 Myr ago) appear to have been substantially warmer than previously estimated. The revised timing of the earliest Arctic cooling events coincides with those from Antarctica, supporting arguments for bipolar symmetry in climate change. ?? 2006 Nature Publishing Group.

  15. Northward displacements of forearc slivers in the Coast Ranges of California and Southwest Oregon during the late Mesozoic and early Cenozoic

    USGS Publications Warehouse

    Jayko, A.S.; Blake, M.C.

    1993-01-01

    North American-Farallon-Kula plate motion data, combined with estimated strikeslip displacements obtained from the obliquity of convergence along active circumPacific subduction zones, can be used to estimate the amount of strike-slip displacement along the forearc region of western North America. This evidence suggests a minumum of 500 km and maximum of 1600 km displacement with respect to the Farallon plate, and a minumum of 1600 km and a maximum of 4900 km with respect to the Kula plate (or some equivalent) from Late Jurassic to middle Eocene (145 Ma to 43 Ma). These displacements are consistent with pre-middle Eocene displacements of paleoforearc strata (Franciscan Complex, Great Valley sequence and related units), inferred from pa 1eomagnetic, petrologic, stratigraphic, and conglomerate pebble data. Tentative restorations suggest that the Elk outlier and Snow Camp terrane of southwest Oregon have affinities with the southern Klamath Mountains of northern California; that the Gold Beach terrane of southwest Oregon has affinities with central or southern California; that the Healdsburg terrane of the San Francisco area has affinities with southern California; that other Franciscan rocks of the San Francisco area have affinities with central or southern California; and that the Nacimiento block has affinities with the Peninsular Ranges or Vizcaino area of Baja California. These tentative correlations suggest about 600-1000 km of right-lateral displacement between Early Cretaceous and middle Eocene time which can be entirely accommodated by Farallon plate motions and (or) represent minimal displacement with respect to Kula plate motions (or some equivalent).

  16. The Genetic and Environmental Origins of Learning Abilities and Disabilities in the Early School Years

    ERIC Educational Resources Information Center

    Kovas, Yulia; Haworth, Claire M. A.; Dale, Philip S.; Plomin, Robert

    2007-01-01

    Despite the importance of learning abilities and disabilities in education and child development, little is known about their genetic and environmental origins in the early school years. We report results for English (which includes reading, writing, and speaking), mathematics, and science as well as general cognitive ability in a large and…

  17. The origin and early evolution of birds: discoveries, disputes, and perspectives from fossil evidence

    NASA Astrophysics Data System (ADS)

    Zhou, Zhonghe

    2004-10-01

    The study of the origin and early evolution of birds has never produced as much excitement and public attention as in the past decade. Well preserved and abundant new fossils of birds and dinosaurs have provided unprecedented new evidence on the dinosaurian origin of birds, the arboreal origin of avian flight, and the origin of feathers prior to flapping flight. The Mesozoic avian assemblage mainly comprises two major lineages: the prevalent extinct group Enantiornithes, and the Ornithurae, which gave rise to all modern birds, as well as several more basal taxa. Cretaceous birds radiated into various paleoecological niches that included fish- and seed-eating. Significant size and morphological differences and variation in flight capabilities, ranging from gliding to powerful flight among early birds, highlight the diversification of birds in the Early Cretaceous. There is little evidence, however, to support a Mesozoic origin of modern avian groups. Controversy and debate, nevertheless, surround many of these findings, and more details are needed to give a better appreciation of the significance of these new discoveries.

  18. The origin and early evolution of birds: discoveries, disputes, and perspectives from fossil evidence.

    PubMed

    Zhou, Zhonghe

    2004-10-01

    The study of the origin and early evolution of birds has never produced as much excitement and public attention as in the past decade. Well preserved and abundant new fossils of birds and dinosaurs have provided unprecedented new evidence on the dinosaurian origin of birds, the arboreal origin of avian flight, and the origin of feathers prior to flapping flight. The Mesozoic avian assemblage mainly comprises two major lineages: the prevalent extinct group Enantiornithes, and the Ornithurae, which gave rise to all modern birds, as well as several more basal taxa. Cretaceous birds radiated into various paleoecological niches that included fish- and seed-eating. Significant size and morphological differences and variation in flight capabilities, ranging from gliding to powerful flight among early birds, highlight the diversification of birds in the Early Cretaceous. There is little evidence, however, to support a Mesozoic origin of modern avian groups. Controversy and debate, nevertheless, surround many of these findings, and more details are needed to give a better appreciation of the significance of these new discoveries.

  19. Clues from Fe isotope variations on the origin of early Archean BIFs from Greenland.

    PubMed

    Dauphas, Nicolas; van Zuilen, Mark; Wadhwa, Meenakshi; Davis, Andrew M; Marty, Bernard; Janney, Philip E

    2004-12-17

    Archean rocks may provide a record of early Earth environments. However, such rocks have often been metamorphosed by high pressure and temperature, which can overprint the signatures of their original formation. Here, we show that the early Archean banded rocks from Isua, Akilia, and Innersuartuut, Greenland, are enriched in heavy iron isotopes by 0.1 to 0.5 per mil per atomic mass unit relative to igneous rocks worldwide. The observed enrichments are compatible with the transport, oxidation, and subsequent precipitation of ferrous iron emanating from hydrothermal vents and thus suggest that the original rocks were banded iron formations (BIFs). These variations therefore support a sedimentary origin for the Akilia banded rocks, which represent one of the oldest known occurrences of water-laid deposits on Earth.

  20. Perinatal inflammation: a common factor in the early origins of cardiovascular disease?

    PubMed

    Nguyen, Maria U; Wallace, Megan J; Pepe, Salvatore; Menheniott, Trevelyan R; Moss, Timothy J; Burgner, David

    2015-10-01

    Cardiovascular disease continues to be the leading cause of global morbidity and mortality. Traditional risk factors account for only part of the attributable risk. The origins of atherosclerosis are in early life, a potential albeit largely unrecognized window of opportunity for early detection and treatment of subclinical cardiovascular disease. There are robust epidemiological data indicating that poor intrauterine growth and/or prematurity, and perinatal factors such as maternal hypercholesterolaemia, smoking, diabetes and obesity, are associated with adverse cardiovascular intermediate phenotypes in childhood and adulthood. Many of these early-life risk factors result in a heightened inflammatory state. Inflammation is a central mechanism in the development of atherosclerosis and cardiovascular disease, but few studies have investigated the role of overt perinatal infection and inflammation (chorioamnionitis) as a potential contributor to cardiovascular risk. Limited evidence from human and experimental models suggests an association between chorioamnionitis and cardiac and vascular dysfunction. Early life inflammatory events may be an important mechanism in the early development of cardiovascular risk and may provide insights into the associations between perinatal factors and adult cardiovascular disease. This review aims to summarise current data on the early life origins of atherosclerosis and cardiovascular disease, with particular focus on perinatal inflammation.

  1. Cenozoic evolution of San Joaquin basin, California

    SciTech Connect

    Bartow, J.A.

    1988-03-01

    The Neogene San Joaquin basin in the southern part of the 700-km long Great Valley of California is a successor to a late Mesozoic and earliest Tertiary forearc basin. The transition from forearc basin to the more restricted Neogene marine basin occurred principally during the Paleogene as the plate tectonic setting changed from oblique convergence to normal convergence, and finally to the initiation of tangential (transform) movement near the end of the Oligocene. Regional-scale tectonic events that affected the basin include: (1) clockwise rotation of the southernmost Sierra Nevada, and large-scale en echelon folding in the southern Diablo Range, both perhaps related to Late Cretaceous and early Tertiary right slip on the proto-San-Andreas fault; (2) regional uplift of southern California in the Oligocene that resulted from the subduction of the Pacific-Farallon spreading ridge: (3) extensional tectonism in the Basin and Range province, particularly in the Miocene; (4) wrench tectonism adjacent to the San Andreas fault in the Neogene; (5) northeastward emplacement of a wedge of the Franciscan complex at the west side of the Sierran block, with associated deep-seated thrusting in the late Cenozoic; and (6) the accelerated uplift of the Sierra Nevada beginning in the late Miocene. Neogene basin history was controlled principally by the tectonic effects of the northwestward migration of the Mendocino triple junction along the California continental margin and by the subsequent wrench tectonism associated with the San Andreas fault system. East-west compression in the basin, resulting from extension in the Basin and Range province was an important contributing factor to crustal shortening at the west side of the valley. Analysis of the sedimentary history of the basin, which was controlled to some extent by eustatic sea level change, enables reconstruction of the basin paleogeography through the Cenozoic.

  2. Developmental Origins of Chronic Kidney Disease: Should We Focus on Early Life?

    PubMed Central

    Tain, You-Lin; Hsu, Chien-Ning

    2017-01-01

    Chronic kidney disease (CKD) is becoming a global burden, despite recent advances in management. CKD can begin in early life by so-called “developmental programming” or “developmental origins of health and disease” (DOHaD). Early-life insults cause structural and functional changes in the developing kidney, which is called renal programming. Epidemiological and experimental evidence supports the proposition that early-life adverse events lead to renal programming and make subjects vulnerable to developing CKD and its comorbidities in later life. In addition to low nephron endowment, several mechanisms have been proposed for renal programming. The DOHaD concept opens a new window to offset the programming process in early life to prevent the development of adult kidney disease, namely reprogramming. Here, we review the key themes on the developmental origins of CKD. We have particularly focused on the following areas: evidence from human studies support fetal programming of kidney disease; insight from animal models of renal programming; hypothetical mechanisms of renal programming; alterations of renal transcriptome in response to early-life insults; and the application of reprogramming interventions to prevent the programming of kidney disease. PMID:28208659

  3. Developmental Origins of Chronic Kidney Disease: Should We Focus on Early Life?

    PubMed

    Tain, You-Lin; Hsu, Chien-Ning

    2017-02-11

    Chronic kidney disease (CKD) is becoming a global burden, despite recent advances in management. CKD can begin in early life by so-called "developmental programming" or "developmental origins of health and disease" (DOHaD). Early-life insults cause structural and functional changes in the developing kidney, which is called renal programming. Epidemiological and experimental evidence supports the proposition that early-life adverse events lead to renal programming and make subjects vulnerable to developing CKD and its comorbidities in later life. In addition to low nephron endowment, several mechanisms have been proposed for renal programming. The DOHaD concept opens a new window to offset the programming process in early life to prevent the development of adult kidney disease, namely reprogramming. Here, we review the key themes on the developmental origins of CKD. We have particularly focused on the following areas: evidence from human studies support fetal programming of kidney disease; insight from animal models of renal programming; hypothetical mechanisms of renal programming; alterations of renal transcriptome in response to early-life insults; and the application of reprogramming interventions to prevent the programming of kidney disease.

  4. Late Cenozoic tectonism of the Sacramento Valley, California

    SciTech Connect

    Harwood, D.S.; Helley, E.J.

    1987-01-01

    Structure contours drawn on top of the Cretaceous rocks in the Sacramento Valley define a large number of diversely oriented folds and faults that are expressed in topographic, hydrologic, and geologic features at the land surface. Although many of the structures in the valley have a protracted history of movement, some dating back to the late Mesozoic, a remarkable number of these structures show late Cenozoic deformation that can be accurately determined from folding and faulting of widespread, dated Pliocene and Pleistocene volcanic units. These time-stratigraphic units are used to define structural domains of essentially contemporaneous late Cenozoic deformation that was characterized by east-west compressive stress. The oldest structural domain is located in the southeastern part of the valley, where east-side-up reverse movement on the Willows fault ceased prior to deposition of continentally derived sediments of late Miocene and early Pliocene age. In the middle Pliocene to early Pleistocene, east-west compressive deformation progressed northward through the valley so that the youngest late Cenozoic deformation is recorded in east-northeast-trending folds and faults in the Battle Creek domain, at the northern-most part of the valley. The northward progression of east-west compressive deformation appears to be related to the northward eclipse of eastward subduction of the Juan de Fuca plate before the northwestward migration of the Mendocino triple junction along the continental margin west of the valley.

  5. Cenozoic continental climatic evolution of Central Europe.

    PubMed

    Mosbrugger, Volker; Utescher, Torsten; Dilcher, David L

    2005-10-18

    Continental climate evolution of Central Europe has been reconstructed quantitatively for the last 45 million years providing inferred data on mean annual temperature and precipitation, and winter and summer temperatures. Although some regional effects occur, the European Cenozoic continental climate record correlates well with the global oxygen isotope record from marine environments. During the last 45 million years, continental cooling is especially pronounced for inferred winter temperatures but hardly observable from summer temperatures. Correspondingly, Cenozoic cooling in Central Europe is directly associated with an increase of seasonality. In contrast, inferred Cenozoic mean annual precipitation remained relatively stable, indicating the importance of latent heat transport throughout the Cenozoic. Moreover, our data support the concept that changes in atmospheric CO2 concentrations, although linked to climate changes, were not the major driving force of Cenozoic cooling.

  6. Origins of Airpower. Hap Arnold’s Early Career in Aviation Technology, 1903-1935

    DTIC Science & Technology

    1996-01-01

    Origins of Airpower Hap Arnold’s Early Career in Aviation Technology, 1903–1935 HENRY HARLEY (“Hap”) Arnold was not supposed to enter the Army.1...War for Inde­ pendence. Henry Harley , Hap’s namesake and great-great-grandfather, had been a private in the MAJ DIK DASO, USAF Pennsylvania...admission tests, Thomas rejected his parents’ persistent urging to attend West Point. So Henry Arnold, then called Harley , inherited the oppor­ tunity to

  7. Early South Americans Cranial Morphological Variation and the Origin of American Biological Diversity

    PubMed Central

    Hubbe, Alex; Neves, Walter A.

    2015-01-01

    Recent South Americans have been described as presenting high regional cranial morphological diversity when compared to other regions of the world. This high diversity is in accordance with linguistic and some of the molecular data currently available for the continent, but the origin of this diversity has not been satisfactorily explained yet. Here we explore if this high morphological variation was already present among early groups in South America, in order to refine our knowledge about the timing and origins of the modern morphological diversity. Between-group (Fst estimates) and within-group variances (trace of within-group covariance matrix) of the only two early American population samples available to date (Lagoa Santa and Sabana de Bogotá) were estimated based on linear craniometric measurements and compared to modern human cranial series representing six regions of the world, including the Americas. The results show that early Americans present moderate within-group diversity, falling well within the range of modern human groups, despite representing almost three thousand years of human occupation. The between-group variance apportionment is very low between early Americans, but is high among recent South American groups, who show values similar to the ones observed on a global scale. Although limited to only two early South American series, these results suggest that the high morphological diversity of native South Americans was not present among the first human groups arriving in the continent and must have originated during the Middle Holocene, possibly due to the arrival of new morphological diversity coming from Asia during the Holocene. PMID:26465141

  8. Origin of clothing lice indicates early clothing use by anatomically modern humans in Africa.

    PubMed

    Toups, Melissa A; Kitchen, Andrew; Light, Jessica E; Reed, David L

    2011-01-01

    Clothing use is an important modern behavior that contributed to the successful expansion of humans into higher latitudes and cold climates. Previous research suggests that clothing use originated anywhere between 40,000 and 3 Ma, though there is little direct archaeological, fossil, or genetic evidence to support more specific estimates. Since clothing lice evolved from head louse ancestors once humans adopted clothing, dating the emergence of clothing lice may provide more specific estimates of the origin of clothing use. Here, we use a Bayesian coalescent modeling approach to estimate that clothing lice diverged from head louse ancestors at least by 83,000 and possibly as early as 170,000 years ago. Our analysis suggests that the use of clothing likely originated with anatomically modern humans in Africa and reinforces a broad trend of modern human developments in Africa during the Middle to Late Pleistocene.

  9. Origin of Clothing Lice Indicates Early Clothing Use by Anatomically Modern Humans in Africa

    PubMed Central

    Toups, Melissa A.; Kitchen, Andrew; Light, Jessica E.; Reed, David L.

    2011-01-01

    Clothing use is an important modern behavior that contributed to the successful expansion of humans into higher latitudes and cold climates. Previous research suggests that clothing use originated anywhere between 40,000 and 3 Ma, though there is little direct archaeological, fossil, or genetic evidence to support more specific estimates. Since clothing lice evolved from head louse ancestors once humans adopted clothing, dating the emergence of clothing lice may provide more specific estimates of the origin of clothing use. Here, we use a Bayesian coalescent modeling approach to estimate that clothing lice diverged from head louse ancestors at least by 83,000 and possibly as early as 170,000 years ago. Our analysis suggests that the use of clothing likely originated with anatomically modern humans in Africa and reinforces a broad trend of modern human developments in Africa during the Middle to Late Pleistocene. PMID:20823373

  10. An early and enduring advanced technology originating 71,000 years ago in South Africa.

    PubMed

    Brown, Kyle S; Marean, Curtis W; Jacobs, Zenobia; Schoville, Benjamin J; Oestmo, Simen; Fisher, Erich C; Bernatchez, Jocelyn; Karkanas, Panagiotis; Matthews, Thalassa

    2012-11-22

    There is consensus that the modern human lineage appeared in Africa before 100,000 years ago. But there is debate as to when cultural and cognitive characteristics typical of modern humans first appeared, and the role that these had in the expansion of modern humans out of Africa. Scientists rely on symbolically specific proxies, such as artistic expression, to document the origins of complex cognition. Advanced technologies with elaborate chains of production are also proxies, as these often demand high-fidelity transmission and thus language. Some argue that advanced technologies in Africa appear and disappear and thus do not indicate complex cognition exclusive to early modern humans in Africa. The origins of composite tools and advanced projectile weapons figure prominently in modern human evolution research, and the latter have been argued to have been in the exclusive possession of modern humans. Here we describe a previously unrecognized advanced stone tool technology from Pinnacle Point Site 5-6 on the south coast of South Africa, originating approximately 71,000 years ago. This technology is dominated by the production of small bladelets (microliths) primarily from heat-treated stone. There is agreement that microlithic technology was used to create composite tool components as part of advanced projectile weapons. Microliths were common worldwide by the mid-Holocene epoch, but have a patchy pattern of first appearance that is rarely earlier than 40,000 years ago, and were thought to appear briefly between 65,000 and 60,000 years ago in South Africa and then disappear. Our research extends this record to ~71,000 years, shows that microlithic technology originated early in South Africa, evolved over a vast time span (~11,000 years), and was typically coupled to complex heat treatment that persisted for nearly 100,000 years. Advanced technologies in Africa were early and enduring; a small sample of excavated sites in Africa is the best explanation for any

  11. The ancient history of the structure of ribonuclease P and the early origins of Archaea

    PubMed Central

    2010-01-01

    Background Ribonuclease P is an ancient endonuclease that cleaves precursor tRNA and generally consists of a catalytic RNA subunit (RPR) and one or more proteins (RPPs). It represents an important macromolecular complex and model system that is universally distributed in life. Its putative origins have inspired fundamental hypotheses, including the proposal of an ancient RNA world. Results To study the evolution of this complex, we constructed rooted phylogenetic trees of RPR molecules and substructures and estimated RPP age using a cladistic method that embeds structure directly into phylogenetic analysis. The general approach was used previously to study the evolution of tRNA, SINE RNA and 5S rRNA, the origins of metabolism, and the evolution and complexity of the protein world, and revealed here remarkable evolutionary patterns. Trees of molecules uncovered the tripartite nature of life and the early origin of archaeal RPRs. Trees of substructures showed molecules originated in stem P12 and were accessorized with a catalytic P1-P4 core structure before the first substructure was lost in Archaea. This core currently interacts with RPPs and ancient segments of the tRNA molecule. Finally, a census of protein domain structure in hundreds of genomes established RPPs appeared after the rise of metabolic enzymes at the onset of the protein world. Conclusions The study provides a detailed account of the history and early diversification of a fundamental ribonucleoprotein and offers further evidence in support of the existence of a tripartite organismal world that originated by the segregation of archaeal lineages from an ancient community of primordial organisms. PMID:20334683

  12. Footprints pull origin and diversification of dinosaur stem lineage deep into Early Triassic.

    PubMed

    Brusatte, Stephen L; Niedźwiedzki, Grzegorz; Butler, Richard J

    2011-04-07

    The ascent of dinosaurs in the Triassic is an exemplary evolutionary radiation, but the earliest phase of dinosaur history remains poorly understood. Body fossils of close dinosaur relatives are rare, but indicate that the dinosaur stem lineage (Dinosauromorpha) originated by the latest Anisian (ca 242-244 Ma). Here, we report footprints from the Early-Middle Triassic of Poland, stratigraphically well constrained and identified using a conservative synapomorphy-based approach, which shifts the origin of the dinosaur stem lineage back to the Early Olenekian (ca 249-251 Ma), approximately 5-9 Myr earlier than indicated by body fossils, earlier than demonstrated by previous footprint records, and just a few million years after the Permian/Triassic mass extinction (252.3 Ma). Dinosauromorph tracks are rare in all Polish assemblages, suggesting that these animals were minor faunal components. The oldest tracks are quadrupedal, a morphology uncommon among the earliest dinosauromorph body fossils, but bipedality and moderately large body size had arisen by the Early Anisian (ca 246 Ma). Integrating trace fossils and body fossils demonstrates that the rise of dinosaurs was a drawn-out affair, perhaps initiated during recovery from the Permo-Triassic extinction.

  13. Early Miocene hippopotamids (Cetartiodactyla) constrain the phylogenetic and spatiotemporal settings of hippopotamid origin

    PubMed Central

    Orliac, Maeva; Boisserie, Jean-Renaud; MacLatchy, Laura; Lihoreau, Fabrice

    2010-01-01

    The affinities of the Hippopotamidae are at the core of the phylogeny of Cetartiodactyla (even-toed mammals: cetaceans, ruminants, camels, suoids, and hippos). Molecular phylogenies support Cetacea as sister group of the Hippopotamidae, implying a long ghost lineage between the earliest cetaceans (∼53 Ma) and the earliest hippopotamids (∼16 Ma). Morphological studies have proposed two different sister taxa for hippopotamids: suoids (notably palaeochoerids) or anthracotheriids. Evaluating these phylogenetic hypotheses requires substantiating the poorly known early history of the Hippopotamidae. Here, we undertake an original morphological phylogenetic analysis including several “suiform” families and previously unexamined early Miocene taxa to test previous conflicting hypotheses. According to our results, Morotochoerus ugandensis and Kulutherium rusingensis, until now regarded as the sole African palaeochoerid and the sole African bunodont anthracotheriid, respectively, are unambiguously included within the Hippopotamidae. They are the earliest known hippopotamids and set the family fossil record back to the early Miocene (∼21 Ma). The analysis reveals that hippopotamids displayed an unsuspected taxonomic and body size diversity and remained restricted to Africa during most of their history, until the latest Miocene. Our results also confirm the deep nesting of Hippopotamidae within the paraphyletic Anthracotheriidae; this finding allows us to reconstruct the sequence of dental innovations that links advanced selenodont anthracotheriids to hippopotamids, previously a source of major disagreements on hippopotamid origins. The analysis demonstrates a close relationship between Eocene choeropotamids and anthracotheriids, a relationship that potentially fills the evolutionary gap between earliest hippopotamids and cetaceans implied by molecular analyses. PMID:20547829

  14. Cenozoic reconstruction of southwest Pacific

    SciTech Connect

    Chun, Y.Y.; Kroenke, L.W.

    1986-07-01

    Poles of opening and spreading rates for some of the well-studied marginal basins in the southwest Pacific have been redetermined. Times of opening range from Late Cretaceous-Paleocene in the Tasman basin to middle Pliocene in the Bismarck Sea. The observed magnetic lineations in most of these basins show a relatively short duration of opening and relatively small area of total opening. Most of the smaller basins are bounded by troughs and arcuate island chains, some of which are inferred to be trenches and volcanic arcs situated along paleoconvergent boundaries. At least four successive paleoconvergent boundaries are believed to have formed between the Pacific and the Indian-Australian plates during the Cenozoic. Combining the newly determined poles of opening, spreading rates, and paleoplate boundary locations, a series of palinspastic maps of the southwest Pacific have been constructed for these times, relative to a fixed hot-spot frame of reference for both the Pacific and Indian-Australian plates.

  15. Evidence for Cenozoic uplift of the Appalachian Mountains in the southeastern United States

    SciTech Connect

    Prowell, D.C. ); Christopher, R.A. )

    1993-03-01

    The present height and shape of the (physiographic) Appalachian Mountains were traditionally attributed to Paleozoic and early Mesozoic tectonism and the resistance of the Precambrian and Paleozoic rocks to erosion. New evidence indicates that Cenozoic uplift is responsible for at least part of the present height of land as well as for the configuration of the inner margin of the Coastal Plain at the southern terminus of the mountains. Stratigraphic correlations from regional mapping and palynological analysis of Cretaceous non-marine and restricted marine strata in the southeastern Coastal Plain suggest that Cenozoic uplift has influence both the present height of the landmass and the outcrop pattern of the eastern Gulf Coastal Plain. In addition, Cenozoic uplift has raised Cretaceous marine deposits to 300 m (1,000 ft) above present sea level in south-central Tennessee, and subsequent erosion has modified the Coastal Plain section to expose the oldest strata at the point of maximum uplift in central Alabama. The magnitude of uplift appears to be greatest along the northeast-trending axis of the mountain chain, and it decreases with distance from the mountains. This uplift is thought to result from the compressive intraplate tectonism that produced numerous reverse faults on the Atlantic continental margin during the Cretaceous and Cenozoic. Most of the Cretaceous and early Cenozoic strata that once covered the Precambrian and Paleozoic rocks at the southern terminus of the Appalachians have been removed by late Cenozoic erosion, but remnants of the eroded Cenozoic beds are preserved at elevations up to +640 m (+2,100 ft) in numerous fault-bounded sediment traps as far inland as Chattanooga, Tenn. Palynological correlation of these inland deposits with geologic formations in the present Coastal Plain suggests the intriguing possibility that the Coastal Plain strata once may have extended hundreds of kilometers (miles) inland from their present inner margin.

  16. Comparison of Early Maladaptive Schemas and Parenting Origins in Patients with Opioid Abuse and Non-Abusers

    PubMed Central

    Zargar, Mohammad; Salavati, Mojgan; Kakavand, Ali Reza

    2011-01-01

    Objective The aim of this study was to examine the difference of early maladaptive schemas and parenting origins in opioid abusers and non-opioid abusers. Method The early maladaptive schemas and parenting origins were compared in 56 opioid abusers and 56 non-opioids abusers. Schemas were assessed by the Young Schema Questionnaire 3rd (short form); and parenting origins were assessed by the Young Parenting Inventory. Results Data were analyzed by multivariate analysis of variance (MANOVA). The analysis showed that the means for schemas between opioid abusers and non-opioid abusers were different. Chi square test showed that parenting origins were significantly associated with their related schemas. Conclusion The early maladaptive schemas and parenting origins in opioid abusers were more than non-opioid abusers; and parenting origins were related to their Corresponding schemas. PMID:22952522

  17. Ocean acidification in the Meso- vs. Cenozoic: lessons from modeling about the geological expression of paleo-ocean acidification

    NASA Astrophysics Data System (ADS)

    Greene, S. E.; Ridgwell, A.; Kirtland Turner, S.

    2015-12-01

    Rapid climatic and biotic events putatively associated with ocean acidification are scattered throughout the Meso-Cenozoic. Many of these rapid perturbations, variably referred to as hyperthermals (Paleogene) and oceanic anoxic events or mass extinction events (Mesozoic), share a number of characteristic features, including some combination of negative carbon isotopic excursion, global warming, and a rise in atmospheric CO2 concentration. Comparisons between ocean acidification events over the last ~250 Ma are, however, problematic because the types of marine geological archives and carbon reservoirs that can be interrogated are fundamentally different for early Mesozoic vs. late Mesozoic-Cenozoic events. Many Mesozoic events are known primarily or exclusively from geological outcrops of relatively shallow water deposits, whereas the more recent Paleogene hyperthermal events have been chiefly identified from deep sea records. In addition, these earlier events are superimposed on an ocean with a fundamentally different carbonate buffering capacity, as calcifying plankton (which created the deep-sea carbonate sink) originate in the mid-Mesozoic. Here, we use both Earth system modeling and reaction transport sediment modeling to explore the ways in which comparable ocean acidification-inducing climate perturbations might manifest in the Mesozoic vs. the Cenozoic geological record. We examine the role of the deep-sea carbonate sink in the expression of ocean acidification, as well as the spatial heterogeneity of surface ocean pH and carbonate saturation state. These results critically inform interpretations of ocean acidification prior to the mid-Mesozoic advent of calcifying plankton and expectations about the recording of these events in geological outcrop.

  18. Mexican-origin youth's cultural orientations and adjustment: changes from early to late adolescence.

    PubMed

    Updegraff, Kimberly A; Umaña-Taylor, Adriana J; McHale, Susan M; Wheeler, Lorey A; Perez-Brena, Norma J

    2012-01-01

    Drawing from developmental and cultural adaptation perspectives and using a longitudinal design, this study examined: (a) mean-level changes in Mexican-origin adolescents' cultural orientations and adjustment from early to late adolescence and (b) bidirectional associations between cultural orientations and adjustment using a cross-lag panel model. Participants included 246 Mexican-origin, predominantly immigrant families that participated in home interviews and a series of nightly phone calls when target adolescents were 12 and 18years of age. Girls exhibited more pronounced declines in traditional gender role attitudes than did boys, and all youth declined in familism values, time spent with family, and involvement in Mexican culture. Bidirectional relations between cultural orientations and adjustment emerged, and some associations were moderated by adolescent nativity and gender.

  19. Early Eocene fossils suggest that the mammalian order Perissodactyla originated in India.

    PubMed

    Rose, Kenneth D; Holbrook, Luke T; Rana, Rajendra S; Kumar, Kishor; Jones, Katrina E; Ahrens, Heather E; Missiaen, Pieter; Sahni, Ashok; Smith, Thierry

    2014-11-20

    Cambaytheres (Cambaytherium, Nakusia and Kalitherium) are recently discovered early Eocene placental mammals from the Indo-Pakistan region. They have been assigned to either Perissodactyla (the clade including horses, tapirs and rhinos, which is a member of the superorder Laurasiatheria) or Anthracobunidae, an obscure family that has been variously considered artiodactyls or perissodactyls, but most recently placed at the base of Proboscidea or of Tethytheria (Proboscidea+Sirenia, superorder Afrotheria). Here we report new dental, cranial and postcranial fossils of Cambaytherium, from the Cambay Shale Formation, Gujarat, India (~54.5 Myr). These fossils demonstrate that cambaytheres occupy a pivotal position as the sister taxon of Perissodactyla, thereby providing insight on the phylogenetic and biogeographic origin of Perissodactyla. The presence of the sister group of perissodactyls in western India near or before the time of collision suggests that Perissodactyla may have originated on the Indian Plate during its final drift toward Asia.

  20. Structural phylogenomics uncovers the early and concurrent origins of cysteine biosynthesis and iron-sulfur proteins.

    PubMed

    Zhang, Hong-Yu; Qin, Tao; Jiang, Ying-Ying; Caetano-Anollés, Gustavo

    2012-01-01

    Cysteine (Cys) has unique chemical properties of catalysis, metal chelation, and protein stabilization. While Cys biosynthesis is assumed to be very ancient, the actual time of origin of these metabolic pathways remains unknown. Here, we use the molecular clocks of protein folds and fold superfamilies to time the origin of Cys biosynthesis. We find that the tRNA-dependent biosynthetic pathway appeared ~3.5 billion years ago while the tRNA-independent counterpart emerged ~500 million years later. A deep analysis of the origins of Cys biosynthesis in the context of emerging biochemistry uncovers some intriguing features of the planetary environment of early Earth. Results suggest that iron-sulfur (Fe-S) proteins that use cysteinyl sulfur to bind iron atoms were not the first to arise in evolution. Instead, their origin coincides with the appearance of the first Cys biosynthetic pathway. It is therefore likely that Cys did not play an important role in the make up of primordial protein molecules and that Fe-S clusters were not part of active sites at the beginning of biological history.

  1. Early Adolescent Temperament, Parental Monitoring, and Substance Use in Mexican-Origin Adolescents

    PubMed Central

    Clark, D. Angus; Donnellan, M. Brent; Robins, Richard W.; Conger, Rand D.

    2015-01-01

    Previous studies suggest that temperamental dispositions are associated with substance use. However, most research supporting this association has relied on European American samples (Stautz & Cooper, 2013). We addressed this gap by evaluating the prospective relations between 5th grade temperament and 9th grade substance use in a longitudinal sample of Mexican-origin youth (N = 674). Effortful control and trait aggressiveness predicted 9th grade substance use, intentions, and expectations, even after controlling for 5th grade substance use. Additionally, we found an interaction between temperament and parental monitoring such that monitoring is a protective factor for early substance use primarily for youth with temperamental tendencies associated with risk for substance use (e.g., low effortful control and aggression). Results add to the growing literature demonstrating that early manifestations of self-control are related to consequential life outcomes. PMID:25841175

  2. Origin of the Directed Movement of Protocells in the Early Stages of the Evolution of Life

    NASA Astrophysics Data System (ADS)

    Melkikh, Alexey V.; Chesnokova, Oksana I.

    2012-08-01

    The origin of the directed motion of protocells during the early stages of evolution was discussed. The expenditures for movement, space orientation, and reception of information about the environment were taken into consideration, and it was shown that directed movement is evolutionarily advantageous in the following cases: when opposite gradients of different resources (for example, matter and energy) are great enough and when there is a rapid change in environmental parameters. It was also shown that the advantage of directed movement strategies depends greatly on how information about the environment is obtained by a protocell.

  3. Early-life origin of adult disease: evidence from natural experiments.

    PubMed

    Vaiserman, Alexander

    2011-01-01

    Until the present time, disease susceptibility was believed to be determined solely by the genetic information carried in the DNA sequence. In recent years, however, it has become clear that epigenetic rearrangements play an equally essential role in the disease development and that this process, particularly at key developmental stages, is very susceptible to environmental modulations. The extensive studies, both human and animal, have shown that early-life environment is probably the most important causal component in the etiology of some diseases including cancer as well as metabolic and cardiovascular disorders. This review considers the natural experiment-based evidence regarding the developmental origin of human adult disease.

  4. Simple mechanisms of early life - simulation model on the origin of semi-cells.

    PubMed

    Klein, Adrian; Bock, Martin; Alt, Wolfgang

    2017-01-01

    The development of first cellular structures played an important role in the early evolution of life. Early evolution of life probably took place on a molecular level in a reactive environment. The iron-sulfur theory postulates the formation of cell-like structures on catalytic surfaces. Experiments show that H2S together with FeS and other metallic centers drive auto-catalytic surface reactions, in which organic molecules such as pyruvic and amino acids occur. It is questionable which mechanisms are needed to form cell-like structures under these conditions. To address this question, we implemented a model system featuring the fundamentals of molecular dynamics: heat, attraction, repulsion and formation of covalent bonds. Our basic model exhibits a series of essential processes: self-organization of lipid micelles and bilayers, formation of fluid filled cavities, flux of molecules along membranes, transport of energized groups towards sinks and whole colonies of cell-like structures on a larger scale. The results demonstrate that only a few features are sufficient for discovering hitherto non described phenomena of self-assembly and dynamics of cell-like structures as candidates for early evolving proto-cells. Significance statement The quest for a possible origin of life continues to be one of the most fascinating problems in biology. In one theoretical scenario, early life originated from a solution of reactive chemicals in the ancient deep sea, similar to conditions as to be found in thermal vents. Experiments have shown that a variety of organic molecules, the building blocks of life, form under these conditions. Based on such experiments, the iron-sulfur theory postulates the growth of cell-like structures at certain catalytic surfaces. For an explanation and proof of such a process we have developed a computer model simulating molecular assembly of lipid bilayers and formation of semi-cell cavities. The results demonstrate the possibility of cell-like self

  5. The Early Origin of the Antarctic Marine Fauna and Its Evolutionary Implications.

    PubMed

    Crame, J Alistair; Beu, Alan G; Ineson, Jon R; Francis, Jane E; Whittle, Rowan J; Bowman, Vanessa C

    2014-01-01

    The extensive Late Cretaceous - Early Paleogene sedimentary succession of Seymour Island, N.E. Antarctic Peninsula offers an unparalleled opportunity to examine the evolutionary origins of a modern polar marine fauna. Some 38 modern Southern Ocean molluscan genera (26 gastropods and 12 bivalves), representing approximately 18% of the total modern benthic molluscan fauna, can now be traced back through at least part of this sequence. As noted elsewhere in the world, the balance of the molluscan fauna changes sharply across the Cretaceous - Paleogene (K/Pg) boundary, with gastropods subsequently becoming more diverse than bivalves. A major reason for this is a significant radiation of the Neogastropoda, which today forms one of the most diverse clades in the sea. Buccinoidea is the dominant neogastropod superfamily in both the Paleocene Sobral Formation (SF) (56% of neogastropod genera) and Early - Middle Eocene La Meseta Formation (LMF) (47%), with the Conoidea (25%) being prominent for the first time in the latter. This radiation of Neogastropoda is linked to a significant pulse of global warming that reached at least 65°S, and terminates abruptly in the upper LMF in an extinction event that most likely heralds the onset of global cooling. It is also possible that the marked Early Paleogene expansion of neogastropods in Antarctica is in part due to a global increase in rates of origination following the K/Pg mass extinction event. The radiation of this and other clades at ∼65°S indicates that Antarctica was not necessarily an evolutionary refugium, or sink, in the Early - Middle Eocene. Evolutionary source - sink dynamics may have been significantly different between the Paleogene greenhouse and Neogene icehouse worlds.

  6. The Early Origin of the Antarctic Marine Fauna and Its Evolutionary Implications

    PubMed Central

    Crame, J. Alistair; Beu, Alan G.; Ineson, Jon R.; Francis, Jane E.; Whittle, Rowan J.; Bowman, Vanessa C.

    2014-01-01

    The extensive Late Cretaceous – Early Paleogene sedimentary succession of Seymour Island, N.E. Antarctic Peninsula offers an unparalleled opportunity to examine the evolutionary origins of a modern polar marine fauna. Some 38 modern Southern Ocean molluscan genera (26 gastropods and 12 bivalves), representing approximately 18% of the total modern benthic molluscan fauna, can now be traced back through at least part of this sequence. As noted elsewhere in the world, the balance of the molluscan fauna changes sharply across the Cretaceous – Paleogene (K/Pg) boundary, with gastropods subsequently becoming more diverse than bivalves. A major reason for this is a significant radiation of the Neogastropoda, which today forms one of the most diverse clades in the sea. Buccinoidea is the dominant neogastropod superfamily in both the Paleocene Sobral Formation (SF) (56% of neogastropod genera) and Early - Middle Eocene La Meseta Formation (LMF) (47%), with the Conoidea (25%) being prominent for the first time in the latter. This radiation of Neogastropoda is linked to a significant pulse of global warming that reached at least 65°S, and terminates abruptly in the upper LMF in an extinction event that most likely heralds the onset of global cooling. It is also possible that the marked Early Paleogene expansion of neogastropods in Antarctica is in part due to a global increase in rates of origination following the K/Pg mass extinction event. The radiation of this and other clades at ∼65°S indicates that Antarctica was not necessarily an evolutionary refugium, or sink, in the Early – Middle Eocene. Evolutionary source – sink dynamics may have been significantly different between the Paleogene greenhouse and Neogene icehouse worlds. PMID:25493546

  7. Cenozoic diapiric traps in eastern China

    SciTech Connect

    Xie-Pei, W.; Qi, F.; Jia-Hua, Z.

    1985-12-01

    Diapiric traps, including diapirs of salt and mud or igneous intrusives, have recently been found in many places in the Cenozoic petroliferous basins in eastern China, and most of them produce oil and gas. During the Eocene-early Oligocene, salt-lake basins evolved extensively. Plastic source materials for diapirism were deposited in the basins in great thickness. We have found that the diapiric traps of salt and mud in eastern China are unpierced or slightly pierced structures. The diapiric materials are a mixture of salt, gypsum, and mudstone, but mudstone is the main component of the plastic bodies. Based on an analysis of the structural features of the diapirs and the regional tectonic setting, we believe that the diapiric traps are caused by a combination of horizontal stress due to regional tectonic movement and vertical stress due to gravitational instability. Some diabase diapirs are arranged in a series of small anticlinal traps along the regional faults in the Subei basin of Jiangsu province. Oil and gas have been found in certain of these diapirs. 16 figures.

  8. Source of oils in Gulf Coast Cenozoic reservoirs

    SciTech Connect

    Curtis, D.M. )

    1989-09-01

    Many Gulf Coast geologists have assumed that shales interbedded with or adjacent to the reservoir sandstones are source rocks for oils in Cenozoic reservoirs, but few source-rock quality shales have been identified in Cenozoic strata. Reservoirs and their associated shales are in thermally immature and organic-poor intervals. Based on geothermal gradient, age, and depth, it can be shown that thermally mature source rocks should be present in older slope shales beneath each producing trend. Assumptions regarding the source rock potential of the interbedded thermally immature shales derive from the fact that hydrocarbons migrated into traps soon after burial of the reservoir (early migration). Early migration from the source rock was therefore also assumed (shallow burial, early migration model). Review of the geochemical requirements for a source rock shows that geochemical constraints demand late migration from the source rock after many thousands of feet of burial (deep burial, late migration model). Geological and geochemical concepts are compatible, however, if migration out of the source rock was late (long after deposition and deep burial of the source rock) but migration into the reservoir was early (soon after shallow burial of the reservoir and trap system).

  9. Late Cenozoic stratigraphy and structure of the western margin of the central San Joaquin Valley, California

    USGS Publications Warehouse

    Lettis, William R.

    1982-01-01

    Late Cenozoic Stratigraphy Late Cenozoic deposits in the west-central San Joaquin Valley and adjacent foothills of the Diablo Range consist mainly of unconsolidated, poorly-sorted to well-sorted gravel, sand, silt and clay derived primarily from the Diablo Range and secondarily from the Sierra Nevada. Sedimentary structures, such as channeled contacts, laminated bedding, cross-stratification and clast-imbrication indicate that most of the deposits were transported and laid down by running water. These deposits are described and their facies relationships are illustrated in the 'Late Cenozoic Stratigraphy' section of this report (see Figures 17, and 26, and Table 9). Sediment shed from the Diablo Range accumulated primarily as a complex of coalescing alluvial fans on the piedmont slope of a San Joaquin Valley that at one time extended across the foothill belt to the present margin of the central Diablo Range; and as local fills within stream valleys of the Diablo Range foothills tributary to the San Joaquin Valley. These deposits are well exposed in Interstate-5 roadcuts, California Aqueduct and Delta-Mendota canal cuts, and stream banks along the many ephemeral and intermittent streams draining the Diablo Range. Sediment derived from the Sierra Nevada is confined primarily to the floodbasin of the San Joaquin Valley. It includes arkosic riverine and floodbasin deposits from the San Joaquin River and associated sloughs, as well as local ephemeral and perennial pond, swamp, oxbow-lake and lake deposits. These deposits are well-exposed in stream banks of the San Joaquin River and a few of the larger sloughs such as Salt Slough, Mud Slough and Kings Slough. Well-sorted, fine- and medium-grained, quartzose, cross-bedded sand, presumably derived from the Sierra Nevada, locally interfinger with or underlie fine-grained Coast Range alluvial-fan deposits. The sand probably originated by eolian reworking of Sierran alluvium from the floodbasin of the lower San Joaquin River

  10. Records of Cenozoic Ocean Chemistry

    NASA Astrophysics Data System (ADS)

    Ravizza, G. E.; Zachos, J. C.

    2003-12-01

    Numerous lines of evidence show that there have been dramatic changes in the marine realm during the last 65 Myr. These changes occur over varying timescales. Some are relatively abrupt, occurring on timescales of thousands to tens of thousands of years. Others occur more gradually, over million-year timescales. Many of the most valuable monitors of past changes in ocean chemistry, such as the δ13C and δ18O of foraminiferal calcite are subject to high-frequency variations that must be smoothed out if long-term, secular, trends are to be recognized clearly. Conversely, other records of past seawater chemistry, such as the marine strontium isotope record, respond only slowly to high-frequency external forcing and are incapable of recording it with fidelity. Nevertheless, it is likely that high-frequency forcing related to glacial erosion and shifts in the hydrologic cycle play an important role in shaping the marine strontium isotope record. Therefore, even though the focus of this review is on records of Cenozoic ocean chemistry that emphasize long-term changes, the different timescales on which Cenozoic ocean chemistry changes are not fully separable.In this review emphasis is placed on isotopic records of ocean chemistry. In general terms, a conscious decision was made to emphasize those records that document long-term changes in the chemical and physical properties of the global ocean over the course of the Cenozoic. For example, while reconstructions of burial fluxes of barium or phosphorus may place valuable constraints on paleo-productivity in a specific setting, making extrapolations to infer globally integrated trends from these data sets is very difficult because of sparse data coverage in space and time. Similarly, we have also chosen to exclude discussion of short-residence-time tracers like lead and neodymium isotopes that can yield important information about changing patterns of ocean circulation and regional shifts in oceanic inputs. A recent

  11. Terrestrial origin of viviparity in mesozoic marine reptiles indicated by early triassic embryonic fossils.

    PubMed

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction.

  12. Terrestrial Origin of Viviparity in Mesozoic Marine Reptiles Indicated by Early Triassic Embryonic Fossils

    PubMed Central

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction. PMID:24533127

  13. Tracing the geographical origin of early potato tubers using stable hydrogen isotope ratios of methoxyl groups.

    PubMed

    Keppler, Frank; Hamilton, John T G

    2008-12-01

    The application of stable isotope ratio measurements has become an extremely useful tool for tracing the provenance of food products, thus ensuring that consumers receive products which comply with their labelled specifications. Recently, it has been shown that relative stable hydrogen isotope abundances (delta(2)H values) of wood lignin methoxyl groups have a distinct range that reflects the delta(2)H values of their meteoric source water. Furthermore, it has been suggested that the isotope information stored in methoxyl groups in plant matter generally might assist with determining the place of origin of plant material. We now have measured delta(2)H values of methoxyl groups from natural compounds in tubers of early potatoes (Solanum tuberosum) grown in different geographical locations. Tubers of early potatoes were collected from across Europe and regions close to the Mediterranean Sea between April and July 2004. The methoxyl groups from the potatoes were found to be highly depleted in (2)H, relative to both their meteoric water and bulk biomass, and a systematic shift of the delta(2)H values between methoxyl groups and meteoric water was observed. A constant fractionation of-161+/-11 per thousand. between methoxyl groups and modelled meteoric water is shown over a transaction covering the delta(2)H values of meteoric water from-95 per thousand in Northern Sweden to+25 per thousand in Egypt. From this information, early potato tubers from Middle Europe can be clearly distinguished from those of Mediterranean regions and from Northern Europe. Thus, we suggest that delta(2)H values of methoxyl groups have the potential to become an effective tool in assisting with the constraint of the geographical origin of potato tubers and other food stuffs.

  14. A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders.

    PubMed

    Anderson, Jason S; Reisz, Robert R; Scott, Diane; Fröbisch, Nadia B; Sumida, Stuart S

    2008-05-22

    The origin of extant amphibians (Lissamphibia: frogs, salamanders and caecilians) is one of the most controversial questions in vertebrate evolution, owing to large morphological and temporal gaps in the fossil record. Current discussions focus on three competing hypotheses: a monophyletic origin within either Temnospondyli or Lepospondyli, or a polyphyletic origin with frogs and salamanders arising among temnospondyls and caecilians among the lepospondyls. Recent molecular analyses are also controversial, with estimations for the batrachian (frog-salamander) divergence significantly older than the palaeontological evidence supports. Here we report the discovery of an amphibamid temnospondyl from the Early Permian of Texas that bridges the gap between other Palaeozoic amphibians and the earliest known salientians and caudatans from the Mesozoic. The presence of a mosaic of salientian and caudatan characters in this small fossil makes it a key taxon close to the batrachian (frog and salamander) divergence. Phylogenetic analysis suggests that the batrachian divergence occurred in the Middle Permian, rather than the late Carboniferous as recently estimated using molecular clocks, but the divergence with caecilians corresponds to the deep split between temnospondyls and lepospondyls, which is congruent with the molecular estimates.

  15. Evidence for an Early Origin of Vernalization Responsiveness in Temperate Pooideae Grasses.

    PubMed

    McKeown, Meghan; Schubert, Marian; Marcussen, Thomas; Fjellheim, Siri; Preston, Jill C

    2016-09-01

    The ability of plants to match their reproductive output with favorable environmental conditions has major consequences both for lifetime fitness and geographic patterns of diversity. In temperate ecosystems, some plant species have evolved the ability to use winter nonfreezing cold (vernalization) as a cue to ready them for spring flowering. However, it is unknown how important the evolution of vernalization responsiveness has been for the colonization and subsequent diversification of taxa within the northern and southern temperate zones. Grasses of subfamily Pooideae, including several important crops, such as wheat (Triticum aestivum), barley (Hordeum vulgare), and oats (Avena sativa), predominate in the northern temperate zone, and it is hypothesized that their radiation was facilitated by the early evolution of vernalization responsiveness. Predictions of this early origin hypothesis are that a response to vernalization is widespread within the subfamily and that the genetic basis of this trait is conserved. To test these predictions, we determined and reconstructed vernalization responsiveness across Pooideae and compared expression of wheat vernalization gene orthologs VERNALIZATION1 (VRN1) and VRN3 in phylogenetically representative taxa under cold and control conditions. Our results demonstrate that vernalization responsive Pooideae species are widespread, suggesting that this trait evolved early in the lineage and that at least part of the vernalization gene network is conserved throughout the subfamily. These results are consistent with the hypothesis that the evolution of vernalization responsiveness was important for the initial transition of Pooideae out of the tropics and into the temperate zone.

  16. Evidence for an Early Origin of Vernalization Responsiveness in Temperate Pooideae Grasses1[OPEN

    PubMed Central

    McKeown, Meghan; Fjellheim, Siri

    2016-01-01

    The ability of plants to match their reproductive output with favorable environmental conditions has major consequences both for lifetime fitness and geographic patterns of diversity. In temperate ecosystems, some plant species have evolved the ability to use winter nonfreezing cold (vernalization) as a cue to ready them for spring flowering. However, it is unknown how important the evolution of vernalization responsiveness has been for the colonization and subsequent diversification of taxa within the northern and southern temperate zones. Grasses of subfamily Pooideae, including several important crops, such as wheat (Triticum aestivum), barley (Hordeum vulgare), and oats (Avena sativa), predominate in the northern temperate zone, and it is hypothesized that their radiation was facilitated by the early evolution of vernalization responsiveness. Predictions of this early origin hypothesis are that a response to vernalization is widespread within the subfamily and that the genetic basis of this trait is conserved. To test these predictions, we determined and reconstructed vernalization responsiveness across Pooideae and compared expression of wheat vernalization gene orthologs VERNALIZATION1 (VRN1) and VRN3 in phylogenetically representative taxa under cold and control conditions. Our results demonstrate that vernalization responsive Pooideae species are widespread, suggesting that this trait evolved early in the lineage and that at least part of the vernalization gene network is conserved throughout the subfamily. These results are consistent with the hypothesis that the evolution of vernalization responsiveness was important for the initial transition of Pooideae out of the tropics and into the temperate zone. PMID:27474116

  17. Cenozoic erosion and flexural isostasy of Scandinavia

    NASA Astrophysics Data System (ADS)

    Gołędowski, Bartosz; Egholm, David L.; Nielsen, Søren B.; Clausen, Ole R.; McGregor, Eoin D.

    2013-10-01

    The presence of Cenozoic deposits along the Norwegian Atlantic margin required extensive erosion of the Scandinavian Mountains in a generally cooling climate from the Oligocene to the present. The volume of the deposits implies that the transfer of mass from the inland area to the offshore shelf induced isostatic displacements on a kilometer scale. However, except for glacial excavation of the deep fjords, little is known about the distribution of Cenozoic inland erosion. A long-lasting paradigm incorporates remnants of peneplains at high elevation and assumes very little Cenozoic erosion on these surfaces through time. This scenario has recently been challenged by quantitative geomorphological studies indicating that the matrix of Cenozoic sediments deposited offshore must have been sourced from these surfaces. An alternative explanation for the present-day high-elevation low-relief surfaces is therefore that they evolved throughout the Cenozoic because of glacial and periglacial erosion processes that are known to vary strongly with altitude. Here we explore the implications of the latter scenario by reconstructing a pre-Cenozoic fluvial landscape without elevated low-relief surfaces. We use the present-day offshore sediment volumes for constraining the total Cenozoic erosion, and we find that a likely pre-Cenozoic fluvial landscape is only in few places more than 1 km higher than today. The rock mass of the offshore sediments is generally used for filling the fjords created during the Quaternary glaciations and for restoring concave river profiles from sea level to the peaks. Our reconstruction is based on a fluvial landscape algorithm and considers the isostatic response to the transfer of rock mass - from the basins onto the onshore area. A comparison between the reconstructed and the present-day topography demonstrates that offshore tilting of pre-Cenozoic strata can be partly explained by flexural isostatic compensation in response to the Cenozoic erosion

  18. Subsidence of the Gulf of Papua in the Cenozoic

    NASA Astrophysics Data System (ADS)

    Zhiyu, Wang; Stein, Carol A.

    1992-05-01

    The Gulf of Papua, between Papua New Guinea and the northeastern Australian margin, contains thick Cenozoic strata. We have examined the subsidence history using data from eight wells in the Gulf of Papua. Four are in the western Gulf region overlying Paleozoic basement and four are in the eastern Gulf near the Aure trough. Backstripping results show two subsidence episodes for the western wells. The first episode, from early Cenozoic to Oligocene, may be due to a small amount of lithospheric stretching associated with the opening of the Coral Sea. The second, from Early Miocene to the present, has a substantially higher subsidence rate which cannot be explained by a Paleocene rifting event. The Late Oligocene-Late Miocene episode of rapid subsidence in the Aure trough, to the east, appears to be a significant factor affecting the subsidence of the western Gulf of Papua during this period. To test this, we computed the expected deflection from flexure due to the load of the Aure trough strata and find a profile similar to that observed. The model used had an effective elastic thickness similar to those for rifted continental margins, thus implying a relatively weak lithosphere. In addition, the predicted position of the forebulge in the western Gulf occurs where Oligocene strata are absent, suggesting post-depositional uplift and hence facilitating the growth of Early Miocene reefs.

  19. Cenozoic Methane-Seep Faunas of the Caribbean Region.

    PubMed

    Kiel, Steffen; Hansen, Bent T

    2015-01-01

    We report new examples of Cenozoic cold-seep communities from Colombia, Cuba, the Dominican Republic, Trinidad, and Venezuela, and attempt to improve the stratigraphic dating of Cenozoic Caribbean seep communities using strontium isotope stratigraphy. Two seep faunas are distinguished in Barbados: the late Eocene mudstone-hosted 'Joes River fauna' consists mainly of large lucinid bivalves and tall abyssochrysoid gastropods, and the early Miocene carbonate-hosted 'Bath Cliffs fauna' containing the vesicomyid Pleurophopsis, the mytilid Bathymodiolus and small gastropods. Two new Oligocene seep communities from the Sinú River basin in Colombia consist of lucinid bivalves including Elongatolucina, thyasirid and solemyid bivalves, and Pleurophopsis. A new early Miocene seep community from Cuba includes Pleurophopsis and the large lucinid Meganodontia. Strontium isotope stratigraphy suggests an Eocene age for the Cuban Elmira asphalt mine seep community, making it the oldest in the Caribbean region. A new basal Pliocene seep fauna from the Dominican Republic is characterized by the large lucinid Anodontia (Pegophysema). In Trinidad we distinguish two types of seep faunas: the mudstone-hosted Godineau River fauna consisting mainly of lucinid bivalves, and the limestone-hosted Freeman's Bay fauna consisting chiefly of Pleurophopsis, Bathymodiolus, and small gastropods; they are all dated as late Miocene. Four new seep communities of Oligocene to Miocene age are reported from Venezuela. They consist mainly of large globular lucinid bivalves including Meganodontia, and moderately sized vesicomyid bivalves. After the late Miocene many large and typical 'Cenozoic' lucinid genera disappeared from the Caribbean seeps and are today known only from the central Indo-Pacific Ocean. We speculate that the increasingly oligotrophic conditions in the Caribbean Sea after the closure of the Isthmus of Panama in the Pliocene may have been unfavorable for such large lucinids because they

  20. The early origin of vertebral anomalies, as illustrated by a 'butterfly vertebra'.

    PubMed Central

    Müller, F; O'Rahilly, R; Benson, D R

    1986-01-01

    An anomalous (butterfly) eleventh thoracic vertebra in a fetus of 63 mm greatest length is described and graphic reconstructions (together with normal controls) are provided. The cartilaginous hemicentra are separated by disc-like material. Cartilaginous bars to adjacent vertebrae are present. The neural arch is complete. The notochord is not duplicated. Only one comparable case in the embryonic period has been described previously. After a discussion of cleft vertebrae in the human and in experimental animals, a developmental timetable of the appearance of several vertebral anomalies is provided. The sensitive period for butterfly vertebrae, depending on the mode of origin, seems to be 3-6 postovulatory weeks. More severe anomalies, such as the split notochord syndrome, appear earlier. It is concluded that most of the vertebral anomalies discussed arise during the embryonic period proper, although the timing of a few, such as spina bifida occulta, extends into the early fetal period. Images Fig. 1 Fig. 3 Fig. 5 PMID:3693103

  1. Early ceremonial constructions at Ceibal, Guatemala, and the origins of lowland Maya civilization.

    PubMed

    Inomata, Takeshi; Triadan, Daniela; Aoyama, Kazuo; Castillo, Victor; Yonenobu, Hitoshi

    2013-04-26

    The spread of plaza-pyramid complexes across southern Mesoamerica during the early Middle Preclassic period (1000 to 700 BCE) provides critical information regarding the origins of lowland Maya civilization and the role of the Gulf Coast Olmec. Recent excavations at the Maya site of Ceibal, Guatemala, documented the growth of a formal ceremonial space into a plaza-pyramid complex that predated comparable buildings at other lowland Maya sites and major occupations at the Olmec center of La Venta. The development of lowland Maya civilization did not result from one-directional influence from La Venta, but from interregional interactions, involving groups in the southwestern Maya lowlands, Chiapas, the Pacific Coast, and the southern Gulf Coast.

  2. An Early-Branching Freshwater Cyanobacterium at the Origin of Plastids.

    PubMed

    Ponce-Toledo, Rafael I; Deschamps, Philippe; López-García, Purificación; Zivanovic, Yvan; Benzerara, Karim; Moreira, David

    2017-02-06

    Photosynthesis evolved in eukaryotes by the endosymbiosis of a cyanobacterium, the future plastid, within a heterotrophic host. This primary endosymbiosis occurred in the ancestor of Archaeplastida, a eukaryotic supergroup that includes glaucophytes, red algae, green algae, and land plants [1-4]. However, although the endosymbiotic origin of plastids from a single cyanobacterial ancestor is firmly established, the nature of that ancestor remains controversial: plastids have been proposed to derive from either early- or late-branching cyanobacterial lineages [5-11]. To solve this issue, we carried out phylogenomic and supernetwork analyses of the most comprehensive dataset analyzed so far including plastid-encoded proteins and nucleus-encoded proteins of plastid origin resulting from endosymbiotic gene transfer (EGT) of primary photosynthetic eukaryotes, as well as wide-ranging genome data from cyanobacteria, including novel lineages. Our analyses strongly support that plastids evolved from deep-branching cyanobacteria and that the present-day closest cultured relative of primary plastids is Gloeomargarita lithophora. This species belongs to a recently discovered cyanobacterial lineage widespread in freshwater microbialites and microbial mats [12, 13]. The ecological distribution of this lineage sheds new light on the environmental conditions where the emergence of photosynthetic eukaryotes occurred, most likely in a terrestrial-freshwater setting. The fact that glaucophytes, the first archaeplastid lineage to diverge, are exclusively found in freshwater ecosystems reinforces this hypothesis. Therefore, not only did plastids emerge early within cyanobacteria, but the first photosynthetic eukaryotes most likely evolved in terrestrial-freshwater settings, not in oceans as commonly thought.

  3. The Early Phases of Genetic Code Origin: Conjectures on the Evolution of Coded Catalysis

    NASA Astrophysics Data System (ADS)

    Di Giulio, Massimo

    2003-10-01

    A review of the most significant contributions on the early phases of genetic code origin is presented. After stressing the importance of the key intermediary role played in protein synthesis, by peptidyl-tRNA, which is attributed with a primary function in ancestral catalysis, the general lines leading to the codification of the first amino acids in the genetic code are discussed. This is achieved by means of a model of protoribosome evolution which sees protoribosome as the central organiser of ancestral biosynthesis and the mediator of the encounter between compounds (metabolite-pre-tRNAs) and catalysts (peptidyl-pre-tRNAs). The encounter between peptidyl-pre-tRNA catalysts in protoribosome is favoured by metabolic pre-mRNAs and later resulted (given the high temperature at which this evolution is supposed to have taken place) in the evolution of mRNAs with codons of the type GNS. These mRNAs codified only for those amino acids that the coevolution theory of genetic code origin sees as the precursors of all other amino acids. Some aspects of the model here discussed might be rendered real by the transfer-messenger RNA molecule (tmRNA) which is here considered a molecular fossil of ancestral protein synthesis.

  4. The early life origin theory in the development of cardiovascular disease and type 2 diabetes.

    PubMed

    Lindblom, Runa; Ververis, Katherine; Tortorella, Stephanie M; Karagiannis, Tom C

    2015-04-01

    Life expectancy has been examined from a variety of perspectives in recent history. Epidemiology is one perspective which examines causes of morbidity and mortality at the population level. Over the past few 100 years there have been dramatic shifts in the major causes of death and expected life length. This change has suffered from inconsistency across time and space with vast inequalities observed between population groups. In current focus is the challenge of rising non-communicable diseases (NCD), such as cardiovascular disease and type 2 diabetes mellitus. In the search to discover methods to combat the rising incidence of these diseases, a number of new theories on the development of morbidity have arisen. A pertinent example is the hypothesis published by David Barker in 1995 which postulates the prenatal and early developmental origin of adult onset disease, and highlights the importance of the maternal environment. This theory has been subject to criticism however it has gradually gained acceptance. In addition, the relatively new field of epigenetics is contributing evidence in support of the theory. This review aims to explore the implication and limitations of the developmental origin hypothesis, via an historical perspective, in order to enhance understanding of the increasing incidence of NCDs, and facilitate an improvement in planning public health policy.

  5. On the origin and early evolution of biological catalysis and other studies on chemical evolution

    NASA Technical Reports Server (NTRS)

    Oro, J.; Lazcano, A.

    1991-01-01

    One of the lines of research in molecular evolution which we have developed for the past three years is related to the experimental and theoretical study of the origin and early evolution of biological catalysis. In an attempt to understand the nature of the first peptidic catalysts and coenzymes, we have achieved the non-enzymatic synthesis of the coenzymes ADPG, GDPG, and CDP-ethanolamine, under conditions considered to have been prevalent on the primitive Earth. We have also accomplished the prebiotic synthesis of histidine, as well as histidyl-histidine, and we have measured the enhancing effects of this catalytic dipeptide on the dephosphorylation of deoxyribonucleotide monophosphates, the hydrolysis of oligo A, and the oligomerization 2', 3' cAMP. We reviewed and further developed the hypothesis that RNA preceded double stranded DNA molecules as a reservoir of cellular genetic information. This led us to undertake the study of extant RNA polymerases in an attempt to discover vestigial sequences preserved from early Archean times. In addition, we continued our studies of on the chemical evolution of organic compounds in the solar system and beyond.

  6. Cenozoic stratigraphic evolution, North Sea and Labrador Sea

    SciTech Connect

    Gradstein, F.M.; Grant, A.C.; Mudford, B.S. ); Berggren, W.A. ); Kaminski, M.A. ); D'Lorio, M.A. ); Cloetingh, S. ); Griffiths, C.M. )

    1990-05-01

    The authors are studying Cenozoic correlation patterns, burial trends, and subsidence history of the Central North Sea, Labrador, and Orphan basins. The authors objectives are (1) to detail intraregional mid-high latitude biozonations using noise filtering and probabilistic zonation techniques; (2) to detail paleobathymetric trends from basin margins to centers; (3) to apply this knowledge to model basin evolution, in the perspective of the evolving North Atlantic Ocean; (4) to evaluate causes for the occurrence of major hiatuses and rapid changes of subsidence; and (5) to relate rapid changes in sedimentation in the last few millions of years to model observed undercompaction trends. Cenozoic microfossil assemblages in these basins are similar, related to similarities in sedimentary and paleoeceanographic conditions. In more basinal wells, flysch-type agglutinated foraminiferal assemblages occur, also known from Carpathians, Trinidad, and Moroccan foredeeps. Over 90% of agglutinated taxa are common between these basins, although local stratigraphic ranges vary sufficiently to rely on the concept of average ranges, rather than total ones for correlations. Cenozoic stratigraphic resolution in the North Sea and Labrador basins generally is in 3-5-Ma units. and paleobathymetric zonations define a minimum of five niches, from inner shelf to middle slope regimes. Significant hiatuses occurred in the late Eocene through the Miocene, particularly in northern Labrador and northern North Sea. Subsidence in the Labrador/Grand Banks passive margin half grabens was strongly influenced by Labrador Sea opening between anomalies 34 (Campanian) and 13 (early Oligocene), when subsidence exceeded sedimentation and bathyal conditions prevailed along the margin. Thermally induced subsidence in the central North Sea grabens was considerable in the late Paleocene, when the Norwegian Sea started to open.

  7. The origin and development of individual size variation in early pelagic stages of fish.

    PubMed

    Huss, Magnus; Persson, Lennart; Byström, Pär

    2007-08-01

    Size variation among individuals born at the same time in a common environment (within cohorts) is a common phenomenon in natural populations. Still, the mechanisms behind the development of such variation and its consequences for population processes are far from clear. We experimentally investigated the development of early within-cohort size variation in larval perch (Perca fluviatilis). Specifically we tested the influence of initial variation, resulting from variation in egg strand size, and intraspecific density for the development of size variation. Variation in egg strand size translated into variation in initial larval size and time of hatching, which, in turn, had effects on growth and development. Perch from the smallest egg strands performed on average equally well independent of density, whereas larvae originating from larger egg strands performed less well under high densities. We related this difference in density dependence to size asymmetries in competitive abilities leading to higher growth rates of groups consisting of initially small individuals under high resource limitation. In contrast, within a single group of larvae, smaller individuals grew substantially slower under high densities whereas large individuals performed equally well independent of density. As a result, size variation among individuals within groups (i.e. originating from the same clutch) increased under high densities. This result may be explained by social interactions or differential timing of diet shifts and a depressed resource base for the initially smaller individuals. It is concluded that to fully appreciate the effects of density-dependent processes on individual size variation and size-dependent growth, consumer feedbacks on resources need to be considered.

  8. The origin and early evolution of metatherian mammals: the Cretaceous record

    PubMed Central

    Williamson, Thomas E.; Brusatte, Stephen L.; Wilson, Gregory P.

    2014-01-01

    Abstract Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg) boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary. PMID:25589872

  9. The origin and early evolution of metatherian mammals: the Cretaceous record.

    PubMed

    Williamson, Thomas E; Brusatte, Stephen L; Wilson, Gregory P

    2014-01-01

    Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg) boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary.

  10. Records of our Early Biosphere Illuminate our Origins and Guide our Search for Life Beyond Earth

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.

    2003-01-01

    A scientific "mission of exploration to early Earth" will help us chart the distribution of life elsewhere. We must discriminate between attributes of biospheres that are universal versus those attributes that represent principally the outcomes of long-term survival specifically on Earth. In addition to the basic physics and chemistry of matter, the geologic evolution of rocky habitable planets and their climates might be similar elsewhere in the Universe. Certain key agents that drive long-term environmental change (e.g., stellar evolution, impacts, geothermal heat flow, tectonics, etc.) can help us to reconstruct ancient climates and to compare their evolution among populations of Earth- like planets. Early Earth was tectonically more active than today and therefore it exhaled reduced chemical species into the more oxidized surface environment at greater rates. This tectonic activity thus sustained oxidation-reduction reactions that provided the basis for the development of biochemical pathways that harvest chemical energy ("bioenergetics"). Most examples of bioenergetics today that extract energy by reacting oxidized and reduced chemicals in the environment were likely more pervasive among our microbial ancestors than are the presently known examples of photosynthesis. The geologic rock record indicates that, as early as 3.5 billion years ago (3.5 Ga), microbial biofilms were widespread within the coastal environments of small continents and tectonically unstable volcanic islands. Non oxygen-producing (non-oxygenic) photosynthesis preceded oxygenic photosynthesis, but all types of photosynthesis contributed substantially to the long-term increase in global primary biological productivity. Evidence of photosynthesis is tentative by 3.5 Ga and compelling by 2.7 Ga. Evidence of oxygenic photosynthesis is strong by 2.7 Ga and compelling by 2.3 Ga. These successive innovations transformed life from local communities that survived principally by catalyzing chemical

  11. Records of our Early Biosphere Illuminate our Origins and Guide our Search for Life beyond Earth

    NASA Astrophysics Data System (ADS)

    Des Marais, D. J.

    2003-12-01

    A scientific "mission of exploration to early Earth" will help us chart the distribution of life elsewhere. We must discriminate between attributes of biospheres that are universal versus those attributes that represent principally the outcomes of long-term survival specifically on Earth. In addition to the basic physics and chemistry of matter, the geologic evolution of rocky habitable planets and their climates might be similar elsewhere in the Universe. Certain key agents that drive long-term environmental change (e.g., stellar evolution, impacts, geothermal heat flow, tectonics, etc.) can help us to reconstruct ancient climates and to compare their evolution among populations of Earth-like planets. Early Earth was tectonically more active than today and therefore it exhaled reduced chemical species into the more oxidized surface environment at greater rates. This tectonic activity thus sustained oxidation-reduction reactions that provided the basis for the development of biochemical pathways that harvest chemical energy ("bioenergetics"). Most examples of bioenergetics today that extract energy by reacting oxidized and reduced chemicals in the environment were likely more pervasive among our microbial ancestors than are the presently known examples of photosynthesis. The geologic rock record indicates that, as early as 3.5 billion years ago (3.5 Ga), microbial biofilms were widespread within the coastal environments of small continents and tectonically unstable volcanic islands. Non oxygen-producing (non-oxygenic) photosynthesis preceded oxygenic photosynthesis, but all types of photosynthesis contributed substantially to the long-term increase in global primary biological productivity. Evidence of photosynthesis is tentative by 3.5 Ga and compelling by 2.7 Ga. Evidence of oxygenic photosynthesis is strong by 2.7 Ga and compelling by 2.3 Ga. These successive innovations transformed life from local communities that survived principally by catalyzing chemical

  12. Tectonic controls on the geochemical composition of Cenozoic, mafic alkaline volcanic rocks from West Antarctica

    NASA Astrophysics Data System (ADS)

    Hole, M. J.; Lemasurier, W. E.

    1994-06-01

    Cenozoic, mafic alkaline volcanic rocks throughout West Antarctica (WA) occupy diverse tectonic environments. On the Antarctic Peninsula (AP), late Miocene-Pleistocene (7 to <1 Ma) alkaline basaltic rocks were erupted <1 to 45 million years after subduction ceased along the Pacific margin of the AP. In Marie Byrd Land (MBL), by contrast, alkaline basaltic volcanism has been semi-continuous from 25 30 Ma to the present, and occurs in the West Antarctic rift system. Together, these Antarctic tectono-magmatic associations are analogous to the Basin and Range, Sierran, and Coast Range batholith provinces. Unlike the western US, however, basaltic rocks throughout WA have uniform geochemical characteristics, with especially narrow ranges in initial87Sr/86Sr (0.7026 0.7035),143Nd/144Nd (0.51286 0.51299), and La/Nb (0.6 1.4) ratios, suggesting very limited liput from “old” subcontinental lithosphere or crustal sources during magma genesis. However, there are significant differences in the relative and absolute abundances of the LILE (large-ionlithophile elements), and these divide WA into two provinces. Basalts from the AP region have unusually high K/Ba and K/Rb ratios (50 140 and 500 1500 respectively) and marked Ba depletion (Ba/Nb=2.5 8.0; Ba ppm 66 320) relative to MBL basalts, which have LILE distributions within the range for OIB (ocean-island basalt) (K/Ba <50, Ba/Nb 5 20). This geochemical contrast is accompanied by a three-fold increase in the age range of volcanic activity and a three orders of magnitude increase in the volume of eruptive products, within MBL. The regional differences in geochemistry, and in the volume and duration of volcanic activity, are best explained by a plume-related origin for MBL basalts, whereas alkaline magmatism in the AP is causally related to slab window formation following the cessation of subduction. Plume activity has alreadybeen proposed to explain tectonic doming and associated spatial patterns of volcanism in MBL. Most

  13. Early inner solar system origin for anomalous sulfur isotopes in differentiated protoplanets.

    PubMed

    Antonelli, Michael A; Kim, Sang-Tae; Peters, Marc; Labidi, Jabrane; Cartigny, Pierre; Walker, Richard J; Lyons, James R; Hoek, Joost; Farquhar, James

    2014-12-16

    Achondrite meteorites have anomalous enrichments in (33)S, relative to chondrites, which have been attributed to photochemistry in the solar nebula. However, the putative photochemical reactions remain elusive, and predicted accompanying (33)S depletions have not previously been found, which could indicate an erroneous assumption regarding the origins of the (33)S anomalies, or of the bulk solar system S-isotope composition. Here, we report well-resolved anomalous (33)S depletions in IIIF iron meteorites (<-0.02 per mil), and (33)S enrichments in other magmatic iron meteorite groups. The (33)S depletions support the idea that differentiated planetesimals inherited sulfur that was photochemically derived from gases in the early inner solar system (<∼2 AU), and that bulk inner solar system S-isotope composition was chondritic (consistent with IAB iron meteorites, Earth, Moon, and Mars). The range of mass-independent sulfur isotope compositions may reflect spatial or temporal changes influenced by photochemical processes. A tentative correlation between S isotopes and Hf-W core segregation ages suggests that the two systems may be influenced by common factors, such as nebular location and volatile content.

  14. Developmental origins of cardiovascular disease: Impact of early life stress in humans and rodents.

    PubMed

    Murphy, M O; Cohn, D M; Loria, A S

    2017-03-01

    The Developmental Origins of Health and Disease (DOHaD) hypothesizes that environmental insults during childhood programs the individual to develop chronic disease in adulthood. Emerging epidemiological data strongly supports that early life stress (ELS) given by the exposure to adverse childhood experiences is regarded as an independent risk factor capable of predicting future risk of cardiovascular disease. Experimental animal models utilizing chronic behavioral stress during postnatal life, specifically maternal separation (MatSep) provides a suitable tool to elucidate molecular mechanisms by which ELS increases the risk to develop cardiovascular disease, including hypertension. The purpose of this review is to highlight current epidemiological studies linking ELS to the development of cardiovascular disease and to discuss the potential molecular mechanisms identified from animal studies. Overall, this review reveals the need for future investigations to further clarify the molecular mechanisms of ELS in order to develop more personalized therapeutics to mitigate the long-term consequences of chronic behavioral stress including cardiovascular and heart disease in adulthood.

  15. Early inner solar system origin for anomalous sulfur isotopes in differentiated protoplanets

    PubMed Central

    Antonelli, Michael A.; Kim, Sang-Tae; Peters, Marc; Labidi, Jabrane; Cartigny, Pierre; Walker, Richard J.; Lyons, James R.; Hoek, Joost; Farquhar, James

    2014-01-01

    Achondrite meteorites have anomalous enrichments in 33S, relative to chondrites, which have been attributed to photochemistry in the solar nebula. However, the putative photochemical reactions remain elusive, and predicted accompanying 33S depletions have not previously been found, which could indicate an erroneous assumption regarding the origins of the 33S anomalies, or of the bulk solar system S-isotope composition. Here, we report well-resolved anomalous 33S depletions in IIIF iron meteorites (<−0.02 per mil), and 33S enrichments in other magmatic iron meteorite groups. The 33S depletions support the idea that differentiated planetesimals inherited sulfur that was photochemically derived from gases in the early inner solar system (<∼2 AU), and that bulk inner solar system S-isotope composition was chondritic (consistent with IAB iron meteorites, Earth, Moon, and Mars). The range of mass-independent sulfur isotope compositions may reflect spatial or temporal changes influenced by photochemical processes. A tentative correlation between S isotopes and Hf-W core segregation ages suggests that the two systems may be influenced by common factors, such as nebular location and volatile content. PMID:25453079

  16. Early Gas Stripping as the Origin of the Darkest Galaxies in the Universe

    SciTech Connect

    Mayer, Lucio; Kazantzidis, Stelios; Mastropietro, Chiara; Wadsley, James; /McMaster U.

    2007-02-28

    The known galaxies most dominated by dark matter (Draco, Ursa Minor and Andromeda IX) are satellites of the Milky Way and the Andromeda galaxies. They are members of a class of faint galaxies, devoid of gas, known as dwarf spheroidals, and have by far the highest ratio of dark to luminous matter. None of the models proposed to unravel their origin can simultaneously explain their exceptional dark matter content and their proximity to a much larger galaxy. Here we report simulations showing that the progenitors of these galaxies were probably gas-dominated dwarf galaxies that became satellites of a larger galaxy earlier than the other dwarf spheroidals. We find that a combination of tidal shocks and ram pressure swept away the entire gas content of such progenitors about ten billion years ago because heating by the cosmic ultraviolet background kept the gas loosely bound: a tiny stellar component embedded in a relatively massive dark halo survived until today. All luminous galaxies should be surrounded by a few extremely dark-matter-dominated dwarf spheroidal satellites, and these should have the shortest orbital periods among dwarf spheroidals because they were accreted early.

  17. Early turbulent mixing as the origin of chemical homogeneity in open star clusters.

    PubMed

    Feng, Yi; Krumholz, Mark R

    2014-09-25

    The abundances of elements in stars are critical clues to stars' origins. Observed star-to-star variations in logarithmic abundance within an open star cluster--a gravitationally bound ensemble of stars in the Galactic plane--are typically only about 0.01 to 0.05 over many elements, which is noticeably smaller than the variation of about 0.06 to 0.3 seen in the interstellar medium from which the stars form. It is unknown why star clusters are so homogenous, and whether homogeneity should also prevail in regions of lower star formation efficiency that do not produce bound clusters. Here we report simulations that trace the mixing of chemical elements as star-forming clouds assemble and collapse. We show that turbulent mixing during cloud assembly naturally produces a stellar abundance scatter at least five times smaller than that in the gas, which is sufficient to explain the observed chemical homogeneity of stars. Moreover, mixing occurs very early, so that regions with star formation efficiencies of about 10 per cent are nearly as well mixed as those with formation efficiencies of about 50 per cent. This implies that even regions that do not form bound clusters are likely to be well mixed, and improves the prospects of using 'chemical tagging' to reconstruct (via their unique chemical signatures, or tags) star clusters whose constituent stars have become unbound from one another and spread across the Galactic disk.

  18. Early gas stripping as the origin of the darkest galaxies in the Universe.

    PubMed

    Mayer, L; Kazantzidis, S; Mastropietro, C; Wadsley, J

    2007-02-15

    The known galaxies most dominated by dark matter (Draco, Ursa Minor and Andromeda IX) are satellites of the Milky Way and the Andromeda galaxies. They are members of a class of faint galaxies, devoid of gas, known as dwarf spheroidals, and have by far the highest ratio of dark to luminous matter. None of the models proposed to unravel their origin can simultaneously explain their exceptional dark matter content and their proximity to a much larger galaxy. Here we report simulations showing that the progenitors of these galaxies were probably gas-dominated dwarf galaxies that became satellites of a larger galaxy earlier than the other dwarf spheroidals. We find that a combination of tidal shocks and ram pressure swept away the entire gas content of such progenitors about ten billion years ago because heating by the cosmic ultraviolet background kept the gas loosely bound: a tiny stellar component embedded in a relatively massive dark halo survived until today. All luminous galaxies should be surrounded by a few extremely dark-matter-dominated dwarf spheroidal satellites, and these should have the shortest orbital periods among dwarf spheroidals because they were accreted early.

  19. Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact

    PubMed Central

    Zeder, Melinda A.

    2008-01-01

    The past decade has witnessed a quantum leap in our understanding of the origins, diffusion, and impact of early agriculture in the Mediterranean Basin. In large measure these advances are attributable to new methods for documenting domestication in plants and animals. The initial steps toward plant and animal domestication in the Eastern Mediterranean can now be pushed back to the 12th millennium cal B.P. Evidence for herd management and crop cultivation appears at least 1,000 years earlier than the morphological changes traditionally used to document domestication. Different species seem to have been domesticated in different parts of the Fertile Crescent, with genetic analyses detecting multiple domestic lineages for each species. Recent evidence suggests that the expansion of domesticates and agricultural economies across the Mediterranean was accomplished by several waves of seafaring colonists who established coastal farming enclaves around the Mediterranean Basin. This process also involved the adoption of domesticates and domestic technologies by indigenous populations and the local domestication of some endemic species. Human environmental impacts are seen in the complete replacement of endemic island faunas by imported mainland fauna and in today's anthropogenic, but threatened, Mediterranean landscapes where sustainable agricultural practices have helped maintain high biodiversity since the Neolithic. PMID:18697943

  20. [origin and early ecolution on Earth].

    PubMed

    Bregestowski, P D

    2015-01-01

    The most widely accepted modern scenario of prebiotic evolution that led to the emergence of the first cells on our planet is the "RNA World"--a hypothetical period of the early Earth's biosphere, when the information transfer and all the processes necessary for the functioning of the primary systems were provided by replicating RNA molecules. The essence of the "RNA World" hypothesis is based on two postulates: 1) at the initial stages of the origin of life, RNA molecules performed all functions necessary for reproduction and replication of biological molecules: informational, catalytic and structural; 2) at a certain stage of evolution arose separation of RNA and DNA, appeared genetically encoded proteins and occurred a transition to the modern world of living systems functioning. However, the analysis shows that the hypothesis of "RNA World" has a number of unsurmountable problems of chemical and informational nature. The biggest of them are: a) the unreliability of the initial components synthesis; b) a catastrophic rise of polynucleotide chains instability with their elongation; c) catastrophically low probability of formation of sequences possessing meaningful information; d) lack of a mechanism determining the regularities division of the membrane vesicles permeable to nitrogen bases and other RNA components; e) lack of driving forces for the transition from the RNA world to the much more complex world based on DNA and RNA. Therefore, the "RNA World" scenario seems unlikely.

  1. Fossils and phylogenies: integrating multiple lines of evidence to investigate the origin of early major metazoan lineages.

    PubMed

    Cartwright, Paulyn; Collins, Allen

    2007-11-01

    Understanding the nature and timing of metazoan origins is one of the most important, yet elusive, questions in evolutionary biology. Fossil data provide the most tangible evidence for the origin of early animal lineages, although additional evidence from molecular phylogenetics, molecular clock studies, and development has contributed to our current understanding. We review several lines of evidence to explore the nature and timing of early metazoan evolution and discuss how these data, when considered together, provide a more cohesive picture of the origin of animal diversity. We discuss how trace fossils and biomarkers provide compelling evidence for the origins of Bilateria and siliceous sponges. Using a molecular phylogenetic framework for metazoans, we discuss how fossils can be used to date the origin of clades. We use these fossil dates to perform a relaxed molecular clock analysis for estimating dates of nodes when no fossils are available. We also discuss current data from developmental biology that suggest that early metazoans possessed a sophisticated molecular toolkit for building complex body plans. We conclude that the best evidence for the origin of major metazoan lineages lies in the careful interpretation of the fossil record and that these data, when considered with phylogenetic and developmental evidence, support the notion that the Cambrian radiation is a real phenomenon that marks a critically important time in the history of life.

  2. Episodic Cenozoic volcanism and tectonism in the Andes of Peru

    USGS Publications Warehouse

    Noble, D.C.; McKee, E.H.; Farrar, E.; Petersen, U.

    1974-01-01

    Radiometric and geologic information indicate a complex history of Cenozoic volcanism and tectonism in the central Andes. K-Ar ages on silicic pyroclastic rocks demonstrate major volcanic activity in central and southern Peru, northern Chile, and adjacent areas during the Early and Middle Miocene, and provide additional evidence for volcanism during the Late Eocene. A provisional outline of tectonic and volcanic events in the Peruvian Andes during the Cenozoic includes: one or more pulses of igneous activity and intense deformation during the Paleocene and Eocene; a period of quiescence, lasting most of Oligocene time; reinception of tectonism and volcanism at the beginning of the Miocene; and a major pulse of deformation in the Middle Miocene accompanied and followed through the Pliocene by intense volcanism and plutonism. Reinception of igneous activity and tectonism at about the Oligocene-Miocene boundary, a feature recognized in other circum-Pacific regions, may reflect an increase in the rate of rotation of the Pacific plate relative to fixed or quasifixed mantle coordinates. Middle Miocene tectonism and latest Tertiary volcanism correlates with and probably is genetically related to the beginning of very rapid spreading at the East Pacific Rise. ?? 1974.

  3. A Cenozoic record of the equatorial Pacific carbonate compensation depth.

    PubMed

    Pälike, Heiko; Lyle, Mitchell W; Nishi, Hiroshi; Raffi, Isabella; Ridgwell, Andy; Gamage, Kusali; Klaus, Adam; Acton, Gary; Anderson, Louise; Backman, Jan; Baldauf, Jack; Beltran, Catherine; Bohaty, Steven M; Bown, Paul; Busch, William; Channell, Jim E T; Chun, Cecily O J; Delaney, Margaret; Dewangan, Pawan; Dunkley Jones, Tom; Edgar, Kirsty M; Evans, Helen; Fitch, Peter; Foster, Gavin L; Gussone, Nikolaus; Hasegawa, Hitoshi; Hathorne, Ed C; Hayashi, Hiroki; Herrle, Jens O; Holbourn, Ann; Hovan, Steve; Hyeong, Kiseong; Iijima, Koichi; Ito, Takashi; Kamikuri, Shin-ichi; Kimoto, Katsunori; Kuroda, Junichiro; Leon-Rodriguez, Lizette; Malinverno, Alberto; Moore, Ted C; Murphy, Brandon H; Murphy, Daniel P; Nakamura, Hideto; Ogane, Kaoru; Ohneiser, Christian; Richter, Carl; Robinson, Rebecca; Rohling, Eelco J; Romero, Oscar; Sawada, Ken; Scher, Howie; Schneider, Leah; Sluijs, Appy; Takata, Hiroyuki; Tian, Jun; Tsujimoto, Akira; Wade, Bridget S; Westerhold, Thomas; Wilkens, Roy; Williams, Trevor; Wilson, Paul A; Yamamoto, Yuhji; Yamamoto, Shinya; Yamazaki, Toshitsugu; Zeebe, Richard E

    2012-08-30

    Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carbon input from volcanic and metamorphic outgassing and its removal by weathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The integrated effect of these processes is reflected in the calcium carbonate compensation depth, which is the oceanic depth at which calcium carbonate is dissolved. Here we present a carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean. The carbonate compensation depth tracks long-term ocean cooling, deepening from 3.0-3.5 kilometres during the early Cenozoic (approximately 55 million years ago) to 4.6 kilometres at present, consistent with an overall Cenozoic increase in weathering. We find large superimposed fluctuations in carbonate compensation depth during the middle and late Eocene. Using Earth system models, we identify changes in weathering and the mode of organic-carbon delivery as two key processes to explain these large-scale Eocene fluctuations of the carbonate compensation depth.

  4. The Mesozoic-Cenozoic Atlas belt (North Africa): an overview

    NASA Astrophysics Data System (ADS)

    Piqué, Alain; Tricart, Pierre; Guiraud, René; Laville, Edgard; Bouaziz, Samir; Amrhar, Mostafa; Ait Ouali, Rachid

    The Atlas domain extends in North Africa (= Maghreb) from the Atlantic (Moroccan Atlas) to Algeria and the Pelagian Sea (Tunisian Atlas), north of the Saharan platform. On top of a Palaeozoic basement affected by the Hercynian orogeny in Morocco and, at least, in western Algeria, the Early Mesozoic transgressions deposited a variably, thick sedimentary cover. After a Triassic episode of aborted rifting in the western Maghreb, related to the opening of Central Atlantic, the distribution of the sedimentary facies suggests that an Atlasic trough established during the Late Liassic, trending WSW-ENE, from Morocco to northern Tunisia. This trough was filled then affected by a transpressive deformation during the Mid-Jurassic in Morocco, the Late Eocene in Algeria and at a poorly defined period in northern Tunisia. Thereafter, a Cenozoic shortening event overprinted the previous folds in the Atlas series, particularly along the edges of the chain and uplifted the orogenic belt. The thick-skin vs. thin-skin style of the Cenozoic deformation is not surely determined.

  5. Cenozoic Tectonic Activity of the "Passive" North America Margin: Evidence for Cenozoic Activity on Mesozoic or Paleozoic Faults

    NASA Astrophysics Data System (ADS)

    Nedorub, O. I.; Knapp, C. C.

    2012-12-01

    The tectonic history of the Eastern North American Margin (ENAM) incorporates two cycles of continental assembly, multiple pulses of orogeny, rifting, and post-rift geodynamic evolution. This is reflected in the heterogeneous lithosphere of the ENAM which contains fault structures originated in Paleozoic to Mesozoic eras. The South Georgia Rift basin is probably the largest Mesozoic graben within its boundaries that is associated with the breakup of Pangea. It is composed of smaller sub-basins which appear to be bounded by high-angle normal faults, some of which may have been inverted in late Cretaceous and Cenozoic eras. Paleozoic structures may have been reactivated in Cenozoic time as well. The ENAM is characterized by N-NE maximum horizontal compressive stress direction. This maximum compressional stress field is sub-parallel to the strike of the Atlantic Coast province fault systems. Camden, Augusta, Allendale, and Pen Branch faults are four of the many such reactivated faults along the southern part of ENAM. These faults are now buried under the 0-400 m of loosely consolidated Cretaceous and Cenozoic age sediments and thus are either only partially mapped or currently not recognized. Some of the objectives of this study are to map the subsurface expression and geometry of these faults and to investigate the post Cretaceous deformation and possible causes of fault reactivation on a passive margin. This study employs an integrated geophysical approach to investigate the upper 200 m of identified locations of the above mentioned faults. 2-D high-resolution shallow seismic reflection and refraction methods, gravity surveys, GPR, 2-D electrical resistivity and well data are used for analyses and interpretation. Preliminary results suggest that Camden fault shows signs of Cenozoic reactivation through an approximately 30 m offset NW side up mainly along a steeply dipping fault zone in the basal contact of Coastal Plain sediments with the Carolina Piedmont. Drill

  6. Cenozoic seawater Sr/Ca evolution

    NASA Astrophysics Data System (ADS)

    Sosdian, Sindia M.; Lear, Caroline H.; Tao, Kai; Grossman, Ethan L.; O'Dea, Aaron; Rosenthal, Yair

    2012-10-01

    Records of seawater chemistry help constrain temporal variations in geochemical processes that impact the global carbon cycle and climate through Earth's history. Here we reconstruct Cenozoic seawater Sr/Ca (Sr/Casw) using fossil Conus and turritellid gastropod Sr/Ca. Combined with an oxygen isotope paleotemperature record from the same samples, the gastropod record suggests that Sr/Caswwas slightly higher in the Eocene (˜11.4 ± 3 mmol/mol) than today (˜8.54 mmol/mol) and remained relatively stable from the mid- to late Cenozoic. We compare our gastropod Cenozoic Sr/Casw record with a published turritellid gastropod Sr/Casw record and other published biogenic (benthic foraminifera, fossil fish teeth) and inorganic precipitate (calcite veins) Sr/Caswrecords. Once the uncertainties with our gastropod-derived Sr/Casw are taken into account the Sr/Casw record agrees reasonably well with biogenic Sr/Caswrecords. Assuming a seawater [Ca] history derived from marine evaporite inclusions, all biogenic-based Sr/Casw reconstructions imply decreasing seawater [Sr] through the Cenozoic, whereas the calcite vein Sr/Casw reconstruction implies increasing [Sr] through the Cenozoic. We apply a simple geochemical model to examine the implications of divergence among these seawater [Sr] reconstructions and suggest that the interpretation and uncertainties associated with the gastropod and calcite vein proxies need to be revisited. Used in conjunction with records of carbonate depositional fluxes, our favored seawater Sr/Ca scenarios point to a significant increase in the proportion of aragonite versus calcite deposition in shelf sediments from the Middle Miocene, coincident with the proliferation of coral reefs. We propose that this occurred at least 10 million years after the seawater Mg/Ca threshold was passed, and was instead aided by declining levels of atmospheric carbon dioxide.

  7. Deciphering the coupled Paleozoic and Cenozoic tectonic history of the Qilian Shan, northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zuza, A. V.; Yin, A.; Li, J.

    2014-12-01

    The Cenozoic Qilian Shan--the widest thrust belt on the Tibetan Plateau--exposes a record of early Paleozoic subduction-accretion associated with closure of the Qilian Ocean as the Qaidam microcontinent converged with North China. Despite decades of intense research, there is little consensus regarding the nature of the Qilian orogen (e.g., subduction polarity or number of arcs). For example, are the scattered ophiolite-bearing mélange complexes in the Qilian Shan the result of multiple arcs colliding along several suture zones in the Paleozoic or Cenozoic thrust duplication of a single Paleozoic suture zone? A major problem is that existing hypotheses neglect Cenozoic reorganization of the earlier tectonic framework, and the coupling between Paleozoic and Cenozoic structures has yet to be systematically investigated. To address this issue, we examine the Paleozoic Qilian Shan in the context of Cenozoic deformation. We conducted detailed field mapping (~1:50,000), balanced cross-section construction and restoration, U-Pb-Th zircon geochronology, Th-Pb dating of monazite inclusions in garnet, thermobarometry, and whole-rock geochemistry across the central Qilian Shan and in the Hexi Corridor foreland near Jinchan, where the North China craton abuts directly against the Qilian orogen. Successions of juxtaposed amphibolite facies Proterozoic gneiss (T: 725 ± 53°C, P: 7.9 ± 0.9 kbar), Cambrian oceanic material (U-Pb zircon ages: 530-520 Ma), and Ordovician-Silurian arc-derived granite (U-Pb zircon ages: 475-445 Ma) are exposed in the hanging walls of south-directed Cenozoic thrusts that place this basement over younger strata. A regionally correlative unconformity at the base of Carboniferous-Triassic strata is duplicated by this deformation and is used as marker horizon in our restoration. Initial estimates indicate a minimum post-Triassic shortening strain of ~42-45% across the range. By removing this deformation on mapped faults and adhering to observed field

  8. Ethnic Identity Trajectories among Mexican-Origin Girls during Early and Middle Adolescence: Predicting Future Psychosocial Adjustment

    ERIC Educational Resources Information Center

    Gonzales-Backen, Melinda A.; Bámaca-Colbert, Mayra Y.; Allen, Kimberly

    2016-01-01

    We examined trajectories of ethnic identity exploration, resolution, and affirmation and their associations with depressive symptoms and self-esteem 3.5 years later among early and middle adolescent Mexican-origin girls (N = 338). Findings indicated that exploration, resolution, and affirmation increased over time for both cohorts. Among early…

  9. Cenozoic lithospheric evolution of the Bohai Bay Basin, eastern North China Craton: Constraint from tectono-thermal modeling

    NASA Astrophysics Data System (ADS)

    Liu, Qiongying; He, Lijuan; Huang, Fang; Zhang, Linyou

    2016-01-01

    It is well established that the lithosphere beneath the eastern North China Craton (NCC) had been thinned before the Cenozoic. A 2D multi-phase extension model, in which the initial crustal and lithospheric thicknesses are variable, is presented to reconstruct the initial thicknesses of the crust and lithosphere in the early Cenozoic and to further investigate the lithospheric evolution beneath the eastern NCC through the Cenozoic. We conduct thermal modeling along three profiles from east to west in the Bohai Bay Basin, which is the center of the lithospheric destruction and thinning of the NCC. Using multiple constraints, such as tectonic subsidence, the present-day heat flow and the Moho depth, we determine the initial crustal and lithospheric thicknesses of the Bohai Bay Basin before the Cenozoic rift to be 33-36 km and 80-105 km, respectively. The model results show that the most rapid lithospheric thinning during the Cenozoic occurred in the middle Eocene for most depressions, and the thinning activity ceased at the end of the Oligocene, reaching a minimum lithospheric thickness of 53-74 km, followed by a thermal relaxation phase. Combined with previous studies, we infer that the lithosphere beneath the eastern NCC experienced two stages of alternating thinning and thickening: notable thinning in the Early Cretaceous and Paleogene, and thickening in the Late Cretaceous and late Cenozoic. We believe that thermo-chemical erosion, together with extension, was probably the major mechanism of the significant lithospheric removal during the Mesozoic, whereas the Cenozoic lithospheric thinning was mainly dominated by tectonic extension in the eastern NCC; lithospheric thickening was generally a result of thermal cooling.

  10. Phylotranscriptomic analysis of the origin and early diversification of land plants.

    PubMed

    Wickett, Norman J; Mirarab, Siavash; Nguyen, Nam; Warnow, Tandy; Carpenter, Eric; Matasci, Naim; Ayyampalayam, Saravanaraj; Barker, Michael S; Burleigh, J Gordon; Gitzendanner, Matthew A; Ruhfel, Brad R; Wafula, Eric; Der, Joshua P; Graham, Sean W; Mathews, Sarah; Melkonian, Michael; Soltis, Douglas E; Soltis, Pamela S; Miles, Nicholas W; Rothfels, Carl J; Pokorny, Lisa; Shaw, A Jonathan; DeGironimo, Lisa; Stevenson, Dennis W; Surek, Barbara; Villarreal, Juan Carlos; Roure, Béatrice; Philippe, Hervé; dePamphilis, Claude W; Chen, Tao; Deyholos, Michael K; Baucom, Regina S; Kutchan, Toni M; Augustin, Megan M; Wang, Jun; Zhang, Yong; Tian, Zhijian; Yan, Zhixiang; Wu, Xiaolei; Sun, Xiao; Wong, Gane Ka-Shu; Leebens-Mack, James

    2014-11-11

    Reconstructing the origin and evolution of land plants and their algal relatives is a fundamental problem in plant phylogenetics, and is essential for understanding how critical adaptations arose, including the embryo, vascular tissue, seeds, and flowers. Despite advances in molecular systematics, some hypotheses of relationships remain weakly resolved. Inferring deep phylogenies with bouts of rapid diversification can be problematic; however, genome-scale data should significantly increase the number of informative characters for analyses. Recent phylogenomic reconstructions focused on the major divergences of plants have resulted in promising but inconsistent results. One limitation is sparse taxon sampling, likely resulting from the difficulty and cost of data generation. To address this limitation, transcriptome data for 92 streptophyte taxa were generated and analyzed along with 11 published plant genome sequences. Phylogenetic reconstructions were conducted using up to 852 nuclear genes and 1,701,170 aligned sites. Sixty-nine analyses were performed to test the robustness of phylogenetic inferences to permutations of the data matrix or to phylogenetic method, including supermatrix, supertree, and coalescent-based approaches, maximum-likelihood and Bayesian methods, partitioned and unpartitioned analyses, and amino acid versus DNA alignments. Among other results, we find robust support for a sister-group relationship between land plants and one group of streptophyte green algae, the Zygnematophyceae. Strong and robust support for a clade comprising liverworts and mosses is inconsistent with a widely accepted view of early land plant evolution, and suggests that phylogenetic hypotheses used to understand the evolution of fundamental plant traits should be reevaluated.

  11. Phylotranscriptomic analysis of the origin and early diversification of land plants

    PubMed Central

    Wickett, Norman J.; Mirarab, Siavash; Nguyen, Nam; Warnow, Tandy; Carpenter, Eric; Matasci, Naim; Ayyampalayam, Saravanaraj; Barker, Michael S.; Burleigh, J. Gordon; Gitzendanner, Matthew A.; Ruhfel, Brad R.; Wafula, Eric; Graham, Sean W.; Mathews, Sarah; Melkonian, Michael; Soltis, Douglas E.; Soltis, Pamela S.; Miles, Nicholas W.; Rothfels, Carl J.; Pokorny, Lisa; Shaw, A. Jonathan; DeGironimo, Lisa; Stevenson, Dennis W.; Surek, Barbara; Villarreal, Juan Carlos; Roure, Béatrice; Philippe, Hervé; dePamphilis, Claude W.; Chen, Tao; Deyholos, Michael K.; Baucom, Regina S.; Kutchan, Toni M.; Augustin, Megan M.; Wang, Jun; Zhang, Yong; Tian, Zhijian; Yan, Zhixiang; Wu, Xiaolei; Sun, Xiao; Wong, Gane Ka-Shu; Leebens-Mack, James

    2014-01-01

    Reconstructing the origin and evolution of land plants and their algal relatives is a fundamental problem in plant phylogenetics, and is essential for understanding how critical adaptations arose, including the embryo, vascular tissue, seeds, and flowers. Despite advances in molecular systematics, some hypotheses of relationships remain weakly resolved. Inferring deep phylogenies with bouts of rapid diversification can be problematic; however, genome-scale data should significantly increase the number of informative characters for analyses. Recent phylogenomic reconstructions focused on the major divergences of plants have resulted in promising but inconsistent results. One limitation is sparse taxon sampling, likely resulting from the difficulty and cost of data generation. To address this limitation, transcriptome data for 92 streptophyte taxa were generated and analyzed along with 11 published plant genome sequences. Phylogenetic reconstructions were conducted using up to 852 nuclear genes and 1,701,170 aligned sites. Sixty-nine analyses were performed to test the robustness of phylogenetic inferences to permutations of the data matrix or to phylogenetic method, including supermatrix, supertree, and coalescent-based approaches, maximum-likelihood and Bayesian methods, partitioned and unpartitioned analyses, and amino acid versus DNA alignments. Among other results, we find robust support for a sister-group relationship between land plants and one group of streptophyte green algae, the Zygnematophyceae. Strong and robust support for a clade comprising liverworts and mosses is inconsistent with a widely accepted view of early land plant evolution, and suggests that phylogenetic hypotheses used to understand the evolution of fundamental plant traits should be reevaluated. PMID:25355905

  12. Risk and Protective Factors for Early Substance Use Initiation: A Longitudinal Study of Mexican-Origin Youth.

    PubMed

    Atherton, Olivia E; Conger, Rand D; Ferrer, Emilio; Robins, Richard W

    2016-12-01

    Substance use initiation in adolescence is a critical issue, given its association with substance dependency and associated problems in adulthood. However, due to the dearth of fine-grained, longitudinal studies, the factors associated with early initiation are poorly understood, especially in minority youth. The present study examined substance use initiation in a sample of Mexican-origin youth (N=674) assessed annually from age 10 to 16. Using discrete-time survival analyses, we found that initiation escalated rapidly from late childhood to adolescence, and we identified a wide range of factors, from the individual to the cultural level of analysis, that significantly increased or decreased risk for early initiation. These findings have important implications for programs aimed at preventing early substance use by Mexican-origin youth.

  13. Early origins of the Caribbean plate from deep seismic profiles across the Nicaraguan Rise

    NASA Astrophysics Data System (ADS)

    Ott, B.; Mann, W. P.

    2012-12-01

    The offshore Nicaraguan Rise in the maritime zones of Honduras, Jamaica, Nicaragua and Colombia covers a combined area of 500,000 km2, and is one of the least known equatorial Cretaceous-Cenozoic carbonate regions remaining on Earth. The purpose of this study is to describe the Cretaceous to Recent tectonic and stratigraphic history of the deep water Nicaraguan Rise, and to better understand how various types of crustal blocks underlying the Eocene to Recent carbonate cover fused into a single, larger Caribbean plate known today from GPS studies. We interpreted 8700 km of modern, deep-penetration 2D seismic data kindly provided by the oil industry, tied to five wells that penetrated Cretaceous igneous basement. Based on these data, and integration with gravity, magnetic and existing crustal refraction data, we define four crustal provinces for the offshore Nicaraguan Rise: 1) Thicker (15-18 km) Late Cretaceous Caribbean ocean plateau (COP) with rough, top basement surface; 2) normal (6-8 km) Late Cretaceous COP with smooth top basement surface (B") and correlative outcrops in southern Haiti and Jamaica; 3) Precambrian-Paleozoic continental crust (20-22 km thick) with correlative outcrops in northern Central America; and 4) Cretaceous arc crust (>18 km thick) with correlative outcrops in Jamaica. These strongly contrasting basement belts strike northeastward to eastward, and were juxtaposed by latest Cretaceous-Paleogene northward and northwestward thrusting of Caribbean arc over continental crust in Central America, and the western Nicaraguan Rise (84 to 85 degrees west). A large Paleogene to recent, CCW rotation of the Caribbean plate along the Cayman trough faults and into its present day location explains why terranes in Central America and beneath the Nicaraguan Rise have their present, anomalous north-east strike. Continuing, present-day activity on some of these crustal block boundaries is a likely result of intraplate stresses imposed by the surrounding

  14. Paleogene equatorial penguins challenge the proposed relationship between biogeography, diversity, and Cenozoic climate change

    PubMed Central

    Clarke, Julia A.; Ksepka, Daniel T.; Stucchi, Marcelo; Urbina, Mario; Giannini, Norberto; Bertelli, Sara; Narváez, Yanina; Boyd, Clint A.

    2007-01-01

    New penguin fossils from the Eocene of Peru force a reevaluation of previous hypotheses regarding the causal role of climate change in penguin evolution. Repeatedly it has been proposed that penguins originated in high southern latitudes and arrived at equatorial regions relatively recently (e.g., 4–8 million years ago), well after the onset of latest Eocene/Oligocene global cooling and increases in polar ice volume. By contrast, new discoveries from the middle and late Eocene of Peru reveal that penguins invaded low latitudes >30 million years earlier than prior data suggested, during one of the warmest intervals of the Cenozoic. A diverse fauna includes two new species, here reported from two of the best exemplars of Paleogene penguins yet recovered. The most comprehensive phylogenetic analysis of Sphenisciformes to date, combining morphological and molecular data, places the new species outside the extant penguin radiation (crown clade: Spheniscidae) and supports two separate dispersals to equatorial (paleolatitude ≈14°S) regions during greenhouse earth conditions. One new species, Perudyptes devriesi, is among the deepest divergences within Sphenisciformes. The second, Icadyptes salasi, is the most complete giant (>1.5 m standing height) penguin yet described. Both species provide critical information on early penguin cranial osteology, trends in penguin body size, and the evolution of the penguin flipper. PMID:17601778

  15. Paleogene equatorial penguins challenge the proposed relationship between biogeography, diversity, and Cenozoic climate change.

    PubMed

    Clarke, Julia A; Ksepka, Daniel T; Stucchi, Marcelo; Urbina, Mario; Giannini, Norberto; Bertelli, Sara; Narváez, Yanina; Boyd, Clint A

    2007-07-10

    New penguin fossils from the Eocene of Peru force a reevaluation of previous hypotheses regarding the causal role of climate change in penguin evolution. Repeatedly it has been proposed that penguins originated in high southern latitudes and arrived at equatorial regions relatively recently (e.g., 4-8 million years ago), well after the onset of latest Eocene/Oligocene global cooling and increases in polar ice volume. By contrast, new discoveries from the middle and late Eocene of Peru reveal that penguins invaded low latitudes >30 million years earlier than prior data suggested, during one of the warmest intervals of the Cenozoic. A diverse fauna includes two new species, here reported from two of the best exemplars of Paleogene penguins yet recovered. The most comprehensive phylogenetic analysis of Sphenisciformes to date, combining morphological and molecular data, places the new species outside the extant penguin radiation (crown clade: Spheniscidae) and supports two separate dispersals to equatorial (paleolatitude approximately 14 degrees S) regions during greenhouse earth conditions. One new species, Perudyptes devriesi, is among the deepest divergences within Sphenisciformes. The second, Icadyptes salasi, is the most complete giant (>1.5 m standing height) penguin yet described. Both species provide critical information on early penguin cranial osteology, trends in penguin body size, and the evolution of the penguin flipper.

  16. Cenozoic transtension along the Transantarctic Mountains-West Antarctic rift boundary, southern Victoria Land, Antarctica, Ohio

    NASA Astrophysics Data System (ADS)

    Wilson, Terry J.

    1995-04-01

    Brittle fault arrays mapped along the structural boundary between the Transantarctic Mountains and the West Antarctic rift system are oriented obliquely to the axis of the mountains and offshore rift basins. The north to northwest trending regional rift boundary is thus not controlled by continuous rift border faults. Instead, the rift margin trend must be imposed by inherited lithospheric weaknesses along the ancestral East Antarctic craton margin. Fault kinematic solutions indicate that a dextral transtensional regime characterized the rift boundary in the Cenozoic and that dominantly transcurrent motion occurred during the most recent faulting episode. The Transantarctic Mountains are considered to be a rift-flank uplift, yet no substantial isostatic uplift is expected in a transtensional setting, and the mechanism of large-magnitude Cenozoic uplift of the mountains remains problematical. Regional deformation patterns in Victoria Land and the Ross Sea can be explained by a transtensional model and are not compatible with large-magnitude crustal stretching within the West Antarctic rift system in the Cenozoic. The crustal thinning across the rift system more likely took place in the Mesozoic, when major West Antarctic crustal block motions occurred. The Cenozoic intracontinental deformation can be related to plate interaction resulting from the global Eocene plate reorganization, prior to the final separation between Antarctica and a narrow salient of the southeastern Australian margin. Displacement magnitude was probably minor, and thus early Tertiary east-west Antarctic motion is unlikely to account for discrepancies in global plate motion circuits.

  17. The Cenozoic Denali Fault System and the Cretaceous accretionary development of southern Alaska

    NASA Astrophysics Data System (ADS)

    Csejtey, Béla, Jr.; Cox, Dennis P.; Evarts, Russell C.; Stricker, Gary D.; Foster, Helen L.

    1982-05-01

    The juxtaposition of disparate geologic terranes in southern Alaska has been previously interpreted to be mainly the result of several hundred kilometers of right lateral offset along the Denali fault system in Cenozoic time. Recent geologic investigations in the Healy quadrangle strongly suggest that Cenozoic horizontal displacements of such magnitude along the Denali fault system do not exist. In the Healy quadrangle, isograds and metamorphic facies boundaries of an early Late Cretaceous metamorphic belt trend across the Cenozoic McKinley strand of the Denali system without significant horizontal offsets. The present geologic makeup of most of southern Alaska is primarily the result of the Talkeetna superterrane, consisting of the previously assembled Peninsular terrane and Wrangellia, colliding with and subsequently being thrust upon the Yukon-Tanana and Nixon Fork terranes of the ancient North American continent in about middle Cretaceous time. The leading edge of the Talkeetna superterrane faces a wide, complexly deformed zone that contains numerous northwestward thrust miniterranes tectonically intermixed with Jurassic and Cretaceous flysch. The flysch is interpreted to have been deposited mostly in the narrowing and subsequently collapsed oceanic basin between the converging continental blocks. The postcollisional Denali fault system developed in Cenozoic time across the already accreted continental margin, in eastern Alaska along an older, Cretaceous suture.

  18. Multiple cenozoic invasions of Africa by penguins (Aves, Sphenisciformes)

    PubMed Central

    Ksepka, Daniel T.; Thomas, Daniel B.

    2012-01-01

    Africa hosts a single breeding species of penguin today, yet the fossil record indicates that a diverse array of now-extinct taxa once inhabited southern African coastlines. Here, we show that the African penguin fauna had a complex history involving multiple dispersals and extinctions. Phylogenetic analyses and biogeographic reconstructions incorporating new fossil material indicate that, contrary to previous hypotheses, the four Early Pliocene African penguin species do not represent an endemic radiation or direct ancestors of the living Spheniscus demersus (blackfooted penguin). A minimum of three dispersals to Africa, probably assisted by the eastward-flowing Antarctic Circumpolar and South Atlantic currents, occurred during the Late Cenozoic. As regional sea-level fall eliminated islands and reduced offshore breeding areas during the Pliocene, all but one penguin lineage ended in extinction, resulting in today's depleted fauna. PMID:21900330

  19. Multiple cenozoic invasions of Africa by penguins (Aves, Sphenisciformes).

    PubMed

    Ksepka, Daniel T; Thomas, Daniel B

    2012-03-07

    Africa hosts a single breeding species of penguin today, yet the fossil record indicates that a diverse array of now-extinct taxa once inhabited southern African coastlines. Here, we show that the African penguin fauna had a complex history involving multiple dispersals and extinctions. Phylogenetic analyses and biogeographic reconstructions incorporating new fossil material indicate that, contrary to previous hypotheses, the four Early Pliocene African penguin species do not represent an endemic radiation or direct ancestors of the living Spheniscus demersus (blackfooted penguin). A minimum of three dispersals to Africa, probably assisted by the eastward-flowing Antarctic Circumpolar and South Atlantic currents, occurred during the Late Cenozoic. As regional sea-level fall eliminated islands and reduced offshore breeding areas during the Pliocene, all but one penguin lineage ended in extinction, resulting in today's depleted fauna.

  20. Fires in the Cenozoic: a late flowering of flammable ecosystems.

    PubMed

    Bond, William J

    2014-01-01

    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analyzed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma). Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+) for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However, none of the potential global factors (oxygen, rainfall seasonality, CO2, novel flammable growth forms) provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system.

  1. Fires in the Cenozoic: a late flowering of flammable ecosystems

    PubMed Central

    Bond, William J.

    2015-01-01

    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analyzed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma). Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+) for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However, none of the potential global factors (oxygen, rainfall seasonality, CO2, novel flammable growth forms) provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system. PMID:25601873

  2. Cenozoic climate change influences mammalian evolutionary dynamics

    PubMed Central

    Figueirido, Borja; Janis, Christine M.; Pérez-Claros, Juan A.; De Renzi, Miquel; Palmqvist, Paul

    2012-01-01

    Global climate change is having profound impacts on the natural world. However, climate influence on faunal dynamics at macroevolutionary scales remains poorly understood. In this paper we investigate the influence of climate over deep time on the diversity patterns of Cenozoic North American mammals. We use factor analysis to identify temporally correlated assemblages of taxa, or major evolutionary faunas that we can then study in relation to climatic change over the past 65 million years. These taxa can be grouped into six consecutive faunal associations that show some correspondence with the qualitative mammalian chronofaunas of previous workers. We also show that the diversity pattern of most of these chronofaunas can be correlated with the stacked deep-sea benthic foraminiferal oxygen isotope (δ18O) curve, which strongly suggests climatic forcing of faunal dynamics over a large macroevolutionary timescale. This study demonstrates the profound influence of climate on the diversity patterns of North American terrestrial mammals over the Cenozoic. PMID:22203974

  3. (Vitrinites of Mesozoic, Cenozoic, and Paleozoic coals)

    SciTech Connect

    Faizullina, E.M.; Lapo, A.V.

    1982-01-01

    In the reported experiment, the vitrinites of the coalification stages from B to A have been studied by IR spectrometry. A comparison of the intensities of the absorption bands of equally coalified vitrinites of different ages has shown that they differ mainly in their content of stretching vibrations of aliphatic CH and CH/sub 2/ groups (absorption bands at 2930 and 2860 cm/sup -1/) and the stretching vibrations of C.0 groups (band close to 1700 cm/sup -1/). A high absorption in the vitrinites of Mesozoic and Cenozoic coals due to aliphatic CH and CH/sub 2/ groups as compared with the vitrinities of Paleozoic coals has been found. The laws established previously in the coalification series for the vitrinites of Paleozoic coals have also been confirmed for the vitrinites of Meso-Cenozoic coals. 13 refs.

  4. Cenozoic climate change influences mammalian evolutionary dynamics.

    PubMed

    Figueirido, Borja; Janis, Christine M; Pérez-Claros, Juan A; De Renzi, Miquel; Palmqvist, Paul

    2012-01-17

    Global climate change is having profound impacts on the natural world. However, climate influence on faunal dynamics at macroevolutionary scales remains poorly understood. In this paper we investigate the influence of climate over deep time on the diversity patterns of Cenozoic North American mammals. We use factor analysis to identify temporally correlated assemblages of taxa, or major evolutionary faunas that we can then study in relation to climatic change over the past 65 million years. These taxa can be grouped into six consecutive faunal associations that show some correspondence with the qualitative mammalian chronofaunas of previous workers. We also show that the diversity pattern of most of these chronofaunas can be correlated with the stacked deep-sea benthic foraminiferal oxygen isotope (δ(18)O) curve, which strongly suggests climatic forcing of faunal dynamics over a large macroevolutionary timescale. This study demonstrates the profound influence of climate on the diversity patterns of North American terrestrial mammals over the Cenozoic.

  5. Cenozoic Methane-Seep Faunas of the Caribbean Region

    PubMed Central

    Kiel, Steffen; Hansen, Bent T.

    2015-01-01

    We report new examples of Cenozoic cold-seep communities from Colombia, Cuba, the Dominican Republic, Trinidad, and Venezuela, and attempt to improve the stratigraphic dating of Cenozoic Caribbean seep communities using strontium isotope stratigraphy. Two seep faunas are distinguished in Barbados: the late Eocene mudstone-hosted ‘Joes River fauna’ consists mainly of large lucinid bivalves and tall abyssochrysoid gastropods, and the early Miocene carbonate-hosted ‘Bath Cliffs fauna’ containing the vesicomyid Pleurophopsis, the mytilid Bathymodiolus and small gastropods. Two new Oligocene seep communities from the Sinú River basin in Colombia consist of lucinid bivalves including Elongatolucina, thyasirid and solemyid bivalves, and Pleurophopsis. A new early Miocene seep community from Cuba includes Pleurophopsis and the large lucinid Meganodontia. Strontium isotope stratigraphy suggests an Eocene age for the Cuban Elmira asphalt mine seep community, making it the oldest in the Caribbean region. A new basal Pliocene seep fauna from the Dominican Republic is characterized by the large lucinid Anodontia (Pegophysema). In Trinidad we distinguish two types of seep faunas: the mudstone-hosted Godineau River fauna consisting mainly of lucinid bivalves, and the limestone-hosted Freeman’s Bay fauna consisting chiefly of Pleurophopsis, Bathymodiolus, and small gastropods; they are all dated as late Miocene. Four new seep communities of Oligocene to Miocene age are reported from Venezuela. They consist mainly of large globular lucinid bivalves including Meganodontia, and moderately sized vesicomyid bivalves. After the late Miocene many large and typical ‘Cenozoic’ lucinid genera disappeared from the Caribbean seeps and are today known only from the central Indo-Pacific Ocean. We speculate that the increasingly oligotrophic conditions in the Caribbean Sea after the closure of the Isthmus of Panama in the Pliocene may have been unfavorable for such large lucinids

  6. Variability in Early Ahmarian lithic technology and its implications for the model of a Levantine origin of the Protoaurignacian.

    PubMed

    Kadowaki, Seiji; Omori, Takayuki; Nishiaki, Yoshihiro

    2015-05-01

    This paper re-examines lithic technological variability of the Early Ahmarian, one of the early Upper Palaeolithic cultural entities in the Levant, which has often been regarded as a precursor of the Protoaurignacian (the early Upper Palaeolithic in Europe) in arguments for the occurrence of a cultural spread in association with the dispersal of Homo sapiens from the Levant to Europe. Using quantitative data on several lithic techno-typological attributes, we demonstrate that there is a significant degree of variability in the Early Ahmarian between the northern and southern Levant, as previously pointed out by several researchers. In addition, we suggest that the technology similar to the southern Early Ahmarian also existed in the northern Levant, i.e., the Ksar Akil Phase 4 group (the KA 4 group), by introducing new Upper Palaeolithic assemblages from Wadi Kharar 16R, inland Syria. We then review currently available stratigraphic records and radiocarbon dates (including a new date from Wadi Kharar 16R), with special attention to their methodological background. As a result, we propose alternative chronological scenarios, including one that postulates that the southern Early Ahmarian and the KA 4 group appeared later than the northern Early Ahmarian with little or no overlap. On the basis of the alternative scenarios of chronological/geographical patterns of the Early Ahmarian variability, we propose four possible relationships between the Protoaurignacian and the Early Ahmarian, including a new scenario that the appearance of the Protoaurignacian preceded those of similar technological entities in the Levant, i.e., the southern Early Ahmarian and the KA 4 group. If the last hypothesis is substantiated, it requires us to reconsider the model of a Levantine origin of the Protoaurignacian and its palaeoanthropological implications.

  7. Evaluating the Link between Self-Esteem and Temperament in Mexican Origin Early Adolescents

    ERIC Educational Resources Information Center

    Robins, Richard W.; Donnellan, M. Brent; Widaman, Keith F.; Conger, Rand D.

    2010-01-01

    The present study examined the relation between self-esteem and temperament in a sample of 646 Mexican-American early adolescents (mean age = 10.4). Findings show that (a) early adolescents with high self-esteem exhibit higher levels of Effortful Control but, contrary to findings in adult samples, do not differ from low self-esteem adolescents in…

  8. Early-Life Origins of Life-Cycle Well-Being: Research and Policy Implications

    ERIC Educational Resources Information Center

    Currie, Janet; Rossin-Slater, Maya

    2015-01-01

    Mounting evidence across different disciplines suggests that early-life conditions can have consequences on individual outcomes throughout the life cycle. Relative to other developed countries, the United States fares poorly on standard indicators of early-life health, and this disadvantage may have profound consequences not only for population…

  9. Family Origins and the Schooling Process: Early versus Late Influence of Parental Characteristics.

    ERIC Educational Resources Information Center

    Alwin, Duane F.; Thornton, Arland

    1984-01-01

    Compares the effects on high school achievement of family socioeconomic factors present during students' early childhood and during students' late adolescence. Results point to the potentially stronger role in cognitive development and school learning of early socioeconomic factors, except in the case of family size. (RDN)

  10. Antarctic Bottom Water: Major Change in Velocity during the Late Cenozoic between Australia and Antarctica.

    PubMed

    Watkins, N D; Kennett, J P

    1971-08-27

    Paleomagnetic and micropaleontological studies of deep-sea sedimentary cores between Australia and Antarctica define an extensive area centered in the south Tasman Basin, where sediment as old as Early Pliocene has been systematically eroded by bottom currents. This major sedimentary disconformity has been produced by a substantial increase in velocity of Antarctic bottom water, possibly associated with late Cenozoic climatic cooling and corresponding increased glaciation of Antarctica.

  11. Early-life stress origins of gastrointestinal disease: animal models, intestinal pathophysiology, and translational implications

    PubMed Central

    Pohl, Calvin S.; Medland, Julia E.

    2015-01-01

    Early-life stress and adversity are major risk factors in the onset and severity of gastrointestinal (GI) disease in humans later in life. The mechanisms by which early-life stress leads to increased GI disease susceptibility in adult life remain poorly understood. Animal models of early-life stress have provided a foundation from which to gain a more fundamental understanding of this important GI disease paradigm. This review focuses on animal models of early-life stress-induced GI disease, with a specific emphasis on translational aspects of each model to specific human GI disease states. Early postnatal development of major GI systems and the consequences of stress on their development are discussed in detail. Relevant translational differences between species and models are highlighted. PMID:26451004

  12. The Atmospheres of the Terrestrial Planets:Clues to the Origins and Early Evolution of Venus, Earth, and Mars

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin

    2015-01-01

    We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.

  13. Early-life Origins of Lifecycle Well-being: Research and Policy Implications

    PubMed Central

    Currie, Janet; Rossin-Slater, Maya

    2016-01-01

    Mounting evidence across different disciplines suggests that early-life conditions can have consequences on individual outcomes throughout the lifecycle. Relative to other developed countries, the United States fares poorly on standard indicators of early-life health, and this disadvantage may have profound consequences not only for population well-being, but also for economic growth and competitiveness in a global economy. In this paper, we first discuss the research on the strength of the link between early-life health and adult outcomes, and then provide an evidence-based review of the effectiveness of existing U.S. policies targeting the early-life environment. We conclude that there is a robust and economically meaningful relationship between early-life conditions and well-being throughout the lifecycle, as measured by adult health, educational attainment, labor market attachment, and other indicators of socio-economic status. However, there is some variation in the degree to which current policies in the U.S. are effective in improving early-life conditions. Among existing programs, some of the most effective are the Special Supplemental Program for Women, Infants, and Children (WIC), home visiting with nurse practitioners, and high-quality, center-based early childhood care and education. In contrast, the evidence on other policies such as prenatal care and family leave is more mixed and limited. PMID:25558491

  14. ACEX: A First Look at Arctic Ocean Cenozoic History

    NASA Astrophysics Data System (ADS)

    Moran, K.; Backman, J.

    2004-12-01

    The first Integrated Ocean Drilling Program mission specificplatform expedition (ACEX - Arctic Coring Expedition) drilled and recovered core from five holes at four sites through Cenozoic sediments draping the crest of the Lomonosov Ridge in the central Arctic Ocean. Coring continued into the underlying Cretaceous sedimentary bedrock. Sites are located only a few nautical miles apart along a single seismic line (AWI-91090), showing an identical and coherent Cenozoic seismostratigraphy. Preliminary results from shipboard investigations of core-catcher-based bio- and lithostratigraphy, pore water analyses and core logger data describe a thick (~160 m) middle Miocene through Pleistocene sequence that shows large amplitude, cyclic variability in the density, magnetic susceptibility and acoustic velocity of the sediments. Sediments are largely carbonate free. Pleistocene sedimentation rates are close to 3 cm/ka, whereas Pliocene sediments are by-and-large missing. A sharp change in physical properties at ~200 m defines the transition into a 200+ m thick Paleogene sequence that is initially dominated by large numbers of dinoflagellate cysts. The early Miocene, Oligocene and late Eocene appear to be largely missing in a hiatus. However, a 32 m thick interval separates the overlying middle Miocene from the underlying middle Eocene and presumably preserves some of the early Neogene and late Paleogene sections. Dinoflagellate cysts, diatoms, ebridians and silicoflagellates are common to abundant in the middle Eocene section, which bottoms in a spectacular layer showing massive occurrences of glochidia and massulae (megaspores) of the freshwater hydropterid fern Azolla (duckweed) at the early/middle Eocene boundary (~306 m), suggesting strongly reduced surface water salinity or perhaps even a brief episode of fresh water conditions at the surface. Biosilica is not present prior to the late early Eocene (~320 m). The (sub-) tropical dinoflagellate species Apectodinium augustum

  15. Basal melting of snow on early Mars: A possible origin of some valley networks

    USGS Publications Warehouse

    Carr, M.H.; Head, J. W.

    2003-01-01

    Valley networks appear to be cut by liquid water, yet simulations suggest that early Mars could not have been warmed enough by a CO2-H2O greenhouse to permit rainfall. The vulnerability of an early atmosphere to impact erosion, the likely rapid scavenging of CO2 from the atmosphere by weathering, and the lack of detection of weathering products all support a cold early Mars. We explore the hypothesis that valley networks could have formed as a result of basal melting of thick snow and ice deposits. Depending on the heat flow, an early snowpack a few hundred meters to a few kilometers thick could undergo basal melting, providing water to cut valley networks. Copyright 2003 by the American Geophysical Union.

  16. Early history of laboratory breeding of Aedes aegypti (Diptera: Culicidae) focusing on the origins and use of selected strains.

    PubMed

    Kuno, Goro

    2010-11-01

    The yellow fever mosquito, Aedes aegypti (L.) (Diptera: Culicidae), is well recognized for its extensive adaptation to diverse ecological conditions and for genetic variation. Recognizing the importance of strain variation of this mosquito, researchers have established a large number of laboratory strains. Some of the popular strains have been used for research for years in many laboratories around the world. However, the exact origins of many of these strains are unknown. In this review, publications and archival records were examined to report the early laboratory mosquito rearing practices around the world and to identify the origins of selected strains. The records showed that inter-laboratory sharing of strains was already underway in the early part of the 20th century because of the ease of breeding Ae. aegypti and of sending eggs by mail. It also was found that the four strains established in major U.S. institutions by the mid-1930s, including the "ROCK" (short for Rockefeller) strain, had been derived from Cuba, Nigeria, Philippines, or Puerto Rico, all known for a long history of transmission of yellow fever virus or dengue virus rather than from North America. The strains used for research in Europe were primarily derived from West Africa, but strains of Asian, Caribbean, and South American origins also were used for comparative experiments among geographic strains. Neglected issues related to strain designation and original source identification in scientific publications were found and their relevance to current research is discussed.

  17. Early Origins of Child Obesity: Bridging Disciplines and Phases of Development - September 30–October 1, 2010

    PubMed Central

    Christoffel, Katherine Kaufer; Wang, Xiaobin; Binns, Helen J.

    2012-01-01

    This report summarizes a conference: “Early Origins of Child Obesity: Bridging Disciplines and Phases of Development”, held in Chicago on September 30–October 1, 2010. The conference was funded in part by the National Institutes of Health and the Williams Heart Foundation, to achieve the conference objective: forging a next-step research agenda related to the early origins of childhood obesity. This research agenda was to include working with an array of factors (from genetic determinants to societal ones) along a continuum from prenatal life to age 7, with an emphasis on how the developing child deals with the challenges presented by his/her environment (prenatal, parental, nutritional, etc.). The conference offered a unique opportunity to facilitate communication and planning of future work among a variety of researchers whose work separately addresses different periods in early life. Over the span of two days, speakers addressed existing, critical research topics within each of the most-studied age ranges. On the final day, workshops fostered the discussion needed to identify the highest priority research topics related to linking varied early factor domains. These are presented for use in planning future research and research funding. PMID:23443002

  18. Transformation abrogates an early G1-phase arrest point required for specification of the Chinese hamster DHFR replication origin.

    PubMed Central

    Wu, J R; Keezer, S M; Gilbert, D M

    1998-01-01

    The origin decision point (ODP) was originally identified as a distinct point during G1-phase when Chinese hamster ovary (CHO) cell nuclei experience a transition that is required for specific recognition of the dihydrofolate reductase (DHFR) origin locus by Xenopus egg extracts. Passage of cells through the ODP requires a mitogen-independent protein kinase that is activated prior to restriction point control. Here we show that inhibition of an early G1-phase protein kinase pathway by the addition of 2-aminopurine (2-AP) prior to the ODP arrests CHO cells in G1-phase. Transformation with simian virus 40 (SV40) abrogated this arrest point, resulting in the entry of cultured cells into S-phase in the presence of 2-AP and a disruption of the normal pattern of initiation sites at the DHFR locus. Cells treated with 2-AP after the ODP initiated replication specifically within the DHFR origin locus. Transient exposure of transformed cells to 2-AP during the ODP transition also disrupted origin choice, whereas non-transformed cells arrested in G1-phase and then passed through a delayed ODP after removal of 2-AP from the medium. We conclude that mammalian cells have many potential sites at which they can initiate replication. Normally, events occurring during the early G1-phase ODP transition determine which of these sites will be the preferred initiation site. However, if chromatin is exposed to S-phase-promoting factors prior to this transition, mammalian cells, like Xenopus and Drosophila embryos, can initiate replication without origin specification. PMID:9501102

  19. Mesozoic and Cenozoic structural trends under southern Bering Sea Shelf

    SciTech Connect

    Marlow, M.S.; Cooper, A.K.

    1980-12-01

    Mesozoic rocks exposed near the tip of the Alaska Peninsula form an antiformal structure that flanks the southern side of Bristol Bay basin and that can be traced with geophysical data about 700 km offshore to the vicinity of the Pribilof Islands. Upper Jurassic sandstone and Upper Cretaceous mudstone dredged from the top and flanks of this structure near the islands confirm that Mesozoic rocks extend from the Alaska Peninsula to the Bering sea margin. The southern part of the Bering Sea Shelf is underlain by several large structural basins. These filled basins encompass an offshore area of about 31,000 sq km. Reflection profiles show that the surface of the offshore antiformal structures is an angular unconformity overlain by Cenozoic beds. The downdip trace of the unconformity in Bristol Bay basin is underlain by reflectors paralleling the contact, a relation suggesting that the basin and perhaps other shelf basins may be underlain by ancient Mesozoic depocenters. The bulk of the thick sections in these basins is, however, thought to be mainly Cenozoic in age. Strata in the basins are cut by high-angle growth faults. The faults commonly offset the seafloor, which implies that basin subsidence and filling continue to the present. Shallow-water diatomaceous mudstone of Eocene and Oligocene age dredged from the continental slope near the Pribilof Islands indicates that collapse of the margin and outer shelf basins began by at least early Tertiary time. In Mesozoic time, the Bering margin between Siberia and the Alaska Peninsula (Beringian margin) may have been a zone of either oblique underthrusting or transform motion between the North American and Pacific lithosphere (Kula plate.). This motion may have rifted the edge of the North American plate, resulting in the formation of a series of elongate basins and ridges paralleling the plate edge.

  20. The Origin and Early Radiation of Archosauriforms: Integrating the Skeletal and Footprint Record

    PubMed Central

    Bernardi, Massimo; Klein, Hendrik; Petti, Fabio Massimo; Ezcurra, Martín D.

    2015-01-01

    We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian–Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record. PMID:26083612

  1. The Origin and Early Radiation of Archosauriforms: Integrating the Skeletal and Footprint Record.

    PubMed

    Bernardi, Massimo; Klein, Hendrik; Petti, Fabio Massimo; Ezcurra, Martín D

    2015-01-01

    We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian-Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record.

  2. Paleomagnetism of the late Cenozoic basalts from northern Patagonia

    NASA Astrophysics Data System (ADS)

    Mena, Mabel; Ré, Guillermo H.; Haller, Miguel J.; Singer, Silvia E.; Vilas, Juan F.

    2006-10-01

    Late Cenozoic volcanic rocks outcrop in the northern Patagonia Extrandina. Lava flows, characterized as olivine and alkaline basalts, belong to intraplate volcanism. We report paleomagnetic and rock-magnetic studies carried out on Late Cenozoic basalts belonging to the Cráter, Mojón and Moreniyeu Formations. The paleomagnetic sampling comprised 75 sites in lava flows and dikes from the Cráter Formation, three sites in a lava flow from the Mojón Formation and three sites in a lava flow from the Moreniyeu Formation. Alternating field (AF) and thermal detailed demagnetization techniques were used. Most of the samples have a viscous component. The AF procedure was more effective than thermal demagnetization in destroying viscous components and in defining the characteristic remanent magnetizations. Demagnetization curves and rock-magnetic studies suggest that the main remanence carrier is Ti-poor magnetite. Radiometric K-Ar ages were performed on these basalts. The radiometric ages are 0.8±0.1 Ma from outcrops located at Cerro Fermín and 1.9±0.4 Ma from outcrops at Cerro Negro, both at the Cráter Formation. These ages suggest an early-middle Pleistocene age for the lava flows from Cerro Fermín, and a late Pliocene to early Pleistocene age for the Cerro Negro lava flows. Based on the magnetic polarity temporal scale, the Cerro Fermín lava flows have registered the beginning of the Brunhes Chron, while the Cerro Negro basalts could have been extruded during the Olduvai Subchron. The K-Ar radiometric age of the Moreniyeu Formation (1.6±0.2 Ma) suggests an early Pleistocene age for this lava flow. The reverse polarity of its virtual geomagnetic poles (VGPs) is in agreement with the predominant one during the Matuyama Chron and suggests that the Moreniyeu Formation constitutes another volcanic event clearly separate from those of the Cráter Formation. The K-Ar radiometric age of the Mojón Formation (3.3±0.4 Ma) locates it in the middle Pliocene. The VGP

  3. A multi-gene dataset reveals a tropical New World origin and Early Miocene diversification of croakers (Perciformes: Sciaenidae).

    PubMed

    Lo, Pei-Chun; Liu, Shu-Hui; Chao, Ning Labbish; Nunoo, Francis K E; Mok, Hin-Kiu; Chen, Wei-Jen

    2015-07-01

    Widely distributed groups of living animals, such as the predominantly marine fish family Sciaenidae, have always attracted the attention of biogeographers to document the origins and patterns of diversification in time and space. In this study, the historical biogeography of the global Sciaenidae is reconstructed within a molecular phylogenetic framework to investigate their origin and to test the hypotheses explaining the present-day biogeographic patterns. Our data matrix comprises six mitochondrial and nuclear genes in 93 globally sampled sciaenid species from 52 genera. Within the inferred phylogenetic tree of the Sciaenidae, we identify 15 main and well-supported lineages; some of which have not been recognized previously. Reconstruction of habitat preferences shows repeated habitat transitions between marine and euryhaline environments. This implies that sciaenids can easily adapt to some variations in salinity, possibly as the consequence of their nearshore habitats and migratory life history. Conversely, complete marine/euryhaline to freshwater transitions occurred only three times, in South America, North America and South Asia. Ancestral range reconstruction analysis concomitant with fossil evidence indicates that sciaenids first originated and diversified in the tropical America during the Oligocene to Early Miocene before undergoing two range expansions, to Eastern Atlantic and to the Indo-West Pacific where a maximum species richness is observed. The uncommon biogeographic pattern identified is discussed in relation to current knowledge on origin of gradients of marine biodiversity toward the center of origin hypothesis in the Indo-West Pacific.

  4. The Centennial of Counselor Education: Origin and Early Development of a Discipline

    ERIC Educational Resources Information Center

    Savickas, Mark L.

    2011-01-01

    July 7, 2011, marks the centennial of counselor education as a formal discipline. In recognition of its 100th birthday, the author of this article describes the origins of the discipline, beginning with its prehistory in the work of Frank Parsons to establish the practice of vocational guidance, describing the 1st course in counselor education at…

  5. Origins of Early Adolescents' Hope: Personality, Parental Attachment, and Stressful Life Events

    ERIC Educational Resources Information Center

    Otis, Kristin L.; Huebner, E. Scott; Hills, Kimberly J.

    2016-01-01

    Psychology has recently increased attention to identifying psychological qualities in individuals that indicate positive mental health, such as hope. In an effort to understand further the origins of hope, we examined the relations among parental attachment, stressful life events, personality variables, and hope in a sample of 647 middle school…

  6. Two-phase growth of high topography in eastern Tibet during the Cenozoic

    NASA Astrophysics Data System (ADS)

    Wang, E.; Kirby, E.; Furlong, K. P.; van Soest, M.; Xu, G.; Shi, X.; Kamp, P. J. J.; Hodges, K. V.

    2012-09-01

    High topography in eastern Tibet is thought to have formed when deep crust beneath the central Tibetan Plateau flowed towards the plateau margin, causing crustal thickening and surface uplift. Rapid exhumation starting about 10-15million years ago is inferred to mark the onset of surface uplift and fluvial incision. Although geophysical data are consistent with weak crust capable of flow, it is unclear how the timing and amount of deformation adjacent to the Sichuan Basin during the Cenozoic era can be explained in this way. Here we use thermochronology to measure the cooling histories of rocks exposed in a section that stretches vertically over 3km adjacent to the Sichuan Basin. Our thermal models of exhumation-driven cooling show that these rocks, and hence the plateau margin, were subject to slow, steady exhumation during early Cenozoic time, followed by two pulses of rapid exhumation, one beginning 30-25million years ago and a second 10-15million years ago that continues to present. Our findings imply that significant topographic relief existed adjacent to the Sichuan Basin before the Indo-Asian collision. Furthermore, the onset of Cenozoic mountain building probably pre-dated development of the weak lower crust, implying that early topography was instead formed during thickening of the upper crust along faults. We suggest that episodes of mountain building may reflect distinct geodynamic mechanisms of crustal thickening.

  7. Microbes, Mineral Evolution, and the Rise of Microcontinents-Origin and Coevolution of Life with Early Earth.

    PubMed

    Grosch, Eugene G; Hazen, Robert M

    2015-10-01

    Earth is the most mineralogically diverse planet in our solar system, the direct consequence of a coevolving geosphere and biosphere. We consider the possibility that a microbial biosphere originated and thrived in the early Hadean-Archean Earth subseafloor environment, with fundamental consequences for the complex evolution and habitability of our planet. In this hypothesis paper, we explore possible venues for the origin of life and the direct consequences of microbially mediated, low-temperature hydrothermal alteration of the early oceanic lithosphere. We hypothesize that subsurface fluid-rock-microbe interactions resulted in more efficient hydration of the early oceanic crust, which in turn promoted bulk melting to produce the first evolved fragments of felsic crust. These evolved magmas most likely included sialic or tonalitic sheets, felsic volcaniclastics, and minor rhyolitic intrusions emplaced in an Iceland-type extensional setting as the earliest microcontinents. With the further development of proto-tectonic processes, these buoyant felsic crustal fragments formed the nucleus of intra-oceanic tonalite-trondhjemite-granitoid (TTG) island arcs. Thus microbes, by facilitating extensive hydrothermal alteration of the earliest oceanic crust through bioalteration, promoted mineral diversification and may have been early architects of surface environments and microcontinents on young Earth. We explore how the possible onset of subseafloor fluid-rock-microbe interactions on early Earth accelerated metavolcanic clay mineral formation, crustal melting, and subsequent metamorphic mineral evolution. We also consider environmental factors supporting this earliest step in geosphere-biosphere coevolution and the implications for habitability and mineral evolution on other rocky planets, such as Mars.

  8. Intrusions of mixed origin migmatising early Achaean crust in northern Labrador, Canada

    NASA Technical Reports Server (NTRS)

    Schiotte, L.; Bridgwater, D.

    1986-01-01

    Migmatization of Early Archean Uivak gneisses by Late Archean granitic and trondhjemitic injections are described. The rare earth element, major element, and isotopic geochemistry of the felsic sheets is interpreted to indicate both mantle and crustal components, and the sheets with associated fluids were the vehicle for element transport in the crustal column with attendant isotopic modification of the older gneisses.

  9. The early origins of cardiovascular health and disease: who, when, and how.

    PubMed

    Rueda-Clausen, Christian F; Morton, Jude S; Davidge, Sandra T

    2011-05-01

    Almost 30 years ago, a series of epidemiological studies popularized the early programming theory that had resulted from observed associations between low birthweight and increased cardiovascular morbidity and mortality later in life. Since then, several clinical and experimental models have been created to understand the principles and mechanisms of this fascinating phenomenon and describe its relevance to the pathophysiology of cardiovascular and many other chronic diseases. Despite the growing body of published evidence, the specific mechanisms mediating early programming effects are still elusive. Moreover, many controversial issues have arisen regarding the characteristics of the most commonly used clinical and experimental models, the existence of potential windows of susceptibility for different organs, and the presence of sex differences in its pathophysiology. Therefore, this review synthesizes some of the antecedents behind the early programming theory and discusses some of the controversial issues surrounding it. Early programming has been extensively linked to several chronic diseases; however, for the purposes of this review we have concentrated on the potential role of this entity in the pathophysiology of chronic cardiovascular diseases.

  10. The Cenozoic history of the Armorican Massif: New insights from the deep CDB1 borehole (Rennes Basin, France)

    NASA Astrophysics Data System (ADS)

    Bauer, Hugues; Bessin, Paul; Saint-Marc, Pierre; Châteauneuf, Jean-Jacques; Bourdillon, Chantal; Wyns, Robert; Guillocheau, François

    2016-05-01

    Borehole CDB1 (675.05 m) crosses the deepest Cenozoic sedimentary basin of the Armorican Massif, the Rennes Basin, to reach the underlying basement at a depth of 404.92 m, made up of the Late Neoproterozoic to Early Cambrian Brioverian Group, weathered down to 520 m depth. The basin's Cenozoic deposits are divided into seven formations, ranging from Early-Middle Bartonian to Late Pliocene in age. Coastal sediments at the very base, along with a thick Priabonian lacustrine episode, imply a major revision of the regional palaeogeography, whilst a very steady and low-energy lacustrine-palustrine environment throughout the Priabonian and Early Rupelian argue for an aggradational system associated with uniform subsidence. Palynological assemblages attest to environmental and climatic changes through the Eocene and Early Oligocene, in accordance with regional and global trends (Eocene-Oligocene Transition).

  11. The origins of the birth control movement in England in the early nineteenth century.

    PubMed

    Langer, W L

    1975-01-01

    The origins of the birth control movement in England in the 19th cen tury are discussed. The impact of Malthus's "Essay on the Principle of Population" and the activities of such thinkers and reformers as Jermy Bentham, James and John Stuart Mill, Francis Plance, Richard Carlile, Robert Dale Owen, and Charles Knowlton are discussed. The social debate that arose during the century is discussed.

  12. Hospital for Special Surgery: Origin and Early History First Site 1863–1870

    PubMed Central

    2005-01-01

    Hospital for Special Surgery (HSS) originated as the Hospital for the Ruptured and Crippled (R&C) 142 years ago in New York City. As the first and only orthopaedic hospital of its kind in this country, it was located in the residence of its founder James Knight on Second Avenue, south of Sixth Street, and started with 28 inpatient beds for children but no operating facilities. The history of this institution has been documented in two books and occasionally published and unpublished papers. Many of these accounts have been limited by time, focus on a particular subject, or overall reviews. The emergence of such a specialized facility in the middle of the 19th century during a time of medicine in its infancy, our country at war and the city of New York racked in poverty, disease, civil riots, and political corruption is a story not necessarily appreciated in our day. The vision of one little-known physician and the cooperation and support of a small group of prominent New Yorkers and philanthropists were responsible for the origin of this hospital and particularly for its survival in such troubled times when most small hospitals of this period lasted only for a few years. Fortunately, almost all of the original Annual Reports of the Board of Managers, photographs, manuscripts, personal records, and newspaper clippings have been saved. They are now being collected, preserved, catalogued, and displayed in the newly formed HSS Archives from which this material has been taken. PMID:18751802

  13. The Long-Term Impacts of Medicaid Exposure in Early Childhood: Evidence from the Program's Origin*

    PubMed Central

    Boudreaux, Michel H.; Golberstein, Ezra; McAlpine, Donna D.

    2016-01-01

    This paper examines the long-term impact of exposure to Medicaid in early childhood on adult health and economic status. The staggered timing of Medicaid's adoption across the states created meaningful variation in cumulative exposure to Medicaid for birth cohorts that are now in adulthood. Analyses of the Panel Study of Income Dynamics suggest exposure to Medicaid in early childhood (age 0-5) is associated with statistically significant and meaningful improvements in adult health (age 25-54), and this effect is only seen in subgroups targeted by the program. Results for economic outcomes are imprecise and we are unable to come to definitive conclusions. Using separate data we find evidence of two mechanisms that could plausibly link Medicaid's introduction to long-term outcomes: contemporaneous increases in health services utilization for children and reductions in family medical debt. PMID:26763123

  14. The origin of early age expansions induced in cementitious materials containing shrinkage reducing admixtures

    SciTech Connect

    Sant, Gaurav; Lothenbach, Barbara; Juilland, Patrick; Le Saout, Gwenn; Weiss, Jason; Scrivener, Karen

    2011-03-15

    Studies on the early-age shrinkage behavior of cement pastes, mortars, and concretes containing shrinkage reducing admixtures (SRAs) have indicated these mixtures frequently exhibit an expansion shortly after setting. While the magnitude of the expansion has been noted to be a function of the chemistry of the cement and the admixture dosage; the cause of the expansion is not clearly understood. This investigation uses measurements of autogenous deformation, X-ray diffraction, pore solution analysis, thermogravimetry, and scanning electron microscopy to study the early-age properties and describe the mechanism of the expansion in OPC pastes made with and without SRA. The composition of the pore solution indicates that the presence of the SRA increases the portlandite oversaturation level in solution which can result in higher crystallization stresses which could lead to an expansion. This observation is supported by deformation calculations for the systems examined.

  15. Impact melting of frozen oceans on the early Earth: implications for the origin of life.

    PubMed

    Bada, J L; Bigham, C; Miller, S L

    1994-02-01

    Without sufficient greenhouse gases in the atmosphere, the early Earth would have become a permanently frozen planet because the young Sun was less luminous than it is today. Several resolutions to this faint young Sun-frozen Earth paradox have been proposed, with an atmosphere rich in CO2 being the one generally favored. However, these models assume that there were no mechanisms for melting a once frozen ocean. Here we show that bolide impacts between about 3.6 and 4.0 billion years ago could have episodically melted an ice-covered early ocean. Thaw-freeze cycles associated with bolide impacts could have been important for the initiation of abiotic reactions that gave rise to the first living organisms.

  16. Impact melting of frozen oceans on the early Earth: implications for the origin of life

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Bigham, C.; Miller, S. L.

    1994-01-01

    Without sufficient greenhouse gases in the atmosphere, the early Earth would have become a permanently frozen planet because the young Sun was less luminous than it is today. Several resolutions to this faint young Sun-frozen Earth paradox have been proposed, with an atmosphere rich in CO2 being the one generally favored. However, these models assume that there were no mechanisms for melting a once frozen ocean. Here we show that bolide impacts between about 3.6 and 4.0 billion years ago could have episodically melted an ice-covered early ocean. Thaw-freeze cycles associated with bolide impacts could have been important for the initiation of abiotic reactions that gave rise to the first living organisms.

  17. Evaluating the link between self-esteem and temperament in Mexican origin early adolescents.

    PubMed

    Robins, Richard W; Donnellan, M Brent; Widaman, Keith F; Conger, Rand D

    2010-06-01

    The present study examined the relation between self-esteem and temperament in a sample of 646 Mexican-American early adolescents (mean age=10.4). Findings show that (a) early adolescents with high self-esteem exhibit higher levels of Effortful Control but, contrary to findings in adult samples, do not differ from low self-esteem adolescents in Negative Affectivity; (b) low self-esteem is associated with Depression; and (c) low self-esteem is associated with Aggression. These findings replicated for boys and girls, two measures of self-esteem, and child and mother reports of temperament. The present study contributes to an emerging understanding of the link between self-esteem and temperament, and provides much needed data on the nature of self-esteem in ethnic minority populations.

  18. The origin and early evolution of tracheids in vascular plants: integration of palaeobotanical and neobotanical data.

    PubMed Central

    Friedman, W E; Cook, M E

    2000-01-01

    Although there is clear evidence for the establishment of terrestrial plant life by the end of the Ordovician, the fossil record indicates that land plants remained extremely small and structurally simple until the Late Silurian. Among the events associated with this first major radiation of land plants is the evolution of tracheids, complex water-conducting cells defined by the presence of lignified secondary cell wall thickenings. Recent palaeobotanical analyses indicate that Early Devonian tracheids appear to possess secondary cell wall thickenings composed of two distinct layers: a degradation-prone layer adjacent to the primary cell wall and a degradation-resistant (possibly lignified) layer next to the cell lumen. In order to understand better the early evolution of tracheids, developmental and comparative studies of key basal (and potentially plesiomorphic) extant vascular plants have been initiated. Ultrastructural analysis and enzyme degradation studies of wall structure (to approximate diagenetic alterations of fossil tracheid structure) have been conducted on basal members of each of the two major clades of extant vascular plants: Huperzia (Lycophytina) and Equisetum (Euphyllophytina. This research demonstrates that secondary cell walls of extant basal vascular plants include a degradation-prone layer ('template layer') and a degradation-resistant layer ('resistant layer'). This pattern of secondary cell wall formation in the water-conducting cells of extant vascular plants matches the pattern of wall thickenings in the tracheids of early fossil vascular plants and provides a key evolutionary link between tracheids of living vascular plants and those of their earliest fossil ancestors. Further studies of tracheid development and structure among basal extant vascular plants will lead to a more precise reconstruction of the early evolution of water-conducting tissues in land plants, and will add to the current limited knowledge of spatial, temporal and

  19. Evaluating the Link between Self-Esteem and Temperament in Mexican Origin Early Adolescents

    PubMed Central

    Robins, Richard W.; Donnellan, M. Brent; Widaman, Keith F.; Conger, Rand D.

    2009-01-01

    The present study examined the relation between self-esteem and temperament in a sample of 646 Mexican-American early adolescents (mean age=10.4). Self-esteem was assessed using child reports on the Self-Description Questionnaire II—Short (SDQII-S; Marsh et al., 2005) and temperament was assessed using child and mother reports on the revised Early Adolescent Temperament Questionnaire (Ellis & Rothbart, 2001). Findings show that: (a) early adolescents with high self-esteem show higher levels of Effortful Control but, contrary to findings in adult samples, do not differ from low self-esteem adolescents in Negative Affectivity; (b) low self-esteem is associated with Depression; and (c) low self-esteem is associated with Aggression. These findings replicated for boys and girls, two measures of self-esteem, and child and mother reports of temperament. The present study contributes to an emerging understanding of the link between self-esteem and temperament, and provides much needed data on the nature of self-esteem in ethnic minority populations. PMID:19740537

  20. A founder mutation in ADAMTSL4 causes early-onset bilateral ectopia lentis among Jews of Bukharian origin.

    PubMed

    Reinstein, Eyal; Smirin-Yosef, Pola; Lagovsky, Irina; Davidov, Bella; Peretz Amit, Gabriela; Neumann, Doron; Orr-Urtreger, Avi; Ben-Shachar, Shay; Basel-Vanagaite, Lina

    2016-01-01

    The term isolated ectopia lentis (EL; subluxation or dislocation of the human crystalline lens) is applied to patients with EL, without skeletal features and in the absence of aortic root dilatation. To date, the only gene shown to cause autosomal-recessive isolated EL is ADAMTSL4. Here we report a novel founder mutation in ADAMTSL4 gene in children of Bukharian Jewish origin presenting with early-onset bilateral EL. A carrier frequency of 1:48 was determined among unrelated healthy Bukharian Jews. Given the complications associated with disease and the allele frequency, a population screening for individuals of this ancestry is warranted in order to allow prenatal, pre-implantation or early postnatal diagnosis.

  1. [Comparison of fluorescence spectroscopy and plasma-mass spectrometry results of the Meso/Cenozoic basic rocks in SE China and its geo-implication].

    PubMed

    Lou, Feng; Chen, Guo-Neng; Chen, Guo-Hui; Huang, Hai-Hua

    2013-07-01

    With comparison of the fluorescence spectroscopy and plasma-mass spectroscopy analysis results of the Meso/Cenozoic basic rocks of SE China, the authors found that the average SiO2 content of the Mesozoic basic rocks in this area is about 50%, while that of the Cenozoic basic rocks is about 43%. The former belongs to the basic group and the later to the ultrabasic group in igneous rock classification. Cenozoic basalts, accompanied with high magnesium content and low silica-alumina component, are obviously basic or ultrabasic rocks. Distinctive difference in the content of trace elements and of REE is also presented between the Mesozoic and the Cenozoic basic rocks. Distribution models of both trace elements and REE of the Mesozoic basic rocks are similar to those of the upper crust, and the models of the Cenozoic basic rocks are like those of OIB, indicating that basic rocks of the Cenozoic and OIB should originate from the mantle while that of the Mesozoic is from the bottom part of the upper crust with relationship to the evolution of the Mesozoic crustal magma layer of this area.

  2. Cenozoic fluctuations in biotic parts of the global carbon cycle

    NASA Astrophysics Data System (ADS)

    Olson, Jerry S.

    The mass of organic carbon in land plants presumably decreased over much of Tertiary time. Global average cooling, mountain building, rain shadows, and other drying displaced forests and led to the expansion of shrublands, grasslands and deserts. Quaternary cold repeatedly stimulated the expansion of tundra and cold deserts. Lowering of sea level partly compensated with new areas for coastal and wetland vegetation. Interglacial an postglacial ice retreats opened new lands for boreal, mostly conifer forests (taiga), and for renewed storage of peat in mires. Early Holocene broad-leaved forests expanded again (along with temperate and humid tropical/subtropical climates) and constitute most of the world's plant carbon mass. Slightly less than 800 109 metric tons C is a plausible estimate in all live land plants in mid-Holocene time. Variations from this estimate by a factor of about 2 seem likely within the late Cenozoic Era: higher in early Miocene and lower in glacial times; 460-660×109 metric tons C from A.D. 1980 to ˜1780 A.D.

  3. Early sexual origins of homeoprotein heterodimerization and evolution of the plant KNOX/BELL family.

    PubMed

    Lee, Jae-Hyeok; Lin, Huawen; Joo, Sunjoo; Goodenough, Ursula

    2008-05-30

    Developmental mechanisms that yield multicellular diversity are proving to be well conserved within lineages, generating interest in their origins in unicellular ancestors. We report that molecular regulation of the haploid-diploid transition in Chlamydomonas, a unicellular green soil alga, shares common ancestry with differentiation pathways in land plants. Two homeoproteins, Gsp1 and Gsm1, contributed by gametes of plus and minus mating types respectively, physically interact and translocate from the cytosol to the nucleus upon gametic fusion, initiating zygote development. Their ectopic expression activates zygote development in vegetative cells and, in a diploid background, the resulting zygotes undergo a normal meiosis. Gsm1/Gsp1 dyads share sequence homology with and are functionally related to KNOX/BELL dyads regulating stem-cell (meristem) specification in land plants. We propose that combinatorial homeoprotein-based transcriptional control, a core feature of the fungal/animal radiation, may have originated in a sexual context and enabled the evolution of land-plant body plans.

  4. Early Origin and Evolution of the Angelman Syndrome Ubiquitin Ligase Gene Ube3a

    PubMed Central

    Sato, Masaaki

    2017-01-01

    The human Ube3a gene encodes an E3 ubiquitin ligase and exhibits brain-specific genomic imprinting. Genetic abnormalities that affect the maternal copy of this gene cause the neurodevelopmental disorder Angelman syndrome (AS), which is characterized by severe mental retardation, speech impairment, seizure, ataxia and some unique behavioral phenotypes. In this review article, I highlight the evolution of the Ube3a gene and its imprinting to provide evolutionary insights into AS. Recent comparative genomic studies have revealed that Ube3a is most phylogenetically similar to HECTD2 among the human HECT (homologous to the E6AP carboxyl terminus) family of E3 ubiquitin ligases, and its distant evolutionary origin can be traced to common ancestors of fungi and animals. Moreover, a gene more similar to Ube3a than HECTD2 is found in a range of eukaryotes from amoebozoans to basal metazoans, but is lost in later lineages. Unlike in mice and humans, Ube3a expression is biallelic in birds, monotremes, marsupials and insects. The imprinting domain that governs maternal expression of Ube3a was formed from non-imprinted elements following multiple chromosomal rearrangements after diversification of marsupials and placental mammals. Hence, the evolutionary origins of Ube3a date from long before the emergence of the nervous system, although its imprinted expression was acquired relatively recently. These observations suggest that exogenous expression and functional analyses of ancient Ube3a orthologs in mammalian neurons will facilitate the evolutionary understanding of AS. PMID:28326016

  5. Functional genomic mapping of an early-activated centromeric mammalian origin of DNA replication.

    PubMed

    Pelletier, R; Price, G B; Zannis-Hadjopoulos, M

    1999-09-15

    Ors12, a mammalian autonomously replicating sequence (812 bp), was previously isolated by extrusion of African green monkey (CV-1 cells) nascent DNA from active replication bubbles. It contains a region of alpha-satellite extending 168-bp from the 5'-end, and a nonrepetitive portion extending from nucleotide position 169 to nucleotide 812 that is present in less than nine copies per haploid genome. Ors12 is capable of transient autonomous DNA replication in vivo and in vitro, associates with the nuclear matrix in a cell cycle-dependent manner, and hybridizes at the centromeric region of six CV-1 cell chromosomes as well as a marker chromosome. To demonstrate that DNA replication initiates at ors12 at a native chromosomal locus, a 14.2 kb African green monkey genomic clone was isolated and sequence information was obtained that allowed us to generate eight sets of PCR primers spanning a region of 8 kb containing ors12. One set of primers occurred inside ors12. These primers were used to amplify nascent DNA strands from asynchronously growing CV-1 and African green monkey kidney (AGMK) cells, using noncompetitive and competitive PCR-based mapping methodologies. Both assays showed that DNA replication in vivo initiates preferentially in a 2.3 kb region containing ors12, as well as at a second site located 1.7 kb upstream of ors12. This study provides the first demonstration of genomic function for a centromeric mammalian origin of DNA replication, originally isolated by nascent strand extrusion.

  6. Skeletal variation among early Holocene North American humans: implications for origins and diversity in the Americas.

    PubMed

    Auerbach, Benjamin M

    2012-12-01

    The movement of humans into the Americas remains a major topic of debate among scientific disciplines. Central to this discussion is ascertaining the timing and migratory routes of the earliest colonizers, in addition to understanding their ancestry. Molecular studies have recently argued that the colonizing population was isolated from other Asian populations for an extended period before proceeding to colonize the Americas. This research has suggested that Beringia was the location of this "incubation," though archaeological and skeletal data have not yet supported this hypothesis. This study employs the remains of the five most complete North American male early Holocene skeletons to examine patterns of human morphology at the earliest observable time period. Stature, body mass, body breadth, and limb proportions are examined in the context of male skeletal samples representing the range of morphological variation in North America in the last two millennia of the Holocene. These are also compared with a global sample. Results indicate that early Holocene males have variable postcranial morphologies, but all share the common trait of wide bodies. This trait, which is retained in more recent indigenous North American groups, is associated with adaptations to cold climates. Peoples from the Americas exhibit wider bodies than other populations sampled globally. This pattern suggests the common ancestral population of all of these indigenous American groups had reduced morphological variation in this trait. Furthermore, this provides support for a single, possibly high latitude location for the genetic isolation of ancestors of the human colonizers of the Americas.

  7. High star formation rates as the origin of turbulence in early and modern disk galaxies.

    PubMed

    Green, Andrew W; Glazebrook, Karl; McGregor, Peter J; Abraham, Roberto G; Poole, Gregory B; Damjanov, Ivana; McCarthy, Patrick J; Colless, Matthew; Sharp, Robert G

    2010-10-07

    Observations of star formation and kinematics in early galaxies at high spatial and spectral resolution have shown that two-thirds are massive rotating disk galaxies, with the remainder being less massive non-rotating objects. The line-of-sight-averaged velocity dispersions are typically five times higher than in today's disk galaxies. This suggests that gravitationally unstable, gas-rich disks in the early Universe are fuelled by cold, dense accreting gas flowing along cosmic filaments and penetrating hot galactic gas halos. These accreting flows, however, have not been observed, and cosmic accretion cannot power the observed level of turbulence. Here we report observations of a sample of rare, high-velocity-dispersion disk galaxies in the nearby Universe where cold accretion is unlikely to drive their high star formation rates. We find that their velocity dispersions are correlated with their star formation rates, but not their masses or gas fractions, which suggests that star formation is the energetic driver of galaxy disk turbulence at all cosmic epochs.

  8. Structures of biogenic origin from Early Precambrian rocks of Euro-Asia.

    PubMed

    Lopuchin, A S

    1975-01-01

    Spheroidal microfossils mainly 20 to 100 mug in diameter and exhibiting granular surface textures have been recovered from Early Precambrian rocks by applying a new method of water separation in combination with thin chemical preparation. In contrast to the Acritarcha, these microfossils are characterized by a relatively low specific weight (close to one) and considerable fragility due to impregnation by mineral matter. They occur in Archean sediments of Hindustan, in rocks of the Baltic and Aldan Shields with ages of 3.0 to 3.5 billion (10-9) years, and in Proterozoic deposits in many regions of Euro-Asia. They commonly occur in great number in Precambrian sediments of West Africa, Australia and North America. These forms are here regarded as Menneria Lopuchin and are considered to be blue-green algae. Menneria resembles alga-like forms reported by Engel, Nagy and their co-workers from the Onverwacht Series and microfossils reported by Schopf and Barghoorn from the Fig Tree Series, both of the Swaziland System of southern Africa. In addition to spheroidal microfossils, ribbon-like and filiform microstructures are here reported from Archean deposits. The biogenic structures here described from the Early Precambrian of Euro-Asia are considered to have been photosynthetic and planktonic. Their progressive evolution, intensive production of organic matter, and biogeochemical role in concentration of rare elements is discussed.

  9. Mesozoic and Cenozoic evolution of the SW Iberian margin

    NASA Astrophysics Data System (ADS)

    Ramos, Adrià; Fernández, Oscar; Terrinha, Pedro; Muñoz, Josep Anton; Arnaiz, Álvaro

    2016-04-01

    The SW Iberian margin lies at the eastern termination of the Azores-Gibraltar Fracture Zone (AGFZ), the diffuse transform plate boundary between Africa and Iberia (Sartori et al., 1994). It comprises the Gulf of Cadiz and the Algarve Basin, which were developed under two main different regional stages of deformation. During the Mesozoic, the SW Iberian margin evolution since the Late Triassic was dominated by the Pangea break-up and the Central Atlantic opening up to Early Jurssic, followed by the westernmost Tethyan opening up to Mid/Late Jurassic, and the North Atlantic rifting from Late Jurassic to Early Cretaceous (e.g., Schettino and Turco, 2010). This phase of extension led to the formation of E-W to NE-SW trending, basement-involved extensional faults, the triggering of salt tectonics and the uplifting of basement highs (e.g., Guadalquivir Bank). This extensional phase was responsible not only for the sedimentary depocenter distribution, but also for the crustal configuration of this passive margin, extending from continental crust in the proximal part, to oceanic crust in the distal and deepest portion of the margin. Since the Late Cretaceous, the margin was inverted due to the N-S convergence between Africa and Iberia, being still undergoing collision given the dominance of reverse fault earthquake mechanisms (e.g., Zitellini et al., 2009). The shortening in the margin is mainly accommodated by the north-dipping foliation of the basin, expressed by south-directed blind thrusts affecting the present-day bathymetry, re-activating the basement highs and the salt tectonics, and controlling the Cenozoic depocenters. The emplacement of the Betics to the east led to the westward emplacement of the gravitational unit partially overlying the sedimentary basins, corresponding to the Allochthonous Unit of the Gulf of Cadiz (AUGC). Our observations of the margin configuration have been based on the interpretation of 2D and 3D seismic reflection surveys throughout the

  10. Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae.

    PubMed

    Prasad, V; Strömberg, C A E; Leaché, A D; Samant, B; Patnaik, R; Tang, L; Mohabey, D M; Ge, S; Sahni, A

    2011-09-20

    Rice and its relatives are a focal point in agricultural and evolutionary science, but a paucity of fossils has obscured their deep-time history. Previously described cuticles with silica bodies (phytoliths) from the Late Cretaceous period (67-65 Ma) of India indicate that, by the latest Cretaceous, the grass family (Poaceae) consisted of members of the modern subclades PACMAD (Panicoideae-Aristidoideae-Chloridoideae-Micrairoideae-Arundinoideae-Danthonioideae) and BEP (Bambusoideae-Ehrhartoideae-Pooideae), including a taxon with proposed affinities to Ehrhartoideae. Here we describe additional fossils and show that, based on phylogenetic analyses that combine molecular genetic data and epidermal and phytolith features across Poaceae, these can be assigned to the rice tribe, Oryzeae, of grass subfamily Ehrhartoideae. The new Oryzeae fossils suggest substantial diversification within Ehrhartoideae by the Late Cretaceous, pushing back the time of origin of Poaceae as a whole. These results, therefore, necessitate a re-evaluation of current models for grass evolution and palaeobiogeography.

  11. The origin and early evolution of whales: macroevolution documented on the Indian subcontinent.

    PubMed

    Bajpai, S; Thewissen, J G M; Sahni, A

    2009-11-01

    The origin of whales (order Cetacea) from a four-footed land animal is one of the best understood examples of macroevolutionary change. This evolutionary transition has been substantially elucidated by fossil finds from the Indian subcontinent in the past decade and a half. Here, we review the first steps of whale evolution, i.e. the transition from a land mammal to obligate marine predators, documented by the Eocene cetacean families of the Indian subcontinent: Pakicetidae, Ambulocetidae, Remingtonocetidae, Protocetidae, and Basilosauridae, as well as their artiodactyl sister group, the Raoellidae. We also discuss the influence that the excellent fossil record has on the study of the evolution of organ systems, in particular the locomotor and hearing systems.

  12. The Norwegian Danish Basin: A key to understanding the Cenozoic in the eastern North Sea

    NASA Astrophysics Data System (ADS)

    Rasmussen, Thomas L.; Clausen, Ole R.; Andresen, Katrine J.; Goledowski, Bartosz

    2015-04-01

    The Danish part of Norwegian-Danish Basin, which constitutes the eastern part of the North Sea Basin, has been the key area for sequence stratigraphic subdivision and analysis of the Cenozoic succession since the mid 1990's. Widespread 3D seismic data, in the central parts of the North Sea Basin, as well as more scattered 3D seismic data in the Danish part of the Norwegian-Danish Basin, have given a more detailed understanding of the sequences and indicate that climate is tenable for the origin of Cenozoic sequence boundaries. The previous sequence stratigraphic interpretations have been an integrated part of an ongoing debate concerning vertical movements of the Fennoscandian shield versus the impact of climate and erosion. A newly accessed coherent regional 2D and reprocessed 3D seismic data set, in the Norwegian part of the Norwegian-Danish Basin, constitute the database for a new sequence stratigraphic analysis of the entire area. The objective of the new study is to test previous subdivisions and introduce a coherent 3D sequence stratigraphic analysis and depositional model for the entire Norwegian-Danish Basin. This analysis is necessary to get out of the stalemate with the uplift discussion. The study shows that the original subdivision by Michelsen et al. (1995, 1998) stands. However, revision of few a sequence boundaries may have to be adjusted due to new biostratigraphic information published. Furthermore, high-angle clinoforms and geomorphological transport complexes observed in the Danish North Sea Basin can be traced into the Norwegian sector. This together with the recognition of several other high-angle clinoform complexes, and their associated seismic facies distribution maps and thickness-maps, enhances the level of detail and constrains the previous published paleogeographic reconstructions of the Cenozoic. The geometry of the Cenozoic infill, in the Norwegian part of the Norwegian-Danish Basin, is here interpreted to be controlled by relative sea

  13. Unresolved problems on the origin and early evolution of land plants.

    PubMed

    Bennici, Andrea

    2007-01-01

    The origin of land plants or embryophytes from the Charophyceae is generally accepted today by the botanists. In fact, numerous morphological, cytological, ultrastructural, biochemical and molecular characters are shared in these organisms. A fundamental problem is still constituted by the evolution of the sporophyte, i.e. the appearance of two different phase cycles (gametophyte/sporophyte alternance), although two theories ("antithetic" and "homologous") try to explain this evolutionary event.However, another phylogenetic dilemma is represented, in my opinion, either by the formation of bryophytes or by the transition from these first land plants to the pteridophytes, considering them at whole organism level. The bryophyte gametophyte is the most elaborate of the land plants. It presents several complex characters, principally the growth developmental form, the appearance of multicellular sex organs, antheridia and archegonia. Also the sporophyte shows a complicated structure that is not found in the other land plants or tracheophytes. The sporangium, in particular, exhibits some intricate morphological traits such as the peristome of true mosses for spore dispersion, the elaters of liverworts and the indeterminate growth in the hornworts. The pteridophytes are represented especially by their dominant sporophyte. This latter has the capacity to produce multiple sporangia and, in many cases, two kinds of spores which develop in male and female gametophyte (heterosporous pteridophytes). Another important characteristic of this sporophyte is its ability to become independent of the gametophyte. However, one of the most innovative character is the formation of true vascular elements (xylem and phloem). All these very large evolutionary jumps are discussed on the basis of the phyletic gradualistic neo-Darwinian theory and the punctuated equilibrium theory of Eldredge and Gould. In this context other genetic evolutionary mechanisms are also considered.Nevertheless, the

  14. Young people of minority ethnic origin in England and early parenthood: views from young parents and service providers.

    PubMed

    Higginbottom, G M A; Mathers, N; Marsh, P; Kirkham, M; Owen, J M; Serrant-Green, L

    2006-08-01

    The paper explores the phenomenon of early parenthood in minority ethnic communities in England. The data were collected using focus group interviews, in-depth semi-structured interviews and a telephone survey. The sample consisted of 139 participants (41 service providers, 10 grandmothers, 88 young parents). The findings map out the complexity and diversity of experience of early parenthood amongst young people of minority ethnic origin, not least the multiple attachments many experience in relation to their social groups, religious affiliations and the traditional patterns of parenting within their immediate and extended family. Both the young parents and professionals in this study constructed early parenthood in more positive terms than is currently portrayed in the contemporary policy. The findings are analysed and discussed in relation to ethnic identity, social inclusion and exclusion. We explore participants' attempts to counter negative 'deficit' models of early parenthood with reference to perspectives on youth, parenthood and contemporary strategic policy. In conclusion, we suggest an unambiguous focus on the reduction of pregnancy is not a credible message when teenage pregnancy is a social norm for a particular ethnic or cultural group. For young parents of Muslim faith in particular, teenage parenting within marriage is not necessarily considered a 'problem' or seen as a distinctive event. Most participants did not view early parenthood as a barrier to re-establishing career and educational aspirations. A wide diversity of experience amongst young parents is evidenced in the communities studied; this needs to be reflected more comprehensively both in UK policy and in support services.

  15. Humble origins for a successful strategy: complete enrolment in early Cambrian olenellid trilobites

    PubMed Central

    Ortega-Hernández, Javier; Esteve, Jorge; Butterfield, Nicholas J.

    2013-01-01

    Trilobites are typified by the behavioural and morphological ability to enrol their bodies, most probably as a defence mechanism against adverse environmental conditions or predators. Although most trilobites could enrol at least partially, there is uncertainty about whether olenellids—among the most phylogenetically and stratigraphically basal representatives—could perform this behaviour because of their poorly caudalized trunk and scarcity of coaptative devices. Here, we report complete—but not encapsulating—enrolment for the olenellid genus Mummaspis from the early Cambrian Mural Formation in Alberta, the earliest direct evidence of this strategy in the fossil record of polymerid trilobites. Complete enrolment in olenellids was achieved through a combination of ancestral morphological features, and thus provides new information on the character polarity associated with this key trilobite adaptation. PMID:24068021

  16. Early cave art and ancient DNA record the origin of European bison.

    PubMed

    Soubrier, Julien; Gower, Graham; Chen, Kefei; Richards, Stephen M; Llamas, Bastien; Mitchell, Kieren J; Ho, Simon Y W; Kosintsev, Pavel; Lee, Michael S Y; Baryshnikov, Gennady; Bollongino, Ruth; Bover, Pere; Burger, Joachim; Chivall, David; Crégut-Bonnoure, Evelyne; Decker, Jared E; Doronichev, Vladimir B; Douka, Katerina; Fordham, Damien A; Fontana, Federica; Fritz, Carole; Glimmerveen, Jan; Golovanova, Liubov V; Groves, Colin; Guerreschi, Antonio; Haak, Wolfgang; Higham, Tom; Hofman-Kamińska, Emilia; Immel, Alexander; Julien, Marie-Anne; Krause, Johannes; Krotova, Oleksandra; Langbein, Frauke; Larson, Greger; Rohrlach, Adam; Scheu, Amelie; Schnabel, Robert D; Taylor, Jeremy F; Tokarska, Małgorzata; Tosello, Gilles; van der Plicht, Johannes; van Loenen, Ayla; Vigne, Jean-Denis; Wooley, Oliver; Orlando, Ludovic; Kowalczyk, Rafał; Shapiro, Beth; Cooper, Alan

    2016-10-18

    The two living species of bison (European and American) are among the few terrestrial megafauna to have survived the late Pleistocene extinctions. Despite the extensive bovid fossil record in Eurasia, the evolutionary history of the European bison (or wisent, Bison bonasus) before the Holocene (<11.7 thousand years ago (kya)) remains a mystery. We use complete ancient mitochondrial genomes and genome-wide nuclear DNA surveys to reveal that the wisent is the product of hybridization between the extinct steppe bison (Bison priscus) and ancestors of modern cattle (aurochs, Bos primigenius) before 120 kya, and contains up to 10% aurochs genomic ancestry. Although undetected within the fossil record, ancestors of the wisent have alternated ecological dominance with steppe bison in association with major environmental shifts since at least 55 kya. Early cave artists recorded distinct morphological forms consistent with these replacement events, around the Last Glacial Maximum (LGM, ∼21-18 kya).

  17. Early cognitive skills of Mexican-origin children: The roles of parental nativity and legal status.

    PubMed

    Landale, Nancy S; Oropesa, R S; Noah, Aggie J; Hillemeier, Marianne M

    2016-07-01

    Although one-third of children of immigrants have undocumented parents, little is known about their early development. Using data from the Los Angeles Family and Neighborhood Survey and decennial census, we assessed how children's cognitive skills at ages 3 to 5 vary by ethnicity, maternal nativity, and maternal legal status. Specifically, Mexican children of undocumented mothers were contrasted with Mexican children of documented mothers and Mexican, white, and black children with U.S.-born mothers. Mexican children of undocumented mothers had lower emergent reading skills than all other groups and lower emergent mathematics skills than all groups with U.S.-born mothers. Multilevel regression models showed that differences in reading skills are explained by aspects of the home environment, but the neighborhood context also matters. Cross-level interactions suggest that immigrant concentration boosts emergent reading and mathematics skills for children with undocumented parents, but does not similarly benefit children whose parents are native born.

  18. On the origin of Hawking mini black-holes and the cold early universe

    NASA Technical Reports Server (NTRS)

    Canuto, V.

    1978-01-01

    A simple argument is outlined leading to the result that the mass of mini black holes exploding today is 10 to the 15th power g. A mathematical model is discussed which indicates that the equation of state is greatly softened in the high-density regime and a phase transition may exist, such that any length (particularly very small sizes) will grow with time irrespective of its relation to the size of the particle horizon. It is shown that the effect of spin-2 mesons with respect to the equation of state is to soften the pressure and make it negative. An analytical expression is given for the probability that any particular region in a hot early universe will evolve into a black hole.

  19. Early Proterozoic (2.04 GA) Phoshorites of Pechenga Greenstone Belt and Their Origin

    NASA Technical Reports Server (NTRS)

    Rozanov, Alexei Yu.; Astafieva, Marina M.; Hoover, Richard B.

    2007-01-01

    No principal differences have been found between microfossils described from Cambrian and Phanerozoic and the 2000 Ma phosphorites. Numerous samples revealed diverse microbial microstructures interpreted as cyanobacterial mats consisting of filamentous (1-3 microns in diameter, 20 microns in length), coccoidal (0.8-1.0 microns) and ellipsoidal or rod-shaped microfossils (0.8 microns in diameter, around 2 microns in length) which morphologically resemble modern Microcoleus and Siphonophycus, Thiocapsa, and Rhabdoderma, respectively, reported from alkali ne or saline environment_ The sequence of the early Palaeoproterozoic events which point to a significant oxidation of the hydrosphere, including the formation of phosphorites and changes in the phosphorous cycle, mimics the sequence which was repeated at the Neoproterozoic-Cembrian transition, implying that oxidation of the terrestrial atmosphere-hydrosphere system experienced an irregular cyclic development.

  20. Early cave art and ancient DNA record the origin of European bison

    PubMed Central

    Soubrier, Julien; Gower, Graham; Chen, Kefei; Richards, Stephen M.; Llamas, Bastien; Mitchell, Kieren J.; Ho, Simon Y. W.; Kosintsev, Pavel; Lee, Michael S. Y.; Baryshnikov, Gennady; Bollongino, Ruth; Bover, Pere; Burger, Joachim; Chivall, David; Crégut-Bonnoure, Evelyne; Decker, Jared E.; Doronichev, Vladimir B.; Douka, Katerina; Fordham, Damien A.; Fontana, Federica; Fritz, Carole; Glimmerveen, Jan; Golovanova, Liubov V.; Groves, Colin; Guerreschi, Antonio; Haak, Wolfgang; Higham, Tom; Hofman-Kamińska, Emilia; Immel, Alexander; Julien, Marie-Anne; Krause, Johannes; Krotova, Oleksandra; Langbein, Frauke; Larson, Greger; Rohrlach, Adam; Scheu, Amelie; Schnabel, Robert D.; Taylor, Jeremy F.; Tokarska, Małgorzata; Tosello, Gilles; van der Plicht, Johannes; van Loenen, Ayla; Vigne, Jean-Denis; Wooley, Oliver; Orlando, Ludovic; Kowalczyk, Rafał; Shapiro, Beth; Cooper, Alan

    2016-01-01

    The two living species of bison (European and American) are among the few terrestrial megafauna to have survived the late Pleistocene extinctions. Despite the extensive bovid fossil record in Eurasia, the evolutionary history of the European bison (or wisent, Bison bonasus) before the Holocene (<11.7 thousand years ago (kya)) remains a mystery. We use complete ancient mitochondrial genomes and genome-wide nuclear DNA surveys to reveal that the wisent is the product of hybridization between the extinct steppe bison (Bison priscus) and ancestors of modern cattle (aurochs, Bos primigenius) before 120 kya, and contains up to 10% aurochs genomic ancestry. Although undetected within the fossil record, ancestors of the wisent have alternated ecological dominance with steppe bison in association with major environmental shifts since at least 55 kya. Early cave artists recorded distinct morphological forms consistent with these replacement events, around the Last Glacial Maximum (LGM, ∼21–18 kya). PMID:27754477

  1. Cenozoic Antarctic DiatomWare/BugCam: An aid for research and teaching

    USGS Publications Warehouse

    Wise, S.W.; Olney, M.; Covington, J.M.; Egerton, V.M.; Jiang, S.; Ramdeen, D.K.; ,; Schrader, H.; Sims, P.A.; Wood, A.S.; Davis, A.; Davenport, D.R.; Doepler, N.; Falcon, W.; Lopez, C.; Pressley, T.; Swedberg, O.L.; Harwood, D.M.

    2007-01-01

    Cenozoic Antarctic DiatomWare/BugCam© is an interactive, icon-driven digital-image database/software package that displays over 500 illustrated Cenozoic Antarctic diatom taxa along with original descriptions (including over 100 generic and 20 family-group descriptions). This digital catalog is designed primarily for use by micropaleontologists working in the field (at sea or on the Antarctic continent) where hard-copy literature resources are limited. This new package will also be useful for classroom/lab teaching as well as for any paleontologists making or refining taxonomic identifications at the microscope. The database (Cenozoic Antarctic DiatomWare) is displayed via a custom software program (BugCam) written in Visual Basic for use on PCs running Windows 95 or later operating systems. BugCam is a flexible image display program that utilizes an intuitive thumbnail “tree” structure for navigation through the database. The data are stored on Micrsosoft EXCEL spread sheets, hence no separate relational database program is necessary to run the package

  2. Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide.

    PubMed

    Kissling, W Daniel; Eiserhardt, Wolf L; Baker, William J; Borchsenius, Finn; Couvreur, Thomas L P; Balslev, Henrik; Svenning, Jens-Christian

    2012-05-08

    Despite long-standing interest in the origin and maintenance of species diversity, little is known about historical drivers of species assemblage structure at large spatiotemporal scales. Here, we use global species distribution data, a dated genus-level phylogeny, and paleo-reconstructions of biomes and climate to examine Cenozoic imprints on the phylogenetic structure of regional species assemblages of palms (Arecaceae), a species-rich plant family characteristic of tropical ecosystems. We find a strong imprint on phylogenetic clustering due to geographic isolation and in situ diversification, especially in the Neotropics and on islands with spectacular palm radiations (e.g., Madagascar, Hawaii, and Cuba). Phylogenetic overdispersion on mainlands and islands corresponds to biotic interchange areas. Differences in the degree of phylogenetic clustering among biogeographic realms are related to differential losses of tropical rainforests during the Cenozoic, but not to the cumulative area of tropical rainforest over geological time. A largely random phylogenetic assemblage structure in Africa coincides with severe losses of rainforest area, especially after the Miocene. More recent events also appear to be influential: phylogenetic clustering increases with increasing intensity of Quaternary glacial-interglacial climatic oscillations in South America and, to a lesser extent, Africa, indicating that specific clades perform better in climatically unstable regions. Our results suggest that continental isolation (in combination with limited long-distance dispersal) and changing climate and habitat loss throughout the Cenozoic have had strong impacts on the phylogenetic structure of regional species assemblages in the tropics.

  3. Early lens use: lenses found in context with their original objects.

    PubMed

    Enoch, J M

    1996-11-01

    The early history of optical lenses is poorly defined. Lens-like objects were used for jewelry or decorations for thousands of years, and technology necessary to make lenses was available. In antiquity, a number of activities would have benefited from image size enhancement, and a few lens-like objects have been found at sites where lens use was logical. Means for enhancing visibility of objects have been suggested. Two alternative positions are considered in modern literature: (1) Lenses existed and (2) Fine close work was executed by relatively young and/or nearsighted individuals. Neither argument meets necessary and sufficient conditions for proof of the existence of or lack of lens use. Both forms of image size enhancement might have co-existed, and added factors such as ambient illumination, contrast between the object examined and its background, and shadows must have affected visibility of items viewed. Most probably, optical properties of lens-like elements were appreciated often, across time, by artisans. What is not clear is to what extent general use of lenses resulted. Here, I draw attention to a number of individual lens-like artifacts and the objects intended to be viewed through them. All were decorative pieces or articles of jewelry. The existence of such artifacts has been reported previously. The unique feature in each case presented here is that the lens-like element and object to be viewed were permanently linked together, i.e., "frozen" in time and space. It can be inferred that at least the artisan appreciated the resulting optical effects. Clearly, too, the artist/artisan had to intend the object to be viewed through the lens. This analysis provides an additional useful approach to assessment of early lens use.

  4. A revised checklist of Nepticulidae fossils (Lepidoptera) indicates an Early Cretaceous origin.

    PubMed

    Doorenweerd, Camiel; Nieukerken, Erik J Van; Sohn, Jae-Cheon; Labandeira, Conrad C

    2015-05-27

    With phylogenetic knowledge of Lepidoptera rapidly increasing, catalysed by increasingly powerful molecular techniques, the demand for fossil calibration points to estimate an evolutionary timeframe for the order is becoming an increasingly pressing issue. The family Nepticulidae is a species rich, basal branch within the phylogeny of the Lepidoptera, characterized by larval leaf-mining habits, and thereby represents a potentially important lineage whose evolutionary history can be established more thoroughly with the potential use of fossil calibration points. Using our experience with extant global Nepticulidae, we discuss a list of characters that may be used to assign fossil leaf mines to Nepticulidae, and suggest useful methods for classifying relevant fossil material. We present a checklist of 79 records of Nepticulidae representing adult and leaf-mine fossils mentioned in literature, often with multiple exemplars constituting a single record. We provide our interpretation of these fossils. Two species now are included in the collective generic name Stigmellites: Stigmellites resupinata (Krassilov, 2008) comb. nov. (from Ophiheliconoma) and Stigmellites almeidae (Martins-Neto, 1989) comb. nov. (from Nepticula). Eleven records are for the first time attributed to Nepticulidae. After discarding several dubious records, including one possibly placing the family at a latest Jurassic position, we conclude that the oldest fossils likely attributable to Nepticulidae are several exemplars representing a variety of species from the Dakota Formation (USA). The relevant strata containing these earliest fossils are now dated at 102 Ma (million years ago) in age, corresponding to the latest Albian Stage of the Early Cretaceous. Integration of all records in the checklist shows that a continuous presence of nepticulid-like leaf mines preserved as compression-impression fossils and by amber entombment of adults have a fossil record extending to the latest Early Cretaceous.

  5. Early Developmental and Evolutionary Origins of Gene Body DNA Methylation Patterns in Mammalian Placentas.

    PubMed

    Schroeder, Diane I; Jayashankar, Kartika; Douglas, Kory C; Thirkill, Twanda L; York, Daniel; Dickinson, Pete J; Williams, Lawrence E; Samollow, Paul B; Ross, Pablo J; Bannasch, Danika L; Douglas, Gordon C; LaSalle, Janine M

    2015-08-01

    Over the last 20-80 million years the mammalian placenta has taken on a variety of morphologies through both divergent and convergent evolution. Recently we have shown that the human placenta genome has a unique epigenetic pattern of large partially methylated domains (PMDs) and highly methylated domains (HMDs) with gene body DNA methylation positively correlating with level of gene expression. In order to determine the evolutionary conservation of DNA methylation patterns and transcriptional regulatory programs in the placenta, we performed a genome-wide methylome (MethylC-seq) analysis of human, rhesus macaque, squirrel monkey, mouse, dog, horse, and cow placentas as well as opossum extraembryonic membrane. We found that, similar to human placenta, mammalian placentas and opossum extraembryonic membrane have globally lower levels of methylation compared to somatic tissues. Higher relative gene body methylation was the conserved feature across all mammalian placentas, despite differences in PMD/HMDs and absolute methylation levels. Specifically, higher methylation over the bodies of genes involved in mitosis, vesicle-mediated transport, protein phosphorylation, and chromatin modification was observed compared with the rest of the genome. As in human placenta, higher methylation is associated with higher gene expression and is predictive of genic location across species. Analysis of DNA methylation in oocytes and preimplantation embryos shows a conserved pattern of gene body methylation similar to the placenta. Intriguingly, mouse and cow oocytes and mouse early embryos have PMD/HMDs but their placentas do not, suggesting that PMD/HMDs are a feature of early preimplantation methylation patterns that become lost during placental development in some species and following implantation of the embryo.

  6. The Origin of Isolated Early-Type Galaxies: A Multiwavelength Study of Three Systems

    NASA Astrophysics Data System (ADS)

    Fanelli, Michael N.; Marcum, Pamela M.; Ashley, Trisha L.; Fuse, Christopher R.; O'Toole Appleby, Heather

    2017-01-01

    One major approach to understanding the zero-redshift galaxy population is to distinguish the processes driving passive (internal) evolution of stellar systems from interaction-induced changes. The study of the structure and star formation history of highly isolated systems defines the baseline for quiescent evolution. Isolated early-type galaxies (ETGs) are an especially interesting population, since most ETGs are found in cluster environments. Possible evolutionary paths for isolated ETGs are merged (formerly) compact groups or direct collapse early in cosmic time.As part of our long-term program to identify and explore highly isolated ETGs, we present panchromatic observations of the stars, neutral gas and dust in three highly isolated systems: Mrk 150, KIG 824 and SDSS J235021+141343, a subset of our initial isolated ETG sample. Our goal is to understand the evolutionary paths for these systems, in terms of their merger history, gas fueling and star formation rates. Each system presents diverse properties: Mrk 150 is optically blue and currently forming stars, while KIG 824 is red with no evidence for ongoing star formation; all possess neutral gas. Mrk 150 fits the class of luminous blue compact galaxies [M(V) = -19.2, B-V = 0.47] and possibly represents a link in the evolutionary chain leading to isolated, red and dead systems.We combine GALEX UV photometry, optical images and spectra from the Sloan Survey, IR photometry from 2MASS, WISE and IRAS along with neutral hydrogen observations from the GBT. These data permit us to describe their morphology, quantify the current high-mass star formation rate, and determine the gas and dust content. Derived properties help constrain the evolution of these particular systems in the larger context of ETGs evolving in void-like regions.

  7. Biochronology, paleobiogeography and faunal turnover in western Mediterranean Cenozoic mammals.

    PubMed

    Palombo, Maria R

    2009-12-01

    Cenozoic terrestrial mammals from Sardinia contribute substantial information for reconstructing the complex history of the western Mediterranean. The occurrence of endemic perissodactyls in Eocene marine and marsh deposits suggests the existence of ecological or physical barriers between the Corso-Sardinian massif and the Iberian-Occitanic area. At the end of the Oligocene, isolation of Sardinia was almost complete, although a migration from Europe occurred at the beginning of the Early Miocene, as indicated by the unbalanced endemic fauna from Oschiri. During the Late Miocene, the Tusco-Sardinian palaeobioprovince came into existence as an isolated region inhabited by the quite diversified, but notably endemic, Oreopithecus fauna. Sardinia was definitely isolated from Tuscany by the Messinian, but temporary connections with the European mainland possibly allowed the colonization of forerunners of some Sardinian Pliocene taxa. During the Plio-Pleistocene, Sardinia maintained permanent isolation. However, sea level drop, resulting in a relatively short distance between Sardinia and the European mainland, allowed different migratory events. From the Late Pliocene to the Late Pleistocene-Holocene, two main mammalian faunal complexes (FC) can be recognized: the Nesogoral FC (Late Pliocene-Early Pleistocene) and the Microtus (Tyrrhenicola) FC (late Early Pleistocene-Early Holocene). At the transition from Nesogoral to Microtus (Tyrrhenicola) FC, approximately 47% of the genera and 76% of the species disappeared, while approximately 58% of the genera and 71% of the species appeared. A noticeable turnover followed the arrival of Neolithic man and his accompanying fauna. Nonetheless, Praemegaceros was still present at about 7000 years BP, while Microtus (Tyrrhenicola) and Prolagus are respectively recorded in the Bronze and Iron Ages.

  8. Cenozoic Plate tectonic history of the northern Venezuela-Trinidad Area

    NASA Astrophysics Data System (ADS)

    Erlich, Robert N.; Barrett, S. F.

    1990-02-01

    Geological and geophysical data, coupled with recent plate tectonic reconstructions, suggest that the Cenozoic geologic history of the northern Venezuela-Trinidad area has been dominated by strike-slip displacement of discrete crustal blocks. Allochthonous terranes within the area include metavolcanic rocks of the Cretaceous Villa de Cura Group and metamorphic rocks of the Precambrian to Cretaceous Cordillera de la Costa. A relatively competent crustal block (Margarita Block) is defined by an outline around the metamorphic basement of Margarita Island, the Araya/Paria peninsula, the Northern Range of Trinidad, and Tobago Island. Reconstruction of the Margarita Block to its original position requires at least partial closure of the Falcon Basin, closure of the Bonaire and Cariaco basins, and restoration of about 50 km of motion on both the Oca and Bocono faults. Post middle Eocene eastward translation of the Caribbean plate caused eastward motion of the Margarita Block. A minor change in relative plate motion during the late Oligocene or early Miocene produced a right step in the Moron fault, forming the Cariaco pull-apart basin and El Pilar fault zone. Maximum offset on El Pilar fault is estimated to be no more than 125 km, though displacement along the entire fault zone may have been greater. Transpressional stresses between the Caribbean plate and northern South America caused folding of the Serrania del Interior of Venezuela and the Central Range of Trinidad. Eastward migration of transpressional stresses at the southeastern corner of the Caribbean-South American plate boundary is being accommodated by formation of oblique thrusts, transpressive anticlines, and downwarping of the crust. Bouguer gravity data suggest that Jurassic-aged Atlantic oceanic crust is being depressed as the Caribbean plate expands into the Demerara Plateau area. This study suggests that the faults and transtensional/transpressional/compressional structures identified in this study are

  9. Cenozoic prograding sequences of the Antarctic continental margin - What balance between structural and eustatic control

    SciTech Connect

    Cooper, A.K. ); Barrett, P. ); Hinz, K. ); Stagg, H. ); Traube, V. )

    1990-05-01

    Multichannel seismic reflection profiles across the Antarctic continental margin commonly reveal prograding sedimentary sequences that are bounded by unconformities. These sequences are as much as 5 km thick and, where sampled, are composed entirely of late Eocene( )-early Oligocene and younger glacial rocks. On nonpolar margins, prograding sequences generally are attributed to relative changes in sea level, sediment supply, and tectonism. Around Antarctica, ice sheets have also been important in controlling the geometry and location of prograding sequences. The Antarctic sequences may provide a proximal record of major Cenozoic ice volume changes and related sea level changes not obtainable from low-latitude continental shelves. Presently, the Antarctic record is poorly known because of limited core data. Two categories of prograding (P) and aggrading (A) sigmoidal sequences are observed around Antarctica: (1) P sequences that build principally outward (common) and (2) AP sequences that build largely upward and outward (less common). P sequences may result principally from grounded ice sheets, and AP sequences from open-marine basinal processes. Major rift embayments of Antarctica (e.g., eastern Ross Sea eastern Weddell Sea Lambert graben Wilkes basin) are also pathways for major ice movement. In general, most areas with P sequences lie within or adjacent to Mesozoic or older rift embayment, whereas the primary area with AP sequences (eastern Ross Sea) lies within a likely Cenozoic rift embayment. The Pacific side of the Antarctic Peninsula where Cenozoic ice sheets and Cenozoic tectonism have been active, is also marked by a P sequence. Scientific drilling on the Antarctic continental shelf has recovered openwater glacial deposits (Ross Sea) as well as glacial diamicts that were deposited beneath and in front of grounded glacier ice (Ross Sea and Prydz Bay).

  10. The role of population origin and microenvironment in seedling emergence and early survival in Mediterranean maritime pine (Pinus pinaster Aiton).

    PubMed

    Vizcaíno-Palomar, Natalia; Revuelta-Eugercios, Bárbara; Zavala, Miguel A; Alía, Ricardo; González-Martínez, Santiago C

    2014-01-01

    Understanding tree recruitment is needed to forecast future forest distribution. Many studies have reported the relevant ecological factors that affect recruitment success in trees, but the potential for genetic-based differences in recruitment has often been neglected. In this study, we established a semi-natural reciprocal sowing experiment to test for local adaptation and microenvironment effects (evaluated here by canopy cover) in the emergence and early survival of maritime pine (Pinus pinaster Aiton), an emblematic Mediterranean forest tree. A novel application of molecular markers was also developed to test for family selection and, thus, for potential genetic change over generations. Overall, we did not find evidence to support local adaptation at the recruitment stage in our semi-natural experiment. Moreover, only weak family selection (if any) was found, suggesting that in stressful environments with low survival, stochastic processes and among-year climate variability may drive recruitment. Nevertheless, our study revealed that, at early stages of recruitment, microenvironments may favor the population with the best adapted life strategy, irrespectively of its (local or non-local) origin. We also found that emergence time is a key factor for seedling survival in stressful Mediterranean environments. Our study highlights the complexity of the factors influencing the early stages of establishment of maritime pine and provides insights into possible management actions aimed at environmental change impact mitigation. In particular, we found that the high stochasticity of the recruitment process in stressful environments and the differences in population-specific adaptive strategies may difficult assisted migration schemes.

  11. Serpentinization As a Possible Mechanism at the Origin of Valley Network Formation on Early Mars

    NASA Astrophysics Data System (ADS)

    Chassefiere, E.; Lasue, J.; Langlais, B.; Quesnel, Y.

    2014-12-01

    Serpentinization is a metamorphic process by which ultramafic rocks are hydrothermally altered to store H2O, produce magnetite and release H2, a part of which may be converted into CH4 by Fischer-Tropsch reactions. It could have been a major process to trap a large fraction of the H2O of the planet during the Noachian in altered minerals at depth and at the same time release a significant amount of H2 and CH4 to the crust and the atmosphere. An amount of a 300-1000 m deep Global Equivalent Layer of H2O trapped in serpentine has been proved to be consistent with both present crustal magnetization and atmospheric D/H ratio (Chassefière et al., 2013). The corresponding total amount of H2 released in the course of serpentinization is ~7 1020 moles, a part of which (up to several tens percents by referring to Earth's case) may have been converted to CH4 and trapped in the lower cryosphere under hydrate form. As shown by Lasue et al. (2014), the CH4 trapping capacity of the early martian cryosphere exceeds, or is similar to, the above amount. Any destabilization of the CH4-rich cryosphere after most serpentinization occurred, at the end of the Noachian, could have resulted in the release to the atmosphere of huge amounts of CH4, rapidly converted into H2 by photochemical reactions. Ramirez et al. (2014) have shown that the collision-induced absorption caused by H2 could have increased surface temperature above H2O freezing point, provided CO2 pressure was in the range from 1-2 bar and H2 mixing ratio larger than 5%. A simple calculation shows that the CH4 accumulated in the early martian cryosphere is able to feed up the atmosphere with H2 at the required level during a time up to 2 107 yr, larger than the time generally assumed to be necessary for valley network formation (Hoke et al., 2011). We discuss the possible occurrence of a positive feedback of H2-induced greenhouse increasing the amount of liquid H2O available for serpentinization, and the resulting

  12. CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula.

    PubMed

    Lyons, J R; Young, E D

    2005-05-19

    The abundances of oxygen isotopes in the most refractory mineral phases (calcium-aluminium-rich inclusions, CAIs) in meteorites have hitherto defied explanation. Most processes fractionate isotopes by nuclear mass; that is, 18O is twice as fractionated as 17O, relative to 16O. In CAIs 17O and 18O are nearly equally fractionated, implying a fundamentally different mechanism. The CAI data were originally interpreted as evidence for supernova input of pure 16O into the solar nebula, but the lack of a similar isotope trend in other elements argues against this explanation. A symmetry-dependent fractionation mechanism may have occurred in the inner solar nebula, but experimental evidence is lacking. Isotope-selective photodissociation of CO in the innermost solar nebula might explain the CAI data, but the high temperatures in this region would have rapidly erased the signature. Here we report time-dependent calculations of CO photodissociation in the cooler surface region of a turbulent nebula. If the surface were irradiated by a far-ultraviolet flux approximately 10(3) times that of the local interstellar medium (for example, owing to an O or B star within approximately 1 pc of the protosun), then substantial fractionation of the oxygen isotopes was possible on a timescale of approximately 10(5) years. We predict that similarly irradiated protoplanetary disks will have H2O enriched in 17O and 18O by several tens of per cent relative to CO.

  13. The origin and early radiation of the therapsid mammal-like reptiles: a palaeobiological hypothesis.

    PubMed

    Kemp, T S

    2006-07-01

    The replacement of the basal synapsid pelycosaurs by the more 'mammal-like' therapsids in the Permian was an important event in the history of tetrapods because it initiated the eventual transition to the mammals. It is also an example of taxon replacement in the fossil record that is unusually amenable to explanation, based on a combination of analysis of the biological significance of the inferred character changes, with the stratigraphic, palaeogeographic and palaeoecological circumstances of the time. An hypothesis is presented in which the origin of the therapsids resulted from a correlated progression of character evolution leading to higher levels of metabolic activity and homeostatic regulation of the body. It was a response to the availability of a seasonally arid, savanna-like biome. The subsequent explosive radiation of therapsids was associated with habitat expansion made possible by the Mid-Permian development of geographical continuity between that biome and the temperate biomes. The final extinction of the pelycosaurs was a case of incumbent replacement by the new therapsid lineages.

  14. Early Chordate Origin of the Vertebrate Integrin αI Domains

    PubMed Central

    Chouhan, Bhanupratap Singh; Käpylä, Jarmo; Denessiouk, Konstantin; Denesyuk, Alexander; Heino, Jyrki; Johnson, Mark S.

    2014-01-01

    Half of the 18 human integrins α subunits have an inserted αI domain yet none have been observed in species that have diverged prior to the appearance of the urochordates (ascidians). The urochordate integrin αI domains are not human orthologues but paralogues, but orthologues of human αI domains extend throughout later-diverging vertebrates and are observed in the bony fish with duplicate isoforms. Here, we report evidence for orthologues of human integrins with αI domains in the agnathostomes (jawless vertebrates) and later diverging species. Sequence comparisons, phylogenetic analyses and molecular modeling show that one nearly full-length sequence from lamprey and two additional fragments include the entire integrin αI domain region, have the hallmarks of collagen-binding integrin αI domains, and we show that the corresponding recombinant proteins recognize the collagen GFOGER motifs in a metal dependent manner, unlike the α1I domain of the ascidian C. intestinalis. The presence of a functional collagen receptor integrin αI domain supports the origin of orthologues of the human integrins with αI domains prior to the earliest diverging extant vertebrates, a domain that has been conserved and diversified throughout the vertebrate lineage. PMID:25409021

  15. Early Adolescent Substance Use in Mexican Origin Families: Peer Selection, Peer Influence, and Parental Monitoring*

    PubMed Central

    Schofield, Thomas J.; Conger, Rand D.; Robins, Richard W.

    2015-01-01

    Background Because adolescents vary in their susceptibility to peer influence, the current study addresses potential reciprocal effects between associating with deviant peers and use of alcohol, tobacco and other drugs (ATOD), as well as the potential buffering role of parental monitoring on these reciprocal effects. Method 674 children of Mexican origin reported at fifth and seventh grade(10.4 years old at fifth grade)on the degree to which they associated with deviant peers, intended to use alcohol, tobacco or other drugs (ATOD) in the future, and had used controlled substances during the past year. Trained observers rated parental monitoring from video-recorded family interactions at the first assessment. Results Youth who intended to use ATODs during fifth grade experienced a relative increase in number of deviant peers by seventh grade, and youth with more deviant peers in fifth grade were more likely to use ATODs by seventh grade. Parental monitoring buffered (i.e., moderated) the reciprocal association between involvement with deviant peers and both intent to use ATODs and actual use of ATODs. Conclusions Parental monitoring can disrupt the reciprocal associations between deviant peers and ATOD use during the transition from childhood to adolescence PMID:26525416

  16. The charophycean green algae provide insights into the early origins of plant cell walls.

    PubMed

    Sørensen, Iben; Pettolino, Filomena A; Bacic, Antony; Ralph, John; Lu, Fachuang; O'Neill, Malcolm A; Fei, Zhangzhun; Rose, Jocelyn K C; Domozych, David S; Willats, William G T

    2011-10-01

    Numerous evolutionary innovations were required to enable freshwater green algae to colonize terrestrial habitats and thereby initiate the evolution of land plants (embryophytes). These adaptations probably included changes in cell-wall composition and architecture that were to become essential for embryophyte development and radiation. However, it is not known to what extent the polymers that are characteristic of embryophyte cell walls, including pectins, hemicelluloses, glycoproteins and lignin, evolved in response to the demands of the terrestrial environment or whether they pre-existed in their algal ancestors. Here we show that members of the advanced charophycean green algae (CGA), including the Charales, Coleochaetales and Zygnematales, but not basal CGA (Klebsormidiales and Chlorokybales), have cell walls that are comparable in several respects to the primary walls of embryophytes. Moreover, we provide both chemical and immunocytochemical evidence that selected Coleochaete species have cell walls that contain small amounts of lignin or lignin-like polymers derived from radical coupling of hydroxycinnamyl alcohols. Thus, the ability to synthesize many of the components that characterize extant embryophyte walls evolved during divergence within CGA. Our study provides new insight into the evolutionary window during which the structurally complex walls of embryophytes originated, and the significance of the advanced CGA during these events.

  17. Late Cenozoic Moisture History of East Africa

    NASA Astrophysics Data System (ADS)

    Trauth, M. H.; Maslin, M. A.; Deino, A.; Strecker, M. R.

    2004-12-01

    Evidence from fluvio-lacustrine sediments in ten separate basins in the Ethiopian and Kenya rifts suggests there were three protracted humid periods during the Late Cenozoic; at 2.7 - 2.5, 1.9 - 1.7, and 1.1 - 0.9 million years before present. These wet periods are coeval with known increases of aridity in parts of North West and North East Africa, indicating significant regional shifts in African climate. These three East African wet periods correspond to major global climatic changes as well as maxima in eccentricity and thus precession, suggesting a combined global and local causation. These climatic changes were important for the speciation and dispersal of mammals and hominids in East Africa as it implies that key steps in human evolution occurred during relatively humid periods in a region containing extensive deep lakes.

  18. Cenozoic rift formation in the northern Caribbean

    NASA Technical Reports Server (NTRS)

    Mann, P.; Burke, K.

    1984-01-01

    Rifts form in many different tectonic environments where the lithosphere is put into extension. An outline is provided of the distribution, orientation, and relative ages of 16 Cenozoic rifts along the northern edge of the Caribbean plate and it is suggested that these structures formed successively by localized extension as the Caribbean plate moved eastward past a continental promontory of North America. Evidence leading to this conclusion includes (1) recognition that the rifts become progressively younger westward; (2) a two-phase subsidence history in a rift exposed by upthrusting in Jamaica; (3) the absence of rifts east of Jamaica; and (4) the observation that removal of 1400 km of strike-slip displacement on the Cayman Trough fault system places the Paleogene rifts of Jamaica in an active area of extension south of Yucatan where the rifts of Honduras and Guatemala are forming today.

  19. Rise of the Earliest Tetrapods: An Early Devonian Origin from Marine Environment

    PubMed Central

    George, David; Blieck, Alain

    2011-01-01

    Tetrapod fossil tracks are known from the Middle Devonian (Eifelian at ca. 397 million years ago - MYA), and their earliest bony remains from the Upper Devonian (Frasnian at 375–385 MYA). Tetrapods are now generally considered to have colonized land during the Carboniferous (i.e., after 359 MYA), which is considered to be one of the major events in the history of life. Our analysis on tetrapod evolution was performed using molecular data consisting of 13 proteins from 17 species and different paleontological data. The analysis on the molecular data was performed with the program TreeSAAP and the results were analyzed to see if they had implications on the paleontological data collected. The results have shown that tetrapods evolved from marine environments during times of higher oxygen levels. The change in environmental conditions played a major role in their evolution. According to our analysis this evolution occurred at about 397–416 MYA during the Early Devonian unlike previously thought. This idea is supported by various environmental factors such as sea levels and oxygen rate, and biotic factors such as biodiversity of arthropods and coral reefs. The molecular data also strongly supports lungfish as tetrapod's closest living relative. PMID:21779385

  20. 400 million years on six legs: on the origin and early evolution of Hexapoda.

    PubMed

    Grimaldi, David A

    2010-01-01

    Identifying the unambiguous sister group to the hexapods has been elusive. Traditional concepts include the Myriapoda (the Tracheata/Atelocerata hypothesis), but recent molecular studies consistently indicate it is the Crustacea, either in part or entirety (the Pancrustacea/Tetraconata hypothesis). The morphological evidence in support of Tracheata is reviewed, and most features are found to be ambiguous (i.e., losses, poorly known and surveyed structures, and probable convergences), though some appear to be synapomorphic, such as tentorial structure and the presence of styli and eversible vesicles. Other morphological features, particularly the structure of the eyes and nervous system, support Pancrustacea, as does consistent molecular evidence (which is reviewed and critiqued). Suggestions are made regarding hexapod-crustacean limb homologies. Relationships among basal (apterygote) hexapods are reviewed, and critical Paleozoic fossils are discussed. Despite the scarceness of Devonian hexapods, major lineages like Collembola and even dicondylic Insecta appeared in the Early Devonian; stem-group and putative Archaeognatha are known from the Carboniferous through Permian and the Late Devonian, respectively. Thus, the earliest divergences of hexapods were perhaps Late Silurian, which is considerably younger than several estimates made using molecular data.

  1. A new fossil species supports an early origin for toothed whale echolocation.

    PubMed

    Geisler, Jonathan H; Colbert, Matthew W; Carew, James L

    2014-04-17

    Odontocetes (toothed whales, dolphins and porpoises) hunt and navigate through dark and turbid aquatic environments using echolocation; a key adaptation that relies on the same principles as sonar. Among echolocating vertebrates, odontocetes are unique in producing high-frequency vocalizations at the phonic lips, a constriction in the nasal passages just beneath the blowhole, and then using air sinuses and the melon to modulate their transmission. All extant odontocetes seem to echolocate; however, exactly when and how this complex behaviour--and its underlying anatomy--evolved is largely unknown. Here we report an odontocete fossil, Oligocene in age (approximately 28 Myr ago), from South Carolina (Cotylocara macei, gen. et sp. nov.) that has several features suggestive of echolocation: a dense, thick and downturned rostrum; air sac fossae; cranial asymmetry; and exceptionally broad maxillae. Our phylogenetic analysis places Cotylocara in a basal clade of odontocetes, leading us to infer that a rudimentary form of echolocation evolved in the early Oligocene, shortly after odontocetes diverged from the ancestors of filter-feeding whales (mysticetes). This was followed by enlargement of the facial muscles that modulate echolocation calls, which in turn led to marked, convergent changes in skull shape in the ancestors of Cotylocara, and in the lineage leading to extant odontocetes.

  2. The nucleosynthetic origins and chemical evolution of phosphorus in the early universe

    NASA Astrophysics Data System (ADS)

    Frebel, Anna

    2013-10-01

    Relatively little is known about the chemical evolution of the element phosphorus, despite its relatively large abundance in the Sun and its importance for biological life. The goal of this archive proposal is to establish the chemical evolution trend of phosphorus, extending our knowledge from solar metallicity to stars with less than 1/1000th the solar metallicity.Previous studies have used weak near-infrared P I lines to establish phosphorus abundance trends from -1.0 < [Fe/H] < 0. We have identified a strong P I doublet in the UV at 2136 Angstroms, which is present in the spectra of 22 stars available in the HST archives. Our study will {1} improve on the limited observations of the abundance trend at high metallicity and extend it to metallicities lower by 2 dex and {2} determine whether [P/Fe] flattens out towards lower metallicities {like the alpha-elements Mg, Si, Ca, and Ti} or whether it continues to increase {like Co and Zn}. Our results will provide the first tight constraints on the nucleosynthesis of phosphorus and its production sites in the early Universe.We request one semester of funding to support a graduate student to lead the spectral analysis work, one month of summer salary, and miscellaneous travel and publication costs.

  3. Early Impact History and Dynamical Origin of Differentiated Meteorites and Asteroids

    NASA Astrophysics Data System (ADS)

    Scott, E. R. D.; Keil, K.; Goldstein, J. I.; Asphaug, E.; Bottke, W. F.; Moskovitz, N. A.

    Differentiated asteroids and igneous meteorites present numerous challenges to our understanding of the impact and dynamical evolution of asteroids and meteorite parent bodies. Igneous meteorites, including irons, achondrites, and stony-iron meteorites, testify to the prior existence of ~100 differentiated bodies. Destruction of these bodies by hypervelocity impact over 4 G.y. would have required numerous giant impacts, although this is inconsistent with the preservation of Vesta's basaltic crust and the lack of differentiated asteroid families. We review recent advances in elucidating the early chronology of meteorites, spectroscopic observations of likely differentiated asteroids, petrological studies of differentiated meteorites, impact disruption of differentiated planetesimals during accretion, and dynamical scenarios for capturing material into the asteroid belt. Together, these advances suggest a new paradigm in which planetesimals accreted rapidly in the inner solar system and were melted by 26Al less than 2 m.y. after the formation of calcium-aluminum-rich inclusions (CAIs). While molten they were disrupted by grazing hit-and-run impacts during the accretion of planetesimals. Later, when still hot, the survivors were disrupted by hypervelocity impacts. Impact debris from the differentiated bodies was transferred from the newly formed terrestrial planet region to stable orbits in the asteroid belt. This evolutionary history leaves many questions unanswered but suggests new paths for future exploration of the asteroid belt and petrological and isotopic studies of meteorites.

  4. Early climate change consensus at the National Academy: the origins and making of "Changing Climate".

    PubMed

    Nierenberg, Nicolas; Tschinkel, Walter R; Tschinkel, Victoria J

    2010-01-01

    The 1983 National Academy of Sciences report entitled "Changing Climate," authored by a committee of physical and social scientists chaired by William Nierenberg, was an early comprehensive review of the effects of human-caused increases in the levels of atmospheric CO2. Study of the events surrounding the committee's creation, deliberations, and subsequent report demonstrates that the conclusions of the report were the consensus of the entire committee and in line with the scientific consensus of the time. This result contraverts a 2008 paper in which Naomi Oreskes, Erik M. Conway, and Matthew Shindell asserted that the report contradicted a growing consensus about climate change, and that Nierenberg for political reasons deliberately altered the summary and conclusions of the report in a way that played down the concerns of the other physical scientists on the committee. Examining the production of the report and contextualizing it in contemporaneous scientific and political discussion, we instead show how it was a multi-year effort with work divided among the various members of the committee according to their expertise. The synthesis and conclusions were expressly a joint statement of the committee and were consistent with other assessments of that time expressing deep concern over the potential issues while stopping short of recommending major policy changes due to the uncertainties, and to a lack of good alternatives.

  5. TIDAL INTERACTION AS THE ORIGIN OF EARLY-TYPE DWARF GALAXIES IN GROUP ENVIRONMENTS

    SciTech Connect

    Paudel, Sanjaya; Ree, Chang H.

    2014-11-20

    We present a sample of dwarf galaxies that suffer ongoing disruption by the tidal forces of nearby massive galaxies. By analyzing structural and stellar population properties using the archival imaging and spectroscopic data from the Sloan Digital Sky Survey (SDSS), we find that they are likely a ''smoking gun'' example of the formation through tidal stirring of early-type dwarf galaxies (dEs) in the galaxy group environment. The inner cores of these galaxies are fairly intact and the observed light profiles are well fit by the Sérsic functions while the tidally stretched stellar halos are prominent in the outer parts. They are all located within a sky-projected distance of 50 kpc from the centers of the host galaxies and no dwarf galaxies have relative line-of-sight velocities larger than 205 km s{sup –1} to their hosts. We derive the Composite Stellar Population properties of these galaxies by fitting the SDSS optical spectra to a multiple-burst composite stellar population model. We find that these galaxies accumulate a significant fraction of stellar mass within the last 1 Gyr and contain a majority stellar population with an intermediate age of 2 to 4 Gyr. Based on this evidence, we argue that tidal stirring, particularly through the galaxy-galaxy interaction, might have an important role in the formation and evolution of dEs in the group environment where the influence of other gas stripping mechanism might be limited.

  6. A Common Genetic Origin for Early Farmers from Mediterranean Cardial and Central European LBK Cultures.

    PubMed

    Olalde, Iñigo; Schroeder, Hannes; Sandoval-Velasco, Marcela; Vinner, Lasse; Lobón, Irene; Ramirez, Oscar; Civit, Sergi; García Borja, Pablo; Salazar-García, Domingo C; Talamo, Sahra; María Fullola, Josep; Xavier Oms, Francesc; Pedro, Mireia; Martínez, Pablo; Sanz, Montserrat; Daura, Joan; Zilhão, João; Marquès-Bonet, Tomàs; Gilbert, M Thomas P; Lalueza-Fox, Carles

    2015-12-01

    The spread of farming out of the Balkans and into the rest of Europe followed two distinct routes: An initial expansion represented by the Impressa and Cardial traditions, which followed the Northern Mediterranean coastline; and another expansion represented by the LBK (Linearbandkeramik) tradition, which followed the Danube River into Central Europe. Although genomic data now exist from samples representing the second migration, such data have yet to be successfully generated from the initial Mediterranean migration. To address this, we generated the complete genome of a 7,400-year-old Cardial individual (CB13) from Cova Bonica in Vallirana (Barcelona), as well as partial nuclear data from five others excavated from different sites in Spain and Portugal. CB13 clusters with all previously sequenced early European farmers and modern-day Sardinians. Furthermore, our analyses suggest that both Cardial and LBK peoples derived from a common ancient population located in or around the Balkan Peninsula. The Iberian Cardial genome also carries a discernible hunter-gatherer genetic signature that likely was not acquired by admixture with local Iberian foragers. Our results indicate that retrieving ancient genomes from similarly warm Mediterranean environments such as the Near East is technically feasible.

  7. A Common Genetic Origin for Early Farmers from Mediterranean Cardial and Central European LBK Cultures

    PubMed Central

    Olalde, Iñigo; Schroeder, Hannes; Sandoval-Velasco, Marcela; Vinner, Lasse; Lobón, Irene; Ramirez, Oscar; Civit, Sergi; García Borja, Pablo; Salazar-García, Domingo C.; Talamo, Sahra; María Fullola, Josep; Xavier Oms, Francesc; Pedro, Mireia; Martínez, Pablo; Sanz, Montserrat; Daura, Joan; Zilhão, João; Marquès-Bonet, Tomàs; Gilbert, M. Thomas P.; Lalueza-Fox, Carles

    2015-01-01

    The spread of farming out of the Balkans and into the rest of Europe followed two distinct routes: An initial expansion represented by the Impressa and Cardial traditions, which followed the Northern Mediterranean coastline; and another expansion represented by the LBK (Linearbandkeramik) tradition, which followed the Danube River into Central Europe. Although genomic data now exist from samples representing the second migration, such data have yet to be successfully generated from the initial Mediterranean migration. To address this, we generated the complete genome of a 7,400-year-old Cardial individual (CB13) from Cova Bonica in Vallirana (Barcelona), as well as partial nuclear data from five others excavated from different sites in Spain and Portugal. CB13 clusters with all previously sequenced early European farmers and modern-day Sardinians. Furthermore, our analyses suggest that both Cardial and LBK peoples derived from a common ancient population located in or around the Balkan Peninsula. The Iberian Cardial genome also carries a discernible hunter–gatherer genetic signature that likely was not acquired by admixture with local Iberian foragers. Our results indicate that retrieving ancient genomes from similarly warm Mediterranean environments such as the Near East is technically feasible. PMID:26337550

  8. Young children who commit crime: epidemiology, developmental origins, risk factors, early interventions, and policy implications.

    PubMed

    Loeber, R; Farrington, D P

    2000-01-01

    An early onset of delinquency prior to age 13 years increases the risk of later serious, violent, and chronic offending by a factor of 2-3. Also child delinquents, compared to juveniles who start offending at a later age, tend to have longer delinquent careers. This article summarizes the report of the Office of Juvenile Justice and Delinquency Prevention's Study Group on Very Young Offenders, chaired by Rolf Loeber and David P. Farrington. The Study Group, consisting of 16 scholars and 23 coauthors, worked for 2 years on preparing a report, undertaking extensive secondary data analyses, and writing chapters in different speciality areas. The report consists of a state of the art review of the developmental background of child delinquents. The report also summarizes risk and protective factors in the individual, family, peer group, school, and neighborhood that affect that development. Lastly, the report renews relevant preventive and remedial interventions in the juvenile justice system, families, peer groups, schools. and neighborhoods, and makes a case for improvement in the integration of services for child delinquents. Policy recommendations are presented to improve methods of dealing with child delinquents by juvenile justice, child welfare, and mental health agencies.

  9. Interpersonal and Genetic Origins of Adult Attachment Styles: A Longitudinal Study from Infancy to Early Adulthood

    PubMed Central

    Fraley, R. Chris; Roisman, Glenn I.; Booth-LaForce, Cathryn; Owen, Margaret Tresch; Holland, Ashley S.

    2013-01-01

    One of the assumptions of attachment theory is that individual differences in adult attachment styles emerge from individuals’ developmental histories. To examine this assumption empirically the authors report data from an age 18 follow-up (Booth-LaForce & Roisman, 2012) of the NICHD Study of Early Child Care and Youth Development, a longitudinal investigation that tracked a cohort of children and their parents from birth to age 15. Analyses indicate that individual differences in adult attachment can be traced to variations in the quality of individuals’ caregiving environments, their emerging social competence, and the quality of their best friendship. Analyses also indicate that assessments of temperament and most of the specific genetic polymorphisms thus far examined in the literature on genetic correlates of attachment styles were essentially uncorrelated with adult attachment, with the exception of a polymorphism in the serotonin receptor gene (HTR2A rs6313), which modestly predicted higher attachment anxiety and that revealed a G × E interaction such that changes in maternal sensitivity across time predicted attachment-related avoidance. The implications of these data for contemporary perspectives and debates concerning adult attachment theory are discussed. PMID:23397970

  10. Complementary feeding and the early origins of obesity risk: a study protocol

    PubMed Central

    Muniandy, Naleena Devi; Allotey, Pascale A; Soyiri, Ireneous N; Reidpath, Daniel D

    2016-01-01

    Introduction The rise in the prevalence of childhood obesity worldwide calls for an intervention earlier in the life cycle. Studies show that nutrition during early infancy may contribute to later obesity. Hence, this study is designed to determine if the variation in complementary feeding practices poses a risk for the development of obesity later in life. A mixed methods approach will be used in conducting this study. Methods and analysis The target participants are infants born from January to June 2015 in the South East Asia Community Observatory (SEACO) platform. The SEACO is a Health and Demographic Surveillance System (HDSS) that is established in the District of Segamat in the state of Johor, Malaysia. For the quantitative strand, the sociodemographic data, feeding practices, anthropometry measurement and total nutrient intake will be assessed. The assessment will occur around the time complementary feeding is expected to start (7 Months) and again at 12 months. A 24-hour diet recall and a 2-day food diary will be used to assess the food intake. For the qualitative strand, selected mothers will be interviewed to explore their infant feeding practices and factors that influence their practices and food choices in detail. Ethics and dissemination Ethical clearance for this study was sought through the Monash University Human Research and Ethics Committee (application number CF14/3850-2014002010). Subsequently, the findings of this study will be disseminated through peer-reviewed journals, national and international conferences. PMID:27852704

  11. Hyperthermophilic Archaea as model systems to study origin and evolution of early organisms

    NASA Astrophysics Data System (ADS)

    Cobucci-Ponzano, Beatrice; Carpentieri, Floriana; Ciaramella, Maria; de Falco, M. Rosaria; de Felice, Mariarita; di Giulio, Massimo; di Lauro, Barbara; Mazzone, Marialuisa; Napoli, Alessandra; Perugino, Giuseppe; Pisani, Francesca M.; Salerno, Vincenzo; Rossi, Mose'; Moracci, Marco

    2002-11-01

    The current preponderance of geological and geochemical evidence favours a warm to hot Earth during the first few hundred million years after accretion. Nowadays, volcanic areas, essentially unchanged for at least 4.3 Ga, are populated by hyperthermophilic microorganisms, the majority belonging to the domain Archaea. Most Archaea live in almost any environmental niches previously thought of as insurmountable physical and chemical barriers to life. These findings expanded what we considered the limits of life stimulating the exobiological research area and increasing the likelihood that life could have evolved in planets considered totally inhospitable. The study of the biology of Archaea can provide useful answers to questions concerning the chemical-physical conditions that are compatible with the mechanisms of abiogenesis and the evolution of early life. In this framework, our group is involved since a long time in the study of hyperthermophilic Archaea. We faced some crucial questions dealing with the biology of these organisms like: was the last universal common ancestor (LUCA) a (hyper)thermophile? How are Archaea phylogenetically related to the other domains of living organisms regarding DNA replication, transcription and gene organization? How can withstand DNA and proteins of hyperthermophiles to high temperatures? We here report on recent advances we obtained on these aspects.

  12. The Gamburtsev mountains and the origin and early evolution of the Antarctic Ice Sheet.

    PubMed

    Bo, Sun; Siegert, Martin J; Mudd, Simon M; Sugden, David; Fujita, Shuji; Xiangbin, Cui; Yunyun, Jiang; Xueyuan, Tang; Yuansheng, Li

    2009-06-04

    Ice-sheet development in Antarctica was a result of significant and rapid global climate change about 34 million years ago. Ice-sheet and climate modelling suggest reductions in atmospheric carbon dioxide (less than three times the pre-industrial level of 280 parts per million by volume) that, in conjunction with the development of the Antarctic Circumpolar Current, led to cooling and glaciation paced by changes in Earth's orbit. Based on the present subglacial topography, numerical models point to ice-sheet genesis on mountain massifs of Antarctica, including the Gamburtsev mountains at Dome A, the centre of the present ice sheet. Our lack of knowledge of the present-day topography of the Gamburtsev mountains means, however, that the nature of early glaciation and subsequent development of a continental-sized ice sheet are uncertain. Here we present radar information about the base of the ice at Dome A, revealing classic Alpine topography with pre-existing river valleys overdeepened by valley glaciers formed when the mean summer surface temperature was around 3 degrees C. This landscape is likely to have developed during the initial phases of Antarctic glaciation. According to Antarctic climate history (estimated from offshore sediment records) the Gamburtsev mountains are probably older than 34 million years and were the main centre for ice-sheet growth. Moreover, the landscape has most probably been preserved beneath the present ice sheet for around 14 million years.

  13. Cenozoic diapiric traps in eastern China

    SciTech Connect

    Qi, F.; Xie-Pei, W.; Jia-Hua, Z.

    1984-04-01

    Genetically, there are 2 types of Cenozoic diapiric traps in the oil fields in eastern China. One type is produced by cold diapirism owing to the rise of evaporites and soft mudstone. This type can be divided into 3 patterns. The first pattern is the faulted ridge with 1000 m (3300 ft) closure and flanks dipping up to 30/sup 0/. A complex graben system is developed on the top. The amplitude of the core of the anticline is about 3000 m (9800 ft). The Xiangzheng structure in the Shengli oil field and the Wang-cung structure in the Qian-jiang depression are examples. The second pattern is the gentle anticline or dome with 50-300 m (160-985 ft) closure and 3/sup 0/-10/sup 0/ dip on the flanks. The incompetent strata beneath it are about 1000 m (3300 ft) thick. The Tuocung-Shengli structure in the Shengli oil field is an example. The third pattern is a nose-like structure with less than 50 m (160 ft) closure. This pattern is usually located near the zero edge of incompetent strata. The Serniusi structure in the Dagang oil field is an example. Another type of Cenozoic diapiric trap results from hot diapirism associated with the intrusion of gabbro or diabase. Such traps are typically small, round domes. The dip of the flanking strata generally increases with depth as the diapir is approached. A graben system is developed on top of the diapir. The distribution of these traps is related usually to regional fault zones and coincides with the distribution of the magmatism. The Matouzung structure in the Jinhu depression is one of the examples.

  14. Cenozoic diapiric traps in eastern China

    SciTech Connect

    Qi, F.; Xie-Pei, W.; Jia-Hua, Z.

    1984-04-01

    Genetically, there are 2 types of Cenozoic diapiric traps in the oil fields in eastern China. One type is produced by cold diapirism owing to the rise of evaporites and soft mudstone. This type can be divided into 3 patterns. The first pattern is the faulted ridge with 1000 m (3300 ft) closure and flanks dipping up to 30/sup 0/. A complex graben system is developed on the top. The amplitude of the core of the anticline is about 3000 m (9800 ft). The Xiangzheng structure in the Shengli oil field and the Wang-atcung structure in the Qian-jiang depression are examples. The second pattern is the gentle anticline or dome with 50-300 m (160-985 ft) closure and 3/sup 0/-10/sup 0/ dip on the flanks. The incompetent strata beneath it are about 1000 m (3300 ft) thick. The Tuocung-Shengli structure in the Shengli oil field is an example. The third pattern is a nose-like structure with less than 50 m (160 ft) closure. This pattern is usually located near the zero edge of incompetent strata. The Serniusi structure in the Dagang oil field is an example. Another type of Cenozoic diapiric trap results from hot diapirism associated with the intrusion of gabbro or diabase. Such traps are typically small, round domes. The dip of the flanking strata generally increases with depth as the diapir is approached. A graben system is developed on top of the diapir. The distribution of these traps is related usually to regional fault zones and coincides with the distribution of the magmatism. The Matouzung structure in the Jinhu depression is one of the examples.

  15. Tectonic classification of Cenozoic Iberian foreland basins

    NASA Astrophysics Data System (ADS)

    De Vicente, G.; Cloetingh, S.; Van Wees, J. D.; Cunha, P. P.

    2011-04-01

    The Iberian microcontinent stands out because of its intense Alpine intraplate deformation. This is reflected in a large number of Cenozoic basins of very different sizes. Most of the contacts between topographic highs and basins are thrust or strike-slip faults. All these basins seem to have undergone a common sedimentary evolution, comprising four stages: initiation of sedimentation, intense syn-tectonic infilling, change from endorheic to exorheic drainage, and accelerated erosion related to fluvial incision. This simple evolutionary model shows a migration from East to West, in which basins are still tectonically active at the Atlantic margin of Iberia. This common evolution is also found in a series of geometrical characteristics, such as the ratio r of length of strike-slip fault and length of thrust fault, that are very similar in both types of basin border settings. Thrust-related basins are mainly associated with segmented pop-downs, whereas the main basins have the characteristics of open-ramp basins. Strike-slip related basins are mostly transpressive structures, although small pull-apart basins are usual along the Vilariça and Messejana faults. For basin areas larger than 100-1000 km 2, a constant r value of 0.6 is found (including the Ebro, Duero, Madrid, Lower Tagus and Badajoz basins). Within the Iberian microcontinent, the total amount of Cenozoic contractional deformation was distributed between strike-slip and thrust faults with an r ratio close to 0.6. However, for small basins this parameter seems to depend on the type of fault, range or deformation belt (pure strike-slip, transtension, transpression, and pop-up) independently of its local tectonic development.

  16. Early Proterozoic (2.0 GA) Phosphorites from Pechenga Greenstone Belt and Their Origin

    NASA Technical Reports Server (NTRS)

    Rozanov, A. Yu.; Astafieva, M. M.; Melezhik, V. A.; Hoover, R. B.; Lepland, I.

    2007-01-01

    The period of 2500-2000 Ma is heralded by several other hallmark events, including onset and decline of the greatest positive excursion of Beta13Ccarb (Lomagundi-Jatuli Paradox), development of a significant seawater sulphate reservoir, abundant deposition of anomalously organic matter (OM)-rich sediments, the oldest known significant petroleum deposits (Shunga Event), and the appearance of first known marine phosphorites at 2000 Ma as reported here. They occur as numerous rounded, soft-deformed, clasts in fine-pebble intra-formational conglomerates, forming two separate c. 200 m-thick turbidite fans within the 1000 m-thick OM- and sulphide-rich turbiditic greywackes of the Pilgujaervi Formation in the Pechenga Greenstrone Belt, NW Russia. Carbonate-fluorapatite is the main mineral in the phosphorite clasts. OM, framboidal and micronodular pyrite as well as inclusions of quartz and chlorite are additional components. Many clasts show microlayering with a variable degree of soft-deformation, implying that they were derived from non-lithified, bedded phosphorites. Numerous samples revealed diverse microbial microstructures interpreted as cyanobacterial mats consisting of filamentous (1-3 micrometer in diameter, 20 micrometers in length), coccoidal (0.8-1.0 micrometers) and ellipsoidal or rod-shaped microfossils (0.8 micrometers in diameter, around 2 micrometers in length) which morphologically resemble modern Microcoleus and Syphonophycus, Thiocapsa, and Rhabdoderma, respectively, reported from alkaline or saline environments. No principle differences have been found between microfossils described from Cambrian and Phanerozoic and the 2000 Ma phosphorites. The sequence of the early Palaeoproterozoic events which point to a significant oxidation of the hydrosphere, now including formation of phosphorites and change in the phosphorous cycle, mimics the sequence which was repeated once again at the Neoproterozoic-Cambrian transition, implying that oxidation of the

  17. Placental development during early pregnancy in sheep: effects of embryo origin on vascularization.

    PubMed

    Grazul-Bilska, Anna T; Johnson, Mary Lynn; Borowicz, Pawel P; Bilski, Jerzy J; Cymbaluk, Taylor; Norberg, Spencer; Redmer, Dale A; Reynolds, Lawrence P

    2014-05-01

    Utero-placental growth and vascular development are critical for pregnancy establishment that may be altered by various factors including assisted reproductive technologies (ART), nutrition, or others, leading to compromised pregnancy. We hypothesized that placental vascularization and expression of angiogenic factors are altered early in pregnancies after transfer of embryos created using selected ART methods. Pregnancies were achieved through natural mating (NAT), or transfer of embryos from NAT (NAT-ET), or IVF or in vitro activation (IVA). Placental tissues were collected on day 22 of pregnancy. In maternal caruncles (CAR), vascular cell proliferation was less (P<0.05) for IVA than other groups. Compared with NAT, density of blood vessels was less (P<0.05) for IVF and IVA in fetal membranes (FM) and for NAT-ET, IVF, and IVA in CAR. In FM, mRNA expression was decreased (P<0.01-0.08) in NAT-ET, IVF, and IVA compared with NAT for vascular endothelial growth factor (VEGF) and its receptor FLT1, placental growth factor (PGF), neuropilin 1 (NP1) and NP2, angiopoietin 1 (ANGPT1) and ANGPT2, endothelial nitric oxide synthase 3 (NOS3), hypoxia-inducible factor 1A (HIF1A), fibroblast growth factor 2 (FGF2), and its receptor FGFR2. In CAR, mRNA expression was decreased (P<0.01-0.05) in NAT-ET, IVF, and IVA compared with NAT for VEGF, FLT1, PGF, ANGPT1, and TEK. Decreased mRNA expression for 12 of 14 angiogenic factors across FM and CAR in NAT-ET, IVF, and IVA pregnancies was associated with reduced placental vascular development, which would lead to poor placental function and compromised fetal and placental growth and development.

  18. Constraining the vertical surface motions of the Hampshire Basin, south England During the Cenozoic

    NASA Astrophysics Data System (ADS)

    Smith, Philip; England, Richard; Zalasiewicz, Jan

    2016-04-01

    mechanism for the observed return to a long wavelength tilting of the UK superimposed on short wavelength variations in surface topography caused by an existing state of tectonic stress, possibly inherited in the early to mid Cenozoic. Considering the tectonic and structural evidence available, the Cenozoic topography could be explained by magmatic underplating associated with north Atlantic opening and/or crustal buckling as a result of the Alpine collisional sequences. Additional deep boreholes from the London basin and East Anglia provide a comprehensive 3D tectonic map of vertical surface motions during the early to mid Cenozoic. From this we may be able to understand more about the major tectonic controls influencing southern England at this time and what is modifying the current surface elevation change on short wavelengths.

  19. Nuclear and chloroplast DNA reassessment of the origin of Indian potato varieties and its implications for the origin of the early European potato.

    PubMed

    Spooner, D M; Nuñez, J; Rodríguez, F; Naik, P S; Ghislain, M

    2005-04-01

    The modern cultivated potato was first recorded in Europe in 1562, but its area(s) of exportation has long been in dispute. Two competing hypotheses have proposed an "Andean" area (somewhere from upland Venezuela to northern Argentina) or a lowland south central "Chilean" area. Potato landraces from these two areas can be distinguished, although sometimes with difficulty, by (1) cytoplasmic sterility factors, (2) morphological traits, (3) daylength adaptation, (4) microsatellite markers, and (5) co-evolved chloroplast (cp) and mitochondria (mt) DNA. The Chilean introduction hypothesis originally was proposed because of similarities among Chilean landraces and modern "European" cultivars with respect to traits 2 and 3. Alternatively, the Andean introduction hypothesis suggests that (1) traits 2 and 3 of European potato evolved rapidly, in parallel, from Andean landraces to a Chilean type through selection following import to Europe, and (2) the worldwide late blight epidemics beginning in 1845 in the United Kingdom displaced most existing European cultivars and the potato was subsequently improved by importations of Chilean landraces. We reassess these two competing hypotheses with nuclear microsatellite and cpDNA analyses of (1) 32 Indian cultivars, some of which are thought to preserve putatively remnant populations of Andean landraces, (2) 12 Andean landraces, and (3) five Chilean landraces. Our microsatellite results cluster all Indian cultivars, including putatively remnant Andean landrace populations, with the Chilean landraces, and none with the "old Andigenum" landraces. Some of these Indian landraces, however, lack the cpDNA typical of Chilean landraces and advanced cultivars, indicating they likely are hybrids of Andean landraces with Chilean clones or more advanced cultivars. These results lead us to reexamine the hypothesis that early introductions of potato to Europe were solely from the Andes.

  20. The origin of the animals and a 'Savannah' hypothesis for early bilaterian evolution.

    PubMed

    Budd, Graham E; Jensen, Sören

    2017-02-01

    The earliest evolution of the animals remains a taxing biological problem, as all extant clades are highly derived and the fossil record is not usually considered to be helpful. The rise of the bilaterian animals recorded in the fossil record, commonly known as the 'Cambrian explosion', is one of the most significant moments in evolutionary history, and was an event that transformed first marine and then terrestrial environments. We review the phylogeny of early animals and other opisthokonts, and the affinities of the earliest large complex fossils, the so-called 'Ediacaran' taxa. We conclude, based on a variety of lines of evidence, that their affinities most likely lie in various stem groups to large metazoan groupings; a new grouping, the Apoikozoa, is erected to encompass Metazoa and Choanoflagellata. The earliest reasonable fossil evidence for total-group bilaterians comes from undisputed complex trace fossils that are younger than about 560 Ma, and these diversify greatly as the Ediacaran-Cambrian boundary is crossed a few million years later. It is generally considered that as the bilaterians diversified after this time, their burrowing behaviour destroyed the cyanobacterial mat-dominated substrates that the enigmatic Ediacaran taxa were associated with, the so-called 'Cambrian substrate revolution', leading to the loss of almost all Ediacara-aspect diversity in the Cambrian. Why, though, did the energetically expensive and functionally complex burrowing mode of life so typical of later bilaterians arise? Here we propose a much more positive relationship between late-Ediacaran ecologies and the rise of the bilaterians, with the largely static Ediacaran taxa acting as points of concentration of organic matter both above and below the sediment surface. The breaking of the uniformity of organic carbon availability would have signalled a decisive shift away from the essentially static and monotonous earlier Ediacaran world into the dynamic and burrowing world

  1. Late Cenozoic sedimentary and tectonic history of south Buton, Indonesia

    NASA Astrophysics Data System (ADS)

    Fortuin, A. R.; De Smet, M. E. M.; Hadiwasastra, S.; Van Marle, L. J.; Troelstra, S. R.; Tjokrosapoetro, S.

    A description and interpretation are given of the Upper Cenozoic sedimentary record of south Buton. Various sections and outcrops were studied and sampled for their microfossil content, to provide age and paleobathymetrical data. Together with information from the literature, these data from the base for a geohistory analysis to evaluate the vertical motions. Deposition started some 11 Ma ago, after the main deformation of the island, which was related to the collision of a microplate carrying Buton, with the southeast arm of Sulawesi. Coarse and fine terrigenous debris accumulated in a rapidly subsiding foreland basin; subsidence may have exceeded 100 cm/ka. When the rate of subsidence decreased a late Miocene-early Pliocene period of quiet pelagic sedimentation followed. From the late Pliocene onwards (around 3.5 Ma BP) an overall uplift took place, with rates between 30-120 cm/ka. This drastic change is explained by the collision of Buton with a submerged microcontinent that presently forms the Tukang Besi platform, situated southeast of Buton, which interaction resulted in wrench type tectonics and a clockwise rotation of over 60° for south Buton.

  2. Mid-Cenozoic tectonic and paleoenvironmental setting of the central Arctic Ocean

    USGS Publications Warehouse

    O'Regan, M.; Moran, K.; Backman, J.; Jakobsson, M.; Sangiorgi, F.; Brinkhuis, Henk; Pockalny, Rob; Skelton, Alasdair; Stickley, Catherine E.; Koc, N.; Brumsack, Hans-Juergen; Willard, Debra A.

    2008-01-01

    Drilling results from the Integrated Ocean Drilling Program's Arctic Coring Expedition (ACEX) to the Lomonosov Ridge (LR) document a 26 million year hiatus that separates freshwater-influenced biosilica-rich deposits of the middle Eocene from fossil-poor glaciomarine silty clays of the early Miocene. Detailed micropaleontological and sedimentological data from sediments surrounding this mid-Cenozoic hiatus describe a shallow water setting for the LR, a finding that conflicts with predrilling seismic predictions and an initial postcruise assessment of its subsidence history that assumed smooth thermally controlled subsidence following rifting. A review of Cenozoic tectonic processes affecting the geodynamic evolution of the central Arctic Ocean highlights a prolonged phase of basin-wide compression that ended in the early Miocene. The coincidence in timing between the end of compression and the start of rapid early Miocene subsidence provides a compelling link between these observations and similarly accounts for the shallow water setting that persisted more than 30 million years after rifting ended. However, for much of the late Paleogene and early Neogene, tectonic reconstructions of the Arctic Ocean describe a landlocked basin, adding additional uncertainty to reconstructions of paleodepth estimates as the magnitude of regional sea level variations remains unknown.

  3. Origin of the Early Cretaceous continental intraplate volcanism, NW Syria: melting of a metasomatised lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Ma, G. S.; Malpas, J.; Xenophontos, C.; Suzuki, K.; Lo, C.

    2011-12-01

    The Mesozoic evolution of the Neotethys-Eastern Mediterranean between the African-Arabian and Eurasian continents was accompanied by intermittent eruption of alkaline-transitional basalts in Arabia. The causes of the prolonged volcanism remain controversial, whether related to the arrival(s) of mantle plume [1] or prolonged far-field extension of the passive continental margin [2]. In addition, the source(s) of the volcanism is not well constrained, as previous conclusions were drawn before recent understanding of the origin of intraplate magmas - (i) melting of hydrous metasomatic veins within the lithospheric mantle [3] or (ii) melting of an incompatible-element enriched peridotite source ± eclogites in the presence of CO2 [4, 5]. The Mesozoic basalts (ankaramites and transitional basalts) from the Coastal Ranges, NW Syria analysed in this study were dated at 106.3 ± 0.2 Ma and 103.4 ± 0.3 Ma (bulk-rock 40Ar/39Ar ages), representing the last instance of Mesozoic intraplate magmatism in the Levant region. Isotopic and geochemical analysis reveals distinct compositions between the two lava series (ankaramites: ɛNd(t) = 5.1-5.6, 87Sr/87Sr(t) = 0.70293-0.70302, 187Os/188Os(t) = 0.227-0.242; transitional basalts: ɛNd(t) = 4.0-4.6, 87Sr/87Sr(t) = 0.70320-0.70424, 187Os/188Os(t) = 0.392; and lower SiO2, higher TiO2, Nb/U, Nb/Th, Nb/La and Ce/Pb in the ankaramites). Fractional crystallisation and assimilation-fractional crystallisation modelling suggests minor roles for both processes during the evolution of the lavas, despite the generally high Os isotopic ratios. The modelling also precludes derivation of one lava series from the other, suggesting that the isotopic and geochemical distinctions must be inherited from the source. It is interpreted that the chemical characteristics represent a greater component derived from metasomatic amphibole-rich veins in the source region. Both the ankaramites and transitional basalts were generated from this metasomatised

  4. Composition and origin of Early Cambrian Tiantaishan phosphorite-Mn carbonate ores, Shaanxi Province, China

    USGS Publications Warehouse

    Hein, J.R.; Fan, D.; Ye, J.; Liu, T.; Yeh, H.-W.

    1999-01-01

    The Tiantaishan phosphorite-Mn carbonate ores occur in the Early Cambrian Tananpo Formation in complexly folded and faulted rocks located in southern Shaanxi Province. About 65 x 106 tonnes of 17% P2O5 ore reserves exist and Mn-ore reserves are about 8.3 x 106 tonnes of +18% Mn. The stratigraphic sequence in ascending order consists of black phyllite, black to gray phosphorite ore, black phyllite, rhodochrostone ore, Mn mixed-carbonates, and dolostone. Data are presented from microprobe mineral chemistry, whole-rock chemistry, stable isotopes of carbonates, X-ray mineralogy, petrographic and SEM observations, and statistical analysis of chemical data. The dominant ore-forming minerals are hydroxy- and carbonate fluorapatite and Ca rhodochrosite, with Mg kutnahorite and dolomite comprising the Mn mixed-carbonate section. Pyrite occurs in all rock types and alabandite (MnS) occurs throughout the rhodochrostone section. The mean P2O5 content of phosphorite is 31% and argillaceous phosphorite is 16%, while the mean MnO content of rhodochrostone ore is 37%. Phosphorite ores are massive, spheroidal, laminated, and banded, while rhodochrostone ores have oolitic, spheroidal, and granular fabrics. The most distinguishing characteristics of the ores are high total organic carbon (TOC) contents (mean 8.4%) in the phosphorite and high P2O5 contents (mean 2.7%) in the rhodochrostone ore. The atypically high TOC contents in the Tiantaishan phosphorite probably result from very strong productivity leading to high sedimentation rates accompanied by weak reworking of sediments; poor utilization of the organic matter by bacteria; and/or partial replacement of bacterial or algal mats by the apatite. The depositional setting of the ores was the margin of an epicontinental seaway created as a direct consequence of global processes that included break-up of a supercontinent, formation of narrow seaways, creation of extensive continental shelves, overturn of stagnant, metal-rich deep

  5. The Cenozoic evolution of the San Joaquin Valley, California

    USGS Publications Warehouse

    Bartow, J. Alan

    1991-01-01

    homocline, the western limb of the valley syncline between the Stockton arch and Panoche Creek, consists of a locally faulted homocline with northeast dips. Deformation is mostly late Cenozoic, is complex in its history, and has included up-to-the-southwest reverse faulting. The west-side fold belt, the southwestern part of the valley syncline between Panoche Creek and Elk Hills and including the southern Diablo and Temblor Ranges, is characterized by a series of folds and faults trending slightly oblique to the San Andreas fault. Paleogene folding took place in the northern part of the belt; however, most folding took place in Neogene time, during which the intensity of deformation increased southeastward along the belt and southwestward toward the San Andreas fault. The Maricopa-Tejon subbasin and the south-margin deformed belt are structurally distinct, but genetically related, regions bounded by the Bakersfield arch on the north, the San Emigdio Mountains on the south, the Tehachapi Mountains on the east, and the southeast end of the fold belt on the west. This combined region, which is the most deformed part of the basin, has undergone significant late Cenozoic shortening through north-directed thrust faulting at the south margin, as well as extreme Neogene basin subsidence north of the thrust belt. The sedimentary history of the San Joaquin basin, recorded in terms of unconformity-bounded depositional sequences, has been controlled principally by tectonism, but it has also been controlled by eustatic sea-level changes and, to a lesser degree, by climate. Plate tectonic events that had an influence on the basin include (1) subduction during the early Tertiary that changed from oblique to normal convergence in the later part of the Eocene, (2) the mid-Oligocene encounter of the Pacific-Farallon spreading ridge with the trench, and the consequent establishment of the San Andreas transform, (3) the northwestward migration of the Mendocino triple junction that in

  6. A new sphenodontian (Lepidosauria: Rhynchocephalia) from the Late Triassic of Argentina and the early origin of the herbivore opisthodontians.

    PubMed

    Martínez, Ricardo N; Apaldetti, Cecilia; Colombi, Carina E; Praderio, Angel; Fernandez, Eliana; Santi Malnis, Paula; Correa, Gustavo A; Abelin, Diego; Alcober, Oscar

    2013-12-07

    Sphenodontians were a successful group of rhynchocephalian reptiles that dominated the fossil record of Lepidosauria during the Triassic and Jurassic. Although evidence of extinction is seen at the end of the Laurasian Early Cretaceous, they appeared to remain numerically abundant in South America until the end of the period. Most of the known Late Cretaceous record in South America is composed of opisthodontians, the herbivorous branch of Sphenodontia, whose oldest members were until recently reported to be from the Kimmeridgian-Tithonian (Late Jurassic). Here, we report a new sphenodontian, Sphenotitan leyesi gen. et sp. nov., collected from the Upper Triassic Quebrada del Barro Formation of northwestern Argentina. Phylogenetic analysis identifies Sphenotitan as a basal member of Opisthodontia, extending the known record of opisthodontians and the origin of herbivory in this group by 50 Myr.

  7. A new sphenodontian (Lepidosauria: Rhynchocephalia) from the Late Triassic of Argentina and the early origin of the herbivore opisthodontians

    PubMed Central

    Martínez, Ricardo N.; Apaldetti, Cecilia; Colombi, Carina E.; Praderio, Angel; Fernandez, Eliana; Malnis, Paula Santi; Correa, Gustavo A.; Abelin, Diego; Alcober, Oscar

    2013-01-01

    Sphenodontians were a successful group of rhynchocephalian reptiles that dominated the fossil record of Lepidosauria during the Triassic and Jurassic. Although evidence of extinction is seen at the end of the Laurasian Early Cretaceous, they appeared to remain numerically abundant in South America until the end of the period. Most of the known Late Cretaceous record in South America is composed of opisthodontians, the herbivorous branch of Sphenodontia, whose oldest members were until recently reported to be from the Kimmeridgian–Tithonian (Late Jurassic). Here, we report a new sphenodontian, Sphenotitan leyesi gen. et sp. nov., collected from the Upper Triassic Quebrada del Barro Formation of northwestern Argentina. Phylogenetic analysis identifies Sphenotitan as a basal member of Opisthodontia, extending the known record of opisthodontians and the origin of herbivory in this group by 50 Myr. PMID:24132307

  8. Early Lapita skeletons from Vanuatu show Polynesian craniofacial shape: Implications for Remote Oceanic settlement and Lapita origins

    PubMed Central

    Valentin, Frédérique; Bedford, Stuart

    2016-01-01

    With a cultural and linguistic origin in Island Southeast Asia the Lapita expansion is thought to have led ultimately to the Polynesian settlement of the east Polynesian region after a time of mixing/integration in north Melanesia and a nearly 2,000-y pause in West Polynesia. One of the major achievements of recent Lapita research in Vanuatu has been the discovery of the oldest cemetery found so far in the Pacific at Teouma on the south coast of Efate Island, opening up new prospects for the biological definition of the early settlers of the archipelago and of Remote Oceania in general. Using craniometric evidence from the skeletons in conjunction with archaeological data, we discuss here four debated issues: the Lapita–Asian connection, the degree of admixture, the Lapita–Polynesian connection, and the question of secondary population movement into Remote Oceania. PMID:26712019

  9. Early Lapita skeletons from Vanuatu show Polynesian craniofacial shape: Implications for Remote Oceanic settlement and Lapita origins.

    PubMed

    Valentin, Frédérique; Détroit, Florent; Spriggs, Matthew J T; Bedford, Stuart

    2016-01-12

    With a cultural and linguistic origin in Island Southeast Asia the Lapita expansion is thought to have led ultimately to the Polynesian settlement of the east Polynesian region after a time of mixing/integration in north Melanesia and a nearly 2,000-y pause in West Polynesia. One of the major achievements of recent Lapita research in Vanuatu has been the discovery of the oldest cemetery found so far in the Pacific at Teouma on the south coast of Efate Island, opening up new prospects for the biological definition of the early settlers of the archipelago and of Remote Oceania in general. Using craniometric evidence from the skeletons in conjunction with archaeological data, we discuss here four debated issues: the Lapita-Asian connection, the degree of admixture, the Lapita-Polynesian connection, and the question of secondary population movement into Remote Oceania.

  10. The origin of the early differentiation of ivies (Hedera L.) and the radiation of the Asian Palmate group (Araliaceae).

    PubMed

    Valcárcel, Virginia; Fiz-Palacios, Omar; Wen, Jun

    2014-01-01

    The Asian Palmate group is one of the four major clades of the family Araliaceae that is formed by 18 genera, including ivies (Hedera L.). The Mediterranean diversity centre and temperate affinity of ivies contrast with the inferred Asian centre of diversity of the primarily tropical and subtropical Asian Palmate group. We herein investigated the sister-group relationships of Hedera to reconstruct the evolutionary context for its origin and early diversification. Seven nuclear and plastid DNA regions were analyzed in 61 Araliaceae samples including all the 18 Asian Palmate genera. Maximum Parsimony, Maximum Likelihood and Bayesian Inference were run together with a battery of topology testing analyses constraining the expected Hedera's sister-group relationships. Additionally, Bayesian polytomy resolvability and divergence time analyses were also conducted. Genome incongruence and hard nuclear and plastid basal polytomies are detected for the Asian Palmate group where the lineage of Hedera is placed. Topology testing analyses do not allow rejecting any of the tentative sisters of Hedera. An early radiation with inter-lineage hybridization and genome doubling is suggested for the Asian Palmate group where all the seven temperate genera, including Hedera, seem to have played an important role. The radiation took placed during the Upper Cretaceous in Asia under a general cooling and the eastern Asian mountain uplift that produced new temperate environments and promoted lineage connections. This allows us to hypothesize that the origin of the Hedera lineage may fit in a temperate niche conservatism scenario where the combination of the radiation with lineage admixtures prevents us from discovering its sister-group.

  11. Cenozoic sedimentary and deformational history of hispaniola, 1: southeastern Cordillera Central

    SciTech Connect

    Heubeck, C.; Mann, P.

    1988-01-01

    The Cordillera Central approximates an elongate (220 km), elevated (>3 km), thrust-bounded anticline cored by Cretaceous-Paleogene arc rocks and uplifted during Miocene to recent time by convergent strike-slip movements between the North American and Caribbean plates. The southeastern termination of the anticline plunges beneath a thick (>6 km), well-exposed marine clastic sedimentary sequence. Because uplift-related faulting is minimal in this hinge region of the Cordillera Central anticline, the authors have carried out detailed mapping of the area to determine (1) relation of Cretaceous-Paleogene arc basement to overlying Cenozoic sedimentary cover, and (2) Cenozoic deformational history of arc and basin sequences. Mapping has clearly distinguished three superimposed Cenozoic basins lying on arc basement. The lowest basin (basin 1) is Paleocene-Eocene in age and consists of alternations of arc-derived turbidies with interbedded pelagic limestone and red mudstone. In apparent conformity above this basin is an approximately 4-km thick marine clastic sequence of medial Eocene through early Miocene age (basin 2). These sediments consist of fining-upward turbiditic sequence derived from the northwest and northeast. Arc basement and overlying basins 1 and 2 were shortened approximately 25% in a short-lived, northwest-southeast-directed compressional event that resulted in the formation of large open synclines and tightly folded and faulted anticlines with fold amplitudes of 1-6 km. Underformed, medial Miocene sediments of a mixed clastic and carbonate shelf facies (basin 3) unconformably overlie the folded latest Oligocene-early Miocene rocks of basin 2 and thus constrain the age of folding as early to middle Miocene.

  12. The Origin and Early Evolution of Sauria: Reassessing the Permian Saurian Fossil Record and the Timing of the Crocodile-Lizard Divergence

    PubMed Central

    Ezcurra, Martín D.; Scheyer, Torsten M.; Butler, Richard J.

    2014-01-01

    Sauria is the crown-group of Diapsida and is subdivided into Lepidosauromorpha and Archosauromorpha, comprising a high percentage of the diversity of living and fossil tetrapods. The split between lepidosauromorphs and archosauromorphs (the crocodile-lizard, or bird-lizard, divergence) is considered one of the key calibration points for molecular analyses of tetrapod phylogeny. Saurians have a very rich Mesozoic and Cenozoic fossil record, but their late Paleozoic (Permian) record is problematic. Several Permian specimens have been referred to Sauria, but the phylogenetic affinity of some of these records remains questionable. We reexamine and review all of these specimens here, providing new data on early saurian evolution including osteohistology, and present a new morphological phylogenetic dataset. We support previous studies that find that no valid Permian record for Lepidosauromorpha, and we also reject some of the previous referrals of Permian specimens to Archosauromorpha. The most informative Permian archosauromorph is Protorosaurus speneri from the middle Late Permian of Western Europe. A historically problematic specimen from the Late Permian of Tanzania is redescribed and reidentified as a new genus and species of basal archosauromorph: Aenigmastropheus parringtoni. The supposed protorosaur Eorasaurus olsoni from the Late Permian of Russia is recovered among Archosauriformes and may be the oldest known member of the group but the phylogenetic support for this position is low. The assignment of Archosaurus rossicus from the latest Permian of Russia to the archosauromorph clade Proterosuchidae is supported. Our revision suggests a minimum fossil calibration date for the crocodile-lizard split of 254.7 Ma. The occurrences of basal archosauromorphs in the northern (30°N) and southern (55°S) parts of Pangea imply a wider paleobiogeographic distribution for the group during the Late Permian than previously appreciated. Early archosauromorph growth

  13. Cenozoic tectonic evolution of Asia: A preliminary synthesis

    NASA Astrophysics Data System (ADS)

    Yin, An

    2010-06-01

    Asia has been a major testing ground for various competing models of continental deformation due to its relatively well-understood plate boundary conditions in the Cenozoic, exceptional exposure of active structures, and strain distribution, and widespread syn-collisional igneous activity as a proxy for the thermal state of the mantle and crust. Two Cenozoic orogens dominate the continent: the Himalayan-Tibetan orogen in the east induced by the India-Asia collision and the Turkish-Iranian-Caucasus orogen in the west induced by the Arabia-Asia collision. The development of the two orogens was accomplished by shortening in the early stage followed by strike-slip faulting and extension in the late stage. In the Himalayan-Tibetan orogen, shortening across two discrete thrust belts at 55-30 Ma in southern and northern Tibet created a large intracontinental basin (the Paleo-Qaidam basin) in between. Subsequent crustal thickening and a possible thermal event in the mantle (e.g., convective removal of central Tibetan mantle lithosphere) may have raised the elevation of this early intra-plateau basin up to ~ 2-3 km to its current height. Collision between India and Asia also caused lateral extrusion of southeast Asia between 32 Ma and 17 Ma. The latest stage of the India-Asia collision was expressed by north-trending rifting and the development of trench-facing V-shaped conjugate strike-slip faults in central Mongolia, central Tibet, eastern Afghanistan and southeast Asia. In the Turkish-Iranian-Caucasus orogen, early crustal thickening in the orogenic interior began at or prior to 30-20 Ma. This style of deformation was replaced by strike-slip faulting at ~ 15-5 Ma associated with further northward penetration of Arabia into Asia, westward extrusion of the Anatolia/Turkey block, and rapid extension across the Sea of Crete and Sea of Aegean. The late stage extension in both orogens was locally related to extensional core-complex development. The continental-margin extension

  14. Chemodynamical Deuterium Fractionation in the Early Solar Nebula: The Origin of Water on Earth and in Asteroids and Comets

    NASA Astrophysics Data System (ADS)

    Albertsson, T.; Semenov, D.; Henning, Th.

    2014-03-01

    Formation and evolution of water in the solar system and the origin of water on Earth constitute one of the most interesting questions in astronomy. The prevailing hypothesis for the origin of water on Earth is by delivery through water-rich small solar system bodies. In this paper, the isotopic and chemical evolution of water during the early history of the solar nebula, before the onset of planetesimal formation, is studied. A gas-grain chemical model that includes multiply deuterated species and nuclear spin-states is combined with a steady-state solar nebula model. To calculate initial abundances, we simulated 1 Myr of evolution of a cold and dark TMC-1-like prestellar core. Two time-dependent chemical models of the solar nebula are calculated over 1 Myr: (1) a laminar model and (2) a model with two-dimensional (2D) turbulent mixing. We find that the radial outward increase of the H2O D/H ratio is shallower in the chemodynamical nebular model than in the laminar model. This is related to more efficient defractionation of HDO via rapid gas-phase processes because the 2D mixing model allows the water ice to be transported either inward and thermally evaporated or upward and photodesorbed. The laminar model shows the Earth water D/H ratio at r <~ 2.5 AU, whereas for the 2D chemodynamical model this zone is larger, r <~ 9 AU. Similarly, the water D/H ratios representative of the Oort-family comets, ~2.5-10 × 10-4, are achieved within ~2-6 AU and ~2-20 AU in the laminar and the 2D model, respectively. We find that with regards to the water isotopic composition and the origin of the comets, the mixing model seems to be favored over the laminar model.

  15. Chemodynamical deuterium fractionation in the early solar nebula: The origin of water on earth and in asteroids and comets

    SciTech Connect

    Albertsson, T.; Semenov, D.; Henning, Th.

    2014-03-20

    Formation and evolution of water in the solar system and the origin of water on Earth constitute one of the most interesting questions in astronomy. The prevailing hypothesis for the origin of water on Earth is by delivery through water-rich small solar system bodies. In this paper, the isotopic and chemical evolution of water during the early history of the solar nebula, before the onset of planetesimal formation, is studied. A gas-grain chemical model that includes multiply deuterated species and nuclear spin-states is combined with a steady-state solar nebula model. To calculate initial abundances, we simulated 1 Myr of evolution of a cold and dark TMC-1-like prestellar core. Two time-dependent chemical models of the solar nebula are calculated over 1 Myr: (1) a laminar model and (2) a model with two-dimensional (2D) turbulent mixing. We find that the radial outward increase of the H{sub 2}O D/H ratio is shallower in the chemodynamical nebular model than in the laminar model. This is related to more efficient defractionation of HDO via rapid gas-phase processes because the 2D mixing model allows the water ice to be transported either inward and thermally evaporated or upward and photodesorbed. The laminar model shows the Earth water D/H ratio at r ≲ 2.5 AU, whereas for the 2D chemodynamical model this zone is larger, r ≲ 9 AU. Similarly, the water D/H ratios representative of the Oort-family comets, ∼2.5-10 × 10{sup –4}, are achieved within ∼2-6 AU and ∼2-20 AU in the laminar and the 2D model, respectively. We find that with regards to the water isotopic composition and the origin of the comets, the mixing model seems to be favored over the laminar model.

  16. Bubble-seq analysis of the human genome reveals distinct chromatin-mediated mechanisms for regulating early- and late-firing origins

    PubMed Central

    Mesner, Larry D.; Valsakumar, Veena; Cieślik, Marcin; Pickin, Rebecca; Hamlin, Joyce L.; Bekiranov, Stefan

    2013-01-01

    We have devised a method for isolating virtually pure and comprehensive libraries of restriction fragments that contained replication initiation sites (bubbles) in vivo. We have now sequenced and mapped the bubble-containing fragments from GM06990, a near-normal EBV-transformed lymphoblastoid cell line, and have compared origin distributions with a comprehensive replication timing study recently published for this cell line. We find that early-firing origins, which represent ∼32% of all origins, overwhelmingly represent zones, associate only marginally with active transcription units, are localized within large domains of open chromatin, and are significantly associated with DNase I hypersensitivity. Origin “density” falls from early- to mid-S-phase, but rises again in late S-phase to levels only 17% lower than in early S-phase. Unexpectedly, late origin density calculated on the 1-Mb scale increases as a function of increasing chromatin compaction. Furthermore, the median efficiency of origins in late-replicating, heterochromatic domains is only 25% lower than in early-replicating euchromatic loci. Thus, the activation of early- and late-firing origins must be regulated by quintessentially different mechanisms. The aggregate data can be unified into a model in which initiation site selection is driven almost entirely by epigenetic factors that fashion both the long-range and local chromatin environments, with underlying DNA sequence and local transcriptional activity playing only minor roles. Importantly, the comprehensive origin map we have prepared for GM06990 overlaps moderately well with origin maps recently reported for the genomes of four different human cell lines based on the distributions of small nascent strands. PMID:23861383

  17. Cenozoic vegetation, climate changes and hominid evolution in tropical Africa

    NASA Astrophysics Data System (ADS)

    Bonnefille, Raymonde

    2010-07-01

    This paper reviews information on past vegetation of tropical Africa during the Cenozoic, focused upon the last 10 Ma, a time spanning hominid record in Central and East Africa. Summary of palaeobotanical data collected at terrestrial sites are compared with new results on the long term evolution of the continental vegetation zones documented from marine pollen record of two deep sea cores recovered from the Atlantic and Indian Oceans. Section 2 includes a summary of modern distribution of vegetation belts in the African continent and a synthesis of the results of both macrobotanical (fossil wood, leaves and fruits) and microbotanical (mainly pollen) studies presented according to time scale and geographical location. The main features emphasized by the palaeobotanical results are 1) seasonal vegetation and climate documented as soon as the Eocene in Tanzania 2) well diversified forests existing in northern West Ethiopia during the Oligocene 3) high temporal and spatial variabilities of forests composition during the Miocene when deciduous Legume woodland was documented in Ethiopia whereas wetter evergreen forests existed in Western Kenya 4) lack of evidence for an evergreen forest belt, continuous from Western Congo to East Africa. Section 3 presents new original pollen data recovered from a long core in the Gulf of Aden documenting large scale past vegetation changes in East Africa during the last 11 Ma. These results are discussed in comparison with a summarized long pollen sequence previously published from a marine core offshore the Niger delta. This comparison illustrates variations in geographical distribution of large vegetation zone at the continental scale, through time. In Section 4, vegetation changes registered during the last 10 Ma are discussed in relation with the results of isotopic studies and an updated presentation of hominids evolution in Africa. Several changes are shown in the marine records. An expansion of savanna/grassland is shown at 10

  18. The Role of Population Origin and Microenvironment in Seedling Emergence and Early Survival in Mediterranean Maritime Pine (Pinus pinaster Aiton)

    PubMed Central

    Vizcaíno-Palomar, Natalia; Revuelta-Eugercios, Bárbara; Zavala, Miguel A.; Alía, Ricardo; González-Martínez, Santiago C.

    2014-01-01

    Understanding tree recruitment is needed to forecast future forest distribution. Many studies have reported the relevant ecological factors that affect recruitment success in trees, but the potential for genetic-based differences in recruitment has often been neglected. In this study, we established a semi-natural reciprocal sowing experiment to test for local adaptation and microenvironment effects (evaluated here by canopy cover) in the emergence and early survival of maritime pine (Pinus pinaster Aiton), an emblematic Mediterranean forest tree. A novel application of molecular markers was also developed to test for family selection and, thus, for potential genetic change over generations. Overall, we did not find evidence to support local adaptation at the recruitment stage in our semi-natural experiment. Moreover, only weak family selection (if any) was found, suggesting that in stressful environments with low survival, stochastic processes and among-year climate variability may drive recruitment. Nevertheless, our study revealed that, at early stages of recruitment, microenvironments may favor the population with the best adapted life strategy, irrespectively of its (local or non-local) origin. We also found that emergence time is a key factor for seedling survival in stressful Mediterranean environments. Our study highlights the complexity of the factors influencing the early stages of establishment of maritime pine and provides insights into possible management actions aimed at environmental change impact mitigation. In particular, we found that the high stochasticity of the recruitment process in stressful environments and the differences in population-specific adaptive strategies may difficult assisted migration schemes. PMID:25286410

  19. Cenozoic biodiversity: goals, challenges and future prospects

    NASA Astrophysics Data System (ADS)

    Lazarus, David

    2014-05-01

    , taxic). Long-term trends in diversity and environment for example may show different patterns, and be due to different processes, than diversity responses to shorter-term environmental change. Much paleodiversity research in recent years has looked at Phanerozoic trends, with data binned to ca 10 my long intervals. This seems too long: for comparison, it is doubtful we would have discovered much of what we now know about interactions and processes in Cenozoic paleoceanography and paleoclimates if our data was only at this temporal resolution. Given such challenges in data quality and methods, we need urgently to pay more attention to the relatively high resolution, well preserved Cenozoic records of biodiversity and paleoenvironments. While not perfect, these are perhaps the best fossil/environmental records available to understand how diversity on earth is maintained, and how much is at risk as humanity alters the planet.

  20. Deep Reaching Gas-permeable Tectonic Faults of the Early Earth as Habitats for the Origin of Life

    NASA Astrophysics Data System (ADS)

    Schreiber, U.; Mayer, C.

    2012-04-01

    The discussion on the origin of life encounters difficulties when it comes to estimate the conditions of the early earth and to define plausible environments for the development of the first complex organic molecules. Until now, the role of the earth's crust has been more or less ignored. First continental crustal cores may have been developed some tens to hundreds of million years after formation of earth. Due to tectonic stress the proto continents were sheared by vertical strike-slip faults at an early stage. These deep-reaching open, interconnected tectonic faults may provide possible reaction habitats ranging from nano- to centimetre and even larger dimensions that sum up to several cubic kilometres for the formation of prebiotic molecules. Their fillings consist of supercritical and subcritical waters and supercritical and subcritical gases. Here, all necessary raw materials including phosphate for the development of prebiotic molecules exist in variable concentrations and in sufficient quantities. Furthermore, there are periodically changing pressure and temperature conditions, varying pH-values, metallic surfaces, clay minerals and a large number of catalysts. While cosmic and UV-radiation are excluded, nuclear radiation intervenes the chemical evolution of the molecules inside the crust. Carbon dioxide (CO2) is of crucial importance. It can be present in an almost pure form as a supercritical fluid (scCO2) in a crustal depth less than 1 km (critical point of pure CO2: 74 bar; 31°C). Inside strike-slip faults, a two-phase system formed by supercritical CO2 in liquid water provides the environment for condensation and polymerisation of hydrogen cyanide, nucleobases, nucleotides and amino acids. ScCO2 is a non-polar solvent that is widely used in "green chemistry" (Anastas and Kirchhoff 2002) and enables the dissolution of non-polar reactants and their reactions normally occurring in the absence of water. Under the influence of periodically changing

  1. Late cenozoic subduction complex of Sicily

    USGS Publications Warehouse

    Roure, F.; Howell, D.G.; Muller, C.; Moretti, I.

    1990-01-01

    Besides remnants of Hercynian deformations in the Peloritani nappe and of pre-Oligocene Alpine structures in the Troiani nappe, most compressive structures observed in the Sicilian accretionary wedge result from the late Cenozoic (Tortonian to Present) continental subduction of the Apulia (Iblei) block, and are thus synchronous with distensive structures related to the opening of the Tyrrhenian Sea. Syntectonic deposits fill southward-migrating foredeeps in a sequential fashion, and the dating of these deposits helps to constrain the timing of deformation. Similarly, Plio-Quaternary sediments, eroded from the accreted units, rest on top of the allochthon in either compressive piggy-back depressions or extensional basins. The age and configuration of these overlap deposits constrain our reconstructions of the subsurface geometry of the underlying peri-Tyrrhenian detachment faults or S-verging thrust-faults. Post-depositional erosion, normal faulting and syntectonic filling of basins contribute to maintaining the critical taper of the prism, whose geometry is continuously altered owing to frontal accretion, underplating and isostatic uplift. ?? 1990.

  2. Cenozoic extension and magmatism in Arizona

    NASA Technical Reports Server (NTRS)

    Reynolds, S. J.; Spencer, J. E.

    1985-01-01

    The Basin and Range Province of Arizona was the site of two episodes of Cenozoic extension that can be distinguished on the basis of timing, direction and style of extension, and associated magmatism. The first episode of extension occurred during Oligocene to mid-Miocene time and resulted in the formation of low-angle detachment faults, ductile shear zones (metamorphic core complexes), and regional domains of tilted fault blocks. Evidence for extreme middle Tertiary crustal extension in a NE to SW to SW to ENE to WSW direction has been recognized in various parts of the Basin and Range of Arizona, especially in the Lake Mead area and along the belf of metamorphic core complexes that crosses southern Arizona from Parker to Tucson. New geologic mapping and scrutiny of published geologic maps indicates that significant middle Tertiary extension is more widely distributed than previously thought. The state can be subdivided into regional tilt-block domains in which middle Tertiary rocks dip consistently in one direction. The dip direction in any tilt-block domain is generally toward the breakaway of a low-angle detachment fault that underlies the tilt-block domain; we interpret this an indicating that normal faults in the upper plate of a detechment fault are generally synthetic, rather than antithetic, with respect to the detachment fault.

  3. Structure and geologic history of late Cenozoic Eel River basin, California

    SciTech Connect

    Clarke, S.H. Jr.

    1988-03-01

    The Eel River basin formed as a late Cenozoic forearc basin floored by late Mesozoic and early Cenozoic allochthonous terranes (central and coastal belts of the Franciscan complex). Regionally, basement rocks are unconformably overlain on land by a sedimentary sequence as much as about 4200 m thick that comprises the Bear River Formation (early and middle Miocene) and the Wildcat Group (late Miocene to middle Pleistocene) and offshore by broadly coeval upper Tertiary and Quaternary deposits as much as 3300 m thick. Offshore, the southern part of the basin is typified by the seaward extensions of youthful northeast-dipping thrust and reverse faults and northwest-trending anticlines. The latest period of deformation in this part of the basin began during the middle Pleistocene and probably reflects north-northwestward migration of the Mendocino triple junction and encroachment of the Pacific plate. Farther north, the western basin margin and adjacent upper continental slope are separated from the axial part of the offshore basin by a narrow zone of north-northwest-trending, right-stepping en echelon folds. These folds indicate that northeast-southwest compression characteristic of the southern part of the basin is accompanied toward the north by right-lateral shear between the accretionary complex to the west and the basin to the east. The northeastern margin of the offshore basin is cut by north to north-northwest-trending high-angle reverse faults that vertically offset basement rocks as much as 1300 m, west side down. These faults, which may merge northward, coincide with older terrane boundaries and locally show evidence of late Cenozoic reactivation with possible right-lateral slip.

  4. Coexisting tubular adenoma with a neuroendocrine carcinoma of colon allowing early surgical intervention and implicating a shared stem cell origin

    PubMed Central

    Soliman, Mahmoud L; Tiwari, Ashish; Zhao, Qing

    2017-01-01

    High-grade colonic neuroendocrine carcinomas (NECs) are uncommon but extremely aggressive. Their co-existence with tubular adenoma (TA) has rarely been reported. We present a 68-year-old man who was found on routine colonoscopy to have multiple colorectal TAs and an ulcerated lesion in the ascending colon. Microscopically, a poorly-differentiated invasive carcinoma juxtaposed with a TA was identified. Differential diagnosis included a poorly-differentiated adenocarcinoma, medullary carcinoma, high-grade NEC and lymphoma. The immunohistochemical profile showed positive staining for keratins, synaptophysin and chromogranin but negative for LCA, CDX2, CK7, CK20, TTF-1 and PSA, supporting the NEC diagnosis. Upon subsequent laparoscopic right hemicolectomy, the tumor was identified as a 3.0 cm umbilicated and ulcerated mass with an adjacent TA. Both TA and NEC showed positive staining for β-catenin indicating a shared colonic origin. The mitotic counts (77/10 high power fields) and a high proliferation rate (75% by Ki-67) corroborated a high-grade stratification. Mutational analysis indicated a wild-type BRAF and KRAS with mismatch repair proficiency. The AJCC (7th edition) pathologic stage is pT3, pN0, pMx. The patient received adjuvant chemotherapy with cisplatin/etoposides for three cycles and will be followed up for a year to detect recurrence. In conclusion, the co-existence of TA with high grade-NEC in our case allowed early identification and intervention of the otherwise asymptomatic but aggressive tumor. In addition, the finding of a high-grade NEC within a large TA in this case suggests a link between the two lesions and could represent a shared stem cell origin. PMID:28246485

  5. Infection of Goose with Genotype VIId Newcastle Disease Virus of Goose Origin Elicits Strong Immune Responses at Early Stage

    PubMed Central

    Xu, Qianqian; Chen, Yuqiu; Zhao, Wenjun; Zhang, Tingting; Liu, Chenggang; Qi, Tianming; Han, Zongxi; Shao, Yuhao; Ma, Deying; Liu, Shengwang

    2016-01-01

    Newcastle disease (ND), caused by virulent strains of Newcastle disease virus (NDV), is a highly contagious disease of birds that is responsible for heavy economic losses for the poultry industry worldwide. However, little is known about host-virus interactions in waterfowl, goose. In this study, we aim to characterize the host immune response in goose, based on the previous reports on the host response to NDV in chickens. Here, we evaluated viral replication and mRNA expression of 27 immune-related genes in 10 tissues of geese challenged with a genotype VIId NDV strain of goose origin (go/CH/LHLJ/1/06). The virus showed early replication, especially in digestive and immune tissues. The expression profiles showed up-regulation of Toll-like receptor (TLR)1–3, 5, 7, and 15, avian β-defensin (AvBD) 5–7, 10, 12, and 16, cytokines [interleukin (IL)-8, IL-18, IL-1β, and interferon-γ], inducible NO synthase (iNOS), and MHC class I in some tissues of geese in response to NDV. In contrast, NDV infection suppressed expression of AvBD1 in cecal tonsil of geese. Moreover, we observed a highly positive correlation between viral replication and host mRNA expressions of TLR1-5 and 7, AvBD4-6, 10, and 12, all the cytokines measured, MHC class I, FAS ligand, and iNOS, mainly at 72 h post-infection. Taken together, these results demonstrated that NDV infection induces strong innate immune responses and intense inflammatory responses at early stage in goose which may associate with the viral pathogenesis. PMID:27757109

  6. Infection of Goose with Genotype VIId Newcastle Disease Virus of Goose Origin Elicits Strong Immune Responses at Early Stage.

    PubMed

    Xu, Qianqian; Chen, Yuqiu; Zhao, Wenjun; Zhang, Tingting; Liu, Chenggang; Qi, Tianming; Han, Zongxi; Shao, Yuhao; Ma, Deying; Liu, Shengwang

    2016-01-01

    Newcastle disease (ND), caused by virulent strains of Newcastle disease virus (NDV), is a highly contagious disease of birds that is responsible for heavy economic losses for the poultry industry worldwide. However, little is known about host-virus interactions in waterfowl, goose. In this study, we aim to characterize the host immune response in goose, based on the previous reports on the host response to NDV in chickens. Here, we evaluated viral replication and mRNA expression of 27 immune-related genes in 10 tissues of geese challenged with a genotype VIId NDV strain of goose origin (go/CH/LHLJ/1/06). The virus showed early replication, especially in digestive and immune tissues. The expression profiles showed up-regulation of Toll-like receptor (TLR)1-3, 5, 7, and 15, avian β-defensin (AvBD) 5-7, 10, 12, and 16, cytokines [interleukin (IL)-8, IL-18, IL-1β, and interferon-γ], inducible NO synthase (iNOS), and MHC class I in some tissues of geese in response to NDV. In contrast, NDV infection suppressed expression of AvBD1 in cecal tonsil of geese. Moreover, we observed a highly positive correlation between viral replication and host mRNA expressions of TLR1-5 and 7, AvBD4-6, 10, and 12, all the cytokines measured, MHC class I, FAS ligand, and iNOS, mainly at 72 h post-infection. Taken together, these results demonstrated that NDV infection induces strong innate immune responses and intense inflammatory responses at early stage in goose which may associate with the viral pathogenesis.

  7. Chronic diseases and early exposure to airborne mixtures: Part III. Potential origin of pre-menopausal breast cancers.

    PubMed

    Argo, James

    2010-03-01

    This is the third in a series dealing with chronic diseases and early exposure to airborne mixtures from industrial releases. The purpose of this study is to increase the understanding of previously unconsidered factors in the physical environment potentially acting as risk factors for female breast cancer. Data are from the Environmental Quality Database containing lifetime residential records for about 20,000 cases, with 1 of 15 cancers and about 5000 controls. Subjects resided within 25 km of all kraft mills, sulfite mills, coke ovens, oil refineries, copper, nickel and lead/zinc smelters operating in Canada in 1967-1970, and were aged <31 years. Subjects are exposed at home to simultaneous counter-current plumes of dioxin congeners and dimethyl sulfate (DMS) during the exposure period. DMS concentration increases with time of flight from the source and [SO(2)] at 2 km. For all source types the number of cancers in an age cohort declines as the age of the cohort increases. The number of cases less than the median distance is less than the number of cases greater than the median distance. This supports the presence of a new source of risk with an origin in the plume. The crude rate of breast cancer, averaged over the 25 km of the study area for each age cohort <31 years of age, as well as source type, is least when the conditions of initial exposure are [SO(2)] > or = [DMS] and increases as [DMS] increases. The probability of an adverse effect from early, intermittent and simultaneous exposure to Dioxin and DMS, manifesting as a breast cancer after a latency period of as little as 26 years, is a function of age of first exposure, distance from the source and source type. The most susceptible age cohorts are the youngest.

  8. Trojan Tour and Rendezvous (TTR): A New Frontiers Mission to Explore the Origin and Evolution of the Early Solar System

    NASA Astrophysics Data System (ADS)

    Bell, J. F., III; Olkin, C.; Castillo, J. C.

    2015-12-01

    The orbital properties, compositions, and physical properties of the diverse populations of small outer solar system bodies provide a forensic map of how our solar system formed and evolved. Perhaps the most potentially diagnostic, but least explored, of those populations are the Jupiter Trojan asteroids, which orbit at ~5 AU in the L4 and L5 Lagrange points of Jupiter. More than 6200 Jupiter Trojans are presently known, but these are predicted to be only a small fraction of the 500,000 to 1 million Trojans >1 km in size. The Trojans are hypothesized to be either former Kuiper Belt Objects (KBOs) that were scattered into the inner solar system by early giant planet migration and then trapped in the 1:1 Jupiter mean motion resonance, or bodies formed near 5 AU in a much more quiescent early solar system, and then trapped at L4 and L5. The 2011 Planetary Science Decadal Survey identified important questions about the origin and evolution of the solar system that can be addressed by studying of the Trojan asteroids, including: (a) How did the giant planets and their satellite systems accrete, and is there evidence that they migrated to new orbital positions? (b) What is the relationship between large and small KBOs? Is the small population derived by impact disruption of the large one? (c) What kinds of surface evolution, radiation chemistry, and surface-atmosphere interactions occur on distant icy primitive bodies? And (d) What are the sources of asteroid groups (Trojans and Centaurs) that remain to be explored by spacecraft? The Trojan Tour and Rendezvous (TTR) is a New Frontiers-class mission designed to answer these questions, and to test hypotheses for early giant planet migration and solar system evolution. Via close flybys of a large number of these objects,, and orbital characterization of at least one large Trojan, TTR will enable the first-time exploration of this population. Our primary mission goals are to characterize the overall surface geology

  9. Cenozoic oblique collision of South American and Caribbean plates: New evidence in the Coastal Cordillera of Venezuela and Trinidad

    SciTech Connect

    Speed, R.C. ); Russo, R.M. ); Foland, K.A. )

    1993-02-01

    The hinterland of the Caribbean Mts. orogen in Trinidad and Venezuela contains schist and gneiss whole protoliths are wholly or partly of continental provenance. The hinterland lies between the foreland thrust belt and terranes. The terranes are alien to continental South America (SA) and may have proto-Caribbean or Caribbean plate origins. The hinterland rocks were widely thought to come from sediments and granitoids of Mesozoic protolithic ages and to be of Cretaceous metamorphic age. Such rocks are now know to be of at least two or more types, as follows: (1) low grade, protoliths of pre-Mesozoic basement and shelfal cover of uncertain age range, inboard locus, Oligocene to mid-Miocene metamorphic ages younging eastward (Caracas, Paria, and Northern Range belts), and (2) higher grade including high P/T, varies protoliths of uncertain age range, Cretaceous and ( )early Paleogene metamorphic ages (Tacagua, Araya, Margarita). The geometry, protoliths, structures, and metamorphic ages of type 1 parautochthoneity and an origin as a thickened wedge of crust-cored passive margin cover. The wedge grew by accretion between about 35 and 20 Ma during oblique transport toward the foreland. The diachroneity of metamorphism implies, as does the timing of foreland deformation, that the wedge evolved in a right-oblique collision between northern SA and terranes moving wholly or partly with the Caribbean plate since the Eocene. Type 2 rocks probably came with the terranes and are products of convergent zone tectonics, either in the proto-Caribbean plate. The hinterland boundaries are brittle thrusts that are out of sequence and imply progressive contraction from mid-Cenozoic to the present.

  10. Beller Lectureship: From Artefacts to Atoms: The Origins and Early Years of the International Bureau of Weights and Measures (BIPM)

    NASA Astrophysics Data System (ADS)

    Quinn, Terry

    2012-02-01

    The BIPM was founded by the Metre Convention in 1875. Its main task was to maintain and disseminate the units of length and mass using the new International Prototypes of the Metre and Kilogram. My talk will be based on the opening chapters of my book ``From Artefacts to Atoms'' which recount the story of the Metre Convention and the creation of the BIPM at the Pavillon de Breteuil in Sèvres on the outskirts of Paris, as the first international scientific institute. I shall include a brief outline of the sometimes acrimonious discussions at the Diplomatic Conference of the Metre, which opened on 1 March 1875 and concluded with the signing of the Convention on 20 May, of the construction of a new laboratory building, recruitment of staff, purchase of instruments and equipment and the beginning of scientific work. There was no precedent for any of this, success was due to the wisdom and foresight of those who drafted the Convention and to the founder Members of the International Committee for Weights and Measures overseeing the BIPM and to the high quality of the original scientific staff. However, success came at a price, the decision to define the Metre at 0 ^oC, for example, led to much ill health in the early years among the staff from working in cold damp laboratories, an aspect of metrology that is easy to forget these days.

  11. The Origin of Dust in the Early Universe: Probing the Star Formation History of Galaxies by Their Dust Content

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Cherchneff, Isabelle

    2010-01-01

    Two distinct scenarios for the origin of the approximately 4 x 10(exp 8) Solar Mass of dust observed in the high-redshift (z = 6.4) quasar J1148+5251 have been proposed. The first assumes that this galaxy is much younger than the age of the universe at that epoch so that only supernovae, could have produced this dust. The second scenario assumes a significantly older galactic age, so that the dust could have formed in lower-mass AGB stars. Presenting new integral solutions for the chemical evolution of metals and dust in galaxies, we offer a critical evaluation of these two scenarios. ^N;"(,, show that the AGB scenario is sensitive to the details of the galaxy's star formation history (SFH), which must consist of an early intense starburst followed by a period of low stellar activity. The presence or absence of massive amounts of dust in high-redshift galaxies can therefore be used to infer their SFH. However, a problem with the AGB scenario is that it produces a stellar mass that is significantly larger than the inferred dynamical mass of J1148+5251, an yet unresolved discrepancy. If this problem persists, then additional sites for the growth or formation of dust, such as molecular clouds or dense clouds around active galactic nuclei, must be considered.

  12. A Middle Triassic thoracopterid from China highlights the evolutionary origin of overwater gliding in early ray-finned fishes.

    PubMed

    Xu, Guang-Hui; Zhao, Li-Jun; Shen, Chen-Chen

    2015-01-01

    Gliding adaptations in thoracopterid flying fishes represent a remarkable case of convergent evolution of overwater gliding strategy with modern exocoetid flying fishes, but the evolutionary origin of this strategy was poorly known in the thoracopterids because of lack of transitional forms. Until recently, all thoracopterids, from the Late Triassic of Austria and Italy and the Middle Triassic of South China, were highly specialized 'four-winged' gliders in having wing-like paired fins and an asymmetrical caudal fin with the lower caudal lobe notably larger than the upper lobe. Here, we show that the new genus Wushaichthys and the previously alleged 'peltopleurid' Peripeltopleurus, from the Middle Triassic (Ladinian, 235-242 Ma) of South China and near the Ladinian/Anisian boundary of southern Switzerland and northern Italy, respectively, represent the most primitive and oldest known thoracopterids. Wushaichthys, the most basal thoracopterid, shows certain derived features of this group in the skull. Peripeltopleurus shows a condition intermediate between Wushaichthys and Thoracopterus in having a slightly asymmetrical caudal fin but still lacking wing-like paired fins. Phylogenetic studies suggest that the evolution of overwater gliding of thoracopterids was gradual in nature; a four-stage adaption following the 'cranial specialization-asymmetrical caudal fin-enlarged paired fins-scale reduction' sequence has been recognized in thoracopterid evolution. Moreover, Wushaichthys and Peripeltopleurus bear hooklets on the anal fin of supposed males, resembling those of modern viviparious teleosts. Early thoracopterids probably had evolved a live-bearing reproductive strategy.

  13. New evidence on the origin of non-spinose pitted-cancellate species of the early Danian planktonic foraminifera

    NASA Astrophysics Data System (ADS)

    Arenillas, Ignacio; Arz, Jose Antonio

    2013-06-01

    Intermediate forms identified in some of the most continuous lower Danian sections allow a better understanding of the origin and evolution of pitted (Globanomalina) and cancellate (Praemurica) planktonic foraminifera. Both Globanomalina and Praemurica are part of a major Paleocene lineage, namely the "non-spinose lineage", which started to diverge in the early Danian. Transitional specimens strongly suggest the evolution from Parvularugoglobigerina to Globanomalina, and then to Praemurica. These evolutionary turnovers were quite rapid (probably lasting less than 10 kyr), and seem to have begun in the time equivalent of the lower part of the E. simplicissima Subzone, namely the middle part of the standard Zone Pa. The initial evolutionary trends within this non-spinose lineage were the increase of test size and lip thickness, and the evolution from tiny pore-murals to large pore-pits, and from smooth to pitted and finally cancellate walls. Biostratigraphic data suggest that evolution of the wall texture preceded the morphological evolution within each genus. The oldest species of both Globanomalina and Praemurica, namely G. archeocompressa and Pr. taurica, initially retained the external morphology of the ancestral Parvularugoglobigerina eugubina. Since their divergence, Globanomalina and Praemurica followed a separate evolutionary path, evolving into morphologically different species.

  14. Progressive Cenozoic cooling and the demise of Antarctica's last refugium.

    PubMed

    Anderson, John B; Warny, Sophie; Askin, Rosemary A; Wellner, Julia S; Bohaty, Steven M; Kirshner, Alexandra E; Livsey, Daniel N; Simms, Alexander R; Smith, Tyler R; Ehrmann, Werner; Lawver, Lawrence A; Barbeau, David; Wise, Sherwood W; Kulhanek, Denise K; Kulhenek, Denise K; Weaver, Fred M; Majewski, Wojciech

    2011-07-12

    The Antarctic Peninsula is considered to be the last region of Antarctica to have been fully glaciated as a result of Cenozoic climatic cooling. As such, it was likely the last refugium for plants and animals that had inhabited the continent since it separated from the Gondwana supercontinent. Drill cores and seismic data acquired during two cruises (SHALDRIL I and II) in the northernmost Peninsula region yield a record that, when combined with existing data, indicates progressive cooling and associated changes in terrestrial vegetation over the course of the past 37 million years. Mountain glaciation began in the latest Eocene (approximately 37-34 Ma), contemporaneous with glaciation elsewhere on the continent and a reduction in atmospheric CO(2) concentrations. This climate cooling was accompanied by a decrease in diversity of the angiosperm-dominated vegetation that inhabited the northern peninsula during the Eocene. A mosaic of southern beech and conifer-dominated woodlands and tundra continued to occupy the region during the Oligocene (approximately 34-23 Ma). By the middle Miocene (approximately 16-11.6 Ma), localized pockets of limited tundra still existed at least until 12.8 Ma. The transition from temperate, alpine glaciation to a dynamic, polythermal ice sheet took place during the middle Miocene. The northernmost Peninsula was overridden by an ice sheet in the early Pliocene (approximately 5.3-3.6 Ma). The long cooling history of the peninsula is consistent with the extended timescales of tectonic evolution of the Antarctic margin, involving the opening of ocean passageways and associated establishment of circumpolar circulation.

  15. Cenozoic Eurasia is not a single rigid plate: Paleomagnetic evidence

    NASA Astrophysics Data System (ADS)

    Cogné, Jean-Pascal

    2013-11-01

    The widely distributed Cenozoic paleomagnetic inclination anomaly in Asia is usually attributed to either a widespread error of magnetic field recording due to an inclination flattening mechanism in sediments, or to the persistence of an anomalous non-dipolar component of the geomagnetic field throughout the Tertiary. Based on an analysis of the Asian paleomagnetic database for Meso-Cenozoic times, we suggest that instead this puzzling anomaly results from an overlooked global plate tectonics cause where the wide so-called Eurasian plate would have suffered from previously undetected transpressive north-south relative movements between its western and eastern ends since the Cretaceous. These relative movements are most probably accommodated by a component of right-lateral shear movement distributed in the Tornquist-Tesseyre zone, and a localized left-lateral shear movement in the Ural Mountain chain during the Tertiary. Therefore, Eurasia was not the single rigid plate that Cenozoic plate reconstructions have accepted.

  16. Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America.

    PubMed

    Strömberg, Caroline A E

    2005-08-23

    Because of a dearth of Cenozoic grass fossils, the timing of the taxonomic diversification of modern subclades within the grass family (Poaceae) and the rise to ecological dominance of open-habitat grasses remain obscure. Here, I present data from 99 Eocene to Miocene phytolith assemblages from the North American continental interior (Colorado, Nebraska, Wyoming, and Montana/Idaho), constituting the only high-resolution mid-Cenozoic record of grasses. Analyses of these assemblages show that open-habitat grasses had undergone considerable taxonomic diversification by the earliest Oligocene (34 million years ago) but that they did not become ecologically dominant in North America until 7-11 million years later (Late Oligocene or Early Miocene). This pattern of decoupling suggests that environmental changes (e.g., climate changes), rather than taxonomic radiations within Poaceae, provided the key opportunity for open-habitat grasses to expand in North America.

  17. Plate-driving forces over the Cenozoic era

    NASA Technical Reports Server (NTRS)

    Jurdy, Donna M.; Stefanick, Michael

    1988-01-01

    Under the assumptions of a dynamical balance between active torques and plate drag as the passive torque, plate reconstructions have been used to determine plate torques for the Cenozoic era. A torque balance equation is derived in which slab-pull and ridge-push torques are proportional to boundary chord vectors, with the weights depending on powers of the subduction velocity at the middle of the chords. The unique angular velocity satisfying the torque balance requirements is obtained for each plate. Torques are found to be fairly stable throughout the Cenozoic, with the misfit between the balanced torque and drag torque increasing systematically for earlier reconstructions.

  18. A nearly modern amphibious bird from the Early Cretaceous of northwestern China.

    PubMed

    You, Hai-Lu; Lamanna, Matthew C; Harris, Jerald D; Chiappe, Luis M; O'connor, Jingmai; Ji, Shu-An; Lü, Jun-Chang; Yuan, Chong-Xi; Li, Da-Qing; Zhang, Xing; Lacovara, Kenneth J; Dodson, Peter; Ji, Qiang

    2006-06-16

    Three-dimensional specimens of the volant fossil bird Gansus yumenensis from the Early Cretaceous Xiagou Formation of northwestern China demonstrate that this taxon possesses advanced anatomical features previously known only in Late Cretaceous and Cenozoic ornithuran birds. Phylogenetic analysis recovers Gansus within the Ornithurae, making it the oldest known member of the clade. The Xiagou Formation preserves the oldest known ornithuromorph-dominated avian assemblage. The anatomy of Gansus, like that of other non-neornithean (nonmodern) ornithuran birds, indicates specialization for an amphibious life-style, supporting the hypothesis that modern birds originated in aquatic or littoral niches.

  19. Consequences of Seed Origin and Biological Invasion for Early Establishment in Restoration of a North American Grass Species

    PubMed Central

    Herget, Mollie E.; Hufford, Kristina M.; Mummey, Daniel L.; Shreading, Lauren N.

    2015-01-01

    Local, wild-collected seeds of native plants are recommended for use in ecological restoration to maintain patterns of adaptive variation. However, some environments are so drastically altered by exotic, invasive weeds that original environmental conditions may no longer exist. Under these circumstances, cultivated varieties selected for improved germination and vigor may have a competitive advantage at highly disturbed sites. This study investigated differences in early establishment and seedling performance between wild and cultivated seed sources of the native grass, Poa secunda, both with and without competition from the invasive exotic grass, Bromus tectorum. We measured seedling survival and above-ground biomass at two experimental sites in western Montana, and found that the source of seeds selected for restoration can influence establishment at the restoration site. Cultivars had an overall advantage when compared with local genotypes, supporting evidence of greater vigor among cultivated varieties of native species. This advantage, however, declined rapidly in the presence of B. tectorum and most accessions were not significantly different for growth and survival in competition plots. Only one cultivar had a consistent advantage despite a strong decline in its performance when competing with invasive plants. As a result, cultivated varieties did not meet expectations for greater establishment and persistence relative to local genotypes in the presence of invasive, exotic species. We recommend the use of representative local or regional wild seed sources in restoration to minimize commercial selection, and a mix of individual accessions (wild, or cultivated when necessary) in highly invaded settings to capture vigorous genotypes and increase the odds native plants will establish at restoration sites. PMID:25741702

  20. Evolution of land mammal diversity in North America during the Cenozoic

    NASA Technical Reports Server (NTRS)

    Stucky, Richard K.

    1990-01-01

    The North American continental patterns of generic richness, extinction, and origination have been reexamined and analyzed in the context of alpha and beta species diversity. The major models of diversity are discussed as well as primary concepts and theories based on studies of living organisms. The adequacy of the fossil record is considered and patterns of genetic richness and species level diversity are outlined. Major shifts in mammalian community structures are reviewed and hypotheses are presented on diversity origin, regulation, and maintenance for the North American record. Results demonstrate a complex relationship between continental alpha and beta diversity characterized by marked changes through time and differences in patterns at each level. It is clear that both biotic and abiotic factors have strongly influenced the evolution of North American species diversity and that major restructuring occurred in Cenozoic mammalian communities.

  1. Ancient origin of the modern deep-sea fauna.

    PubMed

    Thuy, Ben; Gale, Andy S; Kroh, Andreas; Kucera, Michal; Numberger-Thuy, Lea D; Reich, Mike; Stöhr, Sabine

    2012-01-01

    The origin and possible antiquity of the spectacularly diverse modern deep-sea fauna has been debated since the beginning of deep-sea research in the mid-nineteenth century. Recent hypotheses, based on biogeographic patterns and molecular clock estimates, support a latest Mesozoic or early Cenozoic date for the origin of key groups of the present deep-sea fauna (echinoids, octopods). This relatively young age is consistent with hypotheses that argue for extensive extinction during Jurassic and Cretaceous Oceanic Anoxic Events (OAEs) and the mid-Cenozoic cooling of deep-water masses, implying repeated re-colonization by immigration of taxa from shallow-water habitats. Here we report on a well-preserved echinoderm assemblage from deep-sea (1000-1500 m paleodepth) sediments of the NE-Atlantic of Early Cretaceous age (114 Ma). The assemblage is strikingly similar to that of extant bathyal echinoderm communities in composition, including families and genera found exclusively in modern deep-sea habitats. A number of taxa found in the assemblage have no fossil record at shelf depths postdating the assemblage, which precludes the possibility of deep-sea recolonization from shallow habitats following episodic extinction at least for those groups. Our discovery provides the first key fossil evidence that a significant part of the modern deep-sea fauna is considerably older than previously assumed. As a consequence, most major paleoceanographic events had far less impact on the diversity of deep-sea faunas than has been implied. It also suggests that deep-sea biota are more resilient to extinction events than shallow-water forms, and that the unusual deep-sea environment, indeed, provides evolutionary stability which is very rarely punctuated on macroevolutionary time scales.

  2. Ancient Origin of the Modern Deep-Sea Fauna

    PubMed Central

    Thuy, Ben; Gale, Andy S.; Kroh, Andreas; Kucera, Michal; Numberger-Thuy, Lea D.; Reich, Mike; Stöhr, Sabine

    2012-01-01

    The origin and possible antiquity of the spectacularly diverse modern deep-sea fauna has been debated since the beginning of deep-sea research in the mid-nineteenth century. Recent hypotheses, based on biogeographic patterns and molecular clock estimates, support a latest Mesozoic or early Cenozoic date for the origin of key groups of the present deep-sea fauna (echinoids, octopods). This relatively young age is consistent with hypotheses that argue for extensive extinction during Jurassic and Cretaceous Oceanic Anoxic Events (OAEs) and the mid-Cenozoic cooling of deep-water masses, implying repeated re-colonization by immigration of taxa from shallow-water habitats. Here we report on a well-preserved echinoderm assemblage from deep-sea (1000–1500 m paleodepth) sediments of the NE-Atlantic of Early Cretaceous age (114 Ma). The assemblage is strikingly similar to that of extant bathyal echinoderm communities in composition, including families and genera found exclusively in modern deep-sea habitats. A number of taxa found in the assemblage have no fossil record at shelf depths postdating the assemblage, which precludes the possibility of deep-sea recolonization from shallow habitats following episodic extinction at least for those groups. Our discovery provides the first key fossil evidence that a significant part of the modern deep-sea fauna is considerably older than previously assumed. As a consequence, most major paleoceanographic events had far less impact on the diversity of deep-sea faunas than has been implied. It also suggests that deep-sea biota are more resilient to extinction events than shallow-water forms, and that the unusual deep-sea environment, indeed, provides evolutionary stability which is very rarely punctuated on macroevolutionary time scales. PMID:23071660

  3. Similarities between Silurian and Cenozoic basalts in rock-magnetic properties and its implication for Silurian paleogeography

    NASA Astrophysics Data System (ADS)

    Schnabl, P.; Pruner, P.; Cajz, V.; Tasaryova, Z.; Cizkova, K.; Kletetschka, G.

    2013-05-01

    We compare two groups of basalts produced in similar conditions of environment, but significantly different in age. The younger ones represent the Ústí Fm. volcanics of the České stredohorí Mts., situated inside the Eger Graben; and the others are developed in Silurian of the Prague Basin (Barrandian). Rocks of both groups were usually produced into the wet environs. Hyaloclastite are commonly observable rocks, documenting the environment in the time of their origin. We suppose similar primary composition of magnetic carriers because both groups represent the same petrologic type. The only difference is in their age - during the time, some secondary changes on magnetic carriers could take place. The set of Cenozoic basalts consists of 292 samples (23 locations) and the Silurian set includes 485 samples (32 locations). For the comparison, we have used magnetomineralogical properties like natural remanent magnetization (NRM; Silurian 1.1±3.8 A/m, Cenozoic 2.0±2.1 A/m) , magnetic susceptibility (MS; Silurian 7.0±16.1 x10-3SI, Cenozoic 24.4±11.5 x10-3SI), unblocking temperature (UT; Silurian 200-580°C, Cenozoic 150-580°C), mean destructive field (MDF; Silurian 4-58 mT, Cenozoic 3-60 mT), Königsberger 's parameter Q (Silurian 3.93, Cenozoic 2.05) and K-parameter (precision parameter coming from Fisher statistics; Silurian7-102, Cenozoic14-643). NRM reflects the quantity of ferromagnetic minerals; MS represents total amount of paramagnetic and ferromagnetic minerals; UT is the temperature of the steepest decrease of demagnetisation curve and it is close to transition between para- and ferromagnetic behaviour; MDF represents stability character of NRM during alternating field demagnetization when 50% of initial value is reached; Q-parameter is the ratio of the remanent magnetization to the induced magnetization (product of susceptibility and the Earth's magnetic field strength - a large Q-value indicates that the magnetic material will tend to maintain

  4. [Principal stages in the Cenozoic diversification of shallow-water molluscan faunas in the North Pacific].

    PubMed

    Kafanov, A I

    2006-01-01

    Cluster analysis of bivalve species recorded in Cenozoic deposits in Sakhalin Island, western Kamchatka, Hokkaido, and California was used to determine geological age of the modem North Pacific biogeographic region and its constituent subregions (Japan-Mandchurian, Beringian, and Oregon-Sitkan). The North Pacific region developed during the Paleogene-Neogene transition due to Drake Passage opening to deep-water movement, formation of the deep-water Antarctic Circumpolar Current, and the change in climate from greenhouse to psychospheric. Differentiation of the three subregions within the North Pacific Region seems to have occurred in late Miocene-early Pliocene, about 5.6 millions years ago and was probably due to the flooding of the Bering Land Bridge and development of the present configuration of circulation in the North Pacific. In the Northwest Pacific, during Paleogene and early Neogene, the faunal diversification occurred more rapidly and was more extensive than in the Northeast Pacific.

  5. Temporal and geochemical evolution of the Cenozoic intraplate volcanism of Zealandia

    NASA Astrophysics Data System (ADS)

    Timm, Christian; Hoernle, Kaj; Werner, Reinhard; Hauff, Folkmar; den Bogaard, Paul van; White, James; Mortimer, Nick; Garbe-Schönberg, Dieter

    2010-01-01

    In order to constrain better the distribution, age, geochemistry and origin of widespread Cenozoic intraplate volcanism on Zealandia, the New Zealand micro-continent, we report new 40Ar/ 39Ar and geochemical (major and trace element and Sr-Nd-Hf-Pb isotope) data from offshore (Chatham Rise, Campbell and Challenger Plateaus) and onland (North, South, Auckland, Campbell, Chatham and Antipodes Islands of New Zealand) volcanism on Zealandia. The samples include nephelinite, basanite through phonolite, alkali basalt through trachyte/rhyolite, and minor tholeiite and basaltic andesite, all of which have ocean island basalt (OIB)-type trace element signatures and which range in age from 64.8 to 0.17 Ma. Isotope ratios show a wide range in composition ( 87Sr/ 86Sr = 0.7027-0.7050, 143Nd/ 144Nd = 0.5128-0.5131, 177Hf/ 176Hf = 0.2829-0.2831, 206Pb/ 204Pb = 18.62-20.67, 207Pb/ 204Pb = 15.54-15.72 and 208Pb/ 204Pb = 38.27-40.34) with samples plotting between mid-ocean-ridge basalts (MORB) and Cretaceous New Zealand intraplate volcanic rocks. Major characteristics of Zealandia's Cenozoic volcanism include longevity, irregular distribution and lack of age progressions in the direction of plate motion, or indeed any systematic temporal or spatial geochemical variations. We believe that these characteristics can be best explained in the context of lithospheric detachment, which causes upwelling and melting of the upper asthenospheric mantle and portions of the removed lithosphere. We propose that a large-scale seismic low-velocity anomaly, that stretches from beneath West Antarctica to Zealandia at a depth of > 600 km may represent a geochemical reservoir that has been in existence since the Cretaceous, and has been supplying the upper mantle beneath Zealandia with HIMU-type plume material throughout the Cenozoic. In addition, the sources of the Cenozoic intraplate volcanism may be at least partially derived through melting of locally detached Zealandia lower lithosphere.

  6. Paleoenvironmental reconstruction of the late Cenozoic Qaidam Basin, China

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Wang, Y.; Li, Q.; Wang, X.; Deng, T.; Tseng, Z. J.; Takeuchi, G.; Xie, G.; Xu, Y.

    2011-12-01

    Reconstruction of paleoenvironments in the Tibetan region is important to understanding the linkage between tectonic force and climate change. Here we report new isotope data from the Qaidam Basin, China, which is located on the northeastern Tibetan Plateau, including stable C and O isotope analyses of a wide variety of late Cenozoic mammalian tooth enamel samples (including deer, giraffe, horse, rhino, and elephant), and O isotope compositions of phosphate (δ18Op) in fish bone samples. Mammalian tooth enamel δ13C values, when combined with fossil assemblage and other geological evidence, indicate that the Qaidam Basin was warmer and more humid during the late Miocene and early Pliocene, and that there was lush C3 vegetation with significant C4 components at that time, although the C4 plants were not consistently utilized. In contrast, the modern Qaidam Basin is dominated by C3 plants. Fish bone δ18Op values showed statistically significant enrichment from the Tuxi-Shengou-Naoge interval (late Miocene) to the Yahu interval (early Pliocene) and from the Yahu interval to the present day. This most likely reflects increases in the δ18O of lake water over time, as a result of increased aridification of the Qaidam Basin. Assuming that mammals drank exclusively from the lake, temperatures were calculated from average δ18Op values and average δ18Ow derived from large mammal tooth enamel δ18O. Temperatures were also estimated from δ18Op and δ18Ow estimated from co-ocurring large mammal tooth enamel δ18O. The temperature estimates were all lower than the average temperature of the modern Qinghai Lake surface water during the summer, and mostly too low to be reasonable, indicating that the fish and the large mammals were not in equilibrium with the same water. Assuming the relationship between salinity and δ18Ow observed for the modern Qinghai Lake and its surrounding lakes and ponds applied in the past, we calculated the paleosalinities of lake waters to be ~0 to

  7. THE ORIGIN OF THE CONCEPT OF NEUROPATHIC PAIN IN EARLY MEDIEVAL PERSIA (9TH-12TH CENTURY CE).

    PubMed

    Heydari, Mojtaba; Shams, Mesbah; Hashempur, Mohammad Hashem; Zargaran, Arman; Dalfardi, Behnam; Borhani-Haghighi, Afshin

    2015-01-01

    Neuropathic pain is supposed to be a post-renaissance described medical entity. Although it is often believed that John Fothergill (1712-1780) provided the first description of this condition in 1773, a review of the medieval Persian medical writings will show the fact that neuropathic pain was a medieval-originated concept. "Auojae Asab" [Nerve-originated Pain] was used as a medical term in medieval Persian medical literature for pain syndromes which etiologically originated from nerves. Physicians like Rhazes (d. 925 CE), Haly Abbas (d. 982 CE), Avicenna (d. 1037 CE), and Jorjani (d. 1137 CE) have discussed multiple aspects of nerve-originated pain including its classification, etiology, differentiating characteristics, different qualities, and pharmacologic and non-pharmacologic treatments. Recognizing medieval scholars' views on nerve-originated pain can lighten old historical origins of this concept.

  8. The evolution of mammal body sizes: responses to Cenozoic climate change in North American mammals.

    PubMed

    Lovegrove, B G; Mowoe, M O

    2013-06-01

    Explanations for the evolution of body size in mammals have remained surprisingly elusive despite the central importance of body size in evolutionary biology. Here, we present a model which argues that the body sizes of Nearctic mammals were moulded by Cenozoic climate and vegetation changes. Following the early Eocene Climate Optimum, forests retreated and gave way to open woodland and savannah landscapes, followed later by grasslands. Many herbivores that radiated in these new landscapes underwent a switch from browsing to grazing associated with increased unguligrade cursoriality and body size, the latter driven by the energetics and constraints of cellulose digestion (fermentation). Carnivores also increased in size and digitigrade, cursorial capacity to occupy a size distribution allowing the capture of prey of the widest range of body sizes. With the emergence of larger, faster carnivores, plantigrade mammals were constrained from evolving to large body sizes and most remained smaller than 1 kg throughout the middle Cenozoic. We find no consistent support for either Cope's Rule or Bergmann's Rule in plantigrade mammals, the largest locomotor guild (n = 1186, 59% of species in the database). Some cold-specialist plantigrade mammals, such as beavers and marmots, showed dramatic increases in body mass following the Miocene Climate Optimum which may, however, be partially explained by Bergmann's rule. This study reemphasizes the necessity of considering the evolutionary history and resultant form and function of mammalian morphotypes when attempting to understand contemporary mammalian body size distributions.

  9. Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus

    PubMed Central

    Garaschuk, Olga; Hanse, Eric; Konnerth, Arthur

    1998-01-01

    By applying fura-2-based fluorometric calcium imaging to neonatal rat hippocampal slices we identified a developmentally regulated spontaneous neuronal activity in the CA1 region of the hippocampus. The activity consisted of bursts of intracellular Ca2+ transients recurring synchronously at a slow rate of 0.4–2 min−1 in the entire population of pyramidal neurones and interneurones. These early network oscillations (ENOs) were present during a restricted period of postnatal development. Thus, they were not detected at the day of birth (P0), at P1–P4 they consisted of bursts of large (up to 1.5 μm) Ca2+ transients, gradually transforming into regularly occurring, smaller Ca2+ transients during the subsequent week. Beyond P15–P16 no ENOs were detected. The ENOs were blocked by tetrodotoxin (TTX) and by a reduction in temperature from 33–35°C to 20–22°C. By combining fluorometric imaging with whole-cell current-clamp recordings, we found that each ENO-related Ca2+ transient was associated with a high-frequency (up to 100 Hz) train of action potentials riding on a depolarizing wave. Recordings in the voltage-clamp mode revealed barrages of synaptic currents that were strictly correlated with the ENO-associated Ca2+ transients in neighbouring pyramidal neurones. Perfusing the cells with an intracellular solution that allowed for a discrimination between GABAA and glutamate receptor-mediated currents showed that these barrages of synaptic currents were predominantly of GABAergic origin. The ENOs were totally blocked by the GABAA receptor antagonist bicuculline and they were also substantially reduced by the glutamatergic antagonists d,l-2-amino-5-phosphonovaleric acid (d,l-APV) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Synaptic stimulation and application of the GABAA receptor agonist muscimol mimicked the spontaneous Ca2+ transients in pyramidal neurones. The efficacy of muscimol in evoking Ca2+ transients decreased during development in parallel

  10. Origin of Siletzia, a Large Igneous Province in the Cascadia Forearc, and the Early History of the Yellowstone Hotspot

    NASA Astrophysics Data System (ADS)

    Wells, R. E.; Bukry, D.; Friedman, R. M.; Pyle, D. G.; Duncan, R. A.; Haeussler, P. J.

    2015-12-01

    Siletzia is a Paleogene large igneous province (LIP) forming the oceanic basement of coastal OR, WA and S. BC that was accreted to North America (NAM) in the early Eocene. Crustal thickness from seismic refraction ranges from 10 to 32 km, with 16 km of pillow and subaerial basalt exposed on the Olympic Peninsula. At 1.7-2.4 x 106 km3, Siletzia is at least 10 times the volume of the Columbia River flood basalts. U-Pb and 40Ar/39Ar ages, global coccolith (CP) zones, and magnetostratigraphy allow correlation of Siletzia with the 2012 geomagnetic polarity time scale. Siletzia was erupted 56-49 Ma (Chron 25-22), and accretion was completed between 51 and 49 Ma in Oregon. Siletzia's composition, great crustal thickness, rapid eruption, and timing of accretion are consistent with formation as an oceanic plateau. Eight m.y. after accretion, margin-parallel extension and regional dike swarms accompanied the voluminous tholeiitic to highly alkalic Tillamook magmatic episode in the forearc (41.6 Ma; CP14a; Chron 19r). We examined the origin of Siletzia and the possible role of a long-lived Yellowstone hotspot (YHS) in GPlates. In most reference frames, the YHS is ~ 500km offshore S. OR, near an inferred northeast-striking Kula- Farallon and/or Resurrection-Farallon ridge 60 to 50 Ma. The YHS could have provided the 56-49 Ma source on the Farallon plate for Siletzia, which in the model accretes to NAM by 50 Ma. A sister plateau, the Eocene basalt basement of the Yakutat terrane, now in Alaska, may have formed on the adjacent Kula (or Resurrection) plate and accreted to British Columbia at about the same time. Following accretion, the leading edge of NAM overrode the YHS ca. 42 Ma. The encounter with an active YHS may explain the voluminous 42-34 Ma Tillamook episode and forearc extension. Clockwise rotation of western Oregon about a pole in the backarc has since moved the Tillamook center and underlying Siletzia northward ~250 km from the likely hotspot track on NAM.

  11. Origin of Siletzia, an Accreted Large Igneous Province in the Cascadia Forearc, and the Early History of the Yellowstone Hotspot

    NASA Astrophysics Data System (ADS)

    Wells, R. E.; Bukry, D.; Friedman, R. M.; Pyle, D. G.; Duncan, R. A.; Haeussler, P. J.; Wooden, J.

    2014-12-01

    Siletzia as named by Irving (1979) is a Paleogene large igneous province forming the oceanic basalt basement of coastal OR, WA and S. BC that was accreted to North America in the early Eocene. U-Pb (magmatic, detrital zircon) and 40Ar/39Ar ages constrained by mapping, global coccolith (CP) zones, and magnetic polarities permit correlation of basalts with the geomagnetic polarity time scale of Gradstein et al. (2012). Siletzia was rapidly erupted 56-49 Ma (Chron 25-22), and accretion was completed between 51 and 49 Ma in Oregon. Magmatism continued until ca. 46 Ma with emplacement of a basalt sill complex during or shortly after accretion. Siletzia's great crustal thickness, rapid eruption, and timing of accretion are consistent with formation as an oceanic plateau. Eight m.y. after accretion, margin-parallel extension and regional dike swarms mark the Tillamook magmatic episode in the forearc (41.6 Ma; CP zone 14a; Chron 19r). We examined the origin of Siletzia and the possible role of a long-lived Yellowstone hotspot (YHS) in an open source plate modeling program. In most reference frames, the YHS is on or near an inferred northeast-striking Kula- Farallon and/or Resurrection-Farallon ridge 60 to 50 Ma. The YHS thus could have provided a 56-49 Ma source on the Farallon plate for Siletzia, which accreted to North America by 50 Ma. A sister plateau, the Eocene basalt basement of the Yakutat terrane, now in Alaska, formed on the adjacent Kula (or Resurrection) plate and accreted to coastal British Columbia at about the same time. Following accretion of Siletzia, the leading edge of North America overrode the YHS ca. 42 Ma. The encounter with an active YHS may explain the voluminous high-Ti tholeiitic to alkalic magmatism of the 42-34 Ma Tillamook episode and extension in the forearc. Clockwise rotation of western Oregon about a pole in the backarc has since moved the Tillamook center and underlying Siletzia northward ~250 km from the probable hotspot track on North

  12. Periglacial response to late Cenozoic cooling

    NASA Astrophysics Data System (ADS)

    Andersen, Jane Lund; Egholm, David L.; Knudsen, Mads F.

    2014-05-01

    Recent research suggests that late Cenozoic cooling caused an almost worldwide increase in erosion rates and that this increase is most pronounced in glaciated mountain ranges, independent of tectonic activity (Herman, 2013). The obvious suspect behind this increase is the enhanced glacial erosion arising from a colder and more unstable climate. However, since periglacial processes are operating in similar temperature regimes, they might also contribute to, and in some regions dominate, the observed increase in erosion rates. In order to explore the latter effect, we examine the cold, non-glacial erosion processes and their long-term relations to climate. Our main focus is on the physical breakdown of rock by ice (i.e. frost cracking). In particular, our objective is to answer the following questions: 1) What surface temperatures intensify frost cracking, and 2) what characterize the fundamental interactions between sediment thickness, sediment production, and transport of sediment in cold areas? We follow the approach of Hales and Roering (2007) and Anderson et al. (2012) and integrate the temperature variation in the subsurface following an annually oscillating surface temperature. We record the periods when bedrock temperatures are in the frost-cracking window (-8 to -3 °C) and water is available along a monotonous temperature gradient. For these periods, we estimate frost-cracking intensity as a function of the temperature gradient and the amount of water in the profile, limited by the distance the water has to flow through cold rock. We explore the sensitivity of frost-cracking rates to variations in both mean annual air temperature and the thickness of a regolith cover. This approach allows us to study the conditions under which a regolith cover is likely to accelerate frost cracking. First of all, our study sheds new light on the role of the sediment cover. We find that a layer of regolith may accelerate erosion in cold regions, where the presence of

  13. Estimates of Late Cenozoic extension, east-central Idaho

    SciTech Connect

    Janecke, S.U.. . Dept. of Geology)

    1993-04-01

    Late Cenozoic normal faults define the southwest flanks of the Lost River, Lemhi and Beaverhead Ranges in east-central Idaho. Cross sections and structural analysis suggest that throws along the central parts of the Lost River and Lemhi faults range from about 2 to 5 km. If the Beaverhead fault has a similar throw, then Miocene to Recent extension of east-central Idaho ranged 5 to 15%. However, three additional Late Cenozoic normal faults (the Hawley Mountain, Goldburg and Barney faults) bound a NW-trending horst between the Lost River and Lemhi Ranges in the Hawley Mountain and Donkey Hills area. The horst-bounding normal faults are inferred to have formed during Late Cenozoic time because: (1) the faults parallel the NW to NNW strike of Late Cenozoic normal faults in the region, (2) scattered Quaternary fault scarps coincide with the Barney fault, (3) steep topographic fronts define parts of the Goldburg and Hawley Mountain faults, (4) the Hawley Mountain fault displaces two Eocene normal faults, and (5) gravity lows are present in the hanging walls of the Barney and Goldburg faults. Left-lateral separation across the inferred NE-dipping Barney fault suggests 2--3 km of throw, assuming dip-slip displacement. Throw across the Goldburg fault, which uplifts Oligocene basin-fill deposits in its footwall, is at least 500 m. Although two of the horst-bounding normal faults have not offset Quaternary surficial deposits, estimated slip across these faults have not offset Quaternary surficial deposits, estimated slip across these faults is similar to slip across the prominent range-front faults in the region. Therefore, estimated Late Cenozoic extension of east-central Idaho along a NE-SW cross section through the Hawley-Goldburg horst is about 10 to 20%.

  14. Origin of the Blue Ridge escarpment along the passive margin of Eastern North America

    USGS Publications Warehouse

    Spotila, J.A.; Bank, G.C.; Reiners, P.W.; Naeser, C.W.; Naeser, N.D.; Henika, B.S.

    2004-01-01

    The Blue Ridge escarpment is a rugged landform situated within the ancient Appalachian orogen. While similar in some respects to the great escarpments along other passive margins, which have evolved by erosion following rifting, its youthful topographic expression has inspired proposals of Cenozoic tectonic rejuvenation in eastern North America. To better understand the post-orogenic and post-rift geomorphic evolution of passive margins, we have examined the origin of this landform using low-temperature thermochronometry and manipulation of topographic indices. Apatite (U-Th)/He and fission-track analyses along transects across the escarpment reveal a younging trend towards the coast. This pattern is consistent with other great escarpments and fits with an interpretation of having evolved by prolonged erosion, without the requirement of tectonic rejuvenation. Measured ages are also comparable specifically to those measured along other great escarpments that are as much as 100 Myr younger. This suggests that erosional mechanisms that maintain rugged escarpments in the early post-rift stages may remain active on ancient passive margins for prolonged periods. The precise erosional evolution of the escarpment is less clear, however, and several end-member models can explain the data. Our preferred model, which fits with all data, involves a significant degree of erosional escarpment retreat in the Cenozoic. Although this suggests that early onset of topographic stability is not required of passive margin evolution, more data are required to better constrain the details of the escarpment's development. ?? 2003 Blackwell Publishing Ltd.

  15. Age and provenance of Triassic to Cenozoic sediments of West and Central Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Breitfeld, H. Tim; Galin, Thomson; Hall, Robert

    2015-04-01

    Sarawak is located on the northern edge of Sundaland in NW Borneo. West and Central Sarawak include parts of the Kuching and Sibu Zones. These contain remnants of several sedimentary basins with ages from Triassic to Cenozoic. New light mineral, heavy mineral and U-Pb detrital zircon ages show differences in provenance reflecting the tectonic evolution of the region. The oldest clastic sediments are Triassic (Sadong Formation and its deep marine equivalent Kuching Formation). They were sourced by a Triassic (Carnian to Norian) volcanic arc and reworked Paleoproterozoic detritus derived from Cathaysialand. The Upper Jurassic to Cretaceous Pedawan Formation is interpreted as forearc basin fill with distinctive zircon populations indicating subduction beneath present-day West Sarawak which initiated in the Late Jurassic. Subsequent subduction until the early Late Cretaceous formed the Schwaner Mountains magmatic arc. After collision of SW Borneo and other microcontinental fragments with Sundaland in the early Late Cretaceous, deep marine sedimentation (Pedawan Formation) ceased, and there was uplift forming the regional Pedawan-Kayan unconformity. Two episodes of extension followed and were responsible for basin development on land in West Sarawak from the latest Cretaceous onwards, probably in a pull-apart setting. The first episode is associated with sediments of the Kayan Group, deposited in the Latest Cretaceous (Maastrichtian) to Eocene, and the second episode with Upper Eocene sediments of the Ketungau Basin. Zircon ages indicate volcanic activity throughout the Early Cenozoic in NW Borneo, and inherited zircon ages indicate reworking of Triassic and Cretaceous rocks. A large deep marine basin, the Rajang Basin, was north of the Lupar Line Fault in Central Sarawak (Sibu Zone) from the Late Cretaceous to the Late Eocene. Zircons from sediments of the Rajang Basin indicate they have similar ages and provenance to contemporaneous terrestrial sediments of the Kayan

  16. Meso-Cenozoic uplifts on the Atlantic margin of South Morocco

    NASA Astrophysics Data System (ADS)

    Lepretre, R.; Missenard, Y.; Barbarand, J.; Gautheron, C.; Saddiqi, O.

    2013-12-01

    Passive margins are key areas to investigate the relationships between the continental interiors and the marine realm. A careful study of their stratigraphic record is then expected to reveal the complex interplays between subsidence, climate and eustasy (Dauteuil et al., 2013). The eastern passive margin of Central Atlantic initiated in the Early Jurassic and has been subsequently witnessing the evolution of the continental interior during the Meso-Cenozoic drifting of Africa and North America. This passive margin is bounded by the West African Craton to the East, and its geometry and evolution are poorly known (Labails et al., 2009). We have focused our study on the vertical evolution of the onshore part of the basin, in order to improve our knowledge with regards to the dynamics of the basin's infill. The purpose was to identify the main uplift vs. subsidence events impacting the margin during Meso-Cenozoic times and to correlate them to the geodynamic context. We used low-temperature thermochronology on apatites with fission tracks and (U-Th)/He dating to constrain the evolution of the margin during Meso-Cenozoic. These analyses have been performed on samples coming from the onshore basin detrital formations and basement formations from the craton. Modeled thermal histories were then carried through the use of QTQt, a recent program taking into account the most recent developments on apatite thermochronology (Gallagher, 2012). We obtained fission tracks ages ranging from 107×8 Ma to 160×11 Ma and (U-Th)/He ages from 14×1 Ma to 97×9 Ma. The scattered repartition of (U-Th)/He ages is explained by the distribution of effective uranium in the samples and reveal a quite young signal. The fission tracks ages are not so scattered and show a consistent signal. Thermal histories characterize for the first time the polyphased vertical evolution of the basin throughout its Meso-Cenozoic history. Two major steps of exhumation are recorded. First, a Late Jurassic/Early

  17. The Cenozoic Arctic Ocean Unveiled through Scientific Ocean Drilling

    NASA Astrophysics Data System (ADS)

    Mayer, L.; Moran, K.; Backman, J.

    2007-12-01

    In late summer 2004, the Integrated Ocean Drilling Program (IODP) conducted one of the most transformational missions in the almost 40 year history of scientific ocean drilling: the Arctic Coring Expedition (ACEX). This technically-challenging expedition recovered the first Cenozoic sediment record from the Arctic Ocean-extending previous records from ~1.5 Ma to an unprecedented ~56 Ma. Glimpses of the breadth of this transformation were even seen during ACEX when the massulae from fresh water ferns were found and the presence of Apectodinium augustum confirmed that the Paleocene-Eocene Thermal Maximum (PETM) was unexpectedly recovered. Soon after the expedition, when the cores were opened and analyzed, ice-rafted debris was found to have occurred much earlier than previously thought-in the Eocene in an environment of high organic carbon content. The initial analyses also revealed an extensive hiatus that occurred between several of the most spectacular sediment cores in terms of color, e.g. turquoise, and structure, starkly contrasting black and white crossbedding that is now dubbed the "zebra" core. The exciting early results attracted other investigators that expanded the scientific investigating team to more than 40 people. This, in turn, extended the analyses to include new studies that revealed surprisingly high Arctic Ocean surface water temperatures and a hydrologically active system during the PETM. Although the hiatus is a lost window in time for the Arctic paleoclimate record, it spawned other studies that integrated the regional tectonic history with ACEX results revealing a major oceanographic reorganization at 17.5 Ma-ventilation of the Arctic Ocean to the North Atlantic through the Fram Strait. In this overview, recent results from the large ACEX scientific "family" are summarized and include: a new age model; detailed analyses of the middle Eocene that document a unique brackish water environment; sea ice and iceberg history reconstructions and

  18. Bayes’ Theorem and Early Solar Short-lived Radionuclides: The Case for an Unexceptional Origin for the Solar System

    NASA Astrophysics Data System (ADS)

    Young, Edward D.

    2016-08-01

    The presence of excesses of short-lived radionuclides in the early solar system evidenced in meteorites has been taken as testament to close encounters with exotic nucleosynthetic sources, including supernovae or AGB stars. An analysis of the likelihoods associated with different sources of these extinct nuclides in the early solar system indicates that, rather than being exotic, their abundances were typical of star-forming regions like those observed today in the Galaxy. The radiochemistry of the early solar system is therefore unexceptional, being the consequence of extensive averaging of solids from molecular clouds.

  19. Molecular and Paleontological Evidence for a Post-Cretaceous Origin of Rodents

    PubMed Central

    Wu, Shaoyuan; Wu, Wenyu; Zhang, Fuchun; Ye, Jie; Ni, Xijun; Sun, Jimin; Edwards, Scott V.; Meng, Jin; Organ, Chris L.

    2012-01-01

    The timing of the origin and diversification of rodents remains controversial, due to conflicting results from molecular clocks and paleontological data. The fossil record tends to support an early Cenozoic origin of crown-group rodents. In contrast, most molecular studies place the origin and initial diversification of crown-Rodentia deep in the Cretaceous, although some molecular analyses have recovered estimated divergence times that are more compatible with the fossil record. Here we attempt to resolve this conflict by carrying out a molecular clock investigation based on a nine-gene sequence dataset and a novel set of seven fossil constraints, including two new rodent records (the earliest known representatives of Cardiocraniinae and Dipodinae). Our results indicate that rodents originated around 61.7–62.4 Ma, shortly after the Cretaceous/Paleogene (K/Pg) boundary, and diversified at the intraordinal level around 57.7–58.9 Ma. These estimates are broadly consistent with the paleontological record, but challenge previous molecular studies that place the origin and early diversification of rodents in the Cretaceous. This study demonstrates that, with reliable fossil constraints, the incompatibility between paleontological and molecular estimates of rodent divergence times can be eliminated using currently available tools and genetic markers. Similar conflicts between molecular and paleontological evidence bedevil attempts to establish the origination times of other placental groups. The example of the present study suggests that more reliable fossil calibration points may represent the key to resolving these controversies. PMID:23071573

  20. Molecular and paleontological evidence for a post-Cretaceous origin of rodents.

    PubMed

    Wu, Shaoyuan; Wu, Wenyu; Zhang, Fuchun; Ye, Jie; Ni, Xijun; Sun, Jimin; Edwards, Scott V; Meng, Jin; Organ, Chris L

    2012-01-01

    The timing of the origin and diversification of rodents remains controversial, due to conflicting results from molecular clocks and paleontological data. The fossil record tends to support an early Cenozoic origin of crown-group rodents. In contrast, most molecular studies place the origin and initial diversification of crown-Rodentia deep in the Cretaceous, although some molecular analyses have recovered estimated divergence times that are more compatible with the fossil record. Here we attempt to resolve this conflict by carrying out a molecular clock investigation based on a nine-gene sequence dataset and a novel set of seven fossil constraints, including two new rodent records (the earliest known representatives of Cardiocraniinae and Dipodinae). Our results indicate that rodents originated around 61.7-62.4 Ma, shortly after the Cretaceous/Paleogene (K/Pg) boundary, and diversified at the intraordinal level around 57.7-58.9 Ma. These estimates are broadly consistent with the paleontological record, but challenge previous molecular studies that place the origin and early diversification of rodents in the Cretaceous. This study demonstrates that, with reliable fossil constraints, the incompatibility between paleontological and molecular estimates of rodent divergence times can be eliminated using currently available tools and genetic markers. Similar conflicts between molecular and paleontological evidence bedevil attempts to establish the origination times of other placental groups. The example of the present study suggests that more reliable fossil calibration points may represent the key to resolving these controversies.

  1. Joining Australia to Antarctica GCM implications for the Cenozoic record of Antarctic glaciation

    NASA Astrophysics Data System (ADS)

    Oglesby, Robert J.

    1991-07-01

    A previous GCM study concerning the formation and maintenance of Antarctic glaciation is expanded to include the joining of Australia to Antarctica; the two continents were physically connected prior to about 40 million years ago. It has been proposed that the increased continentality resulting from the enlarged landmass inhibited glaciation by increasing the degree of summer heating. However, simulations with the NCAR CCM1 suggest little change in the net Antarctic snow accumulation when Australia is joined to Antarctica, even under extreme variations in SST and topography. If anything, there is a slight increase in the net accumulation with the larger landmass. The climate of Australia does change markedly, consistent with the roughly 30° poleward shift in latitude. These results may not be inconsistent with paleoclimatic data from the early Cenozoic and the Cretaceous, with temperate flora and fauna along the coast, and large ice sheets inland.

  2. Cenozoic tectonic evolution and petroleum exploration in Perl River Mouth basin, South China Sea

    SciTech Connect

    Chi Yukun; Xu Shice )

    1990-06-01

    The Pearl River Mouth basin is a large Cenozoic continental margin basin that is rich in hydrocarbon potential. Fluvial-lake sequences were deposited before Oligocene, but all were covered by Miocene marine clastic and carbonate rocks. Both paleo-Pearl River delta system and reef/bank carbonate system were widely developed. At the early stage of the evolution, two subsidence belts and one uplift between them distributed in NE regional direction; grabens occurred in the north belt and depressions in the south belt. Tectonic movement was stronger in the east than the west. The main production zones have been drilled both in Miocene sandstone and carbonate rocks. As the exploration activities are developing, the basin will be one of the most significant China offshore oil production areas.

  3. A Cenozoic-style scenario for the end-Ordovician glaciation.

    PubMed

    Ghienne, Jean-François; Desrochers, André; Vandenbroucke, Thijs R A; Achab, Aicha; Asselin, Esther; Dabard, Marie-Pierre; Farley, Claude; Loi, Alfredo; Paris, Florentin; Wickson, Steven; Veizer, Jan

    2014-09-01

    The end-Ordovician was an enigmatic interval in the Phanerozoic, known for massive glaciation potentially at elevated CO2 levels, biogeochemical cycle disruptions recorded as large isotope anomalies and a devastating extinction event. Ice-sheet volumes claimed to be twice those of the Last Glacial Maximum paradoxically coincided with oceans as warm as today. Here we argue that some of these remarkable claims arise from undersampling of incomplete geological sections that led to apparent temporal correlations within the relatively coarse resolution capability of Palaeozoic biochronostratigraphy. We examine exceptionally complete sedimentary records from two, low and high, palaeolatitude settings. Their correlation framework reveals a Cenozoic-style scenario including three main glacial cycles and higher-order phenomena. This necessitates revision of mechanisms for the end-Ordovician events, as the first extinction is tied to an early phase of melting, not to initial cooling, and the largest δ(13)C excursion occurs during final deglaciation, not at the glacial apex.

  4. The socio-political context of migration and reproductive health disparities: The case of early sexual initiation among Mexican-origin immigrant young women.

    PubMed

    Coleman-Minahan, Kate

    2017-03-09

    Prior research often explains the lower risk of early sexual initiation among foreign-born Mexican-origin young women by a patriarchal and sexually conservative "traditional Latino culture." This definition overlooks structural factors such as exploitation of migrant workers, and conflates gender inequality and sexual expectations. I use an intersectional framework and the theory of gender and power to explore how gender inequality and sexual expectations are both influenced by structural factors and affect reproductive health outcomes. I integrate data from qualitative interviews with 21 first and second generation Mexican-origin women in 2013-2014 with data from discrete time hazard models with 798 Mexican-origin young women in the National Longitudinal Study of Adolescent to Adult Health. Qualitative results demonstrate that gender inequality and sexual expectations in Mexican-origin immigrant households are associated with structural factors. Gender inequality occurs more often in households with family instability, greater poverty, and among parents who migrated independently. Qualitative data also demonstrate that parental gendered expectations are sometimes at odds to what parents are actually doing in the household. Finally, contrary to assumptions that a patriarchal "traditional Latino culture" protects against early sexual initiation, qualitative and multivariate quantitative data suggest that household gender inequality increases risk of early sexual initiation. These findings challenge the utility of a culturalist approach that views culture as determining health behavior among immigrants and demonstrate the need to incorporate an intersectional framework that includes structural factors. This approach may reduce stereotypes and identify meaningful interventions to reduce reproductive health disparities.

  5. Cenozoic Uplift, Erosion and Dynamic Support of Madagascar

    NASA Astrophysics Data System (ADS)

    Stephenson, Simon; White, Nicky

    2016-04-01

    The physiography of Madagascar is characterised by high-elevation but low-relief topography; 42% of the landscape is above 500 m in elevation. Eocene (marine) nummulitic (marine) limestones at elevations of ˜400 m above sea level and newly dated, emergent 125 ka coral reefs suggest that Madagascar has experienced differential vertical motions during Cenozoic times. Malagasy rivers are often deeply incised and contain steepened reaches, implying that they have responded to changes in regional uplift rate. However, low temperature thermochronology and 10Be derived erosion rates suggest that both Cenozoic and Recent average denudation rates have been low. Extensive laterite-capped, low-relief surfaces also suggest that there have been long periods of tectonic quiescence. In contrast, the modern landscape is characterised by erosional gullies (i.e. lavaka), with very high local erosion rates. To bridge the gap between this disparate evidence, we inverted 2566 longitudinal river profiles using a damped non-negative, least-squares linear inversion to determine the history of regional uplift. We used a simplified version of the stream power erosional law. River profiles were extracted from the 3 arc-second Shuttle Radar Topography Mission (SRTM) digital elevation model. Calibration of the stream power erosional law is based upon Cenozoic limestones and new radiometrically dated marine terraces. The residual misfit between observed and calculated river profiles is small. Results suggest that Malagasy topography grew diachronously by 1-2 km over the last 15-20 Ma. Calculated uplift and denudation are consistent with independent observations. Thus drainage networks contain coherent signals that record regional uplift. The resultant waves of incision are the principal trigger for modern erosional processes. Admittance calculations, the history of basaltic volcanism and nearby oceanic residual age-depth measurements all suggest that as much as 0.8 - 1.1 km of Cenozoic uplift

  6. Magnetostratigraphic dating of Cenozoic platform carbonates from Bahamas and Florida

    SciTech Connect

    McNeill, D.F.; Ginsburg, R.N.

    1988-02-01

    An earlier study of the magnetic reversals in a single core of late Cenozoic shallow-water carbonates from the Bahamas found that the sequence of reversals, measured with a SQUID magnetometer, correlated with the standard magnetic polarity time scale. This initial application of magnetostratigraphy to date shallow-water carbonates with little or no terrigenous components has now been confirmed by study of two additional cores from the Bahamas and an older outcrop sequence from Florida.

  7. Late Cenozoic Underthrusting of the Continental Margin off Northernmost California.

    PubMed

    Silver, E A

    1969-12-05

    The presence of magnetic anomaly 3, age 5 million years, beneath the continental slope off northernmost California, is evidence for underthrusting of the continental margin during the late Cenozoic. Folded and faulted strata near the base of the slope attest to deformation of the eastern edge of the turbidite sedimzents in the Gorda Basin; the deformation observed is exactly that expected from underthrusting. The relative motions of three crustal plates also suggest underthrusting, possibly with a major component of right-lateral slip.

  8. Report on ICDP workshop CONOSC (COring the NOrth Sea Cenozoic)

    NASA Astrophysics Data System (ADS)

    Westerhoff, Wim; Donders, Timme; Luthi, Stefan

    2016-08-01

    ICDP workshop COring the NOrth Sea Cenozoic focused on the scientific objectives and the technical aspects of drilling and sampling. Some 55 participants attended the meeting, ranging from climate scientists, drilling engineers, and geophysicists to stratigraphers and public outreach experts. Discussion on the proposed research sharpened the main research lines and led to working groups and the necessary technical details to compile a full proposal that was submitted in January 2016.

  9. Cenozoic extensional tectonics in western and central Anatolia, Turkey: Introduction

    NASA Astrophysics Data System (ADS)

    Çemen, İbrahim; Helvacı, Cahit; Ersoy, E. Yalçın

    2014-11-01

    It is our great pleasure to present this special issue of Tectonophysics on Cenozoic extensional tectonics in western and central Anatolia, Turkey (Fig. 1). The Cenozoic extension followed a series of continental collisions from the Late Cretaceous to the Eocene that led to the formation of the Vardar-İzmir-Ankara-Erzincan and Tauride suture zones as a part of the Alpine-Himalayan belt in Turkey and surrounding regions (Fig. 1). This type of post-collisional large-scale extensional tectonic may be "normal" for parts of collisional mountain belts due to gravitational collapse of over-thickened crust, or, alternatively, extension may be driven by other tectonic forces such as lateral extrusion or subducting slab roll-back. Many extensional features in western Anatolia continue into the Aegean Sea where they are more difficult to study as the access to outcrops is limited to a few islands. However, extensional structures and the rock units affected by them (Fig. 1) are well exposed in western and central Anatolia, Turkey, providing a natural laboratory to study the dynamics and consequences of crustal extension. The effects of post-collisional Cenozoic extension die out on the eastern part of central Anatolia to the east of the Ecemiş Fault Zone (Fig. 1).

  10. Late Cenozoic Temporal Evolution of North American Dynamic Topography

    NASA Astrophysics Data System (ADS)

    Moucha, R.; Forte, A. M.; Rowley, D. B.; Mitrovica, J. X.; Simmons, N. A.; Grand, S. P.

    2008-12-01

    The Farallon plate was completely overridden by the North American plate by mid-Cenozoic. Although the Farallon plate ceased to exist on the surface, it continues to have a significant tectonic impact on North America. At the present time, the subducted Farallon plate drives a large-scale thermal convective cell below the southern half of North America, where downward flow in the east is driven by the dense Farallon slab and upward flow in the west is a combination of local, buoyancy-driven hot upwelling and large-scale return flow. Herein, we will explore the geodynamic implications of this convective flow throughout the late Cenozoic by carrying out backward mantle flow simulations starting with present-day heterogeneity derived from a high resolution joint seismic-geodynamic tomography model (Simmons et al., 2007) that yields excellent fits to present day surface observables (e.g. dynamic topography and the geoid). Our proposed temporal model of late Cenozoic North American mantle dynamics brings together the uplift of the Colorado Plateau in the southwestern US and offers an explanation for present-day seismicity at the New Madrid seismic zone. Furthermore, we consider the impact of this model on inferences of eustatic sea level change from measurements at the New Jersey passive margin.

  11. Investigating Late Cenozoic Mantle Dynamics beneath Yellowstone

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Liu, L.

    2015-12-01

    Recent tomography models (Sigloch, 2011; Schmandt & Lin, 2014) reveal unprecedented details of the mantle structure beneath the United States (U.S.). Prominent slow seismic anomalies below Yellowstone, traditionally interpreted as due to a mantle plume, are restricted to depths either shallower than 200 km or between 500 and 1000 km, but a continuation to greater depth is missing. Compared to fast seismic anomalies, which are usually interpreted as slabs or delaminated lithosphere, origin of deep slow seismic anomalies, especially those in the vicinity of subduction zones, is more enigmatic. As a consequence, both the dynamics and evolution of these slow anomalies remain poorly understood. To investigate the origin and evolution of the Yellowstone slow anomaly during the past 20 Myr, we construct a 4D inverse mantle convection model with a hybrid data assimilation scheme. On the one hand, we use the adjoint method to recover the past evolution of mantle seismic structures beyond the subduction zones. On the other hand, we use a high-resolution forward model to simulate the subduction of the oceanic (i.e., Farallon) plate. During the adjoint iterations, features from these two approaches are blended together at a depth of ~200 km below the subduction zone. In practice, we convert fast and slow seismic anomalies to effective positive and negative density heterogeneities. Our preliminary results indicate that at 20 Ma, the present-day shallow slow anomalies beneath the western U.S. were located inside the oceanic asthenosphere, which subsequently entered the mantle wedge, through the segmented Farallon slab. The eastward encroachment of the slow anomaly largely followed the Yellowstone hotspot track migration. The present deep mantle Yellowstone slow anomaly originated at shallower depths (i.e. transition zone), and was then translated down to the lower mantle accompanying the sinking fast anomalies. The temporal evolution of the slow anomalies suggests that the deep

  12. Arctic plant origins and early formation of circumarctic distributions: a case study of the mountain sorrel, Oxyria digyna.

    PubMed

    Wang, Qian; Liu, Jianquan; Allen, Geraldine A; Ma, Yazhen; Yue, Wei; Marr, Kendrick L; Abbott, Richard J

    2016-01-01

    Many plant species comprising the present-day Arctic flora are thought to have originated in the high mountains of North America and Eurasia, migrated northwards as global temperatures fell during the late Tertiary period, and thereafter attained a circumarctic distribution. However, supporting evidence for this hypothesis that provides a temporal framework for the origin, spread and initial attainment of a circumarctic distribution by an arctic plant is currently lacking. Here we examined the origin and initial formation of a circumarctic distribution of the arctic mountain sorrel (Oxyria digyna) by conducting a phylogeographic analysis of plastid and nuclear gene DNA variation. We provide evidence for an origin of this species in the Qinghai-Tibet Plateau of southwestern China, followed by migration into Russia c. 11 million yr ago (Ma), eastwards into North America by c. 4 Ma, and westwards into Western Europe by c. 1.96 Ma. Thereafter, the species attained a circumarctic distribution by colonizing Greenland from both sides of the Atlantic Ocean. Following the arrival of the species in North America and Europe, population sizes appear to have increased and then stabilized there over the last 1 million yr. However, in Greenland a marked reduction followed by an expansion in population size is indicated to have occurred during the Pleistocene.

  13. Geology of the Eel River basin and adjacent region: implications for late Cenozoic tectonics of the southern Cascadia subduction zone and Mendocino triple junction

    USGS Publications Warehouse

    Clarke, S.H.

    1992-01-01

    Two upper Cenozoic depositional sequences of principally marine strata about 4000m thick overlie accreted basement terranes of the Central and Coastal belts of the Franciscan Complex in the onshore-offshore Eel River basin of northwestern California. The older depositional sequence is early to middle Miocene in age and represents slope basin and slope-blanket deposition, whereas the younger sequence, late Miocene to middle Pleistocene in age, consists largely of forearc basin deposits. -from Author

  14. An analysis of the origin of an early medieval group of individuals from Gródek based on the analysis of stable oxygen isotopes.

    PubMed

    Lisowska-Gaczorek, A; Kozieł, S; Cienkosz-Stepańczak, B; Mądrzyk, K; Pawlyta, J; Gronkiewicz, S; Wołoszyn, M; Szostek, K

    2016-08-01

    In the early Middle Ages, the region of the Cherven Towns, which is now located on both sides of the Polish-Ukrainian border, was fiercely contested by Slavs in the process of forming their early states. The main objective of the present study was to investigate the homogeneity of an early medieval population uncovered in that region, in the town of Gródek on the Bug River, by screening for non-local individuals. The origin of the studied skeletons was ascertained using analysis of oxygen isotopes in the phosphates isolated from bone tissue. In this paper, the isotope ratios obtained for samples collected from 62 human skeletons were compared to the background δ(18)O (in precipitation water) from the regions of Kraków (south-eastern Poland), Lviv (western Ukraine), Brest (western Belarus), and Gródek, as well as to the ratios determined for the animals coexisting with the studied population. Proportions of oxygen isotopes obtained for all the studied individuals were found to be similar to those for the precipitation water and animals, which indicates the absence of bone fragments of individuals originating in other regions.

  15. Cenozoic faults and faulting phases in the western Tarim Basin (NW China): Effects of the collisions on the southern margin of the Eurasian Plate

    NASA Astrophysics Data System (ADS)

    Li, Yue-Jun; Zhang, Qiang; Zhang, Guang-Ya; Tian, Zuo-Ji; Peng, Geng-Xin; Qiu, Bin; Huang, Zhi-Bin; Luo, Jun-Cheng; Wen, Lei; Zhao, Yan; Jia, Tie-Gan

    2016-12-01

    The Bachu Rise in the western Tarim Basin is the fore-bulge of the Kunlun late Cenozoic intra-continental foreland basin system formed under the far-field effect of India-Asia collision. Cenozoic faults and faulting are abnormally developed in the Bachu Rise and its adjacent area. Taking the Niaoshan-Gudongshan area on the southern boundary of the Bachu Rise as the key study area, 5 Cenozoic faulting phases were identified in the Bachu Rise and its adjacent area after careful seismic interpretation. They are end Cretaceous ∼ beginning Paleogene (ca. 65 Ma) décollement-thrusting, end Paleogene ∼ beginning Neogene (ca. 23 Ma) décollement-thrusting, end Miocene ∼ beginning Pliocene (ca. 5 Ma) basement-involved thrusting, late Pliocene ∼ early Pleistocene (ca. 3-2 Ma) normal faulting, middle Pleistocene ∼ Holocene (ca. <1.5 Ma) décollement-thrusting and strike-slip faulting. The Middle Cambrian and Paleogene gypsum-salt layers serve as the two main décollement layers in the study area. Thrusting of ca. 65 Ma was under the far-field effect of the collision between Lhasa (part of the Cimmerian Continent) and Asia; and the other 4 Cenozoic faulting phases were all under the far-field effect of the India-Asia collision. The late Cenozoic faulting is characterized by pulse thrust. There is one tectonic pause between each two successive thrust pulses. The compressive tectonic stress is weaker and even evolved into a slight tensional tectonic stress and forms normal fault in the tectonic pauses.

  16. Cenozoic carbon cycle imbalances and a variable weathering feedback

    NASA Astrophysics Data System (ADS)

    Caves, Jeremy K.; Jost, Adam B.; Lau, Kimberly V.; Maher, Kate

    2016-09-01

    The long-term stability of Earth's climate and the recovery of the ocean-atmosphere system after carbon cycle perturbations are often attributed to a stabilizing negative feedback between silicate weathering and climate. However, evidence for the operation of this feedback over million-year timescales and in response to tectonic and long-term climatic change remains scarce. For example, the past 50 million years of the Cenozoic Era are characterized by long-term cooling and declining atmospheric CO2 (pCO2). During this interval, constant or decreasing carbon fluxes from the solid Earth to the atmosphere suggest that stable or decreasing weathering fluxes are needed to balance the carbon cycle. In contrast, marine isotopic proxies of weathering (i.e., 87Sr/86Sr, δ7 Li , and 187Os/188Os) are interpreted to reflect increasing weathering fluxes. Here, we evaluate the existence of a negative feedback by reconstructing the imbalance in the carbon cycle during the Cenozoic using the surface inventories of carbon and alkalinity. Only a sustained 0.25-0.5% increase in silicate weathering is necessary to explain the long-term decline in pCO2 over the Cenozoic. We propose that the long-term decrease in pCO2 is due to an increase in the strength of the silicate weathering feedback (i.e., the constant of proportionality between the silicate weathering flux and climate), rather than an increase in the weathering flux. This increase in the feedback strength, which mirrors the marine isotope proxies, occurs as transient, <1 million year increases in the weathering flux, which remove CO2. As runoff and temperature decline in response, the integrated weathering flux over >1 million year timescales remains invariant to match the long-term inputs of carbon. Over the Cenozoic, this results in stable long-term weathering fluxes even as pCO2 decreases. We attribute increasing feedback strength to a change in the type and reactivity of rock in the weathering zone, which collectively has

  17. Travelling the path from fantasy to history: the struggle for original history within Freud's early circle, 1908-1913.

    PubMed

    Cotti, Patricia

    2010-01-01

    Between 1908 and 1913, Freud and his disciples debated different theories of the origins of mankind, which Freud analysed in the context of his theory of neuroses. Wittels was the first of this group to present, in 1908, what Freud labelled a "fantasy" on the subject. Wittels contemplated various prehistoric scenarios (such as a murder of the father by his children) which he postulated as potential explanations for the origin of man's conception of religion, law and state. Freud (1913) eventually conceived his own human prehistory which differed significantly from the ideas of Wittels and his other disciples (Jung, Tausk) and allowed him to claim he now held a "historical" point of view that his disciples were missing.

  18. Cenozoic East Asia plate tectonic reconstructions using constraints of mapped and unfolded slabs from mantle seismic tomography

    NASA Astrophysics Data System (ADS)

    Wu, J. E.; Suppe, J.; Kanda, R. V.

    2012-12-01

    Subducted slabs were mapped in the mantle under East Asia using MITP08 global seismic tomography (Li et al., 2008), Benioff zone seismicities and published local tomography. 3D gridded slab surfaces were constructed by manually picking and correlating the midpoint of fast seismic anomalies along variable cross-section orientations. The mapped slabs were structurally 'unfolded' and restored to the spherical Earth surface to assess their pre-subduction geometries. Gplates software was used to constrain plate tectonic reconstructions using the unfolded slabs. The unfolded SE Asia upper mantle slabs reveal a 'picture puzzle' fit along their edges that suggests a larger NE Indo-Australian ocean once existed that included the Philippine Sea, Molucca Sea and Celebes Sea. Deeper lower mantle detached slabs indicate an early to mid-Cenozoic 'East Asia Sea' between east Sundaland and the Pacific that stretched from the Ryukyu Islands north of present-day Taiwan southward to Sulawesi. The unfolded slab constraints produced gap and overlap incompatibilities when used in published plate tectonic reconstructions. Here a plate tectonic reconstruction incorporating the unfolded slab constraints is proposed that has the Philippine Sea, Molucca Sea and Celebes Sea clustered at the northern margin of Australia during the early Cenozoic. At the mid-Cenozoic these plates moved NNE with 'Australia-like' plate motions and overrode the 'East Asia Sea'. Plate motions were accommodated by N-S transforms at the eastern margin of Sundaland. Between 25 to 15 Ma the Philippine Sea, Molucca Sea and Celebes Sea plates were fragmented from the greater Indo-Australian ocean. The Philippine Sea was captured by the Pacific plate and now has Pacific-like westward motions.

  19. Late Mesozoic and Cenozoic wrench tectonics in eastern Australia: Insights from the North Pine Fault System (southeast Queensland)

    NASA Astrophysics Data System (ADS)

    Babaahmadi, A.; Rosenbaum, G.

    2014-01-01

    The North Pine Fault System (NPFS) in SE Queensland belongs to a series of NNW-striking sinistral faults that displaced Paleozoic to Cenozoic rock units in eastern Australia. We have studied the geometry and kinematics of the NPFS by utilizing gridded aeromagnetic data, digital elevation models, and field observations. The results indicate that all segments of the NPFS were subjected to sinistral reverse strike-slip faulting. Restorations of displaced magnetic anomalies indicate sinistral offsets ranging from ˜3.4 to ˜8.2 km. The existence of a (possibly) Late Triassic granophyre dyke parallel to one of the fault segments, and the occurrence of NNW-striking steeply dipping strike-slip and normal faults in the Late Triassic-Early Cretaceous Maryborough Basin, indicate that the NPFS has likely been active during the Mesozoic. We propose that from Late Cretaceous to early Eocene, NNW-striking faults in eastern Australia, including the NPFS, were reactivated with oblique sinistral-normal kinematics in response to regional oblique extension associated with the opening of the Tasman and Coral Seas. This interpretation is consistent with the modeled dominant NNE- to NNW-directed horizontal tensional stress in the Eocene. The latest movements along the NPFS involved sinistral transpressional kinematics, which was possibly related to far-field contractional stresses from collisional tectonics at the eastern and northern boundaries of the Australian plate in the Cenozoic. This sinistral-reverse oblique kinematics of the NPFS in the Cenozoic is in line with ˜ESE to ENE orientations of the modeled maximum horizontal stress in SE Queensland.

  20. On the Origin of the Canonical Nucleobases: An Assessment of Selection Pressures across Chemical and Early Biological Evolution.

    PubMed

    Rios, Andro C; Tor, Yitzhak

    2013-06-01

    The native bases of RNA and DNA are prominent examples of the narrow selection of organic molecules upon which life is based. How did nature "decide" upon these specific heterocycles? Evidence suggests that many types of heterocycles could have been present on the early Earth. It is therefore likely that the contemporary composition of nucleobases is a result of multiple selection pressures that operated during early chemical and biological evolution. The persistence of the fittest heterocycles in the prebiotic environment towards, for example, hydrolytic and photochemical assaults, may have given some nucleobases a selective advantage for incorporation into the first informational polymers. The prebiotic formation of polymeric nucleic acids employing the native bases remains, however, a challenging problem to reconcile. Hypotheses have proposed that the emerging RNA world may have included many types of nucleobases. This is supported by the extensive utilization of non-canonical nucleobases in extant RNA and the resemblance of many of the modified bases to heterocycles generated in simulated prebiotic chemistry experiments. Selection pressures in the RNA world could have therefore narrowed the composition of the nucleic acid bases. Two such selection pressures may have been related to genetic fidelity and duplex stability. Considering these possible selection criteria, the native bases along with other related heterocycles seem to exhibit a certain level of fitness. We end by discussing the strength of the N-glycosidic bond as a potential fitness parameter in the early DNA world, which may have played a part in the refinement of the alphabetic bases.

  1. Cretaceous–Cenozoic burial and exhumation history of the Chukchi shelf, offshore Arctic Alaska

    USGS Publications Warehouse

    Craddock, William H.; Houseknecht, David W.

    2016-01-01

    Apatite fission track (AFT) and vitrinite reflectance data from five exploration wells and three seafloor cores illuminate the thermal history of the underexplored United States Chukchi shelf. On the northeastern shelf, Triassic strata in the Chevron 1 Diamond well record apatite annealing followed by cooling, possibly during the Triassic to Middle Jurassic, which is a thermal history likely related to Canada Basin rifting. Jurassic strata exhumed in the hanging wall of the frontal Herald Arch thrust fault record a history of probable Late Jurassic to Early Cretaceous structural burial in the Chukotka fold and thrust belt, followed by rapid exhumation to near-surface temperatures at 104 ± 30 Ma. This history of contractional tectonism is in good agreement with inherited fission track ages in low-thermal-maturity, Cretaceous–Cenozoic strata in the Chukchi foreland, providing complementary evidence for the timing of exhumation and suggesting a source-to-sink relationship. In the central Chukchi foreland, inverse modeling of reset AFT samples from the Shell 1 Klondike and Shell 1 Crackerjack wells reveals several tens of degrees of cooling from maximum paleo-temperatures, with maximum heating permissible at any time from about 100 to 50 Ma, and cooling persisting to as recent as 30 Ma. Similar histories are compatible with partially reset AFT samples from other Chukchi wells (Shell 1 Popcorn, Shell 1 Burger, and Chevron 1 Diamond) and are probable in light of regional geologic evidence. Given geologic context provided by regional seismic reflection data, we interpret these inverse models to reveal a Late Cretaceous episode of cyclical burial and erosion across the central Chukchi shelf, possibly partially overprinted by Cenozoic cooling related to decreasing surface temperatures. Regionally, we interpret this kinematic history to be reflective of moderate, transpressional deformation of the Chukchi shelf during the final phases of contractional tectonism in the

  2. Chasing the Origin of Viruses: Capsid-Forming Genes as a Life-Saving Preadaptation within a Community of Early Replicators.

    PubMed

    Jalasvuori, Matti; Mattila, Sari; Hoikkala, Ville

    2015-01-01

    Virus capsids mediate the transfer of viral genetic information from one cell to another, thus the origin of the first viruses arguably coincides with the origin of the viral capsid. Capsid genes are evolutionarily ancient and their emergence potentially predated even the origin of first free-living cells. But does the origin of the capsid coincide with the origin of viruses, or is it possible that capsid-like functionalities emerged before the appearance of true viral entities? We set to investigate this question by using a computational simulator comprising primitive replicators and replication parasites within a compartment matrix. We observe that systems with no horizontal gene transfer between compartments collapse due to the rapidly emerging replication parasites. However, introduction of capsid-like genes that induce the movement of randomly selected genes from one compartment to another rescues life by providing the non-parasitic replicators a mean to escape their current compartments before the emergence of replication parasites. Capsid-forming genes can mediate the establishment of a stable meta-population where parasites cause only local tragedies but cannot overtake the whole community. The long-term survival of replicators is dependent on the frequency of horizontal transfer events, as systems with either too much or too little genetic exchange are doomed to succumb to replication-parasites. This study provides a possible scenario for explaining the origin of viral capsids before the emergence of genuine viruses: in the absence of other means of horizontal gene transfer between compartments, evolution of capsid-like functionalities may have been necessary for early life to prevail.

  3. High GUD Incidence in the Early 20th Century Created a Particularly Permissive Time Window for the Origin and Initial Spread of Epidemic HIV Strains

    PubMed Central

    de Sousa, João Dinis; Müller, Viktor; Lemey, Philippe; Vandamme, Anne-Mieke

    2010-01-01

    The processes that permitted a few SIV strains to emerge epidemically as HIV groups remain elusive. Paradigmatic theories propose factors that may have facilitated adaptation to the human host (e.g., unsafe injections), none of which provide a coherent explanation for the timing, geographical origin, and scarcity of epidemic HIV strains. Our updated molecular clock analyses established relatively narrow time intervals (roughly 1880–1940) for major SIV transfers to humans. Factors that could favor HIV emergence in this time frame may have been genital ulcer disease (GUD), resulting in high HIV-1 transmissibility (4–43%), largely exceeding parenteral transmissibility; lack of male circumcision increasing male HIV infection risk; and gender-skewed city growth increasing sexual promiscuity. We surveyed colonial medical literature reporting incidences of GUD for the relevant regions, concentrating on cities, suffering less reporting biases than rural areas. Coinciding in time with the origin of the major HIV groups, colonial cities showed intense GUD outbreaks with incidences 1.5–2.5 orders of magnitude higher than in mid 20th century. We surveyed ethnographic literature, and concluded that male circumcision frequencies were lower in early 20th century than nowadays, with low rates correlating spatially with the emergence of HIV groups. We developed computer simulations to model the early spread of HIV-1 group M in Kinshasa before, during and after the estimated origin of the virus, using parameters derived from the colonial literature. These confirmed that the early 20th century was particularly permissive for the emergence of HIV by heterosexual transmission. The strongest potential facilitating factor was high GUD levels. Remarkably, the direct effects of city population size and circumcision frequency seemed relatively small. Our results suggest that intense GUD in promiscuous urban communities was the main factor driving HIV emergence. Low circumcision rates

  4. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate?

    PubMed Central

    Koonin, Eugene V

    2006-01-01

    Background Ever since the discovery of 'genes in pieces' and mRNA splicing in eukaryotes, origin and evolution of spliceosomal introns have been considered within the conceptual framework of the 'introns early' versus 'introns late' debate. The 'introns early' hypothesis, which is closely linked to the so-called exon theory of gene evolution, posits that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. Under this scenario, the absence of spliceosomal introns in prokaryotes is considered to be a result of "genome streamlining". The 'introns late' hypothesis counters that spliceosomal introns emerged only in eukaryotes, and moreover, have been inserted into protein-coding genes continuously throughout the evolution of eukaryotes. Beyond the formal dilemma, the more substantial side of this debate has to do with possible roles of introns in the evolution of eukaryotes. Results I argue that several lines of evidence now suggest a coherent solution to the introns-early versus introns-late debate, and the emerging picture of intron evolution integrates aspects of both views although, formally, there seems to be no support for the original version of introns-early. Firstly, there is growing evidence that spliceosomal introns evolved from group II self-splicing introns which are present, usually, in small numbers, in many bacteria, and probably, moved into the evolving eukaryotic genome from the α-proteobacterial progenitor of the mitochondria. Secondly, the concept of a primordial pool of 'virus-like' genetic elements implies that self-splicing introns are among the most ancient genetic entities. Thirdly, reconstructions of the ancestral state of eukaryotic genes suggest that the last common ancestor of extant eukaryotes had an intron-rich genome. Thus, it appears that

  5. Modes, tempo and spatial variability of Cenozoic cratonic denudation: morphoclimatic constraints from West Africa

    NASA Astrophysics Data System (ADS)

    Beauvais, Anicet; Chardon, Dominique

    2010-05-01

    After the onset of Gondwana break-up in the Early Mesozoic, the emerged part of the African plate underwent long Greenhouse effect climatic periods and epeirogeny. The last Greenhouse effect period in the Early Cenozoic and the alternation of wet and dry climatic periods since the Eocene enhanced episodes of rock chemical weathering and laterite production, forming bauxites and ferricretes, interrupted by drier periods of dominantly mechanical denudation, shaping glacis [1]. In Sub-Saharan West Africa, this evolution resulted in pulsate and essentially climatically-forced denudation that has shaped an ubiquitous sequence of five stepped lateritic paleosurfaces that synchronously developed over Cenozoic times. The modes, timing and spatial variability of continental denudation of the region are investigated by combining geomorphologic and geochronological data sets. The geomorphologic data set comprises the altitudinal distribution of the lateritic paleosurfaces relicts and their differential elevation from 42 locations in Sub-Saharan West Africa where the sequence (or part of it) has been documented. The geochronological data set consists in the age ranges of each paleosurface tackled by radiometric 39Ar-40Ar dating of the neoformed oxy-hydroxides (i.e., cryptomelane, K1-2Mn8O16, nH2O, [4]) carried by their laterites at the Tambao reference site, Burkina Faso [1, 3]. Five groups of 39Ar-40Ar ages, ~ 59 - 45 Ma, ~ 29 - 24 Ma, ~ 18 - 11.5 Ma, ~ 7.2 - 5.8 Ma, and ~ 3.4 - 2.9 Ma, characterize periods of chemical weathering whereas the time laps between these groups of ages correspond to episodes of mechanical denudation that reflect physical shaping of the paleosurfaces. For the last 45 Ma, the denudation rate estimates (3 to 8 m Ma-1) are comparable with those derived on shorter time scale (103 to 106 y.) in the same region by the cosmogenic radionuclide method [2]. Combined with the geomorphologic data set, these age ranges allow the visualization of the regional

  6. Earliest and first Northern Hemispheric hoatzin fossils substantiate Old World origin of a "Neotropic endemic".

    PubMed

    Mayr, Gerald; De Pietri, Vanesa L

    2014-02-01

    The recent identification of hoatzins (Opisthocomiformes) in the Miocene of Africa showed part of the evolution of these birds, which are now only found in South America, to have taken place outside the Neotropic region. Here, we describe a new fossil species from the late Eocene of France, which constitutes the earliest fossil record of hoatzins and the first one from the Northern Hemisphere. Protoazin parisiensis gen. et sp. nov. is more closely related to South American Opisthocomiformes than the African taxon Namibiavis and substantiates an Old World origin of hoatzins, as well as a relictual distribution of the single extant species. Although recognition of hoatzins in Europe may challenge their presumed transatlantic dispersal, there are still no North American fossils in support of an alternative, Northern Hemispheric, dispersal route. In addition to Opisthocomiformes, other avian taxa are known from the Cenozoic of Europe, the extant representatives of which are only found in South America. Recognition of hoatzins in the early Cenozoic of Europe is of particular significance because Opisthocomiformes have a fossil record in sub-Saharan Africa, which supports the hypothesis that extinction of at least some of these "South American" groups outside the Neotropic region was not primarily due to climatic factors.

  7. Constraints on Early Mars Evolution and Dichotomy Origin from Relaxation Modeling of Dichotomy Boundary in the Ismenius Region

    NASA Technical Reports Server (NTRS)

    Guest, A.; Smrekar, S. E.

    2004-01-01

    The Martian dichotomy is a global feature separating the northern and southern hemispheres. The 3.5 - 4 Gyr old feature is manifested by a topographic difference of 2-6 km and crustal thickness difference of approx. 15 - 30 km between the two hemispheres. In the Ismenius region, sections of the boundary are characterized by a single scarp with a slope of approx. 20 deg. - 23 deg. and are believed to be among the most well preserved parts of the dichotomy boundary. The origin of the dichotomy is unknown. Endogenic hypotheses do not predict the steep slopes (scarps) of the dichotomy boundary. Exogenic models for forming the northern lowlands by impact cratering, associate the scarps along the dichotomy boundary with craters' rims, but are not globally consistent with the topography and gravity. In order to better understand the origin of the Martian dichotomy, it is necessary to know if the steep scarps along the boundary represent the original shape of the dichotomy. Smrekar et al. presented evidence showing that the boundary scarp in Ismenius is a fault along which the highland crust was down faulted. We test whether the relaxation process could produce faulting along the dichotomy boundary and examine the crustal and mantle conditions that would allow for faulting to occur within 1 Gyr and preserve the long wavelength topography over another 3 Gyr. We approach the problem by a combination of numerical and semi-analytical modeling. We test different viscosity profiles and crustal thicknesses by comparing our modeled magnitude, location and timing of plastic strain and displacements to detailed geologic observations in the Ismenius region.

  8. Placental development during early pregnancy in sheep: effects of embryo origin on fetal and placental growth and global methylation.

    PubMed

    Grazul-Bilska, Anna T; Johnson, Mary Lynn; Borowicz, Pawel P; Baranko, Loren; Redmer, Dale A; Reynolds, Lawrence P

    2013-01-01

    The origin of embryos including those created through assisted reproductive technologies might have profound effects on placental and fetal development, possibly leading to compromised pregnancies associated with poor placental development. To determine the effects of embryo origin on fetal size, and maternal and fetal placental cellular proliferation and global methylation, pregnancies were achieved through natural mating (NAT), or transfer of embryos generated through in vivo (NAT-ET), IVF, or in vitro activation (IVA). On Day 22 of pregnancy, fetuses were measured and placental tissues were collected to immunologically detect Ki67 (a marker of proliferating cells) and 5-methyl cytosine followed by image analysis, and determine mRNA expression for three DNA methyltransferases. Fetal length and labeling index (proportion of proliferating cells) in maternal caruncles (maternal placenta) and fetal membranes (fetal placenta) were less (P < 0.001) in NAT-ET, IVF, and IVA than in NAT. In fetal membranes, expression of 5-methyl cytosine was greater (P < 0.02) in IVF and IVA than in NAT. In maternal caruncles, mRNA expression for DNMT1 was greater (P < 0.01) in IVA compared with the other groups, but DNMT3A expression was less (P < 0.04) in NAT-ET and IVA than in NAT. In fetal membranes, expression of mRNA for DNMT3A was greater (P < 0.01) in IVA compared with the other groups, and was similar in NAT, NAT-ET, and IVF groups. Thus, embryo origin might have specific effects on growth and function of ovine uteroplacental and fetal tissues through regulation of tissue growth, DNA methylation, and likely other mechanisms. These data provide a foundation for determining expression of specific factors regulating placental and fetal tissue growth and function in normal and compromised pregnancies, including those achieved with assisted reproductive technologies.

  9. Cenozoic structural evolution and tectono-stratigraphic framework of the northern Gulf Coast continental margin

    SciTech Connect

    Diegel, F.A.; Karlo, J.F.; Shoup, R.C.; Schuster, D.C.

    1996-12-31

    The Cenozoic structural evolution of the northern Gulf of Mexico Basin is controlled by progradation over deforming, largely allochthonous salt structures derived from an underlying autochthonous Jurassic salt. The wide variety of structural styles is due to a combination of (1) original distribution of Jurassic and Mesozoic salt structures, (2) different slope depositional environments during the Cenozoic, and (3) varying degrees of salt withdrawal from allochthonous salt sheets. Tectono-stratigraphic provinces describe regions of contrasting structural styles and ages. Provinces include (1) a contractional foldbelt province, (2) a tabular salt-minibasin-province, (3) a Pliocene-Pleistocene detachment province, (4) a salt dome-minibasin province, (5) an Oligocene-Miocene detachment province, (6) a lower Oligocene Vicksburg detachment province, (7) an upper Eocene detachment province, and (8) the Wilcox growth fault province of Paleocene-Eocene age. Within several tectono-stratigraphic provinces, shale-based detachment systems, dominated by lateral extension, and allochthonous salt-based detachment systems, dominated by subsidence, can be distinguished by geometry, palinspastic reconstructions, and subsidence analysis. Many shale-based detachments are linked downdip to deeper salt-based detachments. Large extensions above detachments are typically balanced by salt withdrawal. Salt-withdrawal minibasins with flanking salt bodies occur as both isolated structural systems and components of salt-based detachment systems. During progradation, progressive salt withdrawal from tabular salt bodies on the slope formed salt-bounded minibasins which, on the shelf, evolved into minibasins bounded by arcuate growth faults and remnant salt bodies. Associated secondary salt bodies above allochthonous salt evolved from pillows, ridges, and massifs to leaning domes and steep-sided stocks.

  10. Placental development during early pregnancy: Effects of embryo origin on expression of chemokine ligand twelve (CXCL12).

    PubMed

    Quinn, K E; Reynolds, L P; Grazul-Bilska, A T; Borowicz, P P; Ashley, R L

    2016-07-01

    The aim was to localize chemokine ligand twelve (CXCL12) in sheep placental tissues during early gestation and after assisted reproductive technologies (ART). Uteri were collected from naturally (NAT) mated ewes and ewes receiving embryo transfer (ET), in vitro fertilization (IVF) or in vitro activation (IVA). CXCL12 was immunolocalized to endometrial stroma, glands, and trophoblast. Greater CXCL12 immunoreactivity was present in trophoblast on day 22 and 24 and in NAT ewes compared to IVF and IVA. Increased CXCL12 expression suggests CXCL12 promotes implantation and placentation. Decreased CXCL12 in IVF and IVA embryos, may compromise pregnancy establishment when utilizing ART methods.

  11. Tectonic implications of space-time patterns of Cenozoic magmatism in the western United States

    USGS Publications Warehouse

    Snyder, W.S.; Dickinson, W.R.; Silberman, M.L.

    1976-01-01

    Locations of 2,100 radiometrically dated igneous rocks were plotted on a series of 20 maps, each representing an interval within the period 80 m.y. B.P. to present. Derivative maps showing the distributions in space and time of dated granitic intrusive rocks, silicic lavas and domes, ash-flow tuffs, andesitic-dacitic rocks, and basalts depict well the two main petrogenetic assemblages noted previously by others: (1) mainly intermediate andesitic-dacitic suites, including associated granitic intrusive rocks, silicic extrusive rocks, and minor basaltic lavas, are interpreted as reflecting plate interactions related to subduction along the continental margin; and (2) bimodal suites, dominantly basaltic but with minor silicic extrusive rocks, are interpreted as reflecting extensional tectonics. Space-time distribution of the two assemblages suggests that magmatic arcs extended continously parallel to the continental margin from Canada to Mexico in latest Mesozoic and in Oligocene times. An early Cenozoic null in magmatism in the Great Basin may delineate the region where subduction was arrested temporarily by development of the proto-San Andreas fault as a transform in coastal California or, alternatively, may reflect complex subsurface configurations of subducted plates. The late Cenozoic transition from subduction-related magmatism to extention-related basaltic volcanism in the southern Cordillera occurred at different times in different areas in harmony with current concepts about the migration of the Mendocino triple junction as the modern San Andreas transform fault was formed. The plots also reveal the existence of several discrete magmatic loci where igneous activity of various kinds was characteristically more intense and long-lived than elsewhere. ?? 1976.

  12. Late Cenozoic genus Fupingopollenites development and its implications for the Asian summer monsoon (ASM) evolution

    NASA Astrophysics Data System (ADS)

    Miao, Y.; Song, C.; Fang, X.; Meng, Q.; Zhang, P.; Wu, F.; Yan, X.

    2015-12-01

    An extinct palynomorph, Fupingopollenites, was used as the basis for a discussion of the late Cenozoic Asian summer monsoon (ASM) evolution and its possible driving forces. Based on the spatial and temporal variations in its percentages across Inner and East Asia, we found that Fupingopollenites mainly occurred in East Asia, with boundaries to the NE of ca. 42°N, 135°E and NW of ca. 36°N, 103°E during the Early Miocene (ca. 23-17 Ma). This region enlarged westwards, reaching the eastern Qaidam Basin (ca. 36°N, 97.5°E) during the Middle Miocene (ca. 17-11 Ma), before noticeably retreating to a region bounded to the NW at ca. 33°N, 105°E during ca. 11-5.3 Ma. The region then shrank further in the Pliocene, with the NE boundary shrinking southwards to about 35°N, 120°E; the area then almost disappeared during the Pleistocene (2.6-0 Ma). The flourishing and subsequent extinction of Fupingopollenites is indicative of a narrow ecological amplitude with a critical dependence on habitat humidity and temperature (most likely mean annual precipitation (MAP) >1000 mm and mean annual temperature (MAT) >10°C). Therefore, the Fupingopollenites geographic distribution can indicate the humid ASM evolution during the late Cenozoic, revealing that the strongest ASM period occurred during the Middle Miocene Climate Optimum (MMCO, ~17-14 Ma), after which the ASM weakened coincident with global cooling. We argue that the global cooling played a critical role in the ASM evolution, while the Tibetan Plateau uplifts made a relatively small contribution. This result was supported by a Miocene pollen record at the Qaidam Basin, inner Asia and the contemporaneously compiled pollen records across the Eurasia.

  13. Cenozoic magmatism in the northern continental margin of the South China Sea: evidence from seismic profiles

    NASA Astrophysics Data System (ADS)

    Zhang, Qiao; Wu, Shiguo; Dong, Dongdong

    2016-06-01

    Igneous rocks in the northern margin of the South China Sea (SCS) have been identified via high resolution multi-channel seismic data in addition to other geophysical and drilling well data. This study identified intrusive and extrusive structures including seamounts and buried volcanoes, and their seismic characteristics. Intrusive features consist of piercement and implicit-piercement type structures, indicating different energy input associated with diapir formation. Extrusive structures are divided into flat-topped and conical-topped seamounts. Three main criteria (the overlying strata, the contact relationship and sills) were used to distinguish between intrusive rocks and buried volcanos. Three criteria are also used to estimate the timing of igneous rock formation: the contact relationship, the overlying sedimentary thickness and seismic reflection characteristics. These criteria are applied to recognize and distinguish between three periods of Cenozoic magmatism in the northern margin of the SCS: before seafloor spreading (Paleocene and Eocene), during seafloor spreading (Early Oligocene-Mid Miocene) and after cessation of seafloor spreading (Mid Miocene-Recent). Among them, greater attention is given to the extensive magmatism since 5.5 Ma, which is present throughout nearly all of the study area, making it a significant event in the SCS. Almost all of the Cenozoic igneous rocks were located below the 1500 m bathymetric contour. In contrast with the wide distribution of igneous rocks in the volcanic rifted margin, igneous rocks in the syn-rift stage of the northern margin of the SCS are extremely sporadic, and they could only be found in the southern Pearl River Mouth basin and NW sub-sea basin. The ocean-continent transition of the northern SCS exhibits high-angle listric faults, concentrated on the seaward side of the magmatic zone, and a sharply decreased crust, with little influence from a mantle plume. These observations provide further evidence to

  14. Detection of Viral Citrullinated Peptide Antibodies Directed Against EBV or VCP: In Early Rheumatoid Arthritis Patients of Indian Origin

    PubMed Central

    Deo, Sudha S; Shetty, Rashmi R; Mistry, Kejal J; Chogle, Arun R

    2010-01-01

    Aim: Study was undertaken to analyze the frequency of anti-viral citrullinated peptide (anti-VCP) antibodies in sera from patients with early rheumatoid arthritis (ERA). Materials and Methods: Viral citrullinated peptide (VCP) and Epstein-Barr nuclear antigen (EBNA-1) peptide were commercially prepared and antibodies to these were determined in 25 patients of ERA, 40 disease control patients constituting 25 rheumatoid arthritis (RA), 7 systemic lupus erythematosus (SLE), 2 scleroderma, 1 spondyloarthritis (SpA), 1 juvenile rheumatoid arthritis (JRA), 1 osteoarthritis (OA), 1 psoriatic arthritis (PsA), 1 undifferentiated arthritis (UA), and 1 gout and 25 healthy controls (HCs) were taken for comparison. In-house ELISA was established for both the antibodies while cyclic citrullinated peptide (CCP) antibody was detected by commercial ELISA kit. Results: Significant increase in VCP antibody by ERA and disease controls than healthy normal was observed. VCP IgM antibody was significantly increased in RA patients than HC. The presence of VCP antibody signifies a good marker for ERA. We observed significant difference in the VCP IgG and IgM antibody when compared to EBNA-1. In-house ELISA established for EBNA-1 and VCP antibodies showed low sensitivity but 96% specificity. Conclusions: We observed that sera from early RA patients reacted to the deiminated protein encoded by Epstain Barr Virus (EBV). Thus a possible role of virus in inducing an anti-citrullinated peptide antibody (ACPA) response reveals viral etiology in this disease. PMID:21346905

  15. Earliest known unequivocal rhinocerotoid sheds new light on the origin of Giant Rhinos and phylogeny of early rhinocerotoids

    PubMed Central

    Wang, Haibing; Bai, Bin; Meng, Jin; Wang, Yuanqing

    2016-01-01

    Forstercooperiines are a group of primitive rhinocerotoids with a relatively large body size in the Eocene, and normally considered to be closely related to Giant Rhinos. Here we report a new forstercooperiine, Pappaceras meiomenus sp. nov., from the late Early Eocene Arshanto Formation, Erlian Basin, Nei Mongol, China. Pappaceras is the earliest known unequivocal rhinocerotoid, and the holotype of the new species, represented by the most complete cranium of forstercooperiines known to date, shows the earliest evidence of reduction of the first upper premolar in rhinocerotoids, and resembles paraceratheriine Juxia in basicranial features, supporting the interpretation that the forstercooperiine clade is ancestral to paraceratheriines. The new species also displays some similarities with amynodontids in craniodental structures. Phylogenetic analysis identifies P. meiomenus as a basal taxon of the monophyletic forstercooperiines. It also reveals novel phylogenetic relationships of early rhinocerotoids that indicates Uintaceras is the sister group of paraceratheriids, to which amynodontids are more closely related than to any other group of rhinocerotoids. Furthermore, the eggysodontid clade is excluded from hyracodontids and placed as the sister group of rhinocerotids. Hyracodontidae, excluding paraceratheriids and eggysodontids, is placed as the most basal group of the rhinocerotoids. PMID:28000789

  16. Late Cretaceous - Cenozoic development of outer continental margin, southwestern Nova Scotia

    SciTech Connect

    Swift, S.A.

    1987-06-01

    The growth pattern for the outer continental margin of Nova Scotia during the Late Cretaceous and Cenozoic was studied using seismic stratigraphy and well data. Sediment accumulation was broadly controlled by temporal changes in relative sea level, but significant spatial and temporal changes in accumulation patterns were caused by changes in sediment supply rate, morphology, erosion by abyssal currents, and salt tectonics. A Jurassic-Early Cretaceous carbonate platform remained exposed until the Late Cretaceous and controlled the location and steepness of the paleoslope until the late Miocene. Local erosion of the outer shelf and slope in the late Paleocene-early Eocene produced chalky fans on the upper rise. The relationship between erosion of the shelf in the late Eocene and early Oligocene, and abyssal current erosion of the upper rise in the Oligocene, is unclear. Seaward extensions of Tertiary shelf-edge canyons are poorly defined except for the Eocene fans. In the Miocene, abyssal currents eroded a bench on the upper continental rise. Subsequently, sediments lapped onto and buried the paleoslope. The lower rise above horizon A/sup u/ (Oligocene) is composed of fans and olistostromes shed from halokinetic uplift of the upper rise. Current eroded unconformities are common in the rise sequence, but the only current deposit is a Pliocene interval (< 300 m) restricted to the lowermost rise. Pleistocene turbidity currents eroded the present canyon morphology. 15 figures, 2 tables.

  17. Jurassic extension and Cenozoic inversion tectonics in the Asturian Basin, NW Iberian Peninsula: 3D structural model and kinematic evolution

    NASA Astrophysics Data System (ADS)

    Uzkeda, Hodei; Bulnes, Mayte; Poblet, Josep; García-Ramos, José Carlos; Piñuela, Laura

    2016-09-01

    We constructed a geological map, a 3D model and cross-sections, carried out a structural analysis, determined the stress fields and tectonic transport vectors, restored a cross section and performed a subsidence analysis to unravel the kinematic evolution of the NE emerged portion of the Asturian Basin (NW Iberian Peninsula), where Jurassic rocks crop out. The major folds run NW-SE, normal faults exhibit three dominant orientations: NW-SE, NE-SW and E-W, and thrusts display E-W strikes. After Upper Triassic-Lower Jurassic thermal subsidence, Middle Jurassic doming occurred, accompanied by normal faulting, high heat flow and basin uplift, followed by Upper Jurassic high-rate basin subsidence. Another extensional event, possibly during Late Jurassic-Early Cretaceous, caused an increment in the normal faults displacement. A contractional event, probably of Cenozoic age, led to selective and irregularly distributed buttressing and fault reactivation as reverse or strike-slip faults, and folding and/or offset of some previous faults by new generation folds and thrusts. The Middle Jurassic event could be a precursor of the Bay of Biscay and North Atlantic opening that occurred from Late Jurassic to Early Cretaceous, whereas the Cenozoic event would be responsible for the Pyrenean and Cantabrian ranges and the partial closure of the Bay of Biscay.

  18. Cenozoic evolution of Qaidam basin controlled by the transition of two epochs basin-forming dynamics systems in the northern Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Guan, Shuwei; Zhang, Shuichang; Ma, Dade; Wang, Liqun; Wang, LiangShu; Yu, Xiangjiang

    2015-04-01

    Cenozoic basin-froming dynamics of Qaidam basin, in which Cenozoic occupies more than 90% of sediments, has been an open question. Transversal wave velocity structure of Qaidam basin and its nearby region imaged from ambient noise and earthquake data reveal the low velocity layer uplifting from south to north in middle crust, under which the lower crust and upper mantle lithosphere are obviously deflected toward the eastern Kunlun orogenic belt in the south and Qilian orogenic belt in the north. These deformation features in lithosphere reflect that the deep dynamics process of Qaidam basin is similar with the type foreland basin. But Cenozoic Qaidam basin is located in a narrow and semi-closed tectonic environment, structural displacement from the southwest Qaidam has achieved, even exceeded, the north-south width of basin, which disabled the development of stable craton and wedge deposition form of a typical foreland basin. Our basin-scale AMS study in seven locations of Qaidam basin reveal that the palaeo-stress orientation of middle to late Eocene Xiaganchaigou Formation is N-S direction, while that of early to middle Miocene Xiayoushashan Formation is NE-SW direction. Moreover, the early N-S compression is more intense in the northern Qaidam basin than that in the western Qaidam basin, while the late NE-SW compression, which dominates the modern NW-SE trending fold axial traces, is more intense in the southwestern Qaidam basin than that in the northern Qaidam basin. So we infer that Cenozoic structural deformation of Qaidam basin maybe dominated by two epochs basin-forming dynamics systems. The transition of these two epochs systems also dominated the Cenozoic basin evolution pattern from open state to closed state. The kinematic properties and pattern of late basin-forming dynamics system with NE-SW compression since Miocene can also be verified from the distinctive topography in southwestern Qaidam basin, where there are a series of arched mountains between

  19. Early Archean Spherule Beds: Chromium Isotopes Confirm Origin through Multiple Impacts of Projectiles of Carbonaceous Chondrite Type: Comment and Reply

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2003-01-01

    This is a exchange in the form of a comment and a reply in regards to an earlier article. The authors of the original article, consider it likely that virtually all of the projectile will condense with the silicate fraction, resulting in very little platinum group element fractionation in the final ejecta deposit. Further, we find no evidence in the commentator's, (i.e., Glikson), comment to support vapor fractionation. We note that the Pd/Ir ratios of published data on 2.56 Ga Hamersley Basin spherules are all greater than in chondrites, contrary to the assertion by Glikson. This is consistent with relatively high Pd concentrations (and Pd/Ir ratios) in crustal rocks.

  20. Early and Late Diagenetic Origins of the widespread middle Devonian Purcell/Cherry Valley Limestone in the Appalachian Basin

    NASA Astrophysics Data System (ADS)

    Wang, J.; Arthur, M. A.

    2013-12-01

    Isotopic geochemistry, lithofacies characteristics and fluid inclusion microthemometry are investigated to evaluate the deposition and diagenesis of the thin, basin-wide Purcell/Cherry Valley carbonate member within the Middle Devonian Marcellus Formation. This carbonate interval is fine-grained and sparsely fossiliferous, with abundant nodular and disseminated pyrite, which distinguish it from normal lowstand carbonate units. A process that involves upward or lateral migration of methane with oxidation at or near the seafloor by sulfate-reduction, precipitating pyrite and 13C-depleted carbonate (commonly less than -10‰) could be responsible for the origin of this unusual carbonate layer. Samples of Purcell/Cherry Valley carbonate within Marcellus black shale collected from both shallow well core from the basin margin and core from producing wells in the basin center exhibit depleted carbon isotopic (δ13C=-10.2 to -2‰) and highly depleted oxygen isotopic signatures (δ18O=-13.2 to -8.7‰). The oxygen isotope values may indicate strong late diagenetic overprint. Primary fluid inclusions in calcite precipitates within tectonically induced fractures in this carbonate member mainly consist of three different types: aqueous brine inclusions, methane inclusions and light hydrocarbon inclusions. The petrologic analysis of fluid inclusions shows that hydrocarbons migrated with the brine. The homogenization temperatures of fluid inclusions suggest mineral trapping occurred at fluid temperatures of 90-98°C. Moreover, with constrains of isotopic composition of Devonian oilfield brine (δ18O =+2 to -3‰) and veins (δ18O=-12 to -11‰, δ13C=-3.0 to 1‰), the calculated diagenetic temperature should also be relatively high (~ 100°C). Lithofacies characteristics, isotopic compositions and fluid inclusion microthermometries are all consistent with the conclusion that this carbonate member partially originated from methane oxidation and then underwent a high degree of

  1. Early Archean Spherule Beds: Chromium Isotopes Confirm Origin Through Multiple Impacts of Projectiles of Carbonaceous Chondrite Type

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.; Shukolyukov, Alex; Lugmair, Guenter W.; Lowe, Donald R.; Byerly, Gary R.

    2003-01-01

    Three Early Archean spherule beds from Barberton, South Africa, have anomalous Cr isotope compositions in addition to large Ir anomalies, confirming the presence of meteoritic material with a composition similar to that in carbonaceous chondrites. The extra-terrestrial components in beds S2, S3, and S4 are estimated to be approx. l%, 50% - 60%, and 15% - 30%, respectively. These beds are probably the distal, and possibly global, ejecta from major large-body impacts. These impacts were probably much larger than the Cretaceous-Tertiary event, and all occurred over an interval of approx. 20 m.y., implying an impactor flux at 3.2 Ga that was more than an order of magnitude greater than the present flux.

  2. Late Silurian-Early Devonian transpressional rift origin of the Quebec Reentrant, northern Appalachians: Constraints from geochemistry of volcanic rocks

    NASA Astrophysics Data System (ADS)

    Keppie, J. Duncan; Dostal, J.

    1994-10-01

    Silurian-Devonian rocks in the northwestern mainland Appalachians form part of an overstep sequence deposited across the vestiges of Iapetus after the collision of Laurentia and Gondwana. They occur in three synclinoria (Gaspé-Connecticut Valley, Merrimack-Aroostook, and Fredericton synclinoria), separated by two anticlinoria (Munsungun-Pennington-Boundary Mountain-Bronson Hill and Miramichi). Silurian rocks in Gaspé-Connecticut Valley and Merrimack-Aroostook synclinoria consist of shelf and trough sediments derived mainly from Laurentia to the northwest, with some local contributions from an ephemeral landmass (Appalachia) and from the Miramichi Highlands, hi contrast, Early Devonian rocks in all three synclinoria are mainly flysch derived from the southeast in Avalonia. Interbedded volcanic rocks are predominantly Late Silurian-Early Devonian in age. They are generally bimodal with the mafic rocks exhibiting a change from transitional alkalic-tholeiitic to tholeiitic around the Siluro-Devonian boundary, broadly coincident with the Salinic disturbance in the Gaspe Peninsula. The geochemical characteristics of the basalts indicate that they were erupted in a continental intraplate environment with melting migrating upward through time across the garnet to spinel phase boundary as stretching increased. Thermal uplift during rifting is inferred to have led to erosion associated with the Salinic disturbance. The start of the volcanism appears to coincide with a switch from sinistral to dextral transpression along the orogen that may be related to the change from clockwise to anticlockwise rotation of Laurentia relative to Gondwana. The effects of dextral transpression vary with the trend of the orogen; intense deformation and metamorphism occurred in the Central Mobile belt opposite the New York and St. Lawrence promontories, whereas rifting developed in the Quebec Reentrant, leading to thinning of the crust, up-welling of the asthenosphere, melting, and magmatism.

  3. A Cenozoic tectonic model for Southeast Asia - microplates and basins

    SciTech Connect

    Maher, K.A.

    1995-04-01

    A computer-assisted Cenozoic tectonic model was built for Southeast Asia and used to construct 23 base maps, 2 to 6 million years apart. This close temporal spacing was necessary to constrain all the local geometric shifts in a consistent and geologically feasible fashion. More than a hundred individual blocks were required to adequately treat Cenozoic microplate processes at a basic level. The reconstructions show tectonic evolution to be characterized by long periods of gradual evolution, interrupted by brief, widespread episodes of reorganization in fundamental plate geometries and kinematics. These episodes are triggered by major collisions, or by accumulation of smaller changes. The model takes into account difficulties inherent in the region. The Pacific and Indo-Australian plates and their predecessors have driven westward and northward since the late Paleozoic, towards each other and the relatively stationary backstop of Asia. Southeast Asia is therefore the result of a long-lived, complex process of convergent tectonics, making it difficult to reconstruct tectonic evolution as much of the continental margin and sea floor spreading record was erased. In addition, the region has been dominated by small-scale microplate processes with short time scales and internal deformation, taking place in rapidly evolving and more ductile buffer zones between the major rigid plate systems. These plate interaction zones have taken up much of the relative motion between the major plates. Relatively ephemeral crustal blocks appear and die within the buffer zones, or accrete to and disperse from the margins of the major plate systems. However, such microplate evolution is the dominant factor in Cenozoic basin evolution. This detailed testonic model aids in comprehension and prediction of basin development, regional hydrocarbon habitat, and petroleum systems.

  4. Dynamic topography and the Cenozoic carbonate compensation depth

    NASA Astrophysics Data System (ADS)

    Campbell, S. M.; Moucha, R.; Raymo, M. E.; Derry, L. A.

    2015-12-01

    The carbonate compensation depth (CCD), the ocean depth at which the calcium carbonate accumulation rate goes to zero, can provide valuable insight into climatic and weathering conditions over the Cenozoic. The paleoposition of the CCD can be inferred from sediment core data. As the carbonate accumulation rate decreases linearly with depth between the lysocline and CCD, the CCD can be calculated using a linear regression on multiple sediment cores with known carbonate accumulation rates and paleodepths. It is therefore vital to have well-constrained estimates of paleodepths. Paleodepths are typically calculated using models of thermal subsidence and sediment loading and compaction. However, viscous convection-related stresses in the mantle can warp the ocean floor by hundreds of meters over broad regions and can also vary significantly over millions of years. This contribution to paleobathymetry, termed dynamic topography, can be calculated by modeling mantle flow backwards in time. Herein, we demonstrate the effect dynamic topography has on the inference of the late Cenozoic CCD with an example from the equatorial Pacific, considering sites from IODP Expeditions 320/321. The equatorial Pacific, given its large size and high productivity, is closely tied to the global carbon cycle. Accordingly, long-term changes in the equatorial Pacific CCD can be considered to reflect global changes in weathering fluxes and the carbon cycle, in addition to more regional changes in productivity and thermohaline circulation. We find that, when the dynamic topography contribution to bathymetry is accounted for, the equatorial Pacific CCD is calculated to be appreciably shallower at 30 Ma than previous estimates would suggest, implying a greater deepening of the Pacific CCD over the late Cenozoic.

  5. Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): An overview

    NASA Astrophysics Data System (ADS)

    de Lamotte, Dominique Frizon; Leturmy, Pascale; Missenard, Yves; Khomsi, Sami; Ruiz, Geoffrey; Saddiqi, Omar; Guillocheau, Francois; Michard, André

    2009-09-01

    The E-W trending Atlas System of Maghreb consists of weakly shortened, intra-continental fold belts associated with plateau areas ("Mesetas"), extending between the south-westernmost branch of the Mediterranean Alpine Belt (Rif-Tell) and the Sahara Platform. Although the Atlas system has been erected contemporaneously from Morocco to Algeria and Tunisia during the Middle Eocene to Recent, it displays a conspicuous longitudinal asymmetry, with i) Paleozoic outcrops restricted to its western part; ii) highest elevation occurring in the west, both in the Atlas System and its foreland (Anti-Atlas); iii) low elevation corridors (e.g. Hodna) and depressed foreland (Tunisian Chotts and Sahel area) in the east. We analyse the origin of these striking contrasts in relation with i) the Variscan heritage; ii) crustal vertical movements during the Mesozoic; iii) crustal shortening during the Cenozoic and finally, iv) the occurrence of a Miocene-Quaternary hot mantle anomaly in the west. The Maghreb lithosphere was affected by the Variscan orogeny, and thus thickened only in its western part. During the Late Permian-Triassic, a paleo-high formed in the west between the Central Atlantic and Alpine Tethys rift systems, giving birth to the emergent/poorly subsident West Moroccan Arch. During the late Middle Jurassic-Early Cretaceous, Morocco and western Algeria were dominantly emergent whereas rifting lasted on in eastern Algeria and Tunisia. We ascribe the uplift of the western regions to thermal doming, consistent with the Late Jurassic and Barremian gabbroic magmatism observed there. After the widespread transgression of the high stand Cenomanian-Turonian seas, the inversion of the Atlas System began during the Senonian as a consequence of the Africa-Eurasia convergence. Erosion affected three ENE-trending uplifted areas of NW Africa, which we consider as lithospheric anticlines related to the incipient Africa-Europe convergence. In contrast, in eastern Algeria and Tunisia a NW

  6. The Origin and Distribution of CD68, CD163 and αSMA Positive Cells in the Early Phase after Meniscal Resection in a Parabiotic Rat Model.

    PubMed

    Terai, Shozaburo; Hashimoto, Yusuke; Orita, Kumi; Yamasaki, Shinya; Takigami, Junsei; Shinkuma, Takafumi; Teraoka, Takanori; Nishida, Yohei; Takahashi, Masafumi; Nakamura, Hiroaki

    2017-02-06

    We previously reported that circulating peripheral blood-borne cells (PBCs) contribute to early-phase meniscal reparative change. Because macrophages and myofibroblasts are important contributors of tissue regeneration, we examined their origin and distribution in the reparative meniscus. Reparative menisci were evaluated at 1, 2, and 4 weeks post-meniscectomy by immunohistochemistry to locate monocytes and macrophages (stained positive for CD68 and CD163), and myofibroblasts (stained positive for αSMA). Of the total number of cells, 13% were CD68(+) at 1 week post-meniscectomy, which decreased to 1% by 4 weeks post-meniscectomy; of these, almost half of CD68(+) cells (49.4%: 98.8% as PBCs) were green fluorescent protein (GFP)-positive post-meniscectomy (1,2, and 4 weeks), indicating that the majority of CD68(+) cells were derived from PBCs. Of the total cells, 6% were CD163(+) at 1 week post-meniscectomy, which decreased to 1% by week 4. Of the CD163(+) cells, The majority were GFP-positive (42.5%: 85.0% as PBCs) after 1 week; however, this decreased significantly over time, which indicates that the majority of CD163(+) cells are derived from PBCs during the early phase of meniscal reparative change but are derived from resident cells at later time points. Of the total cells, 38% were αSMA(+) at 1 week post-meniscectomy, which decreased to 3% by 4 weeks. The proportion of GFP-positive αSMA(+) cells was 2.8% after 1 week, with no significant change over time, which indicates that the majority of αSMA(+) cells originated from resident cells. Here, we describe the origin and distribution of macrophages and myofibroblasts during meniscal reparative change.

  7. A New Sauropodomorph Dinosaur from the Early Jurassic of Patagonia and the Origin and Evolution of the Sauropod-type Sacrum

    PubMed Central

    Pol, Diego; Garrido, Alberto; Cerda, Ignacio A.

    2011-01-01

    Background The origin of sauropod dinosaurs is one of the major landmarks of dinosaur evolution but is still poorly understood. This drastic transformation involved major skeletal modifications, including a shift from the small and gracile condition of primitive sauropodomorphs to the gigantic and quadrupedal condition of sauropods. Recent findings in the Late Triassic–Early Jurassic of Gondwana provide critical evidence to understand the origin and early evolution of sauropods. Methodology/Principal Findings A new sauropodomorph dinosaur, Leonerasaurus taquetrensis gen. et sp. nov., is described from the Las Leoneras Formation of Central Patagonia (Argentina). The new taxon is diagnosed by the presence of anterior unserrated teeth with a low spoon-shaped crown, amphicoelous and acamerate vertebral centra, four sacral vertebrae, and humeral deltopectoral crest low and medially deflected along its distal half. The phylogenetic analysis depicts Leonerasaurus as one of the closest outgroups of Sauropoda, being the sister taxon of a clade of large bodied taxa composed of Melanorosaurus and Sauropoda. Conclusions/Significance The dental and postcranial anatomy of Leonerasaurus supports its close affinities with basal sauropods. Despite the small size and plesiomorphic skeletal anatomy of Leonerasaurus, the four vertebrae that compose its sacrum resemble that of the large-bodied primitive sauropods. This shows that the appearance of the sauropod-type of sacrum predated the marked increase in body size that characterizes the origins of sauropods, rejecting a causal explanation and evolutionary linkage between this sacral configuration and body size. Alternative phylogenetic placements of Leonerasaurus as a basal anchisaurian imply a convergent acquisition of the sauropod-type sacrum in the new small-bodied taxon, also rejecting an evolutionary dependence of sacral configuration and body size in sauropodomorphs. This and other recent discoveries are showing that the

  8. Application of benthic foraminiferal Mg/Ca ratios to questions of Cenozoic climate change

    NASA Astrophysics Data System (ADS)

    Billups, K.; Schrag, D. P.

    2003-04-01

    We investigate the evolution of Cenozoic climate and ice volume as evidenced by the oxygen isotopic composition of seawater (δ 18O sw) derived from benthic foraminiferal Mg/Ca ratios to constrain the temperature effect contained in foraminiferal δ 18O values. We have constructed two benthic foraminiferal Mg/Ca records from intermediate water depth sites (Ocean Drilling Program sites 757 and 689 from the subtropical Indian Ocean and the Weddell Sea, respectively). Together with the previously published composite record of Lear et al. [Science 287 (2002) 269-272] and the Neogene record from the Southern Ocean of Billups and Schrag [Paleoceanography 17 (2002) 10.1029/2000PA000567], we obtain three, almost complete representations of the δ 18O sw for the past 52 Myr. We discuss the sensitivity of early Cenozoic Mg/Ca-derived paleotemperatures (and hence the δ 18O sw) to assumptions about seawater Mg/Ca ratios. We find that during the middle Eocene (˜49-40 Ma), modern seawater ratios yield Mg/Ca-derived temperatures that are in good agreement with the oxygen isotope paleothermometer assuming ice-free conditions. Intermediate waters cooled during the middle Eocene reaching minimum temperatures by 40 Ma. The corresponding δ 18O sw reconstructions support ice growth on Antarctica beginning by at least 40 Ma. At the Eocene/Oligocene boundary, Mg/Ca ratios (and hence temperatures) from Weddell Sea site 689 display a well-defined maximum. We caution against a paleoclimatic significance of this result and put forth that the partitioning coefficient of Mg in benthic foraminifera may be sensitive to factors other than temperature. Throughout the remainder of the Cenozoic, the temporal variability among δ 18O sw records is similar and similar to longer-term trends in the benthic foraminiferal δ 18O record. An exception occurs during the Pliocene when δ 18O sw minima in two of the three records suggest reductions in global ice volume that are not apparent in foraminiferal

  9. Origin of the p-process radionuclides 92Nb and 146Sm in the early solar system and inferences on the birth of the Sun.

    PubMed

    Lugaro, Maria; Pignatari, Marco; Ott, Ulrich; Zuber, Kai; Travaglio, Claudia; Gyürky, György; Fülöp, Zsolt

    2016-01-26

    The abundances of (92)Nb and (146)Sm in the early solar system are determined from meteoritic analysis, and their stellar production is attributed to the p process. We investigate if their origin from thermonuclear supernovae deriving from the explosion of white dwarfs with mass above the Chandrasekhar limit is in agreement with the abundance of (53)Mn, another radionuclide present in the early solar system and produced in the same events. A consistent solution for (92)Nb and (53)Mn cannot be found within the current uncertainties and requires the (92)Nb/(92)Mo ratio in the early solar system to be at least 50% lower than the current nominal value, which is outside its present error bars. A different solution is to invoke another production site for (92)Nb, which we find in the α-rich freezeout during core-collapse supernovae from massive stars. Whichever scenario we consider, we find that a relatively long time interval of at least ∼ 10 My must have elapsed from when the star-forming region where the Sun was born was isolated from the interstellar medium and the birth of the Sun. This is in agreement with results obtained from radionuclides heavier than iron produced by neutron captures and lends further support to the idea that the Sun was born in a massive star-forming region together with many thousands of stellar siblings.

  10. Origin of the p-process radionuclides 92Nb and 146Sm in the early solar system and inferences on the birth of the Sun

    PubMed Central

    Lugaro, Maria; Pignatari, Marco; Ott, Ulrich; Zuber, Kai; Travaglio, Claudia; Gyürky, György; Fülöp, Zsolt

    2016-01-01

    The abundances of 92Nb and 146Sm in the early solar system are determined from meteoritic analysis, and their stellar production is attributed to the p process. We investigate if their origin from thermonuclear supernovae deriving from the explosion of white dwarfs with mass above the Chandrasekhar limit is in agreement with the abundance of 53Mn, another radionuclide present in the early solar system and produced in the same events. A consistent solution for 92Nb and 53Mn cannot be found within the current uncertainties and requires the 92Nb/92Mo ratio in the early solar system to be at least 50% lower than the current nominal value, which is outside its present error bars. A different solution is to invoke another production site for 92Nb, which we find in the α-rich freezeout during core-collapse supernovae from massive stars. Whichever scenario we consider, we find that a relatively long time interval of at least ∼10 My must have elapsed from when the star-forming region where the Sun was born was isolated from the interstellar medium and the birth of the Sun. This is in agreement with results obtained from radionuclides heavier than iron produced by neutron captures and lends further support to the idea that the Sun was born in a massive star-forming region together with many thousands of stellar siblings. PMID:26755600

  11. The four-celled female gametophyte of Illicium (Illiciaceae; Austrobaileyales): implications for understanding the origin and early evolution of monocots, eumagnoliids,and eudicots.

    PubMed

    Williams, Joseph H; Friedman, William E

    2004-03-01

    The recent consensus that Amborellaceae, Nymphaeales, and Austrobaileyales form the three earliest-diverging lineages of angiosperms has led comparative biologists to reconsider the origin and early developmental evolution of the angiosperm seven-celled/eight-nucleate (Polygonum-type) female gametophyte. Illicium mexicanum (Illiciaceae; Austrobaileyales) develops a four-celled/four-nucleate female gametophyte. The ontogenetic sequence of the Illicium female gametophyte is consistent with that of all other Austrobaileyales and also with all Nymphaeales and is likely a plesiomorphy of angiosperms. A character analysis based on more than 250 embryological studies indicates that a transition from an ancestrally four-celled/four-nucleate Illicium-like female gametophyte to a seven-celled/eight-nucleate female gametophyte occurred in the common ancestor of the sister group to Austrobaileyales (a clade that includes monocots, eumagnoliids, and eudicots). Comparative analysis of reconstructed ancestral female gametophyte ontogenies identifies specific early stages of ontogeny that were modified during this transition. These modifications generated two important angiosperm novelties-a set of three persistent antipodal cells and a binucleate central cell, which upon fertilization yields a triploid endosperm. Early angiosperms are anatomically quite diverse in these two features, although triploid endosperm, composed of one paternal genome and two maternal genomes, is a conserved feature of the overwhelming majority of angiosperms.

  12. AGN feedback and the origin of the α enhancement in early-type galaxies – insights from the GAEA model

    NASA Astrophysics Data System (ADS)

    De Lucia, Gabriella; Fontanot, Fabio; Hirschmann, Michaela

    2017-03-01

    We take advantage of our recently published model for GAlaxy Evolution and Assembly (GAEA) to study the origin of the observed correlation between [α/Fe] and galaxy stellar mass. In particular, we analyse the role of radio-mode active galactic nuclei (AGN) feedback, which recent work has identified as a crucial ingredient to reproduce observations. In GAEA, this process introduces the observed trend of star formation histories extending over shorter time-scales for more massive galaxies, but does not provide a sufficient condition to reproduce the observed α enhancements of massive galaxies. In the framework of our model, this is possible only by assuming that any residual star formation is truncated for galaxies more massive than 1010.5 M⊙. This results, however, in even shorter star formation time-scales for the most massive galaxies, which translate in total stellar metallicities significantly lower than observed. Our results demonstrate that (i) trends of [α/Fe] ratios cannot be simply converted into relative time-scale indicators; and (ii) AGN feedback cannot explain alone the positive correlation between [α/Fe] and galaxy mass/velocity dispersion. Reproducing simultaneously the mass-metallicity relation and the α enhancements observed pose a challenge for hierarchical models, unless more exotic solutions are adopted such as metal-rich winds or a variable initial mass function.

  13. Non-coding Y RNAs associate with early replicating euchromatin concordantly with the origin recognition complex (ORC).

    PubMed

    Kheir, Eyemen G A; Krude, Torsten

    2017-02-24

    Non-coding Y RNAs are essential for the initiation of chromosomal DNA replication in vertebrates, yet their association with chromatin during the cell cycle is not characterised. Here, we quantify human Y RNA levels in soluble and chromatin-associated intracellular fractions and investigate topographically their dynamic association with chromatin during the cell cycle. We find that, on average, about a million Y RNA molecules are present in the soluble fraction of a proliferating cell, and 5-10-fold less in association with chromatin. These levels decrease substantially in quiescence. No significant differences are apparent between cancer and non-cancer cell lines. Y RNAs associate with euchromatin throughout the cell cycle. Their levels are 2-4-fold higher in S than in G1 phase or mitosis. Y RNAs are not detectable at active DNA replication foci, and re-associate with replicated euchromatin during mid/late S phase. The dynamics and sites of Y1 RNA association with chromatin are concordant with those of the origin recognition complex, ORC. Our data therefore suggest a functional role of Y RNAs in a common pathway with ORC.

  14. Early Origins of Adult Disease: Approaches for Investigating the Programmable Epigenome in Humans, Nonhuman Primates, and Rodents

    PubMed Central

    Ganu, Radhika S.; Harris, R. Alan; Collins, Kiara; Aagaard, Kjersti M.

    2012-01-01

    According to the developmental origins of health and disease hypothesis, in utero experiences reprogram an individual for immediate adaptation to gestational perturbations, with the sequelae of later-in-life risk of metabolic disease. An altered gestational milieu with resultant adult metabolic disease has been observed in instances of both in utero constraint (e.g., from famine or uteroplacental insufficiency) and overt caloric abundance (e.g., from a maternal high-fat, caloric-dense diet). The commonality of the adult metabolic phenotype begs the question of how diverse in utero experiences (i.e., reprogramming events) converge on common metabolic pathways and how the memory of these events is maintained across the lifespan. We and others have investigated the molecular mechanisms underlying fetal programming and observed that epigenetic modifications to the fetal and placental epigenome accompany these reprogramming events. Based on several lines of emerging data in human and nonhuman primates, it is now felt that modified epigenetic signature—and the histone code in particular—underlies alterations in postnatal gene expression and metabolic pathways central to accurate functioning and maintenance of health. Because of the tissue lineage specificity of many of these modifications, nonhuman primates serve as an apt model system for the capacity to recapitulate human gene expression and regulation during development. This review summarizes recent epigenetic advances using rodent and primate (both human and nonhuman) models during in utero development and contributing to adult diseases later in life. PMID:23744969

  15. A novel study design to investigate the early-life origins of asthma in children (SAGE study).

    PubMed

    Kozyrskyj, A L; HayGlass, K T; Sandford, A J; Paré, P D; Chan-Yeung, M; Becker, A B

    2009-08-01

    This is a description of the Study of Asthma, Genes and the Environment (SAGE), a novel birth cohort created from provincial healthcare administrative records. It is a general population-based cohort, composed of children at high and low risk for asthma, living in urban and rural environments in Manitoba, Canada. The SAGE study captures the complete longitudinal healthcare records of children born in 1995 and contains detailed information on early-life exposures, such as antibiotic utilization and immunization, in relationship to the development of asthma. Nested within the birth cohort is a case-control study, which was created to collect information on home environmental exposures from detailed surveys and home dust sampling, to confirm asthma status in children and use this data to validate healthcare database measures of asthma, to determine differences in immune system responsiveness to innate and adaptive immune stimuli in asthma, to genotype children for genes likely associated with the development of asthma and to study the epigenetic regulation of pre-established protective vs allergic immune responses. The SAGE study is a multidisciplinary collaboration of researchers from pediatric allergy, population health, immunology, and genetic and environmental epidemiology. As such, it serves as a fertile, interdisciplinary training ground for graduate students, and postdoctoral and clinician fellows.

  16. Auditory evoked potentials (AEP)--an important help in early diagnosis of Schwannoma originating from vestibular nerve.

    PubMed

    Titlic, M; Tonkic, A; Jukic, I; Kolic, K; Mihalj, M

    2008-01-01

    Early diagnosis of expansive formations enables efficient therapy and maximal reduction of remaining neurological damage. Schwannoma situated entirely within the inner auditory canal with free pontocerebellar angle is a rather rare event. Of significant diagnostical help are auditory evoked potentials (AEP), computerised tomography (CT) of the temporal bone pyramid with measuring the inner auditory canal diameter, and magnetic resonance (MRI). In this paper we present a case of a 56-year-old woman with gradually advancing noise in the right ear, weakening of hearing and occasional instability while walking. AEP register no evoked response at the right side, whereas at the left side the latencies and amplitudes of evoked acoustic responses are adequate. CT of the temporal bone pyramid shows a difference in the inner auditory canal diameters of 0.04 cm. MRI shows a Schwannoma tumorous formation in the inner auditory canal, situated entirely within the canal with free pontocerebellar angle (Fig. 3, Ref. 16). Full Text (Free, PDF) www.bmj.sk.

  17. Early and Late Alkali Igneous Pulses and a High-3He Plume Origin for the Deccan Flood Basalts.

    PubMed

    Basu, A R; Renne, P R; Dasgupta, D K; Teichmann, F; Poreda, R J

    1993-08-13

    Several alkalic igneous complexes of nephelinite-carbonatite affinities occur in extensional zones around a region of high heat flow and positive gravity anomaly within the continental flood basalt (CFB) province of Deccan, India. Biotites from two of the complexes yield (40)Ar/(39)Ar dates of 68.53 +/- 0.16 and 68.57 +/- 0.08 million years. Biotite from a third complex, which intrudes the flood basalts, yields an (40)Ar/(39)Ar date of 64.96 +/- 0.1 1 million years. The complexes thus represent early and late magmatism with respect to the main pulse of CFB volcanism 65 million years ago. Rocks from the older complexes show a (3)He/(4)He ratio of 14.0 times the air ratio, an initial (87)Sr/(86)Sr ratio of 0.70483, and other geochemical characteristics similar to ocean island basalts; the later alkalic pulse shows isotopic evidence of crustal contamination. The data document 3.5 million years of incubation of a primitive, high-(3)He mantle plume before the rapid eruption of the Deccan CFB.

  18. Widespread hyperphosphorylated tau in the working memory circuit early after cortical impact injury of brain (Original study).

    PubMed

    Zhao, Zi-Ai; Ning, Ya-Lei; Li, Ping; Yang, Nan; Peng, Yan; Xiong, Ren-Ping; Zhao, Yan; Liu, Dong; Zeng, Xu-Jia; Chen, Jiang-Fan; Zhou, Yuan-Guo

    2017-04-14

    A series of neurological and psychiatric symptoms occur after traumatic brain injury (TBI), with cognitive dysfunction being one of the most prominent sequela. Given that tau hyperphosphorylation is an important cause of cognitive impairment in patients of Alzheimer's disease, our present study detected the presence of hyperphosphorylated tau (p-tau), mainly at Ser404, in multiple brain regions, including the ipsilateral parietal cortex, contralateral hippocampus and prefrontal cortex, immediately after the injury in a mouse TBI model; these changes lasted for at least 4w. All of these brain regions play important roles in working memory. Hyperphosphorylated tau protein was primarily located in neurons and was accompanied by axonal injury and dendritic spine degeneration. Our study demonstrated that p-tau spreads gradually and selectively from the injured cortex to other brain regions after TBI and that all of the affected regions are part of the working memory circuit. These findings provide experimental support for the role of p-tau in cognitive impairment in the early phase after TBI.

  19. Polyphyly of nuclear lamin genes indicates an early eukaryotic origin of the metazoan-type intermediate filament proteins.

    PubMed

    Kollmar, Martin

    2015-05-29

    The nuclear lamina is a protein meshwork associated with the inner side of the nuclear envelope contributing structural, signalling and regulatory functions. Here, I report on the evolution of an important component of the lamina, the lamin intermediate filament proteins, across the eukaryotic tree of life. The lamins show a variety of protein domain and sequence motif architectures beyond the classical α-helical rod, nuclear localisation signal, immunoglobulin domain and CaaX motif organisation, suggesting extension and adaptation of functions in many species. I identified lamin genes not only in metazoa and Amoebozoa as previously described, but also in other opisthokonts including Ichthyosporea and choanoflagellates, in oomycetes, a sub-family of Stramenopiles, and in Rhizaria, implying that they must have been present very early in eukaryotic evolution if not even the last common ancestor of all extant eukaryotes. These data considerably extend the current perception of lamin evolution and have important implications with regard to the evolution of the nuclear envelope.

  20. Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista.

    PubMed

    Burki, Fabien; Kaplan, Maia; Tikhonenkov, Denis V; Zlatogursky, Vasily; Minh, Bui Quang; Radaykina, Liudmila V; Smirnov, Alexey; Mylnikov, Alexander P; Keeling, Patrick J

    2016-01-27

    Assembling the global eukaryotic tree of life has long been a major effort of Biology. In recent years, pushed by the new availability of genome-scale data for microbial eukaryotes, it has become possible to revisit many evolutionary enigmas. However, some of the most ancient nodes, which are essential for inferring a stable tree, have remained highly controversial. Among other reasons, the lack of adequate genomic datasets for key taxa has prevented the robust reconstruction of early diversification events. In this context, the centrohelid heliozoans are particularly relevant for reconstructing the tree of eukaryotes because they represent one of the last substantial groups that was missing large and diverse genomic data. Here, we filled this gap by sequencing high-quality transcriptomes for four centrohelid lineages, each corresponding to a different family. Combining these new data with a broad eukaryotic sampling, we produced a gene-rich taxon-rich phylogenomic dataset that enabled us to refine the structure of the tree. Specifically, we show that (i) centrohelids relate to haptophytes, confirming Haptista; (ii) Haptista relates to SAR; (iii) Cryptista share strong affinity with Archaeplastida; and (iv) Haptista + SAR is sister to Cryptista + Archaeplastida. The implications of this topology are discussed in the broader context of plastid evolution.

  1. Origin of hydrocarbons in Gulf of Mexico basin: A reappraisal

    SciTech Connect

    Bissada, K.K.; Katz, B.J.; Barnicle, S.C.; Schunk, D.J.

    1988-01-01

    The origin of hydrocarbons in the Gulf of Mexico basin has been a subject of controversy for many years. One argument invokes source rocks of average organic enrichment, pervasively distributed throughout the Tertiary sequence and closely associated with the reservoir system. Another argument invokes exceptionally rich, discrete source rocks not in contact with the reservoirs, possibly in pre-Tertiary sequences. Continued exploration success in the basin hinges on the resolution of this controversy because of implications on patterns of hydrocarbon migration within the basin and the timing of petroleum generation relative to reservoir and trap development. Geochemical analyses of hundreds of crude oils, natural gases, and nonreservoir rocks from the Mesozoic and Cenozoic trends along the northern Gulf of Mexico basin indicate the general inadequacy of the Tertiary section to source the huge oil accumulations within Cenozoic reservoirs. Furthermore, other than the biogenic gas, isotopic data indicate that the majority of nonassociated gases found in Cenozoic accumulations have been thermogenically derived from much greater depths where maturation is consistent with dry gas generation. Geochemical data from several Mesozoic units in the basin, but outside the Cenozoic trend proper, indicate the existence of excellent Mesozoic source rocks. It is proposed that such units extend below the Cenozoic producing trends and are drained by deep-seated faults and piercement salt structures. Maturation history, structural style, and patterns of migration and remigration control the variable productivity along the various trends.

  2. Salt or ice diapirism origin for the honeycomb terrain in Hellas basin, Mars?: Implications for the early martian climate

    NASA Astrophysics Data System (ADS)

    Weiss, David K.; Head, James W.

    2017-03-01

    The "honeycomb" terrain is a Noachian-aged cluster of ∼7 km wide linear cell-like depressions located on the northwestern floor of Hellas basin, Mars. A variety of origins have been proposed for the honeycomb terrain, including deformation rings of subglacial sediment, frozen convection cells from a Hellas impact melt sheet, a swarm of igneous batholiths, salt diapirism, and ice diapirism. Recent work has shown that the salt or ice diapirism scenarios appear to be most consistent with the morphology and morphometry of the honeycomb terrain. The salt and ice diapirism scenarios have different implications for the ancient martian climate and hydrological cycle, and so distinguishing between the two scenarios is critical. In this study, we specifically test whether the honeycomb terrain is consistent with a salt or ice diapir origin. We use thermal modeling to assess the stability limits on the thickness of an ice or salt diapir-forming layer at depth within the Hellas basin. We also apply analytical models for diapir formation to evaluate the predicted diapir wavelengths in order to compare with observations. Ice diapirism is generally predicted to reproduce the observed honeycomb wavelengths for ∼100 m to ∼1 km thick ice deposits. Gypsum and kieserite diapirism is generally predicted to reproduce the observed honeycomb wavelengths for ≥ 600-1000 m thick salt deposits, but only with a basaltic overburden. Halite diapirism generally requires approx. ≥ 1 km thick halite deposits in order to reproduce the observed honeycomb wavelengths. Hellas basin is a distinctive environment for diapirism on Mars due to its thin crust (which reduces surface heat flux), low elevation (which allows Hellas to act as a water/ice/sediment sink and increases the surface temperature), and location within the southern highlands (which may provide proximity to inflowing saline water or glacial ice). The plausibility of an ice diapir mechanism generally requires temperatures ≤ 250

  3. Early origin and adaptive evolution of the GW182 protein family, the key component of RNA silencing in animals.

    PubMed

    Zielezinski, Andrzej; Karlowski, Wojciech M

    2015-01-01

    The GW182 proteins are a key component of the miRNA-dependent post-transcriptional silencing pathway in animals. They function as scaffold proteins to mediate the interaction of Argonaute (AGO)-containing complexes with cytoplasmic poly(A)-binding proteins (PABP) and PAN2-PAN3 and CCR4-NOT deadenylases. The AGO-GW182 complexes mediate silencing of the target mRNA through induction of translational repression and/or mRNA degradation. Although the GW182 proteins are a subject of extensive experimental research in the recent years, very little is known about their origin and evolution. Here, based on complex functional annotation and phylogenetic analyses, we reveal 448 members of the GW182 protein family from the earliest animals to humans. Our results indicate that a single-copy GW182/TNRC6C progenitor gene arose with the emergence of multicellularity and it multiplied in the last common ancestor of vertebrates in 2 rounds of whole genome duplication (WGD) resulting in 3 genes. Before the divergence of vertebrates, both the AGO- and CCR4-NOT-binding regions of GW182s showed significant acceleration in the accumulation of amino acid changes, suggesting functional adaptation toward higher specificity to the molecules of the silencing complex. We conclude that the silencing ability of the GW182 proteins improves with higher position in the taxonomic classification and increasing complexity of the organism. The first reconstruction of the molecular journey of GW182 proteins from the ancestral metazoan protein to the current mammalian configuration provides new insight into development of the miRNA-dependent post-transcriptional silencing pathway in animals.

  4. The origin and early genesis of clay bands in youthful sandy soils along lake Michigan, U.S.A.

    USGS Publications Warehouse

    Berg, R.C.

    1984-01-01

    A beach ridge and dune complex with good radiocarbon control sampling the last 3500 radiocarbon years B.P. provides new insights on the early genesis of clay bands in sandy soils. Soil profiles were sampled by age groups, described in the field, and then subjected to laboratory analyses for particle-size distribution, pH, organic carbon, carbonate minerals, and extractable iron and manganese. This study suggests that small increases in pH, brought about by small increases in carbonate content within the soil profile, are responsible for flocculating small amounts of illuviated clay. This process, along with a transition to a greater hydraulic conductivity with soil depth due to coarser textures in any given profile, partly explains the existence and possible reason for the initiation of illuvial zones and eventually for clay-band horizons. A pronounced increase in the thickness of incipient clay-band horizons in soils older than 2300 years appears due to finer textures in the parent materials than are present in younger soils. Because of slightly reduced porosity and lower permeability, carbonates and a high pH are retained in both illuvial and eluvial horizons of some of these older soils. In addition, only in those profiles older than 2300 years do clay and iron oxide concentrations coincide and is there some suggestion of greater amounts of extractable manganese in horizons of minimum iron and clay. A pronounced segregation of clay-iron bands is not apparent at the study area but should occur in future years as additional amounts of iron and clay are deposited. ?? 1984.

  5. Early Archean spherule beds of possible impact origin from Barberton, South Africa: A detailed mineralogical and geochemical study

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Reimold, Wolf Uwe; Boer, Rudolf H.

    1992-01-01

    The Barberton Greenstone belt is a 3.5- to 3.2-Ga-old formation situated in the Swaziland Supergroup near Barberton, northeast Transvaal, South Africa. The belt includes a lower, predominantly volcanic sequence, and an upper sedimentary sequence (e.g., the Fig Tree Group). Within this upper sedimentary sequence, Lowe and Byerly identified a series of different beds of spherules with diameters of around 0.5-2 mm. Lowe and Byerly and Lowe et al. have interpreted these spherules to be condensates of rock vapor produced by large meteorite impacts in the early Archean. We have collected a series of samples from drill cores from the Mt. Morgan and Princeton sections near Barberton, as well as samples taken from underground exposures in the Sheba and Agnes mines. These samples seem much better preserved than the surface samples described by Lowe and Byerly and Lowe et al. Over a scale of just under 30 cm, several well-defined spherule beds are visible, interspaced with shales and/or layers of banded iron formation. Some spherules have clearly been deposited on top of a sedimentary unit because the shale layer shows indentions from the overlying spherules. Although fresher than the surface samples (e.g., spherule bed S-2), there is abundant evidence for extensive alteration, presumably by hydrothermal processes. In some sections of the cores sulfide mineralization is common. For our mineralogical and petrographical studies we