Science.gov

Sample records for early cenozoic origin

  1. Early cenozoic differentiation of polar marine faunas.

    PubMed

    Crame, J Alistair

    2013-01-01

    The widespread assumption that the origin of polar marine faunas is linked to the onset of major global cooling in the Late Eocene-Early Oligocene is being increasingly challenged. The Antarctic fossil record in particular is suggesting that some modern Southern Ocean taxa may have Early Eocene or even Paleocene origins, i.e. well within the Early Cenozoic greenhouse world. A global analysis of one of the largest marine clades at the present day, the Neogastropoda, indicates that not only is there a decrease in the number of species from the tropics to the poles but also a decrease in the evenness of their distribution. A small number of neogastropod families with predominantly generalist trophic strategies at both poles points to the key role of seasonality in structuring the highest latitude marine assemblages. A distinct latitudinal gradient in seasonality is temperature-invariant and would have operated through periods of global warmth such as the Early Cenozoic. To test this concept a second global analysis was undertaken of earliest Cenozoic (Paleocene) neogastropods and this does indeed show a certain degree of faunal differentiation at both poles. The Buccinidae, s.l. is especially well developed at this time, and this is a major generalist taxon at the present day. There is an element of asymmetry associated with this development of Paleocene polar faunas in that those in the south are more strongly differentiated than their northern counterparts; this can in turn be linked to the already substantial isolation of the southern high latitudes. The key role of seasonality in the formation of polar marine faunas has implications for contemporary ecosystem structure and stability.

  2. Early cenozoic differentiation of polar marine faunas.

    PubMed

    Crame, J Alistair

    2013-01-01

    The widespread assumption that the origin of polar marine faunas is linked to the onset of major global cooling in the Late Eocene-Early Oligocene is being increasingly challenged. The Antarctic fossil record in particular is suggesting that some modern Southern Ocean taxa may have Early Eocene or even Paleocene origins, i.e. well within the Early Cenozoic greenhouse world. A global analysis of one of the largest marine clades at the present day, the Neogastropoda, indicates that not only is there a decrease in the number of species from the tropics to the poles but also a decrease in the evenness of their distribution. A small number of neogastropod families with predominantly generalist trophic strategies at both poles points to the key role of seasonality in structuring the highest latitude marine assemblages. A distinct latitudinal gradient in seasonality is temperature-invariant and would have operated through periods of global warmth such as the Early Cenozoic. To test this concept a second global analysis was undertaken of earliest Cenozoic (Paleocene) neogastropods and this does indeed show a certain degree of faunal differentiation at both poles. The Buccinidae, s.l. is especially well developed at this time, and this is a major generalist taxon at the present day. There is an element of asymmetry associated with this development of Paleocene polar faunas in that those in the south are more strongly differentiated than their northern counterparts; this can in turn be linked to the already substantial isolation of the southern high latitudes. The key role of seasonality in the formation of polar marine faunas has implications for contemporary ecosystem structure and stability. PMID:23342090

  3. Origin, migration, and accumulation of petroleum in Gulf Coast Cenozoic

    SciTech Connect

    Jones, R.W.

    1986-05-01

    Explanations of the origin, migration, and accumulation of petroleum in the Gulf Coast upper Cenozoic must accommodate the following facts. (1) No specific source of the petroleum has ever been identified. (2) The most probable source section is 10,000-20,000 ft of low TOC (0.4-1.0 wt %) shale that underlies the reservoirs. (3) Tremendous volumes of dry gas have been generated in the middle and basal part of the source section. (4) More gas than oil is in the reservoirs. (5) The distribution of oil and gas accumulations in the Cenozoic is not primarily controlled by the distribution of terrestrial gas-prone organic facies and marine oil-prone organic facies, but by the relative ease of migration of the two hydrocarbon phases. For example, gas preferentially accumulates in the simpler structures, oil in the intrusive salt domes. (6) High pressure and high porosity in the source rock indicates that neither water movement nor continuous phase oil movement out of the source rock are likely to be significant factors in primary migration. (7) The situation is very dynamic, with generation, migration, and accumulation occurring today. (8) Faults are very important as controls on migration and accumulation of the petroleum. The interaction of these (and other) factors suggests that most oil reservoirs in the Gulf Coast upper Cenozoic sediments probably initially became mobile after being dissolved in gas in the source rock. The gas-oil mixture moved toward lower pressure areas adjacent to and in faults, and moved upward into reservoirs and traps along faults.

  4. Eocene Arctic Ocean and earth's Early Cenozoic climate

    SciTech Connect

    Clark, D.L.

    1985-01-01

    Seasonal changes of the Arctic Ocean are an approximate microcosm of the present advanced interglacial climate of the Earth. A similar relationship has existed for several million years but was the Early Cenozoic Arctic Ocean an analog of Earth's climate, as well. Absence of polar ice during the Cretaceous is relatively well established. During the Cenozoic a worldwide decrease in mean annual ocean temperature resulted from such factors as altered oceanic circulation and lower atmospheric CO/sub 2/ levels. Limited Arctic Ocean data for the middle or late Eocene indicate the presence of upwelling conditions and accompanying high productivity of diatoms, ebridians, silicoflagellates and archaeomonads. During this interval, some seasonality is suggested from the varve-like nature of a single sediment core. However, the absence of drop stones or any ice-rafted sediment supports the idea of an open water, ice-free central Arctic Ocean during this time. Latest Cretaceous Arctic Ocean sediment is interpreted to represent approximately the same conditions as those suggested for the Eocene and together with that data suggest that the central Arctic Ocean was ice-free during part if not all of the first 20 my of the Cenozoic. Sediment representing the succeeding 30 my has not been recovered but by latest Miocene or earl Pliocene, ice-rafted sediment was accumulating, both pack ice and icebergs covered the Arctic Ocean reflecting cyclic glacial climate.

  5. Early Cenozoic thrust in Qiangtang block, Northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Ye, P.; Hu, D.; Lu, L.; Zhang, Y.

    2011-12-01

    Huge thrust systems, North Qiangtang Thrust (NQT) and South Qiangtang Thrust (SQT), were discovered in Qiangtang block, northern Tibetan Plateau. North Qiangtang thrust (NQT), including Dogai Coren thrust (DCT) and Longwei Co Thrust (LCT) formed in northern Qiangtang block. Triassic shale, sandstone and slate were thrusted southward over Late Cretaceous-Early Cenozoic conglomerate and sandstone (simplified as red-beds) along thrust faults of DCT, and Jurassic limestone and sandstone were thrusted over Late Cretaceous-Paleogene red-beds and Paleozoic metamorphic rocks along thrust faults of LCT in north of Central Qiangtang Uplift (CQU). South Qiangtang Thrust (SQT), including Xiaocaka-Shuanghu thrust (XST), Doma-Qixiang Co thrust (DQT) and Saibu Co-Zagya thrust (SZT), formed in southern Qiangtang block, accompanied by Nima-Silin thrust (NST) in northern Lhasa block. Permian marbleized limestone and dolomite, Triassic sandstone and shale, Jurassic limestone and ophiolite were thrusted southward over Paleogene red-beds along thrust faults of XST, DQT and SZT. Early Cenozoic thrust along NQT and SQT formed variety of tectonic slices, outliers and nappes of Permian-Jurassic rocks overlying Late Cretaceous-Paleogene red-beds in northern, central and southern Qiangtang block. Minimal estimation on southward offsets of DCT and LCT is 25km and 50km respectively, corresponding to 43% shortening in northern Qiangtang block, and minimal estimation on southward thrust offsets of XST, DQT and SZT yields ~90km southward thrust displacement of SQT, corresponding to ~47% shortening in southern Qiangtang block. Major thrust faults of NQT and SQT formed in upper crust according to seismic reflection profile, and such thrust and shortening were geodynamically related to northward subduction of India continental plate. Intensive thrust of NQT and SQT stopped before Early Miocene, followed by regional peneplanation, widespread lacustrine deposits in Early Miocene and crust extension as

  6. Early Cenozoic "dome like" exhumation around the Irish Sea

    NASA Astrophysics Data System (ADS)

    Doepke, Daniel; Cogné, Nathan; Chew, David; Stuart, Fin

    2016-04-01

    Despite decades of research the Early Cenozoic exhumation history of Ireland and Britain is still poorly understood and subject to contentious debate (see Davis et al., 2012 and subsequent comments). Previous studies have attributed the Cenozoic exhumation history of Ireland and Britain mainly to: (a) Paleogene - Neogene far-field stress between the opening of the North Atlantic Ocean and the Alpine collision (Ziegler et al., 1995; Hillis et al., 2008) or (b) early Paleogene mantle driven magmatic underplating associated with the development of the proto-Iceland mantle plume beneath the Irish Sea (Brodie and White, 1994; Al-Kindi et al., 2003). The major differences between the two hypotheses are the pattern and timing of spatial exhumation. This project thus seeks to investigate the timing and mechanisms of late Mesozoic - early Cenozoic exhumation on the onshore part of the British Isles by using a combination of apatite fission track (AFT) and apatite (U-Th-Sm)/He (AHe) data, which we then model using the QTQt program of Gallagher (2012) to better constrain the modelled thermal histories. Our studied area centres on the margins of the Irish Sea, but includes all Ireland and western Britain. Overall we analysed 74 samples for AFT and 66 samples for AHe dating. In particular, our results include ten pseudo-vertical profiles. The AFT ages display a wide range of ages from early Carboniferous in Scotland to early Eocene in central Ireland. Our AHe ages range from mid Permian on Shetland to Eocene Ft-corrected. The AFT data do not show any specific spatial distribution, however, the Ft-corrected AHe ages around the Irish Sea only focus around late Cretaceous to Eocene suggesting an important thermal event around this time. The modelled thermal histories of samples located around the Irish Sea and western Scotland show a clear late Cretaceous to early Paleogene cooling event which is not present elsewhere. The distribution of this cooling event is broadly consistent

  7. Equatorial convergence of India and early Cenozoic climate trends.

    PubMed

    Kent, Dennis V; Muttoni, Giovanni

    2008-10-21

    India's northward flight and collision with Asia was a major driver of global tectonics in the Cenozoic and, we argue, of atmospheric CO(2) concentration (pCO(2)) and thus global climate. Subduction of Tethyan oceanic crust with a carpet of carbonate-rich pelagic sediments deposited during transit beneath the high-productivity equatorial belt resulted in a component flux of CO(2) delivery to the atmosphere capable to maintain high pCO(2) levels and warm climate conditions until the decarbonation factory shut down with the collision of Greater India with Asia at the Early Eocene climatic optimum at approximately 50 Ma. At about this time, the India continent and the highly weatherable Deccan Traps drifted into the equatorial humid belt where uptake of CO(2) by efficient silicate weathering further perturbed the delicate equilibrium between CO(2) input to and removal from the atmosphere toward progressively lower pCO(2) levels, thus marking the onset of a cooling trend over the Middle and Late Eocene that some suggest triggered the rapid expansion of Antarctic ice sheets at around the Eocene-Oligocene boundary.

  8. Equatorial convergence of India and early Cenozoic climate trends

    PubMed Central

    Kent, Dennis V.; Muttoni, Giovanni

    2008-01-01

    India's northward flight and collision with Asia was a major driver of global tectonics in the Cenozoic and, we argue, of atmospheric CO2 concentration (pCO2) and thus global climate. Subduction of Tethyan oceanic crust with a carpet of carbonate-rich pelagic sediments deposited during transit beneath the high-productivity equatorial belt resulted in a component flux of CO2 delivery to the atmosphere capable to maintain high pCO2 levels and warm climate conditions until the decarbonation factory shut down with the collision of Greater India with Asia at the Early Eocene climatic optimum at ≈50 Ma. At about this time, the India continent and the highly weatherable Deccan Traps drifted into the equatorial humid belt where uptake of CO2 by efficient silicate weathering further perturbed the delicate equilibrium between CO2 input to and removal from the atmosphere toward progressively lower pCO2 levels, thus marking the onset of a cooling trend over the Middle and Late Eocene that some suggest triggered the rapid expansion of Antarctic ice sheets at around the Eocene-Oligocene boundary. PMID:18809910

  9. Flexural analysis of two broken foreland basins; Late Cenozoic Bermejo basin and Early Cenozoic Green River basin

    SciTech Connect

    Flemings, P.B.; Jordan, T.E.; Reynolds, S.

    1986-05-01

    Lithospheric flexure that generates basin in a broke foreland setting (e.g., the Laramide foreland of Wyoming) is a three-dimensional system related to shortening along basin-bounding faults. The authors modeled the elastic flexure in three dimensions for two broken foreland basins: the early Cenozoic Green River basin and the analogous late Cenozoic Bermejo basin of Argentina. Each basin is located between a thrust belt and a reverse-fault-bounded basement uplift. Both basins are asymmetric toward the basement uplifts and have a central basement high: the Rock Springs uplift and the Pie de Palo uplift, respectively. The model applies loads generated by crustal thickening to an elastic lithosphere overlying a fluid mantle. Using the loading conditions of the Bermejo basin based on topography, limited drilling, and reflection and earthquake seismology, the model predicts the current Bermejo basin geometry. Similarly, flexure under the loading conditions in the Green River basin, which are constrained by stratigraphy, well logs, and seismic profiling and summed for Late Cretaceous (Lance Formation) through Eocene (Wasatch Formation), successfully models the observed geometry of the pre-Lance surface. Basin depocenters (> 4 km for the Green River basin; > 7 km for the Bermejo basin) and central uplifts are predicted to result from constructive interference of the nonparallel applied loads. Their Bermejo model implies that instantaneous basin geometry is successfully modeled by crustal loading, whereas the Green River basin analysis suggests that basin evolution can be modeled over large time steps (e.g., 20 Ma). This result links instantaneous basin geometry to overall basin evolution and is a first step in predicting stratigraphic development.

  10. Origin of the Adventure Subglacial Trench linked to Cenozoic extension in the East Antarctic Craton

    NASA Astrophysics Data System (ADS)

    Cianfarra, P.; Salvini, F.

    2016-02-01

    The Antarctic plate occupies a unique geodynamic setting being mostly surrounded by divergent or transform margins. Major intracontinental basins and highlands characterize its bedrock, buried under the 34 Ma East Antarctic Ice Sheet (EAIS). Their formation atop of the cratonic lithosphere in the interior of East Antarctica remains a major open question. Post-Mesozoic intraplate extensional tectonic activity has been proposed for their development and is supported by this work. Here we focus on the Adventure Subglacial Trench (AST) whose origin is poorly constrained and controversial, as currently available geophysical models suggest either extensional or compressional tectonic origin. The AST is an over 250-km-long, 60-km-wide subglacial trough, elongated in the NNW-SSE direction adjacent to the westernmost flank of the Wilkes Subglacial Basin, and is parallel to regional scale alignments of magnetic and gravimetric anomalies. Geophysical campaigns allowed better definition of the AST physiography showing its typical half-graben geometry. The rounded morphology of the western flank of the AST was simulated through tectonic numerical modelling. We consider the subglacial landscape to primarily reflect a preserved relict of the tectonic processes affecting the interior of East Antarctica in the Cenozoic, due to the negligible erosion/deposition capability of the EAIS. The bedrock morphology was replicated through the activity of the listric Adventure Fault, characterized by a basal detachment at the base of the crust (34 km) and a vertical displacement of 2.5 km. This length suggests its regional/crustal importance. The predicted displacement is interpreted either as a newly formed fault or as the partial reactivation of a weaker zone along a major Precambrian crustal-scale tectonic boundary. The extensional regime in the AST is part of a more extensive 800-km long intraplate corridor characterized by nearly along-strike extension in Cenozoic times with a left

  11. Early Cenozoic radiations in the Antarctic marine realm and their evolutionary implications

    NASA Astrophysics Data System (ADS)

    Crame, Alistair

    2014-05-01

    The extensive and very well exposed Late Cretaceous - Early Paleogene sedimentary succession of Seymour Island, NE Antarctic Peninsula presents a unique opportunity to examine Early Cenozoic evolutionary radiations in a variety of macrofaunal taxa. Building on the extensive pioneer studies by US and Argentinian palaeontologists, recent investigations have focused on refining litho-, bio- and chronostratigraphies, and taxonomic revisions to a number of key groups. Within the numerically dominant Mollusca, the balance of faunas changes significantly across the Cretaceous/Paleogene boundary, with gastropods becoming numerically dominant for the first time in the Early Paleocene Sobral Formation (SF). At this level seven of the 31 gastropod genera present (= 23%) can be referred to modern Southern Ocean taxa and the same figure is maintained in the Early Eocene La Meseta Formation (LMF) where 21 of 63 genera are modern. A major reason for the rise of the gastropods in the earliest Cenozoic of Antarctica is a significant radiation of the Neogastropoda, which today forms one of the largest clades in the sea. 50% of the SF gastropod fauna and 53% of the LMF at the species level are neogastropods. This important burst of speciation is linked to a major pulse of global warming from ~63 - 43Ma when warm temperate conditions prevailed for long intervals of time at 65ºS. The marked Early Paleogene radiation of neogastropods in Antarctica represents a distinct pulse of southern high-latitude taxa that was coeval with similar tropical/subtropical radiations in localities such as the US Gulf Coast and NW Europe. Thus it would appear that the Early Cenozoic radiation of this major taxon was truly global in scale and not just confined to one latitudinal belt. Whereas it is possible to regard a significant proportion of the modern bivalve fauna as relicts, and thus Antarctica as an evolutionary refugium, or sink, it is much less easy to do so for the Neogastropoda. At least in the

  12. Insect herbivory, plant defense, and early Cenozoic climate change.

    PubMed

    Wilf, P; Labandeira, C C; Johnson, K R; Coley, P D; Cutter, A D

    2001-05-22

    Insect damage on fossil leaves from the Central Rocky Mountains, United States, documents the response of herbivores to changing regional climates and vegetation during the late Paleocene (humid, warm temperate to subtropical, predominantly deciduous), early Eocene (humid subtropical, mixed deciduous and evergreen), and middle Eocene (seasonally dry, subtropical, mixed deciduous and thick-leaved evergreen). During all three time periods, greater herbivory occurred on taxa considered to have short rather than long leaf life spans, consistent with studies in living forests that demonstrate the insect resistance of long-lived, thick leaves. Variance in herbivory frequency and diversity was highest during the middle Eocene, indicating the increased representation of two distinct herbivory syndromes: one for taxa with deciduous, palatable foliage, and the other for hosts with evergreen, thick-textured, small leaves characterized by elevated insect resistance. Leaf galling, which is negatively correlated with moisture today, apparently increased during the middle Eocene, whereas leaf mining decreased.

  13. Insect herbivory, plant defense, and early Cenozoic climate change

    PubMed Central

    Wilf, Peter; Labandeira, Conrad C.; Johnson, Kirk R.; Coley, Phyllis D.; Cutter, Asher D.

    2001-01-01

    Insect damage on fossil leaves from the Central Rocky Mountains, United States, documents the response of herbivores to changing regional climates and vegetation during the late Paleocene (humid, warm temperate to subtropical, predominantly deciduous), early Eocene (humid subtropical, mixed deciduous and evergreen), and middle Eocene (seasonally dry, subtropical, mixed deciduous and thick-leaved evergreen). During all three time periods, greater herbivory occurred on taxa considered to have short rather than long leaf life spans, consistent with studies in living forests that demonstrate the insect resistance of long-lived, thick leaves. Variance in herbivory frequency and diversity was highest during the middle Eocene, indicating the increased representation of two distinct herbivory syndromes: one for taxa with deciduous, palatable foliage, and the other for hosts with evergreen, thick-textured, small leaves characterized by elevated insect resistance. Leaf galling, which is negatively correlated with moisture today, apparently increased during the middle Eocene, whereas leaf mining decreased. PMID:11353840

  14. Insect herbivory, plant defense, and early Cenozoic climate change.

    PubMed

    Wilf, P; Labandeira, C C; Johnson, K R; Coley, P D; Cutter, A D

    2001-05-22

    Insect damage on fossil leaves from the Central Rocky Mountains, United States, documents the response of herbivores to changing regional climates and vegetation during the late Paleocene (humid, warm temperate to subtropical, predominantly deciduous), early Eocene (humid subtropical, mixed deciduous and evergreen), and middle Eocene (seasonally dry, subtropical, mixed deciduous and thick-leaved evergreen). During all three time periods, greater herbivory occurred on taxa considered to have short rather than long leaf life spans, consistent with studies in living forests that demonstrate the insect resistance of long-lived, thick leaves. Variance in herbivory frequency and diversity was highest during the middle Eocene, indicating the increased representation of two distinct herbivory syndromes: one for taxa with deciduous, palatable foliage, and the other for hosts with evergreen, thick-textured, small leaves characterized by elevated insect resistance. Leaf galling, which is negatively correlated with moisture today, apparently increased during the middle Eocene, whereas leaf mining decreased. PMID:11353840

  15. Improved Late Cretaceous and early Cenozoic Paleomagnetic apparent polar wander path for the Pacific plate

    NASA Astrophysics Data System (ADS)

    Beaman, Melissa; Sager, William W.; Acton, Gary D.; Lanci, Luca; Pares, Josep

    2007-10-01

    Understanding of Pacific plate tectonics and geodynamics is aided by refinement of the plate's apparent polar wander path (APWP). We improved the Late Cretaceous and early Cenozoic APWP by analyzing a large, diverse paleomagnetic data set that combines core sample, seamount magnetic anomaly model, and marine magnetic anomaly skewness data. Our preferred APWP has five mean paleomagnetic poles representing the Oligocene (30 Ma), Late (39 Ma) and Early (49 Ma) Eocene, and Paleocene (61 Ma) epochs and the Maastrichtian (68 Ma) stage. Along with a published 80 Ma pole, the APWP shows a stillstand from ˜ 80 to ˜ 49 Ma punctuating the large overall northward drift of the plate. The two youngest poles imply resumption of northward motion during mid-Eocene time with another change of polar motion after ˜ 30 Ma. If unaffected by other phenomena (e.g., true polar wander or change in time-averaged magnetic field geometry), the stillstand implies negligible northward plate motion during the period of Emperor Seamounts formation, contrary to most accepted plate motion models. The stillstand is consistent with paleomagnetic data from the Emperor Seamounts, which imply southward motion of the Hawaiian melting anomaly. It also implies significant westward drift of the hotspot if the Pacific plate was moving west at rates similar to the later Cenozoic. In addition, changes in polar wander after ˜ 49 Ma are consistent with changes of north Pacific plate boundaries.

  16. Lower crustal flow: The origin of Late Cenozoic extension north of the eastern Snake River Plain

    SciTech Connect

    Anders, M.H.; Hopper, J.R.; Abad, R.; Spiegelman, M. . Lamont-Doherty Earth Observatory)

    1993-04-01

    Recent work has shown that the initiation of late Cenozoic faulting and concomitant footwall uplift north of the eastern Snake River Plain (eSRP) are much younger than previously thought. Examples of these young ages include the Centennial Range (< 2.0 Ma), Gravely Range (< 2.0 Ma), Lemhi Range (< 6.6 Ma), Beaverhead Mts. (< 6.6 Ma), Tendoy Mts. (< 6.6 Ma). Basins south of the eSRP exhibit a bi-modal distribution of growth ages during the Neogene. Seismic moment tensor and earthquake rupture data define extension directions that are both oblique to and symmetric about the axis of the eSRP. However, extension directions on the eSRP itself are parallel to the axis. The authors propose that the orientations of extension are a response to lower crustal flow in a conduit formed between the mid-crust and the upper mantle. Estimates of the lower crustal pressure gradients, geothermal gradient, and channel dimensions are used calculate a lower crustal flux between the extending regions north of the eSRP and the eSRP. This value is three orders of magnitude greater than the estimated flux based on geologically determined strain rates. These calculations suggest that lower crustal flow is a viable mechanism to explain extension north of the eSRP as well as to explain the origin of the extension throughout the Intermountain seismic belt. The advantage of this model is that upper crustal extension does not have to couple with upper mantle extension and thereby it is not necessary to invoke far field stress changes to explain changes in the local stress field.

  17. Origin and geodynamic setting of Late Cenozoic granitoids in Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Maulana, Adi; Imai, Akira; Van Leeuwen, Theo; Watanabe, Koichiro; Yonezu, Kotaro; Nakano, Takanori; Boyce, Adrian; Page, Laurence; Schersten, Anders

    2016-07-01

    Late Cenozoic granitoids are widespread in a 1600 km long belt forming the Western and Northern Sulawesi tectono-magmatic provinces. They can be divided into three rock series: shoshonitic (HK), high-K felsic calc-alkaline (CAK), and normal calc-alkaline to tholeiitic (CA-TH). Representative samples collected from eleven plutons, which were subjected to petrography, major element, trace element, Sr, Nd, Pb isotope and whole-rock δ18O analyses, are all I-type and metaluminous to weakly peraluminous. The occurrence of the two K-rich series is restricted to Western Sulawesi, where they formed in an extensional, post-subduction tectonic setting with astenospheric upwelling providing thermal perturbation and adiabatic decompression. Two parental magma sources are proposed: enriched mantle or lower crustal equivalent for HK magmas, and Triassic igneous rocks in a Gondwana-derived fragment thrust beneath the cental and northern parts of Western Sulawesi for CAK magmas. The latter interpretation is based on striking similarities in radiogenic isotope and trace element signatures. CA-TH granitoids are found mostly in Northern Sulawesi. Partial melting of lower-middle crust amphibolites in an active subduction environment is the proposed origin of these rocks. Fractional crystallization and crustal contamination have played a significant role in magma petrogenesis, particularly in the case of the HK and CAK series. Contamination by organic carbon-bearing sedimentary rocks of the HK and CAK granitoids in the central part of Western Sulawesi is suggested by their ilmenite-series (reduced) character. The CAK granitoids further to the north and CA-TH granitoids in Northern Sulawesi are typical magnetite-series (oxidized). This may explain differences in mineralization styles in the two regions.

  18. Evidence of a Cooler Continental Climate in East China during the Warm Early Cenozoic

    PubMed Central

    Zhang, Qian-Qian; Smith, Thierry; Yang, Jian; Li, Cheng-Sen

    2016-01-01

    The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800–1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years. PMID:27196048

  19. Evidence of a Cooler Continental Climate in East China during the Warm Early Cenozoic.

    PubMed

    Zhang, Qian-Qian; Smith, Thierry; Yang, Jian; Li, Cheng-Sen

    2016-01-01

    The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800-1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years.

  20. Evidence of a Cooler Continental Climate in East China during the Warm Early Cenozoic.

    PubMed

    Zhang, Qian-Qian; Smith, Thierry; Yang, Jian; Li, Cheng-Sen

    2016-01-01

    The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800-1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years. PMID:27196048

  1. Late Cenozoic intraplate faulting in eastern Australia

    NASA Astrophysics Data System (ADS)

    Babaahmadi, Abbas; Rosenbaum, Gideon

    2014-12-01

    The intensity and tectonic origin of late Cenozoic intraplate deformation in eastern Australia is relatively poorly understood. Here we show that Cenozoic volcanic rocks in southeast Queensland have been deformed by numerous faults. Using gridded aeromagnetic data and field observations, structural investigations were conducted on these faults. Results show that faults have mainly undergone strike-slip movement with a reverse component, displacing Cenozoic volcanic rocks ranging in ages from ˜31 to ˜21 Ma. These ages imply that faulting must have occurred after the late Oligocene. Late Cenozoic deformation has mostly occurred due to the reactivation of major faults, which were active during episodes of basin formation in the Jurassic-Early Cretaceous and later during the opening of the Tasman and Coral Seas from the Late Cretaceous to the early Eocene. The wrench reactivation of major faults in the late Cenozoic also gave rise to the occurrence of brittle subsidiary reverse strike-slip faults that affected Cenozoic volcanic rocks. Intraplate transpressional deformation possibly resulted from far-field stresses transmitted from the collisional zones at the northeast and southeast boundaries of the Australian plate during the late Oligocene-early Miocene and from the late Miocene to the Pliocene. These events have resulted in the hitherto unrecognized reactivation of faults in eastern Australia.

  2. Constraining Early Cenozoic exhumation of the British Isles with vertical profile modelling

    NASA Astrophysics Data System (ADS)

    Doepke, Daniel; Cogné, Nathan; Chew, David

    2016-04-01

    Despite decades of research is the Early Cenozoic exhumation history of Ireland and Britain still poorly understood and subject to contentious debate (e.g., Davis et al., 2012 and subsequent comments). One reason for this debate is the difficultly of constraining the evolution of onshore parts of the British Isles in both time and space. The paucity of Mesozoic and Cenozoic onshore outcrops makes direct analysis of this time span difficult. Furthermore, Ireland and Britain are situated at a passive margin, where the amount of post-rift exhumation is generally very low. Classical thermochronological tools are therefore near the edge of their resolution and make precise dating of post-rift cooling events challenging. In this study we used the established apatite fission track and (U-Th-Sm)/He techniques, but took advantage of the vertical profile approach of Gallagher et al. (2005) implemented in the QTQt modelling package (Gallagher, 2012), to better constrain the thermal histories. This method allowed us to define the geographical extent of a Late Cretaceous - Early Tertiary cooling event and to show that it was centered around the Irish Sea. Thus, we argue that this cooling event is linked to the underplating of hot material below the crust centered on the Irish Sea (Jones et al., 2002; Al-Kindi et al., 2003), and demonstrate that such conclusion would have been harder, if not impossible, to draw by modelling the samples individually without the use of the vertical profile approach. References Al-Kindi, S., White, N., Sinha, M., England, R., and Tiley, R., 2003, Crustal trace of a hot convective sheet: Geology, v. 31, no. 3, p. 207-210. Davis, M.W., White, N.J., Priestley, K.F., Baptie, B.J., and Tilmann, F.J., 2012, Crustal structure of the British Isles and its epeirogenic consequences: Geophysical Journal International, v. 190, no. 2, p. 705-725. Jones, S.M., White, N., Clarke, B.J., Rowley, E., and Gallagher, K., 2002, Present and past influence of the Iceland

  3. Pacific plate slab pull and intraplate deformation in the early Cenozoic

    NASA Astrophysics Data System (ADS)

    Butterworth, N. P.; Müller, R. D.; Quevedo, L.; O'Connor, J. M.; Hoernle, K.; Morra, G.

    2014-08-01

    Large tectonic plates are known to be susceptible to internal deformation, leading to a~range of phenomena including intraplate volcanism. However, the space and time dependence of intraplate deformation and its relationship with changing plate boundary configurations, subducting slab geometries, and absolute plate motion is poorly understood. We utilise a buoyancy-driven Stokes flow solver, BEM-Earth, to investigate the contribution of subducting slabs through time on Pacific plate motion and plate-scale deformation, and how this is linked to intraplate volcanism. We produce a series of geodynamic models from 62 to 42 Ma in which the plates are driven by the attached subducting slabs and mantle drag/suction forces. We compare our modelled intraplate deformation history with those types of intraplate volcanism that lack a clear age progression. Our models suggest that changes in Cenozoic subduction zone topology caused intraplate deformation to trigger volcanism along several linear seafloor structures, mostly by reactivation of existing seamount chains, but occasionally creating new volcanic chains on crust weakened by fracture zones and extinct ridges. Around 55 Ma, subduction of the Pacific-Izanagi ridge reconfigured the major tectonic forces acting on the plate by replacing ridge push with slab pull along its northwestern perimeter, causing lithospheric extension along pre-existing weaknesses. Large-scale deformation observed in the models coincides with the seamount chains of Hawaii, Louisville, Tokelau and Gilbert during our modelled time period of 62 to 42 Ma. We suggest that extensional stresses between 72 and 52 Ma are the likely cause of large parts of the formation of the Gilbert chain and that localised extension between 62 and 42 Ma could cause late-stage volcanism along the Musicians volcanic ridges. Our models demonstrate that early Cenozoic changes in Pacific plate driving forces only cause relatively minor changes in Pacific absolute plate motion

  4. Pacific Plate slab pull and intraplate deformation in the early Cenozoic

    NASA Astrophysics Data System (ADS)

    Butterworth, N. P.; Müller, R. D.; Quevedo, L.; O'Connor, J. M.; Hoernle, K.; Morra, G.

    2014-01-01

    Large tectonic plates are known to be susceptible to internal deformation, leading to a range of phenomena including intraplate volcanism. However, the space and time dependence of intraplate deformation and its relationship with changing plate boundary configurations, subducting slab geometries, and absolute plate motion is poorly understood. We utilise a buoyancy driven Stokes flow solver, BEM-Earth, to investigate the contribution of subducting slabs through time on Pacific Plate motion and plate-scale deformation, and how this is linked to intraplate volcanism. We produce a series of geodynamic models from 62 to 42 Ma in which the plates are driven by the attached subducting slabs and mantle drag/suction forces. We compare our modelled intraplate deformation history with those types of intraplate volcanism that lack a clear age progression. Our models suggest that changes in Cenozoic subduction zone topology caused intraplate deformation to trigger volcanism along several linear seafloor structures, mostly by reactivation of existing seamount chains, but occasionally creating new volcanic chains on crust weakened by fracture zones and extinct ridges. Around 55 Ma subduction of the Pacific-Izanagi ridge reconfigured the major tectonic forces acting on the plate by replacing ridge push with slab pull along its north-western perimeter, causing lithospheric extension along pre-existing weaknesses. Large scale deformation observed in the models coincides with the seamount chains of Hawaii, Louisville, Tokelau, and Gilbert during our modelled time period of 62 to 42 Ma. We suggest that extensional stresses between 72 and 52 Ma are the likely cause of large parts of the formation of the Gilbert chain and that localised extension between 62 and 42 Ma could cause late-stage volcanism along the Musicians Volcanic Ridges. Our models demonstrate that early Cenozoic changes in Pacific plate driving forces only cause relatively minor changes in Pacific absolute plate motions

  5. Paleoclimate from fossil plants and application to the early Cenozoic Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Wing, S. L.

    2011-12-01

    Wladimir Köppen called vegetation "crystallized, visible climate," and his metaphor encouraged paleobotanists to climb the chain of inference from fossil plants to paleovegetation to paleoclimate. Inferring paleovegetation from fossils has turned out to be very difficult, however, and today most paleobotanical methods for inferring paleoclimate do not try to reconstruct paleovegetation as a first step. Three major approaches are widely use to infer paleoclimate from plant fossils: 1) phylogenetic inferences rely on the climatic distributions of extant relatives of fossils, 2) morphological inferences use present-day correlations of climate with plant morphology (e.g, leaf shape, wood anatomy), and 3) chemical inferences rely on correlations between climate and the stable isotopic composition of plants or organic compounds. Each approach makes assumptions that are hard to verify. Phylogenetic inference depends on accurate identification of fossils, and also assumes that evolution and/or extinction has not shifted the climatic distributions of plant lineages through time. On average this assumption is less valid for older time periods, but probably it is not radically wrong for the early Cenozoic. Morphological approaches don't require taxonomic identification of plant fossils, but do assume that correlations between plant form and climate have been constant over time. This assumption is bolstered if the ecophysiological cause of the morphology-climate correlation is well understood, but often it isn't. Stable isotopic approaches assume that present-day correlations between isotopic composition and climate apply to the past. Commonly the chemical and physiological mechanisms responsible for the correlation are moderately well known, but often the variation among different taxonomic and functional groups of plants is poorly characterized. In spite of limitations and uncertainties on all methods for inferring paleoclimate from fossil plants, broad patterns emerge from

  6. A chilling perspective on Greenland's early Cenozoic climate from coupled Hf-Nd isotopes

    NASA Astrophysics Data System (ADS)

    Scher, H. D.; Bizimis, M.; Buckley, W. P., Jr.; Duggan, B.; Bohaty, S. M.; Wilson, P. A.

    2015-12-01

    The prevailing view of northern hemisphere glaciation has been of ice sheets forming on Greenland after 2.7 Ma, with iceberg rafting as early as 15 Ma. This view is incompatible with recent results from global climate/ice sheet models that predict northern hemisphere glaciation only after CO2 falls below ~280 ppmv (occurring at 25 Ma) and with recent sediment evidence for Arctic iceberg rafting as early as the middle Eocene. However, the amount of northern hemisphere ice represented by these sediments is ambiguous and global ice budget calculations for the early Cenozoic are controversial. Here we use coupled Hf-Nd isotopes of oxyhydroxides in sediments from the upper Eocene to lower Oligocene section in ODP Site U1411 (Newfoundland Ridge) to determine when the circum-North Atlantic came under the influence of a mechanical weathering regime. Leached oxyhydroxide Hf-Nd isotopes are an indicator of weathering intensity because mechanical weathering by ice sheets mobilizes the zircon-bound Hf reservoir in the crust, which has extreme unradiogenic eHf values. Chemical weathering produces a distinct seawater array on Hf-Nd diagrams, while seawater exposed to the products of mechanical weathering plot on divergent arrays closer to the Terrestrial Array. Hf-Nd isotopes of Site U1411 leachates are grouped in a near vertical trend between the seawater and terrestrial global reference arrays. Within this group there are four distinct arrays that can be delineated by age. Samples that are late Eocene in age fall along an array that is slightly divergent from the seawater array. The aspect of the Hf-Nd isotope data changes permanently after the first step of the EOT, falling along arrays that are systematically offset in the direction of the terrestrial arrays. The steepest array, most proximal to the terrestrial array, is comprised of samples deposited between 33.7 and 32.2 Ma. These results indicate a circum-North Atlantic weathering regime appeared in the earliest Oligocene.

  7. The Pivoting Motion of Africa in the Late Cretaceous and Early Cenozoic

    NASA Astrophysics Data System (ADS)

    Cande, S. C.

    2014-12-01

    Indo-Atlantic plate kinematics during the Late Cretaceous and early Cenozoic were characterized by two distinctive events: a period of unusually rapid motion of India starting around 70 Ma and lasting until roughly 50 Ma, and a large slowdown of Africa also starting around 70 Ma and also lasting roughly 20 Ma. The synchroneity of India's fastest motion (66 to 63 Ma) with the maximum outpouring of Deccan flood basalts has been noted by many, leading some to conclude that the speedup was caused by the arrival of the Reunion plume head at the Earth's surface. The slowdown of Africa starting at 70 Ma has not received as much attention, but the near synchroneity of this event with India's speedup is striking and suggests that it too may have been driven by the Reunion plume head. Establishing the connection between the changes in motion of India and Africa remains an outstanding problem. Cande and Stegman (2011) showed that an analysis of Africa's motion in which the stage poles constraining the relative motion of North America-Africa, South America-Africa and Antarctica-Africa are treated as velocity vectors reveal important aspects of Africa's motion that had not previously been noticed. Specifically they showed that Africa had a distinctive pivoting motion that started at the same time that India started to speed up. Here I use recently revised Antarctic-Africa stage poles to re-examine the pivoting motion of Africa. These rotations show that there were two distinctive events in Africa's motion. There was an initial, large slowdown (decrease in the rate of counterclockwise rotation) of Africa about a pivot point in the North Atlantic around 71 Ma, about the time India starts to speed up. This initial slowing was followed by a second event in which the change in motion was a gradual but prolonged increase in the rate of Africa's clockwise rotation about a pivot point in the South Atlantic that lasted from 68 Ma until 53 Ma, the period of the most rapid motion of India

  8. The deformation and tectonic evolution of the Huahui Basin, northeast China, during the Cretaceous-Early Cenozoic

    NASA Astrophysics Data System (ADS)

    Huang, Shiqi; Dong, Shuwen; Zhang, Yueqiao; Zhang, Fuqin; Huang, Dezhi; Wei, Shi; Li, Zhenhong; Miao, Laicheng; Zhu, Mingshuai

    2015-12-01

    The Cretaceous Huahui basin lies along the Dunhua-Mishan fault (Dun-Mi fault), which is one of the northern branches of Tan-Lu fault in northeastern China. The study of the formation and the tectonic movements that took place in the basin can provide very important information for deciphering the tectonic evolution of northeastern China during Cretaceous-Early Cenozoic. The field analysis of fault-slip data collected from different units in the basin, demonstrates changes in the paleo-stress state that reveals a three-stage tectonic movement during the Cretaceous-Early Cenozoic. The earliest tectonic movement was NW-SE extension, which was responsible for the formation of the basin and sedimentary infilling during the Early Cretaceous. Dating of the andesite in the fill indicates it began during about 119.17 ± 0.80 Ma. The extensional structures formed in the Latest Early Cretaceous imply that this tectonic movement lasted until the beginning of the Late Cretaceous. The second stage began during the Late Cretaceous when the tectonic stress state changed and was dominated by NW-SE compression and NE-SW extension, which caused the inversion of the extensional basin. This compression folded the Early Cretaceous deposits and reactivated pre-existing faults and uplifted pre-existing granite in the basin. The strata and the unconformity in the basin shows that this compressive phase probably took place during the Late Cretaceous and ended in the Early Paleogene by a compressional regime with NE-SW compression and NW-SE extension that constitutes the third stage. The tectonic stress fields documented in the Huahui basin provide insight into the influences of plate tectonics on the crustal evolution of northeastern China during the Cretaceous to Early Cenozoic. These results show that the development of Huahui basin was controlled by the northwestward subduction of the paleo-Pacific plate during the Cretaceous, and later by the far-field effects of India-Asia collision in

  9. Mesozoic and early Cenozoic tectonic convergence to rifting transition prior to the opening of the South China Sea

    NASA Astrophysics Data System (ADS)

    Li, C.; Shi, H.; Wu, G.; Zhou, Z.; Zhang, X.; Zhang, Q.

    2011-12-01

    A better understanding of Mesozoic and early Cenozoic tectonic processes in southeast China will help answer intriguing scientific questions such as the mechanisms and timings of tectonic transitions from the Tethyan regime to the Pacific regime, and from an active continental margin to a passive one, occurred subsequently in the area during the Mesozoic and early Cenozoic. In addition, Mesozoic sedimentary basins on the northern South China Sea continental margin become potential targets for hydrocarbon explorations but their geological evolution remains relatively unknown. From both regional and local perspectives, we tackle these problems in this paper using an integrated approach, drawing conclusions from gravitational, magnetic and seismic data, and from paleolithofacies. We found that 3D analytical signal amplitudes calculated from magnetic anomalies better define regional tectonic boundaries inland and residual Mesozoic basins offshore. 3D analytical signal amplitudes in southeast China suggest that either the degree of magmatism or the average magnetic susceptibility of igneous rocks, or both, increase appreciably southeastwards, and the late-stage A-type igneous rocks along the southeast coast of China tend to be of the strongest magmatism and/or the largest susceptibility. Gravitational, magnetic and seismic data together define detailed Mesozoic sedimentary and tectonic structures on the northern South China Sea continental margin, and reveal four major unconformities (Mesozoic/Cenozoic, J/K, T-J/J, and P/T-J). These four unconformities correspond clearly with regional tectonic events revealed by nine time snapshots of paleogeographic maps that we built from regional geological surveys, published studies and field work. Our paleogeographic maps cover a very large area, and show both sedimentary and volcanic facies, and regional faults. These maps clearly confirm an early Mesozoic northwestward migrating orogeny that dispelled gradually the Tethyan regime

  10. Was the Antarctic glaciation delayed by a high degassing rate during the early Cenozoic?

    NASA Astrophysics Data System (ADS)

    Lefebvre, Vincent; Donnadieu, Yannick; Goddéris, Yves; Fluteau, Frédéric; Hubert-Théou, Lucie

    2013-06-01

    The Cenozoic is a period of major climatic changes marked by the formation of the Antarctic ice sheet at the Eocene/Oligocene (E/O) boundary. The opening of the southern ocean seaways and the decrease in atmospheric CO2 are two processes generally evoked to explain this E/O cooling. The debate is still ongoing but modeling studies tend to demonstrate that the decrease in atmospheric CO2 is the main driver of the cooling. However, uncertainties persist on what drove the decrease in atmospheric CO2 during the Cenozoic. In this study, we investigate the impact of continental drift, lithology distribution and volcanic degassing rates on the atmospheric carbon dioxide concentration over the Cenozoic within a coupled climate-carbon model (GEOCLIM). In the model, the continental drift results in driving low atmospheric CO2 levels during the Eocene and the Oligocene. The dispersed configuration and the location of a large continental area (North Africa, northern South America) within the Inter Tropical Convergence Zone (ITCZ) promote CO2 consumption by weathering, forcing CO2 to remain low. Icehouse conditions are also promoted by the drifting of India and the weathering of the Deccan basalts in the ITCZ during the Eocene, and by the weathering of the Ethiopian traps during the Oligocene. To prevent the building up of the Antarctic ice sheet at the Eocene, the model needs enhanced solid Earth degassing flux by 50% so that atmospheric CO2 levels stay above the glacial threshold (750 ppm). We find that the decrease in atmospheric CO2 from the Eocene to the Oligocene is probably due to a reduction in the source of volcanic CO2 rather than an increase in silicate weathering. The model results furthermore suggest that during the Miocene period, the northward drifting of both the African plate and India (including the Deccan traps) might have decreased the continental surface exposed to chemical weathering, therefore generating higher CO2 values. Finally, the uplift of the

  11. Early Cenozoic Shortening and Foreland Basin Sedimentation in the Marañon Fold-thrust Belt, Central Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Jackson, L. J.; Carlotto, V.; Horton, B. K.; Rosell, L. N.

    2015-12-01

    The Marañon fold-thrust belt in the westernmost Andes of Peru has long been considered a robust signature of early Cenozoic shortening in the Andean orogenic belt. However, the structural details and potential records of coeval synorogenic sedimentation remain elusive. We report results from new geologic mapping (1:50,000), cross-section construction, and U-Pb geochronology for the Matucana-Ticlio region at 11-12°S along the Lima-La Oroya highway. Zircon U-Pb age data from volcanic rocks and clastic basin fill provide a maximum depositional age of ~43 Ma for a middle Eocene syndeformational unit that we identify as the Anta Formation, which overlies the Paleocene Casapalca Formation. Sedimentary lithofacies and unconformable relationships within the volcaniclastic Anta Formation reveal mixed fluvial, alluvial-fan, and volcanic depositional conditions during shortening accommodated by a NE-verging thrust/reverse fault and corresponding backthrust (here named the Chonta fault system). Our cross-section reconstruction and geochronological data indicate that the region is a critical, possibly unique, zone of the broader NE-directed Marañon fold-thrust belt where pre-Neogene synorogenic sediments and their associated structures are preserved. We interpret this combined structural and basin system as an Eocene-age (Incaic) frontal thrust belt and corresponding foredeep to wedge-top depozone in central Peru. As one of the better-constrained segments of the Marañon fold-thrust belt, this zone provides insight into potential linkages with elusive early Cenozoic (Incaic) structures and foreland basin fill of the Western Cordillera and Altiplano farther south in the central Andean plateau.

  12. Developmental origins of early antisocial behavior

    PubMed Central

    CALKINS, SUSAN D.; KEANE, SUSAN P.

    2009-01-01

    Early antisocial behavior has its origins in childhood behavior problems, particularly those characterized by aggressive and destructive behavior. Deficits in self-regulation across multiple domains of functioning, from the physiological to the cognitive, are associated with early behavior problems, and may place children at greater risk for the development of later antisocial behavior. Data are presented from a longitudinal study of early self-regulation and behavior problems, the RIGHT Track Research Project, demonstrating that children at greatest risk for early and persistent problem behavior display patterns of physiological and emotional regulation deficits early in life. Parenting behavior and functioning have also been examined as predictors of trajectories of early problem behavior, and some data support the interaction of parenting and self-regulation as significant predictors of patterns of problematic behavior and ongoing problems with the regulation of affect. Peer relationships also affect and are affected by early self-regulation skills, and both may play a role in academic performance and subsequent school success. These data provide evidence that the social contexts of early family and peer relationships are important moderators of the more proximal mechanism of self-regulation, and both types of processes, social and biobehavioral, are likely implicated in early antisocial tendencies. Implications of these findings on self-regulation and early behavior problems are discussed in terms of future research and treatment approaches. PMID:19825259

  13. Various depths of origin of clinopyroxene megacrysts from Cenozoic alkaline lavas of occurrences in Lower Silesia (SW Poland)

    NASA Astrophysics Data System (ADS)

    Lipa, Danuta; Puziewicz, Jacek; Ntaflos, Theodoros; Woodland, Alan

    2016-04-01

    to use the geobarometer of Nimis & Ulmer (1998), which yielded the following pressures of crystallization: Księginki 1.05 - 1.23 GPa, Ostrzyca 0.06 - 0.19 GPa, Lutynia 1.08 - 1.13 GPa. The pressure of crystallization of the Księginki megacrysts fits well the interpretation of Puziewicz et al. (2011) who considered the megacrysts to come from syn-volcanic host magma cumulates formed in lava batches temporarily residing at uppermost mantle depth. By analogy, we are of the opinion that the Lutynia megacrysts are of similar origin, except the "LREE depleted" one. The Ostrzyca megacrysts were interpreted by Lipa et al. (2014) to crystallize from the host lava at mid-crustal depths. The 87Sr/86Sr and 143Nd/144Nd isotope ratios of the Ostrzyca and Lutynia megacrysts are identical to those of the European Asthenospheric Reservoir and are consistent with their proposed syn-volcanic origin, except the "LREE depleted" megacryst, for which isotopic ratios have not been analysed. The 87Sr/86Sr and 143Nd/144Nd isotope ratios of the Księginki megacrysts are slightly enriched in radiogenic Sr. Funding. This study was possible thanks to the project NCN UMO-2014/15/B/ST10/00095 of Polish National Centre for Science. References Badura, J., Pécskay, Z., Koszowska, E., Wolska, A., Zuchiewicz, W., Przybylski, B., 2006. Przegląd Geologiczny 54.2., 145-153. Lipa, D., Puziewicz, J., Ntaflos, T., Matusiak-Małek, M., 2014. Geoscience Notes 2.2. 49-72. Nimis, P., Ulmer, P., 1998. Contributions to Mineralogy and Petrology 133, 122-135. Pécskay, Z., Birkenmajer, K., 2013. In: Büchner, J., Rapprich, V., Tietz, O., (eds.) Basalt 2013 - Cenozoic Magmatism in Central Europe. Abstracts & Excursion Guides, Czech Geological Survey, Prague & Senckenberg Museum of Natural History, Görlitz, 66-67. Puziewicz, J., Koepke, J., Grégoire, M., Ntaflos, T., Matusiak-Małek, M., 2011. J. of Petrology 52, 2107-2145.

  14. Improving the Ginkgo CO2 barometer: Implications for the early Cenozoic atmosphere

    NASA Astrophysics Data System (ADS)

    Barclay, Richard S.; Wing, Scott L.

    2016-04-01

    Stomatal properties of fossil Ginkgo have been used widely to infer the atmospheric concentration of CO2 in the geological past (paleo-pCO2). Many of these estimates of paleo-pCO2 have relied on the inverse correlation between pCO2 and stomatal index (SI - the proportion of epidermal cells that are stomata) observed in recent Ginkgo biloba, and therefore depend on the accuracy of this relationship. The SI - pCO2 relationship in G. biloba has not been well documented, however. Here we present new measurements of SI for leaves of G. biloba that grew under pCO2 from 290 to 430 ppm. We prepared and imaged all specimens using a consistent procedure and photo-documented each count. As in prior studies, we found a significant inverse relationship between SI and pCO2, however, the relationship is more linear, has a shallower slope, and a lower correlation coefficient than previously reported. We examined leaves of G. biloba grown under pCO2 of 1500 ppm, but found they had highly variable SI and a large proportion of malformed stomata. We also measured stomatal dimensions, stomatal density, and the carbon isotope composition of G. biloba leaves in order to test a mechanistic model for inferring pCO2. This model overestimated observed pCO2, performing less well than the SI method between 290 and 430 ppm. We used our revised SI-pCO2 response curve, and new observations of selected fossils, to estimate late Cretaceous and Cenozoic pCO2 from fossil Ginkgo adiantoides. All but one of the new estimates is below 800 ppm, and together they show little long-term change in pCO2 or relation to global temperature. The low Paleogene pCO2 levels indicated by the Ginkgo SI proxy are not consistent with the high pCO2 inferred by some climate and carbon cycle models. We cannot currently resolve the discrepancy, but greater agreement between proxy data and models may come from a better understanding of the stomatal response of G. biloba to elevated pCO2, better counts and measurements of

  15. Structural deformation and evolution of right-lateral strike-slip tectonics of the Liaohe western depression during the early Cenozoic

    NASA Astrophysics Data System (ADS)

    Li, Zhigang; Jia, Dong; Chen, Wei; Zhang, Yikun; Wang, Maomao; Li, Yiquan; Li, Haibin; Li, Shiqin; Zhou, Xiaojun; Wu, Long; Zhang, Meng; Shen, Li; Sun, Chuang; Jin, Ke

    2013-11-01

    The Tan-Lu fault zone (TLFZ) traverses the Liaohe western depression (LHWD), affords an exceptional opportunity to reveal the structural deformation and evolution of a major strike-slip fault of the LHWD using three dimensional seismic data and well data. In this paper, based on structural interpretations of the 3-D seismic data of the LHWD, combined with depth slice and seismic coherency, a variety of structural features in relation to right-lateral strike-slip fault (the western branch of the Tan-Lu fault) have been revealed presence in the depression, such as thrust faults (Xinlongtai, Taian-Dawa, and Chenjia faults), structural wedges, positive flower structures, and en echelon normal faults. Fault cutoffs, growth strata and the Neogene unconformity developed in the LHWD verify that the activity of right-lateral strike-slip from the late Eocene to Neogene (ca. 43-23 Ma). The study indicates that the right-lateral strike-slip played an important role in controlling the structural deformation and evolution of the LHWD in the early Cenozoic. Moreover, the front structural wedge generated the gross morphology of the Xinlongtai anticline and developed the Lengdong faulted anticline during the late Eocene, and the back structural wedge refolded the Lengdong faulted anticline zone in the late Eocene to the early Oligocene. Wrench-related structures (the Chenjia thrust fault and the en echelon normal faults) were developed during the late Oligocene. Uniform subsidence in the Neogene to Quaternary. Furthermore, the driving force of the right-lateral strike-slip deformation was originated from N-S extension stress related to the opening of the Japan Sea and NE-SW compression, as the far-field effect of India-Eurasia convergence.

  16. Molecular phylogenetic analysis of nuclear genes suggests a Cenozoic over-water dispersal origin for the Cuban solenodon.

    PubMed

    Sato, Jun J; Ohdachi, Satoshi D; Echenique-Diaz, Lazaro M; Borroto-Páez, Rafael; Begué-Quiala, Gerardo; Delgado-Labañino, Jorge L; Gámez-Díez, Jorgelino; Alvarez-Lemus, José; Nguyen, Son Truong; Yamaguchi, Nobuyuki; Kita, Masaki

    2016-01-01

    The Cuban solenodon (Solenodon cubanus) is one of the most enigmatic mammals and is an extremely rare species with a distribution limited to a small part of the island of Cuba. Despite its rarity, in 2012 seven individuals of S. cubanus were captured and sampled successfully for DNA analysis, providing new insights into the evolutionary origin of this species and into the origins of the Caribbean fauna, which remain controversial. We conducted molecular phylogenetic analyses of five nuclear genes (Apob, Atp7a, Bdnf, Brca1 and Rag1; total, 4,602 bp) from 35 species of the mammalian order Eulipotyphla. Based on Bayesian relaxed molecular clock analyses, the family Solenodontidae diverged from other eulipotyphlan in the Paleocene, after the bolide impact on the Yucatan Peninsula, and S. cubanus diverged from the Hispaniolan solenodon (S. paradoxus) in the Early Pliocene. The strikingly recent divergence time estimates suggest that S. cubanus and its ancestral lineage originated via over-water dispersal rather than vicariance events, as had previously been hypothesised. PMID:27498968

  17. Molecular phylogenetic analysis of nuclear genes suggests a Cenozoic over-water dispersal origin for the Cuban solenodon.

    PubMed

    Sato, Jun J; Ohdachi, Satoshi D; Echenique-Diaz, Lazaro M; Borroto-Páez, Rafael; Begué-Quiala, Gerardo; Delgado-Labañino, Jorge L; Gámez-Díez, Jorgelino; Alvarez-Lemus, José; Nguyen, Son Truong; Yamaguchi, Nobuyuki; Kita, Masaki

    2016-08-08

    The Cuban solenodon (Solenodon cubanus) is one of the most enigmatic mammals and is an extremely rare species with a distribution limited to a small part of the island of Cuba. Despite its rarity, in 2012 seven individuals of S. cubanus were captured and sampled successfully for DNA analysis, providing new insights into the evolutionary origin of this species and into the origins of the Caribbean fauna, which remain controversial. We conducted molecular phylogenetic analyses of five nuclear genes (Apob, Atp7a, Bdnf, Brca1 and Rag1; total, 4,602 bp) from 35 species of the mammalian order Eulipotyphla. Based on Bayesian relaxed molecular clock analyses, the family Solenodontidae diverged from other eulipotyphlan in the Paleocene, after the bolide impact on the Yucatan Peninsula, and S. cubanus diverged from the Hispaniolan solenodon (S. paradoxus) in the Early Pliocene. The strikingly recent divergence time estimates suggest that S. cubanus and its ancestral lineage originated via over-water dispersal rather than vicariance events, as had previously been hypothesised.

  18. Molecular phylogenetic analysis of nuclear genes suggests a Cenozoic over-water dispersal origin for the Cuban solenodon

    PubMed Central

    Sato, Jun J.; Ohdachi, Satoshi D.; Echenique-Diaz, Lazaro M.; Borroto-Páez, Rafael; Begué-Quiala, Gerardo; Delgado-Labañino, Jorge L.; Gámez-Díez, Jorgelino; Alvarez-Lemus, José; Nguyen, Son Truong; Yamaguchi, Nobuyuki; Kita, Masaki

    2016-01-01

    The Cuban solenodon (Solenodon cubanus) is one of the most enigmatic mammals and is an extremely rare species with a distribution limited to a small part of the island of Cuba. Despite its rarity, in 2012 seven individuals of S. cubanus were captured and sampled successfully for DNA analysis, providing new insights into the evolutionary origin of this species and into the origins of the Caribbean fauna, which remain controversial. We conducted molecular phylogenetic analyses of five nuclear genes (Apob, Atp7a, Bdnf, Brca1 and Rag1; total, 4,602 bp) from 35 species of the mammalian order Eulipotyphla. Based on Bayesian relaxed molecular clock analyses, the family Solenodontidae diverged from other eulipotyphlan in the Paleocene, after the bolide impact on the Yucatan Peninsula, and S. cubanus diverged from the Hispaniolan solenodon (S. paradoxus) in the Early Pliocene. The strikingly recent divergence time estimates suggest that S. cubanus and its ancestral lineage originated via over-water dispersal rather than vicariance events, as had previously been hypothesised. PMID:27498968

  19. An Early Cenozoic Ichthyolith Record from Demerara Rise (ODP Site 1258: Equatorial Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Bryant, R. M.; Sibert, E. C.; Norris, R. D.

    2014-12-01

    Peak global warmth during the early Eocene is a partial analog to the future structure of marine ecosystems in a high pCO2 world. Early Eocene oceans are generally regarded as supporting warmer oceans with lower overall productivity than today owing to the low concentrations of preserved organic matter in pelagic sediments. It has also been proposed that Eocene oceans were about as productive as now, but higher respiration rates in a warmer-than-modern ocean more efficiently recycled organic matter and nutrients. We investigated Eocene export productivity and its link to taxonomic diversity using the pelagic ichthyolith record. Ichthyoliths are calcium phosphate microfossils including fish teeth and shark denticles and their fragments, and are a unique paleoceanographic proxy because they represent a fossil record for marine vertebrates, a charismatic and tangible part of the ecosystem that generally goes unrepresented in the fossil record. Analysis of the ichthyolith record in Ocean Drilling Program Site 1258 (NE South America) shows a remarkable increase in accumulation rate of ichthyoliths from the Paleocene into the Eocene, suggesting that onset of the Early Eocene Climatic Optimum in the equatorial Atlantic was favorable to fish production. Our results suggest that, if anything, the early Eocene maintained higher productivity than in the late Paleocene. These results compare favorably with a record of ichthyolith accumulation in the South Pacific (DSDP 596), which also indicates unusually high rates of fish productivity in the peak of Eocene warm climates. Low resolution data sets from the Pacific suggest an explosion of morphotypes during the warm period associated with an increase in ichthyolith mass accumulation rates. Peak global warmth, therefore, appears to be associated with both higher fish production and higher taxonomic diversity than suggested by previous reconstructions of Eocene primary production. Increasing the amount of continuous records of

  20. Polyphase exhumation in the western Qinling Mountains, China: Rapid Early Cretaceous cooling along a lithospheric-scale tear fault and pulsed Cenozoic uplift

    PubMed Central

    Heberer, Bianca; Anzenbacher, Thomas; Neubauer, Franz; Genser, Johann; Dong, Yunpeng; Dunkl, István

    2014-01-01

    The western sector of the Qinling–Dabie orogenic belt plays a key role in both Late Jurassic to Early Cretaceous “Yanshanian” intracontinental tectonics and Cenozoic lateral escape triggered by India–Asia collision. The Taibai granite in the northern Qinling Mountains is located at the westernmost tip of a Yanshanian granite belt. It consists of multiple intrusions, constrained by new Late Jurassic and Early Cretaceous U–Pb zircon ages (156 ± 3 Ma and 124 ± 1 Ma). Applying various geochronometers (40Ar/39Ar on hornblende, biotite and K-feldspar, apatite fission-track, apatite [U–Th–Sm]/He) along a vertical profile of the Taibai Mountain refines the cooling and exhumation history. The new age constraints record the prolonged pre-Cenozoic intracontinental deformation as well as the cooling history mostly related to India–Asia collision. We detected rapid cooling for the Taibai granite from ca. 800 to 100 °C during Early Cretaceous (ca. 123 to 100 Ma) followed by a period of slow cooling from ca. 100 Ma to ca. 25 Ma, and pulsed exhumation of the low-relief Cretaceous peneplain during Cenozoic times. We interpret the Early Cretaceous rapid cooling and exhumation as a result from activity along the southern sinistral lithospheric scale tear fault of the recently postulated intracontinental subduction of the Archean/Palaeoproterozoic North China Block beneath the Alashan Block. A Late Oligocene to Early Miocene cooling phase might be triggered either by the lateral motion during India–Asia collision and/or the Pacific subduction zone. Late Miocene intensified cooling is ascribed to uplift of the Tibetan Plateau. PMID:27065503

  1. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate.

    PubMed

    Anagnostou, Eleni; John, Eleanor H; Edgar, Kirsty M; Foster, Gavin L; Ridgwell, Andy; Inglis, Gordon N; Pancost, Richard D; Lunt, Daniel J; Pearson, Paul N

    2016-04-25

    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ(11)B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the

  2. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate.

    PubMed

    Anagnostou, Eleni; John, Eleanor H; Edgar, Kirsty M; Foster, Gavin L; Ridgwell, Andy; Inglis, Gordon N; Pancost, Richard D; Lunt, Daniel J; Pearson, Paul N

    2016-05-19

    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ(11)B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the

  3. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate

    NASA Astrophysics Data System (ADS)

    Anagnostou, Eleni; John, Eleanor H.; Edgar, Kirsty M.; Foster, Gavin L.; Ridgwell, Andy; Inglis, Gordon N.; Pancost, Richard D.; Lunt, Daniel J.; Pearson, Paul N.

    2016-05-01

    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ11B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the

  4. Cenozoic planktonic marine diatom diversity and correlation to climate change.

    PubMed

    Lazarus, David; Barron, John; Renaudie, Johan; Diver, Patrick; Türke, Andreas

    2014-01-01

    Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂(18)O (climate) and carbon cycle records (∂(13)C, and 20-0 Ma pCO2). Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p<.001; detrended, r = .6, p = .01). Diatoms were 20% less diverse in the early late Miocene, when temperatures and pCO2 were only moderately higher than today. Diversity is strongly correlated to both ∂(13)C and pCO2 over the last 15 my (for both: r>.9, detrended r>.6, all p<.001), but only weakly over the earlier Cenozoic, suggesting increasingly strong linkage of diatom and climate evolution in the Neogene. Our results suggest that many living marine planktonic diatom species may be at risk of extinction in future warm oceans, with an unknown but potentially substantial negative impact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic

  5. Cenozoic Planktonic Marine Diatom Diversity and Correlation to Climate Change

    PubMed Central

    Lazarus, David; Barron, John; Renaudie, Johan; Diver, Patrick; Türke, Andreas

    2014-01-01

    Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂18O (climate) and carbon cycle records (∂13C, and 20-0 Ma pCO2). Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p<.001; detrended, r = .6, p = .01). Diatoms were 20% less diverse in the early late Miocene, when temperatures and pCO2 were only moderately higher than today. Diversity is strongly correlated to both ∂13C and pCO2 over the last 15 my (for both: r>.9, detrended r>.6, all p<.001), but only weakly over the earlier Cenozoic, suggesting increasingly strong linkage of diatom and climate evolution in the Neogene. Our results suggest that many living marine planktonic diatom species may be at risk of extinction in future warm oceans, with an unknown but potentially substantial negative impact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic

  6. The Cenozoic Diversity of Agglutinated Foraminifera - Evidence for a late Oligocene to early Miocene diversification event

    NASA Astrophysics Data System (ADS)

    Kaminski, Michael; Setoyama, Eiichi; Kender, Sev; Cetean, Claudia

    2014-05-01

    their poorly established taxonomy. Genera such as Alveovalvulina, Guppyella, Goesella, and Alveovalvulinella, are typical of assemblages found in subtropical oxygen minimum zones, especially in West Africa and the Caribbean. These agglutinated genera are not found in coeval assemblages from the northern high latitudes (Kaminski et al. 2005), suggesting they are restricted to the low-latitude OMZ. It is likely that the global warming of the latest Oligocene to Early Miocene contributed to intensification of dysoxic conditions in low-latitude upwelling regions, possibly from enhanced productivity and reduced deep-sea ventilation, creating an expanded niche for these organisms that flourished in low-oxygen conditions with high particulate organic matter input. We believe a more detailed phylogenetic approach to these agglutinated genera would result in the description of new genera for individual lineages and refinement of the foraminiferal diversity record.

  7. The origin and early radiation of dinosaurs

    NASA Astrophysics Data System (ADS)

    Brusatte, Stephen L.; Nesbitt, Sterling J.; Irmis, Randall B.; Butler, Richard J.; Benton, Michael J.; Norell, Mark A.

    2010-07-01

    Dinosaurs were remarkably successful during the Mesozoic and one subgroup, birds, remain an important component of modern ecosystems. Although the extinction of non-avian dinosaurs at the end of the Cretaceous has been the subject of intense debate, comparatively little attention has been given to the origin and early evolution of dinosaurs during the Late Triassic and Early Jurassic, one of the most important evolutionary radiations in earth history. Our understanding of this keystone event has dramatically changed over the past 25 years, thanks to an influx of new fossil discoveries, reinterpretations of long-ignored specimens, and quantitative macroevolutionary analyses that synthesize anatomical and geological data. Here we provide an overview of the first 50 million years of dinosaur history, with a focus on the large-scale patterns that characterize the ascent of dinosaurs from a small, almost marginal group of reptiles in the Late Triassic to the preeminent terrestrial vertebrates of the Jurassic and Cretaceous. We provide both a biological and geological background for early dinosaur history. Dinosaurs are deeply nested among the archosaurian reptiles, diagnosed by only a small number of characters, and are subdivided into a number of major lineages. The first unequivocal dinosaurs are known from the late Carnian of South America, but the presence of their sister group in the Middle Triassic implies that dinosaurs possibly originated much earlier. The three major dinosaur lineages, theropods, sauropodomorphs, and ornithischians, are all known from the Triassic, when continents were joined into the supercontinent Pangaea and global climates were hot and arid. Although many researchers have long suggested that dinosaurs outcompeted other reptile groups during the Triassic, we argue that the ascent of dinosaurs was more of a matter of contingency and opportunism. Dinosaurs were overshadowed in most Late Triassic ecosystems by crocodile-line archosaurs and

  8. Evidence for deep-water production in the North Pacific Ocean during the early Cenozoic warm interval.

    PubMed

    Thomas, Deborah J

    2004-07-01

    The deep-ocean circulation is responsible for a significant component of global heat transport. In the present mode of circulation, deep waters form in the North Atlantic and Southern oceans where surface water becomes sufficiently cold and dense to sink. Polar temperatures during the warmest climatic interval of the Cenozoic era (approximately 65 to 40 million years (Myr) ago) were significantly warmer than today, and this may have been a consequence of enhanced oceanic heat transport. However, understanding the relationship between deep-ocean circulation and ancient climate is complicated by differences in oceanic gateways, which affect where deep waters form and how they circulate. Here I report records of neodymium isotopes from two cores in the Pacific Ocean that indicate a shift in deep-water production from the Southern Ocean to the North Pacific approximately 65 Myr ago. The source of deep waters reverted back to the Southern Ocean 40 Myr ago. The relative timing of changes in the neodymium and oxygen isotope records indicates that changes in Cenozoic deep-water circulation patterns were the consequence, not the cause, of extreme Cenozoic warmth.

  9. Kinematic constraints on the forces driving the rapid motion of India in the Late Cretaceous and early Cenozoic

    NASA Astrophysics Data System (ADS)

    Cande, S. C.

    2013-12-01

    Indo-Atlantic plate kinematics during the Late Cretaceous and early Cenozoic were dominated by a period of roughly 25 Ma during which the motions of Africa and India appear to have been coupled: a rapid speedup of India around 68 Ma was accompanied by a dramatic slowdown of Africa and the subsequent slowdown of India around 50 Ma was accompanied by a speedup of Africa. The sudden and dramatic speedup of India between 68 and 66 Ma is almost certainly related to the arrival of the Reunion plume head; the short period of India's fastest motion (roughly 190 mm/yr during Chron C29R) is synchronous with the time of the greatest outpouring of Deccan flood basalts. However, the significance of the nearly simultaneous slowdown of Africa at 70 Ma and the later anti-correlated kinematic changes around 50 Ma is unclear. Distinguishing between a plume head force and the effects of ridge push and slab pull requires as accurate a model as possible of the motions of India and Africa. Here I will discuss how improvements in Indo-Atlantic Euler rotations, updates to the geomagnetic polarity time scale, and the analysis of stage pole paths, have clarified the nature of several major Indo-Atlantic tectonic events. Recently determined sets of closely spaced Euler rotations for the Southwest, Southeast and Central Indian ridges better constrain the time of significant changes in relative plate motions. However, although improvements in the geomagnetic polarity time scale in the Eocene and Paleocene provide a more accurate portrayal of relative plate velocities following India's speedup, remaining uncertainties in the time scale, particularly in the Late Cretaceous, leave the timing of other important spreading rate changes more poorly resolved. Where the Euler rotations are sufficiently accurate, an analysis of stage pole paths provides additional insight into the significance of the plate motion changes. Treating stage poles as velocity vectors and examining the changes in the velocity

  10. Timing of Cenozoic Basin Formation in Northern Sundaland, Southeast Asia

    SciTech Connect

    Liew, K.K. )

    1994-07-01

    The present shorelines of northern Sundaland show preferential northwest-southeast elongation. This trend is parallel for subparallel to major faults and suture in this region. Continental wrench/shear basins developed on the western portion of this region and back-arc basins developed on the western portion of this region and back-arc basins in the rest of the region are also aligned to this trend. Different basin geometries and structural patterns among Cenozoic basins in northern Sundaland indicate different origins and/or timing of basin formation. Wrench faulting has played a significant role in the formation of these Cenozoic basins. The continued collision of the Indian subplate with the Eurasian plate during early Cenozoic has caused a redistribution of stress within this region. Zones of weakness have been reactivated or created with large lateral displacements by these changes, thus initiating the subsidence of these basins. The episodic initiation of Cenozoic basins may have begun as early as Jurassic and continued till Oligocene.

  11. Diversity history of Cenozoic marine siliceous plankton

    NASA Astrophysics Data System (ADS)

    Lazarus, David; Renaudie, Johan

    2014-05-01

    Marine planktonic diatoms and polycystine radiolarians, both with shells of opaline silica, make up a large part of the deep-sea sediment fossil record. Diatom export of organic material to the deep ocean and sediments strongly affects the global carbon cycle; while both groups compete for, and are regulated by the availability of, dissolved silica derived from global weathering. Diatoms and radiolarians also both have a relatively (compared to foraminifera or coccolithophores) complex biogeography, with diverse, endemic polar and tropical assemblages. Changes in past diatom and radiolarian diversity can be used to understand how the ocean's biologic pump has evolved, how co-evolution between groups occurs, and how nutrient availability controls evolutionary change. Lazarus et al. (2014) recently showed that diatom diversity increased by a factor of ca 3.5X over the Cenozoic, with a temporary peak in the latest Eocene, a late Oligocene-early Miocene low interval, very strong diversification in the late Miocene-early Pliocene, and minor decline in the late Pliocene-Recent. Only Phanerozoic scale radiolarian diversity estimates have been available until now, and these are strongly biased by sample size. We employed similar data (NSB database) and methods (1 my bins, 'sqs' subsampling, outlier removal using Pacman trims) as Lazarus et al. (2014) to calculate, for the first time, a detailed estimate of radiolarian diversity history, and origination and extinction rates over the last 50 my, the period for which sufficient NSB data is available. Radiolarian diversity increases almost monotonically by a factor of 5, with relatively rapid increases in the mid Eocene (high relative origination) and early Miocene (due to low extinction rates), and a moderate decline in the Plio-Pleistocene due to high extinction rates. Combined high rates of both extinction and origination, with little diversity change, are seen at the Eocene-Oligocene boundary. Most of these events can be

  12. The origin and early evolution of dinosaurs.

    PubMed

    Langer, Max C; Ezcurra, Martin D; Bittencourt, Jonathas S; Novas, Fernando E

    2010-02-01

    The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis, and Panphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as "all descendants of the most recent common ancestor of birds and Triceratops". Recent cladistic analyses of early dinosaurs agree that Pisanosaurus mertii is a basal ornithischian; that Herrerasaurus ischigualastensis and Staurikosaurus pricei belong in a monophyletic Herrerasauridae; that herrerasaurids, Eoraptor lunensis, and Guaibasaurus candelariensis are saurischians; that Saurischia includes two main groups, Sauropodomorpha and Theropoda; and that Saturnalia tupiniquim is a basal member of the sauropodomorph lineage. On the contrary, several aspects of basal dinosaur phylogeny remain controversial, including the position of herrerasaurids, E. lunensis, and G. candelariensis as basal theropods or basal saurischians, and the affinity and/or validity of more fragmentary taxa such as Agnosphitys cromhallensis, Alwalkeria maleriensis, Chindesaurus bryansmalli, Saltopus elginensis, and

  13. The origin and early evolution of dinosaurs.

    PubMed

    Langer, Max C; Ezcurra, Martin D; Bittencourt, Jonathas S; Novas, Fernando E

    2010-02-01

    The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis, and Panphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as "all descendants of the most recent common ancestor of birds and Triceratops". Recent cladistic analyses of early dinosaurs agree that Pisanosaurus mertii is a basal ornithischian; that Herrerasaurus ischigualastensis and Staurikosaurus pricei belong in a monophyletic Herrerasauridae; that herrerasaurids, Eoraptor lunensis, and Guaibasaurus candelariensis are saurischians; that Saurischia includes two main groups, Sauropodomorpha and Theropoda; and that Saturnalia tupiniquim is a basal member of the sauropodomorph lineage. On the contrary, several aspects of basal dinosaur phylogeny remain controversial, including the position of herrerasaurids, E. lunensis, and G. candelariensis as basal theropods or basal saurischians, and the affinity and/or validity of more fragmentary taxa such as Agnosphitys cromhallensis, Alwalkeria maleriensis, Chindesaurus bryansmalli, Saltopus elginensis, and

  14. Cretaceous to Cenozoic evolution of the northern Lhasa Terrane and the Early Paleogene development of peneplains at Nam Co, Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Haider, Vicky L.; Dunkl, István; von Eynatten, Hilmar; Ding, Lin; Frei, Dirk; Zhang, Liyun

    2013-07-01

    Highly elevated and well-preserved peneplains are characteristic geomorphic features of the Tibetan plateau in the northern Lhasa Terrane, north-northwest of Nam Co. The peneplains were carved in granitoids and in their metasedimentary host formations. We use multi-method geochronology (zircon U-Pb and [U-Th]/He dating and apatite fission track and [U-Th]/He dating) to constrain the post-emplacement thermal history of the granitoids and the timing and rate of final exhumation of the peneplain areas. LA-ICP-MS U-Pb geochronology of zircons yields two narrow age groups for the intrusions at around 118 Ma and 85 Ma, and a third group records Paleocene volcanic activity (63-58 Ma) in the Nam Co area. The low-temperature thermochronometers indicate common age groups for the entire Nam Co area: zircon (U-Th)/He ages cluster around 75 Ma, apatite fission track ages around 60 Ma and apatite (U-Th)/He ages around 50 Ma. Modelling of the thermochronological data indicates that exhumation of the basement blocks took place in latest Cretaceous to earliest Paleogene time. By Middle Eocene time the relief was already flat, documented by a thin alluvial sediment sequence covering a part of the planated area. The present-day horst and graben structure of the peneplains is a Late Cenozoic feature triggered by E-W extension of the Tibetan Plateau. The new thermochronological data precisely bracket the age of the planation to Early Eocene, i.e. between ca. 55 and 45 Ma. The erosional base level can be deduced from the presence of Early Cretaceous zircon grains in Eocene strata of Bengal Basin. The sediment generated during exhumation of the Nam Co area was transported by an Early Cenozoic river system into the ocean, suggesting that planation occurred at low elevation.

  15. Mantle structure beneath eastern Africa: Evidence for a through going-mantle anomaly and its implications for the origin of Cenozoic tectonism in eastern Africa

    NASA Astrophysics Data System (ADS)

    Mulibo, G.; Tugume, F.; Julia, J.

    2012-12-01

    In this study, teleseismic earthquakes recorded on over 60 temporary AfricaArray seismic stations deployed in Uganda, Kenya, Tanzania and Zambia between 2007 and 2011 are used to invert P and S travel time residuals, together with travel time residuals from previous deployments, for a 3D image of mantle wave speeds and for examining relief on transition zone discontinuities using receiver function stacks. Tomographic images reveal a low wave speed anomaly (LWA) that dips to the SW beneath northern Zambia, extending to a depth of at least 900 km. The anomaly appears to be continuous across the transition zone, extending into the lower mantle. Receiver function stacks reveal an average transition zone thickness (TZT) across a wide region extending from central Zambia to the NE through Tanzania and into Kenya, which is ~30-40 km thinner than the global average. These results are not easily explained by models for the origin of the Cenozoic tectonism in eastern Africa that invoke a plume head or small scale convection either by edge flow or passive stretching of the lithosphere. However, the depth extent of the LWA coincident with a thin transition zone is consistent with a model invoking a through-going mantle anomaly beneath eastern Africa that links anomalous upper mantle to the African Superplume anomaly in the lower mantle beneath southern Africa. This finding indicates that geodynamic processes deep in the lower mantle are influencing surface dynamics across the Afro-Arabian rift system.

  16. Upper mantle structure under western Saudi Arabia from Rayleigh wave tomography and the origin of Cenozoic uplift and volcanism on the Arabian Shield

    SciTech Connect

    Park, Y; Nyblade, A; Rodgers, A; Al-Amri, A

    2007-11-09

    The shear velocity structure of the shallow upper mantle beneath the Arabian Shield has been modeled by inverting new Rayleigh wave phase velocity measurements between 45 and 140 s together with previously published Rayleigh wave group velocity measurement between 10 and 45 s. For measuring phase velocities, we applied a modified array method that minimizes the distortion of raypaths by lateral heterogeneity. The new shear velocity model shows a broad low velocity region in the lithospheric mantle across the Shield and a low velocity region at depths {ge} 150 km localized along the Red Sea coast and Makkah-Madinah-Nafud (MMN) volcanic line. The velocity reduction in the upper mantle corresponds to a temperature anomaly of {approx}250-330 K. These finding, in particular the region of continuous low velocities along the Red Sea and MMN volcanic line, do not support interpretations for the origin of the Cenozoic plateau uplift and volcanism on the Shield invoking two separate plumes. When combined with images of the 410 and 660 km discontinuities beneath the southern part of the Arabian Shield, body wave tomographic models, a S-wave polarization analysis, and SKS splitting results, our new model supports an interpretation invoking a thermal upwelling of warm mantle rock originating in the lower mantle under Africa that crosses through the transition zone beneath Ethiopia and moves to the north and northwest under the eastern margin of the Red Sea and the Arabian Shield. In this interpretation, the difference in mean elevation between the Platform and Shield can be attributed to isostatic uplift caused by heating of the lithospheric mantle under the Shield, with significantly higher region along the Red Sea possibly resulting from a combination of lithosphere thinning and dynamic uplift.

  17. Origin of the oceanic basalt basement of the Solomon Islands arc and its relationship to the Ontong Java Plateau-insights from Cenozoic plate motion models

    USGS Publications Warehouse

    Wells, R.E.

    1989-01-01

    Cenozoic global plate motion models based on a hotspot reference frame may provide a useful framework for analyzing the tectonic evolution of the Solomon Islands convergent margin. A postulated late Miocene collision of the Ontong Java Plateau (OJP) with a NE-facing arc is consistent with the predicted path of the OJP across the Pacific Basin and its Miocene arrival at the trench. Late-stage igneous activity (65-30 Ma) predicted for the OJP as it rode over the Samoan hotspot occurred in correlative stratigraphic sections on Malaita, the supposed accreted flake of OJP in the Solomon Islands arc. Convergence similar to the present velocities between Australia and the Pacific plates was characteristic of the last 43 million years. Prior to 43 Ma Pacific-Australia plate motions were divergent, seemingly at odds with geologic evidence for early Tertiary convergence, particularly in Papua New Guinea. A postulated South Pacific plate may have existed between Australia and the Pacific plate and would have allowed implied northward subduction along the northeastern Australia plate boundary that lasted into the early Eocene. Subsequent reorganization of plate motions in the middle Eocene correlates with middle Eocene marginal basin formation along ridges oblique to the main plate boundary. Cessation of spreading on the Pacific-South Pacific Ridge and its subsequent subduction beneath Asia followed the change in Pacific plate motion at 43 Ma. A trapped remnant of the extinct, NW-trending ridge may still lie beneath the western Philippine Sea. The terminal deformation, metamorphism and ophiolite obduction in the Eocene orogen of the southwest Pacific also correlates with the major change in Pacific plate motion at 43 Ma and the subsequent compression of the dying Eocene arc against outlying continental and oceanic crustal blocks of the Australian plate. The Solomon Islands oceanic basement may represent juxtaposition of oceanic plateaus of the Australian plate beneath

  18. Early origin of adult renal disease.

    PubMed

    Maringhini, Silvio; Corrado, Ciro; Maringhini, Guido; Cusumano, Rosa; Azzolina, Vitalba; Leone, Francesco

    2010-10-01

    Observational studies in humans and experimental studies in animals have clearly shown that renal failure may start early in life. 'Fetal programming' is regulated by adaptations occurring in uterus including maternal nutrition, placental blood supply, and epigenetic changes. Low birth weight predisposes to hypertension and renal insufficiency. Congenital abnormalities of the kidney and urinary tract, adverse postnatal events, wrong nutritional habits may produce renal damage that will become clinically relevant in adulthood. Prevention should start early in children at risk of renal disease. PMID:20822331

  19. Action Research: Its Origins and Early Application.

    ERIC Educational Resources Information Center

    Cook, Stuart W.

    This paper contains informal remarks on action research in social psychology from its post World War II origins to its current status. Kurt Lewin first described action research in the 1946 article, "Action Research and Minority Problems," as a three-step process of program planning, program execution, and follow-up evaluation. Ronald Lippitt and…

  20. Origin and early evolution of photosynthesis.

    PubMed

    Blankenship, R E

    1992-01-01

    Photosynthesis was well-established on the earth at least 3.5 thousand million years ago, and it is widely believed that these ancient organisms had similar metabolic capabilities to modern cyanobacteria. This requires that development of two photosystems and the oxygen evolution capability occurred very early in the earth's history, and that a presumed phase of evolution involving non-oxygen evolving photosynthetic organisms took place even earlier. The evolutionary relationships of the reaction center complexes found in all the classes of currently existing organisms have been analyzed using sequence analysis and biophysical measurements. The results indicate that all reaction centers fall into two basic groups, those with pheophytin and a pair of quinones as early acceptors, and those with iron sulfur clusters as early acceptors. No simple linear branching evolutionary scheme can account for the distribution patterns of reaction centers in existing photosynthetic organisms, and lateral transfer of genetic information is considered as a likely possibility. Possible scenarios for the development of primitive reaction centers into the heterodimeric protein structures found in existing reaction centers and for the development of organisms with two linked photosystems are presented.

  1. Origin and early evolution of photosynthesis

    NASA Technical Reports Server (NTRS)

    Blankenship, R. E.

    1992-01-01

    Photosynthesis was well-established on the earth at least 3.5 thousand million years ago, and it is widely believed that these ancient organisms had similar metabolic capabilities to modern cyanobacteria. This requires that development of two photosystems and the oxygen evolution capability occurred very early in the earth's history, and that a presumed phase of evolution involving non-oxygen evolving photosynthetic organisms took place even earlier. The evolutionary relationships of the reaction center complexes found in all the classes of currently existing organisms have been analyzed using sequence analysis and biophysical measurements. The results indicate that all reaction centers fall into two basic groups, those with pheophytin and a pair of quinones as early acceptors, and those with iron sulfur clusters as early acceptors. No simple linear branching evolutionary scheme can account for the distribution patterns of reaction centers in existing photosynthetic organisms, and lateral transfer of genetic information is considered as a likely possibility. Possible scenarios for the development of primitive reaction centers into the heterodimeric protein structures found in existing reaction centers and for the development of organisms with two linked photosystems are presented.

  2. Fossil gap analysis supports early Tertiary origin of trophically diverse avian orders

    NASA Astrophysics Data System (ADS)

    Bleiweiss, Robert

    1998-04-01

    Recent molecular studies have cited the general incompleteness of the fossil record to support claims that most extant avian orders diverged in the mid-Cretaceous, some 40 m.y. before their first fossil appearances in the early Cenozoic. To evaluate these assertions, I used gap analysis to estimate confidence intervals for the beginnings of the observed stratigraphic ranges for the related extant avian orders Strigiformes (owls), Caprimulgiformes (goatsuckers), and Apodiformes (swifts, hummingbirds), and for the origin of the common ancestor to this larger megaclade. Ninety-five percent confidence intervals for the origins of these groups extend no more than 2 m.y. before the Cretaceous-Tertiary (K-T) boundary and are contained within the Paleocene for strigiforms, apodiforms, and the common ancestor to the megaclade. The confidence level that these orders diverged from a common ancestor after the K-T boundary exceeds 99%. Thus, the quality of the fossil record is consistent with the classical view that trophically diverse extant bird orders arose and diversified rapidly following the widespread extinction of other terrestrial groups at the K-T boundary.

  3. The origin and early evolution of roots.

    PubMed

    Kenrick, Paul; Strullu-Derrien, Christine

    2014-10-01

    Geological sites of exceptional fossil preservation are becoming a focus of research on root evolution because they retain edaphic and ecological context, and the remains of plant soft tissues are preserved in some. New information is emerging on the origins of rooting systems, their interactions with fungi, and their nature and diversity in the earliest forest ecosystems. Remarkably well-preserved fossils prove that mycorrhizal symbionts were diverse in simple rhizoid-based systems. Roots evolved in a piecemeal fashion and independently in several major clades through the Devonian Period (416 to 360 million years ago), rapidly extending functionality and complexity. Evidence from extinct arborescent clades indicates that polar auxin transport was recruited independently in several to regulate wood and root development. The broader impact of root evolution on the geochemical carbon cycle is a developing area and one in which the interests of the plant physiologist intersect with those of the geochemist.

  4. 1. Photocopy of an early etching (Original in collection of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopy of an early etching (Original in collection of the Historical Society of Montana) BROADWAY AND JACKSON ELEVATIONS - Second Masonic Temple, Broadway & Jackson Streets, Helena, Lewis and Clark County, MT

  5. Petrogenetic evaluation of the Laohutai basalts from North China Craton: Melting of a two-component source during lithospheric thinning in the late Cretaceous-early Cenozoic

    NASA Astrophysics Data System (ADS)

    Kuang, Y. S.; Wei, X.; Hong, L. B.; Ma, J. L.; Pang, C. J.; Zhong, Y. T.; Zhao, J.-X.; Xu, Y.-G.

    2012-12-01

    While the consensus has been reached as to the lithospheric thinning beneath the North China Craton, the timing of this event remains controversial. Whether it took place during the Early Cretaceous or it extended over a period from late Triassic to early Cenozoic is a matter of hot debate. With aims of contributing to this issue, we performed geochronological and geochemical analyses on basalts of the Laohutai Formation which were emplaced in the Fushun basin at 60-70 Ma. The Laohutai Formation consists of Ne- or Hy-normative alkali basalts in the lower part and Q-normative tholeiitic basalts in the upper part. The tholeiites are characterized by positive Eu and Sr anomalies and show higher ɛNd(t) (3.2-5.3) than the co-existing alkali basalts (1.8-2.4), opposite to the common observation made in other occurrences. Depletion of highly incompatible elements, positive Nbsbnd Ta and negative Pb anomalies in the Laohutai basalts are indicative of oceanic crustal components (likely in form of pyroxenite/eclogite) in their magma source. Since Eu and Sr anomalies are not related to magmatic differentiation, the negative correlation between 87Sr/86Sri and Eu/Eu* suggests that the melting process and sampling of source heterogeneity are intrinsically related. We propose a differential melting of a two-component source in association with lithospheric thinning to account for the temporal variation of the Laohutai basalts. Specifically, earlier alkali basalts were formed by low degree of melting of a source at a greater depth, modified by melts derived from a hydrothermally altered, upper oceanic crust; whereas the later tholeiitic basalts were generated by high degree of melting of a gabbroic lower oceanic crust and minor peridotite at a shallower depth. When the lithospheric lid effect is applied, this petrogenetic model suggests the late Cretaceous-early Cenozoic as an important period of lithospheric thinning, therefore leaning support to the idea of the protracted

  6. The Armorican Massif (Western France) - A buried relief two times exhumed in response to Iberia-Eurasia movements (Early Cretaceous, base of Cenozoic)

    NASA Astrophysics Data System (ADS)

    Bessin, Paul; Guillocheau, François; Robin, Cécile; Bauer, Hugues; Schroëtter, Jean-Michel

    2014-05-01

    The Armorican Massif is an outcropping Variscan basement located in Western France. The age of its exhumation is debated, as most of the outcropping European basements: Is this relief a remnant of the planation of the Variscan Belt or a buried and then exhumed relief at time of the North-Atlantic (Biscay Bay) opening during Early Cretaceous or/and during the Africa-Eurasia convergence? We performed a geomorphological study (based on DEM analysis and field controls) of the different landforms of the Armorican Massif. The dating of those relief forms is based on their geometrical relationships with the weatherings and dated preserved sediments. Our results allow to propose a model of evolution of the Armorican Massif and of its relief for the Mesozoic to Cenozoic period and underscore four main points: (1) The Armorican relief preserved old landforms - planation surfaces (mainly pediments and pediplains) - of Triassic (?) to Early Cretaceous age buried by Jurassic and Upper Cretaceous (chalk) carbonate platforms. (2) Those paleo-landforms were exhumed at two periods (i) Early Cretaceous in response to the opening of the Biscay Bay and (ii) Upermost Cretaceous-Paleocene at time of the Iberia-Eurasia increasing of convergence. (3) A major planation surface - called the Armorican Surface - result from the Early Cretaceous physical and chemical (laterite) erosion when the Armorican Massif was the North rift shoulder of the Biscay Bay. This planation surface is later deformed (buckling?) and eroded during Uppermost Cretaceous and Paleocene. (4) During Paleogene times, a last generation of pediments is shaped and then flooded by the Mid-Miocene eustatic sea-level rise. (5) The Armorican relief and landforms is later incised by rivers, (i) during Upper Miocene to Pliocene and (ii) at the Early to Middle Pleistocene transition with the incision of the present-day valleys in both response to uplift (Apulia-Eurasia convergence) and climate (precipitation) change.

  7. The Border Ranges fault system in Glacier Bay National Park, Alaska: Evidence for major early Cenozoic dextral strike-slip motion

    USGS Publications Warehouse

    Smart, K.J.; Pavlis, T.L.; Sisson, V.B.; Roeske, S.M.; Snee, L.W.

    1996-01-01

    The Border Ranges fault system of southern Alaska, the fundamental break between the arc basement and the forearc accretionary complex, is the boundary between the Peninsular-Alexander-Wrangellia terrane and the Chugach terrane. The fault system separates crystalline rocks of the Alexander terrane from metamorphic rocks of the Chugach terrane in Glacier Bay National Park. Mylonitic rocks in the zone record abundant evidence for dextral strike-slip motion along north-northwest-striking subvertical surfaces. Geochronologic data together with regional correlations of Chugach terrane rocks involved in the deformation constrain this movement between latest Cretaceous and Early Eocene (???50 Ma). These findings are in agreement with studies to the northwest and southeast along the Border Ranges fault system which show dextral strike-slip motion occurring between 58 and 50 Ma. Correlations between Glacier Bay plutons and rocks of similar ages elsewhere along the Border Ranges fault system suggest that as much as 700 km of dextral motion may have been accommodated by this structure. These observations are consistent with oblique convergence of the Kula plate during early Cenozoic and forearc slivering above an ancient subduction zone following late Mesozoic accretion of the Peninsular-Alexander-Wrangellia terrane to North America.

  8. Rate of Cenozoic explosive volcanism in the North Atlantic Ocean inferred from deep sea cores

    NASA Astrophysics Data System (ADS)

    Donn, W. L.; Ninkovich, D.

    1980-10-01

    On the basis of all available piston and DSDP cores taken from the seafloor around Iceland an attempt is made to establish a history of major explosive North Atlantic Cenozoic volcanism from the distribution of volcanic ash layers. The earliest sediment reached is early Eocene. After interpolating for missing data and correcting for effects of prevailing winds and regional plate tectonics, the analysis provides an estimate of the rate of explosive Cenozoic volcanism. Two epochs appear outstanding in rates of volcanism; middle Eocene shows the highest rate, and Pliocene, next highest, has about half the Eocene rate. These are followed in decreasing order by Pleistocene, Miocene, and Oligocene. The analysis further suggests that the Cenozoic ash layers originated in subaerial volcanism related to the growth of Iceland.

  9. Early to Late Cenozoic structural inheritance of Paleozoic basement structures in the northern Alpine foreland: examples from eastern France and northern Switzerland

    NASA Astrophysics Data System (ADS)

    Madritsch, Herfried

    2014-05-01

    During his time at the Geological Institute of the University of Basel, Peter Ziegler was the main initiator of the EUCOR-URGENT project, a joint multi-disciplinary research and training programme aiming at a better understanding of seismic hazard, neotectonics and evolution of the Upper Rhine Graben and surrounding areas. Throughout the duration of the programme from 1999 to 2007 the EUCOR-URGENT network embraced more than 40 Ph.D. students, 20 Post-Docs and 18 senior researchers, who were based at one of the 25 involved universities or national organizations. Peter's natural drive, networking capabilities and scientific enthusiasm were without doubt the main reasons for this success story. The Rhine-Bresse Transfer Zone (RBTZ) in eastern France, one of the natural laboratories investigated within the EUCOR-URGENT framework, is a major segment of the European Cenozoic Rift system (Ziegler, 1992) and formed by structural inheritance of the pre-existing Late Paleozoic Burgundy Trough. The Mid-Eocene to Oligocene evolution of the sinistral transtensional RBTZ was kinematically linked to crustal extension across the Upper Rhine and Bresse Grabens (Lacombe et al., 1993). From the Early Miocene onward the RBTZ further evolved under the influence of the far field effects of the Alpine collision involving Late Miocene to Pliocene NW-ward propagation of the thin-skinned Jura Thrust Belt but also thick-skinned reactivation of the Late Paleozoic and Paleogene fault systems in the RBTZ. In fact, shortening throughout the RBTZ appears to be still mildly active, as is indicated by one of the very few clearly oblique-compressive focal mechanisms in the northern Alpine foreland and evidenced by geomorphologic investigations that yielded Late Quaternary folding of fluvial meanders in the area of Besançon (Madritsch et al. 2010). The Late Paleozoic Burgundy Trough as well as the Jura Thrust Belt continue eastward into northern Switzerland. In this area, reprocessed and newly

  10. Cenozoic geodynamics of the Bering Sea region

    NASA Astrophysics Data System (ADS)

    Chekhovich, V. D.; Sukhov, A. N.; Sheremet, O. G.; Kononov, M. V.

    2012-05-01

    In the Early Cenozoic before origination of the Aleutian subduction zone 50-47 Ma ago, the northwestern (Asian) and northeastern (North American) parts of the continental framework of the Pacific Ocean were active continental margins. In the northwestern part, the island-arc situation, which arose in the Coniacian, remained with retention of the normal lateral series: continent-marginal sea-island arc-ocean. In the northeastern part, consumption of the oceanic crust beneath the southern margin of the continental Bering shelf also continued from the Late Cretaceous with the formation of the suprasubduction volcanic belt. The northwestern and northeastern parts of the Paleopacific were probably separated by a continuation of the Kula-Pacific Transform Fracture Zone. Change of the movement of the Pacific oceanic plates from the NNW to NW in the middle Eocene (50-47 Ma ago) was a cause of the origin of the Aleutian subduction zone and related Aleutian island arc. In the captured part of the Paleopacific (proto-Bering Sea), the ongoing displacement of North America relative to Eurasia in the middle-late Eocene gave rise to the formation of internal structural elements of the marginal sea: the imbricate nappe structure of the Shirshov Ridge and the island arc of the Bowers Ridge. The Late Cenozoic evolution was controlled by subduction beneath the Kamchatka margin and its convergence with the Kronotsky Terrane in the south. A similar convergence of the Koryak margin with the Goven Terrane occurred in the north. The Komandorsky minor oceanic basin opened in the back zone of this terrane. Paleotectonic reconstructions for 68-60, 56-52, 50-38, 30-15, and 15-6 Ma are presented.

  11. Deep-sea food bonanzas: early Cenozoic whale-fall communities resemble wood-fall rather than seep communities.

    PubMed

    Kiel, Steffen; Goedert, James L

    2006-10-22

    The evolutionary history of invertebrate communities utilizing whale carcasses and sunken wood in the deep-sea is explored using fossil evidence. Compared to modern whale-fall communities, the Eo-Oligocene examples lack those vent-type taxa that most heavily rely on sulphide produced by anaerobic breakdown of bone lipids, but are very similar in their trophic structure to contemporaneous wood-falls. This sheds doubt on the hypothesis that whale-falls were evolutionary stepping stones for taxa that now inhabit hydrothermal vents and seeps. We suggest that the whale-fall communities reported here represent a new ecologic stage among whale-falls, which we have coined the 'chemosymbiotic opportunist stage' and that the 'sulphophilic stage' of modern whale-falls developed during the Early Miocene, resulting from a significant increase in both body size and/or oil content of bones among cetaceans during this time.

  12. Deep-sea food bonanzas: early Cenozoic whale-fall communities resemble wood-fall rather than seep communities

    PubMed Central

    Kiel, Steffen; Goedert, James L

    2006-01-01

    The evolutionary history of invertebrate communities utilizing whale carcasses and sunken wood in the deep-sea is explored using fossil evidence. Compared to modern whale-fall communities, the Eo-Oligocene examples lack those vent-type taxa that most heavily rely on sulphide produced by anaerobic breakdown of bone lipids, but are very similar in their trophic structure to contemporaneous wood-falls. This sheds doubt on the hypothesis that whale-falls were evolutionary stepping stones for taxa that now inhabit hydrothermal vents and seeps. We suggest that the whale-fall communities reported here represent a new ecologic stage among whale-falls, which we have coined the ‘chemosymbiotic opportunist stage’ and that the ‘sulphophilic stage’ of modern whale-falls developed during the Early Miocene, resulting from a significant increase in both body size and/or oil content of bones among cetaceans during this time. PMID:17002948

  13. Early origin of parental care in Mesozoic carrion beetles.

    PubMed

    Cai, Chen-Yang; Thayer, Margaret K; Engel, Michael S; Newton, Alfred F; Ortega-Blanco, Jaime; Wang, Bo; Wang, Xiang-Dong; Huang, Di-Ying

    2014-09-30

    The reconstruction and timing of the early stages of social evolution, such as parental care, in the fossil record is a challenge, as these behaviors often do not leave concrete traces. One of the intensely investigated examples of modern parental care are the modern burying beetles (Silphidae: Nicrophorus), a lineage that includes notable endangered species. Here we report diverse transitional silphids from the Mesozoic of China and Myanmar that provide insights into the origins of parental care. Jurassic silphids from Daohugou, sharing many defining characters of Nicrophorinae, primitively lack stridulatory files significant for parental care communications; although morphologically similar, Early Cretaceous nicrophorines from the Jehol biota possess such files, indicating that a system of parental care had evolved by this early date. More importantly, burying beetles of the genus Nicrophorus have their earliest first record in mid-Cretaceous Burmese amber, and document early evolution of elaborate biparental care and defense of small vertebrate carcasses for their larvae. Parental care in the Early Cretaceous may have originated from competition between silphids and their predators. The rise of the Cretaceous Nicrophorinae implies a biology similar to modern counterparts that typically feed on carcasses of small birds and mammals.

  14. The Origin of Dust in the Early Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2011-01-01

    In this talk I will describe the origin of dust in the early universe. I will be presenting observations of the spectral energy distribution of the galaxy J1148+5251, and present estimates of the dust mass in this high redshift (z=6.4) object. I will then discuss the origin of this dust, and the role of SN and AGB stars as dust sources, and the effect of SNRs on the destruction of dust in the interstellar medium of this galaxy.

  15. The Origin of Dust in the Early Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2010-01-01

    In this talk I will describe the origin of dust in the early universe. I will be presenting observations of the spectral energy distribution of the galaxy J1148+5251, and present estimates of the dust mass in this high redshift (z=6.4) object. I will then discuss the origin of this dust, and the role of SN and AGB stars as dust sources, and the effect of SNRs on the destruction of dust in the interstellar medium of this galaxy.

  16. Risk factors and early origins of chronic obstructive pulmonary disease.

    PubMed

    Postma, Dirkje S; Bush, Andrew; van den Berge, Maarten

    2015-03-01

    Chronic obstructive pulmonary disease is mainly a smoking-related disorder and affects millions of people worldwide, with a large effect on individual patients and society as a whole. Although the disease becomes clinically apparent around the age of 40-50 years, its origins can begin very early in life. Different risk factors in very early life--ie, in utero and during early childhood--drive the development of clinically apparent chronic obstructive pulmonary disease in later life. In discussions of which risk factors drive chronic obstructive pulmonary disease, it is important to realise that the disease is very heterogeneous and at present is largely diagnosed by lung function only. In this Review, we will discuss the evidence for risk factors for the various phenotypes of chronic obstructive pulmonary disease during different stages of life.

  17. The origin of Cenozoic basalts from central Inner Mongolia, East China: The consequence of recent mantle metasomatism genetically associated with seismically observed paleo-Pacific slab in the mantle transition zone

    NASA Astrophysics Data System (ADS)

    Guo, Pengyuan; Niu, Yaoling; Sun, Pu; Ye, Lei; Liu, Jinju; Zhang, Yu; Feng, Yue-xing; Zhao, Jian-xin

    2016-01-01

    We present new major element, trace element and Sr-Nd-Hf isotope data on Cenozoic basalts from central Inner Mongolia (CIM) in eastern China to study the origin of the incompatible-element enriched component in these basalts by testing whether or not the paleo-Pacific plate lying in the mantle transition zone beneath eastern China is the immediate cause. The Cenozoic CIM basalts have a large variation in major element, trace element and isotope compositions. Fractional crystallization of olivine and clinopyroxene can readily explain much of the major element compositional variation, while trace element and isotope ratio variation largely reflect source heterogeneities and source histories. The variably low 87Sr/86Sr, high εNd, high εHf and elevated ratios of high field strength element over large ion lithophile element (HFSE/LILE, e.g., Nb/U, Nb/La) indicate that the CIM basalts are of asthenospheric origin, which is characterized by mixing between DMM and EM1. However, the CIM basalts are enriched in incompatible elements and enriched in the progressively more incompatible elements (e.g., variably high [La/Sm]N = 1.66-3.38), suggesting that the magma source(s) must have been enriched prior to the major episode of the magmatism. Participation of subducted ocean crust in the mantle source region of these basalts is recognized, but cannot be the major source material because the subducted ocean crust is expectedly too depleted in incompatible elements (e.g., [La/Sm]N ≪ 1) to produce magmas highly enriched in incompatible elements with [La/Sm]N ≫ 1. With the new data, we consider that low mass fraction (low-F) melt metasomatism in the seismic low velocity zone (LVZ) beneath eastern China as the most likely process to generate incompatible-element enriched source(s) for mantle melts parental to the Cenozoic CIM basalts. The low-F metasomatic agent most likely resulted from dehydration melting of the transition-zone paleo-Pacific slab, which has been taking place

  18. The origin and early evolution of life on earth

    NASA Technical Reports Server (NTRS)

    Oro, J.; Miller, Stanley L.; Lazcano, Antonio

    1990-01-01

    Results of the studies that have provided insights into the cosmic and primitive earth environments are reviewed with emphasis on those environments in which life is thought to have originated. The evidence bearing on the antiquity of life on the earth and the prebiotic significance of organic compounds found in interstellar clouds and in primitive solar-system bodies such as comets, dark asteroids, and carbonaceous chondrites are assessed. The environmental models of the Hadean and early Archean earth are discussed, as well as the prebiotic formation of organic monomers and polymers essential to life. The processes that may have led to the appearance in the Archean of the first cells are considered, and possible effects of these processes on the early steps of biological evolution are analyzed. The significance of these results to the study of the distribution of life in the universe is evaluated.

  19. Evolutionary origin and early biogeography of otophysan fishes (Ostariophysi: Teleostei).

    PubMed

    Chen, Wei-Jen; Lavoué, Sébastien; Mayden, Richard L

    2013-08-01

    The biogeography of the mega-diverse, freshwater, and globally distributed Otophysi has received considerable attention. This attraction largely stems from assumptions as to their ancient origin, the clade being almost exclusively freshwater, and their suitability as to explanations of trans-oceanic distributions. Despite multiple hypotheses explaining present-day distributions, problems remain, precluding more parsimonious explanations. Underlying previous hypotheses are alternative phylogenies for Otophysi, uncertainties as to temporal diversification and assumptions integral to various explanations. We reexamine the origin and early diversification of this clade based on a comprehensive time-calibrated, molecular-based phylogenetic analysis and event-based approaches for ancestral range inference of lineages. Our results do not corroborate current phylogenetic classifications of otophysans. We demonstrate Siluriformes are never sister to Gymnotiformes and Characiformes are most likely nonmonophyletic. Divergence time estimates specify a split between Cypriniformes and Characiphysi with the fragmentation of Pangea. The early diversification of characiphysans either predated, or was contemporary with, the separation of Africa and South America, and involved a combination of within- and between-continental divergence events for these lineages. The intercontinental diversification of siluroids and characoids postdated major intercontinental tectonic fragmentations (<90 Mya). Post-tectonic drift dispersal events are hypothesized to account for their current distribution patterns. PMID:23888847

  20. Evolutionary origin and early biogeography of otophysan fishes (Ostariophysi: Teleostei).

    PubMed

    Chen, Wei-Jen; Lavoué, Sébastien; Mayden, Richard L

    2013-08-01

    The biogeography of the mega-diverse, freshwater, and globally distributed Otophysi has received considerable attention. This attraction largely stems from assumptions as to their ancient origin, the clade being almost exclusively freshwater, and their suitability as to explanations of trans-oceanic distributions. Despite multiple hypotheses explaining present-day distributions, problems remain, precluding more parsimonious explanations. Underlying previous hypotheses are alternative phylogenies for Otophysi, uncertainties as to temporal diversification and assumptions integral to various explanations. We reexamine the origin and early diversification of this clade based on a comprehensive time-calibrated, molecular-based phylogenetic analysis and event-based approaches for ancestral range inference of lineages. Our results do not corroborate current phylogenetic classifications of otophysans. We demonstrate Siluriformes are never sister to Gymnotiformes and Characiformes are most likely nonmonophyletic. Divergence time estimates specify a split between Cypriniformes and Characiphysi with the fragmentation of Pangea. The early diversification of characiphysans either predated, or was contemporary with, the separation of Africa and South America, and involved a combination of within- and between-continental divergence events for these lineages. The intercontinental diversification of siluroids and characoids postdated major intercontinental tectonic fragmentations (<90 Mya). Post-tectonic drift dispersal events are hypothesized to account for their current distribution patterns.

  1. A new integrated tectonic model for the Mesozoic-Early Cenozoic subduction, spreading, accretion and collision history of Tethys adjacent to the southern margin of Eurasia (NE Turkey)

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair; Parlak, Osman; Ustaömer, Timur; Taslı, Kemal; İnan, Nurdan; Dumitrica, Paulian; Karaoǧlan, Fatih

    2014-05-01

    A major Tethyan suture zone (İzmir-Ankara-Erzincan-Kars Suture Zone) borders the southern margin of Eurasia throughout the Pontides. In eastern Turkey the suture zone includes a range of redeposited terrigenous and volcanogenic sedimentary rocks, pelagic sedimentary rocks and also igneous/metamorphic rocks. The igneous rocks are mostly basaltic blocks and thrust sheets within melange, plus relatively intact, to dismembered, ophiolitic rocks (oceanic crust). Two alternative hypotheses have been developed and tested during this work: 1. The suture zone preserves a single Andean-type active continental margin associated with northward subduction, accretion and arc magmatism during Mesozoic-early Cenozoic time; 2. The suture zone preserves the remnants of two different subduction zones, namely a continental margin subduction zone (as above) and an intra-ocean subduction zone (preferred model). To determine the age of the oceanic crust, relevant to both hypotheses, zircons were extracted from basic ophiolitic rocks (both intact and dismembered) and dated by the U/Pb method (U238/U236) using an ion probe at Edinburgh University. This yielded the following results for the intact ophiolites (Ma): plagiogranite cutting sheeted dykes of the Refahiye ophiolite (east of Erzincan), 183.6±1.7 (2σ); isotropic gabbro from the Karadaǧ ophiolite (northeast of Erzurum), 179.4±1.7 (2σ). In addition, dismembered ophiolites gave the following ages: gabbro cumulate (Bayburt area), 186.2±1.4 (2σ), gabbro cumulate (N of Horasan), 178.1±1.8 (2σ). Furthermore, two samples from a kilometre-sized (arc-related) tonalite body, mapped as cutting a thrust sheet of ophiolitic isotropic gabbro in the Kırdaǧ area, yielded ages of 182.1±3.2 (2σ) and 185.1±3.0 (2σ) Ma. We infer that the ophiolitic and related magmatic arc rocks formed by spreading in a supra-subduction zone setting during the late Early Jurassic (Pliensbachian-Toarcian). This amends former assumptions of a Late

  2. Early and multiple origins of metastatic lineages within primary tumors

    PubMed Central

    Zhao, Zi-Ming; Zhao, Bixiao; Bai, Yalai; Iamarino, Atila; Gaffney, Stephen G.; Schlessinger, Joseph; Lifton, Richard P.; Rimm, David L.; Townsend, Jeffrey P.

    2016-01-01

    Many aspects of the evolutionary process of tumorigenesis that are fundamental to cancer biology and targeted treatment have been challenging to reveal, such as the divergence times and genetic clonality of metastatic lineages. To address these challenges, we performed tumor phylogenetics using molecular evolutionary models, reconstructed ancestral states of somatic mutations, and inferred cancer chronograms to yield three conclusions. First, in contrast to a linear model of cancer progression, metastases can originate from divergent lineages within primary tumors. Evolved genetic changes in cancer lineages likely affect only the proclivity toward metastasis. Single genetic changes are unlikely to be necessary or sufficient for metastasis. Second, metastatic lineages can arise early in tumor development, sometimes long before diagnosis. The early genetic divergence of some metastatic lineages directs attention toward research on driver genes that are mutated early in cancer evolution. Last, the temporal order of occurrence of driver mutations can be inferred from phylogenetic analysis of cancer chronograms, guiding development of targeted therapeutics effective against primary tumors and metastases. PMID:26858460

  3. Early and multiple origins of metastatic lineages within primary tumors.

    PubMed

    Zhao, Zi-Ming; Zhao, Bixiao; Bai, Yalai; Iamarino, Atila; Gaffney, Stephen G; Schlessinger, Joseph; Lifton, Richard P; Rimm, David L; Townsend, Jeffrey P

    2016-02-23

    Many aspects of the evolutionary process of tumorigenesis that are fundamental to cancer biology and targeted treatment have been challenging to reveal, such as the divergence times and genetic clonality of metastatic lineages. To address these challenges, we performed tumor phylogenetics using molecular evolutionary models, reconstructed ancestral states of somatic mutations, and inferred cancer chronograms to yield three conclusions. First, in contrast to a linear model of cancer progression, metastases can originate from divergent lineages within primary tumors. Evolved genetic changes in cancer lineages likely affect only the proclivity toward metastasis. Single genetic changes are unlikely to be necessary or sufficient for metastasis. Second, metastatic lineages can arise early in tumor development, sometimes long before diagnosis. The early genetic divergence of some metastatic lineages directs attention toward research on driver genes that are mutated early in cancer evolution. Last, the temporal order of occurrence of driver mutations can be inferred from phylogenetic analysis of cancer chronograms, guiding development of targeted therapeutics effective against primary tumors and metastases. PMID:26858460

  4. The Origin of Dwarf Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Toloba, Elisa

    2012-10-01

    Abridge. We have conducted a spectrophotometric study of dwarf early-type galaxies (dEs) in the Virgo cluster and in regions of lower density. We have found that these galaxies show many properties in common with late-type galaxies but not with more massive early-types (E/S0). The properties of the dEs in Virgo show gradients within the cluster. dEs in the outer parts of the Virgo cluster are kinematically supported by rotation, while those in the center are supported by the random motions of their stars (i.e. pressure supported). The rotationally supported dEs have disky isophotes and faint underlying spiral/irregular substructures, they also show younger ages than those pressure supported, which have boxy isophotes and are smooth and regular, without any substructure. We compare the position of these dEs with massive early-type galaxies in the Faber-Jackson and Fundamental Plane relations, and we find that, although there is no difference between the position of rotationally and pressure supported dEs, both deviate from the relations of massive early-type galaxies in the direction of dwarf spheroidal systems (dSphs). We have used their offset with respect to the Fundamental Plane of E/S0 galaxies to estimate their dark matter fraction. All the properties studied in this work agree with a ram pressure stripping scenario, where late-type galaxies infall into the cluster, their interaction with the intergalactic medium blows away their gas and, as a result, they are quenched in a small amount of time. However, those dEs in the center of the cluster seem to have been fully transformed leaving no trace of their possible spiral origin, thus, if that is the case, they must have experienced a more violent mechanism in combination with ram pressure stripping.

  5. The effect of mantle plume heads on the motion between the African and Antarctic plates in the Late Cretaceous and Early Cenozoic

    NASA Astrophysics Data System (ADS)

    Cande, S. C.; Patriat, P.

    2012-12-01

    Indo-Atlantic plate kinematics during the Late Cretaceous and Early Cenozoic were dominated by a period of roughly 25 million years during which the motions of India and Africa appear to have been coupled: a rapid speedup of India's absolute motion starting around 68 Ma was accompanied by a dramatic slowdown of Africa's absolute motion and the subsequent slowdown of India between 52 and 45 Ma was accompanied by a speedup of Africa. Cande and Stegman (2011) proposed that the coupled nature of these plate motions was caused by the arrival of the Reunion plume head at the Earth's surface: the speedup of India (slowdown of Africa) was due to the onset of the plume head, while the slowdown of India (speedup of Africa) was due to the waning of the plume head. This hypothesis is controversial since the slowdown of India has long been attributed to the initial collision of India with Eurasia and it is not clear how mantle plume heads affect plate motions. In order to better understand the cause of the coupled motions of India and Africa we have re-examined the motion of Africa relative to Antarctica as constrained by magnetic anomalies and fracture zones on the Southwest Indian Ridge (SWIR). The bends of the SWIR fracture zones contain a particularly important record of plate motion changes: a gradual ccw bend starting at Chron 32 is followed by a sharp cw bend at Chron 24. We present here a set of 13 revised rotations for the SWIR for the time interval from Chron 34 to Chron 18. These rotations quantify in more detail than in previous studies the changes recorded by the SWIR fracture zones. The onset of the ccw change in spreading direction and start of a rapid decrease in spreading rate on the SWIR occurs around Chron 32 (71 Ma). From Chron 32 to Chron 24 the motion between Africa and Antarctica is characterized by a continuous and apparently smooth migration of the Africa-Antarctic stage pole. The most dramatic change in motion along the SWIR is the sudden cw bend of

  6. The epilog of the western paleo-Pacific subduction: Inferred from spatial and temporal variations and geochemistry of the Late Cretaceous to Early Cenozoic silicic magmatism in coastal South China

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Hong; Lee, Chi-Yu; Shinjo, Ryuichi

    2016-01-01

    The Late Cretaceous to Early Cenozoic magmatism in the South China coastal area produced some amounts of rhyolitic rocks in two phases, which may be used to unravel the geohistory of the epilog of the paleo-Pacific plate subduction system. Essence of the Phase I rocks is the high temperature rhyolite (A-type)-trachydacite association in north Fujian (95-91 Ma) that was coeval with regional A-type granites. They succeeded the vast rhyolite-dacite-andesite (RDA) associations and I-type granitoids (113.5-96 Ma) and preceded the silicic-dominating rhyolite/basalt bimodal suites or monolithologic rhyolite in Zhejiang (89-86 Ma). Phase II rocks include (a) the RDA association or rhyolite alone in some drifted continental fragments nearby (83-56 Ma) and (b) the following rift-basin related rhyolite-trachyte/basalt bimodal suites in Guangdong and west Taiwan (56-38 Ma). The silicic volcanism, spatially changed from a NE-SW to the nearly E-W direction after 83 Ma, may reflect tectonic-driven eruptions occurred in the post-orogenic extensional (Phase I), resumed plate subducting (Phase IIa) and continental margin rifting (Phase IIb) stages. Rhyolitic rocks basically are shoshonitic to high-K calc-alkaline affinities while the Phase IIa RDA associations are mostly concentrated in the high-K to medium-K calc-alkaline series. All these rocks generally possess a continental arc character in tectonic discrimination diagrams, except shoshonitic rocks that have within-plate signatures. Based on the trace element and Nd-Pb isotope data, A-type rocks are suggested to have derived from mixing between trachydacitic (or syenitic) magmas and crustal melts of various sources under the high temperature condition (±metasomatism), and the succeeding silicic rocks are derivatives of the contaminated lithospheric mantle melts through crystal fractionation. On the other hand, Phase II silicic rocks are mainly the fractionation products of mafic magmas originated either from the lithospheric or

  7. The origin and early phylogenetic history of jawed vertebrates

    PubMed Central

    Brazeau, Martin D.; Friedman, Matt

    2015-01-01

    The focus of study for nearly two centuries1, fossils of early gnathostomes—or jawed vertebrates—yield key clues about the evolutionary assembly of the bodyplan common to the group, as well the divergence of the two living gnathostome lineages: the cartilaginous and bony fishes2,3. A series of remarkable new palaeontological discoveries4-10, analytical advances and innovative reinterpretations of old fossils11-14 have fundamentally altered a decades-old consensus on the relationships of extinct gnathostomes15,16, delivering a new evolutionary framework3,6,10-14 for exploring major questions which remain unanswered, including the origin of jaws17-19. PMID:25903631

  8. [Developmental origins of cardiovascular disease and early intervention windows].

    PubMed

    Mi, Jie

    2016-01-01

    Cardiovascular diseases are the major threat to human health and underlie almost half of all deaths in China. Even more serious, obesity and cardiometabolic risk factors have emerged to be prevalent in children and adolescents of some affluent regions. As scientific knowledge emerges on the role of nutritional factors and exposures to environmental risk factors in the developmental origins of health and disease, evidence suggests that it is imperative to create and implement early effective prevention strategies, including optimisation of nutrition at first 1 000 days in life course and reduction of risk factors of obesity exposures during whole childhood, to suppress the rising trend of cardiovascular disease, otherwise, the future costs of diagnosis and treatment are likely to be unaffordable.

  9. Early Archean Spherule Beds-Confirmation of Impact Origin

    NASA Technical Reports Server (NTRS)

    Shukolyukov, A.; Kyte, F. T.; Lugmair, G. W.; Lowe, D. R.; Byerly, G. R.

    2000-01-01

    The oldest record of major impact events on Earth may be a number of early Archean (3.5 to 3.2 Ga) spherule beds that have been identified in the Barberton Greenstone Belt, South Africa. Several field, petrographic, and geochemical criteria distinguish these beds from typical volcanic and clastic sediments. These criteria include the wide geographic distribution of two beds in a variety of depositional environments, the presence of relict quench textures, absence of juvenile volcaniclastic debris within the beds, and extreme enrichment of Ir and other platinum group elements (PGE) as compared to surrounding sediments. Some researchers, however, argued for a terrestrial origin for spherule bed formation, possibly related to volcanism and gold mineralization.

  10. Cenozoic ice volume and margin erosion

    SciTech Connect

    Miller, K.C.; Fairbanks, R.G.; Mountain, G.S.

    1985-01-01

    Cenozoic benthic foraminiferal oxygen isotopic data indicates that the world was glaciated in the early Oligocene, middle Oligocene, latest Oligocene, and middle Miocene to Recent, but are insufficient to resolve if the world was ice free at other times. The authors relate Oligocene and younger intervals of ice growth to continental margin erosional events. Relationships between eustasy and continental margin sedimentation are controversial. Coastal onlap is indirectly linked with rising sea level, occurring either when subsidence exceeds the rate of sea level fall or during sea-level rise. Although chronostratigraphic breaks are often local in origin, inter-regional unconformities result from eustatic lowerings. Strong evidence for eustatic lowerings is provided by the incision of canyons on margins. Chronostratigraphic breaks and canyons have noted on the US and Irish margins near the lower/upper Oligocene and middle/upper Miocene boundaries. These periods of margin erosion are temporally linked with oxygen isotopic evidence for ice growth, with erosion correlating with the greatest rate of ice growth. If the Eocene was ice free, there may have been mechanistic differences between Eocene erosion and Oligocene to Recent glacio-eustatic erosion. The authors present seismic stratigraphic evidence from the New Jersey margin that indicates contrasting styles of margin erosion between the Lower Tertiary and Upper Tertiary.

  11. Origin of Bacteriochlorophyll a and the Early Diversification of Photosynthesis

    PubMed Central

    Cardona, Tanai

    2016-01-01

    Photosynthesis originated in the domain Bacteria billions of years ago; however, the identity of the last common ancestor to all phototrophic bacteria remains undetermined and speculative. Here I present the evolution of BchF or 3-vinyl-bacteriochlorophyll hydratase, an enzyme exclusively found in bacteria capable of synthetizing bacteriochlorophyll a. I show that BchF exists in two forms originating from an early divergence, one found in the phylum Chlorobi, including its paralogue BchV, and a second form that was ancestral to the enzyme found in the remaining anoxygenic phototrophic bacteria. The phylogeny of BchF is consistent with bacteriochlorophyll a evolving in an ancestral phototrophic bacterium that lived before the radiation event that gave rise to the phylum Chloroflexi, Chlorobi, Acidobacteria, Proteobacteria, and Gemmatimonadetes, but only after the divergence of Type I and Type II reaction centers. Consequently, it is suggested that the lack of phototrophy in many groups of extant bacteria is a derived trait. PMID:26953697

  12. Mechanical origins of rightward torsion in early chick brain development

    NASA Astrophysics Data System (ADS)

    Chen, Zi; Guo, Qiaohang; Dai, Eric; Taber, Larry

    2015-03-01

    During early development, the neural tube of the chick embryo undergoes a combination of progressive ventral bending and rightward torsion. This torsional deformation is one of the major organ-level left-right asymmetry events in development. Previous studies suggested that bending is mainly due to differential growth, however, the mechanism for torsion remains poorly understood. Since the heart almost always loops rightwards that the brain twists, researchers have speculated that heart looping affects the direction of brain torsion. However, direct evidence is lacking, nor is the mechanical origin of such torsion understood. In our study, experimental perturbations show that the bending and torsional deformations in the brain are coupled and that the vitelline membrane applies an external load necessary for torsion to occur. Moreover, the asymmetry of the looping heart gives rise to the chirality of the twisted brain. A computational model and a 3D printed physical model are employed to help interpret these findings. Our work clarifies the mechanical origins of brain torsion and the associated left-right asymmetry, and further reveals that the asymmetric development in one organ can induce the asymmetry of another developing organ through mechanics, reminiscent of D'Arcy Thompson's view of biological form as ``diagram of forces''. Z.C. is supported by the Society in Science - Branco Weiss fellowship, administered by ETH Zurich. L.A.T acknowledges the support from NIH Grants R01 GM075200 and R01 NS070918.

  13. Triassic origin and early radiation of multicellular volvocine algae

    PubMed Central

    Herron, Matthew D.; Hackett, Jeremiah D.; Aylward, Frank O.; Michod, Richard E.

    2009-01-01

    Evolutionary transitions in individuality (ETIs) underlie the watershed events in the history of life on Earth, including the origins of cells, eukaryotes, plants, animals, and fungi. Each of these events constitutes an increase in the level of complexity, as groups of individuals become individuals in their own right. Among the best-studied ETIs is the origin of multicellularity in the green alga Volvox, a model system for the evolution of multicellularity and cellular differentiation. Since its divergence from unicellular ancestors, Volvox has evolved into a highly integrated multicellular organism with cellular specialization, a complex developmental program, and a high degree of coordination among cells. Remarkably, all of these changes were previously thought to have occurred in the last 50–75 million years. Here we estimate divergence times using a multigene data set with multiple fossil calibrations and use these estimates to infer the times of developmental changes relevant to the evolution of multicellularity. Our results show that Volvox diverged from unicellular ancestors at least 200 million years ago. Two key innovations resulting from an early cycle of cooperation, conflict and conflict mediation led to a rapid integration and radiation of multicellular forms in this group. This is the only ETI for which a detailed timeline has been established, but multilevel selection theory predicts that similar changes must have occurred during other ETIs. PMID:19223580

  14. Origins and Early Evolution of the tRNA Molecule

    PubMed Central

    Tamura, Koji

    2015-01-01

    Modern transfer RNAs (tRNAs) are composed of ~76 nucleotides and play an important role as “adaptor” molecules that mediate the translation of information from messenger RNAs (mRNAs). Many studies suggest that the contemporary full-length tRNA was formed by the ligation of half-sized hairpin-like RNAs. A minihelix (a coaxial stack of the acceptor stem on the T-stem of tRNA) can function both in aminoacylation by aminoacyl tRNA synthetases and in peptide bond formation on the ribosome, indicating that it may be a vestige of the ancestral tRNA. The universal CCA-3′ terminus of tRNA is also a typical characteristic of the molecule. “Why CCA?” is the fundamental unanswered question, but several findings give a comprehensive picture of its origin. Here, the origins and early evolution of tRNA are discussed in terms of various perspectives, including nucleotide ligation, chiral selectivity of amino acids, genetic code evolution, and the organization of the ribosomal peptidyl transferase center (PTC). The proto-tRNA molecules may have evolved not only as adaptors but also as contributors to the composition of the ribosome. PMID:26633518

  15. The origin and early evolution of membrane channels.

    PubMed

    Pohorille, Andrew; Schweighofer, Karl; Wilson, Michael A

    2005-02-01

    The origin and early evolution of ion channels are considered from the point of view that the transmembrane segments of membrane proteins are structurally quite simple and do not require specific sequences to fold. We argue that the transport of solute species, especially ions, required an early evolution of efficient transport mechanisms, and that the emergence of simple ion channels was protobiologically plausible. We also argue that, despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly greater complexity. These properties can be subtly modulated by local modifications to the sequence rather than global changes in molecular architecture. In order to address the evolution and development of ion channels, we focus on identifying those protein domains that are commonly associated with ion channel proteins and are conserved throughout the three main domains of life (Eukarya, Bacteria, and Archaea). We discuss the potassium-sodium-calcium superfamily of voltage-gated ion channels, mechanosensitive channels, porins, and ABC-transporters and argue that these families of membrane channels have sufficiently universal architectures that they can readily adapt to the diverse functional demands arising during evolution.

  16. The Origin and Early Evolution of Membrane Proteins

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Schweighofer, Karl; Wilson, Michael A.

    2005-01-01

    Membrane proteins mediate functions that are essential to all cells. These functions include transport of ions, nutrients and waste products across cell walls, capture of energy and its transduction into the form usable in chemical reactions, transmission of environmental signals to the interior of the cell, cellular growth and cell volume regulation. In the absence of membrane proteins, ancestors of cell (protocells), would have had only very limited capabilities to communicate with their environment. Thus, it is not surprising that membrane proteins are quite common even in simplest prokaryotic cells. Considering that contemporary membrane channels are large and complex, both structurally and functionally, a question arises how their presumably much simpler ancestors could have emerged, perform functions and diversify in early protobiological evolution. Remarkably, despite their overall complexity, structural motifs in membrane proteins are quite simple, with a-helices being most common. This suggests that these proteins might have evolved from simple building blocks. To explain how these blocks could have organized into functional structures, we performed large-scale, accurate computer simulations of folding peptides at a water-membrane interface, their insertion into the membrane, self-assembly into higher-order structures and function. The results of these simulations, combined with analysis of structural and functional experimental data led to the first integrated view of the origin and early evolution of membrane proteins.

  17. Early diversification trend and Asian origin for extent bat lineages.

    PubMed

    Yu, W; Wu, Y; Yang, G

    2014-10-01

    Bats are a unique mammalian group, which belong to one of the largest and most diverse mammalian radiations, but their early diversification is still poorly understood, and conflicting hypotheses have emerged regarding their biogeographic history. Understanding their diversification is crucial for untangling the enigmatic evolutionary history of bats. In this study, we elucidated the rate of diversification and the biogeographic history of extant bat lineages using genus-level chronograms. The results suggest that a rapid adaptive radiation persisted from the emergence of crown bats until the Early Eocene Climatic Optimum, whereas there was a major deceleration in diversification around 35-49 Ma. There was a positive association between changes in the palaeotemperature and the net diversification rate until 35 Ma, which suggests that the palaeotemperature may have played an important role in the regulation of ecological opportunities. By contrast, there were unexpectedly higher diversification rates around 25-35 Ma during a period characterized by intense and long-lasting global cooling, which implies that intrinsic innovations or adaptations may have released some lineages from the intense selective pressures associated with these severe conditions. Our reconstruction of the ancestral distribution suggests an Asian origin for bats, thereby indicating that the current panglobal but disjunct distribution pattern of extant bats may be related to events involving seriate cross-continental dispersal and local extinction, as well as the influence of geological events and the expansion and contraction of megathermal rainforests during the Tertiary.

  18. Life history and the early origins of health differentials.

    PubMed

    Worthman, Carol M; Kuzara, Jennifer

    2005-01-01

    Current epidemiologic models concerning the fetal origins of later health risk are evaluated from the perspectives of evolutionary and developmental biology. Claims of adaptive value for and biological status of fetal programming are critically examined. Life history theory is applied to identify key trade-offs in adaptive strategies that constrain developmental design to use information from the environment to guide ontogeny and establish cost-benefit trade-offs that weigh early survival advantage against remote or unlikely future costs. Expectable environments of evolutionary adaptedness, particularly of gestation, are characterized and their impact on human adaptive design discussed. The roles of neuroendocrine mechanisms in scaffolding life course development, negotiating ongoing cost-benefit trade-offs, and mediating their long-term impacts on function and health are reviewed in detail. Overviews of gestational biology and the postnatal physiologic, cognitive-affective, and behavioral effects of gestational stress identify a shared central role for the hypothalamic-pituitary-adrenal (HPA) axis. Rather than merely mediating stress responses, the axis emerges an agent of resource allocation that draws a common thread among conditions of gestation, postnatal environments, and functional and health-related outcomes. The preponderance of evolutionary and developmental analysis identifies environments as agents on both sides of the health risk equation, by influencing vulnerabilities and capacities established in early and later life course development, and determining exposures and demands encountered over the life course. PMID:15611966

  19. The Origin and Early Evolution of Membrane Proteins

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Schweighofter, Karl; Wilson, Michael A.

    2006-01-01

    The origin and early evolution of membrane proteins, and in particular ion channels, are considered from the point of view that the transmembrane segments of membrane proteins are structurally quite simple and do not require specific sequences to fold. We argue that the transport of solute species, especially ions, required an early evolution of efficient transport mechanisms, and that the emergence of simple ion channels was protobiologically plausible. We also argue that, despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. These properties can be subtly modulated by local modifications to the sequence rather than global changes in molecular architecture. In order to address the evolution and development of ion channels, we focus on identifying those protein domains that are commonly associated with ion channel proteins and are conserved throughout the three main domains of life (Eukarya, Prokarya, and Archaea). We discuss the potassium-sodium-calcium superfamily of voltage-gated ion channels, mechanosensitive channels, porins, and ABC-transporters and argue that these families of membrane channels have sufficiently universal architectures that they can readily adapt to the diverse functional demands arising during evolution.

  20. The origin and early evolution of life on Earth.

    PubMed

    Oró, J; Miller, S L; Lazcano, A

    1990-01-01

    We do not have a detailed knowledge of the processes that led to the appearance of life on Earth. In this review we bring together some of the most important results that have provided insights into the cosmic and primitive Earth environments, particularly those environments in which life is thought to have originated. To do so, we first discuss the evidence bearing on the antiquity of life on our planet and the prebiotic significance of organic compounds found in interstellar clouds and in primitive solar system bodies such as comets, dark asteroids, and carbonaceous chondrites. This is followed by a discussion on the environmental models of the Hadean and early Archean Earth, as well as on the prebiotic formation of organic monomers and polymers essential to life. We then consider the processes that may have led to the appearance in the Archean of the first cells, and how these processes may have affected the early steps of biological evolution. Finally, the significance of these results to the study of the distribution of life in the Universe is discussed.

  1. An early evolutionary origin for the minor spliceosome.

    PubMed

    Russell, Anthony G; Charette, J Michael; Spencer, David F; Gray, Michael W

    2006-10-19

    The minor spliceosome is a ribonucleoprotein complex that catalyses the removal of an atypical class of spliceosomal introns (U12-type) from eukaryotic messenger RNAs. It was first identified and characterized in animals, where it was found to contain several unique RNA constituents that share structural similarity with and seem to be functionally analogous to the small nuclear RNAs (snRNAs) contained in the major spliceosome. Subsequently, minor spliceosomal components and U12-type introns have been found in plants but not in fungi. Unlike that of the major spliceosome, which arose early in the eukaryotic lineage, the evolutionary history of the minor spliceosome is unclear because there is evidence of it in so few organisms. Here we report the identification of homologues of minor-spliceosome-specific proteins and snRNAs, and U12-type introns, in distantly related eukaryotic microbes (protists) and in a fungus (Rhizopus oryzae). Cumulatively, our results indicate that the minor spliceosome had an early origin: several of its characteristic constituents are present in representative organisms from all eukaryotic supergroups for which there is any substantial genome sequence information. In addition, our results reveal marked evolutionary conservation of functionally important sequence elements contained within U12-type introns and snRNAs.

  2. Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: implications for their origin from suboceanic-type mantle reservoirs

    USGS Publications Warehouse

    Basu, A.R.; Wang, Junwen; Huang, Wankang; Xie, Guanghong; Tatsumoto, M.

    1991-01-01

    Major- and rare-earth-element (REE) concentrations and UThPb, SmNd, and RbSr isotope systematics are reported for Cenozoic volcanic rocks from northeastern and eastern China. These volcanic rocks, characteristically lacking the calc-alkaline suite of orogenic belts, were emplaced in a rift system which formed in response to the subduction of the western Pacific plate beneath the eastern Asiatic continental margin. The rocks sampled range from basanite and alkali olivine basalt, through olivine tholeiite and quartz tholeiite, to potassic basalts, alkali trachytes, pantellerite, and limburgite. These rock suites represent the volcanic centers of Datong, Hanobar, Kuandian, Changbaishan and Wudalianchi in northeastern China, and Mingxi in the Fujian Province of eastern China. The major-element and REE geochemistry is characteristic of each volcanic suite broadly evolving through cogenetic magmatic processes. Some of the outstanding features of the isotopic correlation arrays are as follows: (1) NdSr shows an anticorrelation within the field of ocean island basalts, extending from the MORB end-member to an enriched, time-averaged high Rb Sr and Nd Sr end-member (EM1), (2) SrPb also shows an anticorrelation, similar to that of Hawaiian and walvis Ridge basalts, (3) NdPb shows a positive correlation, and (4) the 207Pb 204Pb vs 206Pb 204Pb plot shows linear arrays parallel to the general trend (NHRL) for MORB on both sides of the geochron, although in the 208Pb 204Pb vs 206Pb 204Pb plot the linear array is significantly displaced above the NHRL in a pattern similar to that of the oceanic island basalts that show the Dupal signatures. In all isotope correlation patterns, the data arrays define two different mantle components-a MORB-like component and an enriched mantle component. The isotopic data presented here clearly demonstrate the existence of Dupal compositions in the sources of the continental volcanic rocks of eastern China. We suggest that the subcontinental mantle

  3. The origin of dwarf early-type galaxies

    NASA Astrophysics Data System (ADS)

    Toloba, E.

    2013-05-01

    We have conducted a spectrophotometric study of dwarf early-type galaxies (dEs) in the Virgo cluster and in regions of lower density. We have found that these galaxies show many properties in common with late-type galaxies but not with more massive early-types (E/S0). The properties of the dEs in Virgo show gradients within the cluster. dEs in the outer parts of the Virgo cluster are kinematically supported by rotation, while those in the center are supported by the random motions of their stars (i.e. pressure supported). The rotationally supported dEs have disky isophotes and faint underlying spiral/irregular substructures, they also show younger ages than those pressure supported, which have boxy isophotes and are smooth and regular, without any substructure. We compare the position of these dEs with massive early-type galaxies in the Faber-Jackson and Fundamental Plane relations, and we find that, although there is no difference between the position of rotationally and pressure supported dEs, both deviate from the relations of massive early-type galaxies in the direction of dwarf spheroidal systems (dSphs). We have used their offset with respect to the Fundamental Plane of E/S0 galaxies to estimate their dark matter fraction. All the properties studied in this work agree with a ram pressure stripping scenario, where late-type galaxies infall into the cluster, their interaction with the intergalactic medium blows away their gas and, as a result, they are quenched in a small amount of time. However, those dEs in the center of the cluster seem to have been fully transformed leaving no trace of their possible spiral origin, thus, if that is the case, they must have experienced a more violent mechanism in combination with ram pressure stripping, the open problem is that even galaxy harassment does not fully explain the observed properties for the pressure supported dEs in the center of the Virgo cluster.

  4. Marine ecosystem responses to Cenozoic global change.

    PubMed

    Norris, R D; Turner, S Kirtland; Hull, P M; Ridgwell, A

    2013-08-01

    The future impacts of anthropogenic global change on marine ecosystems are highly uncertain, but insights can be gained from past intervals of high atmospheric carbon dioxide partial pressure. The long-term geological record reveals an early Cenozoic warm climate that supported smaller polar ecosystems, few coral-algal reefs, expanded shallow-water platforms, longer food chains with less energy for top predators, and a less oxygenated ocean than today. The closest analogs for our likely future are climate transients, 10,000 to 200,000 years in duration, that occurred during the long early Cenozoic interval of elevated warmth. Although the future ocean will begin to resemble the past greenhouse world, it will retain elements of the present "icehouse" world long into the future. Changing temperatures and ocean acidification, together with rising sea level and shifts in ocean productivity, will keep marine ecosystems in a state of continuous change for 100,000 years.

  5. On the origin and early diagenesis of early Triassic carbonate mud (Dolomites, Italy)

    NASA Astrophysics Data System (ADS)

    Preto, Nereo; Westphal, Hildegard; Birgel, Daniel; Carampin, Raul; Dal Corso, Jacopo; Gattolin, Giovanni; Montinaro, Alice; Peckmann, Jörn

    2015-04-01

    The earliest Triassic (early Induan) deposits of the Italian Southern Alps are shallow water oolites, and lime-mudstone formed in an open shelf (mid to outer carbonate ramp) sedimentary environment, deposited after the end-Permian extinction that killed all carbonate producers. The origin of these lime-mudstones is thus enigmatic. We used a multidisciplinary petrographic and geochemical approach to identify the origin and early diagenesis of early Triassic lime-mudstones of the Dolomites (Northern Italy). This fine carbonate is made of pitted crystals of microsparite, ~ 25 μm in diameter, exhibiting zonation both in fluorescence and cathodoluminescence. Field and standard petrographic observations exclude an origin from fragmentation or abrasion of carbonate grains. Strontium content, measured in-situ with electron microprobe, has a bimodal distribution with values locally as high as > 4000 ppm. Lipid biomarker analysis revealed molecular fossils of bacteria (terminally-branched alkanes, hopanes, and scarce methylhopanes) along with compounds of low source specificity (n-alkanes), whereas biomarkers of algae (steranes) were not detected. This suggests that, differently from modern Caribbean shelfs, this fine carbonate did not originate from the disgregation of green algae. A Pristane to Phytane ratio < 1 also suggests deposition under anoxic conditions, in agreement with the known status of "superanoxia" of earliest Triassic oceans. Overall, our observations suggest an aragonitic mineralogy of the carbonate mud, followed by calcite replacement and cementation in the marine burial early diagenetic environment. Our data strongly suggest that the early Triassic carbonate mud of the Dolomites was precipitated in the water column, similarly to the modern whitings of the Bahamas, and then settled on a shelf bottom below wave base. Our study shows that these lime-mudstones contain aragonite replaced by calcite and calcite cement, in variable proportions. The δ13C of

  6. Evidence for Early Cenozoic glaciation from a record of seawater δ18O at ODP Site 1209: Exploring the paradigm of an 'ice-free' Middle Eocene

    NASA Astrophysics Data System (ADS)

    Dawber, C.; Tripati, A.

    2007-12-01

    The onset of the Cenozoic 'greenhouse-icehouse' transition is poorly constrained, with the Middle Eocene often considered the intermediary 'doubthouse' phase. Most benthic foraminiferal oxygen isotope (δ18O) reconstructions typically assume 'ice-free' conditions during this period. However, the occurrence of high- frequency sea-level change of tens of meters in the sequence stratigraphic record, is best explained by glacioeustacy [e.g., 1]. To explore the paradigm of an 'ice-free' Middle Eocene, we discuss a high-resolution record of seawater δ18O from Ocean Drilling Project (ODP) Site 1209 in the northern tropical Pacific Ocean. The new seawater δ18O record for ODP Site 1209 indicates two major glacial episodes occurred at ~44.8 and 42.7 Ma, with excursions of greater than 1‰. The amplitude of these excursions necessitate the presence of ice in the southern and northern polar regions at these times, consistent with other records of seawater δ18O [2] and ice-rafting debris [3,4]). We also evaluate the seawater δ18O-sea-level calibration accounting for potential biases arising from carbonate ion concentration, Cenozoic ice δ18O composition and additional ice storage as a result of glacioeustatic sea level fall. [1] Browning, J., Miller, K., and Pak, D., 1996, Global implications of lower to middle Eocene sequence boundaries on the New Jersey coastal plain: The icehouse cometh, Geology, 24, 639-642. [2] Tripati, A., Backman, J., Elderfield, H. and Ferretti, P., 2005, Eocene bipolar glaciation associated with global carbon cycle changes, Nature 436, 341-346. [3] Moran, K., Backman, J., et al., 2006, The Cenozoic palaeoenvironment of the Arctic Ocean, Nature, 441, 601-605. [4] Shorttle, O., Tripati, A. Eagle, E., Dawber, F., Morton, A., Dowdeswell, J., Atkinson, K., Bahé, Y., Shaw, R., Thanabalasundaram, L., Khadun, E., 2007, Evidence for Northern Hemisphere glaciation back to 44 Ma from ice- rafted debris in the Greenland Sea, Fall AGU Abstract.

  7. Milgram's Obedience to Authority experiments: origins and early evolution.

    PubMed

    Russell, Nestar John Charles

    2011-03-01

    Stanley Milgram's Obedience to Authority experiments remain one of the most inspired contributions in the field of social psychology. Although Milgram undertook more than 20 experimental variations, his most (in)famous result was the first official trial run - the remote condition and its 65% completion rate. Drawing on many unpublished documents from Milgram's personal archive at Yale University, this article traces the historical origins and early evolution of the obedience experiments. Part 1 presents the previous experiences that led to Milgram's conception of his rudimentary research idea and then details the role of his intuition in its refinement. Part 2 traces the conversion of Milgram's evolving idea into a reality, paying particular attention to his application of the exploratory method of discovery during several pilot studies. Both parts illuminate Milgram's ad hoc introduction of various manipulative techniques and subtle tension-resolving refinements. The procedural adjustments continued until Milgram was confident that the first official experiment would produce a high completion rate, a result contrary to expectations of people's behaviour. Showing how Milgram conceived of, then arrived at, this first official result is important because the insights gained may help others to determine theoretically why so many participants completed this experiment.

  8. Phylogenetic origins of early alterations in brain region proportions.

    PubMed

    Charvet, Christine J; Sandoval, Alexis L; Striedter, Georg F

    2010-01-01

    Adult galliform birds (e.g. chickens) exhibit a relatively small telencephalon and a proportionately large optic tectum compared with parrots and songbirds. We previously examined the embryonic origins of these adult species differences and found that the optic tectum is larger in quail than in parakeets and songbirds at early stages of development, prior to tectal neurogenesis onset. The aim of this study was to determine whether a proportionately large presumptive tectum is a primitive condition within birds or a derived feature of quail and other galliform birds. To this end, we examined embryonic brains of several avian species (emus, parrots, songbirds, waterfowl, galliform birds), reptiles (3 lizard species, alligators, turtles) and a monotreme (platypuses). Brain region volumes were estimated from serial Nissl-stained sections. We found that the embryos of galliform birds and lizards exhibit a proportionally larger presumptive tectum than all the other examined species. The presumptive tectum of the platypus is unusually small. The most parsimonious interpretation of these data is that the expanded embryonic tectum of lizards and galliform birds is a derived feature in both of these taxonomic groups.

  9. Origins and early evolution of the translation machinery

    NASA Astrophysics Data System (ADS)

    Fox, George E.

    2010-09-01

    The modern ribosome is a complex biological machine that is responsible for chiral synthesis of cellular proteins according to the genetic code as specified by a mRNA. Major portions of the ribosomal machinery were likely in place before the last universal common ancestor (LUCA) of life. The early evolution of the ribosome has implications for the origin of the genetic code, the emergence of chirality in peptide synthesis, and the emergence of LUCA. Although codon assignments may remain a mystery, the history of the ribosome provides a context for dating the first usage of mRNA. In the case of chirality, the modern ribosome suggests that a small initial chiral preference for L-amino acids in the environment may have been greatly enhanced by a two step process in which the charging of a primitive tRNA and the subsequent synthesis of a peptide bond both had the same chiral preference. The resulting ability to make largely chiral peptides may have provided an advantage over other prebiotic mechanisms for making peptides. Finally, the late addition of factors such as EF-G may have greatly accelerated the emerging ribosome's ability to synthesize proteins, thereby allowing entities with this novel capability to emerge as the LUCA.

  10. A study of uranium favorability of Cenozoic sedimentary rocks, Basin and Range Province, Arizona: Part I, General geology and chronology of pre-late Miocene Cenozoic sedimentary rocks

    USGS Publications Warehouse

    Scarborough, Robert Bryan; Wilt, Jan Carol

    1979-01-01

    This study focuses attention on Cenozoic sedimentary rocks in the Basin and Range Province of Arizona. The known occurrences of uranium and anomalous radioactivity in these rocks are associated with sediments that accumulated in a low energy environment characterized by fine-grained clastics, including important tuffaceous materials, and carbonate rocks. Most uranium occurrences, in these rocks appear to be stratabound. Emphasis was placed on those sedimentary materials that pre-date the late Cenozoic Basin and Range disturbance. They are deformed and crop out on pedimented range blocks and along the province interface with the Transition Zone. Three tentative age groups are recognized: Group I - Oligocene, pre-22 m.y., Group II - early Miocene - 22 m.y. - 16 m.y., and Group III - middle Miocene - 16 m.y. to 13--10 m.y. Regionally, these three groups contain both coarse to fine-grained red clastics and low energy lighter colored 'lacustrine' phases. Each of the three groups has been the object of uranium exploration. Group II, the early Miocene strata, embraces the Anderson Mine - Artillery region host rocks and also the New River - Cave Creek early Miocene beds-along the boundary with the Transition Zone. These three groups of rocks have been tectonically deformed to the extent that original basins of deposition cannot yet be reconstructed. However, they were considerably more extensive in size than the late Cenozoic basins the origin of which deformed the former. Group II rocks are judged to be of prime interest because of: (1) the development and preservation of organic matter in varying lithologies, (2) apparent contemporaneity with silicic volcanic centers, (3) influence of Precambrian crystalline rocks, and (4) relative outcrop continuity near the stable Transition Zone. The Transition Zone, especially along its boundary with the Basin and Range Province, needs additional geologic investigation, especially as regards the depositional continuity of Group II

  11. Early-life origin of adult insomnia: does prenatal-early-life stress play a role?

    PubMed

    Palagini, Laura; Drake, Christopher L; Gehrman, Philip; Meerlo, Peter; Riemann, Dieter

    2015-04-01

    Insomnia is very common in the adult population and it includes a wide spectrum of sequelae, that is, neuroendocrine and cardiovascular alterations as well as psychiatric and neurodegenerative disorders. According to the conceptualization of insomnia in the context of the 3-P model, the importance of predisposing, precipitating, and perpetuating factors has been stressed. Predisposing factors are present before insomnia is manifested and they are hypothesized to interact with precipitating factors, such as environmental stressful events, contributing to the onset of insomnia. Understanding the early-life origins of insomnia may be particularly useful in order to prevent and treat this costly phenomenon. Based on recent evidence, prenatal-early-life stress exposure results in a series of responses that involve the stress system in the child and could persist into adulthood. This may encompass an activation of the hypothalamic-pituitary-adrenal axis accompanied by long-lasting modifications in stress reactivity. Furthermore, early-life stress exposure might play an important role in predisposing to a vulnerability to hyperarousal reactions to negative life events in the adult contributing to the development of chronic insomnia. Epigenetic mechanisms may also be involved in the development of maladaptive stress responses in the newborn, ultimately predisposing to develop a variety of (psycho-) pathological states in adult life.

  12. Cenozoic motion between East and West Antarctica

    PubMed

    Cande; Stock; Muller; Ishihara

    2000-03-01

    The West Antarctic rift system is the result of late Mesozoic and Cenozoic extension between East and West Antarctica, and represents one of the largest active continental rift systems on Earth. But the timing and magnitude of the plate motions leading to the development of this rift system remain poorly known, because of a lack of magnetic anomaly and fracture zone constraints on seafloor spreading. Here we report on magnetic data, gravity data and swath bathymetry collected in several areas of the south Tasman Sea and northern Ross Sea. These results enable us to calculate mid-Cenozoic rotation parameters for East and West Antarctica. These rotations show that there was roughly 180 km of separation in the western Ross Sea embayment in Eocene and Oligocene time. This episode of extension provides a tectonic setting for several significant Cenozoic tectonic events in the Ross Sea embayment including the uplift of the Transantarctic Mountains and the deposition of large thicknesses of Oligocene sediments. Inclusion of this East-West Antarctic motion in the plate circuit linking the Australia, Antarctic and Pacific plates removes a puzzling gap between the Lord Howe rise and Campbell plateau found in previous early Tertiary reconstructions of the New Zealand region. Determination of this East-West Antarctic motion also resolves a long standing controversy regarding the contribution of deformation in this region to the global plate circuit linking the Pacific to the rest of the world.

  13. Cenozoic motion between East and West Antarctica

    PubMed

    Cande; Stock; Muller; Ishihara

    2000-03-01

    The West Antarctic rift system is the result of late Mesozoic and Cenozoic extension between East and West Antarctica, and represents one of the largest active continental rift systems on Earth. But the timing and magnitude of the plate motions leading to the development of this rift system remain poorly known, because of a lack of magnetic anomaly and fracture zone constraints on seafloor spreading. Here we report on magnetic data, gravity data and swath bathymetry collected in several areas of the south Tasman Sea and northern Ross Sea. These results enable us to calculate mid-Cenozoic rotation parameters for East and West Antarctica. These rotations show that there was roughly 180 km of separation in the western Ross Sea embayment in Eocene and Oligocene time. This episode of extension provides a tectonic setting for several significant Cenozoic tectonic events in the Ross Sea embayment including the uplift of the Transantarctic Mountains and the deposition of large thicknesses of Oligocene sediments. Inclusion of this East-West Antarctic motion in the plate circuit linking the Australia, Antarctic and Pacific plates removes a puzzling gap between the Lord Howe rise and Campbell plateau found in previous early Tertiary reconstructions of the New Zealand region. Determination of this East-West Antarctic motion also resolves a long standing controversy regarding the contribution of deformation in this region to the global plate circuit linking the Pacific to the rest of the world. PMID:10724159

  14. Cenozoic climates: evidence from the North Atlantic

    SciTech Connect

    Berggren, W.A.

    1985-01-01

    Cenozoic biostratigraphy and climatology of the North Atlantic and adjacent land areas reflects the continuing fragmentation of Eurasia and concomitant changes on ocean-continent geometry. A latitudinal (zonal) Mesozoic circulation pattern evolved into a predominantly longitudinal (meridional) pattern during the Cenozoic in which the development of oceanic gateways and barriers gradually decreased the efficiency of poleward heat transfer resulting in the progressive climatic change which has taken place over the past 50 million years. Cenozoic distributional data from the North Atlantic and adjacent land areas will be reviewed from the following fields: a) terrestrial vertebrates and floras: b) marine calcareous microplankton and benthic foraminifera; c) other marine invertebrates. Available data suggests that the present climate in the northern hemisphere has resulted from a gradual, but inexorable, strengthening of latitudinal and vertical temperature gradients punctuated by several brief intervals of accelerated change. The absence of evidence for northern hemisphere polar glaciation prior to the late Neogene does not preclude seasonal cooling near the freezing point in post-Eocene time. Evidence for early Paleogene cold climates is not reflected in the fossil record.

  15. Late Cenozoic Basins of northern California

    NASA Astrophysics Data System (ADS)

    Nilsen, Tor H.; Clarke, Samuel H.

    1989-12-01

    of the forearc basin provide a partial record of the original paleogeography and tectonic framework of northern California during the late Cenozoic.

  16. Early animal evolution and the origins of nervous systems.

    PubMed

    Budd, Graham E

    2015-12-19

    Understanding the evolution of early nervous systems is hazardous because we lack good criteria for determining homology between the systems of distant taxa; the timing of the evolutionary events is contested, and thus the relevant ecological and geological settings for them are also unclear. Here I argue that no simple approach will resolve the first issue, but that it remains likely that animals evolved relatively late, and that their nervous systems thus arose during the late Ediacaran, in a context provided by the changing planktonic and benthic environments of the time. The early trace fossil provides the most concrete evidence for early behavioural diversification, but it cannot simply be translated into increasing nervous system complexity: behavioural complexity does not map on a one-to-one basis onto nervous system complexity, both because of possible limitations to behaviour caused by the environment and because we know that even organisms without nervous systems are capable of relatively complex behaviour.

  17. Early animal evolution and the origins of nervous systems

    PubMed Central

    Budd, Graham E.

    2015-01-01

    Understanding the evolution of early nervous systems is hazardous because we lack good criteria for determining homology between the systems of distant taxa; the timing of the evolutionary events is contested, and thus the relevant ecological and geological settings for them are also unclear. Here I argue that no simple approach will resolve the first issue, but that it remains likely that animals evolved relatively late, and that their nervous systems thus arose during the late Ediacaran, in a context provided by the changing planktonic and benthic environments of the time. The early trace fossil provides the most concrete evidence for early behavioural diversification, but it cannot simply be translated into increasing nervous system complexity: behavioural complexity does not map on a one-to-one basis onto nervous system complexity, both because of possible limitations to behaviour caused by the environment and because we know that even organisms without nervous systems are capable of relatively complex behaviour. PMID:26554037

  18. Early-Life Origins of the Race Gap in Men's Mortality

    ERIC Educational Resources Information Center

    Warner, David F.; Hayward, Mark D.

    2006-01-01

    Using a life course framework, we examine the early life origins of the race gap in men's all-cause mortality. Using the National Longitudinal Survey of Older Men (1966-1990), we evaluate major social pathways by which early life conditions differentiate the mortality experiences of blacks and whites. Our findings indicate that early life…

  19. Thresholds for Cenozoic bipolar glaciation.

    PubMed

    Deconto, Robert M; Pollard, David; Wilson, Paul A; Pälike, Heiko; Lear, Caroline H; Pagani, Mark

    2008-10-01

    The long-standing view of Earth's Cenozoic glacial history calls for the first continental-scale glaciation of Antarctica in the earliest Oligocene epoch ( approximately 33.6 million years ago), followed by the onset of northern-hemispheric glacial cycles in the late Pliocene epoch, about 31 million years later. The pivotal early Oligocene event is characterized by a rapid shift of 1.5 parts per thousand in deep-sea benthic oxygen-isotope values (Oi-1) within a few hundred thousand years, reflecting a combination of terrestrial ice growth and deep-sea cooling. The apparent absence of contemporaneous cooling in deep-sea Mg/Ca records, however, has been argued to reflect the growth of more ice than can be accommodated on Antarctica; this, combined with new evidence of continental cooling and ice-rafted debris in the Northern Hemisphere during this period, raises the possibility that Oi-1 represents a precursory bipolar glaciation. Here we test this hypothesis using an isotope-capable global climate/ice-sheet model that accommodates both the long-term decline of Cenozoic atmospheric CO(2) levels and the effects of orbital forcing. We show that the CO(2) threshold below which glaciation occurs in the Northern Hemisphere ( approximately 280 p.p.m.v.) is much lower than that for Antarctica ( approximately 750 p.p.m.v.). Therefore, the growth of ice sheets in the Northern Hemisphere immediately following Antarctic glaciation would have required rapid CO(2) drawdown within the Oi-1 timeframe, to levels lower than those estimated by geochemical proxies and carbon-cycle models. Instead of bipolar glaciation, we find that Oi-1 is best explained by Antarctic glaciation alone, combined with deep-sea cooling of up to 4 degrees C and Antarctic ice that is less isotopically depleted (-30 to -35 per thousand) than previously suggested. Proxy CO(2) estimates remain above our model's northern-hemispheric glaciation threshold of approximately 280 p.p.m.v. until approximately 25 Myr

  20. Thresholds for Cenozoic bipolar glaciation.

    PubMed

    Deconto, Robert M; Pollard, David; Wilson, Paul A; Pälike, Heiko; Lear, Caroline H; Pagani, Mark

    2008-10-01

    The long-standing view of Earth's Cenozoic glacial history calls for the first continental-scale glaciation of Antarctica in the earliest Oligocene epoch ( approximately 33.6 million years ago), followed by the onset of northern-hemispheric glacial cycles in the late Pliocene epoch, about 31 million years later. The pivotal early Oligocene event is characterized by a rapid shift of 1.5 parts per thousand in deep-sea benthic oxygen-isotope values (Oi-1) within a few hundred thousand years, reflecting a combination of terrestrial ice growth and deep-sea cooling. The apparent absence of contemporaneous cooling in deep-sea Mg/Ca records, however, has been argued to reflect the growth of more ice than can be accommodated on Antarctica; this, combined with new evidence of continental cooling and ice-rafted debris in the Northern Hemisphere during this period, raises the possibility that Oi-1 represents a precursory bipolar glaciation. Here we test this hypothesis using an isotope-capable global climate/ice-sheet model that accommodates both the long-term decline of Cenozoic atmospheric CO(2) levels and the effects of orbital forcing. We show that the CO(2) threshold below which glaciation occurs in the Northern Hemisphere ( approximately 280 p.p.m.v.) is much lower than that for Antarctica ( approximately 750 p.p.m.v.). Therefore, the growth of ice sheets in the Northern Hemisphere immediately following Antarctic glaciation would have required rapid CO(2) drawdown within the Oi-1 timeframe, to levels lower than those estimated by geochemical proxies and carbon-cycle models. Instead of bipolar glaciation, we find that Oi-1 is best explained by Antarctic glaciation alone, combined with deep-sea cooling of up to 4 degrees C and Antarctic ice that is less isotopically depleted (-30 to -35 per thousand) than previously suggested. Proxy CO(2) estimates remain above our model's northern-hemispheric glaciation threshold of approximately 280 p.p.m.v. until approximately 25 Myr

  1. Variations in Cenozoic seawater uranium reconstructed from well preserved aragonitic fossil corals

    NASA Astrophysics Data System (ADS)

    Gothmann, A. O.; Higgins, J. A.; Bender, M. L.; Stolarski, J.; Adkins, J. F.; McKeon, R. E.; Farley, K. A.; Wang, X.; Planavsky, N.

    2015-12-01

    U/Ca ratios were measured in a subset (n ≈ 30) of well preserved scleractinian fossil corals previously described by Gothmann et al. (2015) in order to investigate Cenozoic changes in seawater [U]. He/U dating studies and measurements of 234U/238U and δ238/235U provide constraints on fossil coral U preservation. He/U ages also demonstrate the ability of well preserved coral aragonite to retain most of its radiogenic He over million year timescales. We find that fossil coral U/Ca has increased by a factor of ~4 between the Early Cenozoic and today. This number is calculated from the change in seawater [Ca2+] implied by brine inclusions and other proxies, and the assumption that the U/Ca in shallow water corals equals the seawater ratio. The change cannot be attributed to a dependence of coral U uptake on seawater pH or [CO32-] (e.g., Inoue et al., 2011), which would lead to a decrease in U/Ca going forward in time. Instead, we suggest that seawater [U] has increased since the Early Cenozoic. Possible explanations for the inferred change include: (1) a small decrease in uranium uptake in suboxic and anoxic sediments over the Cenozoic, (2) a decrease in the rate of low-temperature hydrothermal alteration, and associated U uptake, over the Cenozoic, and (3) a decrease in U removal from seawater resulting from an increase in UO2-CO3 complexation, as originally suggested by Broecker (1971). References: Broecker, W. S. (1971) A Kinetic Model for the Chemical Composition of Sea Water. Quaternary Research, 1, 188-207. Gothmann, A.M., Stolarski, J., Adkins, J.F., Dennis, K.J., Schrag, D.P., Schoene, B., Bender, M.L. (2015) Fossil corals as an archive of secular variations in seawater chemistry. Geochimica et Cosmochimica Acta, 160, 188-208. Inoue, M., Suwa, R., Suzuki, A., Sakai, K., and Kawahata, H., (2011) Effects of seawater pH on growth and skeletal U/Ca ratios of Acropora digitifera coral polyps. Geophysical Research Letters 38, 12801-12804.

  2. The early sociability of toddlers: The origins of teaching.

    PubMed

    Kawakami, Kiyobumi

    2014-05-01

    Toddlers' person-directed behaviors were recorded longitudinally in a naturalistic preschool setting. An observer (O, the author) recorded children's behaviors with an IC recorder during play sessions. Seventeen children, as a group, were observed once a week in 3 blocks of 7 weeks (21 total hours). Person-directed behaviors toward the observer increased with each block. Toddlers' teaching behaviors were classified precisely. This teaching classification should be the first event of the origins of teaching.

  3. Cenozoic planktonic marine diatom diversity and correlation to climate change

    USGS Publications Warehouse

    Lazarus, David; Barron, John; Renaudie, Johan; Diver, Patrick; Türke, Andreas

    2014-01-01

    Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂18O (climate) and carbon cycle records (∂13C, and 20-0 Ma pCO2). Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p2 were only moderately higher than today. Diversity is strongly correlated to both ∂13C and pCO2 over the last 15 my (for both: r>.9, detrended r>.6, all p<.001), but only weakly over the earlier Cenozoic, suggesting increasingly strong linkage of diatom and climate evolution in the Neogene. Our results suggest that many living marine planktonic diatom species may be at risk of extinction in future warm oceans, with an unknown but potentially substantial negative impact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic controls.

  4. Origin of planktotrophy--evidence from early molluscs.

    PubMed

    Nützel, Alexander; Lehnert, Oliver; Frýda, Jirí

    2006-01-01

    The size of early ontogenetic shells (protoconchs) of ancient benthic molluscs suggests that feeding larvae occurred at about 490 myr (approximately, transition from Cambrian to Ordovician). Most studied Ordovician protoconchs were smaller than Cambrian ones, indicating smaller Ordovician eggs and hatchlings. This suggests substitution of nutritious reserve matter such as yolk by plankton as an energy source for larvae. The observed size change represents the first direct empiric evidence for a late Cambrian to Ordovician switch to planktotrophy in invertebrate larvae. It corroborates previous hypotheses about a possible polyphyly of planktotrophy. These hypotheses were primarily based on molecular clock data of extant clades with different types of larva, change in the overall body size, as well as increasing predation pressure on Early Paleozoic sea floors. The Early Ordovician is characterized by an explosive radiation of benthic suspension feeders and it was suggested that planktotrophy would prolongate escape from benthic predation on hatchlings. This biological escalation hypothesis does not fully explain why planktotrophy and suspension feeding became important at the same time, during a major biodiversification. An additional factor that probably included availability of nutrients must have played a role. We speculate that an increasing nutrient supply and availability of photoautotrophic plankton in world oceans have facilitated both planktotrophy and suspension feeding, which does not exclude a contemporaneous predation-driven escalation. It is very likely that the evolution of planktotrophy as well as increasing predation contributed to the Ordovician radiation.

  5. Early anti-correlated BOLD signal changes of physiologic origin.

    PubMed

    Bright, Molly G; Bianciardi, Marta; de Zwart, Jacco A; Murphy, Kevin; Duyn, Jeff H

    2014-02-15

    Negative BOLD signals that are synchronous with resting state fluctuations have been observed in large vessels in the cortical sulci and surrounding the ventricles. In this study, we investigated the origin of these negative BOLD signals by applying a Cued Deep Breathing (CDB) task to create transient hypocapnia and a resultant global fMRI signal decrease. We hypothesized that a global stimulus would amplify the effect in large vessels and that using a global negative (vasoconstrictive) stimulus would test whether these voxels exhibit either inherently negative or simply anti-correlated BOLD responses. Significantly anti-correlated, but positive, BOLD signal changes during respiratory challenges were identified in voxels primarily located near edges of brain spaces containing CSF. These positive BOLD responses occurred earlier than the negative CDB response across most of gray matter voxels. These findings confirm earlier suggestions that in some brain regions, local, fractional changes in CSF volume may overwhelm BOLD-related signal changes, leading to signal anti-correlation. We show that regions with CDB anti-correlated signals coincide with most, but not all, of the regions with negative BOLD signal changes observed during a visual and motor stimulus task. Thus, the addition of a physiological challenge to fMRI experiments can help identify which negative BOLD signals are passive physiological anti-correlations and which may have a putative neuronal origin.

  6. The Origin and Early Evolution of Roots1

    PubMed Central

    Kenrick, Paul; Strullu-Derrien, Christine

    2014-01-01

    Geological sites of exceptional fossil preservation are becoming a focus of research on root evolution because they retain edaphic and ecological context, and the remains of plant soft tissues are preserved in some. New information is emerging on the origins of rooting systems, their interactions with fungi, and their nature and diversity in the earliest forest ecosystems. Remarkably well-preserved fossils prove that mycorrhizal symbionts were diverse in simple rhizoid-based systems. Roots evolved in a piecemeal fashion and independently in several major clades through the Devonian Period (416 to 360 million years ago), rapidly extending functionality and complexity. Evidence from extinct arborescent clades indicates that polar auxin transport was recruited independently in several to regulate wood and root development. The broader impact of root evolution on the geochemical carbon cycle is a developing area and one in which the interests of the plant physiologist intersect with those of the geochemist. PMID:25187527

  7. Origin of uranium isotope variations in early solar nebula condensates

    PubMed Central

    Tissot, François L. H.; Dauphas, Nicolas; Grossman, Lawrence

    2016-01-01

    High-temperature condensates found in meteorites display uranium isotopic variations (235U/238U), which complicate dating the solar system’s formation and whose origin remains mysterious. It is possible that these variations are due to the decay of the short-lived radionuclide 247Cm (t1/2 = 15.6 My) into 235U, but they could also be due to uranium kinetic isotopic fractionation during condensation. We report uranium isotope measurements of meteoritic refractory inclusions that reveal excesses of 235U reaching ~+6% relative to average solar system composition, which can only be due to the decay of 247Cm. This allows us to constrain the 247Cm/235U ratio at solar system formation to (1.1 ± 0.3) × 10−4. This value provides new clues on the universality of the nucleosynthetic r-process of rapid neutron capture. PMID:26973874

  8. Origin of uranium isotope variations in early solar nebula condensates.

    PubMed

    Tissot, François L H; Dauphas, Nicolas; Grossman, Lawrence

    2016-03-01

    High-temperature condensates found in meteorites display uranium isotopic variations ((235)U/(238)U), which complicate dating the solar system's formation and whose origin remains mysterious. It is possible that these variations are due to the decay of the short-lived radionuclide (247)Cm (t 1/2 = 15.6 My) into (235)U, but they could also be due to uranium kinetic isotopic fractionation during condensation. We report uranium isotope measurements of meteoritic refractory inclusions that reveal excesses of (235)U reaching ~+6% relative to average solar system composition, which can only be due to the decay of (247)Cm. This allows us to constrain the (247)Cm/(235)U ratio at solar system formation to (1.1 ± 0.3) × 10(-4). This value provides new clues on the universality of the nucleosynthetic r-process of rapid neutron capture.

  9. Origin of uranium isotope variations in early solar nebula condensates.

    PubMed

    Tissot, François L H; Dauphas, Nicolas; Grossman, Lawrence

    2016-03-01

    High-temperature condensates found in meteorites display uranium isotopic variations ((235)U/(238)U), which complicate dating the solar system's formation and whose origin remains mysterious. It is possible that these variations are due to the decay of the short-lived radionuclide (247)Cm (t 1/2 = 15.6 My) into (235)U, but they could also be due to uranium kinetic isotopic fractionation during condensation. We report uranium isotope measurements of meteoritic refractory inclusions that reveal excesses of (235)U reaching ~+6% relative to average solar system composition, which can only be due to the decay of (247)Cm. This allows us to constrain the (247)Cm/(235)U ratio at solar system formation to (1.1 ± 0.3) × 10(-4). This value provides new clues on the universality of the nucleosynthetic r-process of rapid neutron capture. PMID:26973874

  10. Cardiovascular prevention: components, levels, early origins, and metrics.

    PubMed

    Kones, Richard; Rumana, Umme

    2014-08-01

    This article presents core epidemiological studies that establish the basis for cardiovascular prevention strategies. The results of the classic INTERHEART and INTERSTROKE studies that delineated population-attributed risk for myocardial infarction and stroke are described. Differences in the levels or types of prevention-primordial, primary, and secondary-lead to the concept that risk occurs on a continuum throughout life with great variability, beginning in infancy. Any meaningful and sustained reduction in cardiovascular risk must begin in childhood, as habits formed early in life have an impact for decades. Although it is never too late to improve unhealthy habits, interventions early in life are more likely to be effective in preventing disease from developing, in delaying manifestations, or in reversing pathology through evidence-based therapies that are applied later. There is compelling evidence that coronary atherosclerosis, heart disease related to diabetes, and hypertension begin with endothelial activation. Oxidative stress and reduced nitric oxide availability are also among the earliest of events, from which a self-amplifying web of events proceed. The American Heart Association, even prior to its now-validated and classic definition of risk metrics, developed a strategic plan to improve health habits in the population and at the community level for promoting and monitoring behavior change and patients' self-reported health status. Other initiatives for improving cardiovascular health are in place as well. Despite improvements in treatment of risk factors, there has been minimal, if any, success in reversing the dual epidemics of obesity and diabetes. These 2 factors continue to drive the high burden of cardiovascular risk, and now lead current public health issues. Because treatment alone cannot fully address this tsunami of risk, it has been suggested that all physicians assume an unprecedented and aggressive role as advocates for behavior change to

  11. Early Pleistocene origin of reefs around Lanai, Hawaii

    USGS Publications Warehouse

    Webster, Jody M.; Clague, David A.; Faichney, Iain D.E.; Fullagar, Paul D.; Hein, James R.; Moore, James G.; Paull, Charles K.

    2010-01-01

    A sequence of submerged terraces (L1–L12) offshore Lanai was previously interpreted as reefal, and correlated with a similar series of reef terraces offshore Hawaii island, whose ages are known to be <500 ka. We present bathymetric, observational, lithologic and 51 87Sr/86Sr isotopic measurements for the submerged Lanai terraces ranging from −300 to −1000 m (L3–L12) that indicate that these terraces are drowned reef systems that grew in shallow coral reef to intermediate and deeper fore-reef slope settings since the early Pleistocene. Age estimates based on 87Sr/86Sr isotopic measurements on corals, coralline algae, echinoids, and bulk sediments, although lacking the precision (∼±0.23 Ma) to distinguish the age–depth relationship and drowning times of individual reefs, indicate that the L12–L3 reefs range in age from ∼1.3–0.5 Ma and are therefore about 0.5–0.8 Ma older than the corresponding reefs around the flanks of Hawaii. These new age data, despite their lack of precision and the influence of later-stage submarine diagenesis on some analyzed corals, clearly revise the previous correlations between the reefs off Lanai and Hawaii. Soon after the end of major shield building (∼1.3–1.2 Ma), the Lanai reefs initiated growth and went through a period of rapid subsidence and reef drowning associated with glacial/interglacial cycles similar to that experienced by the Hawaii reefs. However, their early Pleistocene initiation means they experienced a longer, more complex growth history than their Hawaii counterparts.

  12. Cardiovascular prevention: components, levels, early origins, and metrics.

    PubMed

    Kones, Richard; Rumana, Umme

    2014-08-01

    This article presents core epidemiological studies that establish the basis for cardiovascular prevention strategies. The results of the classic INTERHEART and INTERSTROKE studies that delineated population-attributed risk for myocardial infarction and stroke are described. Differences in the levels or types of prevention-primordial, primary, and secondary-lead to the concept that risk occurs on a continuum throughout life with great variability, beginning in infancy. Any meaningful and sustained reduction in cardiovascular risk must begin in childhood, as habits formed early in life have an impact for decades. Although it is never too late to improve unhealthy habits, interventions early in life are more likely to be effective in preventing disease from developing, in delaying manifestations, or in reversing pathology through evidence-based therapies that are applied later. There is compelling evidence that coronary atherosclerosis, heart disease related to diabetes, and hypertension begin with endothelial activation. Oxidative stress and reduced nitric oxide availability are also among the earliest of events, from which a self-amplifying web of events proceed. The American Heart Association, even prior to its now-validated and classic definition of risk metrics, developed a strategic plan to improve health habits in the population and at the community level for promoting and monitoring behavior change and patients' self-reported health status. Other initiatives for improving cardiovascular health are in place as well. Despite improvements in treatment of risk factors, there has been minimal, if any, success in reversing the dual epidemics of obesity and diabetes. These 2 factors continue to drive the high burden of cardiovascular risk, and now lead current public health issues. Because treatment alone cannot fully address this tsunami of risk, it has been suggested that all physicians assume an unprecedented and aggressive role as advocates for behavior change to

  13. The origins and early history of the National Chiropractic Association

    PubMed Central

    Keating, Joseph C; Rehm, William S

    1993-01-01

    Early organization in chiropractic was prompted by the profession’s need to promote itself and to defend against the onslaught of political medicine and organized osteopathy. The first priorities were legal defense against prosecution for unlicensed practice and malpractice insurance. The Universal Chiropractors’ Association (UCA), organized at the Palmer School of Chiropractic (PSC) in 1906, sought to meet these needs by insuring its members and by developing a legal department under the supervision of attorney Tom Morris, one time lieutenant governor of Wisconsin. The public relations and marketing needs of chiropractors were largely served by the PSC and its legendary leader. However, as chiropractors increasingly sought to avoid prosecution by passage of chiropractic laws, Palmer’s efforts to direct this legislation so as to limit chiropractors’ scope of practice increasingly alienated many in the profession. The American Chiropractic Association (ACA) was founded in 1922 to provide a broadscope alternative to BJ’s UCA. With Palmer’s departure from the UCA following the neurocalometer debacle, ACA and UCA sought amalgamation. Simultaneously, organized medicine renewed its attack on the profession by introducing basic science legislation, which prompted chiropractors to try to upgrade and standardize chiropractic education. Early efforts to bring about the needed consensus were centered in the International Chiropractic Congress (ICC), particularly its division of state examining boards. In 1930 the ACA and UCA combined to form the National Chiropractic Association (NCA), and by 1934 the ICC had merged with the NCA to form part of its council structure. With this modicum of solidarity the NCA began the process of educational boot-strapping at its 1935 convention in Los Angeles, when its Committee on Education, a forerunner of today’s Council on Chiropractic Education, was proposed by C.O. Watkins of Montana. ImagesFigure 2Figure 3Figure 4Figure 5

  14. Convergent Cenozoic CO2 history

    NASA Astrophysics Data System (ADS)

    Royer, D. L.; Beerling, D. J.

    2011-12-01

    The quality and quantity of Cenozoic CO2 records have increased significantly in the last decade. Gains in quality have come primarily from a fuller accounting of confounding factors; examples include soil respiration rates in the pedogenic carbonate method, alkalinity and seawater δ11B in the boron method, and cell size in the alkenone phytoplankton method. Previously, variability across Cenozoic CO2 estimates in a given time period sometimes exceeded an order of magnitude, but through these improvements variability has been reduced to a factor of two or less. Further improvements in the record can probably be facilitated by more robust quantification of statistical error, generation of CO2 estimates at single locations from multiple methods, and cross-calibration with Pleistocene ice-core CO2 records (Beerling & Royer, 2011, Nature Geoscience 4: 418-420). An improved Cenozoic CO2 record offers opportunities for better understanding Earth system processes. We provide one example related to climate sensitivity. We find a significant relationship between CO2 radiative forcing and global temperature during the Cenozoic, even after accounting for forcings related to solar evolution and paleogeographic changes. Although the calculations are based on simple assumptions and should be taken as provisional, the mean Cenozoic climate sensitivity (3 °C or higher per CO2 doubling) is similar to or higher than calculations for the present-day (~3 °C per CO2 doubling).

  15. Origins and early development of human body knowledge.

    PubMed

    Slaughter, Virginia; Heron, Michelle

    2004-01-01

    As a knowable object, the human body is highly complex. Evidence from several converging lines of research, including psychological studies, neuroimaging and clinical neuropsychology, indicates that human body knowledge is widely distributed in the adult brain, and is instantiated in at least three partially independent levels of representation. Sensorimotor body knowledge is responsible for on-line control and movement of one's own body and may also contribute to the perception of others' moving bodies; visuo-spatial body knowledge specifies detailed structural descriptions of the spatial attributes of the human body; and lexical-semantic body knowledge contains language-based knowledge about the human body. In the first chapter of this Monograph, we outline the evidence for these three hypothesized levels of human body knowledge, then review relevant literature on infants' and young children's human body knowledge in terms of the three-level framework. In Chapters II and III, we report two complimentary series of studies that specifically investigate the emergence of visuo-spatial body knowledge in infancy. Our technique is to compare infants'responses to typical and scrambled human bodies, in order to evaluate when and how infants acquire knowledge about the canonical spatial layout of the human body. Data from a series of visual habituation studies indicate that infants first discriminate scrambled from typical human body picture sat 15 to 18 months of age. Data from object examination studies similarly indicate that infants are sensitive to violations of three-dimensional human body stimuli starting at 15-18 months of age. The overall pattern of data supports several conclusions about the early development of human body knowledge: (a) detailed visuo-spatial knowledge about the human body is first evident in the second year of life, (b) visuo-spatial knowledge of human faces and human bodies are at least partially independent in infancy and (c) infants' initial

  16. Origins and early development of human body knowledge.

    PubMed

    Slaughter, Virginia; Heron, Michelle

    2004-01-01

    As a knowable object, the human body is highly complex. Evidence from several converging lines of research, including psychological studies, neuroimaging and clinical neuropsychology, indicates that human body knowledge is widely distributed in the adult brain, and is instantiated in at least three partially independent levels of representation. Sensorimotor body knowledge is responsible for on-line control and movement of one's own body and may also contribute to the perception of others' moving bodies; visuo-spatial body knowledge specifies detailed structural descriptions of the spatial attributes of the human body; and lexical-semantic body knowledge contains language-based knowledge about the human body. In the first chapter of this Monograph, we outline the evidence for these three hypothesized levels of human body knowledge, then review relevant literature on infants' and young children's human body knowledge in terms of the three-level framework. In Chapters II and III, we report two complimentary series of studies that specifically investigate the emergence of visuo-spatial body knowledge in infancy. Our technique is to compare infants'responses to typical and scrambled human bodies, in order to evaluate when and how infants acquire knowledge about the canonical spatial layout of the human body. Data from a series of visual habituation studies indicate that infants first discriminate scrambled from typical human body picture sat 15 to 18 months of age. Data from object examination studies similarly indicate that infants are sensitive to violations of three-dimensional human body stimuli starting at 15-18 months of age. The overall pattern of data supports several conclusions about the early development of human body knowledge: (a) detailed visuo-spatial knowledge about the human body is first evident in the second year of life, (b) visuo-spatial knowledge of human faces and human bodies are at least partially independent in infancy and (c) infants' initial

  17. Early Miocene origin and cryptic diversification of South American salamanders

    PubMed Central

    2013-01-01

    Background The currently recognized species richness of South American salamanders is surprisingly low compared to North and Central America. In part, this low richness may be due to the salamanders being a recent arrival to South America. Additionally, the number of South American salamander species may be underestimated because of cryptic diversity. The aims of our present study were to infer evolutionary relationships, lineage diversity, and timing of divergence of the South American Bolitoglossa using mitochondrial and nuclear sequence data from specimens primarily from localities in the Andes and upper Amazon Basin. We also estimated time of colonization of South America to test whether it is consistent with arrival via the Panamanian Isthmus, or land bridge connection, at its traditionally assumed age of 3 million years. Results Divergence time estimates suggest that Bolitoglossa arrived in South America from Central America by at least the Early Miocene, ca. 23.6 MYA (95% HPD 15.9-30.3 MYA), and subsequently diversified. South American salamanders of the genus Bolitoglossa show strong phylogeographic structure at fine geographic scales and deep divergences at the mitochondrial gene cytochrome b (Cytb) and high diversity at the nuclear recombination activating gene-1 (Rag1). Species often contain multiple genetically divergent lineages that are occasionally geographically overlapping. Single specimens from two southeastern localities in Ecuador are sister to the equatoriana-peruviana clade and genetically distinct from all other species investigated to date. Another single exemplar from the Andes of northwestern Ecuador is highly divergent from all other specimens and is sister to all newly studied samples. Nevertheless, all sampled species of South American Bolitoglossa are members of a single clade that is one of several constituting the subgenus Eladinea, one of seven subgenera in this large genus. Conclusions The ancestors of South American salamanders

  18. Cenozoic stratigraphy of the Sahara, Northern Africa

    USGS Publications Warehouse

    Swezey, Christopher S.

    2009-01-01

    This paper presents an overview of the Cenozoic stratigraphic record in the Sahara, and shows that the strata display some remarkably similar characteristics across much of the region. In fact, some lithologies of certain ages are exceptionally widespread and persistent, and many of the changes from one lithology to another appear to have been relatively synchronous across the Sahara. The general stratigraphic succession is that of a transition from early Cenozoic carbonate strata to late Cenozoic siliciclastic strata. This transition in lithology coincides with a long-term eustatic fall in sea level since the middle Cretaceous and with a global climate transition from a Late Cretaceous–Early Eocene “warm mode” to a Late Eocene–Quaternary “cool mode”. Much of the shorter-term stratigraphic variability in the Sahara (and even the regional unconformities) also can be correlated with specific changes in sea level, climate, and tectonic activity during the Cenozoic. Specifically, Paleocene and Eocene carbonate strata and phosphate are suggestive of a warm and humid climate, whereas latest Eocene evaporitic strata (and an end-Eocene regional unconformity) are correlated with a eustatic fall in sea level, the build-up of ice in Antarctica, and the appearance of relatively arid climates in the Sahara. The absence of Oligocene strata throughout much of the Sahara is attributed to the effects of generally low eustatic sea level during the Oligocene and tectonic uplift in certain areas during the Late Eocene and Oligocene. Miocene sandstone and conglomerate are attributed to the effects of continued tectonic uplift around the Sahara, generally low eustatic sea level, and enough rainfall to support the development of extensive fluvial systems. Middle–Upper Miocene carbonate strata accumulated in northern Libya in response to a eustatic rise in sea level, whereas Upper Miocene mudstone accumulated along the south side of the Atlas Mountains because uplift of the

  19. Formal and Informal Early Education of Turkish-Origin Children in Germany

    ERIC Educational Resources Information Center

    Becker, Birgit; Boldin, Elena; Klein, Oliver

    2016-01-01

    A lack of adequate German language skills is often discussed as a major reason for the disadvantage of children of immigrants in the German educational system. This article analyses the access to formal and informal early education of Turkish-origin children in Germany and the influence of these early education contexts on the children's German…

  20. Early Roman military fortifications and the origin of Trieste, Italy

    PubMed Central

    Bernardini, Federico; Vinci, Giacomo; Horvat, Jana; De Min, Angelo; Forte, Emanuele; Furlani, Stefano; Lenaz, Davide; Pipan, Michele; Zhao, Wenke; Sgambati, Alessandro; Potleca, Michele; Micheli, Roberto; Fragiacomo, Andrea; Tuniz, Claudio

    2015-01-01

    An interdisciplinary study of the archaeological landscape of the Trieste area (northeastern Italy), mainly based on airborne light detection and ranging (LiDAR), ground penetrating radar (GPR), and archaeological surveys, has led to the discovery of an early Roman fortification system, composed of a big central camp (San Rocco) flanked by two minor forts. The most ancient archaeological findings, including a Greco–Italic amphora rim produced in Latium or Campania, provide a relative chronology for the first installation of the structures between the end of the third century B.C. and the first decades of the second century B.C. whereas other materials, such as Lamboglia 2 amphorae and a military footwear hobnail (type D of Alesia), indicate that they maintained a strategic role at least up to the mid first century B.C. According to archaeological data and literary sources, the sites were probably established in connection with the Roman conquest of the Istria peninsula in 178–177 B.C. They were in use, perhaps not continuously, at least until the foundation of Tergeste, the ancestor of Trieste, in the mid first century B.C. The San Rocco site, with its exceptional size and imposing fortifications, is the main known Roman evidence of the Trieste area during this phase and could correspond to the location of the first settlement of Tergeste preceding the colony foundation. This hypothesis would also be supported by literary sources that describe it as a phrourion (Strabo, V, 1, 9, C 215), a term used by ancient writers to designate the fortifications of the Roman army. PMID:25775558

  1. Early Roman military fortifications and the origin of Trieste, Italy.

    PubMed

    Bernardini, Federico; Vinci, Giacomo; Horvat, Jana; De Min, Angelo; Forte, Emanuele; Furlani, Stefano; Lenaz, Davide; Pipan, Michele; Zhao, Wenke; Sgambati, Alessandro; Potleca, Michele; Micheli, Roberto; Fragiacomo, Andrea; Tuniz, Claudio

    2015-03-31

    An interdisciplinary study of the archaeological landscape of the Trieste area (northeastern Italy), mainly based on airborne light detection and ranging (LiDAR), ground penetrating radar (GPR), and archaeological surveys, has led to the discovery of an early Roman fortification system, composed of a big central camp (San Rocco) flanked by two minor forts. The most ancient archaeological findings, including a Greco-Italic amphora rim produced in Latium or Campania, provide a relative chronology for the first installation of the structures between the end of the third century B.C. and the first decades of the second century B.C. whereas other materials, such as Lamboglia 2 amphorae and a military footwear hobnail (type D of Alesia), indicate that they maintained a strategic role at least up to the mid first century B.C. According to archaeological data and literary sources, the sites were probably established in connection with the Roman conquest of the Istria peninsula in 178-177 B.C. They were in use, perhaps not continuously, at least until the foundation of Tergeste, the ancestor of Trieste, in the mid first century B.C. The San Rocco site, with its exceptional size and imposing fortifications, is the main known Roman evidence of the Trieste area during this phase and could correspond to the location of the first settlement of Tergeste preceding the colony foundation. This hypothesis would also be supported by literary sources that describe it as a phrourion (Strabo, V, 1, 9, C 215), a term used by ancient writers to designate the fortifications of the Roman army.

  2. Origins and early evolution of volatile elements in Earth

    NASA Astrophysics Data System (ADS)

    Marty, B.

    2009-12-01

    The origin and evolution of volatile elements is a long standing problem not yet fully resolved. Stable isotope (H and N) systematics of the Sun (now documented for N thanks to the Genesis mission [1]), meteorites, giant planets and comets indicate that volatile elements of Earth (and Mars) share isotopic similarities with chondritic volatiles and therefore were supplied by chondritic bodies, or were sampled from a cosmochemical reservoir which vestiges are found now in chondrites. Stable isotopes together with noble gases permit to set limits on contributions of the solar nebula and of comets, and yield a possible upper limit of 10 % H(2O) nebular gas for the mantle volatile inventory. Volatile elements might have been supplied either towards the end of terrestrial accretion by volatile-rich bodies from the outer asteroidal region, or by volatile-rich dust akin of IPDs and micrometeorites. However, these models face the long-standing problem of the xenon paradox : the isotopic composition of this element is neither solar nor chondritic, and is under-abundant relative to chondritic volatile elements (e.g., the adjacent noble gas krypton, or H, N). Any supply of water and nitrogen by a chondritic source should have resulted in the addition of chondritic Xe in abundance much higher than presently seen in the atmosphere and the mantle, and with an isotopic composition drastically different from that of air Xe. Martian atmospheric Xe is elementally and isotopically similar to air Xe, which casts doubt on the possibility to fractionate Xe by terrestrial processes. One could infer that volatile elements were supplied by some unknown precursor not presently sampled by meteorites like Jupiter-like comets, a somewhat frustrating explanation that cannot be checked at Present. Another possibility for both planets is photoionisation of xenon in the upper atmosphere by UVs, since Xe has the lowest ionization energy compared to other noble gases, N2 and O2. Recent experiments

  3. Cenozoic intracontinental deformation of the Kopeh Dagh Belt, Northeastern Iran

    NASA Astrophysics Data System (ADS)

    Chu, Yang; Wan, Bo; Chen, Ling; Talebian, Morteza

    2016-04-01

    Compressional intracontinental orogens represent large tectonic zones far from plate boundaries. Since intracontinental mountain belts cannot be framed in the conventional plate tectonics theory, several hypotheses have been proposed to account for the formations of these mountain belts. The far-field effect of collision/subduction at plate margins is now well accepted for the origin and evolution of the intracontinental crust thickening, as exemplified by the Miocene tectonics of central Asia. In northern Iran, the Binalud-Alborz mountain belt witnessed the Triassic tectonothermal events (Cimmerian orogeny), which are interpreted as the result of the Paleotethys Ocean closure between the Eurasia and Central Iran blocks. The Kopeh Dagh Belt, located to the north of the Binalud-Alborz Belt, has experienced two significant tectonic phases: (1) Jurassic to Eocene rifting with more than 7 km of sediments; and (2) Late Eocene-Early Oligocene to Quaternary continuous compression. Due to the high seismicity, deformation associated with earthquakes has received more and more attention; however, the deformation pattern and architecture of this range remain poorly understood. Detailed field observations on the Cenozoic deformation indicate that the Kopeh Dagh Belt can be divided into a western zone and an eastern zone, separated by a series of dextral strike-slip faults, i.e. the Bakharden-Quchan Fault System. The eastern zone characterized by km-scale box-fold structures, associated with southwest-dipping reverse faults and top-to-the NE kinematics. In contrast, the western zone shows top-to-the SW kinematics, and the deformation intensifies from NE to SW. In the northern part of this zone, large-scale asymmetrical anticlines exhibit SW-directed vergence with subordinate thrusts and folds, whereas symmetrical anticlines are observed in the southern part. In regard to its tectonic feature, the Kopeh Dagh Belt is a typical Cenozoic intracontinental belt without ophiolites or

  4. The Miocene mammal Necrolestes demonstrates the survival of a Mesozoic nontherian lineage into the late Cenozoic of South America

    PubMed Central

    Rougier, Guillermo W.; Wible, John R.; Beck, Robin M. D.; Apesteguía, Sebastian

    2012-01-01

    The early Miocene mammal Necrolestes patagonensis from Patagonia, Argentina, was described in 1891 as the only known extinct placental “insectivore” from South America (SA). Since then, and despite the discovery of additional well-preserved material, the systematic status of Necrolestes has remained in flux, with earlier studies leaning toward placental affinities and more recent ones endorsing either therian or specifically metatherian relationships. We have further prepared the best-preserved specimens of Necrolestes and compared them with newly discovered nontribosphenic Mesozoic mammals from Argentina; based on this, we conclude that Necrolestes is related neither to marsupials nor placentals but is a late-surviving member of the recently recognized nontherian clade Meridiolestida, which is currently known only from SA. This conclusion is supported by a morphological phylogenetic analysis that includes a broad sampling of therian and nontherian taxa and that places Necrolestes within Meridiolestida. Thus, Necrolestes is a remnant of the highly endemic Mesozoic fauna of nontribosphenic mammals in SA and extends the known record of meridiolestidans by almost 45 million years. Together with other likely relictual mammals from earlier in the Cenozoic of SA and Antarctica, Necrolestes demonstrates the ecological diversity of mammals and the mosaic pattern of fauna replacement in SA during the Cenozoic. In contrast to northern continents, the Cenozoic faunal history of SA was characterized by a long period of interaction between endemic mammalian lineages of Mesozoic origin and metatherian and eutherian lineages that probably dispersed to SA during the latest Cretaceous or earliest Paleocene. PMID:23169652

  5. The Miocene mammal Necrolestes demonstrates the survival of a Mesozoic nontherian lineage into the late Cenozoic of South America.

    PubMed

    Rougier, Guillermo W; Wible, John R; Beck, Robin M D; Apesteguía, Sebastian

    2012-12-01

    The early Miocene mammal Necrolestes patagonensis from Patagonia, Argentina, was described in 1891 as the only known extinct placental "insectivore" from South America (SA). Since then, and despite the discovery of additional well-preserved material, the systematic status of Necrolestes has remained in flux, with earlier studies leaning toward placental affinities and more recent ones endorsing either therian or specifically metatherian relationships. We have further prepared the best-preserved specimens of Necrolestes and compared them with newly discovered nontribosphenic Mesozoic mammals from Argentina; based on this, we conclude that Necrolestes is related neither to marsupials nor placentals but is a late-surviving member of the recently recognized nontherian clade Meridiolestida, which is currently known only from SA. This conclusion is supported by a morphological phylogenetic analysis that includes a broad sampling of therian and nontherian taxa and that places Necrolestes within Meridiolestida. Thus, Necrolestes is a remnant of the highly endemic Mesozoic fauna of nontribosphenic mammals in SA and extends the known record of meridiolestidans by almost 45 million years. Together with other likely relictual mammals from earlier in the Cenozoic of SA and Antarctica, Necrolestes demonstrates the ecological diversity of mammals and the mosaic pattern of fauna replacement in SA during the Cenozoic. In contrast to northern continents, the Cenozoic faunal history of SA was characterized by a long period of interaction between endemic mammalian lineages of Mesozoic origin and metatherian and eutherian lineages that probably dispersed to SA during the latest Cretaceous or earliest Paleocene.

  6. The Miocene mammal Necrolestes demonstrates the survival of a Mesozoic nontherian lineage into the late Cenozoic of South America

    NASA Astrophysics Data System (ADS)

    Rougier, Guillermo W.; Wible, John R.; Beck, Robin M. D.; Apesteguía, Sebastian

    2012-12-01

    The early Miocene mammal Necrolestes patagonensis from Patagonia, Argentina, was described in 1891 as the only known extinct placental "insectivore" from South America (SA). Since then, and despite the discovery of additional well-preserved material, the systematic status of Necrolestes has remained in flux, with earlier studies leaning toward placental affinities and more recent ones endorsing either therian or specifically metatherian relationships. We have further prepared the best-preserved specimens of Necrolestes and compared them with newly discovered nontribosphenic Mesozoic mammals from Argentina; based on this, we conclude that Necrolestes is related neither to marsupials nor placentals but is a late-surviving member of the recently recognized nontherian clade Meridiolestida, which is currently known only from SA. This conclusion is supported by a morphological phylogenetic analysis that includes a broad sampling of therian and nontherian taxa and that places Necrolestes within Meridiolestida. Thus, Necrolestes is a remnant of the highly endemic Mesozoic fauna of nontribosphenic mammals in SA and extends the known record of meridiolestidans by almost 45 million years. Together with other likely relictual mammals from earlier in the Cenozoic of SA and Antarctica, Necrolestes demonstrates the ecological diversity of mammals and the mosaic pattern of fauna replacement in SA during the Cenozoic. In contrast to northern continents, the Cenozoic faunal history of SA was characterized by a long period of interaction between endemic mammalian lineages of Mesozoic origin and metatherian and eutherian lineages that probably dispersed to SA during the latest Cretaceous or earliest Paleocene.

  7. The Miocene mammal Necrolestes demonstrates the survival of a Mesozoic nontherian lineage into the late Cenozoic of South America.

    PubMed

    Rougier, Guillermo W; Wible, John R; Beck, Robin M D; Apesteguía, Sebastian

    2012-12-01

    The early Miocene mammal Necrolestes patagonensis from Patagonia, Argentina, was described in 1891 as the only known extinct placental "insectivore" from South America (SA). Since then, and despite the discovery of additional well-preserved material, the systematic status of Necrolestes has remained in flux, with earlier studies leaning toward placental affinities and more recent ones endorsing either therian or specifically metatherian relationships. We have further prepared the best-preserved specimens of Necrolestes and compared them with newly discovered nontribosphenic Mesozoic mammals from Argentina; based on this, we conclude that Necrolestes is related neither to marsupials nor placentals but is a late-surviving member of the recently recognized nontherian clade Meridiolestida, which is currently known only from SA. This conclusion is supported by a morphological phylogenetic analysis that includes a broad sampling of therian and nontherian taxa and that places Necrolestes within Meridiolestida. Thus, Necrolestes is a remnant of the highly endemic Mesozoic fauna of nontribosphenic mammals in SA and extends the known record of meridiolestidans by almost 45 million years. Together with other likely relictual mammals from earlier in the Cenozoic of SA and Antarctica, Necrolestes demonstrates the ecological diversity of mammals and the mosaic pattern of fauna replacement in SA during the Cenozoic. In contrast to northern continents, the Cenozoic faunal history of SA was characterized by a long period of interaction between endemic mammalian lineages of Mesozoic origin and metatherian and eutherian lineages that probably dispersed to SA during the latest Cretaceous or earliest Paleocene. PMID:23169652

  8. Review of cenozoic ooidal ironstones

    NASA Astrophysics Data System (ADS)

    van Houten, Franklyn B.

    1992-06-01

    Cenozoic (Tertiary) ooidal ironstones (COI) in 20 districts (39 deposits) developed between the equatorial zone and 60° N, except for one Eocene district in mid-southern latitude. Stratigraphic distribution. Paleocene OI occur in northern Pakistan, western Siberia, southern Germany, northwestern Venezuela, and northeastern Colombia: Eocene OI in western Siberia, southern Germany, northwestern Romania, central North Africa, central-west Saudi Arabia, southwestern Central Africa, northwestern Venezuela, northeastern Colombia, south-central USA, and northwestern Australia; Oligocene OI in northwest and west-central Kazakhstan, central Denmark, and north-central Iran?; Miocene OI in northwestern Venezuela, northeastern Colombia, and southeastern Malaysia; Pliocene OI in southeastern Ukraine. Geotectonic framework. Ten districts developed in an interior or fractured craton: five along the south-trending Uralian Seaway, and one along the east-trending Northern European Seaway, the south-trending Trans-Saharan Seaway, in or near an early Red Sea embayment, in southeastern Malaysia, and in northwestern Australia. Ten districts lay near a eratonic margin: one along divergent margin and nine along the broad east-trending Caribbean and Tethyan seaways. Almost all COI accumulated during the Paleogene relatively high stand of sea level, especially in Early and Middle Eocene time. As sea level fell gradually in Neogene time COI developed in only three marginal districts (including the giant Pliocene Kerch-Taman deposit in southeastern Ukraine). Sedimentary environment. Almost all of the COI developed in deltaic to shallow marine facies. These are commonly associated with shoaling-upward siliciclastic sequences; a few are in mixed siliciclastic-carbonate sequences. A few COI apparently occurred in fluvial and lacustrine facies; some of these may have been reworked from laterite or from marine ironstones. Sedimentary petrology. Many COI are less than a few tens of centimeters

  9. The fetal origins of obesity: early origins of altered food intake.

    PubMed

    Muhlhausler, B S; Ong, Z Y

    2011-09-01

    There is now clear evidence from population-based and experimental animal studies that maternal obesity and maternal overnutrition, particularly excessive intake of high-fat and high-sugar diets, is associated with an increased risk of obesity and type 2 diabetes in the offspring. Whilst the physiological reasons for this association are still not fully understood, one of the key pathways appears to be the ability of exposure to an oversupply of energy, fat and sugar during critical windows of development to program an increased food intake in the offspring. This review will focus on our current understanding of the programming of food intake, with a focus on the importance of the maternal diet. Specifically, we will discuss how exposure to an increased energy supply before birth and in early infancy, and/or increased maternal intake of palatable foods alters the development of the systems regulating appetite and food preferences, and how these changes interact to promote excess consumption and thus predispose the offspring to weight gain and obesity.

  10. The Cenozoic palaeoenvironment of the Arctic Ocean

    USGS Publications Warehouse

    Moran, K.; Backman, J.; Brinkhuis, H.; Clemens, S.C.; Cronin, T.; Dickens, G.R.; Eynaud, F.; Gattacceca, J.; Jakobsson, M.; Jordan, R.W.; Kaminski, M.; King, J.; Koc, N.; Krylov, A.; Martinez, N.; Matthiessen, J.; McInroy, D.; Moore, T.C.; Onodera, J.; O'Regan, M.; Palike, H.; Rea, B.; Rio, D.; Sakamoto, T.; Smith, D.C.; Stein, R.; St, John K.; Suto, I.; Suzuki, N.; Takahashi, K.; Watanabe, M. E.; Yamamoto, M.; Farrell, J.; Frank, M.; Kubik, P.; Jokat, W.; Kristoffersen, Y.

    2006-01-01

    The history of the Arctic Ocean during the Cenozoic era (0-65 million years ago) is largely unknown from direct evidence. Here we present a Cenozoic palaeoceanographic record constructed from >400 m of sediment core from a recent drilling expedition to the Lomonosov ridge in the Arctic Ocean. Our record shows a palaeoenvironmental transition from a warm 'greenhouse' world, during the late Palaeocene and early Eocene epochs, to a colder 'icehouse' world influenced by sea ice and icebergs from the middle Eocene epoch to the present. For the most recent ???14 Myr, we find sedimentation rates of 1-2 cm per thousand years, in stark contrast to the substantially lower rates proposed in earlier studies; this record of the Neogene reveals cooling of the Arctic that was synchronous with the expansion of Greenland ice (???3.2 Myr ago) and East Antarctic ice (???14 Myr ago). We find evidence for the first occurrence of ice-rafted debris in the middle Eocene epoch (???45 Myr ago), some 35 Myr earlier than previously thought; fresh surface waters were present at ???49 Myr ago, before the onset of ice-rafted debris. Also, the temperatures of surface waters during the Palaeocene/Eocene thermal maximum (???55 Myr ago) appear to have been substantially warmer than previously estimated. The revised timing of the earliest Arctic cooling events coincides with those from Antarctica, supporting arguments for bipolar symmetry in climate change. ?? 2006 Nature Publishing Group.

  11. The Cenozoic palaeoenvironment of the Arctic Ocean.

    PubMed

    Moran, Kathryn; Backman, Jan; Brinkhuis, Henk; Clemens, Steven C; Cronin, Thomas; Dickens, Gerald R; Eynaud, Frédérique; Gattacceca, Jérôme; Jakobsson, Martin; Jordan, Richard W; Kaminski, Michael; King, John; Koc, Nalan; Krylov, Alexey; Martinez, Nahysa; Matthiessen, Jens; McInroy, David; Moore, Theodore C; Onodera, Jonaotaro; O'Regan, Matthew; Pälike, Heiko; Rea, Brice; Rio, Domenico; Sakamoto, Tatsuhiko; Smith, David C; Stein, Ruediger; St John, Kristen; Suto, Itsuki; Suzuki, Noritoshi; Takahashi, Kozo; Watanabe, Mahito; Yamamoto, Masanobu; Farrell, John; Frank, Martin; Kubik, Peter; Jokat, Wilfried; Kristoffersen, Yngve

    2006-06-01

    The history of the Arctic Ocean during the Cenozoic era (0-65 million years ago) is largely unknown from direct evidence. Here we present a Cenozoic palaeoceanographic record constructed from >400 m of sediment core from a recent drilling expedition to the Lomonosov ridge in the Arctic Ocean. Our record shows a palaeoenvironmental transition from a warm 'greenhouse' world, during the late Palaeocene and early Eocene epochs, to a colder 'icehouse' world influenced by sea ice and icebergs from the middle Eocene epoch to the present. For the most recent approximately 14 Myr, we find sedimentation rates of 1-2 cm per thousand years, in stark contrast to the substantially lower rates proposed in earlier studies; this record of the Neogene reveals cooling of the Arctic that was synchronous with the expansion of Greenland ice (approximately 3.2 Myr ago) and East Antarctic ice (approximately 14 Myr ago). We find evidence for the first occurrence of ice-rafted debris in the middle Eocene epoch (approximately 45 Myr ago), some 35 Myr earlier than previously thought; fresh surface waters were present at approximately 49 Myr ago, before the onset of ice-rafted debris. Also, the temperatures of surface waters during the Palaeocene/Eocene thermal maximum (approximately 55 Myr ago) appear to have been substantially warmer than previously estimated. The revised timing of the earliest Arctic cooling events coincides with those from Antarctica, supporting arguments for bipolar symmetry in climate change.

  12. Cenozoic rift tectonics of the Japan Sea

    SciTech Connect

    Kimura, K.

    1988-08-01

    The Japan Sea is one of the back-arc basins in trench-arc systems bordering the western Pacific. Recent paleomagnetic works suggest the Japan Sea opened during early to middle Miocene. Radiometric and microfossil ages of the Cenozoic onland sequences in the Japanese Islands elucidate the rift tectonics of the Japan Sea. The rifting history is summarized as follows: nonmarine volcanic formations of prerift stage before 50 Ma, rift-onset unconformity at 40 Ma, nonmarine volcanic formations of synrift stage 20-33 Ma, breakup unconformity 19 Ma showing the opening of the Japan Sea, marine volcanic and sedimentary formations of synrift stage 14.5-18 Ma, beginning of regional subsidence 14.5 Ma corresponding to the end of the Japan Sea opening, marine sedimentary formations of postdrift stage after 14.5 Ma. Rifting is not limited to the synrift stage but is continued to the syndrift stage. Rifting led to a horst-and-graben structure. Thus, the Cenozoic onland sequences in the Japanese Islands are suited for a study of rift tectonics because the sequences were subaerially exposed by the late Miocene-Holocene island-arc tectonics. Rift tectonics cannot be studied as easily in most Atlantic-type passive margins.

  13. New evidence for late mesozoic-early Cenozoic evolution of the Chilean Andes in the upper Tinguiririca valley (35 °S), central Chile

    NASA Astrophysics Data System (ADS)

    Charrier, Reynaldo; Wyss, AndréR.; Flynn, John J.; Swisher, Carl C.; Norell, Mark A.; Zapatta, Franyo; McKenna, Malcolm C.; Novacek, Michael J.

    1996-11-01

    New geologic, paleontologic and isotopic geochronometric results from the Termas del Flaco region in the upper Tinguiririca River valley in central Chile demand considerable revision of the accepted geotectonic history of the Andean Main Range in this region. A diverse, transitional Eocene-Oligocene aged, land-mammal fauna was recovered from several sites in volcaniclastic sediments of the Coya-Machalí (=Abanico) Formation. Major results of our study include: 1) The 1000 + m thick studied deposits, previously attributed to the Cretaceous Colimapu Formation, belong to the Coya-Machalí (=Abanico) Formation. Radioisotopic data from levels immediately above (31.5 Ma) and below (37.S Ma) the fossiliferous horizon indicate a latest Eocene to early Oligocene age for the basal part of the formation and the fauna contained in it. 2) The fossiliferous unit rests with slight angular offset on different Mesozoic units: "Brownish-red Clastic Unit" (BRCU) and Baños del Flaco Formation; in a limited area it also overlies a white tuff dated at 104 Ma. 3) The contacts just discussed (none of which is attributable to faulting), demonstrate the existence of two, or possibly three, unconformities in the region. 4) Sedimentological criteria argue against reference of the BRCU to the Colimapu Formation, and imply correlation of the former unit to basal levels with in the late Cretaceous Neuquén Group of western Argentina. 5) The Coya-Machalí Formation, previously viewed as representing the western volcanic equivalent of Riográndico Supercycle deposits of western Argentino, is likely coeval to much younger units in that region such as the Agua de la Piedra Formation. 6) Paleomagnetic results from the fossil producing horizon indicate about 20 ° of post-early Oligocene, counterclockwise rotation. 7) Fossil mammals from the Coya-Machalí Formation near Termas del Flaco represent a distinct biochronologic interval not heretofore clearly recognized from elsewhere on the continent

  14. Lower crustal high-velocity bodies along North Atlantic passive margins, and their link to Caledonian suture zone eclogites and Early Cenozoic magmatism

    NASA Astrophysics Data System (ADS)

    Mjelde, Rolf; Kvarven, Trond; Faleide, Jan Inge; Thybo, Hans

    2016-02-01

    In this study we use crustal-scale Ocean Bottom Seismic models to infer the presence of two types of lower crustal bodies at North Atlantic passive margins; Type I, primarily interpreted as Early Eocene magmatic intrusions, and Type II, interpreted as Caledonian eclogites. We discuss how these eclogites might be related to the main Caledonian Suture Zone and other tectonic features in a conjugate North Atlantic setting. Based on the first-order approximation that P-wave velocities can be related to rock strength, the narrower continental margin at the southern (Møre) transect may be explained by stronger lower crust there, compared with the northern (Vøring) transect. This difference in strength, possibly resulting in a steeper dip in the subducting Baltica Plate south of the proto-Jan Mayen Lineament, may explain the asymmetry in extensional style observed across this lineament. Our interpretation locates the main suture off mid-Norway close to the Møre Trøndelag Fault Zone on the Møre Margin, along the western boundary of the Trøndelag Platform on the Vøring Margin, and further northwards beneath the Lofoten Ridge. The Lower Crustal Body Type I is about 60% thicker on the Greenland side, for both transects, and its thickness along the northern transect is more than twice that of the southern transect. These differences are consistent with sub-lithospheric interaction between the Icelandic hotspot and the continental rift/oceanic accretion system around the time of continental break-up.

  15. The Cenozoic Cooling - continental signals from the Atlantic and Pacific side of Eurasia

    NASA Astrophysics Data System (ADS)

    Utescher, Torsten; Bondarenko, Olesya V.; Mosbrugger, Volker

    2015-04-01

    The evolution of Cenozoic continental climate signals from the Atlantic and Pacific side of Eurasia can be assessed for the first time by comparing climate records obtained for two mid-latitudinal regions. For the West, a detailed climate record over the past 45 Ma, based on palaeofloras from two Northern German Cenozoic basins (Mosbrugger et al., 2005) revealed major trends and shorter-term events throughout the Cenozoic Cooling, thus testifying the close correlation of continental and marine temperature evolution as derived from oxygen isotopes (Zachos et al., 2008). Using the same methodology, we analyze a total of 14 floral horizons originating from continental strata of Southern Primory'e (Russia) in order to study the evolution at the eastern side of the continent. The Primory'e record spans the middle Eocene to early Pleistocene. As the coeval record for the Atlantic side, it reflects major global signals of Cenozoic climate change such as the temperature decline throughout the late Eocene, coinciding with the growth of Antarctic Ice-sheets, warming during the Mid-Miocene Climatic Optimum, and step-wise cooling throughout the later Neogene. The comparison of both records reveals differing regional patterns. The considerable longitudinal temperature gradient, currently existing between both study areas, already began to evolve during the Aquitanian, and was very significant during the Mid-Miocene Climatic Optimum. The temperature offset between East and West is likely attributable to an effective North Atlantic Current, already operational from the late early Miocene onwards bringing about mild winters and low seasonality in Western Europe, while in Primory'e, seasonality steadily increased from the late Oligocene on. The strong late Pliocene decline of cold month mean temperatures recorded in Primory'e is supposed to coincide with the establishment of the Siberian High as semi-permanent structure of the Northern Hemisphere circulation pattern. When comparing

  16. Mexican-Origin Youth's Cultural Orientations and Adjustment: Changes from Early to Late Adolescence

    ERIC Educational Resources Information Center

    Updegraff, Kimberly A.; Umana-Taylor, Adriana J.; McHale, Susan M.; Wheeler, Lorey A.; Perez-Brena, Norma J.

    2012-01-01

    Drawing from developmental and cultural adaptation perspectives and using a longitudinal design, this study examined: (a) mean-level changes in Mexican-origin adolescents' cultural orientations and adjustment from early to late adolescence and (b) bidirectional associations between cultural orientations and adjustment using a cross-lag panel…

  17. Clues from Fe isotope variations on the origin of early Archean BIFs from Greenland.

    PubMed

    Dauphas, Nicolas; van Zuilen, Mark; Wadhwa, Meenakshi; Davis, Andrew M; Marty, Bernard; Janney, Philip E

    2004-12-17

    Archean rocks may provide a record of early Earth environments. However, such rocks have often been metamorphosed by high pressure and temperature, which can overprint the signatures of their original formation. Here, we show that the early Archean banded rocks from Isua, Akilia, and Innersuartuut, Greenland, are enriched in heavy iron isotopes by 0.1 to 0.5 per mil per atomic mass unit relative to igneous rocks worldwide. The observed enrichments are compatible with the transport, oxidation, and subsequent precipitation of ferrous iron emanating from hydrothermal vents and thus suggest that the original rocks were banded iron formations (BIFs). These variations therefore support a sedimentary origin for the Akilia banded rocks, which represent one of the oldest known occurrences of water-laid deposits on Earth. PMID:15604404

  18. Clues from Fe isotope variations on the origin of early Archean BIFs from Greenland.

    PubMed

    Dauphas, Nicolas; van Zuilen, Mark; Wadhwa, Meenakshi; Davis, Andrew M; Marty, Bernard; Janney, Philip E

    2004-12-17

    Archean rocks may provide a record of early Earth environments. However, such rocks have often been metamorphosed by high pressure and temperature, which can overprint the signatures of their original formation. Here, we show that the early Archean banded rocks from Isua, Akilia, and Innersuartuut, Greenland, are enriched in heavy iron isotopes by 0.1 to 0.5 per mil per atomic mass unit relative to igneous rocks worldwide. The observed enrichments are compatible with the transport, oxidation, and subsequent precipitation of ferrous iron emanating from hydrothermal vents and thus suggest that the original rocks were banded iron formations (BIFs). These variations therefore support a sedimentary origin for the Akilia banded rocks, which represent one of the oldest known occurrences of water-laid deposits on Earth.

  19. Perinatal inflammation: a common factor in the early origins of cardiovascular disease?

    PubMed

    Nguyen, Maria U; Wallace, Megan J; Pepe, Salvatore; Menheniott, Trevelyan R; Moss, Timothy J; Burgner, David

    2015-10-01

    Cardiovascular disease continues to be the leading cause of global morbidity and mortality. Traditional risk factors account for only part of the attributable risk. The origins of atherosclerosis are in early life, a potential albeit largely unrecognized window of opportunity for early detection and treatment of subclinical cardiovascular disease. There are robust epidemiological data indicating that poor intrauterine growth and/or prematurity, and perinatal factors such as maternal hypercholesterolaemia, smoking, diabetes and obesity, are associated with adverse cardiovascular intermediate phenotypes in childhood and adulthood. Many of these early-life risk factors result in a heightened inflammatory state. Inflammation is a central mechanism in the development of atherosclerosis and cardiovascular disease, but few studies have investigated the role of overt perinatal infection and inflammation (chorioamnionitis) as a potential contributor to cardiovascular risk. Limited evidence from human and experimental models suggests an association between chorioamnionitis and cardiac and vascular dysfunction. Early life inflammatory events may be an important mechanism in the early development of cardiovascular risk and may provide insights into the associations between perinatal factors and adult cardiovascular disease. This review aims to summarise current data on the early life origins of atherosclerosis and cardiovascular disease, with particular focus on perinatal inflammation.

  20. Early dissociation of nuclear factor I from the origin during initiation of adenovirus DNA replication studied by origin immobilization.

    PubMed

    Coenjaerts, F E; van der Vliet, P C

    1994-12-11

    The DNA-binding domain of Nuclear Factor I (NFIBD) enhances initiation of adenovirus DNA replication up to 50-fold by binding to the auxiliary region of the origin and positioning the viral DNA polymerase. To study if and when NFIBD dissociates from the template, we immobilized origin DNA to glutathione-agarose beads by means of a GST-NFIBD fusion protein. This immobilized template is active in replication. By analyzing the release of prelabeled templates from the beads under different conditions, we show that NFIBD dissociates already early during initiation. During preinitiation NFIBD remains bound, but as soon as dCTP, dATP or dTTP are added, efficient dissociation occurs. A much lower dissociation level was induced by addition of dGTP. Since dCTP, dATP and dTTP are required for formation of a pTP-CAT initiation intermediate, we explain our results by conformational changes occurring in the polymerase during initiation leading to disruption of both the interaction between the polymerase and NFI as well as the interaction between NFI and the DNA.

  1. Cenozoic evolution of San Joaquin basin, California

    SciTech Connect

    Bartow, J.A.

    1988-03-01

    The Neogene San Joaquin basin in the southern part of the 700-km long Great Valley of California is a successor to a late Mesozoic and earliest Tertiary forearc basin. The transition from forearc basin to the more restricted Neogene marine basin occurred principally during the Paleogene as the plate tectonic setting changed from oblique convergence to normal convergence, and finally to the initiation of tangential (transform) movement near the end of the Oligocene. Regional-scale tectonic events that affected the basin include: (1) clockwise rotation of the southernmost Sierra Nevada, and large-scale en echelon folding in the southern Diablo Range, both perhaps related to Late Cretaceous and early Tertiary right slip on the proto-San-Andreas fault; (2) regional uplift of southern California in the Oligocene that resulted from the subduction of the Pacific-Farallon spreading ridge: (3) extensional tectonism in the Basin and Range province, particularly in the Miocene; (4) wrench tectonism adjacent to the San Andreas fault in the Neogene; (5) northeastward emplacement of a wedge of the Franciscan complex at the west side of the Sierran block, with associated deep-seated thrusting in the late Cenozoic; and (6) the accelerated uplift of the Sierra Nevada beginning in the late Miocene. Neogene basin history was controlled principally by the tectonic effects of the northwestward migration of the Mendocino triple junction along the California continental margin and by the subsequent wrench tectonism associated with the San Andreas fault system. East-west compression in the basin, resulting from extension in the Basin and Range province was an important contributing factor to crustal shortening at the west side of the valley. Analysis of the sedimentary history of the basin, which was controlled to some extent by eustatic sea level change, enables reconstruction of the basin paleogeography through the Cenozoic.

  2. Late Cenozoic tectonism of the Sacramento Valley, California

    SciTech Connect

    Harwood, D.S.; Helley, E.J.

    1987-01-01

    Structure contours drawn on top of the Cretaceous rocks in the Sacramento Valley define a large number of diversely oriented folds and faults that are expressed in topographic, hydrologic, and geologic features at the land surface. Although many of the structures in the valley have a protracted history of movement, some dating back to the late Mesozoic, a remarkable number of these structures show late Cenozoic deformation that can be accurately determined from folding and faulting of widespread, dated Pliocene and Pleistocene volcanic units. These time-stratigraphic units are used to define structural domains of essentially contemporaneous late Cenozoic deformation that was characterized by east-west compressive stress. The oldest structural domain is located in the southeastern part of the valley, where east-side-up reverse movement on the Willows fault ceased prior to deposition of continentally derived sediments of late Miocene and early Pliocene age. In the middle Pliocene to early Pleistocene, east-west compressive deformation progressed northward through the valley so that the youngest late Cenozoic deformation is recorded in east-northeast-trending folds and faults in the Battle Creek domain, at the northern-most part of the valley. The northward progression of east-west compressive deformation appears to be related to the northward eclipse of eastward subduction of the Juan de Fuca plate before the northwestward migration of the Mendocino triple junction along the continental margin west of the valley.

  3. The origin and evolution of the interstellar medium in early-type galaxies

    NASA Astrophysics Data System (ADS)

    Athey, Alex Edward

    2003-12-01

    Observations of early-type galaxies from the recently launched Chandra and XMM-Newton Observatories have shown with impressive clarity the structure of the hot ISM and have finally spatially resolved the stellar binary point- source emission. However, the exact origin of the gas in the ISM remains in question. The majority of the ISM is presumed to come from stellar mass loss of old, near- solar metallicity stars with some additional contribution from in-falling matter from the surrounding medium. The problem with this origin model is that the majority of analysis of previous X-ray satellite data (and current X- ray satellite single-object studies) is inconsistent with this interpretation, mostly due to extremely low abundances measured. In order to address the origin and evolution of the ISM in early-type galaxies, we have conducted a multi- wavelength study of three key aspects of the ISM lifecycle. In the infrared, with the Infrared Space Observatory, we determine a stellar population injection rate into the ISM of ˜1.0 solar mass per year for nine early-type galaxies. With optical, ground-based spectroscopy, we measure a near-solar oxygen abundance of the warm phase gas in between the hot and originating, cold phase for seven galaxies. Finally, we analyze over three dozen early-type galaxies from the Chandra archive, representing the first large study of the hot ISM with the newest generation of X-ray telescopes. This study reveals a wealth of new information about the X-ray properties of early-type galaxies. A typical galaxy in the sample can be characterized as having an isothermal profile with a chemical enrichment history dominated by Supernovae type Ia. The metallicity of the gas is seen to be correlated with the stellar metallicity, creating a strong link between these populations. Incorporating the results from all three studies, an updated physical picture is presented for the origin and evolution of the ISM in early-type galaxies which reconciles the

  4. Early South Americans Cranial Morphological Variation and the Origin of American Biological Diversity

    PubMed Central

    Hubbe, Alex; Neves, Walter A.

    2015-01-01

    Recent South Americans have been described as presenting high regional cranial morphological diversity when compared to other regions of the world. This high diversity is in accordance with linguistic and some of the molecular data currently available for the continent, but the origin of this diversity has not been satisfactorily explained yet. Here we explore if this high morphological variation was already present among early groups in South America, in order to refine our knowledge about the timing and origins of the modern morphological diversity. Between-group (Fst estimates) and within-group variances (trace of within-group covariance matrix) of the only two early American population samples available to date (Lagoa Santa and Sabana de Bogotá) were estimated based on linear craniometric measurements and compared to modern human cranial series representing six regions of the world, including the Americas. The results show that early Americans present moderate within-group diversity, falling well within the range of modern human groups, despite representing almost three thousand years of human occupation. The between-group variance apportionment is very low between early Americans, but is high among recent South American groups, who show values similar to the ones observed on a global scale. Although limited to only two early South American series, these results suggest that the high morphological diversity of native South Americans was not present among the first human groups arriving in the continent and must have originated during the Middle Holocene, possibly due to the arrival of new morphological diversity coming from Asia during the Holocene. PMID:26465141

  5. Early South Americans Cranial Morphological Variation and the Origin of American Biological Diversity.

    PubMed

    Hubbe, Mark; Strauss, André; Hubbe, Alex; Neves, Walter A

    2015-01-01

    Recent South Americans have been described as presenting high regional cranial morphological diversity when compared to other regions of the world. This high diversity is in accordance with linguistic and some of the molecular data currently available for the continent, but the origin of this diversity has not been satisfactorily explained yet. Here we explore if this high morphological variation was already present among early groups in South America, in order to refine our knowledge about the timing and origins of the modern morphological diversity. Between-group (Fst estimates) and within-group variances (trace of within-group covariance matrix) of the only two early American population samples available to date (Lagoa Santa and Sabana de Bogotá) were estimated based on linear craniometric measurements and compared to modern human cranial series representing six regions of the world, including the Americas. The results show that early Americans present moderate within-group diversity, falling well within the range of modern human groups, despite representing almost three thousand years of human occupation. The between-group variance apportionment is very low between early Americans, but is high among recent South American groups, who show values similar to the ones observed on a global scale. Although limited to only two early South American series, these results suggest that the high morphological diversity of native South Americans was not present among the first human groups arriving in the continent and must have originated during the Middle Holocene, possibly due to the arrival of new morphological diversity coming from Asia during the Holocene. PMID:26465141

  6. Origin of Clothing Lice Indicates Early Clothing Use by Anatomically Modern Humans in Africa

    PubMed Central

    Toups, Melissa A.; Kitchen, Andrew; Light, Jessica E.; Reed, David L.

    2011-01-01

    Clothing use is an important modern behavior that contributed to the successful expansion of humans into higher latitudes and cold climates. Previous research suggests that clothing use originated anywhere between 40,000 and 3 Ma, though there is little direct archaeological, fossil, or genetic evidence to support more specific estimates. Since clothing lice evolved from head louse ancestors once humans adopted clothing, dating the emergence of clothing lice may provide more specific estimates of the origin of clothing use. Here, we use a Bayesian coalescent modeling approach to estimate that clothing lice diverged from head louse ancestors at least by 83,000 and possibly as early as 170,000 years ago. Our analysis suggests that the use of clothing likely originated with anatomically modern humans in Africa and reinforces a broad trend of modern human developments in Africa during the Middle to Late Pleistocene. PMID:20823373

  7. Cenozoic continental climatic evolution of Central Europe.

    PubMed

    Mosbrugger, Volker; Utescher, Torsten; Dilcher, David L

    2005-10-18

    Continental climate evolution of Central Europe has been reconstructed quantitatively for the last 45 million years providing inferred data on mean annual temperature and precipitation, and winter and summer temperatures. Although some regional effects occur, the European Cenozoic continental climate record correlates well with the global oxygen isotope record from marine environments. During the last 45 million years, continental cooling is especially pronounced for inferred winter temperatures but hardly observable from summer temperatures. Correspondingly, Cenozoic cooling in Central Europe is directly associated with an increase of seasonality. In contrast, inferred Cenozoic mean annual precipitation remained relatively stable, indicating the importance of latent heat transport throughout the Cenozoic. Moreover, our data support the concept that changes in atmospheric CO2 concentrations, although linked to climate changes, were not the major driving force of Cenozoic cooling.

  8. An early and enduring advanced technology originating 71,000 years ago in South Africa.

    PubMed

    Brown, Kyle S; Marean, Curtis W; Jacobs, Zenobia; Schoville, Benjamin J; Oestmo, Simen; Fisher, Erich C; Bernatchez, Jocelyn; Karkanas, Panagiotis; Matthews, Thalassa

    2012-11-22

    There is consensus that the modern human lineage appeared in Africa before 100,000 years ago. But there is debate as to when cultural and cognitive characteristics typical of modern humans first appeared, and the role that these had in the expansion of modern humans out of Africa. Scientists rely on symbolically specific proxies, such as artistic expression, to document the origins of complex cognition. Advanced technologies with elaborate chains of production are also proxies, as these often demand high-fidelity transmission and thus language. Some argue that advanced technologies in Africa appear and disappear and thus do not indicate complex cognition exclusive to early modern humans in Africa. The origins of composite tools and advanced projectile weapons figure prominently in modern human evolution research, and the latter have been argued to have been in the exclusive possession of modern humans. Here we describe a previously unrecognized advanced stone tool technology from Pinnacle Point Site 5-6 on the south coast of South Africa, originating approximately 71,000 years ago. This technology is dominated by the production of small bladelets (microliths) primarily from heat-treated stone. There is agreement that microlithic technology was used to create composite tool components as part of advanced projectile weapons. Microliths were common worldwide by the mid-Holocene epoch, but have a patchy pattern of first appearance that is rarely earlier than 40,000 years ago, and were thought to appear briefly between 65,000 and 60,000 years ago in South Africa and then disappear. Our research extends this record to ~71,000 years, shows that microlithic technology originated early in South Africa, evolved over a vast time span (~11,000 years), and was typically coupled to complex heat treatment that persisted for nearly 100,000 years. Advanced technologies in Africa were early and enduring; a small sample of excavated sites in Africa is the best explanation for any

  9. The ancient history of the structure of ribonuclease P and the early origins of Archaea

    PubMed Central

    2010-01-01

    Background Ribonuclease P is an ancient endonuclease that cleaves precursor tRNA and generally consists of a catalytic RNA subunit (RPR) and one or more proteins (RPPs). It represents an important macromolecular complex and model system that is universally distributed in life. Its putative origins have inspired fundamental hypotheses, including the proposal of an ancient RNA world. Results To study the evolution of this complex, we constructed rooted phylogenetic trees of RPR molecules and substructures and estimated RPP age using a cladistic method that embeds structure directly into phylogenetic analysis. The general approach was used previously to study the evolution of tRNA, SINE RNA and 5S rRNA, the origins of metabolism, and the evolution and complexity of the protein world, and revealed here remarkable evolutionary patterns. Trees of molecules uncovered the tripartite nature of life and the early origin of archaeal RPRs. Trees of substructures showed molecules originated in stem P12 and were accessorized with a catalytic P1-P4 core structure before the first substructure was lost in Archaea. This core currently interacts with RPPs and ancient segments of the tRNA molecule. Finally, a census of protein domain structure in hundreds of genomes established RPPs appeared after the rise of metabolic enzymes at the onset of the protein world. Conclusions The study provides a detailed account of the history and early diversification of a fundamental ribonucleoprotein and offers further evidence in support of the existence of a tripartite organismal world that originated by the segregation of archaeal lineages from an ancient community of primordial organisms. PMID:20334683

  10. Footprints pull origin and diversification of dinosaur stem lineage deep into Early Triassic.

    PubMed

    Brusatte, Stephen L; Niedźwiedzki, Grzegorz; Butler, Richard J

    2011-04-01

    The ascent of dinosaurs in the Triassic is an exemplary evolutionary radiation, but the earliest phase of dinosaur history remains poorly understood. Body fossils of close dinosaur relatives are rare, but indicate that the dinosaur stem lineage (Dinosauromorpha) originated by the latest Anisian (ca 242-244 Ma). Here, we report footprints from the Early-Middle Triassic of Poland, stratigraphically well constrained and identified using a conservative synapomorphy-based approach, which shifts the origin of the dinosaur stem lineage back to the Early Olenekian (ca 249-251 Ma), approximately 5-9 Myr earlier than indicated by body fossils, earlier than demonstrated by previous footprint records, and just a few million years after the Permian/Triassic mass extinction (252.3 Ma). Dinosauromorph tracks are rare in all Polish assemblages, suggesting that these animals were minor faunal components. The oldest tracks are quadrupedal, a morphology uncommon among the earliest dinosauromorph body fossils, but bipedality and moderately large body size had arisen by the Early Anisian (ca 246 Ma). Integrating trace fossils and body fossils demonstrates that the rise of dinosaurs was a drawn-out affair, perhaps initiated during recovery from the Permo-Triassic extinction.

  11. Early Eocene fossils suggest that the mammalian order Perissodactyla originated in India.

    PubMed

    Rose, Kenneth D; Holbrook, Luke T; Rana, Rajendra S; Kumar, Kishor; Jones, Katrina E; Ahrens, Heather E; Missiaen, Pieter; Sahni, Ashok; Smith, Thierry

    2014-11-20

    Cambaytheres (Cambaytherium, Nakusia and Kalitherium) are recently discovered early Eocene placental mammals from the Indo-Pakistan region. They have been assigned to either Perissodactyla (the clade including horses, tapirs and rhinos, which is a member of the superorder Laurasiatheria) or Anthracobunidae, an obscure family that has been variously considered artiodactyls or perissodactyls, but most recently placed at the base of Proboscidea or of Tethytheria (Proboscidea+Sirenia, superorder Afrotheria). Here we report new dental, cranial and postcranial fossils of Cambaytherium, from the Cambay Shale Formation, Gujarat, India (~54.5 Myr). These fossils demonstrate that cambaytheres occupy a pivotal position as the sister taxon of Perissodactyla, thereby providing insight on the phylogenetic and biogeographic origin of Perissodactyla. The presence of the sister group of perissodactyls in western India near or before the time of collision suggests that Perissodactyla may have originated on the Indian Plate during its final drift toward Asia.

  12. Cenozoic reconstruction of southwest Pacific

    SciTech Connect

    Chun, Y.Y.; Kroenke, L.W.

    1986-07-01

    Poles of opening and spreading rates for some of the well-studied marginal basins in the southwest Pacific have been redetermined. Times of opening range from Late Cretaceous-Paleocene in the Tasman basin to middle Pliocene in the Bismarck Sea. The observed magnetic lineations in most of these basins show a relatively short duration of opening and relatively small area of total opening. Most of the smaller basins are bounded by troughs and arcuate island chains, some of which are inferred to be trenches and volcanic arcs situated along paleoconvergent boundaries. At least four successive paleoconvergent boundaries are believed to have formed between the Pacific and the Indian-Australian plates during the Cenozoic. Combining the newly determined poles of opening, spreading rates, and paleoplate boundary locations, a series of palinspastic maps of the southwest Pacific have been constructed for these times, relative to a fixed hot-spot frame of reference for both the Pacific and Indian-Australian plates.

  13. Early adolescent temperament, parental monitoring, and substance use in Mexican-origin adolescents.

    PubMed

    Clark, D Angus; Donnellan, M Brent; Robins, Richard W; Conger, Rand D

    2015-06-01

    Previous studies suggest that temperamental dispositions are associated with substance use. However, most research supporting this association has relied on European American samples (Stautz & Cooper, 2013). We addressed this gap by evaluating the prospective relations between 5th grade temperament and 9th grade substance use in a longitudinal sample of Mexican-origin youth (N = 674). Effortful control and trait aggressiveness predicted 9th grade substance use, intentions, and expectations, even after controlling for 5th grade substance use. Additionally, we found an interaction between temperament and parental monitoring such that monitoring is a protective factor for early substance use primarily for youth with temperamental tendencies associated with risk for substance use (e.g., low effortful control and aggression). Results add to the growing literature demonstrating that early manifestations of self-control are related to consequential life outcomes. PMID:25841175

  14. Early adolescent temperament, parental monitoring, and substance use in Mexican-origin adolescents.

    PubMed

    Clark, D Angus; Donnellan, M Brent; Robins, Richard W; Conger, Rand D

    2015-06-01

    Previous studies suggest that temperamental dispositions are associated with substance use. However, most research supporting this association has relied on European American samples (Stautz & Cooper, 2013). We addressed this gap by evaluating the prospective relations between 5th grade temperament and 9th grade substance use in a longitudinal sample of Mexican-origin youth (N = 674). Effortful control and trait aggressiveness predicted 9th grade substance use, intentions, and expectations, even after controlling for 5th grade substance use. Additionally, we found an interaction between temperament and parental monitoring such that monitoring is a protective factor for early substance use primarily for youth with temperamental tendencies associated with risk for substance use (e.g., low effortful control and aggression). Results add to the growing literature demonstrating that early manifestations of self-control are related to consequential life outcomes.

  15. The nature and origins of ambient language influence on infant vocal production and early words.

    PubMed

    Vihman, M M; de Boysson-Bardies, B

    1994-01-01

    Phonological structure may be seen as emerging in ontogeny from the combined effects of performance constraints rooted in the neuromotor and perceptual systems, individual lexical development and the influence of the particular ambient language. We review here the nature and origins of the earliest ambient language influences. Global effects within the first year of life include both (1) loss of early appearing phonetic gestures not supported by the ambient language and (2) positive effects, reflecting infant attention to prosody and to cues available in the visual as well as the auditory modality. In the course of early lexical development more specific effects become manifest as individual children pursue less common phonetic paths to which the ambient language provides 'sufficient exposure'.

  16. Structural phylogenomics uncovers the early and concurrent origins of cysteine biosynthesis and iron-sulfur proteins.

    PubMed

    Zhang, Hong-Yu; Qin, Tao; Jiang, Ying-Ying; Caetano-Anollés, Gustavo

    2012-01-01

    Cysteine (Cys) has unique chemical properties of catalysis, metal chelation, and protein stabilization. While Cys biosynthesis is assumed to be very ancient, the actual time of origin of these metabolic pathways remains unknown. Here, we use the molecular clocks of protein folds and fold superfamilies to time the origin of Cys biosynthesis. We find that the tRNA-dependent biosynthetic pathway appeared ~3.5 billion years ago while the tRNA-independent counterpart emerged ~500 million years later. A deep analysis of the origins of Cys biosynthesis in the context of emerging biochemistry uncovers some intriguing features of the planetary environment of early Earth. Results suggest that iron-sulfur (Fe-S) proteins that use cysteinyl sulfur to bind iron atoms were not the first to arise in evolution. Instead, their origin coincides with the appearance of the first Cys biosynthetic pathway. It is therefore likely that Cys did not play an important role in the make up of primordial protein molecules and that Fe-S clusters were not part of active sites at the beginning of biological history.

  17. Structural phylogenomics uncovers the early and concurrent origins of cysteine biosynthesis and iron-sulfur proteins.

    PubMed

    Zhang, Hong-Yu; Qin, Tao; Jiang, Ying-Ying; Caetano-Anollés, Gustavo

    2012-01-01

    Cysteine (Cys) has unique chemical properties of catalysis, metal chelation, and protein stabilization. While Cys biosynthesis is assumed to be very ancient, the actual time of origin of these metabolic pathways remains unknown. Here, we use the molecular clocks of protein folds and fold superfamilies to time the origin of Cys biosynthesis. We find that the tRNA-dependent biosynthetic pathway appeared ~3.5 billion years ago while the tRNA-independent counterpart emerged ~500 million years later. A deep analysis of the origins of Cys biosynthesis in the context of emerging biochemistry uncovers some intriguing features of the planetary environment of early Earth. Results suggest that iron-sulfur (Fe-S) proteins that use cysteinyl sulfur to bind iron atoms were not the first to arise in evolution. Instead, their origin coincides with the appearance of the first Cys biosynthetic pathway. It is therefore likely that Cys did not play an important role in the make up of primordial protein molecules and that Fe-S clusters were not part of active sites at the beginning of biological history. PMID:22731683

  18. Evidence for Cenozoic uplift of the Appalachian Mountains in the southeastern United States

    SciTech Connect

    Prowell, D.C. ); Christopher, R.A. )

    1993-03-01

    The present height and shape of the (physiographic) Appalachian Mountains were traditionally attributed to Paleozoic and early Mesozoic tectonism and the resistance of the Precambrian and Paleozoic rocks to erosion. New evidence indicates that Cenozoic uplift is responsible for at least part of the present height of land as well as for the configuration of the inner margin of the Coastal Plain at the southern terminus of the mountains. Stratigraphic correlations from regional mapping and palynological analysis of Cretaceous non-marine and restricted marine strata in the southeastern Coastal Plain suggest that Cenozoic uplift has influence both the present height of the landmass and the outcrop pattern of the eastern Gulf Coastal Plain. In addition, Cenozoic uplift has raised Cretaceous marine deposits to 300 m (1,000 ft) above present sea level in south-central Tennessee, and subsequent erosion has modified the Coastal Plain section to expose the oldest strata at the point of maximum uplift in central Alabama. The magnitude of uplift appears to be greatest along the northeast-trending axis of the mountain chain, and it decreases with distance from the mountains. This uplift is thought to result from the compressive intraplate tectonism that produced numerous reverse faults on the Atlantic continental margin during the Cretaceous and Cenozoic. Most of the Cretaceous and early Cenozoic strata that once covered the Precambrian and Paleozoic rocks at the southern terminus of the Appalachians have been removed by late Cenozoic erosion, but remnants of the eroded Cenozoic beds are preserved at elevations up to +640 m (+2,100 ft) in numerous fault-bounded sediment traps as far inland as Chattanooga, Tenn. Palynological correlation of these inland deposits with geologic formations in the present Coastal Plain suggests the intriguing possibility that the Coastal Plain strata once may have extended hundreds of kilometers (miles) inland from their present inner margin.

  19. Origin of the Directed Movement of Protocells in the Early Stages of the Evolution of Life

    NASA Astrophysics Data System (ADS)

    Melkikh, Alexey V.; Chesnokova, Oksana I.

    2012-08-01

    The origin of the directed motion of protocells during the early stages of evolution was discussed. The expenditures for movement, space orientation, and reception of information about the environment were taken into consideration, and it was shown that directed movement is evolutionarily advantageous in the following cases: when opposite gradients of different resources (for example, matter and energy) are great enough and when there is a rapid change in environmental parameters. It was also shown that the advantage of directed movement strategies depends greatly on how information about the environment is obtained by a protocell.

  20. Origin of the directed movement of protocells in the early stages of the evolution of life.

    PubMed

    Melkikh, Alexey V; Chesnokova, Oksana I

    2012-08-01

    The origin of the directed motion of protocells during the early stages of evolution was discussed. The expenditures for movement, space orientation, and reception of information about the environment were taken into consideration, and it was shown that directed movement is evolutionarily advantageous in the following cases: when opposite gradients of different resources (for example, matter and energy) are great enough and when there is a rapid change in environmental parameters. It was also shown that the advantage of directed movement strategies depends greatly on how information about the environment is obtained by a protocell. PMID:22772806

  1. The Early Origin of the Antarctic Marine Fauna and Its Evolutionary Implications

    PubMed Central

    Crame, J. Alistair; Beu, Alan G.; Ineson, Jon R.; Francis, Jane E.; Whittle, Rowan J.; Bowman, Vanessa C.

    2014-01-01

    The extensive Late Cretaceous – Early Paleogene sedimentary succession of Seymour Island, N.E. Antarctic Peninsula offers an unparalleled opportunity to examine the evolutionary origins of a modern polar marine fauna. Some 38 modern Southern Ocean molluscan genera (26 gastropods and 12 bivalves), representing approximately 18% of the total modern benthic molluscan fauna, can now be traced back through at least part of this sequence. As noted elsewhere in the world, the balance of the molluscan fauna changes sharply across the Cretaceous – Paleogene (K/Pg) boundary, with gastropods subsequently becoming more diverse than bivalves. A major reason for this is a significant radiation of the Neogastropoda, which today forms one of the most diverse clades in the sea. Buccinoidea is the dominant neogastropod superfamily in both the Paleocene Sobral Formation (SF) (56% of neogastropod genera) and Early - Middle Eocene La Meseta Formation (LMF) (47%), with the Conoidea (25%) being prominent for the first time in the latter. This radiation of Neogastropoda is linked to a significant pulse of global warming that reached at least 65°S, and terminates abruptly in the upper LMF in an extinction event that most likely heralds the onset of global cooling. It is also possible that the marked Early Paleogene expansion of neogastropods in Antarctica is in part due to a global increase in rates of origination following the K/Pg mass extinction event. The radiation of this and other clades at ∼65°S indicates that Antarctica was not necessarily an evolutionary refugium, or sink, in the Early – Middle Eocene. Evolutionary source – sink dynamics may have been significantly different between the Paleogene greenhouse and Neogene icehouse worlds. PMID:25493546

  2. The Early Origin of the Antarctic Marine Fauna and Its Evolutionary Implications.

    PubMed

    Crame, J Alistair; Beu, Alan G; Ineson, Jon R; Francis, Jane E; Whittle, Rowan J; Bowman, Vanessa C

    2014-01-01

    The extensive Late Cretaceous - Early Paleogene sedimentary succession of Seymour Island, N.E. Antarctic Peninsula offers an unparalleled opportunity to examine the evolutionary origins of a modern polar marine fauna. Some 38 modern Southern Ocean molluscan genera (26 gastropods and 12 bivalves), representing approximately 18% of the total modern benthic molluscan fauna, can now be traced back through at least part of this sequence. As noted elsewhere in the world, the balance of the molluscan fauna changes sharply across the Cretaceous - Paleogene (K/Pg) boundary, with gastropods subsequently becoming more diverse than bivalves. A major reason for this is a significant radiation of the Neogastropoda, which today forms one of the most diverse clades in the sea. Buccinoidea is the dominant neogastropod superfamily in both the Paleocene Sobral Formation (SF) (56% of neogastropod genera) and Early - Middle Eocene La Meseta Formation (LMF) (47%), with the Conoidea (25%) being prominent for the first time in the latter. This radiation of Neogastropoda is linked to a significant pulse of global warming that reached at least 65°S, and terminates abruptly in the upper LMF in an extinction event that most likely heralds the onset of global cooling. It is also possible that the marked Early Paleogene expansion of neogastropods in Antarctica is in part due to a global increase in rates of origination following the K/Pg mass extinction event. The radiation of this and other clades at ∼65°S indicates that Antarctica was not necessarily an evolutionary refugium, or sink, in the Early - Middle Eocene. Evolutionary source - sink dynamics may have been significantly different between the Paleogene greenhouse and Neogene icehouse worlds. PMID:25493546

  3. Ocean acidification in the Meso- vs. Cenozoic: lessons from modeling about the geological expression of paleo-ocean acidification

    NASA Astrophysics Data System (ADS)

    Greene, S. E.; Ridgwell, A.; Kirtland Turner, S.

    2015-12-01

    Rapid climatic and biotic events putatively associated with ocean acidification are scattered throughout the Meso-Cenozoic. Many of these rapid perturbations, variably referred to as hyperthermals (Paleogene) and oceanic anoxic events or mass extinction events (Mesozoic), share a number of characteristic features, including some combination of negative carbon isotopic excursion, global warming, and a rise in atmospheric CO2 concentration. Comparisons between ocean acidification events over the last ~250 Ma are, however, problematic because the types of marine geological archives and carbon reservoirs that can be interrogated are fundamentally different for early Mesozoic vs. late Mesozoic-Cenozoic events. Many Mesozoic events are known primarily or exclusively from geological outcrops of relatively shallow water deposits, whereas the more recent Paleogene hyperthermal events have been chiefly identified from deep sea records. In addition, these earlier events are superimposed on an ocean with a fundamentally different carbonate buffering capacity, as calcifying plankton (which created the deep-sea carbonate sink) originate in the mid-Mesozoic. Here, we use both Earth system modeling and reaction transport sediment modeling to explore the ways in which comparable ocean acidification-inducing climate perturbations might manifest in the Mesozoic vs. the Cenozoic geological record. We examine the role of the deep-sea carbonate sink in the expression of ocean acidification, as well as the spatial heterogeneity of surface ocean pH and carbonate saturation state. These results critically inform interpretations of ocean acidification prior to the mid-Mesozoic advent of calcifying plankton and expectations about the recording of these events in geological outcrop.

  4. Relating Cenozoic North Sea sediments to topography in southern Norway: The interplay between tectonics and climate

    NASA Astrophysics Data System (ADS)

    Anell, Ingrid; Thybo, Hans; Stratford, Wanda

    2010-11-01

    About 482 000 km 3 of sediment (ca 24 m/Ma) accumulated in the North Sea during the Cenozoic. Early Cenozoic sedimentation was likely due to uplift of the circum North Atlantic landmasses related to continental break-up. Kilometre-scale transient uplift, and in some areas permanent uplift, generated sources for progradational influx of clastic sediments from Scotland, the Shetland platform and, to a lesser degree, southwestern Norway. The Eocene sedimentation pattern was similar to the Palaeocene, with lower rates of accumulation associated with flooding and tectonic quiescence. Sediment influx from the Shetland platform continued throughout the Cenozoic while supply from southern Norway increased markedly around the Eocene-Oligocene, coeval with the greenhouse-icehouse transition. Mass balance calculations of sediment and eroded rock volumes suggest that while some topography along the western margin of Norway may be pre-Cenozoic, significant uplift of the main Paleic surface in southern Norway occurred around the early Oligocene. Sedimentation rates were almost ten-fold higher than the Cenozoic average in the Plio-Pleistocene, slightly higher than the global average. Mass balance calculations indicate that Plio-Pleistocene erosion over-deepened a pre-existing topography.

  5. Source of oils in Gulf Coast Cenozoic reservoirs

    SciTech Connect

    Curtis, D.M. )

    1989-09-01

    Many Gulf Coast geologists have assumed that shales interbedded with or adjacent to the reservoir sandstones are source rocks for oils in Cenozoic reservoirs, but few source-rock quality shales have been identified in Cenozoic strata. Reservoirs and their associated shales are in thermally immature and organic-poor intervals. Based on geothermal gradient, age, and depth, it can be shown that thermally mature source rocks should be present in older slope shales beneath each producing trend. Assumptions regarding the source rock potential of the interbedded thermally immature shales derive from the fact that hydrocarbons migrated into traps soon after burial of the reservoir (early migration). Early migration from the source rock was therefore also assumed (shallow burial, early migration model). Review of the geochemical requirements for a source rock shows that geochemical constraints demand late migration from the source rock after many thousands of feet of burial (deep burial, late migration model). Geological and geochemical concepts are compatible, however, if migration out of the source rock was late (long after deposition and deep burial of the source rock) but migration into the reservoir was early (soon after shallow burial of the reservoir and trap system).

  6. Cenozoic diapiric traps in eastern China

    SciTech Connect

    Xie-Pei, W.; Qi, F.; Jia-Hua, Z.

    1985-12-01

    Diapiric traps, including diapirs of salt and mud or igneous intrusives, have recently been found in many places in the Cenozoic petroliferous basins in eastern China, and most of them produce oil and gas. During the Eocene-early Oligocene, salt-lake basins evolved extensively. Plastic source materials for diapirism were deposited in the basins in great thickness. We have found that the diapiric traps of salt and mud in eastern China are unpierced or slightly pierced structures. The diapiric materials are a mixture of salt, gypsum, and mudstone, but mudstone is the main component of the plastic bodies. Based on an analysis of the structural features of the diapirs and the regional tectonic setting, we believe that the diapiric traps are caused by a combination of horizontal stress due to regional tectonic movement and vertical stress due to gravitational instability. Some diabase diapirs are arranged in a series of small anticlinal traps along the regional faults in the Subei basin of Jiangsu province. Oil and gas have been found in certain of these diapirs. 16 figures.

  7. History and distribution of cenozoic magmatic systems

    SciTech Connect

    Noble, D.C.; McKee, E.H.

    1983-12-31

    The oldest Cenozoic igneous rocks in the northern Basin and Range Province consist of local units of tuff exposed in northeastern Nevada and high-K intermediate to silicic lavas and related high-level intrusive rocks that define a broad belt extending from the Wasatch Mountains across western Utah to central Nevada. Contemporaneous lavas in northwestern Nevada and the Warner Range in northeastern California may form a continuation of this suite. A broad belt of middle Oligocene to early Miocene volcanic rocks, mainly voluminous silicic ash-flow tuffs, extends from southwestern Utah to northwestern Nevada. The rocks range from unevolved, crystal-rich tuffs (e.g., Needles Range Formation, Monotony Tuff) to moderately to highly evolved high-silica rhyolite tuffs. There is a tendency for the more unevolved rocks to predate the more evolved types. Middle Miocene and younger volcanic rocks, erupted after the onset of major crustal extension, include a number of distinct petrologic types. Basalts and low-silica intermediate rocks ranging in age from about 19m.y. to less than 2 m.y. include, in the northwestern Great Basin, basalts (Steen`s Basalt and equivalents) approximately contemporaneous with the Picture Gorge Basalt of the Columbia River Basalt Group and, in the north-central Great Basin, slightly younger lavas associated with inception of crustal extension.

  8. Origins.

    ERIC Educational Resources Information Center

    Online-Offline, 1999

    1999-01-01

    Provides an annotated list of resources dealing with the theme of origins of life, the universe, and traditions. Includes Web sites, videos, books, audio materials, and magazines with appropriate grade levels and/or subject disciplines indicated; professional resources; and learning activities. (LRW)

  9. Terrestrial origin of viviparity in mesozoic marine reptiles indicated by early triassic embryonic fossils.

    PubMed

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction.

  10. Terrestrial origin of viviparity in mesozoic marine reptiles indicated by early triassic embryonic fossils.

    PubMed

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction. PMID:24533127

  11. Late Cenozoic stratigraphy and structure of the western margin of the central San Joaquin Valley, California

    USGS Publications Warehouse

    Lettis, William R.

    1982-01-01

    Late Cenozoic Stratigraphy Late Cenozoic deposits in the west-central San Joaquin Valley and adjacent foothills of the Diablo Range consist mainly of unconsolidated, poorly-sorted to well-sorted gravel, sand, silt and clay derived primarily from the Diablo Range and secondarily from the Sierra Nevada. Sedimentary structures, such as channeled contacts, laminated bedding, cross-stratification and clast-imbrication indicate that most of the deposits were transported and laid down by running water. These deposits are described and their facies relationships are illustrated in the 'Late Cenozoic Stratigraphy' section of this report (see Figures 17, and 26, and Table 9). Sediment shed from the Diablo Range accumulated primarily as a complex of coalescing alluvial fans on the piedmont slope of a San Joaquin Valley that at one time extended across the foothill belt to the present margin of the central Diablo Range; and as local fills within stream valleys of the Diablo Range foothills tributary to the San Joaquin Valley. These deposits are well exposed in Interstate-5 roadcuts, California Aqueduct and Delta-Mendota canal cuts, and stream banks along the many ephemeral and intermittent streams draining the Diablo Range. Sediment derived from the Sierra Nevada is confined primarily to the floodbasin of the San Joaquin Valley. It includes arkosic riverine and floodbasin deposits from the San Joaquin River and associated sloughs, as well as local ephemeral and perennial pond, swamp, oxbow-lake and lake deposits. These deposits are well-exposed in stream banks of the San Joaquin River and a few of the larger sloughs such as Salt Slough, Mud Slough and Kings Slough. Well-sorted, fine- and medium-grained, quartzose, cross-bedded sand, presumably derived from the Sierra Nevada, locally interfinger with or underlie fine-grained Coast Range alluvial-fan deposits. The sand probably originated by eolian reworking of Sierran alluvium from the floodbasin of the lower San Joaquin River

  12. Tracing the geographical origin of early potato tubers using stable hydrogen isotope ratios of methoxyl groups.

    PubMed

    Keppler, Frank; Hamilton, John T G

    2008-12-01

    The application of stable isotope ratio measurements has become an extremely useful tool for tracing the provenance of food products, thus ensuring that consumers receive products which comply with their labelled specifications. Recently, it has been shown that relative stable hydrogen isotope abundances (delta(2)H values) of wood lignin methoxyl groups have a distinct range that reflects the delta(2)H values of their meteoric source water. Furthermore, it has been suggested that the isotope information stored in methoxyl groups in plant matter generally might assist with determining the place of origin of plant material. We now have measured delta(2)H values of methoxyl groups from natural compounds in tubers of early potatoes (Solanum tuberosum) grown in different geographical locations. Tubers of early potatoes were collected from across Europe and regions close to the Mediterranean Sea between April and July 2004. The methoxyl groups from the potatoes were found to be highly depleted in (2)H, relative to both their meteoric water and bulk biomass, and a systematic shift of the delta(2)H values between methoxyl groups and meteoric water was observed. A constant fractionation of-161+/-11 per thousand. between methoxyl groups and modelled meteoric water is shown over a transaction covering the delta(2)H values of meteoric water from-95 per thousand in Northern Sweden to+25 per thousand in Egypt. From this information, early potato tubers from Middle Europe can be clearly distinguished from those of Mediterranean regions and from Northern Europe. Thus, we suggest that delta(2)H values of methoxyl groups have the potential to become an effective tool in assisting with the constraint of the geographical origin of potato tubers and other food stuffs.

  13. A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders.

    PubMed

    Anderson, Jason S; Reisz, Robert R; Scott, Diane; Fröbisch, Nadia B; Sumida, Stuart S

    2008-05-22

    The origin of extant amphibians (Lissamphibia: frogs, salamanders and caecilians) is one of the most controversial questions in vertebrate evolution, owing to large morphological and temporal gaps in the fossil record. Current discussions focus on three competing hypotheses: a monophyletic origin within either Temnospondyli or Lepospondyli, or a polyphyletic origin with frogs and salamanders arising among temnospondyls and caecilians among the lepospondyls. Recent molecular analyses are also controversial, with estimations for the batrachian (frog-salamander) divergence significantly older than the palaeontological evidence supports. Here we report the discovery of an amphibamid temnospondyl from the Early Permian of Texas that bridges the gap between other Palaeozoic amphibians and the earliest known salientians and caudatans from the Mesozoic. The presence of a mosaic of salientian and caudatan characters in this small fossil makes it a key taxon close to the batrachian (frog and salamander) divergence. Phylogenetic analysis suggests that the batrachian divergence occurred in the Middle Permian, rather than the late Carboniferous as recently estimated using molecular clocks, but the divergence with caecilians corresponds to the deep split between temnospondyls and lepospondyls, which is congruent with the molecular estimates.

  14. A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders.

    PubMed

    Anderson, Jason S; Reisz, Robert R; Scott, Diane; Fröbisch, Nadia B; Sumida, Stuart S

    2008-05-22

    The origin of extant amphibians (Lissamphibia: frogs, salamanders and caecilians) is one of the most controversial questions in vertebrate evolution, owing to large morphological and temporal gaps in the fossil record. Current discussions focus on three competing hypotheses: a monophyletic origin within either Temnospondyli or Lepospondyli, or a polyphyletic origin with frogs and salamanders arising among temnospondyls and caecilians among the lepospondyls. Recent molecular analyses are also controversial, with estimations for the batrachian (frog-salamander) divergence significantly older than the palaeontological evidence supports. Here we report the discovery of an amphibamid temnospondyl from the Early Permian of Texas that bridges the gap between other Palaeozoic amphibians and the earliest known salientians and caudatans from the Mesozoic. The presence of a mosaic of salientian and caudatan characters in this small fossil makes it a key taxon close to the batrachian (frog and salamander) divergence. Phylogenetic analysis suggests that the batrachian divergence occurred in the Middle Permian, rather than the late Carboniferous as recently estimated using molecular clocks, but the divergence with caecilians corresponds to the deep split between temnospondyls and lepospondyls, which is congruent with the molecular estimates. PMID:18497824

  15. Origins.

    PubMed

    Weinberg, S

    1985-10-01

    The farthest of the galaxies that can be seen through the large ground-based telescopes of modern astronomy, such as those on La Palma in the Canary Islands, are so far away that they appear as they did close to the time of the origin of the universe, perhaps some 10 billion years ago. Much has been learned, and much has still to be learned, about the young universe from optical and radio telescopes, but these instruments cannot be used to look directly at the universe in its first few hundred thousand years. Instead, they are used to search the relatively recent past for relics of much earlier times. Together with experiments planned for the next generation of elementary particle accelerators, astronomical observations should continue to extend what is known about the universe backward in time to the Big Bang and may eventually help to reveal the origins of the physical laws that govern the universe.

  16. Evidence for an Early Origin of Vernalization Responsiveness in Temperate Pooideae Grasses1[OPEN

    PubMed Central

    McKeown, Meghan; Fjellheim, Siri

    2016-01-01

    The ability of plants to match their reproductive output with favorable environmental conditions has major consequences both for lifetime fitness and geographic patterns of diversity. In temperate ecosystems, some plant species have evolved the ability to use winter nonfreezing cold (vernalization) as a cue to ready them for spring flowering. However, it is unknown how important the evolution of vernalization responsiveness has been for the colonization and subsequent diversification of taxa within the northern and southern temperate zones. Grasses of subfamily Pooideae, including several important crops, such as wheat (Triticum aestivum), barley (Hordeum vulgare), and oats (Avena sativa), predominate in the northern temperate zone, and it is hypothesized that their radiation was facilitated by the early evolution of vernalization responsiveness. Predictions of this early origin hypothesis are that a response to vernalization is widespread within the subfamily and that the genetic basis of this trait is conserved. To test these predictions, we determined and reconstructed vernalization responsiveness across Pooideae and compared expression of wheat vernalization gene orthologs VERNALIZATION1 (VRN1) and VRN3 in phylogenetically representative taxa under cold and control conditions. Our results demonstrate that vernalization responsive Pooideae species are widespread, suggesting that this trait evolved early in the lineage and that at least part of the vernalization gene network is conserved throughout the subfamily. These results are consistent with the hypothesis that the evolution of vernalization responsiveness was important for the initial transition of Pooideae out of the tropics and into the temperate zone. PMID:27474116

  17. Environmental oxygen conditions during the origin and early evolution of life

    NASA Astrophysics Data System (ADS)

    Towe, Kenneth M.

    The well-known sensitivity of proteins and nucleic acids to UV-radiation requires that some internally consistent protection scenario be envisioned for the origin and early evolution of life on Earth. Although a variety of ozone-surrogates has been proposed, the available biochemical, geochemical and geological evidence best supports the conclusion that free oxygen was available at levels capable of providing at least a moderate ozone screen. Levels of oxygen near 1-2% of the present atmospheric level are consistent with such a screen, and with: (1) the biochemical needs of early procaryotes considered phylogenetically more primitive than the oxygen-producing Cyanobacteria; (2) the rare-earth element data from the oxide facies of the 3.8 Byr-old Isua banded-iron formations; (3) the nature and phylogenetic distribution of superoxide dismutases; (4) the need for aerobic recycling of early photosynthetic productivity dictated by the distribution of ancient sedimentary iron and organic carbon; (5) the incompatibility of dissolved reduced sulfur (to support anoxygenic photosynthesis) and ferrous iron (to support banded iron-formations) in the surface waters of the world oceans; and (6) the comparative oxygen and UV-sensitivities of modern procaryotes.

  18. Modern mammal origins: evolutionary grades in the Early Cretaceous of North America.

    PubMed

    Jacobs, L L; Winkler, D A; Murry, P A

    1989-07-01

    Major groups of modern mammals have their origins in the Mesozoic Era, yet the mammalian fossil record is generally poor for that time interval. Fundamental morphological changes that led to modern mammals are often represented by small samples of isolated teeth. Fortunately, functional wear facets on teeth allow prediction of the morphology of occluding teeth that may be unrepresented by fossils. A major step in mammalian evolution occurred in the Early Cretaceous with the evolution of tribosphenic molars, which characterize marsupials and placentals, the two most abundant and diverse extant groups of mammals. A tooth from the Early Cretaceous (110 million years before present) of Texas tests previous predictions (based on lower molars) of the morphology of upper molars in early tribosphenic dentitions. The lingual cusp (protocone) is primitively without shear facets, as expected, but the cheek side of the tooth is derived (advanced) in having distinctive cusps along the margin. The tooth, although distressingly inadequate to define many features of the organism, demonstrates unexpected morphological diversity at a strategic stage of mammalian evolution and falsifies previous claims of the earliest occurrence of true marsupials.

  19. Origin of the Martian global dichotomy by crustal thinning in the late Noachian or early Hesperian

    SciTech Connect

    McGill, G.E.; Dimitriou, A.M. )

    1990-08-10

    The marked dichotomy in topography, surface age, and crustal thickness between the northern lowland and southern upland Mars has been explained as due to an initially inhomogeneous crust, a single mega-impact event, several overlapping large basin impacts, and first-order convective overturn of the martian mantle. All of the published hypotheses propose that the dichotomy was formed early in martian history; before the end of the primordial heavy bombardment. A primordial origin is inherent in the initial crustal inhomogeneity hypothesis, and required for both impact hypotheses. Endogenic hypotheses are not so constrained. Geological data indicate episodes of fracturing and faulting in the late Noachian and the early Hesperian. This fracturing and faulting occurred primarily within the northern lowland and along the boundary between lowland and highland. Igneous activity also peaked in the late Noachian and early Hesperian. These data suggest a tectonic event near the Noachian/Hesperian boundary characterized by enhanced heat loss and extensive fracturing, including formation of the faults that define much of the highland/lowland boundary. The authors argue that the major result of this tectonic event was formation of the dichotomy by thinning of the crust above a large convection cell or plume.

  20. Evidence for an Early Origin of Vernalization Responsiveness in Temperate Pooideae Grasses.

    PubMed

    McKeown, Meghan; Schubert, Marian; Marcussen, Thomas; Fjellheim, Siri; Preston, Jill C

    2016-09-01

    The ability of plants to match their reproductive output with favorable environmental conditions has major consequences both for lifetime fitness and geographic patterns of diversity. In temperate ecosystems, some plant species have evolved the ability to use winter nonfreezing cold (vernalization) as a cue to ready them for spring flowering. However, it is unknown how important the evolution of vernalization responsiveness has been for the colonization and subsequent diversification of taxa within the northern and southern temperate zones. Grasses of subfamily Pooideae, including several important crops, such as wheat (Triticum aestivum), barley (Hordeum vulgare), and oats (Avena sativa), predominate in the northern temperate zone, and it is hypothesized that their radiation was facilitated by the early evolution of vernalization responsiveness. Predictions of this early origin hypothesis are that a response to vernalization is widespread within the subfamily and that the genetic basis of this trait is conserved. To test these predictions, we determined and reconstructed vernalization responsiveness across Pooideae and compared expression of wheat vernalization gene orthologs VERNALIZATION1 (VRN1) and VRN3 in phylogenetically representative taxa under cold and control conditions. Our results demonstrate that vernalization responsive Pooideae species are widespread, suggesting that this trait evolved early in the lineage and that at least part of the vernalization gene network is conserved throughout the subfamily. These results are consistent with the hypothesis that the evolution of vernalization responsiveness was important for the initial transition of Pooideae out of the tropics and into the temperate zone. PMID:27474116

  1. Cenozoic Motion of Greenland - Overlaps and Seaways

    NASA Astrophysics Data System (ADS)

    Lawver, L. A.; Norton, I. O.; Gahagan, L.

    2014-12-01

    Using the seafloor magnetic anomalies found in the Labrador Sea, North Atlantic and Eurasian basin to constrain the Cenozoic motion of Greenland, we have produced a new model for the tectonic evolution of the region. The aeromagnetic data collected by the Naval Research Lab [Brozena et al., 2003] in the Eurasian Basin and Canadian data from the Labrador Sea have been re-evaluated using new gridding algorithms and profile modeling using ModMag (Mendel et al., 2005). As a consequence, we have changed the published correlations, mostly prior to Chron C6 [19.05 Ma]. Presently published seafloor magnetic anomalies from the Labrador Sea assume that seafloor spreading ceased at C13 [33.06 Ma] but such an assumption produces an unacceptable overlap of Kronprins Christian Land of northeast Greenland with Svalbard, up to 140 km of overlap in some models. Our new model does not need any "unacceptable" overlap but does produce a slight amount of Eocene compression on Svalbard as is found on land there. Our model allows for an Early Eocene seaway between Ellesmere Island and northwest Greenland that may have connected the Labrador Sea through Baffin Bay and ultimately to the nascent Eurasian Basin, although its depth or even its essential existence is unknowable. During the Miocene, there is no room for a deepwater seaway in Fram Strait until at least the very end of the Early Miocene and perhaps not until Middle Miocene. Brozena, J. and six others, 2003. New aerogeophysical study of the Eurasia Basin and Lomonosov Ridge: Implications for basin development. Geology 31, 825-828. Mendel, V., M. Munschy and D.Sauter, 2005, MODMAG, a MATLAB program to model marine magnetic anomalies, Comp. Geosci., 31, .589-597

  2. Cenozoic erosion and flexural isostasy of Scandinavia

    NASA Astrophysics Data System (ADS)

    Gołędowski, Bartosz; Egholm, David L.; Nielsen, Søren B.; Clausen, Ole R.; McGregor, Eoin D.

    2013-10-01

    The presence of Cenozoic deposits along the Norwegian Atlantic margin required extensive erosion of the Scandinavian Mountains in a generally cooling climate from the Oligocene to the present. The volume of the deposits implies that the transfer of mass from the inland area to the offshore shelf induced isostatic displacements on a kilometer scale. However, except for glacial excavation of the deep fjords, little is known about the distribution of Cenozoic inland erosion. A long-lasting paradigm incorporates remnants of peneplains at high elevation and assumes very little Cenozoic erosion on these surfaces through time. This scenario has recently been challenged by quantitative geomorphological studies indicating that the matrix of Cenozoic sediments deposited offshore must have been sourced from these surfaces. An alternative explanation for the present-day high-elevation low-relief surfaces is therefore that they evolved throughout the Cenozoic because of glacial and periglacial erosion processes that are known to vary strongly with altitude. Here we explore the implications of the latter scenario by reconstructing a pre-Cenozoic fluvial landscape without elevated low-relief surfaces. We use the present-day offshore sediment volumes for constraining the total Cenozoic erosion, and we find that a likely pre-Cenozoic fluvial landscape is only in few places more than 1 km higher than today. The rock mass of the offshore sediments is generally used for filling the fjords created during the Quaternary glaciations and for restoring concave river profiles from sea level to the peaks. Our reconstruction is based on a fluvial landscape algorithm and considers the isostatic response to the transfer of rock mass - from the basins onto the onshore area. A comparison between the reconstructed and the present-day topography demonstrates that offshore tilting of pre-Cenozoic strata can be partly explained by flexural isostatic compensation in response to the Cenozoic erosion

  3. Cenozoic basin development in Hispaniola

    SciTech Connect

    Mann, P.; Burke, K.

    1984-04-01

    Four distinct generations of Cenozoic basins have developed in Hispaniola (Haiti and Dominican Republic) as a result of collisional or strike-slip interactions between the North America and Caribbean plates. First generation basins formed when the north-facing Hispaniola arc collided with the Bahama platform in the middle Eocene; because of large post-Eocene vertical movements, these basins are preserved locally in widely separated areas but contain several kilometers of arc and ophiolite-derived clastic marine sediments, probably deposited in thrust-loaded, flexure-type basins. Second generation basins, of which only one is exposed at the surface, formed during west-northwesterly strike-slip displacement of southern Cuba and northern Hispaniola relative to central Hispaniola during the middle to late Oligocene; deposition occurred along a 5-km (3-mi) wide fault-angle depression and consisted of about 2 km (1 mi) of submarine fan deposits. Third generation basins developed during post-Oligocene convergent strike-slip displacement across a restraining bend formed in central Hispaniola; the southern 2 basins are fairly symmetrical, thrust-bounded ramp valleys, and the third is an asymmetrical fault-angle basin. Fourth generation basins are pull-aparts formed during post-Miocene divergent strike-slip motion along a fault zone across southern Hispaniola. As in other Caribbean areas, good source rocks are present in all generations of basins, but suitable reservoir rocks are scarce. Proven reservoirs are late Neogene shallow marine and fluvial sandstones in third generation basins.

  4. Cenozoic Methane-Seep Faunas of the Caribbean Region.

    PubMed

    Kiel, Steffen; Hansen, Bent T

    2015-01-01

    We report new examples of Cenozoic cold-seep communities from Colombia, Cuba, the Dominican Republic, Trinidad, and Venezuela, and attempt to improve the stratigraphic dating of Cenozoic Caribbean seep communities using strontium isotope stratigraphy. Two seep faunas are distinguished in Barbados: the late Eocene mudstone-hosted 'Joes River fauna' consists mainly of large lucinid bivalves and tall abyssochrysoid gastropods, and the early Miocene carbonate-hosted 'Bath Cliffs fauna' containing the vesicomyid Pleurophopsis, the mytilid Bathymodiolus and small gastropods. Two new Oligocene seep communities from the Sinú River basin in Colombia consist of lucinid bivalves including Elongatolucina, thyasirid and solemyid bivalves, and Pleurophopsis. A new early Miocene seep community from Cuba includes Pleurophopsis and the large lucinid Meganodontia. Strontium isotope stratigraphy suggests an Eocene age for the Cuban Elmira asphalt mine seep community, making it the oldest in the Caribbean region. A new basal Pliocene seep fauna from the Dominican Republic is characterized by the large lucinid Anodontia (Pegophysema). In Trinidad we distinguish two types of seep faunas: the mudstone-hosted Godineau River fauna consisting mainly of lucinid bivalves, and the limestone-hosted Freeman's Bay fauna consisting chiefly of Pleurophopsis, Bathymodiolus, and small gastropods; they are all dated as late Miocene. Four new seep communities of Oligocene to Miocene age are reported from Venezuela. They consist mainly of large globular lucinid bivalves including Meganodontia, and moderately sized vesicomyid bivalves. After the late Miocene many large and typical 'Cenozoic' lucinid genera disappeared from the Caribbean seeps and are today known only from the central Indo-Pacific Ocean. We speculate that the increasingly oligotrophic conditions in the Caribbean Sea after the closure of the Isthmus of Panama in the Pliocene may have been unfavorable for such large lucinids because they

  5. Cenozoic Methane-Seep Faunas of the Caribbean Region.

    PubMed

    Kiel, Steffen; Hansen, Bent T

    2015-01-01

    We report new examples of Cenozoic cold-seep communities from Colombia, Cuba, the Dominican Republic, Trinidad, and Venezuela, and attempt to improve the stratigraphic dating of Cenozoic Caribbean seep communities using strontium isotope stratigraphy. Two seep faunas are distinguished in Barbados: the late Eocene mudstone-hosted 'Joes River fauna' consists mainly of large lucinid bivalves and tall abyssochrysoid gastropods, and the early Miocene carbonate-hosted 'Bath Cliffs fauna' containing the vesicomyid Pleurophopsis, the mytilid Bathymodiolus and small gastropods. Two new Oligocene seep communities from the Sinú River basin in Colombia consist of lucinid bivalves including Elongatolucina, thyasirid and solemyid bivalves, and Pleurophopsis. A new early Miocene seep community from Cuba includes Pleurophopsis and the large lucinid Meganodontia. Strontium isotope stratigraphy suggests an Eocene age for the Cuban Elmira asphalt mine seep community, making it the oldest in the Caribbean region. A new basal Pliocene seep fauna from the Dominican Republic is characterized by the large lucinid Anodontia (Pegophysema). In Trinidad we distinguish two types of seep faunas: the mudstone-hosted Godineau River fauna consisting mainly of lucinid bivalves, and the limestone-hosted Freeman's Bay fauna consisting chiefly of Pleurophopsis, Bathymodiolus, and small gastropods; they are all dated as late Miocene. Four new seep communities of Oligocene to Miocene age are reported from Venezuela. They consist mainly of large globular lucinid bivalves including Meganodontia, and moderately sized vesicomyid bivalves. After the late Miocene many large and typical 'Cenozoic' lucinid genera disappeared from the Caribbean seeps and are today known only from the central Indo-Pacific Ocean. We speculate that the increasingly oligotrophic conditions in the Caribbean Sea after the closure of the Isthmus of Panama in the Pliocene may have been unfavorable for such large lucinids because they

  6. Early ceremonial constructions at Ceibal, Guatemala, and the origins of lowland Maya civilization.

    PubMed

    Inomata, Takeshi; Triadan, Daniela; Aoyama, Kazuo; Castillo, Victor; Yonenobu, Hitoshi

    2013-04-26

    The spread of plaza-pyramid complexes across southern Mesoamerica during the early Middle Preclassic period (1000 to 700 BCE) provides critical information regarding the origins of lowland Maya civilization and the role of the Gulf Coast Olmec. Recent excavations at the Maya site of Ceibal, Guatemala, documented the growth of a formal ceremonial space into a plaza-pyramid complex that predated comparable buildings at other lowland Maya sites and major occupations at the Olmec center of La Venta. The development of lowland Maya civilization did not result from one-directional influence from La Venta, but from interregional interactions, involving groups in the southwestern Maya lowlands, Chiapas, the Pacific Coast, and the southern Gulf Coast. PMID:23620050

  7. Early ceremonial constructions at Ceibal, Guatemala, and the origins of lowland Maya civilization.

    PubMed

    Inomata, Takeshi; Triadan, Daniela; Aoyama, Kazuo; Castillo, Victor; Yonenobu, Hitoshi

    2013-04-26

    The spread of plaza-pyramid complexes across southern Mesoamerica during the early Middle Preclassic period (1000 to 700 BCE) provides critical information regarding the origins of lowland Maya civilization and the role of the Gulf Coast Olmec. Recent excavations at the Maya site of Ceibal, Guatemala, documented the growth of a formal ceremonial space into a plaza-pyramid complex that predated comparable buildings at other lowland Maya sites and major occupations at the Olmec center of La Venta. The development of lowland Maya civilization did not result from one-directional influence from La Venta, but from interregional interactions, involving groups in the southwestern Maya lowlands, Chiapas, the Pacific Coast, and the southern Gulf Coast.

  8. The early origin of vertebral anomalies, as illustrated by a 'butterfly vertebra'.

    PubMed Central

    Müller, F; O'Rahilly, R; Benson, D R

    1986-01-01

    An anomalous (butterfly) eleventh thoracic vertebra in a fetus of 63 mm greatest length is described and graphic reconstructions (together with normal controls) are provided. The cartilaginous hemicentra are separated by disc-like material. Cartilaginous bars to adjacent vertebrae are present. The neural arch is complete. The notochord is not duplicated. Only one comparable case in the embryonic period has been described previously. After a discussion of cleft vertebrae in the human and in experimental animals, a developmental timetable of the appearance of several vertebral anomalies is provided. The sensitive period for butterfly vertebrae, depending on the mode of origin, seems to be 3-6 postovulatory weeks. More severe anomalies, such as the split notochord syndrome, appear earlier. It is concluded that most of the vertebral anomalies discussed arise during the embryonic period proper, although the timing of a few, such as spina bifida occulta, extends into the early fetal period. Images Fig. 1 Fig. 3 Fig. 5 PMID:3693103

  9. Antarctic Peninsula Ice Sheet evolution during the Cenozoic Era

    NASA Astrophysics Data System (ADS)

    Davies, Bethan J.; Hambrey, Michael J.; Smellie, John L.; Carrivick, Jonathan L.; Glasser, Neil F.

    2012-01-01

    The Antarctic Peninsula region is currently undergoing rapid environmental change, resulting in the thinning, acceleration and recession of glaciers and the sequential collapse of ice shelves. It is important to view these changes in the context of long-term palaeoenvironmental complexity and to understand the key processes controlling ice sheet growth and recession. In addition, numerical ice sheet models require detailed geological data for tuning and testing. Therefore, this paper systematically and holistically reviews published geological evidence for Antarctic Peninsula Ice Sheet variability for each key locality throughout the Cenozoic, and brings together the prevailing consensus of the extent, character and behaviour of the glaciations of the Antarctic Peninsula region. Major contributions include a downloadable database of 186 terrestrial and marine calibrated dates; an original reconstruction of the LGM ice sheet; and a new series of isochrones detailing ice sheet retreat following the LGM. Glaciation of Antarctica was initiated around the Eocene/Oligocene transition in East Antarctica. Palaeogene records of Antarctic Peninsula glaciation are primarily restricted to King George Island, where glacigenic sediments provide a record of early East Antarctic glaciations, but with modification of far-travelled erratics by local South Shetland Island ice caps. Evidence for Neogene glaciation is derived primarily from King George Island and James Ross Island, where glaciovolcanic strata indicate that ice thicknesses reached 500-850 m during glacials. This suggests that the Antarctic Peninsula Ice Sheet draped, rather than drowned, the topography. Marine geophysical investigations indicate multiple ice sheet advances during this time. Seismic profiling of continental shelf-slope deposits indicates up to ten large advances of the Antarctic Peninsula Ice Sheet during the Early Pleistocene, when the ice sheet was dominated by 40 kyr cycles. Glacials became more

  10. The early life origin theory in the development of cardiovascular disease and type 2 diabetes.

    PubMed

    Lindblom, Runa; Ververis, Katherine; Tortorella, Stephanie M; Karagiannis, Tom C

    2015-04-01

    Life expectancy has been examined from a variety of perspectives in recent history. Epidemiology is one perspective which examines causes of morbidity and mortality at the population level. Over the past few 100 years there have been dramatic shifts in the major causes of death and expected life length. This change has suffered from inconsistency across time and space with vast inequalities observed between population groups. In current focus is the challenge of rising non-communicable diseases (NCD), such as cardiovascular disease and type 2 diabetes mellitus. In the search to discover methods to combat the rising incidence of these diseases, a number of new theories on the development of morbidity have arisen. A pertinent example is the hypothesis published by David Barker in 1995 which postulates the prenatal and early developmental origin of adult onset disease, and highlights the importance of the maternal environment. This theory has been subject to criticism however it has gradually gained acceptance. In addition, the relatively new field of epigenetics is contributing evidence in support of the theory. This review aims to explore the implication and limitations of the developmental origin hypothesis, via an historical perspective, in order to enhance understanding of the increasing incidence of NCDs, and facilitate an improvement in planning public health policy.

  11. Evolutionary patterns in the sequence and structure of transfer RNA: early origins of archaea and viruses.

    PubMed

    Sun, Feng-Jie; Caetano-Anollés, Gustavo

    2008-03-01

    Transfer RNAs (tRNAs) are ancient molecules that are central to translation. Since they probably carry evolutionary signatures that were left behind when the living world diversified, we reconstructed phylogenies directly from the sequence and structure of tRNA using well-established phylogenetic methods. The trees placed tRNAs with long variable arms charging Sec, Tyr, Ser, and Leu consistently at the base of the rooted phylogenies, but failed to reveal groupings that would indicate clear evolutionary links to organismal origin or molecular functions. In order to uncover evolutionary patterns in the trees, we forced tRNAs into monophyletic groups using constraint analyses to generate timelines of organismal diversification and test competing evolutionary hypotheses. Remarkably, organismal timelines showed Archaea was the most ancestral superkingdom, followed by viruses, then superkingdoms Eukarya and Bacteria, in that order, supporting conclusions from recent phylogenomic studies of protein architecture. Strikingly, constraint analyses showed that the origin of viruses was not only ancient, but was linked to Archaea. Our findings have important implications. They support the notion that the archaeal lineage was very ancient, resulted in the first organismal divide, and predated diversification of tRNA function and specificity. Results are also consistent with the concept that viruses contributed to the development of the DNA replication machinery during the early diversification of the living world. PMID:18369418

  12. Lunar dark-haloed impact craters - Origin and implications for early mare volcanism

    NASA Technical Reports Server (NTRS)

    Bell, J. F.; Hawke, B. R.

    1984-01-01

    Spectral, thermal, radar, and photogeologic data were used to determine the composition and origin of lunar dark-haloed craters. Analyses of reflectance spectra (near-infrared) of dark-haloed craters on light plains indicate that in every instance these craters exposed mare basalts which had previously been covered by varying thicknesses of highlands debris. In the Schiller-Schickard region a relatively thick highlands unit was emplaced as a result of the Orientale impact event. The results of recent remote sensing photogeologic and lunar samples studies indicate that mare volcanism was a significant process during much of the pre-Imbrian epoch and may have been initiated as early as 4.2-4.3 Ga. The very early volcanic episodes contributed materials to the lunar surface which were later incorporated into the upper portion of the highlands crust by subsequent impact mixing. On the basis of the data it is concluded that current models of the extent and duration of mare volcanisms, as well as those involving the composition of thermal evolution of the lunar interior will have to be revised.

  13. On the origin and early evolution of biological catalysis and other studies on chemical evolution

    NASA Technical Reports Server (NTRS)

    Oro, J.; Lazcano, A.

    1991-01-01

    One of the lines of research in molecular evolution which we have developed for the past three years is related to the experimental and theoretical study of the origin and early evolution of biological catalysis. In an attempt to understand the nature of the first peptidic catalysts and coenzymes, we have achieved the non-enzymatic synthesis of the coenzymes ADPG, GDPG, and CDP-ethanolamine, under conditions considered to have been prevalent on the primitive Earth. We have also accomplished the prebiotic synthesis of histidine, as well as histidyl-histidine, and we have measured the enhancing effects of this catalytic dipeptide on the dephosphorylation of deoxyribonucleotide monophosphates, the hydrolysis of oligo A, and the oligomerization 2', 3' cAMP. We reviewed and further developed the hypothesis that RNA preceded double stranded DNA molecules as a reservoir of cellular genetic information. This led us to undertake the study of extant RNA polymerases in an attempt to discover vestigial sequences preserved from early Archean times. In addition, we continued our studies of on the chemical evolution of organic compounds in the solar system and beyond.

  14. Mesozoic Cenozoic history of the Congo Basin

    NASA Astrophysics Data System (ADS)

    Giresse, Pierre

    2005-10-01

    Geophysical surveys and drilling of deep wells have recently led to the recognition of underlying Precambrian basement, and to an interpretation of the structural evolution of the Congo Basin. Deformation estimated as Late Cambrian to Early Ordovician corresponds to the late Pan-African event more accurately dated as end-early Cambrian in West Africa. Subsequently, Paleozoic deformation led to widespread erosion and the development of a marked regional unconformity. The 1000-m-thick mostly continental deposition during the Cretaceous and Tertiary did not involve a noticeable subsidence process. There was no volcanism during this deposition, except at the Early Cretaceous, with the advent of kimberlites that are distributed over the border of the Cuvette. As a consequence most of the diamonds were transported northward or southward from upstream sources. The Mesozoic sediments of the Congo Basin were formed in lacustrine or lagoonal basins close to the sea level as demonstrated by some intercalations with marine fossils. In the eastern part of the basin, a limited marine connection during the Kimmeridgian was only possible with a gulf belonging to the young Indian Ocean. In southern Kasai, the same Kimmeridgian transgression is observed. In the northern part of the basin, a probable Cenomanian marine connection was suggested between the Tethys and the South Atlantic, and the marine deposition at Kipala suggests a connection with the Trans-Saharan corridor during the Late Cretaceous. The geometry of the continental Mesozoic and Cenozoic deposits begins with beds overlying a widespread planation level unconformity and/or the presence of gravel or conglomerate in the lower portion. The Sables Ocres Series and the Grès Polymorphes Series rest on the planation levels of Late Cretaceous and mid-Tertiary ages respectively. Mechanical composition and morphoscopic characters argue for a dominant eolian transport for the Grès Polymorphes and for a fluvial deposition for the

  15. Cenozoic stratigraphic evolution, North Sea and Labrador Sea

    SciTech Connect

    Gradstein, F.M.; Grant, A.C.; Mudford, B.S. ); Berggren, W.A. ); Kaminski, M.A. ); D'Lorio, M.A. ); Cloetingh, S. ); Griffiths, C.M. )

    1990-05-01

    The authors are studying Cenozoic correlation patterns, burial trends, and subsidence history of the Central North Sea, Labrador, and Orphan basins. The authors objectives are (1) to detail intraregional mid-high latitude biozonations using noise filtering and probabilistic zonation techniques; (2) to detail paleobathymetric trends from basin margins to centers; (3) to apply this knowledge to model basin evolution, in the perspective of the evolving North Atlantic Ocean; (4) to evaluate causes for the occurrence of major hiatuses and rapid changes of subsidence; and (5) to relate rapid changes in sedimentation in the last few millions of years to model observed undercompaction trends. Cenozoic microfossil assemblages in these basins are similar, related to similarities in sedimentary and paleoeceanographic conditions. In more basinal wells, flysch-type agglutinated foraminiferal assemblages occur, also known from Carpathians, Trinidad, and Moroccan foredeeps. Over 90% of agglutinated taxa are common between these basins, although local stratigraphic ranges vary sufficiently to rely on the concept of average ranges, rather than total ones for correlations. Cenozoic stratigraphic resolution in the North Sea and Labrador basins generally is in 3-5-Ma units. and paleobathymetric zonations define a minimum of five niches, from inner shelf to middle slope regimes. Significant hiatuses occurred in the late Eocene through the Miocene, particularly in northern Labrador and northern North Sea. Subsidence in the Labrador/Grand Banks passive margin half grabens was strongly influenced by Labrador Sea opening between anomalies 34 (Campanian) and 13 (early Oligocene), when subsidence exceeded sedimentation and bathyal conditions prevailed along the margin. Thermally induced subsidence in the central North Sea grabens was considerable in the late Paleocene, when the Norwegian Sea started to open.

  16. Policy implications of early onset breast cancer among Mexican-origin women

    PubMed Central

    Wilkinson, Anna V.; Etzel, Carol J.; Zhou, Renke; Jones, Lovell A.; Thompson, Patricia; Bondy, Melissa L.

    2010-01-01

    Overall, Latinas are more likely to be diagnosed with a more advanced stage of breast cancer, and are 20% more likely to die of breast cancer than non-Hispanic white women. It is estimated that from 2003–2006, $82.0 billion in direct medical care expenditures, in addition to 100,000 lives annually, could be saved by eliminating health disparities experienced by Latinos and increasing the use of up to five preventive services in the U.S. An additional 3,700 lives could be saved if 90% of women ≥40 years were recently screened for breast cancer. We examined risk for breast cancer in a case-control population-based sample of Mexican-origin women in Harris County, TX (n=714), where rates of breast cancer mortality for Latina women have doubled since 1990. Half of breast cancer cases (n=119) were diagnosed before the age of 50. In a multivariable model, women with a family history of breast cancer (OR=4.3), born in Mexico and having high levels of language acculturation (OR=2.5), and without health insurance (OR=1.6) were found to have the highest risk of breast cancer. Because Mexican-origin women were found to be of high-risk for early onset pre-menopausal breast cancer, we recommend policies targeting screening, education and treatment to prevent increased disparities in mortality. The inclusion of community members and policymakers as partners in these endeavors would further safeguard against an increase in cancer health disparities, and aid in formulating a policy agenda congruent with scientifically-based, community-driven policy efforts addressing breast cancer screening, education and treatment in this vulnerable population. PMID:21319396

  17. The origin and early evolution of metatherian mammals: the Cretaceous record.

    PubMed

    Williamson, Thomas E; Brusatte, Stephen L; Wilson, Gregory P

    2014-01-01

    Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg) boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary.

  18. The origin and early evolution of metatherian mammals: the Cretaceous record.

    PubMed

    Williamson, Thomas E; Brusatte, Stephen L; Wilson, Gregory P

    2014-01-01

    Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg) boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary. PMID:25589872

  19. The origin and early evolution of metatherian mammals: the Cretaceous record

    PubMed Central

    Williamson, Thomas E.; Brusatte, Stephen L.; Wilson, Gregory P.

    2014-01-01

    Abstract Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg) boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary. PMID:25589872

  20. Pb-Nd Isotopes Indicate the Origin of Island Arc Terranes in the Early Paleozoic Pacific.

    PubMed

    Münker

    2000-03-01

    The Takaka Terrane in New Zealand is one of the best exposed arc fragments of the early Paleozoic Australian-Antarctic convergent margin and constitutes one of the most outboard terranes of this margin in paleogeographic reconstructions. Pb-Nd isotope compositions of clinopyroxenes from the Cambrian Devil River Volcanics of the Takaka Terrane enable identification of the location of the terrane in the Paleo-Pacific Ocean. The Devil River Volcanics, a suite of primitive arc and back-arc rocks, are interbedded with the partly continent-derived Haupiri Group sediments. Extremely radiogenic Pb and unradiogenic Nd compositions in the arc rocks cannot be explained by assimilation of the Haupiri Group sediments or a continental basement of such a composition. Pb isotope compositions of the Takaka Terrane sediments are much less radiogenic and overlap with crustal compositions of the Lachlan Fold Belt in Australia, suggesting that both units are derived from one source, the Australian-Antarctic Pacific margin. Pb-Nd isotope compositions in the Devil River Volcanics reflect contamination of their mantle sources by subducted sediments derived from Archean provinces in either Antarctica or Laurentia. Both provinces show characteristically high 207Pb/204Pb500 and were located at the Pacific rim in the Cambrian. Mixing between mantle and Proterozoic continental material from present western South America or eastern Laurentia cannot explain the high 207Pb/204Pb500 in the New Zealand rocks. As in New Zealand, extreme spreads in Pb-Nd isotope compositions in other Cambrian volcano-sedimentary sequences in southeast Australia and Tasmania can be explained by the same model, suggesting that all these fragments originated along the Australian-Antarctic Gondwana margin. Pb isotope compositions of arc rocks, therefore, provide a new tool for terrane analysis in the early Paleozoic Pacific ocean.

  1. Records of our Early Biosphere Illuminate our Origins and Guide our Search for Life Beyond Earth

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.

    2003-01-01

    A scientific "mission of exploration to early Earth" will help us chart the distribution of life elsewhere. We must discriminate between attributes of biospheres that are universal versus those attributes that represent principally the outcomes of long-term survival specifically on Earth. In addition to the basic physics and chemistry of matter, the geologic evolution of rocky habitable planets and their climates might be similar elsewhere in the Universe. Certain key agents that drive long-term environmental change (e.g., stellar evolution, impacts, geothermal heat flow, tectonics, etc.) can help us to reconstruct ancient climates and to compare their evolution among populations of Earth- like planets. Early Earth was tectonically more active than today and therefore it exhaled reduced chemical species into the more oxidized surface environment at greater rates. This tectonic activity thus sustained oxidation-reduction reactions that provided the basis for the development of biochemical pathways that harvest chemical energy ("bioenergetics"). Most examples of bioenergetics today that extract energy by reacting oxidized and reduced chemicals in the environment were likely more pervasive among our microbial ancestors than are the presently known examples of photosynthesis. The geologic rock record indicates that, as early as 3.5 billion years ago (3.5 Ga), microbial biofilms were widespread within the coastal environments of small continents and tectonically unstable volcanic islands. Non oxygen-producing (non-oxygenic) photosynthesis preceded oxygenic photosynthesis, but all types of photosynthesis contributed substantially to the long-term increase in global primary biological productivity. Evidence of photosynthesis is tentative by 3.5 Ga and compelling by 2.7 Ga. Evidence of oxygenic photosynthesis is strong by 2.7 Ga and compelling by 2.3 Ga. These successive innovations transformed life from local communities that survived principally by catalyzing chemical

  2. Records of our Early Biosphere Illuminate our Origins and Guide our Search for Life beyond Earth

    NASA Astrophysics Data System (ADS)

    Des Marais, D. J.

    2003-12-01

    A scientific "mission of exploration to early Earth" will help us chart the distribution of life elsewhere. We must discriminate between attributes of biospheres that are universal versus those attributes that represent principally the outcomes of long-term survival specifically on Earth. In addition to the basic physics and chemistry of matter, the geologic evolution of rocky habitable planets and their climates might be similar elsewhere in the Universe. Certain key agents that drive long-term environmental change (e.g., stellar evolution, impacts, geothermal heat flow, tectonics, etc.) can help us to reconstruct ancient climates and to compare their evolution among populations of Earth-like planets. Early Earth was tectonically more active than today and therefore it exhaled reduced chemical species into the more oxidized surface environment at greater rates. This tectonic activity thus sustained oxidation-reduction reactions that provided the basis for the development of biochemical pathways that harvest chemical energy ("bioenergetics"). Most examples of bioenergetics today that extract energy by reacting oxidized and reduced chemicals in the environment were likely more pervasive among our microbial ancestors than are the presently known examples of photosynthesis. The geologic rock record indicates that, as early as 3.5 billion years ago (3.5 Ga), microbial biofilms were widespread within the coastal environments of small continents and tectonically unstable volcanic islands. Non oxygen-producing (non-oxygenic) photosynthesis preceded oxygenic photosynthesis, but all types of photosynthesis contributed substantially to the long-term increase in global primary biological productivity. Evidence of photosynthesis is tentative by 3.5 Ga and compelling by 2.7 Ga. Evidence of oxygenic photosynthesis is strong by 2.7 Ga and compelling by 2.3 Ga. These successive innovations transformed life from local communities that survived principally by catalyzing chemical

  3. Early inner solar system origin for anomalous sulfur isotopes in differentiated protoplanets

    PubMed Central

    Antonelli, Michael A.; Kim, Sang-Tae; Peters, Marc; Labidi, Jabrane; Cartigny, Pierre; Walker, Richard J.; Lyons, James R.; Hoek, Joost; Farquhar, James

    2014-01-01

    Achondrite meteorites have anomalous enrichments in 33S, relative to chondrites, which have been attributed to photochemistry in the solar nebula. However, the putative photochemical reactions remain elusive, and predicted accompanying 33S depletions have not previously been found, which could indicate an erroneous assumption regarding the origins of the 33S anomalies, or of the bulk solar system S-isotope composition. Here, we report well-resolved anomalous 33S depletions in IIIF iron meteorites (<−0.02 per mil), and 33S enrichments in other magmatic iron meteorite groups. The 33S depletions support the idea that differentiated planetesimals inherited sulfur that was photochemically derived from gases in the early inner solar system (<∼2 AU), and that bulk inner solar system S-isotope composition was chondritic (consistent with IAB iron meteorites, Earth, Moon, and Mars). The range of mass-independent sulfur isotope compositions may reflect spatial or temporal changes influenced by photochemical processes. A tentative correlation between S isotopes and Hf-W core segregation ages suggests that the two systems may be influenced by common factors, such as nebular location and volatile content. PMID:25453079

  4. Laboratory Astrophysics with Primitive Extraterrestrial Materials: The Origin and Early Evolution of Our Planetary System

    NASA Astrophysics Data System (ADS)

    Nittler, Larry R.

    2014-06-01

    The planets in our Solar System formed from a protoplanetary disk of gas and dust, the solar nebula. Due to billions of years of evolution, the planets themselves do not preserve many signatures of the earliest stages of their formation. However, records of the nebula and of the earliest planetary formation epoch are preserved in asteroids and comets, and samples of these are available for laboratory study in the form of meteorites and interplanetary dust particles, as well as asteroidal and cometary dust returned by spacecraft. Primitive extraterrestrial materials contain pristine samples of the earliest solids that formed the building blocks of the planets including both ‘’presolar’’ materials from prior generations of stars and the interstellar medium as well as early-formed solar nebular dust. Detailed laboratory analyses (e.g., isotopic, elemental and microstructural studies) of these materials provide unique insights into a wide range of astrophysical processes, including stellar nucleosynthesis, galactic chemical evolution, interstellar dust processing and chemistry, and mixing and accretion processes in protoplanetary disks. This talk will review many of these topics with a focus on how meteorites constrain the astrophysical setting for solar system formation, the starting materials of the planets, timescales of planet formation, and the origin and distribution of water and carbon, the essential ingredients for life.

  5. [origin and early ecolution on Earth].

    PubMed

    Bregestowski, P D

    2015-01-01

    The most widely accepted modern scenario of prebiotic evolution that led to the emergence of the first cells on our planet is the "RNA World"--a hypothetical period of the early Earth's biosphere, when the information transfer and all the processes necessary for the functioning of the primary systems were provided by replicating RNA molecules. The essence of the "RNA World" hypothesis is based on two postulates: 1) at the initial stages of the origin of life, RNA molecules performed all functions necessary for reproduction and replication of biological molecules: informational, catalytic and structural; 2) at a certain stage of evolution arose separation of RNA and DNA, appeared genetically encoded proteins and occurred a transition to the modern world of living systems functioning. However, the analysis shows that the hypothesis of "RNA World" has a number of unsurmountable problems of chemical and informational nature. The biggest of them are: a) the unreliability of the initial components synthesis; b) a catastrophic rise of polynucleotide chains instability with their elongation; c) catastrophically low probability of formation of sequences possessing meaningful information; d) lack of a mechanism determining the regularities division of the membrane vesicles permeable to nitrogen bases and other RNA components; e) lack of driving forces for the transition from the RNA world to the much more complex world based on DNA and RNA. Therefore, the "RNA World" scenario seems unlikely.

  6. Early Gas Stripping as the Origin of the Darkest Galaxies in the Universe

    SciTech Connect

    Mayer, Lucio; Kazantzidis, Stelios; Mastropietro, Chiara; Wadsley, James; /McMaster U.

    2007-02-28

    The known galaxies most dominated by dark matter (Draco, Ursa Minor and Andromeda IX) are satellites of the Milky Way and the Andromeda galaxies. They are members of a class of faint galaxies, devoid of gas, known as dwarf spheroidals, and have by far the highest ratio of dark to luminous matter. None of the models proposed to unravel their origin can simultaneously explain their exceptional dark matter content and their proximity to a much larger galaxy. Here we report simulations showing that the progenitors of these galaxies were probably gas-dominated dwarf galaxies that became satellites of a larger galaxy earlier than the other dwarf spheroidals. We find that a combination of tidal shocks and ram pressure swept away the entire gas content of such progenitors about ten billion years ago because heating by the cosmic ultraviolet background kept the gas loosely bound: a tiny stellar component embedded in a relatively massive dark halo survived until today. All luminous galaxies should be surrounded by a few extremely dark-matter-dominated dwarf spheroidal satellites, and these should have the shortest orbital periods among dwarf spheroidals because they were accreted early.

  7. Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact.

    PubMed

    Zeder, Melinda A

    2008-08-19

    The past decade has witnessed a quantum leap in our understanding of the origins, diffusion, and impact of early agriculture in the Mediterranean Basin. In large measure these advances are attributable to new methods for documenting domestication in plants and animals. The initial steps toward plant and animal domestication in the Eastern Mediterranean can now be pushed back to the 12th millennium cal B.P. Evidence for herd management and crop cultivation appears at least 1,000 years earlier than the morphological changes traditionally used to document domestication. Different species seem to have been domesticated in different parts of the Fertile Crescent, with genetic analyses detecting multiple domestic lineages for each species. Recent evidence suggests that the expansion of domesticates and agricultural economies across the Mediterranean was accomplished by several waves of seafaring colonists who established coastal farming enclaves around the Mediterranean Basin. This process also involved the adoption of domesticates and domestic technologies by indigenous populations and the local domestication of some endemic species. Human environmental impacts are seen in the complete replacement of endemic island faunas by imported mainland fauna and in today's anthropogenic, but threatened, Mediterranean landscapes where sustainable agricultural practices have helped maintain high biodiversity since the Neolithic. PMID:18697943

  8. Early gas stripping as the origin of the darkest galaxies in the Universe.

    PubMed

    Mayer, L; Kazantzidis, S; Mastropietro, C; Wadsley, J

    2007-02-15

    The known galaxies most dominated by dark matter (Draco, Ursa Minor and Andromeda IX) are satellites of the Milky Way and the Andromeda galaxies. They are members of a class of faint galaxies, devoid of gas, known as dwarf spheroidals, and have by far the highest ratio of dark to luminous matter. None of the models proposed to unravel their origin can simultaneously explain their exceptional dark matter content and their proximity to a much larger galaxy. Here we report simulations showing that the progenitors of these galaxies were probably gas-dominated dwarf galaxies that became satellites of a larger galaxy earlier than the other dwarf spheroidals. We find that a combination of tidal shocks and ram pressure swept away the entire gas content of such progenitors about ten billion years ago because heating by the cosmic ultraviolet background kept the gas loosely bound: a tiny stellar component embedded in a relatively massive dark halo survived until today. All luminous galaxies should be surrounded by a few extremely dark-matter-dominated dwarf spheroidal satellites, and these should have the shortest orbital periods among dwarf spheroidals because they were accreted early.

  9. Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact.

    PubMed

    Zeder, Melinda A

    2008-08-19

    The past decade has witnessed a quantum leap in our understanding of the origins, diffusion, and impact of early agriculture in the Mediterranean Basin. In large measure these advances are attributable to new methods for documenting domestication in plants and animals. The initial steps toward plant and animal domestication in the Eastern Mediterranean can now be pushed back to the 12th millennium cal B.P. Evidence for herd management and crop cultivation appears at least 1,000 years earlier than the morphological changes traditionally used to document domestication. Different species seem to have been domesticated in different parts of the Fertile Crescent, with genetic analyses detecting multiple domestic lineages for each species. Recent evidence suggests that the expansion of domesticates and agricultural economies across the Mediterranean was accomplished by several waves of seafaring colonists who established coastal farming enclaves around the Mediterranean Basin. This process also involved the adoption of domesticates and domestic technologies by indigenous populations and the local domestication of some endemic species. Human environmental impacts are seen in the complete replacement of endemic island faunas by imported mainland fauna and in today's anthropogenic, but threatened, Mediterranean landscapes where sustainable agricultural practices have helped maintain high biodiversity since the Neolithic.

  10. Early turbulent mixing as the origin of chemical homogeneity in open star clusters.

    PubMed

    Feng, Yi; Krumholz, Mark R

    2014-09-25

    The abundances of elements in stars are critical clues to stars' origins. Observed star-to-star variations in logarithmic abundance within an open star cluster--a gravitationally bound ensemble of stars in the Galactic plane--are typically only about 0.01 to 0.05 over many elements, which is noticeably smaller than the variation of about 0.06 to 0.3 seen in the interstellar medium from which the stars form. It is unknown why star clusters are so homogenous, and whether homogeneity should also prevail in regions of lower star formation efficiency that do not produce bound clusters. Here we report simulations that trace the mixing of chemical elements as star-forming clouds assemble and collapse. We show that turbulent mixing during cloud assembly naturally produces a stellar abundance scatter at least five times smaller than that in the gas, which is sufficient to explain the observed chemical homogeneity of stars. Moreover, mixing occurs very early, so that regions with star formation efficiencies of about 10 per cent are nearly as well mixed as those with formation efficiencies of about 50 per cent. This implies that even regions that do not form bound clusters are likely to be well mixed, and improves the prospects of using 'chemical tagging' to reconstruct (via their unique chemical signatures, or tags) star clusters whose constituent stars have become unbound from one another and spread across the Galactic disk. PMID:25174709

  11. Early turbulent mixing as the origin of chemical homogeneity in open star clusters.

    PubMed

    Feng, Yi; Krumholz, Mark R

    2014-09-25

    The abundances of elements in stars are critical clues to stars' origins. Observed star-to-star variations in logarithmic abundance within an open star cluster--a gravitationally bound ensemble of stars in the Galactic plane--are typically only about 0.01 to 0.05 over many elements, which is noticeably smaller than the variation of about 0.06 to 0.3 seen in the interstellar medium from which the stars form. It is unknown why star clusters are so homogenous, and whether homogeneity should also prevail in regions of lower star formation efficiency that do not produce bound clusters. Here we report simulations that trace the mixing of chemical elements as star-forming clouds assemble and collapse. We show that turbulent mixing during cloud assembly naturally produces a stellar abundance scatter at least five times smaller than that in the gas, which is sufficient to explain the observed chemical homogeneity of stars. Moreover, mixing occurs very early, so that regions with star formation efficiencies of about 10 per cent are nearly as well mixed as those with formation efficiencies of about 50 per cent. This implies that even regions that do not form bound clusters are likely to be well mixed, and improves the prospects of using 'chemical tagging' to reconstruct (via their unique chemical signatures, or tags) star clusters whose constituent stars have become unbound from one another and spread across the Galactic disk.

  12. Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact

    PubMed Central

    Zeder, Melinda A.

    2008-01-01

    The past decade has witnessed a quantum leap in our understanding of the origins, diffusion, and impact of early agriculture in the Mediterranean Basin. In large measure these advances are attributable to new methods for documenting domestication in plants and animals. The initial steps toward plant and animal domestication in the Eastern Mediterranean can now be pushed back to the 12th millennium cal B.P. Evidence for herd management and crop cultivation appears at least 1,000 years earlier than the morphological changes traditionally used to document domestication. Different species seem to have been domesticated in different parts of the Fertile Crescent, with genetic analyses detecting multiple domestic lineages for each species. Recent evidence suggests that the expansion of domesticates and agricultural economies across the Mediterranean was accomplished by several waves of seafaring colonists who established coastal farming enclaves around the Mediterranean Basin. This process also involved the adoption of domesticates and domestic technologies by indigenous populations and the local domestication of some endemic species. Human environmental impacts are seen in the complete replacement of endemic island faunas by imported mainland fauna and in today's anthropogenic, but threatened, Mediterranean landscapes where sustainable agricultural practices have helped maintain high biodiversity since the Neolithic. PMID:18697943

  13. Early inner solar system origin for anomalous sulfur isotopes in differentiated protoplanets.

    PubMed

    Antonelli, Michael A; Kim, Sang-Tae; Peters, Marc; Labidi, Jabrane; Cartigny, Pierre; Walker, Richard J; Lyons, James R; Hoek, Joost; Farquhar, James

    2014-12-16

    Achondrite meteorites have anomalous enrichments in (33)S, relative to chondrites, which have been attributed to photochemistry in the solar nebula. However, the putative photochemical reactions remain elusive, and predicted accompanying (33)S depletions have not previously been found, which could indicate an erroneous assumption regarding the origins of the (33)S anomalies, or of the bulk solar system S-isotope composition. Here, we report well-resolved anomalous (33)S depletions in IIIF iron meteorites (<-0.02 per mil), and (33)S enrichments in other magmatic iron meteorite groups. The (33)S depletions support the idea that differentiated planetesimals inherited sulfur that was photochemically derived from gases in the early inner solar system (<∼2 AU), and that bulk inner solar system S-isotope composition was chondritic (consistent with IAB iron meteorites, Earth, Moon, and Mars). The range of mass-independent sulfur isotope compositions may reflect spatial or temporal changes influenced by photochemical processes. A tentative correlation between S isotopes and Hf-W core segregation ages suggests that the two systems may be influenced by common factors, such as nebular location and volatile content. PMID:25453079

  14. Early inner solar system origin for anomalous sulfur isotopes in differentiated protoplanets.

    PubMed

    Antonelli, Michael A; Kim, Sang-Tae; Peters, Marc; Labidi, Jabrane; Cartigny, Pierre; Walker, Richard J; Lyons, James R; Hoek, Joost; Farquhar, James

    2014-12-16

    Achondrite meteorites have anomalous enrichments in (33)S, relative to chondrites, which have been attributed to photochemistry in the solar nebula. However, the putative photochemical reactions remain elusive, and predicted accompanying (33)S depletions have not previously been found, which could indicate an erroneous assumption regarding the origins of the (33)S anomalies, or of the bulk solar system S-isotope composition. Here, we report well-resolved anomalous (33)S depletions in IIIF iron meteorites (<-0.02 per mil), and (33)S enrichments in other magmatic iron meteorite groups. The (33)S depletions support the idea that differentiated planetesimals inherited sulfur that was photochemically derived from gases in the early inner solar system (<∼2 AU), and that bulk inner solar system S-isotope composition was chondritic (consistent with IAB iron meteorites, Earth, Moon, and Mars). The range of mass-independent sulfur isotope compositions may reflect spatial or temporal changes influenced by photochemical processes. A tentative correlation between S isotopes and Hf-W core segregation ages suggests that the two systems may be influenced by common factors, such as nebular location and volatile content.

  15. A Cenozoic record of the equatorial Pacific carbonate compensation depth.

    PubMed

    Pälike, Heiko; Lyle, Mitchell W; Nishi, Hiroshi; Raffi, Isabella; Ridgwell, Andy; Gamage, Kusali; Klaus, Adam; Acton, Gary; Anderson, Louise; Backman, Jan; Baldauf, Jack; Beltran, Catherine; Bohaty, Steven M; Bown, Paul; Busch, William; Channell, Jim E T; Chun, Cecily O J; Delaney, Margaret; Dewangan, Pawan; Dunkley Jones, Tom; Edgar, Kirsty M; Evans, Helen; Fitch, Peter; Foster, Gavin L; Gussone, Nikolaus; Hasegawa, Hitoshi; Hathorne, Ed C; Hayashi, Hiroki; Herrle, Jens O; Holbourn, Ann; Hovan, Steve; Hyeong, Kiseong; Iijima, Koichi; Ito, Takashi; Kamikuri, Shin-ichi; Kimoto, Katsunori; Kuroda, Junichiro; Leon-Rodriguez, Lizette; Malinverno, Alberto; Moore, Ted C; Murphy, Brandon H; Murphy, Daniel P; Nakamura, Hideto; Ogane, Kaoru; Ohneiser, Christian; Richter, Carl; Robinson, Rebecca; Rohling, Eelco J; Romero, Oscar; Sawada, Ken; Scher, Howie; Schneider, Leah; Sluijs, Appy; Takata, Hiroyuki; Tian, Jun; Tsujimoto, Akira; Wade, Bridget S; Westerhold, Thomas; Wilkens, Roy; Williams, Trevor; Wilson, Paul A; Yamamoto, Yuhji; Yamamoto, Shinya; Yamazaki, Toshitsugu; Zeebe, Richard E

    2012-08-30

    Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carbon input from volcanic and metamorphic outgassing and its removal by weathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The integrated effect of these processes is reflected in the calcium carbonate compensation depth, which is the oceanic depth at which calcium carbonate is dissolved. Here we present a carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean. The carbonate compensation depth tracks long-term ocean cooling, deepening from 3.0-3.5 kilometres during the early Cenozoic (approximately 55 million years ago) to 4.6 kilometres at present, consistent with an overall Cenozoic increase in weathering. We find large superimposed fluctuations in carbonate compensation depth during the middle and late Eocene. Using Earth system models, we identify changes in weathering and the mode of organic-carbon delivery as two key processes to explain these large-scale Eocene fluctuations of the carbonate compensation depth.

  16. Cenozoic tectonic evolution of Asia: A preliminary synthesis

    NASA Astrophysics Data System (ADS)

    Yin, An

    2010-06-01

    Asia has been a major testing ground for various competing models of continental deformation due to its relatively well-understood plate boundary conditions in the Cenozoic, exceptional exposure of active structures, and strain distribution, and widespread syn-collisional igneous activity as a proxy for the thermal state of the mantle and crust. Two Cenozoic orogens dominate the continent: the Himalayan-Tibetan orogen in the east induced by the India-Asia collision and the Turkish-Iranian-Caucasus orogen in the west induced by the Arabia-Asia collision. The development of the two orogens was accomplished by shortening in the early stage followed by strike-slip faulting and extension in the late stage. In the Himalayan-Tibetan orogen, shortening across two discrete thrust belts at 55-30 Ma in southern and northern Tibet created a large intracontinental basin (the Paleo-Qaidam basin) in between. Subsequent crustal thickening and a possible thermal event in the mantle (e.g., convective removal of central Tibetan mantle lithosphere) may have raised the elevation of this early intra-plateau basin up to ~ 2-3 km to its current height. Collision between India and Asia also caused lateral extrusion of southeast Asia between 32 Ma and 17 Ma. The latest stage of the India-Asia collision was expressed by north-trending rifting and the development of trench-facing V-shaped conjugate strike-slip faults in central Mongolia, central Tibet, eastern Afghanistan and southeast Asia. In the Turkish-Iranian-Caucasus orogen, early crustal thickening in the orogenic interior began at or prior to 30-20 Ma. This style of deformation was replaced by strike-slip faulting at ~ 15-5 Ma associated with further northward penetration of Arabia into Asia, westward extrusion of the Anatolia/Turkey block, and rapid extension across the Sea of Crete and Sea of Aegean. The late stage extension in both orogens was locally related to extensional core-complex development. The continental-margin extension

  17. Episodic Cenozoic volcanism and tectonism in the Andes of Peru

    USGS Publications Warehouse

    Noble, D.C.; McKee, E.H.; Farrar, E.; Petersen, U.

    1974-01-01

    Radiometric and geologic information indicate a complex history of Cenozoic volcanism and tectonism in the central Andes. K-Ar ages on silicic pyroclastic rocks demonstrate major volcanic activity in central and southern Peru, northern Chile, and adjacent areas during the Early and Middle Miocene, and provide additional evidence for volcanism during the Late Eocene. A provisional outline of tectonic and volcanic events in the Peruvian Andes during the Cenozoic includes: one or more pulses of igneous activity and intense deformation during the Paleocene and Eocene; a period of quiescence, lasting most of Oligocene time; reinception of tectonism and volcanism at the beginning of the Miocene; and a major pulse of deformation in the Middle Miocene accompanied and followed through the Pliocene by intense volcanism and plutonism. Reinception of igneous activity and tectonism at about the Oligocene-Miocene boundary, a feature recognized in other circum-Pacific regions, may reflect an increase in the rate of rotation of the Pacific plate relative to fixed or quasifixed mantle coordinates. Middle Miocene tectonism and latest Tertiary volcanism correlates with and probably is genetically related to the beginning of very rapid spreading at the East Pacific Rise. ?? 1974.

  18. Cenozoic Tectonic Activity of the "Passive" North America Margin: Evidence for Cenozoic Activity on Mesozoic or Paleozoic Faults

    NASA Astrophysics Data System (ADS)

    Nedorub, O. I.; Knapp, C. C.

    2012-12-01

    The tectonic history of the Eastern North American Margin (ENAM) incorporates two cycles of continental assembly, multiple pulses of orogeny, rifting, and post-rift geodynamic evolution. This is reflected in the heterogeneous lithosphere of the ENAM which contains fault structures originated in Paleozoic to Mesozoic eras. The South Georgia Rift basin is probably the largest Mesozoic graben within its boundaries that is associated with the breakup of Pangea. It is composed of smaller sub-basins which appear to be bounded by high-angle normal faults, some of which may have been inverted in late Cretaceous and Cenozoic eras. Paleozoic structures may have been reactivated in Cenozoic time as well. The ENAM is characterized by N-NE maximum horizontal compressive stress direction. This maximum compressional stress field is sub-parallel to the strike of the Atlantic Coast province fault systems. Camden, Augusta, Allendale, and Pen Branch faults are four of the many such reactivated faults along the southern part of ENAM. These faults are now buried under the 0-400 m of loosely consolidated Cretaceous and Cenozoic age sediments and thus are either only partially mapped or currently not recognized. Some of the objectives of this study are to map the subsurface expression and geometry of these faults and to investigate the post Cretaceous deformation and possible causes of fault reactivation on a passive margin. This study employs an integrated geophysical approach to investigate the upper 200 m of identified locations of the above mentioned faults. 2-D high-resolution shallow seismic reflection and refraction methods, gravity surveys, GPR, 2-D electrical resistivity and well data are used for analyses and interpretation. Preliminary results suggest that Camden fault shows signs of Cenozoic reactivation through an approximately 30 m offset NW side up mainly along a steeply dipping fault zone in the basal contact of Coastal Plain sediments with the Carolina Piedmont. Drill

  19. Ethnic Identity Trajectories among Mexican-Origin Girls during Early and Middle Adolescence: Predicting Future Psychosocial Adjustment

    ERIC Educational Resources Information Center

    Gonzales-Backen, Melinda A.; Bámaca-Colbert, Mayra Y.; Allen, Kimberly

    2016-01-01

    We examined trajectories of ethnic identity exploration, resolution, and affirmation and their associations with depressive symptoms and self-esteem 3.5 years later among early and middle adolescent Mexican-origin girls (N = 338). Findings indicated that exploration, resolution, and affirmation increased over time for both cohorts. Among early…

  20. Cenozoic seawater Sr/Ca evolution

    NASA Astrophysics Data System (ADS)

    Sosdian, Sindia M.; Lear, Caroline H.; Tao, Kai; Grossman, Ethan L.; O'Dea, Aaron; Rosenthal, Yair

    2012-10-01

    Records of seawater chemistry help constrain temporal variations in geochemical processes that impact the global carbon cycle and climate through Earth's history. Here we reconstruct Cenozoic seawater Sr/Ca (Sr/Casw) using fossil Conus and turritellid gastropod Sr/Ca. Combined with an oxygen isotope paleotemperature record from the same samples, the gastropod record suggests that Sr/Caswwas slightly higher in the Eocene (˜11.4 ± 3 mmol/mol) than today (˜8.54 mmol/mol) and remained relatively stable from the mid- to late Cenozoic. We compare our gastropod Cenozoic Sr/Casw record with a published turritellid gastropod Sr/Casw record and other published biogenic (benthic foraminifera, fossil fish teeth) and inorganic precipitate (calcite veins) Sr/Caswrecords. Once the uncertainties with our gastropod-derived Sr/Casw are taken into account the Sr/Casw record agrees reasonably well with biogenic Sr/Caswrecords. Assuming a seawater [Ca] history derived from marine evaporite inclusions, all biogenic-based Sr/Casw reconstructions imply decreasing seawater [Sr] through the Cenozoic, whereas the calcite vein Sr/Casw reconstruction implies increasing [Sr] through the Cenozoic. We apply a simple geochemical model to examine the implications of divergence among these seawater [Sr] reconstructions and suggest that the interpretation and uncertainties associated with the gastropod and calcite vein proxies need to be revisited. Used in conjunction with records of carbonate depositional fluxes, our favored seawater Sr/Ca scenarios point to a significant increase in the proportion of aragonite versus calcite deposition in shelf sediments from the Middle Miocene, coincident with the proliferation of coral reefs. We propose that this occurred at least 10 million years after the seawater Mg/Ca threshold was passed, and was instead aided by declining levels of atmospheric carbon dioxide.

  1. Deciphering the coupled Paleozoic and Cenozoic tectonic history of the Qilian Shan, northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zuza, A. V.; Yin, A.; Li, J.

    2014-12-01

    The Cenozoic Qilian Shan--the widest thrust belt on the Tibetan Plateau--exposes a record of early Paleozoic subduction-accretion associated with closure of the Qilian Ocean as the Qaidam microcontinent converged with North China. Despite decades of intense research, there is little consensus regarding the nature of the Qilian orogen (e.g., subduction polarity or number of arcs). For example, are the scattered ophiolite-bearing mélange complexes in the Qilian Shan the result of multiple arcs colliding along several suture zones in the Paleozoic or Cenozoic thrust duplication of a single Paleozoic suture zone? A major problem is that existing hypotheses neglect Cenozoic reorganization of the earlier tectonic framework, and the coupling between Paleozoic and Cenozoic structures has yet to be systematically investigated. To address this issue, we examine the Paleozoic Qilian Shan in the context of Cenozoic deformation. We conducted detailed field mapping (~1:50,000), balanced cross-section construction and restoration, U-Pb-Th zircon geochronology, Th-Pb dating of monazite inclusions in garnet, thermobarometry, and whole-rock geochemistry across the central Qilian Shan and in the Hexi Corridor foreland near Jinchan, where the North China craton abuts directly against the Qilian orogen. Successions of juxtaposed amphibolite facies Proterozoic gneiss (T: 725 ± 53°C, P: 7.9 ± 0.9 kbar), Cambrian oceanic material (U-Pb zircon ages: 530-520 Ma), and Ordovician-Silurian arc-derived granite (U-Pb zircon ages: 475-445 Ma) are exposed in the hanging walls of south-directed Cenozoic thrusts that place this basement over younger strata. A regionally correlative unconformity at the base of Carboniferous-Triassic strata is duplicated by this deformation and is used as marker horizon in our restoration. Initial estimates indicate a minimum post-Triassic shortening strain of ~42-45% across the range. By removing this deformation on mapped faults and adhering to observed field

  2. Phylotranscriptomic analysis of the origin and early diversification of land plants.

    PubMed

    Wickett, Norman J; Mirarab, Siavash; Nguyen, Nam; Warnow, Tandy; Carpenter, Eric; Matasci, Naim; Ayyampalayam, Saravanaraj; Barker, Michael S; Burleigh, J Gordon; Gitzendanner, Matthew A; Ruhfel, Brad R; Wafula, Eric; Der, Joshua P; Graham, Sean W; Mathews, Sarah; Melkonian, Michael; Soltis, Douglas E; Soltis, Pamela S; Miles, Nicholas W; Rothfels, Carl J; Pokorny, Lisa; Shaw, A Jonathan; DeGironimo, Lisa; Stevenson, Dennis W; Surek, Barbara; Villarreal, Juan Carlos; Roure, Béatrice; Philippe, Hervé; dePamphilis, Claude W; Chen, Tao; Deyholos, Michael K; Baucom, Regina S; Kutchan, Toni M; Augustin, Megan M; Wang, Jun; Zhang, Yong; Tian, Zhijian; Yan, Zhixiang; Wu, Xiaolei; Sun, Xiao; Wong, Gane Ka-Shu; Leebens-Mack, James

    2014-11-11

    Reconstructing the origin and evolution of land plants and their algal relatives is a fundamental problem in plant phylogenetics, and is essential for understanding how critical adaptations arose, including the embryo, vascular tissue, seeds, and flowers. Despite advances in molecular systematics, some hypotheses of relationships remain weakly resolved. Inferring deep phylogenies with bouts of rapid diversification can be problematic; however, genome-scale data should significantly increase the number of informative characters for analyses. Recent phylogenomic reconstructions focused on the major divergences of plants have resulted in promising but inconsistent results. One limitation is sparse taxon sampling, likely resulting from the difficulty and cost of data generation. To address this limitation, transcriptome data for 92 streptophyte taxa were generated and analyzed along with 11 published plant genome sequences. Phylogenetic reconstructions were conducted using up to 852 nuclear genes and 1,701,170 aligned sites. Sixty-nine analyses were performed to test the robustness of phylogenetic inferences to permutations of the data matrix or to phylogenetic method, including supermatrix, supertree, and coalescent-based approaches, maximum-likelihood and Bayesian methods, partitioned and unpartitioned analyses, and amino acid versus DNA alignments. Among other results, we find robust support for a sister-group relationship between land plants and one group of streptophyte green algae, the Zygnematophyceae. Strong and robust support for a clade comprising liverworts and mosses is inconsistent with a widely accepted view of early land plant evolution, and suggests that phylogenetic hypotheses used to understand the evolution of fundamental plant traits should be reevaluated. PMID:25355905

  3. Phylotranscriptomic analysis of the origin and early diversification of land plants

    PubMed Central

    Wickett, Norman J.; Mirarab, Siavash; Nguyen, Nam; Warnow, Tandy; Carpenter, Eric; Matasci, Naim; Ayyampalayam, Saravanaraj; Barker, Michael S.; Burleigh, J. Gordon; Gitzendanner, Matthew A.; Ruhfel, Brad R.; Wafula, Eric; Graham, Sean W.; Mathews, Sarah; Melkonian, Michael; Soltis, Douglas E.; Soltis, Pamela S.; Miles, Nicholas W.; Rothfels, Carl J.; Pokorny, Lisa; Shaw, A. Jonathan; DeGironimo, Lisa; Stevenson, Dennis W.; Surek, Barbara; Villarreal, Juan Carlos; Roure, Béatrice; Philippe, Hervé; dePamphilis, Claude W.; Chen, Tao; Deyholos, Michael K.; Baucom, Regina S.; Kutchan, Toni M.; Augustin, Megan M.; Wang, Jun; Zhang, Yong; Tian, Zhijian; Yan, Zhixiang; Wu, Xiaolei; Sun, Xiao; Wong, Gane Ka-Shu; Leebens-Mack, James

    2014-01-01

    Reconstructing the origin and evolution of land plants and their algal relatives is a fundamental problem in plant phylogenetics, and is essential for understanding how critical adaptations arose, including the embryo, vascular tissue, seeds, and flowers. Despite advances in molecular systematics, some hypotheses of relationships remain weakly resolved. Inferring deep phylogenies with bouts of rapid diversification can be problematic; however, genome-scale data should significantly increase the number of informative characters for analyses. Recent phylogenomic reconstructions focused on the major divergences of plants have resulted in promising but inconsistent results. One limitation is sparse taxon sampling, likely resulting from the difficulty and cost of data generation. To address this limitation, transcriptome data for 92 streptophyte taxa were generated and analyzed along with 11 published plant genome sequences. Phylogenetic reconstructions were conducted using up to 852 nuclear genes and 1,701,170 aligned sites. Sixty-nine analyses were performed to test the robustness of phylogenetic inferences to permutations of the data matrix or to phylogenetic method, including supermatrix, supertree, and coalescent-based approaches, maximum-likelihood and Bayesian methods, partitioned and unpartitioned analyses, and amino acid versus DNA alignments. Among other results, we find robust support for a sister-group relationship between land plants and one group of streptophyte green algae, the Zygnematophyceae. Strong and robust support for a clade comprising liverworts and mosses is inconsistent with a widely accepted view of early land plant evolution, and suggests that phylogenetic hypotheses used to understand the evolution of fundamental plant traits should be reevaluated. PMID:25355905

  4. Cenozoic lithospheric evolution of the Bohai Bay Basin, eastern North China Craton: Constraint from tectono-thermal modeling

    NASA Astrophysics Data System (ADS)

    Liu, Qiongying; He, Lijuan; Huang, Fang; Zhang, Linyou

    2016-01-01

    It is well established that the lithosphere beneath the eastern North China Craton (NCC) had been thinned before the Cenozoic. A 2D multi-phase extension model, in which the initial crustal and lithospheric thicknesses are variable, is presented to reconstruct the initial thicknesses of the crust and lithosphere in the early Cenozoic and to further investigate the lithospheric evolution beneath the eastern NCC through the Cenozoic. We conduct thermal modeling along three profiles from east to west in the Bohai Bay Basin, which is the center of the lithospheric destruction and thinning of the NCC. Using multiple constraints, such as tectonic subsidence, the present-day heat flow and the Moho depth, we determine the initial crustal and lithospheric thicknesses of the Bohai Bay Basin before the Cenozoic rift to be 33-36 km and 80-105 km, respectively. The model results show that the most rapid lithospheric thinning during the Cenozoic occurred in the middle Eocene for most depressions, and the thinning activity ceased at the end of the Oligocene, reaching a minimum lithospheric thickness of 53-74 km, followed by a thermal relaxation phase. Combined with previous studies, we infer that the lithosphere beneath the eastern NCC experienced two stages of alternating thinning and thickening: notable thinning in the Early Cretaceous and Paleogene, and thickening in the Late Cretaceous and late Cenozoic. We believe that thermo-chemical erosion, together with extension, was probably the major mechanism of the significant lithospheric removal during the Mesozoic, whereas the Cenozoic lithospheric thinning was mainly dominated by tectonic extension in the eastern NCC; lithospheric thickening was generally a result of thermal cooling.

  5. Early origins of the Caribbean plate from deep seismic profiles across the Nicaraguan Rise

    NASA Astrophysics Data System (ADS)

    Ott, B.; Mann, W. P.

    2012-12-01

    The offshore Nicaraguan Rise in the maritime zones of Honduras, Jamaica, Nicaragua and Colombia covers a combined area of 500,000 km2, and is one of the least known equatorial Cretaceous-Cenozoic carbonate regions remaining on Earth. The purpose of this study is to describe the Cretaceous to Recent tectonic and stratigraphic history of the deep water Nicaraguan Rise, and to better understand how various types of crustal blocks underlying the Eocene to Recent carbonate cover fused into a single, larger Caribbean plate known today from GPS studies. We interpreted 8700 km of modern, deep-penetration 2D seismic data kindly provided by the oil industry, tied to five wells that penetrated Cretaceous igneous basement. Based on these data, and integration with gravity, magnetic and existing crustal refraction data, we define four crustal provinces for the offshore Nicaraguan Rise: 1) Thicker (15-18 km) Late Cretaceous Caribbean ocean plateau (COP) with rough, top basement surface; 2) normal (6-8 km) Late Cretaceous COP with smooth top basement surface (B") and correlative outcrops in southern Haiti and Jamaica; 3) Precambrian-Paleozoic continental crust (20-22 km thick) with correlative outcrops in northern Central America; and 4) Cretaceous arc crust (>18 km thick) with correlative outcrops in Jamaica. These strongly contrasting basement belts strike northeastward to eastward, and were juxtaposed by latest Cretaceous-Paleogene northward and northwestward thrusting of Caribbean arc over continental crust in Central America, and the western Nicaraguan Rise (84 to 85 degrees west). A large Paleogene to recent, CCW rotation of the Caribbean plate along the Cayman trough faults and into its present day location explains why terranes in Central America and beneath the Nicaraguan Rise have their present, anomalous north-east strike. Continuing, present-day activity on some of these crustal block boundaries is a likely result of intraplate stresses imposed by the surrounding

  6. Paleogene equatorial penguins challenge the proposed relationship between biogeography, diversity, and Cenozoic climate change.

    PubMed

    Clarke, Julia A; Ksepka, Daniel T; Stucchi, Marcelo; Urbina, Mario; Giannini, Norberto; Bertelli, Sara; Narváez, Yanina; Boyd, Clint A

    2007-07-10

    New penguin fossils from the Eocene of Peru force a reevaluation of previous hypotheses regarding the causal role of climate change in penguin evolution. Repeatedly it has been proposed that penguins originated in high southern latitudes and arrived at equatorial regions relatively recently (e.g., 4-8 million years ago), well after the onset of latest Eocene/Oligocene global cooling and increases in polar ice volume. By contrast, new discoveries from the middle and late Eocene of Peru reveal that penguins invaded low latitudes >30 million years earlier than prior data suggested, during one of the warmest intervals of the Cenozoic. A diverse fauna includes two new species, here reported from two of the best exemplars of Paleogene penguins yet recovered. The most comprehensive phylogenetic analysis of Sphenisciformes to date, combining morphological and molecular data, places the new species outside the extant penguin radiation (crown clade: Spheniscidae) and supports two separate dispersals to equatorial (paleolatitude approximately 14 degrees S) regions during greenhouse earth conditions. One new species, Perudyptes devriesi, is among the deepest divergences within Sphenisciformes. The second, Icadyptes salasi, is the most complete giant (>1.5 m standing height) penguin yet described. Both species provide critical information on early penguin cranial osteology, trends in penguin body size, and the evolution of the penguin flipper.

  7. Paleogene equatorial penguins challenge the proposed relationship between biogeography, diversity, and Cenozoic climate change

    PubMed Central

    Clarke, Julia A.; Ksepka, Daniel T.; Stucchi, Marcelo; Urbina, Mario; Giannini, Norberto; Bertelli, Sara; Narváez, Yanina; Boyd, Clint A.

    2007-01-01

    New penguin fossils from the Eocene of Peru force a reevaluation of previous hypotheses regarding the causal role of climate change in penguin evolution. Repeatedly it has been proposed that penguins originated in high southern latitudes and arrived at equatorial regions relatively recently (e.g., 4–8 million years ago), well after the onset of latest Eocene/Oligocene global cooling and increases in polar ice volume. By contrast, new discoveries from the middle and late Eocene of Peru reveal that penguins invaded low latitudes >30 million years earlier than prior data suggested, during one of the warmest intervals of the Cenozoic. A diverse fauna includes two new species, here reported from two of the best exemplars of Paleogene penguins yet recovered. The most comprehensive phylogenetic analysis of Sphenisciformes to date, combining morphological and molecular data, places the new species outside the extant penguin radiation (crown clade: Spheniscidae) and supports two separate dispersals to equatorial (paleolatitude ≈14°S) regions during greenhouse earth conditions. One new species, Perudyptes devriesi, is among the deepest divergences within Sphenisciformes. The second, Icadyptes salasi, is the most complete giant (>1.5 m standing height) penguin yet described. Both species provide critical information on early penguin cranial osteology, trends in penguin body size, and the evolution of the penguin flipper. PMID:17601778

  8. Species duration and extinction patterns in Cenozoic non-marine Ostracoda, Western United States

    NASA Astrophysics Data System (ADS)

    Swain, Frederick M.

    About 260 species of non-marine Ostracoda appeared and, for the most part, became extinct during the approximately 65 million years of the Cenozoic Era in the western United States. Lacustrine rock sequences containing the ostracode faunas in the Colorado Plateau and Great Basin total as much as 10.000 m. Important new appearances occurred in the early Paleocene, late Paleocene?-early Eocene, late Eocene-Oligocene?, late Oligocene?-early Miocene, and late? Pliocene Epochs. Major extinctions took place in the middle and late Eocene, late Miocene, and Pliocene and early Pleistocene Epochs.

  9. Apatite fission track evidence for the Cretaceous-Cenozoic cooling history of the Qilian Shan (NW China) and for stepwise northeastward growth of the northeastern Tibetan Plateau since early Eocene

    NASA Astrophysics Data System (ADS)

    Qi, Bangshen; Hu, Daogong; Yang, Xiaoxiao; Zhang, Yaoling; Tan, Chengxuan; Zhang, Peng; Feng, Chengjun

    2016-07-01

    Apatite fission track (AFT) data from hinterland of the Qilian Shan at the northeastern margin of the Tibetan Plateau suggest this range has experienced northeastward propagation of surface uplift since early Eocene and that crustal shortening occurred in the Qilian Shan before the late Miocene. Thermochronometry data indicate that the Qilian Shan experienced a three-stage cooling history, including: (1) rapid initial cooling during Cretaceous; (2) a stage of slow cooling during late Cretaceous-early Eocene; and (3) rapid stepwise cooling in a southwestern-northeastern orientation since early Eocene. Cretaceous rapid cooling may be a record of the Lhasa block and Eurasian collision. Early Cretaceous denudation was followed by tectonic and quasi-isothermal quiescence that continued until early Eocene. Early Eocene rapid cooling in the South Qilian Shan may be the first far-field response in the Qilian Shan to the collision and convergence of the Indian and Eurasian continents. From late Eocene to middle Miocene, crustal shortening propagated into the Central Qilian Shan and North Qilian Shan and produced surface uplift of the entire Qilian Shan region before the late Miocene. This study provides a better understanding of the tectonic evolution of the Qilian Shan and when the far-field stress from the India-Eurasia collision into the northeastern Tibetan Plateau began.

  10. Multiple cenozoic invasions of Africa by penguins (Aves, Sphenisciformes).

    PubMed

    Ksepka, Daniel T; Thomas, Daniel B

    2012-03-01

    Africa hosts a single breeding species of penguin today, yet the fossil record indicates that a diverse array of now-extinct taxa once inhabited southern African coastlines. Here, we show that the African penguin fauna had a complex history involving multiple dispersals and extinctions. Phylogenetic analyses and biogeographic reconstructions incorporating new fossil material indicate that, contrary to previous hypotheses, the four Early Pliocene African penguin species do not represent an endemic radiation or direct ancestors of the living Spheniscus demersus (blackfooted penguin). A minimum of three dispersals to Africa, probably assisted by the eastward-flowing Antarctic Circumpolar and South Atlantic currents, occurred during the Late Cenozoic. As regional sea-level fall eliminated islands and reduced offshore breeding areas during the Pliocene, all but one penguin lineage ended in extinction, resulting in today's depleted fauna. PMID:21900330

  11. Multiple cenozoic invasions of Africa by penguins (Aves, Sphenisciformes).

    PubMed

    Ksepka, Daniel T; Thomas, Daniel B

    2012-03-01

    Africa hosts a single breeding species of penguin today, yet the fossil record indicates that a diverse array of now-extinct taxa once inhabited southern African coastlines. Here, we show that the African penguin fauna had a complex history involving multiple dispersals and extinctions. Phylogenetic analyses and biogeographic reconstructions incorporating new fossil material indicate that, contrary to previous hypotheses, the four Early Pliocene African penguin species do not represent an endemic radiation or direct ancestors of the living Spheniscus demersus (blackfooted penguin). A minimum of three dispersals to Africa, probably assisted by the eastward-flowing Antarctic Circumpolar and South Atlantic currents, occurred during the Late Cenozoic. As regional sea-level fall eliminated islands and reduced offshore breeding areas during the Pliocene, all but one penguin lineage ended in extinction, resulting in today's depleted fauna.

  12. Fires in the Cenozoic: a late flowering of flammable ecosystems.

    PubMed

    Bond, William J

    2014-01-01

    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analyzed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma). Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+) for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However, none of the potential global factors (oxygen, rainfall seasonality, CO2, novel flammable growth forms) provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system. PMID:25601873

  13. Fires in the Cenozoic: a late flowering of flammable ecosystems.

    PubMed

    Bond, William J

    2014-01-01

    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analyzed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma). Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+) for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However, none of the potential global factors (oxygen, rainfall seasonality, CO2, novel flammable growth forms) provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system.

  14. Fires in the Cenozoic: a late flowering of flammable ecosystems

    PubMed Central

    Bond, William J.

    2015-01-01

    Modern flammable ecosystems include tropical and subtropical savannas, steppe grasslands, boreal forests, and temperate sclerophyll shrublands. Despite the apparent fiery nature of much contemporary vegetation, terrestrial fossil evidence would suggest we live in a time of low fire activity relative to the deep past. The inertinite content of coal, fossil charcoal, is strikingly low from the Eocene to the Pleistocene and no charcoalified mesofossils have been reported for the Cenozoic. Marine cores have been analyzed for charcoal in the North Pacific, the north and south Atlantic off Africa, and the south China sea. These tell a different story with the oldest records indicating low levels of fire activity from the Eocene but a surge of fire from the late Miocene (~7 Ma). Phylogenetic studies of woody plants adapted to frequent savanna fires show them beginning to appear from the Late Miocene with peak origins in the late Pliocene in both South American and African lineages. Phylogenetic studies indicate ancient origins (60 Ma+) for clades characteristic of flammable sclerophyll vegetation from Australia and the Cape region of South Africa. However, as for savannas, there was a surge of speciation from the Late Miocene associated with the retreat of closed fire-intolerant forests. The wide geographic spread of increased fire activity in the last few million years suggests a global cause. However, none of the potential global factors (oxygen, rainfall seasonality, CO2, novel flammable growth forms) provides an adequate explanation as yet. The global patterns and processes of fire and flammable vegetation in the Cenozoic, especially since the Late Miocene, deserve much more attention to better understand fire in the earth system. PMID:25601873

  15. Variability in Early Ahmarian lithic technology and its implications for the model of a Levantine origin of the Protoaurignacian.

    PubMed

    Kadowaki, Seiji; Omori, Takayuki; Nishiaki, Yoshihiro

    2015-05-01

    This paper re-examines lithic technological variability of the Early Ahmarian, one of the early Upper Palaeolithic cultural entities in the Levant, which has often been regarded as a precursor of the Protoaurignacian (the early Upper Palaeolithic in Europe) in arguments for the occurrence of a cultural spread in association with the dispersal of Homo sapiens from the Levant to Europe. Using quantitative data on several lithic techno-typological attributes, we demonstrate that there is a significant degree of variability in the Early Ahmarian between the northern and southern Levant, as previously pointed out by several researchers. In addition, we suggest that the technology similar to the southern Early Ahmarian also existed in the northern Levant, i.e., the Ksar Akil Phase 4 group (the KA 4 group), by introducing new Upper Palaeolithic assemblages from Wadi Kharar 16R, inland Syria. We then review currently available stratigraphic records and radiocarbon dates (including a new date from Wadi Kharar 16R), with special attention to their methodological background. As a result, we propose alternative chronological scenarios, including one that postulates that the southern Early Ahmarian and the KA 4 group appeared later than the northern Early Ahmarian with little or no overlap. On the basis of the alternative scenarios of chronological/geographical patterns of the Early Ahmarian variability, we propose four possible relationships between the Protoaurignacian and the Early Ahmarian, including a new scenario that the appearance of the Protoaurignacian preceded those of similar technological entities in the Levant, i.e., the southern Early Ahmarian and the KA 4 group. If the last hypothesis is substantiated, it requires us to reconsider the model of a Levantine origin of the Protoaurignacian and its palaeoanthropological implications.

  16. Cenozoic Methane-Seep Faunas of the Caribbean Region

    PubMed Central

    Kiel, Steffen; Hansen, Bent T.

    2015-01-01

    We report new examples of Cenozoic cold-seep communities from Colombia, Cuba, the Dominican Republic, Trinidad, and Venezuela, and attempt to improve the stratigraphic dating of Cenozoic Caribbean seep communities using strontium isotope stratigraphy. Two seep faunas are distinguished in Barbados: the late Eocene mudstone-hosted ‘Joes River fauna’ consists mainly of large lucinid bivalves and tall abyssochrysoid gastropods, and the early Miocene carbonate-hosted ‘Bath Cliffs fauna’ containing the vesicomyid Pleurophopsis, the mytilid Bathymodiolus and small gastropods. Two new Oligocene seep communities from the Sinú River basin in Colombia consist of lucinid bivalves including Elongatolucina, thyasirid and solemyid bivalves, and Pleurophopsis. A new early Miocene seep community from Cuba includes Pleurophopsis and the large lucinid Meganodontia. Strontium isotope stratigraphy suggests an Eocene age for the Cuban Elmira asphalt mine seep community, making it the oldest in the Caribbean region. A new basal Pliocene seep fauna from the Dominican Republic is characterized by the large lucinid Anodontia (Pegophysema). In Trinidad we distinguish two types of seep faunas: the mudstone-hosted Godineau River fauna consisting mainly of lucinid bivalves, and the limestone-hosted Freeman’s Bay fauna consisting chiefly of Pleurophopsis, Bathymodiolus, and small gastropods; they are all dated as late Miocene. Four new seep communities of Oligocene to Miocene age are reported from Venezuela. They consist mainly of large globular lucinid bivalves including Meganodontia, and moderately sized vesicomyid bivalves. After the late Miocene many large and typical ‘Cenozoic’ lucinid genera disappeared from the Caribbean seeps and are today known only from the central Indo-Pacific Ocean. We speculate that the increasingly oligotrophic conditions in the Caribbean Sea after the closure of the Isthmus of Panama in the Pliocene may have been unfavorable for such large lucinids

  17. Sulfur isotopic composition of cenozoic seawater sulfate

    PubMed

    Paytan; Kastner; Campbell; Thiemens

    1998-11-20

    A continuous seawater sulfate sulfur isotope curve for the Cenozoic with a resolution of approximately 1 million years was generated using marine barite. The sulfur isotopic composition decreased from 19 to 17 per mil between 65 and 55 million years ago, increased abruptly from 17 to 22 per mil between 55 and 45 million years ago, remained nearly constant from 35 to approximately 2 million years ago, and has decreased by 0.8 per mil during the past 2 million years. A comparison between seawater sulfate and marine carbonate carbon isotope records reveals no clear systematic coupling between the sulfur and carbon cycles over one to several millions of years, indicating that changes in the burial rate of pyrite sulfur and organic carbon did not singularly control the atmospheric oxygen content over short time intervals in the Cenozoic. This finding has implications for the modeling of controls on atmospheric oxygen concentration.

  18. Cenozoic climate change influences mammalian evolutionary dynamics.

    PubMed

    Figueirido, Borja; Janis, Christine M; Pérez-Claros, Juan A; De Renzi, Miquel; Palmqvist, Paul

    2012-01-17

    Global climate change is having profound impacts on the natural world. However, climate influence on faunal dynamics at macroevolutionary scales remains poorly understood. In this paper we investigate the influence of climate over deep time on the diversity patterns of Cenozoic North American mammals. We use factor analysis to identify temporally correlated assemblages of taxa, or major evolutionary faunas that we can then study in relation to climatic change over the past 65 million years. These taxa can be grouped into six consecutive faunal associations that show some correspondence with the qualitative mammalian chronofaunas of previous workers. We also show that the diversity pattern of most of these chronofaunas can be correlated with the stacked deep-sea benthic foraminiferal oxygen isotope (δ(18)O) curve, which strongly suggests climatic forcing of faunal dynamics over a large macroevolutionary timescale. This study demonstrates the profound influence of climate on the diversity patterns of North American terrestrial mammals over the Cenozoic.

  19. (Vitrinites of Mesozoic, Cenozoic, and Paleozoic coals)

    SciTech Connect

    Faizullina, E.M.; Lapo, A.V.

    1982-01-01

    In the reported experiment, the vitrinites of the coalification stages from B to A have been studied by IR spectrometry. A comparison of the intensities of the absorption bands of equally coalified vitrinites of different ages has shown that they differ mainly in their content of stretching vibrations of aliphatic CH and CH/sub 2/ groups (absorption bands at 2930 and 2860 cm/sup -1/) and the stretching vibrations of C.0 groups (band close to 1700 cm/sup -1/). A high absorption in the vitrinites of Mesozoic and Cenozoic coals due to aliphatic CH and CH/sub 2/ groups as compared with the vitrinities of Paleozoic coals has been found. The laws established previously in the coalification series for the vitrinites of Paleozoic coals have also been confirmed for the vitrinites of Meso-Cenozoic coals. 13 refs.

  20. Cenozoic climate change influences mammalian evolutionary dynamics

    PubMed Central

    Figueirido, Borja; Janis, Christine M.; Pérez-Claros, Juan A.; De Renzi, Miquel; Palmqvist, Paul

    2012-01-01

    Global climate change is having profound impacts on the natural world. However, climate influence on faunal dynamics at macroevolutionary scales remains poorly understood. In this paper we investigate the influence of climate over deep time on the diversity patterns of Cenozoic North American mammals. We use factor analysis to identify temporally correlated assemblages of taxa, or major evolutionary faunas that we can then study in relation to climatic change over the past 65 million years. These taxa can be grouped into six consecutive faunal associations that show some correspondence with the qualitative mammalian chronofaunas of previous workers. We also show that the diversity pattern of most of these chronofaunas can be correlated with the stacked deep-sea benthic foraminiferal oxygen isotope (δ18O) curve, which strongly suggests climatic forcing of faunal dynamics over a large macroevolutionary timescale. This study demonstrates the profound influence of climate on the diversity patterns of North American terrestrial mammals over the Cenozoic. PMID:22203974

  1. Early-Life Origins of Life-Cycle Well-Being: Research and Policy Implications

    ERIC Educational Resources Information Center

    Currie, Janet; Rossin-Slater, Maya

    2015-01-01

    Mounting evidence across different disciplines suggests that early-life conditions can have consequences on individual outcomes throughout the life cycle. Relative to other developed countries, the United States fares poorly on standard indicators of early-life health, and this disadvantage may have profound consequences not only for population…

  2. Evaluating the Link between Self-Esteem and Temperament in Mexican Origin Early Adolescents

    ERIC Educational Resources Information Center

    Robins, Richard W.; Donnellan, M. Brent; Widaman, Keith F.; Conger, Rand D.

    2010-01-01

    The present study examined the relation between self-esteem and temperament in a sample of 646 Mexican-American early adolescents (mean age = 10.4). Findings show that (a) early adolescents with high self-esteem exhibit higher levels of Effortful Control but, contrary to findings in adult samples, do not differ from low self-esteem adolescents in…

  3. Early-life stress origins of gastrointestinal disease: animal models, intestinal pathophysiology, and translational implications.

    PubMed

    Pohl, Calvin S; Medland, Julia E; Moeser, Adam J

    2015-12-15

    Early-life stress and adversity are major risk factors in the onset and severity of gastrointestinal (GI) disease in humans later in life. The mechanisms by which early-life stress leads to increased GI disease susceptibility in adult life remain poorly understood. Animal models of early-life stress have provided a foundation from which to gain a more fundamental understanding of this important GI disease paradigm. This review focuses on animal models of early-life stress-induced GI disease, with a specific emphasis on translational aspects of each model to specific human GI disease states. Early postnatal development of major GI systems and the consequences of stress on their development are discussed in detail. Relevant translational differences between species and models are highlighted.

  4. Circum-pacific late cenozoic structural rejuvenation: implications for sea floor spreading.

    PubMed

    Dott, R H

    1969-11-14

    The hypothesis of sea floor spreading and lithosphere plates seems to unify the origins of both oceanic ridges and volcanic arc-trench systems; therefore knowledge of well-known land areas should shed light upon sea floor tectonics. Impressive evidence of a major mid-Cenozoic discontinuity in the tectonic history of circum-Pacific land areas suggests a roughly synchronous change in sea floor development, more evidence for which may be anticipated in the future. PMID:17815749

  5. The Atmospheres of the Terrestrial Planets:Clues to the Origins and Early Evolution of Venus, Earth, and Mars

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin

    2015-01-01

    We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.

  6. Antarctic Bottom Water: Major Change in Velocity during the Late Cenozoic between Australia and Antarctica.

    PubMed

    Watkins, N D; Kennett, J P

    1971-08-27

    Paleomagnetic and micropaleontological studies of deep-sea sedimentary cores between Australia and Antarctica define an extensive area centered in the south Tasman Basin, where sediment as old as Early Pliocene has been systematically eroded by bottom currents. This major sedimentary disconformity has been produced by a substantial increase in velocity of Antarctic bottom water, possibly associated with late Cenozoic climatic cooling and corresponding increased glaciation of Antarctica. PMID:17812192

  7. Antarctic Bottom Water: Major Change in Velocity during the Late Cenozoic between Australia and Antarctica.

    PubMed

    Watkins, N D; Kennett, J P

    1971-08-27

    Paleomagnetic and micropaleontological studies of deep-sea sedimentary cores between Australia and Antarctica define an extensive area centered in the south Tasman Basin, where sediment as old as Early Pliocene has been systematically eroded by bottom currents. This major sedimentary disconformity has been produced by a substantial increase in velocity of Antarctic bottom water, possibly associated with late Cenozoic climatic cooling and corresponding increased glaciation of Antarctica.

  8. Early-life Origins of Lifecycle Well-being: Research and Policy Implications

    PubMed Central

    Currie, Janet; Rossin-Slater, Maya

    2016-01-01

    Mounting evidence across different disciplines suggests that early-life conditions can have consequences on individual outcomes throughout the lifecycle. Relative to other developed countries, the United States fares poorly on standard indicators of early-life health, and this disadvantage may have profound consequences not only for population well-being, but also for economic growth and competitiveness in a global economy. In this paper, we first discuss the research on the strength of the link between early-life health and adult outcomes, and then provide an evidence-based review of the effectiveness of existing U.S. policies targeting the early-life environment. We conclude that there is a robust and economically meaningful relationship between early-life conditions and well-being throughout the lifecycle, as measured by adult health, educational attainment, labor market attachment, and other indicators of socio-economic status. However, there is some variation in the degree to which current policies in the U.S. are effective in improving early-life conditions. Among existing programs, some of the most effective are the Special Supplemental Program for Women, Infants, and Children (WIC), home visiting with nurse practitioners, and high-quality, center-based early childhood care and education. In contrast, the evidence on other policies such as prenatal care and family leave is more mixed and limited. PMID:25558491

  9. Early-life origins of life-cycle well-being: research and policy implications.

    PubMed

    Currie, Janet; Rossin-Slater, Maya

    2015-01-01

    Mounting evidence across different disciplines suggests that early-life conditions can have consequences on individual outcomes throughout the life cycle. Relative to other developed countries, the United States fares poorly on standard indicators of early-life health, and this disadvantage may have profound consequences not only for population well-being, but also for economic growth and competitiveness in a global economy. In this paper, we first discuss the research on the strength of the link between early-life health and adult outcomes, and then provide an evidence-based review of the effectiveness of existing U.S. policies targeting the early-life environment. We conclude that there is a robust and economically meaningful relationship between early-life conditions and well-being throughout the life cycle, as measured by adult health, educational attainment, labor market attachment, and other indicators of socioeconomic status. However, there is some variation in the degree to which current policies in the United States are effective in improving early-life conditions. Among existing programs, some of the most effective are the Special Supplemental Program for Women, Infants, and Children (WIC), home visiting with nurse practitioners, and high-quality, center-based early-childhood care and education. In contrast, the evidence on other policies such as prenatal care and family leave is more mixed and limited. PMID:25558491

  10. Early-life origins of life-cycle well-being: research and policy implications.

    PubMed

    Currie, Janet; Rossin-Slater, Maya

    2015-01-01

    Mounting evidence across different disciplines suggests that early-life conditions can have consequences on individual outcomes throughout the life cycle. Relative to other developed countries, the United States fares poorly on standard indicators of early-life health, and this disadvantage may have profound consequences not only for population well-being, but also for economic growth and competitiveness in a global economy. In this paper, we first discuss the research on the strength of the link between early-life health and adult outcomes, and then provide an evidence-based review of the effectiveness of existing U.S. policies targeting the early-life environment. We conclude that there is a robust and economically meaningful relationship between early-life conditions and well-being throughout the life cycle, as measured by adult health, educational attainment, labor market attachment, and other indicators of socioeconomic status. However, there is some variation in the degree to which current policies in the United States are effective in improving early-life conditions. Among existing programs, some of the most effective are the Special Supplemental Program for Women, Infants, and Children (WIC), home visiting with nurse practitioners, and high-quality, center-based early-childhood care and education. In contrast, the evidence on other policies such as prenatal care and family leave is more mixed and limited.

  11. Comparative Genomics of Early-Diverging Mushroom-Forming Fungi Provides Insights into the Origins of Lignocellulose Decay Capabilities.

    PubMed

    Nagy, László G; Riley, Robert; Tritt, Andrew; Adam, Catherine; Daum, Chris; Floudas, Dimitrios; Sun, Hui; Yadav, Jagjit S; Pangilinan, Jasmyn; Larsson, Karl-Henrik; Matsuura, Kenji; Barry, Kerrie; Labutti, Kurt; Kuo, Rita; Ohm, Robin A; Bhattacharya, Sukanta S; Shirouzu, Takashi; Yoshinaga, Yuko; Martin, Francis M; Grigoriev, Igor V; Hibbett, David S

    2016-04-01

    Evolution of lignocellulose decomposition was one of the most ecologically important innovations in fungi. White-rot fungi in the Agaricomycetes (mushrooms and relatives) are the most effective microorganisms in degrading both cellulose and lignin components of woody plant cell walls (PCW). However, the precise evolutionary origins of lignocellulose decomposition are poorly understood, largely because certain early-diverging clades of Agaricomycetes and its sister group, the Dacrymycetes, have yet to be sampled, or have been undersampled, in comparative genomic studies. Here, we present new genome sequences of ten saprotrophic fungi, including members of the Dacrymycetes and early-diverging clades of Agaricomycetes (Cantharellales, Sebacinales, Auriculariales, and Trechisporales), which we use to refine the origins and evolutionary history of the enzymatic toolkit of lignocellulose decomposition. We reconstructed the origin of ligninolytic enzymes, focusing on class II peroxidases (AA2), as well as enzymes that attack crystalline cellulose. Despite previous reports of white rot appearing as early as the Dacrymycetes, our results suggest that white-rot fungi evolved later in the Agaricomycetes, with the first class II peroxidases reconstructed in the ancestor of the Auriculariales and residual Agaricomycetes. The exemplars of the most ancient clades of Agaricomycetes that we sampled all lack class II peroxidases, and are thus concluded to use a combination of plesiomorphic and derived PCW degrading enzymes that predate the evolution of white rot. PMID:26659563

  12. Comparative Genomics of Early-Diverging Mushroom-Forming Fungi Provides Insights into the Origins of Lignocellulose Decay Capabilities.

    PubMed

    Nagy, László G; Riley, Robert; Tritt, Andrew; Adam, Catherine; Daum, Chris; Floudas, Dimitrios; Sun, Hui; Yadav, Jagjit S; Pangilinan, Jasmyn; Larsson, Karl-Henrik; Matsuura, Kenji; Barry, Kerrie; Labutti, Kurt; Kuo, Rita; Ohm, Robin A; Bhattacharya, Sukanta S; Shirouzu, Takashi; Yoshinaga, Yuko; Martin, Francis M; Grigoriev, Igor V; Hibbett, David S

    2016-04-01

    Evolution of lignocellulose decomposition was one of the most ecologically important innovations in fungi. White-rot fungi in the Agaricomycetes (mushrooms and relatives) are the most effective microorganisms in degrading both cellulose and lignin components of woody plant cell walls (PCW). However, the precise evolutionary origins of lignocellulose decomposition are poorly understood, largely because certain early-diverging clades of Agaricomycetes and its sister group, the Dacrymycetes, have yet to be sampled, or have been undersampled, in comparative genomic studies. Here, we present new genome sequences of ten saprotrophic fungi, including members of the Dacrymycetes and early-diverging clades of Agaricomycetes (Cantharellales, Sebacinales, Auriculariales, and Trechisporales), which we use to refine the origins and evolutionary history of the enzymatic toolkit of lignocellulose decomposition. We reconstructed the origin of ligninolytic enzymes, focusing on class II peroxidases (AA2), as well as enzymes that attack crystalline cellulose. Despite previous reports of white rot appearing as early as the Dacrymycetes, our results suggest that white-rot fungi evolved later in the Agaricomycetes, with the first class II peroxidases reconstructed in the ancestor of the Auriculariales and residual Agaricomycetes. The exemplars of the most ancient clades of Agaricomycetes that we sampled all lack class II peroxidases, and are thus concluded to use a combination of plesiomorphic and derived PCW degrading enzymes that predate the evolution of white rot.

  13. The nature and origin of magnetic fields in early-type stars

    NASA Astrophysics Data System (ADS)

    Braithwaite, Jonathan

    2014-08-01

    I review our current knowledge of magnetic fields in stars more massive than around 1.5 M ⊙, in particular their nature and origin. This includes the strong magnetic fields found in a subset of the population and the fossil field theory invoked to explain them; the subgauss fields detected in Vega and Sirius and their possible origin; and what we can infer about magnetic activity in massive stars and how it might be linked to subsurface convection.

  14. Basal melting of snow on early Mars: A possible origin of some valley networks

    USGS Publications Warehouse

    Carr, M.H.; Head, J. W.

    2003-01-01

    Valley networks appear to be cut by liquid water, yet simulations suggest that early Mars could not have been warmed enough by a CO2-H2O greenhouse to permit rainfall. The vulnerability of an early atmosphere to impact erosion, the likely rapid scavenging of CO2 from the atmosphere by weathering, and the lack of detection of weathering products all support a cold early Mars. We explore the hypothesis that valley networks could have formed as a result of basal melting of thick snow and ice deposits. Depending on the heat flow, an early snowpack a few hundred meters to a few kilometers thick could undergo basal melting, providing water to cut valley networks. Copyright 2003 by the American Geophysical Union.

  15. Cenozoic Fault Evolution During Three Successive Tectonic Episodes in the Outer Continental Borderland off Southern California

    NASA Astrophysics Data System (ADS)

    Fisher, M. A.; Langenheim, V. E.; Sliter, R. W.; Wong, F. L.

    2006-12-01

    Multichannel seismic reflection (MCS) sections as well as aeromagnetic and oil-well data reveal that a complex geographic distribution of normal, reverse and strike-slip faults developed during the Cenozoic in the outer part of the California Continental Borderland. A close spatial association between magnetic basement rocks and inverted Miocene graben points to the importance of structural inheritance in shaping the outer Borderland. For instance, we focus on a northwest-trending series of bathymetric knolls and ridges that closely follows the east flank of rocks that cause strong magnetic anomalies. These rocks are probably pre-Cenozoic basement. Sedimentary rocks forming these knolls and ridges originally were deposited within Miocene graben, but since the Miocene, these graben have been inverted tectonically and deformed by reverse and strike-slip faults. The sequence of graben formation and inversion shows that the study area first underwent regional extension and then contraction. This interpreted tectonic sequence accords with findings from other studies of the Borderland (e.g. Crouch and Suppe, 1993; Bohannan and Geist, 1998). The earliest of three tectonic episodes started from during the Mesozoic and persisted into the early Miocene and involved eastward subduction of the Farallon plate beneath the continental margin. Except for a forearc basin that is partly filled with a southwest-thinning wedge of Paleogene sedimentary rocks, few structures stemming from this tectonic episode can be recognized. The second tectonic episode began during the Miocene and involved crustal extension intense enough to expose the Mesozoic Catalina Schist in one or more metamorphic-core complexes. MCS data reveal two extensional episodes. The earlier caused low-angle detachments to form, and the later produced high-angle faults that crosscut the detachments. In the southeastern part of the study area, east-dipping reflections from within basement may reveal an extensional

  16. Early Origins of Child Obesity: Bridging Disciplines and Phases of Development - September 30–October 1, 2010

    PubMed Central

    Christoffel, Katherine Kaufer; Wang, Xiaobin; Binns, Helen J.

    2012-01-01

    This report summarizes a conference: “Early Origins of Child Obesity: Bridging Disciplines and Phases of Development”, held in Chicago on September 30–October 1, 2010. The conference was funded in part by the National Institutes of Health and the Williams Heart Foundation, to achieve the conference objective: forging a next-step research agenda related to the early origins of childhood obesity. This research agenda was to include working with an array of factors (from genetic determinants to societal ones) along a continuum from prenatal life to age 7, with an emphasis on how the developing child deals with the challenges presented by his/her environment (prenatal, parental, nutritional, etc.). The conference offered a unique opportunity to facilitate communication and planning of future work among a variety of researchers whose work separately addresses different periods in early life. Over the span of two days, speakers addressed existing, critical research topics within each of the most-studied age ranges. On the final day, workshops fostered the discussion needed to identify the highest priority research topics related to linking varied early factor domains. These are presented for use in planning future research and research funding. PMID:23443002

  17. ACEX: A First Look at Arctic Ocean Cenozoic History

    NASA Astrophysics Data System (ADS)

    Moran, K.; Backman, J.

    2004-12-01

    The first Integrated Ocean Drilling Program mission specificplatform expedition (ACEX - Arctic Coring Expedition) drilled and recovered core from five holes at four sites through Cenozoic sediments draping the crest of the Lomonosov Ridge in the central Arctic Ocean. Coring continued into the underlying Cretaceous sedimentary bedrock. Sites are located only a few nautical miles apart along a single seismic line (AWI-91090), showing an identical and coherent Cenozoic seismostratigraphy. Preliminary results from shipboard investigations of core-catcher-based bio- and lithostratigraphy, pore water analyses and core logger data describe a thick (~160 m) middle Miocene through Pleistocene sequence that shows large amplitude, cyclic variability in the density, magnetic susceptibility and acoustic velocity of the sediments. Sediments are largely carbonate free. Pleistocene sedimentation rates are close to 3 cm/ka, whereas Pliocene sediments are by-and-large missing. A sharp change in physical properties at ~200 m defines the transition into a 200+ m thick Paleogene sequence that is initially dominated by large numbers of dinoflagellate cysts. The early Miocene, Oligocene and late Eocene appear to be largely missing in a hiatus. However, a 32 m thick interval separates the overlying middle Miocene from the underlying middle Eocene and presumably preserves some of the early Neogene and late Paleogene sections. Dinoflagellate cysts, diatoms, ebridians and silicoflagellates are common to abundant in the middle Eocene section, which bottoms in a spectacular layer showing massive occurrences of glochidia and massulae (megaspores) of the freshwater hydropterid fern Azolla (duckweed) at the early/middle Eocene boundary (~306 m), suggesting strongly reduced surface water salinity or perhaps even a brief episode of fresh water conditions at the surface. Biosilica is not present prior to the late early Eocene (~320 m). The (sub-) tropical dinoflagellate species Apectodinium augustum

  18. The Origin and Early Radiation of Archosauriforms: Integrating the Skeletal and Footprint Record.

    PubMed

    Bernardi, Massimo; Klein, Hendrik; Petti, Fabio Massimo; Ezcurra, Martín D

    2015-01-01

    We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian-Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record. PMID:26083612

  19. The Origin and Early Radiation of Archosauriforms: Integrating the Skeletal and Footprint Record.

    PubMed

    Bernardi, Massimo; Klein, Hendrik; Petti, Fabio Massimo; Ezcurra, Martín D

    2015-01-01

    We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian-Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record.

  20. The Origin and Early Radiation of Archosauriforms: Integrating the Skeletal and Footprint Record

    PubMed Central

    Bernardi, Massimo; Klein, Hendrik; Petti, Fabio Massimo; Ezcurra, Martín D.

    2015-01-01

    We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian–Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record. PMID:26083612

  1. Mesozoic and Cenozoic structural trends under southern Bering Sea Shelf

    SciTech Connect

    Marlow, M.S.; Cooper, A.K.

    1980-12-01

    Mesozoic rocks exposed near the tip of the Alaska Peninsula form an antiformal structure that flanks the southern side of Bristol Bay basin and that can be traced with geophysical data about 700 km offshore to the vicinity of the Pribilof Islands. Upper Jurassic sandstone and Upper Cretaceous mudstone dredged from the top and flanks of this structure near the islands confirm that Mesozoic rocks extend from the Alaska Peninsula to the Bering sea margin. The southern part of the Bering Sea Shelf is underlain by several large structural basins. These filled basins encompass an offshore area of about 31,000 sq km. Reflection profiles show that the surface of the offshore antiformal structures is an angular unconformity overlain by Cenozoic beds. The downdip trace of the unconformity in Bristol Bay basin is underlain by reflectors paralleling the contact, a relation suggesting that the basin and perhaps other shelf basins may be underlain by ancient Mesozoic depocenters. The bulk of the thick sections in these basins is, however, thought to be mainly Cenozoic in age. Strata in the basins are cut by high-angle growth faults. The faults commonly offset the seafloor, which implies that basin subsidence and filling continue to the present. Shallow-water diatomaceous mudstone of Eocene and Oligocene age dredged from the continental slope near the Pribilof Islands indicates that collapse of the margin and outer shelf basins began by at least early Tertiary time. In Mesozoic time, the Bering margin between Siberia and the Alaska Peninsula (Beringian margin) may have been a zone of either oblique underthrusting or transform motion between the North American and Pacific lithosphere (Kula plate.). This motion may have rifted the edge of the North American plate, resulting in the formation of a series of elongate basins and ridges paralleling the plate edge.

  2. Origins of Early Adolescents' Hope: Personality, Parental Attachment, and Stressful Life Events

    ERIC Educational Resources Information Center

    Otis, Kristin L.; Huebner, E. Scott; Hills, Kimberly J.

    2016-01-01

    Psychology has recently increased attention to identifying psychological qualities in individuals that indicate positive mental health, such as hope. In an effort to understand further the origins of hope, we examined the relations among parental attachment, stressful life events, personality variables, and hope in a sample of 647 middle school…

  3. [Ultrasonography and Doppler effect, an original method for the early and dynamic evaluation of bone callus].

    PubMed

    Elanga, M; Bouche, B; Putz, P; Dumont, N

    1997-12-01

    The authors describe an original and simple method for monitoring bone healing, based upon ultrasonography and the Doppler effect. They present four cases of diaphyseal fractures followed by this method and correlated with clinical findings. This noninvasive and inexpensive method of investigation is full of prospect for the monitoring of bone healing after fracture.

  4. The Centennial of Counselor Education: Origin and Early Development of a Discipline

    ERIC Educational Resources Information Center

    Savickas, Mark L.

    2011-01-01

    July 7, 2011, marks the centennial of counselor education as a formal discipline. In recognition of its 100th birthday, the author of this article describes the origins of the discipline, beginning with its prehistory in the work of Frank Parsons to establish the practice of vocational guidance, describing the 1st course in counselor education at…

  5. Microbes, Mineral Evolution, and the Rise of Microcontinents-Origin and Coevolution of Life with Early Earth.

    PubMed

    Grosch, Eugene G; Hazen, Robert M

    2015-10-01

    Earth is the most mineralogically diverse planet in our solar system, the direct consequence of a coevolving geosphere and biosphere. We consider the possibility that a microbial biosphere originated and thrived in the early Hadean-Archean Earth subseafloor environment, with fundamental consequences for the complex evolution and habitability of our planet. In this hypothesis paper, we explore possible venues for the origin of life and the direct consequences of microbially mediated, low-temperature hydrothermal alteration of the early oceanic lithosphere. We hypothesize that subsurface fluid-rock-microbe interactions resulted in more efficient hydration of the early oceanic crust, which in turn promoted bulk melting to produce the first evolved fragments of felsic crust. These evolved magmas most likely included sialic or tonalitic sheets, felsic volcaniclastics, and minor rhyolitic intrusions emplaced in an Iceland-type extensional setting as the earliest microcontinents. With the further development of proto-tectonic processes, these buoyant felsic crustal fragments formed the nucleus of intra-oceanic tonalite-trondhjemite-granitoid (TTG) island arcs. Thus microbes, by facilitating extensive hydrothermal alteration of the earliest oceanic crust through bioalteration, promoted mineral diversification and may have been early architects of surface environments and microcontinents on young Earth. We explore how the possible onset of subseafloor fluid-rock-microbe interactions on early Earth accelerated metavolcanic clay mineral formation, crustal melting, and subsequent metamorphic mineral evolution. We also consider environmental factors supporting this earliest step in geosphere-biosphere coevolution and the implications for habitability and mineral evolution on other rocky planets, such as Mars. PMID:26430911

  6. Microbes, Mineral Evolution, and the Rise of Microcontinents-Origin and Coevolution of Life with Early Earth.

    PubMed

    Grosch, Eugene G; Hazen, Robert M

    2015-10-01

    Earth is the most mineralogically diverse planet in our solar system, the direct consequence of a coevolving geosphere and biosphere. We consider the possibility that a microbial biosphere originated and thrived in the early Hadean-Archean Earth subseafloor environment, with fundamental consequences for the complex evolution and habitability of our planet. In this hypothesis paper, we explore possible venues for the origin of life and the direct consequences of microbially mediated, low-temperature hydrothermal alteration of the early oceanic lithosphere. We hypothesize that subsurface fluid-rock-microbe interactions resulted in more efficient hydration of the early oceanic crust, which in turn promoted bulk melting to produce the first evolved fragments of felsic crust. These evolved magmas most likely included sialic or tonalitic sheets, felsic volcaniclastics, and minor rhyolitic intrusions emplaced in an Iceland-type extensional setting as the earliest microcontinents. With the further development of proto-tectonic processes, these buoyant felsic crustal fragments formed the nucleus of intra-oceanic tonalite-trondhjemite-granitoid (TTG) island arcs. Thus microbes, by facilitating extensive hydrothermal alteration of the earliest oceanic crust through bioalteration, promoted mineral diversification and may have been early architects of surface environments and microcontinents on young Earth. We explore how the possible onset of subseafloor fluid-rock-microbe interactions on early Earth accelerated metavolcanic clay mineral formation, crustal melting, and subsequent metamorphic mineral evolution. We also consider environmental factors supporting this earliest step in geosphere-biosphere coevolution and the implications for habitability and mineral evolution on other rocky planets, such as Mars.

  7. Intrusions of mixed origin migmatising early Achaean crust in northern Labrador, Canada

    NASA Technical Reports Server (NTRS)

    Schiotte, L.; Bridgwater, D.

    1986-01-01

    Migmatization of Early Archean Uivak gneisses by Late Archean granitic and trondhjemitic injections are described. The rare earth element, major element, and isotopic geochemistry of the felsic sheets is interpreted to indicate both mantle and crustal components, and the sheets with associated fluids were the vehicle for element transport in the crustal column with attendant isotopic modification of the older gneisses.

  8. Early Cambrian origin of modern food webs: evidence from predator arrow worms

    PubMed Central

    Vannier, J; Steiner, M; Renvoisé, E; Hu, S.-X; Casanova, J.-P

    2006-01-01

    Although palaeontological evidence from exceptional biota demonstrates the existence of diverse marine communities in the Early Cambrian (approx. 540–520 Myr ago), little is known concerning the functioning of the marine ecosystem, especially its trophic structure and the full range of ecological niches colonized by the fauna. The presence of a diverse zooplankton in Early Cambrian oceans is still an open issue. Here we provide compelling evidence that chaetognaths, an important element of modern zooplankton, were present in the Early Cambrian Chengjiang biota with morphologies almost identical to Recent forms. New information obtained from the lowermost Cambrian of China added to previous studies provide convincing evidence that protoconodont-bearing animals also belonged to chaetognaths. Chaetognaths were probably widespread and diverse in the earliest Cambrian. The obvious raptorial function of their circumoral apparatuses (grasping spines) places them among the earliest active predator metazoans. Morphology, body ratios and distribution suggest that the ancestral chaetognaths were planktonic with possible ecological preferences for hyperbenthic niches close to the sea bottom. Our results point to the early introduction of prey–predator relationships into the pelagic realm, and to the increase of trophic complexity (three-level structure) during the Precambrian–Cambrian transition, thus laying the foundations of present-day marine food chains. PMID:17254986

  9. Bayesian phylogenetic analysis of Semitic languages identifies an Early Bronze Age origin of Semitic in the Near East

    PubMed Central

    Kitchen, Andrew; Ehret, Christopher; Assefa, Shiferaw; Mulligan, Connie J.

    2009-01-01

    The evolution of languages provides a unique opportunity to study human population history. The origin of Semitic and the nature of dispersals by Semitic-speaking populations are of great importance to our understanding of the ancient history of the Middle East and Horn of Africa. Semitic populations are associated with the oldest written languages and urban civilizations in the region, which gave rise to some of the world's first major religious and literary traditions. In this study, we employ Bayesian computational phylogenetic techniques recently developed in evolutionary biology to analyse Semitic lexical data by modelling language evolution and explicitly testing alternative hypotheses of Semitic history. We implement a relaxed linguistic clock to date language divergences and use epigraphic evidence for the sampling dates of extinct Semitic languages to calibrate the rate of language evolution. Our statistical tests of alternative Semitic histories support an initial divergence of Akkadian from ancestral Semitic over competing hypotheses (e.g. an African origin of Semitic). We estimate an Early Bronze Age origin for Semitic approximately 5750 years ago in the Levant, and further propose that contemporary Ethiosemitic languages of Africa reflect a single introduction of early Ethiosemitic from southern Arabia approximately 2800 years ago. PMID:19403539

  10. Cenozoic vegetation, climate changes and hominid evolution in tropical Africa

    NASA Astrophysics Data System (ADS)

    Bonnefille, Raymonde

    2010-07-01

    This paper reviews information on past vegetation of tropical Africa during the Cenozoic, focused upon the last 10 Ma, a time spanning hominid record in Central and East Africa. Summary of palaeobotanical data collected at terrestrial sites are compared with new results on the long term evolution of the continental vegetation zones documented from marine pollen record of two deep sea cores recovered from the Atlantic and Indian Oceans. Section 2 includes a summary of modern distribution of vegetation belts in the African continent and a synthesis of the results of both macrobotanical (fossil wood, leaves and fruits) and microbotanical (mainly pollen) studies presented according to time scale and geographical location. The main features emphasized by the palaeobotanical results are 1) seasonal vegetation and climate documented as soon as the Eocene in Tanzania 2) well diversified forests existing in northern West Ethiopia during the Oligocene 3) high temporal and spatial variabilities of forests composition during the Miocene when deciduous Legume woodland was documented in Ethiopia whereas wetter evergreen forests existed in Western Kenya 4) lack of evidence for an evergreen forest belt, continuous from Western Congo to East Africa. Section 3 presents new original pollen data recovered from a long core in the Gulf of Aden documenting large scale past vegetation changes in East Africa during the last 11 Ma. These results are discussed in comparison with a summarized long pollen sequence previously published from a marine core offshore the Niger delta. This comparison illustrates variations in geographical distribution of large vegetation zone at the continental scale, through time. In Section 4, vegetation changes registered during the last 10 Ma are discussed in relation with the results of isotopic studies and an updated presentation of hominids evolution in Africa. Several changes are shown in the marine records. An expansion of savanna/grassland is shown at 10

  11. The chemical origins of life and its early evolution: an introduction.

    PubMed

    Lilley, David M J; Sutherland, John

    2011-10-27

    Can we look at contemporary biology and couple this with chemical insight to propose some plausible mechanisms for the origin of life on the planet? In what follows, we examine some promising chemical reactions by which the building blocks for nucleic acids might have been created about a billion years after the Earth formed. This could have led to self-assembling systems that were based on an all-RNA metabolism, where RNA is both catalytic and informational. We consider the breadth of RNA enzymes presently existing in biology, and to what extent these might have covered a wider range of chemistry in the RNA world. Ultimately, the RNA world would probably have given way to protein-based life quite quickly, and the origins of peptidyl transferase activity are discussed below.

  12. Mexican-origin Early Adolescents' Ethnic Socialization, Ethnic Identity, and Psychosocial Functioning.

    PubMed

    Umaña-Taylor, Adriana J; O'Donnell, Megan; Knight, George P; Roosa, Mark W; Berkel, Cady; Nair, Rajni

    2014-02-01

    The current study examined how parental ethnic socialization informed adolescents' ethnic identity development and, in turn, youths' psychosocial functioning (i.e., mental health, social competence, academic efficacy, externalizing behaviors) among 749 Mexican-origin families. In addition, school ethnic composition was examined as a moderator of these associations. Findings indicated that mothers' and fathers' ethnic socialization were significant longitudinal predictors of adolescents' ethnic identity, although fathers' ethnic socialization interacted significantly with youths' school ethnic composition in 5(th) grade to influence ethnic identity in 7(th) grade. Furthermore, adolescents' ethnic identity was significantly associated with increased academic self-efficacy and social competence, and decreased depressive symptoms and externalizing behaviors. Findings support theoretical predictions regarding the central role parents play in Mexican-origin adolescents' normative developmental processes and adjustment and, importantly, underscore the need to consider variability that is introduced into these processes by features of the social context such as school ethnic composition.

  13. The chemical origins of life and its early evolution: an introduction.

    PubMed

    Lilley, David M J; Sutherland, John

    2011-10-27

    Can we look at contemporary biology and couple this with chemical insight to propose some plausible mechanisms for the origin of life on the planet? In what follows, we examine some promising chemical reactions by which the building blocks for nucleic acids might have been created about a billion years after the Earth formed. This could have led to self-assembling systems that were based on an all-RNA metabolism, where RNA is both catalytic and informational. We consider the breadth of RNA enzymes presently existing in biology, and to what extent these might have covered a wider range of chemistry in the RNA world. Ultimately, the RNA world would probably have given way to protein-based life quite quickly, and the origins of peptidyl transferase activity are discussed below. PMID:21930575

  14. The origins of the birth control movement in England in the early nineteenth century.

    PubMed

    Langer, W L

    1975-01-01

    The origins of the birth control movement in England in the 19th cen tury are discussed. The impact of Malthus's "Essay on the Principle of Population" and the activities of such thinkers and reformers as Jermy Bentham, James and John Stuart Mill, Francis Plance, Richard Carlile, Robert Dale Owen, and Charles Knowlton are discussed. The social debate that arose during the century is discussed.

  15. Impact melting of frozen oceans on the early Earth: implications for the origin of life

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Bigham, C.; Miller, S. L.

    1994-01-01

    Without sufficient greenhouse gases in the atmosphere, the early Earth would have become a permanently frozen planet because the young Sun was less luminous than it is today. Several resolutions to this faint young Sun-frozen Earth paradox have been proposed, with an atmosphere rich in CO2 being the one generally favored. However, these models assume that there were no mechanisms for melting a once frozen ocean. Here we show that bolide impacts between about 3.6 and 4.0 billion years ago could have episodically melted an ice-covered early ocean. Thaw-freeze cycles associated with bolide impacts could have been important for the initiation of abiotic reactions that gave rise to the first living organisms.

  16. Impact melting of frozen oceans on the early Earth: implications for the origin of life.

    PubMed

    Bada, J L; Bigham, C; Miller, S L

    1994-02-01

    Without sufficient greenhouse gases in the atmosphere, the early Earth would have become a permanently frozen planet because the young Sun was less luminous than it is today. Several resolutions to this faint young Sun-frozen Earth paradox have been proposed, with an atmosphere rich in CO2 being the one generally favored. However, these models assume that there were no mechanisms for melting a once frozen ocean. Here we show that bolide impacts between about 3.6 and 4.0 billion years ago could have episodically melted an ice-covered early ocean. Thaw-freeze cycles associated with bolide impacts could have been important for the initiation of abiotic reactions that gave rise to the first living organisms.

  17. The origin of early age expansions induced in cementitious materials containing shrinkage reducing admixtures

    SciTech Connect

    Sant, Gaurav; Lothenbach, Barbara; Juilland, Patrick; Le Saout, Gwenn; Weiss, Jason; Scrivener, Karen

    2011-03-15

    Studies on the early-age shrinkage behavior of cement pastes, mortars, and concretes containing shrinkage reducing admixtures (SRAs) have indicated these mixtures frequently exhibit an expansion shortly after setting. While the magnitude of the expansion has been noted to be a function of the chemistry of the cement and the admixture dosage; the cause of the expansion is not clearly understood. This investigation uses measurements of autogenous deformation, X-ray diffraction, pore solution analysis, thermogravimetry, and scanning electron microscopy to study the early-age properties and describe the mechanism of the expansion in OPC pastes made with and without SRA. The composition of the pore solution indicates that the presence of the SRA increases the portlandite oversaturation level in solution which can result in higher crystallization stresses which could lead to an expansion. This observation is supported by deformation calculations for the systems examined.

  18. Evaluating the link between self-esteem and temperament in Mexican origin early adolescents.

    PubMed

    Robins, Richard W; Donnellan, M Brent; Widaman, Keith F; Conger, Rand D

    2010-06-01

    The present study examined the relation between self-esteem and temperament in a sample of 646 Mexican-American early adolescents (mean age=10.4). Findings show that (a) early adolescents with high self-esteem exhibit higher levels of Effortful Control but, contrary to findings in adult samples, do not differ from low self-esteem adolescents in Negative Affectivity; (b) low self-esteem is associated with Depression; and (c) low self-esteem is associated with Aggression. These findings replicated for boys and girls, two measures of self-esteem, and child and mother reports of temperament. The present study contributes to an emerging understanding of the link between self-esteem and temperament, and provides much needed data on the nature of self-esteem in ethnic minority populations.

  19. Hospital for Special Surgery: origin and early history first site 1863-1870.

    PubMed

    Levine, David B

    2005-09-01

    Hospital for Special Surgery (HSS) originated as the Hospital for the Ruptured and Crippled (R&C) 142 years ago in New York City. As the first and only orthopaedic hospital of its kind in this country, it was located in the residence of its founder James Knight on Second Avenue, south of Sixth Street, and started with 28 inpatient beds for children but no operating facilities. The history of this institution has been documented in two books and occasionally published and unpublished papers. Many of these accounts have been limited by time, focus on a particular subject, or overall reviews. The emergence of such a specialized facility in the middle of the 19th century during a time of medicine in its infancy, our country at war and the city of New York racked in poverty, disease, civil riots, and political corruption is a story not necessarily appreciated in our day. The vision of one little-known physician and the cooperation and support of a small group of prominent New Yorkers and philanthropists were responsible for the origin of this hospital and particularly for its survival in such troubled times when most small hospitals of this period lasted only for a few years. Fortunately, almost all of the original Annual Reports of the Board of Managers, photographs, manuscripts, personal records, and newspaper clippings have been saved. They are now being collected, preserved, catalogued, and displayed in the newly formed HSS Archives from which this material has been taken.

  20. Hospital for Special Surgery: Origin and Early History First Site 1863–1870

    PubMed Central

    2005-01-01

    Hospital for Special Surgery (HSS) originated as the Hospital for the Ruptured and Crippled (R&C) 142 years ago in New York City. As the first and only orthopaedic hospital of its kind in this country, it was located in the residence of its founder James Knight on Second Avenue, south of Sixth Street, and started with 28 inpatient beds for children but no operating facilities. The history of this institution has been documented in two books and occasionally published and unpublished papers. Many of these accounts have been limited by time, focus on a particular subject, or overall reviews. The emergence of such a specialized facility in the middle of the 19th century during a time of medicine in its infancy, our country at war and the city of New York racked in poverty, disease, civil riots, and political corruption is a story not necessarily appreciated in our day. The vision of one little-known physician and the cooperation and support of a small group of prominent New Yorkers and philanthropists were responsible for the origin of this hospital and particularly for its survival in such troubled times when most small hospitals of this period lasted only for a few years. Fortunately, almost all of the original Annual Reports of the Board of Managers, photographs, manuscripts, personal records, and newspaper clippings have been saved. They are now being collected, preserved, catalogued, and displayed in the newly formed HSS Archives from which this material has been taken. PMID:18751802

  1. The origin and early evolution of tracheids in vascular plants: integration of palaeobotanical and neobotanical data.

    PubMed Central

    Friedman, W E; Cook, M E

    2000-01-01

    Although there is clear evidence for the establishment of terrestrial plant life by the end of the Ordovician, the fossil record indicates that land plants remained extremely small and structurally simple until the Late Silurian. Among the events associated with this first major radiation of land plants is the evolution of tracheids, complex water-conducting cells defined by the presence of lignified secondary cell wall thickenings. Recent palaeobotanical analyses indicate that Early Devonian tracheids appear to possess secondary cell wall thickenings composed of two distinct layers: a degradation-prone layer adjacent to the primary cell wall and a degradation-resistant (possibly lignified) layer next to the cell lumen. In order to understand better the early evolution of tracheids, developmental and comparative studies of key basal (and potentially plesiomorphic) extant vascular plants have been initiated. Ultrastructural analysis and enzyme degradation studies of wall structure (to approximate diagenetic alterations of fossil tracheid structure) have been conducted on basal members of each of the two major clades of extant vascular plants: Huperzia (Lycophytina) and Equisetum (Euphyllophytina. This research demonstrates that secondary cell walls of extant basal vascular plants include a degradation-prone layer ('template layer') and a degradation-resistant layer ('resistant layer'). This pattern of secondary cell wall formation in the water-conducting cells of extant vascular plants matches the pattern of wall thickenings in the tracheids of early fossil vascular plants and provides a key evolutionary link between tracheids of living vascular plants and those of their earliest fossil ancestors. Further studies of tracheid development and structure among basal extant vascular plants will lead to a more precise reconstruction of the early evolution of water-conducting tissues in land plants, and will add to the current limited knowledge of spatial, temporal and

  2. The Cenozoic history of the Armorican Massif: New insights from the deep CDB1 borehole (Rennes Basin, France)

    NASA Astrophysics Data System (ADS)

    Bauer, Hugues; Bessin, Paul; Saint-Marc, Pierre; Châteauneuf, Jean-Jacques; Bourdillon, Chantal; Wyns, Robert; Guillocheau, François

    2016-05-01

    Borehole CDB1 (675.05 m) crosses the deepest Cenozoic sedimentary basin of the Armorican Massif, the Rennes Basin, to reach the underlying basement at a depth of 404.92 m, made up of the Late Neoproterozoic to Early Cambrian Brioverian Group, weathered down to 520 m depth. The basin's Cenozoic deposits are divided into seven formations, ranging from Early-Middle Bartonian to Late Pliocene in age. Coastal sediments at the very base, along with a thick Priabonian lacustrine episode, imply a major revision of the regional palaeogeography, whilst a very steady and low-energy lacustrine-palustrine environment throughout the Priabonian and Early Rupelian argue for an aggradational system associated with uniform subsidence. Palynological assemblages attest to environmental and climatic changes through the Eocene and Early Oligocene, in accordance with regional and global trends (Eocene-Oligocene Transition).

  3. Ethnic identity trajectories among Mexican-origin girls during early and middle adolescence: Predicting future psychosocial adjustment.

    PubMed

    Gonzales-Backen, Melinda A; Bámaca-Colbert, Mayra Y; Allen, Kimberly

    2016-05-01

    We examined trajectories of ethnic identity exploration, resolution, and affirmation and their associations with depressive symptoms and self-esteem 3.5 years later among early and middle adolescent Mexican-origin girls (N = 338). Findings indicated that exploration, resolution, and affirmation increased over time for both cohorts. Among early adolescents, growth in exploration was associated with more depressive symptoms during middle adolescence, whereas higher initial levels and greater rates of change of affirmation predicted fewer subsequent depressive symptoms. Among middle adolescents, higher baseline levels of exploration and affirmation predicted fewer depressive symptoms in late adolescence. Higher initial levels and greater change in affirmation predicted higher self-esteem among both cohorts. Findings highlight the developmental and multifaceted quality of ethnic identity and that associations between ethnic identity and adjustment may vary by adolescent developmental stage. (PsycINFO Database Record PMID:26986228

  4. Ethnic identity trajectories among Mexican-origin girls during early and middle adolescence: Predicting future psychosocial adjustment.

    PubMed

    Gonzales-Backen, Melinda A; Bámaca-Colbert, Mayra Y; Allen, Kimberly

    2016-05-01

    We examined trajectories of ethnic identity exploration, resolution, and affirmation and their associations with depressive symptoms and self-esteem 3.5 years later among early and middle adolescent Mexican-origin girls (N = 338). Findings indicated that exploration, resolution, and affirmation increased over time for both cohorts. Among early adolescents, growth in exploration was associated with more depressive symptoms during middle adolescence, whereas higher initial levels and greater rates of change of affirmation predicted fewer subsequent depressive symptoms. Among middle adolescents, higher baseline levels of exploration and affirmation predicted fewer depressive symptoms in late adolescence. Higher initial levels and greater change in affirmation predicted higher self-esteem among both cohorts. Findings highlight the developmental and multifaceted quality of ethnic identity and that associations between ethnic identity and adjustment may vary by adolescent developmental stage. (PsycINFO Database Record

  5. A new primate from the Middle Eocene of Myanmar and the Asian early origin of anthropoids.

    PubMed

    Jaeger, J; Thein, T; Benammi, M; Chaimanee, Y; Soe, A N; Lwin, T; Tun, T; Wai, S; Ducrocq, S

    1999-10-15

    A new genus and species of anthropoid primate, Bahinia pondaungensis gen. et sp. nov., is described from the Yashe Kyitchaung locality in the Late Middle Eocene Pondaung Formation (Myanmar). It is related to Eosimias, but it is represented by more complete remains, including upper dentition with associated lower jaw fragment. It is interpreted as a new representative of the family Eosimiidae, which corresponds to the sister group of the Amphipithecidae and of all other anthropoids. Eosimiidae are now recorded from three distinct Middle Eocene localities in Asia, giving support to the hypothesis of an Asian origin of anthropoids.

  6. [Comparison of fluorescence spectroscopy and plasma-mass spectrometry results of the Meso/Cenozoic basic rocks in SE China and its geo-implication].

    PubMed

    Lou, Feng; Chen, Guo-Neng; Chen, Guo-Hui; Huang, Hai-Hua

    2013-07-01

    With comparison of the fluorescence spectroscopy and plasma-mass spectroscopy analysis results of the Meso/Cenozoic basic rocks of SE China, the authors found that the average SiO2 content of the Mesozoic basic rocks in this area is about 50%, while that of the Cenozoic basic rocks is about 43%. The former belongs to the basic group and the later to the ultrabasic group in igneous rock classification. Cenozoic basalts, accompanied with high magnesium content and low silica-alumina component, are obviously basic or ultrabasic rocks. Distinctive difference in the content of trace elements and of REE is also presented between the Mesozoic and the Cenozoic basic rocks. Distribution models of both trace elements and REE of the Mesozoic basic rocks are similar to those of the upper crust, and the models of the Cenozoic basic rocks are like those of OIB, indicating that basic rocks of the Cenozoic and OIB should originate from the mantle while that of the Mesozoic is from the bottom part of the upper crust with relationship to the evolution of the Mesozoic crustal magma layer of this area. PMID:24059206

  7. [Comparison of fluorescence spectroscopy and plasma-mass spectrometry results of the Meso/Cenozoic basic rocks in SE China and its geo-implication].

    PubMed

    Lou, Feng; Chen, Guo-Neng; Chen, Guo-Hui; Huang, Hai-Hua

    2013-07-01

    With comparison of the fluorescence spectroscopy and plasma-mass spectroscopy analysis results of the Meso/Cenozoic basic rocks of SE China, the authors found that the average SiO2 content of the Mesozoic basic rocks in this area is about 50%, while that of the Cenozoic basic rocks is about 43%. The former belongs to the basic group and the later to the ultrabasic group in igneous rock classification. Cenozoic basalts, accompanied with high magnesium content and low silica-alumina component, are obviously basic or ultrabasic rocks. Distinctive difference in the content of trace elements and of REE is also presented between the Mesozoic and the Cenozoic basic rocks. Distribution models of both trace elements and REE of the Mesozoic basic rocks are similar to those of the upper crust, and the models of the Cenozoic basic rocks are like those of OIB, indicating that basic rocks of the Cenozoic and OIB should originate from the mantle while that of the Mesozoic is from the bottom part of the upper crust with relationship to the evolution of the Mesozoic crustal magma layer of this area.

  8. What can we infer about the origin of sex in early eukaryotes?

    PubMed

    Speijer, Dave

    2016-10-19

    Current analysis shows that the last eukaryotic common ancestor (LECA) was capable of full meiotic sex. The original eukaryotic life cycle can probably be described as clonal, interrupted by episodic sex triggered by external or internal stressors. The cycle could have started in a highly flexible form, with the interruption of either diploid or haploid clonal growth determined by stress signals only. Eukaryotic sex most likely evolved in response to a high mutation rate, arising from the uptake of the endosymbiont, as this (proto) mitochondrion generated internal reactive oxygen species. This is consistent with the likely development of full meiotic sex from a diverse set of existing archaeal (the host of the endosymbiont) repair and signalling mechanisms. Meiotic sex could thus have been one of the fruits of symbiogenesis at the basis of eukaryotic origins: a product of the merger by which eukaryotic cells arose. Symbiogenesis also explains the large-scale migration of organellar DNA to the nucleus. I also discuss aspects of uniparental mitochondrial inheritance and mitonuclear interactions in the light of the previous analysis.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. PMID:27619694

  9. Early sexual origins of homeoprotein heterodimerization and evolution of the plant KNOX/BELL family.

    PubMed

    Lee, Jae-Hyeok; Lin, Huawen; Joo, Sunjoo; Goodenough, Ursula

    2008-05-30

    Developmental mechanisms that yield multicellular diversity are proving to be well conserved within lineages, generating interest in their origins in unicellular ancestors. We report that molecular regulation of the haploid-diploid transition in Chlamydomonas, a unicellular green soil alga, shares common ancestry with differentiation pathways in land plants. Two homeoproteins, Gsp1 and Gsm1, contributed by gametes of plus and minus mating types respectively, physically interact and translocate from the cytosol to the nucleus upon gametic fusion, initiating zygote development. Their ectopic expression activates zygote development in vegetative cells and, in a diploid background, the resulting zygotes undergo a normal meiosis. Gsm1/Gsp1 dyads share sequence homology with and are functionally related to KNOX/BELL dyads regulating stem-cell (meristem) specification in land plants. We propose that combinatorial homeoprotein-based transcriptional control, a core feature of the fungal/animal radiation, may have originated in a sexual context and enabled the evolution of land-plant body plans. PMID:18510927

  10. Structures of biogenic origin from Early Precambrian rocks of Euro-Asia.

    PubMed

    Lopuchin, A S

    1975-01-01

    Spheroidal microfossils mainly 20 to 100 mug in diameter and exhibiting granular surface textures have been recovered from Early Precambrian rocks by applying a new method of water separation in combination with thin chemical preparation. In contrast to the Acritarcha, these microfossils are characterized by a relatively low specific weight (close to one) and considerable fragility due to impregnation by mineral matter. They occur in Archean sediments of Hindustan, in rocks of the Baltic and Aldan Shields with ages of 3.0 to 3.5 billion (10-9) years, and in Proterozoic deposits in many regions of Euro-Asia. They commonly occur in great number in Precambrian sediments of West Africa, Australia and North America. These forms are here regarded as Menneria Lopuchin and are considered to be blue-green algae. Menneria resembles alga-like forms reported by Engel, Nagy and their co-workers from the Onverwacht Series and microfossils reported by Schopf and Barghoorn from the Fig Tree Series, both of the Swaziland System of southern Africa. In addition to spheroidal microfossils, ribbon-like and filiform microstructures are here reported from Archean deposits. The biogenic structures here described from the Early Precambrian of Euro-Asia are considered to have been photosynthetic and planktonic. Their progressive evolution, intensive production of organic matter, and biogeochemical role in concentration of rare elements is discussed.

  11. Origin of the Martian global dichotomy by crustal thinning in the late Noachian or early Hesperian

    NASA Technical Reports Server (NTRS)

    Mcgill, George E.; Dimitriou, Andrew M.

    1990-01-01

    The marked dichotomy in topography, surface age, and crustal thickness between the northern lowland (NL) and southern upland of Mars has been explained as due to an initially inhomogeneous crust, a single megaimpact event, several overlapping large basin impacts, and first-order convective overtum of the Martian mantle. All of these hypotheses propose that the dichotomy was formed before the end of the primordial heavy bombardment. Geological data indicate episodes of fracturing and faulting in the late Noachian and the early Hesperian, within the NL and along the lowland/highland boundary. Igneous activity also peaked in the late Noachian and early Hesperian. These data suggest a tectonic event near the Noachian/Hesperian boundary characterized by enhanced heat loss and extensive fracturing, including formation of the faults that define much of the highland/lowland boundary. It is argued that the major result of this tectonic event was formation of the dichotomy by thinning of the crust above a large convection cell or plume.

  12. High star formation rates as the origin of turbulence in early and modern disk galaxies.

    PubMed

    Green, Andrew W; Glazebrook, Karl; McGregor, Peter J; Abraham, Roberto G; Poole, Gregory B; Damjanov, Ivana; McCarthy, Patrick J; Colless, Matthew; Sharp, Robert G

    2010-10-01

    Observations of star formation and kinematics in early galaxies at high spatial and spectral resolution have shown that two-thirds are massive rotating disk galaxies, with the remainder being less massive non-rotating objects. The line-of-sight-averaged velocity dispersions are typically five times higher than in today's disk galaxies. This suggests that gravitationally unstable, gas-rich disks in the early Universe are fuelled by cold, dense accreting gas flowing along cosmic filaments and penetrating hot galactic gas halos. These accreting flows, however, have not been observed, and cosmic accretion cannot power the observed level of turbulence. Here we report observations of a sample of rare, high-velocity-dispersion disk galaxies in the nearby Universe where cold accretion is unlikely to drive their high star formation rates. We find that their velocity dispersions are correlated with their star formation rates, but not their masses or gas fractions, which suggests that star formation is the energetic driver of galaxy disk turbulence at all cosmic epochs.

  13. Skeletal variation among early Holocene North American humans: implications for origins and diversity in the Americas.

    PubMed

    Auerbach, Benjamin M

    2012-12-01

    The movement of humans into the Americas remains a major topic of debate among scientific disciplines. Central to this discussion is ascertaining the timing and migratory routes of the earliest colonizers, in addition to understanding their ancestry. Molecular studies have recently argued that the colonizing population was isolated from other Asian populations for an extended period before proceeding to colonize the Americas. This research has suggested that Beringia was the location of this "incubation," though archaeological and skeletal data have not yet supported this hypothesis. This study employs the remains of the five most complete North American male early Holocene skeletons to examine patterns of human morphology at the earliest observable time period. Stature, body mass, body breadth, and limb proportions are examined in the context of male skeletal samples representing the range of morphological variation in North America in the last two millennia of the Holocene. These are also compared with a global sample. Results indicate that early Holocene males have variable postcranial morphologies, but all share the common trait of wide bodies. This trait, which is retained in more recent indigenous North American groups, is associated with adaptations to cold climates. Peoples from the Americas exhibit wider bodies than other populations sampled globally. This pattern suggests the common ancestral population of all of these indigenous American groups had reduced morphological variation in this trait. Furthermore, this provides support for a single, possibly high latitude location for the genetic isolation of ancestors of the human colonizers of the Americas.

  14. Origin of the Martian global dichotomy by crustal thinning in the late Noachian or early Hesperian

    NASA Astrophysics Data System (ADS)

    McGill, George E.; Dimitriou, Andrew M.

    1990-08-01

    The marked dichotomy in topography, surface age, and crustal thickness between the northern lowland (NL) and southern upland of Mars has been explained as due to an initially inhomogeneous crust, a single megaimpact event, several overlapping large basin impacts, and first-order convective overtum of the Martian mantle. All of these hypotheses propose that the dichotomy was formed before the end of the primordial heavy bombardment. Geological data indicate episodes of fracturing and faulting in the late Noachian and the early Hesperian, within the NL and along the lowland/highland boundary. Igneous activity also peaked in the late Noachian and early Hesperian. These data suggest a tectonic event near the Noachian/Hesperian boundary characterized by enhanced heat loss and extensive fracturing, including formation of the faults that define much of the highland/lowland boundary. It is argued that the major result of this tectonic event was formation of the dichotomy by thinning of the crust above a large convection cell or plume.

  15. Diffusion modulation of the fMRI signal: early investigations on the origin of the BOLD signal.

    PubMed

    Song, Allen W

    2012-08-15

    The early 1990s was a very special period for functional MRI (fMRI). Many original concepts were formed during that period which helped set up the foundations for modern neuroimaging development. I was fortunate to be in graduate school at the time. I was even more fortunate to be enrolled in one of the pioneer groups in fMRI at the Medical College of Wisconsin, and witnessed some of the early fMRI experiments taking place in the lab. Under the daily influence and steady guidance by the extraordinarily talented researchers there, I also began my own work on the contrast mechanisms of fMRI. In particular, I was developing diffusion weighted strategies to investigate the origin of the functional signal using blood oxygenation level dependent (BOLD) contrast. Our results, that there was significant BOLD signal in large veins and their vicinities at low field strengths (e.g. 1.5T), played an immediate role in moving fMRI applications to higher fields (3T and above) where small vessels (e.g. capillaries) contribute more significantly to improve the neuronal specificity of the BOLD signal. This manuscript gathers some of my own recollections concerning this particular development.

  16. Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae.

    PubMed

    Prasad, V; Strömberg, C A E; Leaché, A D; Samant, B; Patnaik, R; Tang, L; Mohabey, D M; Ge, S; Sahni, A

    2011-09-20

    Rice and its relatives are a focal point in agricultural and evolutionary science, but a paucity of fossils has obscured their deep-time history. Previously described cuticles with silica bodies (phytoliths) from the Late Cretaceous period (67-65 Ma) of India indicate that, by the latest Cretaceous, the grass family (Poaceae) consisted of members of the modern subclades PACMAD (Panicoideae-Aristidoideae-Chloridoideae-Micrairoideae-Arundinoideae-Danthonioideae) and BEP (Bambusoideae-Ehrhartoideae-Pooideae), including a taxon with proposed affinities to Ehrhartoideae. Here we describe additional fossils and show that, based on phylogenetic analyses that combine molecular genetic data and epidermal and phytolith features across Poaceae, these can be assigned to the rice tribe, Oryzeae, of grass subfamily Ehrhartoideae. The new Oryzeae fossils suggest substantial diversification within Ehrhartoideae by the Late Cretaceous, pushing back the time of origin of Poaceae as a whole. These results, therefore, necessitate a re-evaluation of current models for grass evolution and palaeobiogeography.

  17. The origin and early evolution of whales: macroevolution documented on the Indian subcontinent.

    PubMed

    Bajpai, S; Thewissen, J G M; Sahni, A

    2009-11-01

    The origin of whales (order Cetacea) from a four-footed land animal is one of the best understood examples of macroevolutionary change. This evolutionary transition has been substantially elucidated by fossil finds from the Indian subcontinent in the past decade and a half. Here, we review the first steps of whale evolution, i.e. the transition from a land mammal to obligate marine predators, documented by the Eocene cetacean families of the Indian subcontinent: Pakicetidae, Ambulocetidae, Remingtonocetidae, Protocetidae, and Basilosauridae, as well as their artiodactyl sister group, the Raoellidae. We also discuss the influence that the excellent fossil record has on the study of the evolution of organ systems, in particular the locomotor and hearing systems.

  18. Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae.

    PubMed

    Prasad, V; Strömberg, C A E; Leaché, A D; Samant, B; Patnaik, R; Tang, L; Mohabey, D M; Ge, S; Sahni, A

    2011-01-01

    Rice and its relatives are a focal point in agricultural and evolutionary science, but a paucity of fossils has obscured their deep-time history. Previously described cuticles with silica bodies (phytoliths) from the Late Cretaceous period (67-65 Ma) of India indicate that, by the latest Cretaceous, the grass family (Poaceae) consisted of members of the modern subclades PACMAD (Panicoideae-Aristidoideae-Chloridoideae-Micrairoideae-Arundinoideae-Danthonioideae) and BEP (Bambusoideae-Ehrhartoideae-Pooideae), including a taxon with proposed affinities to Ehrhartoideae. Here we describe additional fossils and show that, based on phylogenetic analyses that combine molecular genetic data and epidermal and phytolith features across Poaceae, these can be assigned to the rice tribe, Oryzeae, of grass subfamily Ehrhartoideae. The new Oryzeae fossils suggest substantial diversification within Ehrhartoideae by the Late Cretaceous, pushing back the time of origin of Poaceae as a whole. These results, therefore, necessitate a re-evaluation of current models for grass evolution and palaeobiogeography. PMID:21934664

  19. Bowen Lecture: The origin of the Moon and the early history of the Earth revisited

    NASA Astrophysics Data System (ADS)

    O'Neill, H. S.

    2007-12-01

    The last decade has seen a remarkable increase in our knowledge of the isotopic characteristics of solar system materials, including the planetary isotopic characteristics of the Moon, which can potentially place constraints on its origins. Several of the dominant paradigms of lunar geology have also been considerably revised, e.g., the volume of the crust. Our understanding of the metal-silicate partitioning relationships of the siderophile elements from experimental petrology has also improved, as has that of the oxidation states of the Earth's deep mantle. These advances make it timely to revisit the question of the compositional relationship between the Earth and the Moon and its implications for lunar origins. The currently widely adopted paradigm is that the Moon was formed by a giant impact in the latter stages of the planet-building epoch of the inner solar system, some tens of millions of years after the origin of the solar system, with most of the material forming the Moon originating in the impactor (`Theia'). The moon-forming event was accompanied by selective loss of volatile elements, and it is probable that the Moon has a small secondary metallic core, which, if present, must have depleted its silicate portion in the more siderophile elements (like Ni, Co, Cu and Mo, but not V, Cr, Mn, or, more arguably, W). It is likely that a `late veneer' was added subsequently to the Earth and presumably also to the Moon. Taking these modifications into account, it is remarkable how similar the chemistry of the Earth and Moon are. As for isotopes, not only does the Moon have exactly the same oxygen isotopic composition as the Earth [1], but also similar Si [2]. These similarities cannot be explained within current models of terrestrial planet formation by the proto-Earth and `Theia' both being derived at c. 1 AU, because such models predict that the latter stages see the Earth being built from material sourced over large heliocentric distances. The Hf

  20. Unresolved problems on the origin and early evolution of land plants.

    PubMed

    Bennici, Andrea

    2007-01-01

    The origin of land plants or embryophytes from the Charophyceae is generally accepted today by the botanists. In fact, numerous morphological, cytological, ultrastructural, biochemical and molecular characters are shared in these organisms. A fundamental problem is still constituted by the evolution of the sporophyte, i.e. the appearance of two different phase cycles (gametophyte/sporophyte alternance), although two theories ("antithetic" and "homologous") try to explain this evolutionary event.However, another phylogenetic dilemma is represented, in my opinion, either by the formation of bryophytes or by the transition from these first land plants to the pteridophytes, considering them at whole organism level. The bryophyte gametophyte is the most elaborate of the land plants. It presents several complex characters, principally the growth developmental form, the appearance of multicellular sex organs, antheridia and archegonia. Also the sporophyte shows a complicated structure that is not found in the other land plants or tracheophytes. The sporangium, in particular, exhibits some intricate morphological traits such as the peristome of true mosses for spore dispersion, the elaters of liverworts and the indeterminate growth in the hornworts. The pteridophytes are represented especially by their dominant sporophyte. This latter has the capacity to produce multiple sporangia and, in many cases, two kinds of spores which develop in male and female gametophyte (heterosporous pteridophytes). Another important characteristic of this sporophyte is its ability to become independent of the gametophyte. However, one of the most innovative character is the formation of true vascular elements (xylem and phloem). All these very large evolutionary jumps are discussed on the basis of the phyletic gradualistic neo-Darwinian theory and the punctuated equilibrium theory of Eldredge and Gould. In this context other genetic evolutionary mechanisms are also considered.Nevertheless, the

  1. On the origin of Hawking mini black-holes and the cold early universe

    NASA Technical Reports Server (NTRS)

    Canuto, V.

    1978-01-01

    A simple argument is outlined leading to the result that the mass of mini black holes exploding today is 10 to the 15th power g. A mathematical model is discussed which indicates that the equation of state is greatly softened in the high-density regime and a phase transition may exist, such that any length (particularly very small sizes) will grow with time irrespective of its relation to the size of the particle horizon. It is shown that the effect of spin-2 mesons with respect to the equation of state is to soften the pressure and make it negative. An analytical expression is given for the probability that any particular region in a hot early universe will evolve into a black hole.

  2. Humble origins for a successful strategy: complete enrolment in early Cambrian olenellid trilobites

    PubMed Central

    Ortega-Hernández, Javier; Esteve, Jorge; Butterfield, Nicholas J.

    2013-01-01

    Trilobites are typified by the behavioural and morphological ability to enrol their bodies, most probably as a defence mechanism against adverse environmental conditions or predators. Although most trilobites could enrol at least partially, there is uncertainty about whether olenellids—among the most phylogenetically and stratigraphically basal representatives—could perform this behaviour because of their poorly caudalized trunk and scarcity of coaptative devices. Here, we report complete—but not encapsulating—enrolment for the olenellid genus Mummaspis from the early Cambrian Mural Formation in Alberta, the earliest direct evidence of this strategy in the fossil record of polymerid trilobites. Complete enrolment in olenellids was achieved through a combination of ancestral morphological features, and thus provides new information on the character polarity associated with this key trilobite adaptation. PMID:24068021

  3. Early cognitive skills of Mexican-origin children: The roles of parental nativity and legal status.

    PubMed

    Landale, Nancy S; Oropesa, R S; Noah, Aggie J; Hillemeier, Marianne M

    2016-07-01

    Although one-third of children of immigrants have undocumented parents, little is known about their early development. Using data from the Los Angeles Family and Neighborhood Survey and decennial census, we assessed how children's cognitive skills at ages 3 to 5 vary by ethnicity, maternal nativity, and maternal legal status. Specifically, Mexican children of undocumented mothers were contrasted with Mexican children of documented mothers and Mexican, white, and black children with U.S.-born mothers. Mexican children of undocumented mothers had lower emergent reading skills than all other groups and lower emergent mathematics skills than all groups with U.S.-born mothers. Multilevel regression models showed that differences in reading skills are explained by aspects of the home environment, but the neighborhood context also matters. Cross-level interactions suggest that immigrant concentration boosts emergent reading and mathematics skills for children with undocumented parents, but does not similarly benefit children whose parents are native born. PMID:27194660

  4. Early cave art and ancient DNA record the origin of European bison

    PubMed Central

    Soubrier, Julien; Gower, Graham; Chen, Kefei; Richards, Stephen M.; Llamas, Bastien; Mitchell, Kieren J.; Ho, Simon Y. W.; Kosintsev, Pavel; Lee, Michael S. Y.; Baryshnikov, Gennady; Bollongino, Ruth; Bover, Pere; Burger, Joachim; Chivall, David; Crégut-Bonnoure, Evelyne; Decker, Jared E.; Doronichev, Vladimir B.; Douka, Katerina; Fordham, Damien A.; Fontana, Federica; Fritz, Carole; Glimmerveen, Jan; Golovanova, Liubov V.; Groves, Colin; Guerreschi, Antonio; Haak, Wolfgang; Higham, Tom; Hofman-Kamińska, Emilia; Immel, Alexander; Julien, Marie-Anne; Krause, Johannes; Krotova, Oleksandra; Langbein, Frauke; Larson, Greger; Rohrlach, Adam; Scheu, Amelie; Schnabel, Robert D.; Taylor, Jeremy F.; Tokarska, Małgorzata; Tosello, Gilles; van der Plicht, Johannes; van Loenen, Ayla; Vigne, Jean-Denis; Wooley, Oliver; Orlando, Ludovic; Kowalczyk, Rafał; Shapiro, Beth; Cooper, Alan

    2016-01-01

    The two living species of bison (European and American) are among the few terrestrial megafauna to have survived the late Pleistocene extinctions. Despite the extensive bovid fossil record in Eurasia, the evolutionary history of the European bison (or wisent, Bison bonasus) before the Holocene (<11.7 thousand years ago (kya)) remains a mystery. We use complete ancient mitochondrial genomes and genome-wide nuclear DNA surveys to reveal that the wisent is the product of hybridization between the extinct steppe bison (Bison priscus) and ancestors of modern cattle (aurochs, Bos primigenius) before 120 kya, and contains up to 10% aurochs genomic ancestry. Although undetected within the fossil record, ancestors of the wisent have alternated ecological dominance with steppe bison in association with major environmental shifts since at least 55 kya. Early cave artists recorded distinct morphological forms consistent with these replacement events, around the Last Glacial Maximum (LGM, ∼21–18 kya). PMID:27754477

  5. Early Proterozoic (2.04 GA) Phoshorites of Pechenga Greenstone Belt and Their Origin

    NASA Technical Reports Server (NTRS)

    Rozanov, Alexei Yu.; Astafieva, Marina M.; Hoover, Richard B.

    2007-01-01

    No principal differences have been found between microfossils described from Cambrian and Phanerozoic and the 2000 Ma phosphorites. Numerous samples revealed diverse microbial microstructures interpreted as cyanobacterial mats consisting of filamentous (1-3 microns in diameter, 20 microns in length), coccoidal (0.8-1.0 microns) and ellipsoidal or rod-shaped microfossils (0.8 microns in diameter, around 2 microns in length) which morphologically resemble modern Microcoleus and Siphonophycus, Thiocapsa, and Rhabdoderma, respectively, reported from alkali ne or saline environment_ The sequence of the early Palaeoproterozoic events which point to a significant oxidation of the hydrosphere, including the formation of phosphorites and changes in the phosphorous cycle, mimics the sequence which was repeated at the Neoproterozoic-Cembrian transition, implying that oxidation of the terrestrial atmosphere-hydrosphere system experienced an irregular cyclic development.

  6. Early Developmental and Evolutionary Origins of Gene Body DNA Methylation Patterns in Mammalian Placentas.

    PubMed

    Schroeder, Diane I; Jayashankar, Kartika; Douglas, Kory C; Thirkill, Twanda L; York, Daniel; Dickinson, Pete J; Williams, Lawrence E; Samollow, Paul B; Ross, Pablo J; Bannasch, Danika L; Douglas, Gordon C; LaSalle, Janine M

    2015-08-01

    Over the last 20-80 million years the mammalian placenta has taken on a variety of morphologies through both divergent and convergent evolution. Recently we have shown that the human placenta genome has a unique epigenetic pattern of large partially methylated domains (PMDs) and highly methylated domains (HMDs) with gene body DNA methylation positively correlating with level of gene expression. In order to determine the evolutionary conservation of DNA methylation patterns and transcriptional regulatory programs in the placenta, we performed a genome-wide methylome (MethylC-seq) analysis of human, rhesus macaque, squirrel monkey, mouse, dog, horse, and cow placentas as well as opossum extraembryonic membrane. We found that, similar to human placenta, mammalian placentas and opossum extraembryonic membrane have globally lower levels of methylation compared to somatic tissues. Higher relative gene body methylation was the conserved feature across all mammalian placentas, despite differences in PMD/HMDs and absolute methylation levels. Specifically, higher methylation over the bodies of genes involved in mitosis, vesicle-mediated transport, protein phosphorylation, and chromatin modification was observed compared with the rest of the genome. As in human placenta, higher methylation is associated with higher gene expression and is predictive of genic location across species. Analysis of DNA methylation in oocytes and preimplantation embryos shows a conserved pattern of gene body methylation similar to the placenta. Intriguingly, mouse and cow oocytes and mouse early embryos have PMD/HMDs but their placentas do not, suggesting that PMD/HMDs are a feature of early preimplantation methylation patterns that become lost during placental development in some species and following implantation of the embryo. PMID:26241857

  7. Early Developmental and Evolutionary Origins of Gene Body DNA Methylation Patterns in Mammalian Placentas.

    PubMed

    Schroeder, Diane I; Jayashankar, Kartika; Douglas, Kory C; Thirkill, Twanda L; York, Daniel; Dickinson, Pete J; Williams, Lawrence E; Samollow, Paul B; Ross, Pablo J; Bannasch, Danika L; Douglas, Gordon C; LaSalle, Janine M

    2015-08-01

    Over the last 20-80 million years the mammalian placenta has taken on a variety of morphologies through both divergent and convergent evolution. Recently we have shown that the human placenta genome has a unique epigenetic pattern of large partially methylated domains (PMDs) and highly methylated domains (HMDs) with gene body DNA methylation positively correlating with level of gene expression. In order to determine the evolutionary conservation of DNA methylation patterns and transcriptional regulatory programs in the placenta, we performed a genome-wide methylome (MethylC-seq) analysis of human, rhesus macaque, squirrel monkey, mouse, dog, horse, and cow placentas as well as opossum extraembryonic membrane. We found that, similar to human placenta, mammalian placentas and opossum extraembryonic membrane have globally lower levels of methylation compared to somatic tissues. Higher relative gene body methylation was the conserved feature across all mammalian placentas, despite differences in PMD/HMDs and absolute methylation levels. Specifically, higher methylation over the bodies of genes involved in mitosis, vesicle-mediated transport, protein phosphorylation, and chromatin modification was observed compared with the rest of the genome. As in human placenta, higher methylation is associated with higher gene expression and is predictive of genic location across species. Analysis of DNA methylation in oocytes and preimplantation embryos shows a conserved pattern of gene body methylation similar to the placenta. Intriguingly, mouse and cow oocytes and mouse early embryos have PMD/HMDs but their placentas do not, suggesting that PMD/HMDs are a feature of early preimplantation methylation patterns that become lost during placental development in some species and following implantation of the embryo.

  8. A revised checklist of Nepticulidae fossils (Lepidoptera) indicates an Early Cretaceous origin.

    PubMed

    Doorenweerd, Camiel; Nieukerken, Erik J Van; Sohn, Jae-Cheon; Labandeira, Conrad C

    2015-01-01

    With phylogenetic knowledge of Lepidoptera rapidly increasing, catalysed by increasingly powerful molecular techniques, the demand for fossil calibration points to estimate an evolutionary timeframe for the order is becoming an increasingly pressing issue. The family Nepticulidae is a species rich, basal branch within the phylogeny of the Lepidoptera, characterized by larval leaf-mining habits, and thereby represents a potentially important lineage whose evolutionary history can be established more thoroughly with the potential use of fossil calibration points. Using our experience with extant global Nepticulidae, we discuss a list of characters that may be used to assign fossil leaf mines to Nepticulidae, and suggest useful methods for classifying relevant fossil material. We present a checklist of 79 records of Nepticulidae representing adult and leaf-mine fossils mentioned in literature, often with multiple exemplars constituting a single record. We provide our interpretation of these fossils. Two species now are included in the collective generic name Stigmellites: Stigmellites resupinata (Krassilov, 2008) comb. nov. (from Ophiheliconoma) and Stigmellites almeidae (Martins-Neto, 1989) comb. nov. (from Nepticula). Eleven records are for the first time attributed to Nepticulidae. After discarding several dubious records, including one possibly placing the family at a latest Jurassic position, we conclude that the oldest fossils likely attributable to Nepticulidae are several exemplars representing a variety of species from the Dakota Formation (USA). The relevant strata containing these earliest fossils are now dated at 102 Ma (million years ago) in age, corresponding to the latest Albian Stage of the Early Cretaceous. Integration of all records in the checklist shows that a continuous presence of nepticulid-like leaf mines preserved as compression-impression fossils and by amber entombment of adults have a fossil record extending to the latest Early Cretaceous

  9. A revised checklist of Nepticulidae fossils (Lepidoptera) indicates an Early Cretaceous origin.

    PubMed

    Doorenweerd, Camiel; Nieukerken, Erik J Van; Sohn, Jae-Cheon; Labandeira, Conrad C

    2015-05-27

    With phylogenetic knowledge of Lepidoptera rapidly increasing, catalysed by increasingly powerful molecular techniques, the demand for fossil calibration points to estimate an evolutionary timeframe for the order is becoming an increasingly pressing issue. The family Nepticulidae is a species rich, basal branch within the phylogeny of the Lepidoptera, characterized by larval leaf-mining habits, and thereby represents a potentially important lineage whose evolutionary history can be established more thoroughly with the potential use of fossil calibration points. Using our experience with extant global Nepticulidae, we discuss a list of characters that may be used to assign fossil leaf mines to Nepticulidae, and suggest useful methods for classifying relevant fossil material. We present a checklist of 79 records of Nepticulidae representing adult and leaf-mine fossils mentioned in literature, often with multiple exemplars constituting a single record. We provide our interpretation of these fossils. Two species now are included in the collective generic name Stigmellites: Stigmellites resupinata (Krassilov, 2008) comb. nov. (from Ophiheliconoma) and Stigmellites almeidae (Martins-Neto, 1989) comb. nov. (from Nepticula). Eleven records are for the first time attributed to Nepticulidae. After discarding several dubious records, including one possibly placing the family at a latest Jurassic position, we conclude that the oldest fossils likely attributable to Nepticulidae are several exemplars representing a variety of species from the Dakota Formation (USA). The relevant strata containing these earliest fossils are now dated at 102 Ma (million years ago) in age, corresponding to the latest Albian Stage of the Early Cretaceous. Integration of all records in the checklist shows that a continuous presence of nepticulid-like leaf mines preserved as compression-impression fossils and by amber entombment of adults have a fossil record extending to the latest Early Cretaceous.

  10. Thermochronological Evidence for Cenozoic Segmentation of Transantarctic Mountains

    NASA Astrophysics Data System (ADS)

    Zattin, M.; Pace, D.; Andreucci, B.; Rossetti, F.; Talarico, F.

    2013-12-01

    The Transantarctic Mountains (TAM) represent the boundary between the cratonic East Antarctica and the West Antarctica and are thus related to formation of the Western Antarctic Rift system (WARS). However, temporal relationships between timing of TAM uplift and evolution of the WARS are not clear. The large amount of existing thermochronological data indicate that exhumation of the TAM occurred at different times and extents, with main cooling events in the Early Cretaceous, Late Cretaceous, and early Cenozoic. Uplift of the different segments of the TAM was not recorded according to regular trends along the mountain chain, but instead appears diachronous and without a recognizable spatial pattern. Here we present apatite fission-track (AFT) data from 20 samples, collected from metamorphic and intrusive rocks from the region comprised between the Blue Glacier and the Byrd Glacier. AFT data show a large variety of ages, ranging from 28.0 to 88.8 Ma and without a clear correlation between age and elevation. As a whole, spatial variations suggest a decrease of ages from S to the region of the Koettlitz Glacier, where ages suddenly raise up to Cretaceous values. A marked increase of ages has been detected also south of Darwin Glacier, that is in correspondence of the Britannia Range. Thermal modelling shows that cooling paths are usually composite, with a main cooling event followed by slower cooling to present day temperatures. Time of main cooling event is late Cretaceous for samples from the Britannia Range whereas it is Eocene-Oligocene for samples from Koettlitz and Mulock areas. In any case, cooling rates are always quite low also during periods of enhanced uplift, with values not exceeding 5°C/Ma. These data support the idea of tectonic block segmentation of the TAM during the last phases of exhumation. Most of vertical displacements occurred during the Oligocene across transverse fault zones such as the Discovery Accommodation Zone to the north and the

  11. Mesozoic and Cenozoic evolution of the SW Iberian margin

    NASA Astrophysics Data System (ADS)

    Ramos, Adrià; Fernández, Oscar; Terrinha, Pedro; Muñoz, Josep Anton; Arnaiz, Álvaro

    2016-04-01

    The SW Iberian margin lies at the eastern termination of the Azores-Gibraltar Fracture Zone (AGFZ), the diffuse transform plate boundary between Africa and Iberia (Sartori et al., 1994). It comprises the Gulf of Cadiz and the Algarve Basin, which were developed under two main different regional stages of deformation. During the Mesozoic, the SW Iberian margin evolution since the Late Triassic was dominated by the Pangea break-up and the Central Atlantic opening up to Early Jurssic, followed by the westernmost Tethyan opening up to Mid/Late Jurassic, and the North Atlantic rifting from Late Jurassic to Early Cretaceous (e.g., Schettino and Turco, 2010). This phase of extension led to the formation of E-W to NE-SW trending, basement-involved extensional faults, the triggering of salt tectonics and the uplifting of basement highs (e.g., Guadalquivir Bank). This extensional phase was responsible not only for the sedimentary depocenter distribution, but also for the crustal configuration of this passive margin, extending from continental crust in the proximal part, to oceanic crust in the distal and deepest portion of the margin. Since the Late Cretaceous, the margin was inverted due to the N-S convergence between Africa and Iberia, being still undergoing collision given the dominance of reverse fault earthquake mechanisms (e.g., Zitellini et al., 2009). The shortening in the margin is mainly accommodated by the north-dipping foliation of the basin, expressed by south-directed blind thrusts affecting the present-day bathymetry, re-activating the basement highs and the salt tectonics, and controlling the Cenozoic depocenters. The emplacement of the Betics to the east led to the westward emplacement of the gravitational unit partially overlying the sedimentary basins, corresponding to the Allochthonous Unit of the Gulf of Cadiz (AUGC). Our observations of the margin configuration have been based on the interpretation of 2D and 3D seismic reflection surveys throughout the

  12. The Norwegian Danish Basin: A key to understanding the Cenozoic in the eastern North Sea

    NASA Astrophysics Data System (ADS)

    Rasmussen, Thomas L.; Clausen, Ole R.; Andresen, Katrine J.; Goledowski, Bartosz

    2015-04-01

    The Danish part of Norwegian-Danish Basin, which constitutes the eastern part of the North Sea Basin, has been the key area for sequence stratigraphic subdivision and analysis of the Cenozoic succession since the mid 1990's. Widespread 3D seismic data, in the central parts of the North Sea Basin, as well as more scattered 3D seismic data in the Danish part of the Norwegian-Danish Basin, have given a more detailed understanding of the sequences and indicate that climate is tenable for the origin of Cenozoic sequence boundaries. The previous sequence stratigraphic interpretations have been an integrated part of an ongoing debate concerning vertical movements of the Fennoscandian shield versus the impact of climate and erosion. A newly accessed coherent regional 2D and reprocessed 3D seismic data set, in the Norwegian part of the Norwegian-Danish Basin, constitute the database for a new sequence stratigraphic analysis of the entire area. The objective of the new study is to test previous subdivisions and introduce a coherent 3D sequence stratigraphic analysis and depositional model for the entire Norwegian-Danish Basin. This analysis is necessary to get out of the stalemate with the uplift discussion. The study shows that the original subdivision by Michelsen et al. (1995, 1998) stands. However, revision of few a sequence boundaries may have to be adjusted due to new biostratigraphic information published. Furthermore, high-angle clinoforms and geomorphological transport complexes observed in the Danish North Sea Basin can be traced into the Norwegian sector. This together with the recognition of several other high-angle clinoform complexes, and their associated seismic facies distribution maps and thickness-maps, enhances the level of detail and constrains the previous published paleogeographic reconstructions of the Cenozoic. The geometry of the Cenozoic infill, in the Norwegian part of the Norwegian-Danish Basin, is here interpreted to be controlled by relative sea

  13. Biochronology, paleobiogeography and faunal turnover in western Mediterranean Cenozoic mammals.

    PubMed

    Palombo, Maria R

    2009-12-01

    Cenozoic terrestrial mammals from Sardinia contribute substantial information for reconstructing the complex history of the western Mediterranean. The occurrence of endemic perissodactyls in Eocene marine and marsh deposits suggests the existence of ecological or physical barriers between the Corso-Sardinian massif and the Iberian-Occitanic area. At the end of the Oligocene, isolation of Sardinia was almost complete, although a migration from Europe occurred at the beginning of the Early Miocene, as indicated by the unbalanced endemic fauna from Oschiri. During the Late Miocene, the Tusco-Sardinian palaeobioprovince came into existence as an isolated region inhabited by the quite diversified, but notably endemic, Oreopithecus fauna. Sardinia was definitely isolated from Tuscany by the Messinian, but temporary connections with the European mainland possibly allowed the colonization of forerunners of some Sardinian Pliocene taxa. During the Plio-Pleistocene, Sardinia maintained permanent isolation. However, sea level drop, resulting in a relatively short distance between Sardinia and the European mainland, allowed different migratory events. From the Late Pliocene to the Late Pleistocene-Holocene, two main mammalian faunal complexes (FC) can be recognized: the Nesogoral FC (Late Pliocene-Early Pleistocene) and the Microtus (Tyrrhenicola) FC (late Early Pleistocene-Early Holocene). At the transition from Nesogoral to Microtus (Tyrrhenicola) FC, approximately 47% of the genera and 76% of the species disappeared, while approximately 58% of the genera and 71% of the species appeared. A noticeable turnover followed the arrival of Neolithic man and his accompanying fauna. Nonetheless, Praemegaceros was still present at about 7000 years BP, while Microtus (Tyrrhenicola) and Prolagus are respectively recorded in the Bronze and Iron Ages.

  14. The role of population origin and microenvironment in seedling emergence and early survival in Mediterranean maritime pine (Pinus pinaster Aiton).

    PubMed

    Vizcaíno-Palomar, Natalia; Revuelta-Eugercios, Bárbara; Zavala, Miguel A; Alía, Ricardo; González-Martínez, Santiago C

    2014-01-01

    Understanding tree recruitment is needed to forecast future forest distribution. Many studies have reported the relevant ecological factors that affect recruitment success in trees, but the potential for genetic-based differences in recruitment has often been neglected. In this study, we established a semi-natural reciprocal sowing experiment to test for local adaptation and microenvironment effects (evaluated here by canopy cover) in the emergence and early survival of maritime pine (Pinus pinaster Aiton), an emblematic Mediterranean forest tree. A novel application of molecular markers was also developed to test for family selection and, thus, for potential genetic change over generations. Overall, we did not find evidence to support local adaptation at the recruitment stage in our semi-natural experiment. Moreover, only weak family selection (if any) was found, suggesting that in stressful environments with low survival, stochastic processes and among-year climate variability may drive recruitment. Nevertheless, our study revealed that, at early stages of recruitment, microenvironments may favor the population with the best adapted life strategy, irrespectively of its (local or non-local) origin. We also found that emergence time is a key factor for seedling survival in stressful Mediterranean environments. Our study highlights the complexity of the factors influencing the early stages of establishment of maritime pine and provides insights into possible management actions aimed at environmental change impact mitigation. In particular, we found that the high stochasticity of the recruitment process in stressful environments and the differences in population-specific adaptive strategies may difficult assisted migration schemes.

  15. Cenozoic Antarctic DiatomWare/BugCam: An aid for research and teaching

    USGS Publications Warehouse

    Wise, S.W.; Olney, M.; Covington, J.M.; Egerton, V.M.; Jiang, S.; Ramdeen, D.K.; ,; Schrader, H.; Sims, P.A.; Wood, A.S.; Davis, A.; Davenport, D.R.; Doepler, N.; Falcon, W.; Lopez, C.; Pressley, T.; Swedberg, O.L.; Harwood, D.M.

    2007-01-01

    Cenozoic Antarctic DiatomWare/BugCam© is an interactive, icon-driven digital-image database/software package that displays over 500 illustrated Cenozoic Antarctic diatom taxa along with original descriptions (including over 100 generic and 20 family-group descriptions). This digital catalog is designed primarily for use by micropaleontologists working in the field (at sea or on the Antarctic continent) where hard-copy literature resources are limited. This new package will also be useful for classroom/lab teaching as well as for any paleontologists making or refining taxonomic identifications at the microscope. The database (Cenozoic Antarctic DiatomWare) is displayed via a custom software program (BugCam) written in Visual Basic for use on PCs running Windows 95 or later operating systems. BugCam is a flexible image display program that utilizes an intuitive thumbnail “tree” structure for navigation through the database. The data are stored on Micrsosoft EXCEL spread sheets, hence no separate relational database program is necessary to run the package

  16. Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide.

    PubMed

    Kissling, W Daniel; Eiserhardt, Wolf L; Baker, William J; Borchsenius, Finn; Couvreur, Thomas L P; Balslev, Henrik; Svenning, Jens-Christian

    2012-05-01

    Despite long-standing interest in the origin and maintenance of species diversity, little is known about historical drivers of species assemblage structure at large spatiotemporal scales. Here, we use global species distribution data, a dated genus-level phylogeny, and paleo-reconstructions of biomes and climate to examine Cenozoic imprints on the phylogenetic structure of regional species assemblages of palms (Arecaceae), a species-rich plant family characteristic of tropical ecosystems. We find a strong imprint on phylogenetic clustering due to geographic isolation and in situ diversification, especially in the Neotropics and on islands with spectacular palm radiations (e.g., Madagascar, Hawaii, and Cuba). Phylogenetic overdispersion on mainlands and islands corresponds to biotic interchange areas. Differences in the degree of phylogenetic clustering among biogeographic realms are related to differential losses of tropical rainforests during the Cenozoic, but not to the cumulative area of tropical rainforest over geological time. A largely random phylogenetic assemblage structure in Africa coincides with severe losses of rainforest area, especially after the Miocene. More recent events also appear to be influential: phylogenetic clustering increases with increasing intensity of Quaternary glacial-interglacial climatic oscillations in South America and, to a lesser extent, Africa, indicating that specific clades perform better in climatically unstable regions. Our results suggest that continental isolation (in combination with limited long-distance dispersal) and changing climate and habitat loss throughout the Cenozoic have had strong impacts on the phylogenetic structure of regional species assemblages in the tropics.

  17. Cenozoic Plate tectonic history of the northern Venezuela-Trinidad Area

    NASA Astrophysics Data System (ADS)

    Erlich, Robert N.; Barrett, S. F.

    1990-02-01

    Geological and geophysical data, coupled with recent plate tectonic reconstructions, suggest that the Cenozoic geologic history of the northern Venezuela-Trinidad area has been dominated by strike-slip displacement of discrete crustal blocks. Allochthonous terranes within the area include metavolcanic rocks of the Cretaceous Villa de Cura Group and metamorphic rocks of the Precambrian to Cretaceous Cordillera de la Costa. A relatively competent crustal block (Margarita Block) is defined by an outline around the metamorphic basement of Margarita Island, the Araya/Paria peninsula, the Northern Range of Trinidad, and Tobago Island. Reconstruction of the Margarita Block to its original position requires at least partial closure of the Falcon Basin, closure of the Bonaire and Cariaco basins, and restoration of about 50 km of motion on both the Oca and Bocono faults. Post middle Eocene eastward translation of the Caribbean plate caused eastward motion of the Margarita Block. A minor change in relative plate motion during the late Oligocene or early Miocene produced a right step in the Moron fault, forming the Cariaco pull-apart basin and El Pilar fault zone. Maximum offset on El Pilar fault is estimated to be no more than 125 km, though displacement along the entire fault zone may have been greater. Transpressional stresses between the Caribbean plate and northern South America caused folding of the Serrania del Interior of Venezuela and the Central Range of Trinidad. Eastward migration of transpressional stresses at the southeastern corner of the Caribbean-South American plate boundary is being accommodated by formation of oblique thrusts, transpressive anticlines, and downwarping of the crust. Bouguer gravity data suggest that Jurassic-aged Atlantic oceanic crust is being depressed as the Caribbean plate expands into the Demerara Plateau area. This study suggests that the faults and transtensional/transpressional/compressional structures identified in this study are

  18. Serpentinization As a Possible Mechanism at the Origin of Valley Network Formation on Early Mars

    NASA Astrophysics Data System (ADS)

    Chassefiere, E.; Lasue, J.; Langlais, B.; Quesnel, Y.

    2014-12-01

    Serpentinization is a metamorphic process by which ultramafic rocks are hydrothermally altered to store H2O, produce magnetite and release H2, a part of which may be converted into CH4 by Fischer-Tropsch reactions. It could have been a major process to trap a large fraction of the H2O of the planet during the Noachian in altered minerals at depth and at the same time release a significant amount of H2 and CH4 to the crust and the atmosphere. An amount of a 300-1000 m deep Global Equivalent Layer of H2O trapped in serpentine has been proved to be consistent with both present crustal magnetization and atmospheric D/H ratio (Chassefière et al., 2013). The corresponding total amount of H2 released in the course of serpentinization is ~7 1020 moles, a part of which (up to several tens percents by referring to Earth's case) may have been converted to CH4 and trapped in the lower cryosphere under hydrate form. As shown by Lasue et al. (2014), the CH4 trapping capacity of the early martian cryosphere exceeds, or is similar to, the above amount. Any destabilization of the CH4-rich cryosphere after most serpentinization occurred, at the end of the Noachian, could have resulted in the release to the atmosphere of huge amounts of CH4, rapidly converted into H2 by photochemical reactions. Ramirez et al. (2014) have shown that the collision-induced absorption caused by H2 could have increased surface temperature above H2O freezing point, provided CO2 pressure was in the range from 1-2 bar and H2 mixing ratio larger than 5%. A simple calculation shows that the CH4 accumulated in the early martian cryosphere is able to feed up the atmosphere with H2 at the required level during a time up to 2 107 yr, larger than the time generally assumed to be necessary for valley network formation (Hoke et al., 2011). We discuss the possible occurrence of a positive feedback of H2-induced greenhouse increasing the amount of liquid H2O available for serpentinization, and the resulting

  19. The charophycean green algae provide insights into the early origins of plant cell walls.

    PubMed

    Sørensen, Iben; Pettolino, Filomena A; Bacic, Antony; Ralph, John; Lu, Fachuang; O'Neill, Malcolm A; Fei, Zhangzhun; Rose, Jocelyn K C; Domozych, David S; Willats, William G T

    2011-10-01

    Numerous evolutionary innovations were required to enable freshwater green algae to colonize terrestrial habitats and thereby initiate the evolution of land plants (embryophytes). These adaptations probably included changes in cell-wall composition and architecture that were to become essential for embryophyte development and radiation. However, it is not known to what extent the polymers that are characteristic of embryophyte cell walls, including pectins, hemicelluloses, glycoproteins and lignin, evolved in response to the demands of the terrestrial environment or whether they pre-existed in their algal ancestors. Here we show that members of the advanced charophycean green algae (CGA), including the Charales, Coleochaetales and Zygnematales, but not basal CGA (Klebsormidiales and Chlorokybales), have cell walls that are comparable in several respects to the primary walls of embryophytes. Moreover, we provide both chemical and immunocytochemical evidence that selected Coleochaete species have cell walls that contain small amounts of lignin or lignin-like polymers derived from radical coupling of hydroxycinnamyl alcohols. Thus, the ability to synthesize many of the components that characterize extant embryophyte walls evolved during divergence within CGA. Our study provides new insight into the evolutionary window during which the structurally complex walls of embryophytes originated, and the significance of the advanced CGA during these events. PMID:21707800

  20. The charophycean green algae provide insights into the early origins of plant cell walls.

    PubMed

    Sørensen, Iben; Pettolino, Filomena A; Bacic, Antony; Ralph, John; Lu, Fachuang; O'Neill, Malcolm A; Fei, Zhangzhun; Rose, Jocelyn K C; Domozych, David S; Willats, William G T

    2011-10-01

    Numerous evolutionary innovations were required to enable freshwater green algae to colonize terrestrial habitats and thereby initiate the evolution of land plants (embryophytes). These adaptations probably included changes in cell-wall composition and architecture that were to become essential for embryophyte development and radiation. However, it is not known to what extent the polymers that are characteristic of embryophyte cell walls, including pectins, hemicelluloses, glycoproteins and lignin, evolved in response to the demands of the terrestrial environment or whether they pre-existed in their algal ancestors. Here we show that members of the advanced charophycean green algae (CGA), including the Charales, Coleochaetales and Zygnematales, but not basal CGA (Klebsormidiales and Chlorokybales), have cell walls that are comparable in several respects to the primary walls of embryophytes. Moreover, we provide both chemical and immunocytochemical evidence that selected Coleochaete species have cell walls that contain small amounts of lignin or lignin-like polymers derived from radical coupling of hydroxycinnamyl alcohols. Thus, the ability to synthesize many of the components that characterize extant embryophyte walls evolved during divergence within CGA. Our study provides new insight into the evolutionary window during which the structurally complex walls of embryophytes originated, and the significance of the advanced CGA during these events.

  1. The origin and early radiation of the therapsid mammal-like reptiles: a palaeobiological hypothesis.

    PubMed

    Kemp, T S

    2006-07-01

    The replacement of the basal synapsid pelycosaurs by the more 'mammal-like' therapsids in the Permian was an important event in the history of tetrapods because it initiated the eventual transition to the mammals. It is also an example of taxon replacement in the fossil record that is unusually amenable to explanation, based on a combination of analysis of the biological significance of the inferred character changes, with the stratigraphic, palaeogeographic and palaeoecological circumstances of the time. An hypothesis is presented in which the origin of the therapsids resulted from a correlated progression of character evolution leading to higher levels of metabolic activity and homeostatic regulation of the body. It was a response to the availability of a seasonally arid, savanna-like biome. The subsequent explosive radiation of therapsids was associated with habitat expansion made possible by the Mid-Permian development of geographical continuity between that biome and the temperate biomes. The final extinction of the pelycosaurs was a case of incumbent replacement by the new therapsid lineages. PMID:16780524

  2. Origin of the obliquities of the giant planets in mutual interactions in the early Solar System.

    PubMed

    Brunini, Adrián

    2006-04-27

    The origin of the spin-axis orientations (obliquities) of the giant planets is a fundamental issue because if the obliquities resulted from tangential collisions with primordial Earth-sized protoplanets, then they are related to the masses of the largest planetesimals out of which the planets form. A problem with this mechanism, however, is that the orbital planes of regular satellites would probably be uncorrelated with the obliquities, contrary to observations. Alternatively, they could have come from an external twist that affected the orientation of the Solar System plane; but in this model, the outer planets must have formed too rapidly, before the event that produced the twist. Moreover, the model cannot be quantitatively tested. Here I show that the present obliquities of the giant planets were probably achieved when Jupiter and Saturn crossed the 1:2 orbital resonance during a specific migration process: different migration scenarios cannot account for the large observed obliquities. The existence of the regular satellites of the giant planets does not represent a problem in this model because, although they formed soon after the planetary formation, they can follow the slow evolution of the equatorial plane it produces. PMID:16641989

  3. Interpersonal and Genetic Origins of Adult Attachment Styles: A Longitudinal Study from Infancy to Early Adulthood

    PubMed Central

    Fraley, R. Chris; Roisman, Glenn I.; Booth-LaForce, Cathryn; Owen, Margaret Tresch; Holland, Ashley S.

    2013-01-01

    One of the assumptions of attachment theory is that individual differences in adult attachment styles emerge from individuals’ developmental histories. To examine this assumption empirically the authors report data from an age 18 follow-up (Booth-LaForce & Roisman, 2012) of the NICHD Study of Early Child Care and Youth Development, a longitudinal investigation that tracked a cohort of children and their parents from birth to age 15. Analyses indicate that individual differences in adult attachment can be traced to variations in the quality of individuals’ caregiving environments, their emerging social competence, and the quality of their best friendship. Analyses also indicate that assessments of temperament and most of the specific genetic polymorphisms thus far examined in the literature on genetic correlates of attachment styles were essentially uncorrelated with adult attachment, with the exception of a polymorphism in the serotonin receptor gene (HTR2A rs6313), which modestly predicted higher attachment anxiety and that revealed a G × E interaction such that changes in maternal sensitivity across time predicted attachment-related avoidance. The implications of these data for contemporary perspectives and debates concerning adult attachment theory are discussed. PMID:23397970

  4. A Common Genetic Origin for Early Farmers from Mediterranean Cardial and Central European LBK Cultures

    PubMed Central

    Olalde, Iñigo; Schroeder, Hannes; Sandoval-Velasco, Marcela; Vinner, Lasse; Lobón, Irene; Ramirez, Oscar; Civit, Sergi; García Borja, Pablo; Salazar-García, Domingo C.; Talamo, Sahra; María Fullola, Josep; Xavier Oms, Francesc; Pedro, Mireia; Martínez, Pablo; Sanz, Montserrat; Daura, Joan; Zilhão, João; Marquès-Bonet, Tomàs; Gilbert, M. Thomas P.; Lalueza-Fox, Carles

    2015-01-01

    The spread of farming out of the Balkans and into the rest of Europe followed two distinct routes: An initial expansion represented by the Impressa and Cardial traditions, which followed the Northern Mediterranean coastline; and another expansion represented by the LBK (Linearbandkeramik) tradition, which followed the Danube River into Central Europe. Although genomic data now exist from samples representing the second migration, such data have yet to be successfully generated from the initial Mediterranean migration. To address this, we generated the complete genome of a 7,400-year-old Cardial individual (CB13) from Cova Bonica in Vallirana (Barcelona), as well as partial nuclear data from five others excavated from different sites in Spain and Portugal. CB13 clusters with all previously sequenced early European farmers and modern-day Sardinians. Furthermore, our analyses suggest that both Cardial and LBK peoples derived from a common ancient population located in or around the Balkan Peninsula. The Iberian Cardial genome also carries a discernible hunter–gatherer genetic signature that likely was not acquired by admixture with local Iberian foragers. Our results indicate that retrieving ancient genomes from similarly warm Mediterranean environments such as the Near East is technically feasible. PMID:26337550

  5. Early climate change consensus at the National Academy: the origins and making of "Changing Climate".

    PubMed

    Nierenberg, Nicolas; Tschinkel, Walter R; Tschinkel, Victoria J

    2010-01-01

    The 1983 National Academy of Sciences report entitled "Changing Climate," authored by a committee of physical and social scientists chaired by William Nierenberg, was an early comprehensive review of the effects of human-caused increases in the levels of atmospheric CO2. Study of the events surrounding the committee's creation, deliberations, and subsequent report demonstrates that the conclusions of the report were the consensus of the entire committee and in line with the scientific consensus of the time. This result contraverts a 2008 paper in which Naomi Oreskes, Erik M. Conway, and Matthew Shindell asserted that the report contradicted a growing consensus about climate change, and that Nierenberg for political reasons deliberately altered the summary and conclusions of the report in a way that played down the concerns of the other physical scientists on the committee. Examining the production of the report and contextualizing it in contemporaneous scientific and political discussion, we instead show how it was a multi-year effort with work divided among the various members of the committee according to their expertise. The synthesis and conclusions were expressly a joint statement of the committee and were consistent with other assessments of that time expressing deep concern over the potential issues while stopping short of recommending major policy changes due to the uncertainties, and to a lack of good alternatives. PMID:20848755

  6. TIDAL INTERACTION AS THE ORIGIN OF EARLY-TYPE DWARF GALAXIES IN GROUP ENVIRONMENTS

    SciTech Connect

    Paudel, Sanjaya; Ree, Chang H.

    2014-11-20

    We present a sample of dwarf galaxies that suffer ongoing disruption by the tidal forces of nearby massive galaxies. By analyzing structural and stellar population properties using the archival imaging and spectroscopic data from the Sloan Digital Sky Survey (SDSS), we find that they are likely a ''smoking gun'' example of the formation through tidal stirring of early-type dwarf galaxies (dEs) in the galaxy group environment. The inner cores of these galaxies are fairly intact and the observed light profiles are well fit by the Sérsic functions while the tidally stretched stellar halos are prominent in the outer parts. They are all located within a sky-projected distance of 50 kpc from the centers of the host galaxies and no dwarf galaxies have relative line-of-sight velocities larger than 205 km s{sup –1} to their hosts. We derive the Composite Stellar Population properties of these galaxies by fitting the SDSS optical spectra to a multiple-burst composite stellar population model. We find that these galaxies accumulate a significant fraction of stellar mass within the last 1 Gyr and contain a majority stellar population with an intermediate age of 2 to 4 Gyr. Based on this evidence, we argue that tidal stirring, particularly through the galaxy-galaxy interaction, might have an important role in the formation and evolution of dEs in the group environment where the influence of other gas stripping mechanism might be limited.

  7. A new fossil species supports an early origin for toothed whale echolocation.

    PubMed

    Geisler, Jonathan H; Colbert, Matthew W; Carew, James L

    2014-04-17

    Odontocetes (toothed whales, dolphins and porpoises) hunt and navigate through dark and turbid aquatic environments using echolocation; a key adaptation that relies on the same principles as sonar. Among echolocating vertebrates, odontocetes are unique in producing high-frequency vocalizations at the phonic lips, a constriction in the nasal passages just beneath the blowhole, and then using air sinuses and the melon to modulate their transmission. All extant odontocetes seem to echolocate; however, exactly when and how this complex behaviour--and its underlying anatomy--evolved is largely unknown. Here we report an odontocete fossil, Oligocene in age (approximately 28 Myr ago), from South Carolina (Cotylocara macei, gen. et sp. nov.) that has several features suggestive of echolocation: a dense, thick and downturned rostrum; air sac fossae; cranial asymmetry; and exceptionally broad maxillae. Our phylogenetic analysis places Cotylocara in a basal clade of odontocetes, leading us to infer that a rudimentary form of echolocation evolved in the early Oligocene, shortly after odontocetes diverged from the ancestors of filter-feeding whales (mysticetes). This was followed by enlargement of the facial muscles that modulate echolocation calls, which in turn led to marked, convergent changes in skull shape in the ancestors of Cotylocara, and in the lineage leading to extant odontocetes.

  8. A Common Genetic Origin for Early Farmers from Mediterranean Cardial and Central European LBK Cultures.

    PubMed

    Olalde, Iñigo; Schroeder, Hannes; Sandoval-Velasco, Marcela; Vinner, Lasse; Lobón, Irene; Ramirez, Oscar; Civit, Sergi; García Borja, Pablo; Salazar-García, Domingo C; Talamo, Sahra; María Fullola, Josep; Xavier Oms, Francesc; Pedro, Mireia; Martínez, Pablo; Sanz, Montserrat; Daura, Joan; Zilhão, João; Marquès-Bonet, Tomàs; Gilbert, M Thomas P; Lalueza-Fox, Carles

    2015-12-01

    The spread of farming out of the Balkans and into the rest of Europe followed two distinct routes: An initial expansion represented by the Impressa and Cardial traditions, which followed the Northern Mediterranean coastline; and another expansion represented by the LBK (Linearbandkeramik) tradition, which followed the Danube River into Central Europe. Although genomic data now exist from samples representing the second migration, such data have yet to be successfully generated from the initial Mediterranean migration. To address this, we generated the complete genome of a 7,400-year-old Cardial individual (CB13) from Cova Bonica in Vallirana (Barcelona), as well as partial nuclear data from five others excavated from different sites in Spain and Portugal. CB13 clusters with all previously sequenced early European farmers and modern-day Sardinians. Furthermore, our analyses suggest that both Cardial and LBK peoples derived from a common ancient population located in or around the Balkan Peninsula. The Iberian Cardial genome also carries a discernible hunter-gatherer genetic signature that likely was not acquired by admixture with local Iberian foragers. Our results indicate that retrieving ancient genomes from similarly warm Mediterranean environments such as the Near East is technically feasible.

  9. Rise of the Earliest Tetrapods: An Early Devonian Origin from Marine Environment

    PubMed Central

    George, David; Blieck, Alain

    2011-01-01

    Tetrapod fossil tracks are known from the Middle Devonian (Eifelian at ca. 397 million years ago - MYA), and their earliest bony remains from the Upper Devonian (Frasnian at 375–385 MYA). Tetrapods are now generally considered to have colonized land during the Carboniferous (i.e., after 359 MYA), which is considered to be one of the major events in the history of life. Our analysis on tetrapod evolution was performed using molecular data consisting of 13 proteins from 17 species and different paleontological data. The analysis on the molecular data was performed with the program TreeSAAP and the results were analyzed to see if they had implications on the paleontological data collected. The results have shown that tetrapods evolved from marine environments during times of higher oxygen levels. The change in environmental conditions played a major role in their evolution. According to our analysis this evolution occurred at about 397–416 MYA during the Early Devonian unlike previously thought. This idea is supported by various environmental factors such as sea levels and oxygen rate, and biotic factors such as biodiversity of arthropods and coral reefs. The molecular data also strongly supports lungfish as tetrapod's closest living relative. PMID:21779385

  10. Investigating the Merger Origin of Early-type Galaxies using Ultra-deep Optical Images

    NASA Astrophysics Data System (ADS)

    Duc, P.-A.; Cuillandre, J.-C.; Alatalo, K.; Blitz, L.; Bois, M.; Bournaud, F.; Bureau, M.; Cappellari, M.; Côté, P.; Davies, R. L.; Davis, T. A.; de Zeeuw, P. T.; Emsellem, E.; Ferrarese, L.; Ferriere, E.; Gwyn, S.; Khochfar, S.; Krajnovic, D.; Kuntschner, H.; Lablanche, P.-Y.; MacArthur, L.; McDermid, R. M.; Michel-Dansac, L.; Morganti, R.; Naab, T.; Oosterloo, T.; Sarzi, M.; Scott, N.; Serra, P.; Weijmans, A.; Young, L. M.

    2011-12-01

    The mass assembly of galaxies leaves various imprints on their surroundings, such as shells, streams and tidal tails. The frequency and properties of these fine structures depend on the mechanism driving the mass assembly: e.g. a monolithic collapse, rapid cold-gas accretion followed by violent disk instabilities, minor mergers or major dry/wet mergers. Therefore, by studying the outskirts of galaxies, one can learn about their main formation mechanism. I present here our on-going work to characterize the outskirts of Early-Type Galaxies (ETGs), which are powerful probes at low redshift of the hierarchical mass assembly of galaxies. This work relies on ultra-deep optical images obtained at CFHT with the wide-field of view MegaCam camera of field and cluster ETGs obtained as part of the ATLAS3D and NGVS projects. State of the art numerical simulations are used to interpret the data. The images reveal a wealth of unknown faint structures at levels as faint as 29 mag arcsec-2 in the g-band. Initial results for two galaxies are presented here.

  11. Young children who commit crime: epidemiology, developmental origins, risk factors, early interventions, and policy implications.

    PubMed

    Loeber, R; Farrington, D P

    2000-01-01

    An early onset of delinquency prior to age 13 years increases the risk of later serious, violent, and chronic offending by a factor of 2-3. Also child delinquents, compared to juveniles who start offending at a later age, tend to have longer delinquent careers. This article summarizes the report of the Office of Juvenile Justice and Delinquency Prevention's Study Group on Very Young Offenders, chaired by Rolf Loeber and David P. Farrington. The Study Group, consisting of 16 scholars and 23 coauthors, worked for 2 years on preparing a report, undertaking extensive secondary data analyses, and writing chapters in different speciality areas. The report consists of a state of the art review of the developmental background of child delinquents. The report also summarizes risk and protective factors in the individual, family, peer group, school, and neighborhood that affect that development. Lastly, the report renews relevant preventive and remedial interventions in the juvenile justice system, families, peer groups, schools. and neighborhoods, and makes a case for improvement in the integration of services for child delinquents. Policy recommendations are presented to improve methods of dealing with child delinquents by juvenile justice, child welfare, and mental health agencies.

  12. The Gamburtsev mountains and the origin and early evolution of the Antarctic Ice Sheet.

    PubMed

    Bo, Sun; Siegert, Martin J; Mudd, Simon M; Sugden, David; Fujita, Shuji; Xiangbin, Cui; Yunyun, Jiang; Xueyuan, Tang; Yuansheng, Li

    2009-06-01

    Ice-sheet development in Antarctica was a result of significant and rapid global climate change about 34 million years ago. Ice-sheet and climate modelling suggest reductions in atmospheric carbon dioxide (less than three times the pre-industrial level of 280 parts per million by volume) that, in conjunction with the development of the Antarctic Circumpolar Current, led to cooling and glaciation paced by changes in Earth's orbit. Based on the present subglacial topography, numerical models point to ice-sheet genesis on mountain massifs of Antarctica, including the Gamburtsev mountains at Dome A, the centre of the present ice sheet. Our lack of knowledge of the present-day topography of the Gamburtsev mountains means, however, that the nature of early glaciation and subsequent development of a continental-sized ice sheet are uncertain. Here we present radar information about the base of the ice at Dome A, revealing classic Alpine topography with pre-existing river valleys overdeepened by valley glaciers formed when the mean summer surface temperature was around 3 degrees C. This landscape is likely to have developed during the initial phases of Antarctic glaciation. According to Antarctic climate history (estimated from offshore sediment records) the Gamburtsev mountains are probably older than 34 million years and were the main centre for ice-sheet growth. Moreover, the landscape has most probably been preserved beneath the present ice sheet for around 14 million years.

  13. Cenozoic prograding sequences of the Antarctic continental margin - What balance between structural and eustatic control

    SciTech Connect

    Cooper, A.K. ); Barrett, P. ); Hinz, K. ); Stagg, H. ); Traube, V. )

    1990-05-01

    Multichannel seismic reflection profiles across the Antarctic continental margin commonly reveal prograding sedimentary sequences that are bounded by unconformities. These sequences are as much as 5 km thick and, where sampled, are composed entirely of late Eocene( )-early Oligocene and younger glacial rocks. On nonpolar margins, prograding sequences generally are attributed to relative changes in sea level, sediment supply, and tectonism. Around Antarctica, ice sheets have also been important in controlling the geometry and location of prograding sequences. The Antarctic sequences may provide a proximal record of major Cenozoic ice volume changes and related sea level changes not obtainable from low-latitude continental shelves. Presently, the Antarctic record is poorly known because of limited core data. Two categories of prograding (P) and aggrading (A) sigmoidal sequences are observed around Antarctica: (1) P sequences that build principally outward (common) and (2) AP sequences that build largely upward and outward (less common). P sequences may result principally from grounded ice sheets, and AP sequences from open-marine basinal processes. Major rift embayments of Antarctica (e.g., eastern Ross Sea eastern Weddell Sea Lambert graben Wilkes basin) are also pathways for major ice movement. In general, most areas with P sequences lie within or adjacent to Mesozoic or older rift embayment, whereas the primary area with AP sequences (eastern Ross Sea) lies within a likely Cenozoic rift embayment. The Pacific side of the Antarctic Peninsula where Cenozoic ice sheets and Cenozoic tectonism have been active, is also marked by a P sequence. Scientific drilling on the Antarctic continental shelf has recovered openwater glacial deposits (Ross Sea) as well as glacial diamicts that were deposited beneath and in front of grounded glacier ice (Ross Sea and Prydz Bay).

  14. Abiotic forcing of plankton evolution in the Cenozoic.

    PubMed

    Schmidt, Daniela N; Thierstein, Hans R; Bollmann, Jörg; Schiebel, Ralf

    2004-01-01

    We characterize the evolutionary radiation of planktic foraminifera by the test size distributions of entire assemblages in more than 500 Cenozoic marine sediment samples, including more than 1 million tests. Calibration of Holocene size patterns with environmental parameters and comparisons with Cenozoic paleoproxy data show a consistently positive correlation between test size and surface-water stratification intensity. We infer that the observed macroevolutionary increase in test size of planktic foraminifera through the Cenozoic was an adaptive response to intensifying surface-water stratification in low latitudes, which was driven by polar cooling.

  15. Placental development during early pregnancy in sheep: Effects of embryo origin on vascularization

    PubMed Central

    Grazul-Bilska, Anna T.; Johnson, Mary Lynn; Borowicz, Pawel P.; Bilski, Jerzy J.; Cymbaluk, Taylor; Norberg, Spencer; Redmer, Dale A.; Reynolds, Lawrence P.

    2014-01-01

    Utero-placental growth and vascular development are critical for pregnancy establishment that may be altered by various factors including assisted reproductive technologies (ART), nutrition, or others, leading to compromised pregnancy. We hypothesized that placental vascularization and expression of angiogenic factors are altered early in pregnancies after transfer of embryos created using selected ART methods. Pregnancies were achieved through natural mating (NAT), or transfer of embryos from natural mating (NAT-ET), or in vitro fertilization (IVF) or activation (IVA). Placental tissues were collected on day 22 of pregnancy. In maternal caruncles (CAR), vascular cell proliferation was less (P<0.05) for IVA than other groups. Compared to NAT, density of blood vessels was less (P<0.05) for IVF and IVA in fetal membranes (FM), and for NAT-ET, IVF and IVA in CAR. In FM, mRNA expression was decreased (P<0.01–0.08) in NAT-ET, IVF and IVA compared to NAT for vascular endothelial growth factor (VEGF) and its receptor FLT-1, placental growth factor (PGF), neuropilin (NP) 1 and 2, angiopoietin (ANGPT) 1 and 2, endothelial nitric oxide synthase (NOS3), hypoxia inducible factor-1A (HIF1A), fibroblast growth factor (FGF) 2 and its receptor FGFR2. In CAR, mRNA expression was decreased (P<0.01–0.05) in NAT-ET, IVF and IVA compared to NAT for VEGF, FLT-1, PGF, ANGPT1 and TEK. Decreased mRNA expression for 12 of 14 angiogenic factors across FM and CAR in NAT-ET, IVF and IVA pregnancies was associated with reduced placental vascular development, which would lead to poor placental function and compromised fetal and placental growth and development. PMID:24472816

  16. Early Proterozoic (2.0 GA) Phosphorites from Pechenga Greenstone Belt and Their Origin

    NASA Technical Reports Server (NTRS)

    Rozanov, A. Yu.; Astafieva, M. M.; Melezhik, V. A.; Hoover, R. B.; Lepland, I.

    2007-01-01

    The period of 2500-2000 Ma is heralded by several other hallmark events, including onset and decline of the greatest positive excursion of Beta13Ccarb (Lomagundi-Jatuli Paradox), development of a significant seawater sulphate reservoir, abundant deposition of anomalously organic matter (OM)-rich sediments, the oldest known significant petroleum deposits (Shunga Event), and the appearance of first known marine phosphorites at 2000 Ma as reported here. They occur as numerous rounded, soft-deformed, clasts in fine-pebble intra-formational conglomerates, forming two separate c. 200 m-thick turbidite fans within the 1000 m-thick OM- and sulphide-rich turbiditic greywackes of the Pilgujaervi Formation in the Pechenga Greenstrone Belt, NW Russia. Carbonate-fluorapatite is the main mineral in the phosphorite clasts. OM, framboidal and micronodular pyrite as well as inclusions of quartz and chlorite are additional components. Many clasts show microlayering with a variable degree of soft-deformation, implying that they were derived from non-lithified, bedded phosphorites. Numerous samples revealed diverse microbial microstructures interpreted as cyanobacterial mats consisting of filamentous (1-3 micrometer in diameter, 20 micrometers in length), coccoidal (0.8-1.0 micrometers) and ellipsoidal or rod-shaped microfossils (0.8 micrometers in diameter, around 2 micrometers in length) which morphologically resemble modern Microcoleus and Syphonophycus, Thiocapsa, and Rhabdoderma, respectively, reported from alkaline or saline environments. No principle differences have been found between microfossils described from Cambrian and Phanerozoic and the 2000 Ma phosphorites. The sequence of the early Palaeoproterozoic events which point to a significant oxidation of the hydrosphere, now including formation of phosphorites and change in the phosphorous cycle, mimics the sequence which was repeated once again at the Neoproterozoic-Cambrian transition, implying that oxidation of the

  17. Late Cenozoic Moisture History of East Africa

    NASA Astrophysics Data System (ADS)

    Trauth, M. H.; Maslin, M. A.; Deino, A.; Strecker, M. R.

    2004-12-01

    Evidence from fluvio-lacustrine sediments in ten separate basins in the Ethiopian and Kenya rifts suggests there were three protracted humid periods during the Late Cenozoic; at 2.7 - 2.5, 1.9 - 1.7, and 1.1 - 0.9 million years before present. These wet periods are coeval with known increases of aridity in parts of North West and North East Africa, indicating significant regional shifts in African climate. These three East African wet periods correspond to major global climatic changes as well as maxima in eccentricity and thus precession, suggesting a combined global and local causation. These climatic changes were important for the speciation and dispersal of mammals and hominids in East Africa as it implies that key steps in human evolution occurred during relatively humid periods in a region containing extensive deep lakes.

  18. Cenozoic rift formation in the northern Caribbean

    NASA Technical Reports Server (NTRS)

    Mann, P.; Burke, K.

    1984-01-01

    Rifts form in many different tectonic environments where the lithosphere is put into extension. An outline is provided of the distribution, orientation, and relative ages of 16 Cenozoic rifts along the northern edge of the Caribbean plate and it is suggested that these structures formed successively by localized extension as the Caribbean plate moved eastward past a continental promontory of North America. Evidence leading to this conclusion includes (1) recognition that the rifts become progressively younger westward; (2) a two-phase subsidence history in a rift exposed by upthrusting in Jamaica; (3) the absence of rifts east of Jamaica; and (4) the observation that removal of 1400 km of strike-slip displacement on the Cayman Trough fault system places the Paleogene rifts of Jamaica in an active area of extension south of Yucatan where the rifts of Honduras and Guatemala are forming today.

  19. Cenozoic diapiric traps in eastern China

    SciTech Connect

    Qi, F.; Xie-Pei, W.; Jia-Hua, Z.

    1984-04-01

    Genetically, there are 2 types of Cenozoic diapiric traps in the oil fields in eastern China. One type is produced by cold diapirism owing to the rise of evaporites and soft mudstone. This type can be divided into 3 patterns. The first pattern is the faulted ridge with 1000 m (3300 ft) closure and flanks dipping up to 30/sup 0/. A complex graben system is developed on the top. The amplitude of the core of the anticline is about 3000 m (9800 ft). The Xiangzheng structure in the Shengli oil field and the Wang-atcung structure in the Qian-jiang depression are examples. The second pattern is the gentle anticline or dome with 50-300 m (160-985 ft) closure and 3/sup 0/-10/sup 0/ dip on the flanks. The incompetent strata beneath it are about 1000 m (3300 ft) thick. The Tuocung-Shengli structure in the Shengli oil field is an example. The third pattern is a nose-like structure with less than 50 m (160 ft) closure. This pattern is usually located near the zero edge of incompetent strata. The Serniusi structure in the Dagang oil field is an example. Another type of Cenozoic diapiric trap results from hot diapirism associated with the intrusion of gabbro or diabase. Such traps are typically small, round domes. The dip of the flanking strata generally increases with depth as the diapir is approached. A graben system is developed on top of the diapir. The distribution of these traps is related usually to regional fault zones and coincides with the distribution of the magmatism. The Matouzung structure in the Jinhu depression is one of the examples.

  20. Cenozoic diapiric traps in eastern China

    SciTech Connect

    Qi, F.; Xie-Pei, W.; Jia-Hua, Z.

    1984-04-01

    Genetically, there are 2 types of Cenozoic diapiric traps in the oil fields in eastern China. One type is produced by cold diapirism owing to the rise of evaporites and soft mudstone. This type can be divided into 3 patterns. The first pattern is the faulted ridge with 1000 m (3300 ft) closure and flanks dipping up to 30/sup 0/. A complex graben system is developed on the top. The amplitude of the core of the anticline is about 3000 m (9800 ft). The Xiangzheng structure in the Shengli oil field and the Wang-cung structure in the Qian-jiang depression are examples. The second pattern is the gentle anticline or dome with 50-300 m (160-985 ft) closure and 3/sup 0/-10/sup 0/ dip on the flanks. The incompetent strata beneath it are about 1000 m (3300 ft) thick. The Tuocung-Shengli structure in the Shengli oil field is an example. The third pattern is a nose-like structure with less than 50 m (160 ft) closure. This pattern is usually located near the zero edge of incompetent strata. The Serniusi structure in the Dagang oil field is an example. Another type of Cenozoic diapiric trap results from hot diapirism associated with the intrusion of gabbro or diabase. Such traps are typically small, round domes. The dip of the flanking strata generally increases with depth as the diapir is approached. A graben system is developed on top of the diapir. The distribution of these traps is related usually to regional fault zones and coincides with the distribution of the magmatism. The Matouzung structure in the Jinhu depression is one of the examples.

  1. Vitamin D, folate, and potential early lifecycle environmental origin of significant adult phenotypes

    PubMed Central

    Lucock, Mark; Yates, Zoë; Martin, Charlotte; Choi, Jeong-Hwa; Boyd, Lyndell; Tang, Sa; Naumovski, Nenad; Furst, John; Roach, Paul; Jablonski, Nina; Chaplin, George; Veysey, Martin

    2014-01-01

    Background and objectives: Vitamin D and folate are highly UV sensitive, and critical for maintaining health throughout the lifecycle. This study examines whether solar irradiance during the first trimester of pregnancy influences vitamin D receptor (VDR) and nuclear folate gene variant occurrence, and whether affected genes influence late-life biochemical/clinical phenotypes. Methodology: 228 subjects were examined for periconceptional exposure to solar irradiance, variation in vitamin D/folate genes (polymerase chain reaction (PCR)), dietary intake (food frequency questionnaire (FFQ)) and important adult biochemical/clinical phenotypes. Results: Periconceptional solar irradiance was associated with VDR-BsmI (P = 0.0008wk7), TaqI (P = 0.0014wk7) and EcoRV (P = 0.0030wk6) variant occurrence between post-conceptional weeks 6–8, a period when ossification begins. Similar effects were detected for other VDR gene polymorphisms. Periconceptional solar irradiance was also associated with 19 bp del-DHFR (P = 0.0025wk6), and to a lesser extent C1420T-SHMT (P = 0.0249wk6), a folate-critical time during embryogenesis. These same genes were associated with several late-life phenotypes: VDR-BsmI, TaqI and ApaI determined the relationship between dietary vitamin D and both insulin (P < 0.0001/BB, 0.0007/tt and 0.0173/AA, respectively) and systolic blood pressure (P = 0.0290/Bb, 0.0299/Tt and 0.0412/AA, respectively), making them important early and late in the lifecycle. While these and other phenotype associations were found for the VDR variants, folate polymorphism associations in later-life were limited to C1420T-SHMT (P = 0.0037 and 0.0297 for fasting blood glucose and HbA1c levels, respectively). We additionally report nutrient–gene relationships with body mass index, thiol/folate metabolome, cognition, depression and hypertension. Furthermore, photoperiod at conception influenced occurrence of VDR-Tru9I and 2R3R-TS genotypes (P = 0.0120 and 0.0360, respectively

  2. Origin of magnetic susceptibility variations in early Paleogene BBCP cores (Wyoming)

    NASA Astrophysics Data System (ADS)

    Clyde, W. C.; Welter, G. W.; Roehl, U.; Westerhold, T.

    2012-12-01

    Magnetic susceptibility logs from late Paleocene-early Eocene cores taken during the Bighorn Basin Coring Project (BBCP) show significant variability that, in some cases (e.g. Polecat Bench), looks periodic in nature. In order to better understand the underlying mineralogical factors that cause this variability, we analyzed a suite of discrete samples from the cores using step-wise thermal demagnetization of a 3-axis orthogonal isothermal remananent magnetization (IRM) and back field (DC) demagnetization. Representative samples were collected from core depths that showed low, medium, or high susceptibilities based on the multi-sensor core logs. Bulk mass normalized susceptibility was measured for each of these discrete samples and compared to the corresponding core log measurement. Only those samples that showed good agreement between measured susceptibility and core log data were analyzed further. A hard (1.1 T) IRM was acquired and measured in a step-wise fashion along the z-axis of each sample with subsequent back-field IRMs of -100 and -300mT applied to further constrain the proportions of different magnetic minerals. After reacquiring a 1.1 T IRM along the z-axis, medium coercivity (0.4 mT) and low coercivity (.12 mT) IRMs were acquired along the y and x-axes of the samples and thermally demagnetized in a step-wise fashion. Results show that various mechanisms are responsible for elevated bulk susceptibility signals in these cores. At Polecat Bench, the highest susceptibility values are associated with coarser grained units (sandstones and siltstones) with high concentrations of detrital magnetite. At Gilmore Hill, higher susceptibilities are associated with higher concentrations of pedogenic hematite. Susceptibility values at Basin Substation are generally low and show mixed assemblages of hematite and magnetite. To assess whether hyperthermal events are associated with significant changes to magnetic mineralogy in these settings, we compared results from

  3. Constraining the vertical surface motions of the Hampshire Basin, south England During the Cenozoic

    NASA Astrophysics Data System (ADS)

    Smith, Philip; England, Richard; Zalasiewicz, Jan

    2016-04-01

    mechanism for the observed return to a long wavelength tilting of the UK superimposed on short wavelength variations in surface topography caused by an existing state of tectonic stress, possibly inherited in the early to mid Cenozoic. Considering the tectonic and structural evidence available, the Cenozoic topography could be explained by magmatic underplating associated with north Atlantic opening and/or crustal buckling as a result of the Alpine collisional sequences. Additional deep boreholes from the London basin and East Anglia provide a comprehensive 3D tectonic map of vertical surface motions during the early to mid Cenozoic. From this we may be able to understand more about the major tectonic controls influencing southern England at this time and what is modifying the current surface elevation change on short wavelengths.

  4. Origin of the Early Cretaceous continental intraplate volcanism, NW Syria: melting of a metasomatised lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Ma, G. S.; Malpas, J.; Xenophontos, C.; Suzuki, K.; Lo, C.

    2011-12-01

    The Mesozoic evolution of the Neotethys-Eastern Mediterranean between the African-Arabian and Eurasian continents was accompanied by intermittent eruption of alkaline-transitional basalts in Arabia. The causes of the prolonged volcanism remain controversial, whether related to the arrival(s) of mantle plume [1] or prolonged far-field extension of the passive continental margin [2]. In addition, the source(s) of the volcanism is not well constrained, as previous conclusions were drawn before recent understanding of the origin of intraplate magmas - (i) melting of hydrous metasomatic veins within the lithospheric mantle [3] or (ii) melting of an incompatible-element enriched peridotite source ± eclogites in the presence of CO2 [4, 5]. The Mesozoic basalts (ankaramites and transitional basalts) from the Coastal Ranges, NW Syria analysed in this study were dated at 106.3 ± 0.2 Ma and 103.4 ± 0.3 Ma (bulk-rock 40Ar/39Ar ages), representing the last instance of Mesozoic intraplate magmatism in the Levant region. Isotopic and geochemical analysis reveals distinct compositions between the two lava series (ankaramites: ɛNd(t) = 5.1-5.6, 87Sr/87Sr(t) = 0.70293-0.70302, 187Os/188Os(t) = 0.227-0.242; transitional basalts: ɛNd(t) = 4.0-4.6, 87Sr/87Sr(t) = 0.70320-0.70424, 187Os/188Os(t) = 0.392; and lower SiO2, higher TiO2, Nb/U, Nb/Th, Nb/La and Ce/Pb in the ankaramites). Fractional crystallisation and assimilation-fractional crystallisation modelling suggests minor roles for both processes during the evolution of the lavas, despite the generally high Os isotopic ratios. The modelling also precludes derivation of one lava series from the other, suggesting that the isotopic and geochemical distinctions must be inherited from the source. It is interpreted that the chemical characteristics represent a greater component derived from metasomatic amphibole-rich veins in the source region. Both the ankaramites and transitional basalts were generated from this metasomatised

  5. Planck early results. XVII. Origin of the submillimetre excess dust emission in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bot, C.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Dobashi, K.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Fukui, Y.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Kawamura, A.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Leroy, C.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Madden, S.; Maffei, B.; Mandolesi, N.; Mann, R.; Maris, M.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Onishi, T.; Osborne, S.; Pajot, F.; Paladini, R.; Paradis, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wilkinson, A.; Ysard, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2011-12-01

    The integrated spectral energy distributions (SED) of the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) appear significantly flatter than expected from dust models based on their far-infrared and radio emission. The still unexplained origin of this millimetre excess is investigated here using the Planck data. The integrated SED of the two galaxies before subtraction of the foreground (Milky Way) and background (CMB fluctuations) emission are in good agreement with previous determinations, confirming the presence of the millimetre excess. In the context of this preliminary analysis we do not propose a full multi-component fitting of the data, but instead subtract contributions unrelated to the galaxies and to dust emission. The background CMB contribution is subtracted using an internal linear combination (ILC) method performed locally around the galaxies. The foreground emission from the Milky Way is subtracted as a Galactic Hi template, and the dust emissivity is derived in a region surrounding the two galaxies and dominated by Milky Way emission. After subtraction, the remaining emission of both galaxies correlates closely with the atomic and molecular gas emission of the LMC and SMC. The millimetre excess in the LMC can be explained by CMB fluctuations, but a significant excess is still present in the SMC SED. The Planck and IRAS-IRIS data at 100 μm are combined to produce thermal dust temperature and optical depth maps of the two galaxies. The LMC temperature map shows the presence of a warm inner arm already found with the Spitzer data, but which also shows the existence of a previously unidentified cold outer arm. Several cold regions are found along this arm, some of which are associated with known molecular clouds. The dust optical depth maps are used to constrain the thermal dust emissivity power-law index (β). The average spectral index is found to be consistent with β = 1.5 and β = 1.2 below 500μm for the LMC and SMC respectively

  6. Composition and origin of Early Cambrian Tiantaishan phosphorite-Mn carbonate ores, Shaanxi Province, China

    USGS Publications Warehouse

    Hein, J.R.; Fan, D.; Ye, J.; Liu, T.; Yeh, H.-W.

    1999-01-01

    The Tiantaishan phosphorite-Mn carbonate ores occur in the Early Cambrian Tananpo Formation in complexly folded and faulted rocks located in southern Shaanxi Province. About 65 x 106 tonnes of 17% P2O5 ore reserves exist and Mn-ore reserves are about 8.3 x 106 tonnes of +18% Mn. The stratigraphic sequence in ascending order consists of black phyllite, black to gray phosphorite ore, black phyllite, rhodochrostone ore, Mn mixed-carbonates, and dolostone. Data are presented from microprobe mineral chemistry, whole-rock chemistry, stable isotopes of carbonates, X-ray mineralogy, petrographic and SEM observations, and statistical analysis of chemical data. The dominant ore-forming minerals are hydroxy- and carbonate fluorapatite and Ca rhodochrosite, with Mg kutnahorite and dolomite comprising the Mn mixed-carbonate section. Pyrite occurs in all rock types and alabandite (MnS) occurs throughout the rhodochrostone section. The mean P2O5 content of phosphorite is 31% and argillaceous phosphorite is 16%, while the mean MnO content of rhodochrostone ore is 37%. Phosphorite ores are massive, spheroidal, laminated, and banded, while rhodochrostone ores have oolitic, spheroidal, and granular fabrics. The most distinguishing characteristics of the ores are high total organic carbon (TOC) contents (mean 8.4%) in the phosphorite and high P2O5 contents (mean 2.7%) in the rhodochrostone ore. The atypically high TOC contents in the Tiantaishan phosphorite probably result from very strong productivity leading to high sedimentation rates accompanied by weak reworking of sediments; poor utilization of the organic matter by bacteria; and/or partial replacement of bacterial or algal mats by the apatite. The depositional setting of the ores was the margin of an epicontinental seaway created as a direct consequence of global processes that included break-up of a supercontinent, formation of narrow seaways, creation of extensive continental shelves, overturn of stagnant, metal-rich deep

  7. Early Lapita skeletons from Vanuatu show Polynesian craniofacial shape: Implications for Remote Oceanic settlement and Lapita origins.

    PubMed

    Valentin, Frédérique; Détroit, Florent; Spriggs, Matthew J T; Bedford, Stuart

    2016-01-12

    With a cultural and linguistic origin in Island Southeast Asia the Lapita expansion is thought to have led ultimately to the Polynesian settlement of the east Polynesian region after a time of mixing/integration in north Melanesia and a nearly 2,000-y pause in West Polynesia. One of the major achievements of recent Lapita research in Vanuatu has been the discovery of the oldest cemetery found so far in the Pacific at Teouma on the south coast of Efate Island, opening up new prospects for the biological definition of the early settlers of the archipelago and of Remote Oceania in general. Using craniometric evidence from the skeletons in conjunction with archaeological data, we discuss here four debated issues: the Lapita-Asian connection, the degree of admixture, the Lapita-Polynesian connection, and the question of secondary population movement into Remote Oceania.

  8. A new sphenodontian (Lepidosauria: Rhynchocephalia) from the Late Triassic of Argentina and the early origin of the herbivore opisthodontians.

    PubMed

    Martínez, Ricardo N; Apaldetti, Cecilia; Colombi, Carina E; Praderio, Angel; Fernandez, Eliana; Santi Malnis, Paula; Correa, Gustavo A; Abelin, Diego; Alcober, Oscar

    2013-12-01

    Sphenodontians were a successful group of rhynchocephalian reptiles that dominated the fossil record of Lepidosauria during the Triassic and Jurassic. Although evidence of extinction is seen at the end of the Laurasian Early Cretaceous, they appeared to remain numerically abundant in South America until the end of the period. Most of the known Late Cretaceous record in South America is composed of opisthodontians, the herbivorous branch of Sphenodontia, whose oldest members were until recently reported to be from the Kimmeridgian-Tithonian (Late Jurassic). Here, we report a new sphenodontian, Sphenotitan leyesi gen. et sp. nov., collected from the Upper Triassic Quebrada del Barro Formation of northwestern Argentina. Phylogenetic analysis identifies Sphenotitan as a basal member of Opisthodontia, extending the known record of opisthodontians and the origin of herbivory in this group by 50 Myr.

  9. A new sphenodontian (Lepidosauria: Rhynchocephalia) from the Late Triassic of Argentina and the early origin of the herbivore opisthodontians

    PubMed Central

    Martínez, Ricardo N.; Apaldetti, Cecilia; Colombi, Carina E.; Praderio, Angel; Fernandez, Eliana; Malnis, Paula Santi; Correa, Gustavo A.; Abelin, Diego; Alcober, Oscar

    2013-01-01

    Sphenodontians were a successful group of rhynchocephalian reptiles that dominated the fossil record of Lepidosauria during the Triassic and Jurassic. Although evidence of extinction is seen at the end of the Laurasian Early Cretaceous, they appeared to remain numerically abundant in South America until the end of the period. Most of the known Late Cretaceous record in South America is composed of opisthodontians, the herbivorous branch of Sphenodontia, whose oldest members were until recently reported to be from the Kimmeridgian–Tithonian (Late Jurassic). Here, we report a new sphenodontian, Sphenotitan leyesi gen. et sp. nov., collected from the Upper Triassic Quebrada del Barro Formation of northwestern Argentina. Phylogenetic analysis identifies Sphenotitan as a basal member of Opisthodontia, extending the known record of opisthodontians and the origin of herbivory in this group by 50 Myr. PMID:24132307

  10. Early Lapita skeletons from Vanuatu show Polynesian craniofacial shape: Implications for Remote Oceanic settlement and Lapita origins

    PubMed Central

    Valentin, Frédérique; Bedford, Stuart

    2016-01-01

    With a cultural and linguistic origin in Island Southeast Asia the Lapita expansion is thought to have led ultimately to the Polynesian settlement of the east Polynesian region after a time of mixing/integration in north Melanesia and a nearly 2,000-y pause in West Polynesia. One of the major achievements of recent Lapita research in Vanuatu has been the discovery of the oldest cemetery found so far in the Pacific at Teouma on the south coast of Efate Island, opening up new prospects for the biological definition of the early settlers of the archipelago and of Remote Oceania in general. Using craniometric evidence from the skeletons in conjunction with archaeological data, we discuss here four debated issues: the Lapita–Asian connection, the degree of admixture, the Lapita–Polynesian connection, and the question of secondary population movement into Remote Oceania. PMID:26712019

  11. A new sphenodontian (Lepidosauria: Rhynchocephalia) from the Late Triassic of Argentina and the early origin of the herbivore opisthodontians.

    PubMed

    Martínez, Ricardo N; Apaldetti, Cecilia; Colombi, Carina E; Praderio, Angel; Fernandez, Eliana; Santi Malnis, Paula; Correa, Gustavo A; Abelin, Diego; Alcober, Oscar

    2013-12-01

    Sphenodontians were a successful group of rhynchocephalian reptiles that dominated the fossil record of Lepidosauria during the Triassic and Jurassic. Although evidence of extinction is seen at the end of the Laurasian Early Cretaceous, they appeared to remain numerically abundant in South America until the end of the period. Most of the known Late Cretaceous record in South America is composed of opisthodontians, the herbivorous branch of Sphenodontia, whose oldest members were until recently reported to be from the Kimmeridgian-Tithonian (Late Jurassic). Here, we report a new sphenodontian, Sphenotitan leyesi gen. et sp. nov., collected from the Upper Triassic Quebrada del Barro Formation of northwestern Argentina. Phylogenetic analysis identifies Sphenotitan as a basal member of Opisthodontia, extending the known record of opisthodontians and the origin of herbivory in this group by 50 Myr. PMID:24132307

  12. Geologic map of Late Cenozoic deposits, Santa Clara County, California

    USGS Publications Warehouse

    Helley, E.J.; Brabb, E.E.

    1971-01-01

    This map is the first of several in the San Francisco Bay region showing the distribution and differentiation of the late Cenozoic alluvial, estuarine, and volcanic deposits. The sedimentary deposits of gravel, sand, silt, and clay were separated into geologic map units on the basis of their post-depositional soil development, texture, and geomorphology. Some of the geologic units are associated with different landforms having recognizable topographic expression such as alluvial fans, natural stream terraces, levees, and interfluvial basins. The relative ages of these unites were established on the basis of intensity of soil profile development, stratigraphic position, and geomorphic expression. The older deposits exhibit strongly developed soil profiles with strong horizon differentiation whereas younger deposits display minimal soil profile development, consisting primarily of organic matter accumulations near the land surface. Geomorphic expression and degree of erosion and dissection were additional criteria used to aid in the age determinations. For example, younger deposits form well-defined morphologic features such as levees, terraces, and broad, undissected alluvial fans along the margin of the bay basin and are related to present drainage patterns. The oldest deposits shown on this map (QTs) are structurally deformed by folding and faulting and therefore exhibit no original depositional geomorphic features. These deposits are not related to present drainage patterns but suggest earlier patterns much different from those existing today.

  13. Mid-Cenozoic tectonic and paleoenvironmental setting of the central Arctic Ocean

    NASA Astrophysics Data System (ADS)

    O'Regan, Matthew; Moran, Kathryn; Backman, Jan; Jakobsson, Martin; Sangiorgi, Francesca; Brinkhuis, Henk; Pockalny, Rob; Skelton, Alasdair; Stickley, Catherine; Koç, Nalan; Brumsack, Hans-Jürgen; Willard, Debra

    2008-03-01

    Drilling results from the Integrated Ocean Drilling Program's Arctic Coring Expedition (ACEX) to the Lomonosov Ridge (LR) document a 26 million year hiatus that separates freshwater-influenced biosilica-rich deposits of the middle Eocene from fossil-poor glaciomarine silty clays of the early Miocene. Detailed micropaleontological and sedimentological data from sediments surrounding this mid-Cenozoic hiatus describe a shallow water setting for the LR, a finding that conflicts with predrilling seismic predictions and an initial postcruise assessment of its subsidence history that assumed smooth thermally controlled subsidence following rifting. A review of Cenozoic tectonic processes affecting the geodynamic evolution of the central Arctic Ocean highlights a prolonged phase of basin-wide compression that ended in the early Miocene. The coincidence in timing between the end of compression and the start of rapid early Miocene subsidence provides a compelling link between these observations and similarly accounts for the shallow water setting that persisted more than 30 million years after rifting ended. However, for much of the late Paleogene and early Neogene, tectonic reconstructions of the Arctic Ocean describe a landlocked basin, adding additional uncertainty to reconstructions of paleodepth estimates as the magnitude of regional sea level variations remains unknown.

  14. Mid-Cenozoic tectonic and paleoenvironmental setting of the central Arctic Ocean

    USGS Publications Warehouse

    O'Regan, M.; Moran, K.; Backman, J.; Jakobsson, M.; Sangiorgi, F.; Brinkhuis, Henk; Pockalny, Rob; Skelton, Alasdair; Stickley, Catherine E.; Koc, N.; Brumsack, Hans-Juergen; Willard, Debra A.

    2008-01-01

    Drilling results from the Integrated Ocean Drilling Program's Arctic Coring Expedition (ACEX) to the Lomonosov Ridge (LR) document a 26 million year hiatus that separates freshwater-influenced biosilica-rich deposits of the middle Eocene from fossil-poor glaciomarine silty clays of the early Miocene. Detailed micropaleontological and sedimentological data from sediments surrounding this mid-Cenozoic hiatus describe a shallow water setting for the LR, a finding that conflicts with predrilling seismic predictions and an initial postcruise assessment of its subsidence history that assumed smooth thermally controlled subsidence following rifting. A review of Cenozoic tectonic processes affecting the geodynamic evolution of the central Arctic Ocean highlights a prolonged phase of basin-wide compression that ended in the early Miocene. The coincidence in timing between the end of compression and the start of rapid early Miocene subsidence provides a compelling link between these observations and similarly accounts for the shallow water setting that persisted more than 30 million years after rifting ended. However, for much of the late Paleogene and early Neogene, tectonic reconstructions of the Arctic Ocean describe a landlocked basin, adding additional uncertainty to reconstructions of paleodepth estimates as the magnitude of regional sea level variations remains unknown.

  15. The Cenozoic evolution of the San Joaquin Valley, California

    USGS Publications Warehouse

    Bartow, J. Alan

    1991-01-01

    homocline, the western limb of the valley syncline between the Stockton arch and Panoche Creek, consists of a locally faulted homocline with northeast dips. Deformation is mostly late Cenozoic, is complex in its history, and has included up-to-the-southwest reverse faulting. The west-side fold belt, the southwestern part of the valley syncline between Panoche Creek and Elk Hills and including the southern Diablo and Temblor Ranges, is characterized by a series of folds and faults trending slightly oblique to the San Andreas fault. Paleogene folding took place in the northern part of the belt; however, most folding took place in Neogene time, during which the intensity of deformation increased southeastward along the belt and southwestward toward the San Andreas fault. The Maricopa-Tejon subbasin and the south-margin deformed belt are structurally distinct, but genetically related, regions bounded by the Bakersfield arch on the north, the San Emigdio Mountains on the south, the Tehachapi Mountains on the east, and the southeast end of the fold belt on the west. This combined region, which is the most deformed part of the basin, has undergone significant late Cenozoic shortening through north-directed thrust faulting at the south margin, as well as extreme Neogene basin subsidence north of the thrust belt. The sedimentary history of the San Joaquin basin, recorded in terms of unconformity-bounded depositional sequences, has been controlled principally by tectonism, but it has also been controlled by eustatic sea-level changes and, to a lesser degree, by climate. Plate tectonic events that had an influence on the basin include (1) subduction during the early Tertiary that changed from oblique to normal convergence in the later part of the Eocene, (2) the mid-Oligocene encounter of the Pacific-Farallon spreading ridge with the trench, and the consequent establishment of the San Andreas transform, (3) the northwestward migration of the Mendocino triple junction that in

  16. THE ORIGIN OF DUST IN EARLY-TYPE GALAXIES AND IMPLICATIONS FOR ACCRETION ONTO SUPERMASSIVE BLACK HOLES

    SciTech Connect

    Martini, Paul; Dicken, Daniel; Storchi-Bergmann, Thaisa

    2013-04-01

    We have conducted an archival Spitzer study of 38 early-type galaxies in order to determine the origin of the dust in approximately half of this population. Our sample galaxies generally have good wavelength coverage from 3.6 {mu}m to 160 {mu}m, as well as visible-wavelength Hubble Space Telescope (HST) images. We use the Spitzer data to estimate dust masses, or establish upper limits, and find that all of the early-type galaxies with dust lanes in the HST data are detected in all of the Spitzer bands and have dust masses of {approx}10{sup 5}-10{sup 6.5} M{sub Sun }, while galaxies without dust lanes are not detected at 70 {mu}m and 160 {mu}m and typically have <10{sup 5} M{sub Sun} of dust. The apparently dust-free galaxies do have 24 {mu}m emission that scales with the shorter-wavelength flux, yet substantially exceeds the expectations of photospheric emission by approximately a factor of three. We conclude this emission is dominated by hot, circumstellar dust around evolved stars that does not survive to form a substantial interstellar component. The order-of-magnitude variations in dust masses between galaxies with similar stellar populations rule out a substantial contribution from continual, internal production in spite of the clear evidence for circumstellar dust. We demonstrate that the interstellar dust is not due to purely external accretion, unless the product of the merger rate of dusty satellites and the dust lifetime is at least an order of magnitude higher than expected. We propose that dust in early-type galaxies is seeded by external accretion, yet the accreted dust is maintained by continued growth in externally accreted cold gas beyond the nominal lifetime of individual grains. The several Gyr depletion time of the cold gas is long enough to reconcile the fraction of dusty early-type galaxies with the merger rate of gas-rich satellites. As the majority of dusty early-type galaxies are also low-luminosity active galactic nuclei and likely fueled

  17. The origin and early evolution of Sauria: reassessing the permian Saurian fossil record and the timing of the crocodile-lizard divergence.

    PubMed

    Ezcurra, Martín D; Scheyer, Torsten M; Butler, Richard J

    2014-01-01

    Sauria is the crown-group of Diapsida and is subdivided into Lepidosauromorpha and Archosauromorpha, comprising a high percentage of the diversity of living and fossil tetrapods. The split between lepidosauromorphs and archosauromorphs (the crocodile-lizard, or bird-lizard, divergence) is considered one of the key calibration points for molecular analyses of tetrapod phylogeny. Saurians have a very rich Mesozoic and Cenozoic fossil record, but their late Paleozoic (Permian) record is problematic. Several Permian specimens have been referred to Sauria, but the phylogenetic affinity of some of these records remains questionable. We reexamine and review all of these specimens here, providing new data on early saurian evolution including osteohistology, and present a new morphological phylogenetic dataset. We support previous studies that find that no valid Permian record for Lepidosauromorpha, and we also reject some of the previous referrals of Permian specimens to Archosauromorpha. The most informative Permian archosauromorph is Protorosaurus speneri from the middle Late Permian of Western Europe. A historically problematic specimen from the Late Permian of Tanzania is redescribed and reidentified as a new genus and species of basal archosauromorph: Aenigmastropheus parringtoni. The supposed protorosaur Eorasaurus olsoni from the Late Permian of Russia is recovered among Archosauriformes and may be the oldest known member of the group but the phylogenetic support for this position is low. The assignment of Archosaurus rossicus from the latest Permian of Russia to the archosauromorph clade Proterosuchidae is supported. Our revision suggests a minimum fossil calibration date for the crocodile-lizard split of 254.7 Ma. The occurrences of basal archosauromorphs in the northern (30°N) and southern (55°S) parts of Pangea imply a wider paleobiogeographic distribution for the group during the Late Permian than previously appreciated. Early archosauromorph growth

  18. The Origin and Early Evolution of Sauria: Reassessing the Permian Saurian Fossil Record and the Timing of the Crocodile-Lizard Divergence

    PubMed Central

    Ezcurra, Martín D.; Scheyer, Torsten M.; Butler, Richard J.

    2014-01-01

    Sauria is the crown-group of Diapsida and is subdivided into Lepidosauromorpha and Archosauromorpha, comprising a high percentage of the diversity of living and fossil tetrapods. The split between lepidosauromorphs and archosauromorphs (the crocodile-lizard, or bird-lizard, divergence) is considered one of the key calibration points for molecular analyses of tetrapod phylogeny. Saurians have a very rich Mesozoic and Cenozoic fossil record, but their late Paleozoic (Permian) record is problematic. Several Permian specimens have been referred to Sauria, but the phylogenetic affinity of some of these records remains questionable. We reexamine and review all of these specimens here, providing new data on early saurian evolution including osteohistology, and present a new morphological phylogenetic dataset. We support previous studies that find that no valid Permian record for Lepidosauromorpha, and we also reject some of the previous referrals of Permian specimens to Archosauromorpha. The most informative Permian archosauromorph is Protorosaurus speneri from the middle Late Permian of Western Europe. A historically problematic specimen from the Late Permian of Tanzania is redescribed and reidentified as a new genus and species of basal archosauromorph: Aenigmastropheus parringtoni. The supposed protorosaur Eorasaurus olsoni from the Late Permian of Russia is recovered among Archosauriformes and may be the oldest known member of the group but the phylogenetic support for this position is low. The assignment of Archosaurus rossicus from the latest Permian of Russia to the archosauromorph clade Proterosuchidae is supported. Our revision suggests a minimum fossil calibration date for the crocodile-lizard split of 254.7 Ma. The occurrences of basal archosauromorphs in the northern (30°N) and southern (55°S) parts of Pangea imply a wider paleobiogeographic distribution for the group during the Late Permian than previously appreciated. Early archosauromorph growth

  19. Low rate of replication fork progression lengthens the replication timing of a locus containing an early firing origin

    PubMed Central

    Bénard, Marianne; Maric, Chrystelle; Pierron, Gérard

    2007-01-01

    Invariance of temporal order of genome replication in eukaryotic cells and its correlation with gene activity has been well-documented. However, recent data suggest a relax control of replication timing. To evaluate replication schedule accuracy, we detailed the replicational organization of the developmentally regulated php locus that we previously found to be lately replicated, even though php gene is highly transcribed in naturally synchronous plasmodia of Physarum. Unexpectedly, bi-dimensional agarose gel electrophoreses of DNA samples prepared at specific time points of S phase showed that replication of the locus actually begins at the onset of S phase but it proceeds through the first half of S phase, so that complete replication of php-containing DNA fragments occurs in late S phase. Origin mapping located replication initiation upstream php coding region. This proximity and rapid fork progression through the coding region result in an early replication of php gene. We demonstrated that afterwards an unusually low fork rate and unidirectional fork pausing prolong complete replication of php locus, and we excluded random replication timing. Importantly, we evidenced that the origin linked to php gene in plasmodium is not fired in amoebae when php expression dramatically reduced, further illustrating replication-transcription coupling in Physarum. PMID:17717000

  20. Low rate of replication fork progression lengthens the replication timing of a locus containing an early firing origin.

    PubMed

    Bénard, Marianne; Maric, Chrystelle; Pierron, Gérard

    2007-01-01

    Invariance of temporal order of genome replication in eukaryotic cells and its correlation with gene activity has been well-documented. However, recent data suggest a relax control of replication timing. To evaluate replication schedule accuracy, we detailed the replicational organization of the developmentally regulated php locus that we previously found to be lately replicated, even though php gene is highly transcribed in naturally synchronous plasmodia of Physarum. Unexpectedly, bi-dimensional agarose gel electrophoreses of DNA samples prepared at specific time points of S phase showed that replication of the locus actually begins at the onset of S phase but it proceeds through the first half of S phase, so that complete replication of php-containing DNA fragments occurs in late S phase. Origin mapping located replication initiation upstream php coding region. This proximity and rapid fork progression through the coding region result in an early replication of php gene. We demonstrated that afterwards an unusually low fork rate and unidirectional fork pausing prolong complete replication of php locus, and we excluded random replication timing. Importantly, we evidenced that the origin linked to php gene in plasmodium is not fired in amoebae when php expression dramatically reduced, further illustrating replication-transcription coupling in Physarum.

  1. Late Cenozoic Exhumation in the Northern Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Michalak, M.; Hall, S. R.; Farber, D.; Hourigan, J. K.

    2011-12-01

    Orogens represent first-order morphological manifestations of the dynamical forces that drive plate tectonics. Despite advances in techniques that quantify geologic processes, understanding these processes at a continental scale remains challenging. The South American Andes are an example of a long-lived, morphologically and tectonically segmented orogen. The Northern Peruvian Andes are characterized by flat slab subduction and a relatively narrow section of high topography, in contrast to the central Andes, which contain the broad Altiplano-Puna plateau and normal-angle subduction. Current models of Andean orogenesis suggest that most of the high topography evolved recently beginning about 10-20Ma. Recent data from the Central Andes further suggest that this uplift occurred rapidly from ~6-10Ma. However, as many of these data are from the central Andean region, they may not be directly applicable to the entire Andean chain. Therefore, it is critical to investigate areas outside of the central Andean region using similar techniques to test the applicability of these models elsewhere in the Andes. Here, we use low-temperature thermochronology to characterize the shallow crustal cooling history from four sites in the northern Peruvian Andes, across three degrees of latitude (5°S to 8°S). By using both apatite and zircon (U-Th)/He thermochronometers we are able to record rates of crustal exhumation as well as temporal and spatial accelerations and decelerations of exhumation. In contrast to previous studies based on stratigraphical, structural and sedimentological relationships, our preliminary results show no significant exhumation until the Miocene in the Eastern Cordillera of Northern Peru. In general, our results indicate slow exhumation (<0.01 mm/yr) during the Mesozoic and early Cenozoic and record an acceleration of exhumation in the late Miocene to the present, to rates of 0.2-0.5 mm/yr. This regional acceleration signal occurs in field sites in the north (5

  2. Recombinant plasmids carrying promoters, genes and the origin of DNA replication of the early region of bacteriophage T7.

    PubMed Central

    Scherzinger, E; Lauppe, H F; Voll, N; Wanke, M

    1980-01-01

    Two full-length contiguous HpaI fragments of the 0 to 18.2% region of T7 H DNA (HpF-H and HpG) were inserted into plasmids pHV14 or pC194 using oligo(dG . dC) connectors or synthetic HindIII adaptors. Amplification of the two early T7 fragments was achieved by transforming lysostaphin-treated S. aureus W57 with the hybrid plasmids. Experimental evidence is presented suggesting that neither of these T7 segments can be cloned in an intact form in E. coli. One of the hybrids, pHV14-HpF-H, proved to be unstable even in B. subtilis 168. The supercoiled recombinant plasmids were tested for their capacity to support RNA synthesis by purified E. coli or T7 RNA polymerases and to serve as templates in a cell-free T7 DNA replication system. The results of these in vitro studies indicate the presence of active "early" promoters in the cloned fragment HpF-H and active "late" promoters, as well as a functional origin of replication in the cloned fragment HpG. Images PMID:7433121

  3. Analysis of early survival of Holstein-Friesian heifers of diverse sire origins on commercial dairy farms in Kenya.

    PubMed

    Menjo, D K; Bebe, B O; Okeyo, A M; Ojango, J M K

    2009-02-01

    The use of imported semen within the Holstein-Friesian cattle population in Kenya has contributed to increased milk production per cow, however, information on how this has impacted on functional traits, particularly early life survival and reproductive performance is scarce. This study evaluated age at first calving (AFC), survival to age at first calving, and survival to four years of age using survival analyses techniques, in Holstein-Friesian cattle on four dairy farms in Kenya. The heritability estimate obtained for AFC was 0.15 +/- 0.06 for an average AFC of 1058 days. Animals sired by New Zealand and Australian born bulls had the earliest average AFC (907 days). On average, 25% of all the heifers born were culled prior to attaining a first calving, while 34% were culled prior to four years of age. Though the highest proportion of losses was due to unspecified reasons, the relative risk of being culled was highest when an animal had a specific disease, and the first 60 days of life were the most critical for survival. Daughters of sires from South-Africa and Israel tended to have better survival rates than those sired by bulls originating from other regions. Unfavourable selection towards animals sired by Kenyan born bulls was evident. The economic implications of the high rate of early mortality need to be evaluated in order to assist livestock producers make informed decisions on choice of sires for breeding.

  4. Chemodynamical deuterium fractionation in the early solar nebula: The origin of water on earth and in asteroids and comets

    SciTech Connect

    Albertsson, T.; Semenov, D.; Henning, Th.

    2014-03-20

    Formation and evolution of water in the solar system and the origin of water on Earth constitute one of the most interesting questions in astronomy. The prevailing hypothesis for the origin of water on Earth is by delivery through water-rich small solar system bodies. In this paper, the isotopic and chemical evolution of water during the early history of the solar nebula, before the onset of planetesimal formation, is studied. A gas-grain chemical model that includes multiply deuterated species and nuclear spin-states is combined with a steady-state solar nebula model. To calculate initial abundances, we simulated 1 Myr of evolution of a cold and dark TMC-1-like prestellar core. Two time-dependent chemical models of the solar nebula are calculated over 1 Myr: (1) a laminar model and (2) a model with two-dimensional (2D) turbulent mixing. We find that the radial outward increase of the H{sub 2}O D/H ratio is shallower in the chemodynamical nebular model than in the laminar model. This is related to more efficient defractionation of HDO via rapid gas-phase processes because the 2D mixing model allows the water ice to be transported either inward and thermally evaporated or upward and photodesorbed. The laminar model shows the Earth water D/H ratio at r ≲ 2.5 AU, whereas for the 2D chemodynamical model this zone is larger, r ≲ 9 AU. Similarly, the water D/H ratios representative of the Oort-family comets, ∼2.5-10 × 10{sup –4}, are achieved within ∼2-6 AU and ∼2-20 AU in the laminar and the 2D model, respectively. We find that with regards to the water isotopic composition and the origin of the comets, the mixing model seems to be favored over the laminar model.

  5. Chemodynamical Deuterium Fractionation in the Early Solar Nebula: The Origin of Water on Earth and in Asteroids and Comets

    NASA Astrophysics Data System (ADS)

    Albertsson, T.; Semenov, D.; Henning, Th.

    2014-03-01

    Formation and evolution of water in the solar system and the origin of water on Earth constitute one of the most interesting questions in astronomy. The prevailing hypothesis for the origin of water on Earth is by delivery through water-rich small solar system bodies. In this paper, the isotopic and chemical evolution of water during the early history of the solar nebula, before the onset of planetesimal formation, is studied. A gas-grain chemical model that includes multiply deuterated species and nuclear spin-states is combined with a steady-state solar nebula model. To calculate initial abundances, we simulated 1 Myr of evolution of a cold and dark TMC-1-like prestellar core. Two time-dependent chemical models of the solar nebula are calculated over 1 Myr: (1) a laminar model and (2) a model with two-dimensional (2D) turbulent mixing. We find that the radial outward increase of the H2O D/H ratio is shallower in the chemodynamical nebular model than in the laminar model. This is related to more efficient defractionation of HDO via rapid gas-phase processes because the 2D mixing model allows the water ice to be transported either inward and thermally evaporated or upward and photodesorbed. The laminar model shows the Earth water D/H ratio at r <~ 2.5 AU, whereas for the 2D chemodynamical model this zone is larger, r <~ 9 AU. Similarly, the water D/H ratios representative of the Oort-family comets, ~2.5-10 × 10-4, are achieved within ~2-6 AU and ~2-20 AU in the laminar and the 2D model, respectively. We find that with regards to the water isotopic composition and the origin of the comets, the mixing model seems to be favored over the laminar model.

  6. Bubble-seq analysis of the human genome reveals distinct chromatin-mediated mechanisms for regulating early- and late-firing origins.

    PubMed

    Mesner, Larry D; Valsakumar, Veena; Cieslik, Marcin; Pickin, Rebecca; Hamlin, Joyce L; Bekiranov, Stefan

    2013-11-01

    We have devised a method for isolating virtually pure and comprehensive libraries of restriction fragments that contained replication initiation sites (bubbles) in vivo. We have now sequenced and mapped the bubble-containing fragments from GM06990, a near-normal EBV-transformed lymphoblastoid cell line, and have compared origin distributions with a comprehensive replication timing study recently published for this cell line. We find that early-firing origins, which represent ∼32% of all origins, overwhelmingly represent zones, associate only marginally with active transcription units, are localized within large domains of open chromatin, and are significantly associated with DNase I hypersensitivity. Origin "density" falls from early- to mid-S-phase, but rises again in late S-phase to levels only 17% lower than in early S-phase. Unexpectedly, late origin density calculated on the 1-Mb scale increases as a function of increasing chromatin compaction. Furthermore, the median efficiency of origins in late-replicating, heterochromatic domains is only 25% lower than in early-replicating euchromatic loci. Thus, the activation of early- and late-firing origins must be regulated by quintessentially different mechanisms. The aggregate data can be unified into a model in which initiation site selection is driven almost entirely by epigenetic factors that fashion both the long-range and local chromatin environments, with underlying DNA sequence and local transcriptional activity playing only minor roles. Importantly, the comprehensive origin map we have prepared for GM06990 overlaps moderately well with origin maps recently reported for the genomes of four different human cell lines based on the distributions of small nascent strands.

  7. The Role of Population Origin and Microenvironment in Seedling Emergence and Early Survival in Mediterranean Maritime Pine (Pinus pinaster Aiton)

    PubMed Central

    Vizcaíno-Palomar, Natalia; Revuelta-Eugercios, Bárbara; Zavala, Miguel A.; Alía, Ricardo; González-Martínez, Santiago C.

    2014-01-01

    Understanding tree recruitment is needed to forecast future forest distribution. Many studies have reported the relevant ecological factors that affect recruitment success in trees, but the potential for genetic-based differences in recruitment has often been neglected. In this study, we established a semi-natural reciprocal sowing experiment to test for local adaptation and microenvironment effects (evaluated here by canopy cover) in the emergence and early survival of maritime pine (Pinus pinaster Aiton), an emblematic Mediterranean forest tree. A novel application of molecular markers was also developed to test for family selection and, thus, for potential genetic change over generations. Overall, we did not find evidence to support local adaptation at the recruitment stage in our semi-natural experiment. Moreover, only weak family selection (if any) was found, suggesting that in stressful environments with low survival, stochastic processes and among-year climate variability may drive recruitment. Nevertheless, our study revealed that, at early stages of recruitment, microenvironments may favor the population with the best adapted life strategy, irrespectively of its (local or non-local) origin. We also found that emergence time is a key factor for seedling survival in stressful Mediterranean environments. Our study highlights the complexity of the factors influencing the early stages of establishment of maritime pine and provides insights into possible management actions aimed at environmental change impact mitigation. In particular, we found that the high stochasticity of the recruitment process in stressful environments and the differences in population-specific adaptive strategies may difficult assisted migration schemes. PMID:25286410

  8. Cenozoic sedimentary and deformational history of hispaniola, 1: southeastern Cordillera Central

    SciTech Connect

    Heubeck, C.; Mann, P.

    1988-01-01

    The Cordillera Central approximates an elongate (220 km), elevated (>3 km), thrust-bounded anticline cored by Cretaceous-Paleogene arc rocks and uplifted during Miocene to recent time by convergent strike-slip movements between the North American and Caribbean plates. The southeastern termination of the anticline plunges beneath a thick (>6 km), well-exposed marine clastic sedimentary sequence. Because uplift-related faulting is minimal in this hinge region of the Cordillera Central anticline, the authors have carried out detailed mapping of the area to determine (1) relation of Cretaceous-Paleogene arc basement to overlying Cenozoic sedimentary cover, and (2) Cenozoic deformational history of arc and basin sequences. Mapping has clearly distinguished three superimposed Cenozoic basins lying on arc basement. The lowest basin (basin 1) is Paleocene-Eocene in age and consists of alternations of arc-derived turbidies with interbedded pelagic limestone and red mudstone. In apparent conformity above this basin is an approximately 4-km thick marine clastic sequence of medial Eocene through early Miocene age (basin 2). These sediments consist of fining-upward turbiditic sequence derived from the northwest and northeast. Arc basement and overlying basins 1 and 2 were shortened approximately 25% in a short-lived, northwest-southeast-directed compressional event that resulted in the formation of large open synclines and tightly folded and faulted anticlines with fold amplitudes of 1-6 km. Underformed, medial Miocene sediments of a mixed clastic and carbonate shelf facies (basin 3) unconformably overlie the folded latest Oligocene-early Miocene rocks of basin 2 and thus constrain the age of folding as early to middle Miocene.

  9. Origin, fate, and function of the components of the avian germ disc region and early blastoderm: role of ooplasmic determinants.

    PubMed

    Callebaut, Marc

    2005-08-01

    In the avian oocytal germ disc region, at the end of oogenesis, we discerned four ooplasms (alpha, beta, gamma, delta) presenting an onion-peel distribution (from peripheral and superficial to central and deep. Their fate was followed during early embryonic development. The most superficial and peripheral alpha ooplasm plays a fundamental role during cleavage. The beta ooplasm, originally localized in the peripheral region of the blastodisc, becomes mainly concentrated in the primitive streak. At the moment of bilateral symmetrization, a spatially oblique, sickle-shaped uptake of gamma and delta ooplasms occurs so that gamma and delta ooplasms become incorporated into the deeper part of the avian blastoderm. These ooplasms seem to contain ooplasmic determinants that initiate either early neurulation or gastrulation events. The early neural plate-inducing structure that forms a deep part of the blastoderm is the delta ooplasm-containing endophyll (primary hypoblast). Together with the primordial germ cells, it is derived from the superficial centrocaudal part of the nucleus of Pander, which also contains delta ooplasm. The other structure (gamma ooplasm) that is incorporated into the caudolateral deep part of the blastoderm forms Rauber's sickle. It induces gastrulation in the concavity of Rauber's sickle and blood island formation exterior to Rauber's sickle. Rauber's sickle develops by ingrowth of blastodermal cells into the gamma ooplasm, which surrounds the nucleus of Pander. Rauber's sickle constitutes the primary major organizer of the avian blastoderm and generates only extraembryonic tissues (junctional and sickle endoblast). By imparting positional information, it organizes and dominates the whole blastoderm (controlling gastrulation, neurulation, and coelom and cardiovascular system formation). Fragments of the horns of Rauber's sickle extend far cranially into the lateral quadrants of the unincubated blastoderm, so that often Rauber's sickle material

  10. Cenozoic vegetation, climate changes and hominid evolution in tropical Africa

    NASA Astrophysics Data System (ADS)

    Bonnefille, Raymonde

    2010-07-01

    This paper reviews information on past vegetation of tropical Africa during the Cenozoic, focused upon the last 10 Ma, a time spanning hominid record in Central and East Africa. Summary of palaeobotanical data collected at terrestrial sites are compared with new results on the long term evolution of the continental vegetation zones documented from marine pollen record of two deep sea cores recovered from the Atlantic and Indian Oceans. Section 2 includes a summary of modern distribution of vegetation belts in the African continent and a synthesis of the results of both macrobotanical (fossil wood, leaves and fruits) and microbotanical (mainly pollen) studies presented according to time scale and geographical location. The main features emphasized by the palaeobotanical results are 1) seasonal vegetation and climate documented as soon as the Eocene in Tanzania 2) well diversified forests existing in northern West Ethiopia during the Oligocene 3) high temporal and spatial variabilities of forests composition during the Miocene when deciduous Legume woodland was documented in Ethiopia whereas wetter evergreen forests existed in Western Kenya 4) lack of evidence for an evergreen forest belt, continuous from Western Congo to East Africa. Section 3 presents new original pollen data recovered from a long core in the Gulf of Aden documenting large scale past vegetation changes in East Africa during the last 11 Ma. These results are discussed in comparison with a summarized long pollen sequence previously published from a marine core offshore the Niger delta. This comparison illustrates variations in geographical distribution of large vegetation zone at the continental scale, through time. In Section 4, vegetation changes registered during the last 10 Ma are discussed in relation with the results of isotopic studies and an updated presentation of hominids evolution in Africa. Several changes are shown in the marine records. An expansion of savanna/grassland is shown at 10

  11. Deep Reaching Gas-permeable Tectonic Faults of the Early Earth as Habitats for the Origin of Life

    NASA Astrophysics Data System (ADS)

    Schreiber, U.; Mayer, C.

    2012-04-01

    The discussion on the origin of life encounters difficulties when it comes to estimate the conditions of the early earth and to define plausible environments for the development of the first complex organic molecules. Until now, the role of the earth's crust has been more or less ignored. First continental crustal cores may have been developed some tens to hundreds of million years after formation of earth. Due to tectonic stress the proto continents were sheared by vertical strike-slip faults at an early stage. These deep-reaching open, interconnected tectonic faults may provide possible reaction habitats ranging from nano- to centimetre and even larger dimensions that sum up to several cubic kilometres for the formation of prebiotic molecules. Their fillings consist of supercritical and subcritical waters and supercritical and subcritical gases. Here, all necessary raw materials including phosphate for the development of prebiotic molecules exist in variable concentrations and in sufficient quantities. Furthermore, there are periodically changing pressure and temperature conditions, varying pH-values, metallic surfaces, clay minerals and a large number of catalysts. While cosmic and UV-radiation are excluded, nuclear radiation intervenes the chemical evolution of the molecules inside the crust. Carbon dioxide (CO2) is of crucial importance. It can be present in an almost pure form as a supercritical fluid (scCO2) in a crustal depth less than 1 km (critical point of pure CO2: 74 bar; 31°C). Inside strike-slip faults, a two-phase system formed by supercritical CO2 in liquid water provides the environment for condensation and polymerisation of hydrogen cyanide, nucleobases, nucleotides and amino acids. ScCO2 is a non-polar solvent that is widely used in "green chemistry" (Anastas and Kirchhoff 2002) and enables the dissolution of non-polar reactants and their reactions normally occurring in the absence of water. Under the influence of periodically changing

  12. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Hall, Robert

    2012-10-01

    The heterogeneous Sundaland region was assembled by closure of Tethyan oceans and addition of continental fragments. Its Mesozoic and Cenozoic history is illustrated by a new plate tectonic reconstruction. A continental block (Luconia-Dangerous Grounds) rifted from east Asia was added to eastern Sundaland north of Borneo in the Cretaceous. Continental blocks that originated in western Australia from the Late Jurassic are now in Borneo, Java and Sulawesi. West Burma was not rifted from western Australia in the Jurassic. The Banda (SW Borneo) and Argo (East Java-West Sulawesi) blocks separated from western Australia and collided with the SE Asian margin between 110 and 90 Ma, and at 90 Ma the Woyla intra-oceanic arc collided with the Sumatra margin. Subduction beneath Sundaland terminated at this time. A marked change in deep mantle structure at about 110°E reflects different subduction histories north of India and Australia since 90 Ma. India and Australia were separated by a transform boundary that was leaky from 90 to 75 Ma and slightly convergent from 75 to 55 Ma. From 80 Ma, India moved rapidly north with north-directed subduction within Tethys and at the Asian margin. It collided with an intra-oceanic arc at about 55 Ma, west of Sumatra, and continued north to collide with Asia in the Eocene. Between 90 and 45 Ma Australia remained close to Antarctica and there was no significant subduction beneath Sumatra and Java. During this interval Sundaland was largely surrounded by inactive margins with some strike-slip deformation and extension, except for subduction beneath Sumba-West Sulawesi between 63 and 50 Ma. At 45 Ma Australia began to move north; subduction resumed beneath Indonesia and has continued to the present. There was never an active or recently active ridge subducted in the Late Cretaceous or Cenozoic beneath Sumatra and Java. The slab subducted between Sumatra and east Indonesia in the Cenozoic was Cretaceous or older, except at the very western end

  13. Cenozoic biodiversity: goals, challenges and future prospects

    NASA Astrophysics Data System (ADS)

    Lazarus, David

    2014-05-01

    , taxic). Long-term trends in diversity and environment for example may show different patterns, and be due to different processes, than diversity responses to shorter-term environmental change. Much paleodiversity research in recent years has looked at Phanerozoic trends, with data binned to ca 10 my long intervals. This seems too long: for comparison, it is doubtful we would have discovered much of what we now know about interactions and processes in Cenozoic paleoceanography and paleoclimates if our data was only at this temporal resolution. Given such challenges in data quality and methods, we need urgently to pay more attention to the relatively high resolution, well preserved Cenozoic records of biodiversity and paleoenvironments. While not perfect, these are perhaps the best fossil/environmental records available to understand how diversity on earth is maintained, and how much is at risk as humanity alters the planet.

  14. Late cenozoic subduction complex of Sicily

    USGS Publications Warehouse

    Roure, F.; Howell, D.G.; Muller, C.; Moretti, I.

    1990-01-01

    Besides remnants of Hercynian deformations in the Peloritani nappe and of pre-Oligocene Alpine structures in the Troiani nappe, most compressive structures observed in the Sicilian accretionary wedge result from the late Cenozoic (Tortonian to Present) continental subduction of the Apulia (Iblei) block, and are thus synchronous with distensive structures related to the opening of the Tyrrhenian Sea. Syntectonic deposits fill southward-migrating foredeeps in a sequential fashion, and the dating of these deposits helps to constrain the timing of deformation. Similarly, Plio-Quaternary sediments, eroded from the accreted units, rest on top of the allochthon in either compressive piggy-back depressions or extensional basins. The age and configuration of these overlap deposits constrain our reconstructions of the subsurface geometry of the underlying peri-Tyrrhenian detachment faults or S-verging thrust-faults. Post-depositional erosion, normal faulting and syntectonic filling of basins contribute to maintaining the critical taper of the prism, whose geometry is continuously altered owing to frontal accretion, underplating and isostatic uplift. ?? 1990.

  15. Cenozoic extension and magmatism in Arizona

    NASA Technical Reports Server (NTRS)

    Reynolds, S. J.; Spencer, J. E.

    1985-01-01

    The Basin and Range Province of Arizona was the site of two episodes of Cenozoic extension that can be distinguished on the basis of timing, direction and style of extension, and associated magmatism. The first episode of extension occurred during Oligocene to mid-Miocene time and resulted in the formation of low-angle detachment faults, ductile shear zones (metamorphic core complexes), and regional domains of tilted fault blocks. Evidence for extreme middle Tertiary crustal extension in a NE to SW to SW to ENE to WSW direction has been recognized in various parts of the Basin and Range of Arizona, especially in the Lake Mead area and along the belf of metamorphic core complexes that crosses southern Arizona from Parker to Tucson. New geologic mapping and scrutiny of published geologic maps indicates that significant middle Tertiary extension is more widely distributed than previously thought. The state can be subdivided into regional tilt-block domains in which middle Tertiary rocks dip consistently in one direction. The dip direction in any tilt-block domain is generally toward the breakaway of a low-angle detachment fault that underlies the tilt-block domain; we interpret this an indicating that normal faults in the upper plate of a detechment fault are generally synthetic, rather than antithetic, with respect to the detachment fault.

  16. Exome sequencing identifies titin mutations causing hereditary myopathy with early respiratory failure (HMERF) in families of diverse ethnic origins

    PubMed Central

    2013-01-01

    Background Hereditary myopathy with early respiratory failure (HMERF) was described in several North European families and recently linked to a titin gene (TTN) mutation. We independently studied HMERF-like diseases with the purpose to identify the cause, refine diagnostic criteria, and estimate the frequency of this disease among myopathy patients of various ethnic origins. Methods Whole exome sequencing analysis was carried out in a large U.S. family that included seven members suffering from skeletal muscle weakness and respiratory failure. Subsequent mutation screening was performed in further 45 unrelated probands with similar phenotypes. Studies included muscle strength evaluation, nerve conduction studies and concentric needle EMG, respiratory function test, cardiologic examination, and muscle biopsy. Results A novel TTN p.Gly30150Asp mutation was identified in the highly conserved A-band of titin that co-segregated with the disease in the U.S. family. Screening of 45 probands initially diagnosed as myofibrillar myopathy (MFM) but excluded based on molecular screening for the known MFM genes led to the identification of a previously reported TTN p.Cys30071Arg mutation in one patient. This same mutation was also identified in a patient with suspected HMERF. The p.Gly30150Asp and p.Cys30071Arg mutations are localized to a side chain of fibronectin type III element A150 of the 10th C-zone super-repeat of titin. Conclusions Missense mutations in TTN are the cause of HMERF in families of diverse origins. A comparison of phenotypic features of HMERF caused by the three known TTN mutations in various populations allowed to emphasize distinct clinical/pathological features that can serve as the basis for diagnosis. The newly identified p.Gly30150Asp and the p.Cys30071Arg mutation are localized to a side chain of fibronectin type III element A150 of the 10th C-zone super-repeat of titin. PMID:23514108

  17. Infection of Goose with Genotype VIId Newcastle Disease Virus of Goose Origin Elicits Strong Immune Responses at Early Stage

    PubMed Central

    Xu, Qianqian; Chen, Yuqiu; Zhao, Wenjun; Zhang, Tingting; Liu, Chenggang; Qi, Tianming; Han, Zongxi; Shao, Yuhao; Ma, Deying; Liu, Shengwang

    2016-01-01

    Newcastle disease (ND), caused by virulent strains of Newcastle disease virus (NDV), is a highly contagious disease of birds that is responsible for heavy economic losses for the poultry industry worldwide. However, little is known about host-virus interactions in waterfowl, goose. In this study, we aim to characterize the host immune response in goose, based on the previous reports on the host response to NDV in chickens. Here, we evaluated viral replication and mRNA expression of 27 immune-related genes in 10 tissues of geese challenged with a genotype VIId NDV strain of goose origin (go/CH/LHLJ/1/06). The virus showed early replication, especially in digestive and immune tissues. The expression profiles showed up-regulation of Toll-like receptor (TLR)1–3, 5, 7, and 15, avian β-defensin (AvBD) 5–7, 10, 12, and 16, cytokines [interleukin (IL)-8, IL-18, IL-1β, and interferon-γ], inducible NO synthase (iNOS), and MHC class I in some tissues of geese in response to NDV. In contrast, NDV infection suppressed expression of AvBD1 in cecal tonsil of geese. Moreover, we observed a highly positive correlation between viral replication and host mRNA expressions of TLR1-5 and 7, AvBD4-6, 10, and 12, all the cytokines measured, MHC class I, FAS ligand, and iNOS, mainly at 72 h post-infection. Taken together, these results demonstrated that NDV infection induces strong innate immune responses and intense inflammatory responses at early stage in goose which may associate with the viral pathogenesis. PMID:27757109

  18. Cenozoic right-lateral wrench tectonics in the Western Pyrenees (Spain): The Ubierna Fault System

    NASA Astrophysics Data System (ADS)

    Tavani, S.; Quintà, A.; Granado, P.

    2011-08-01

    A study of macro and mesostructural deformation patterns of the southern margin of the Cantabrian area (Western Pyrenees, Spain) has revealed a complex Cenozoic tectonic framework. Right-lateral tectonics reactivated inherited WNW-ESE striking faults, which developed during Late Paleozoic and Early Triassic events, and Late Jurassic to Early Cretaceous main rifting stage. The Ubierna Fault represents the southern boundary of the Mesozoic basin. During the Oligocene (even Eocene) to present day deformation, this fault and the Ventaniella Fault located to the south in the study area acted as right-lateral slightly transpressive elements forming a 120 km long and 15 km wide overstep area, here named Ubierna Fault System, where the cumulative right-lateral displacement exceeds 15 km. The Cenozoic tectonic framework of the Ubierna Fault System includes reactivation along the WNW-ESE faults, development of negative and, mostly, positive flower structures, branch faults, strike-slip duplexes, and releasing and restraining bends. NE-SW to ENE-WSW striking reverse faults and contractional horsetail terminations, and NNW-SSE striking normal faults and joints are produced by the WNW-ESE right-lateral strike-slip motion. The extensional elements are well developed and deformation progression implied their incorporation in the strike-slip system as right-lateral faults (forming part of strike-slip duplexes). The abundance of flower structures striking WNW-ESE and paralleling the main strike-slip faults, together with the overall uplift of the overstep area, testifies for a slight compressional component. At a regional scale, the Ubierna Fault System represents the most prominent element of a Cenozoic transpressional belt, which incorporates the western portion of the Basque-Cantabrian Basin and the Asturian Massif area. Lateral transition between this transpressive belt and the dip-slip belt located to the east, occurs across an area experiencing along strike-shortening, which

  19. Structure and geologic history of late Cenozoic Eel River basin, California

    SciTech Connect

    Clarke, S.H. Jr.

    1988-03-01

    The Eel River basin formed as a late Cenozoic forearc basin floored by late Mesozoic and early Cenozoic allochthonous terranes (central and coastal belts of the Franciscan complex). Regionally, basement rocks are unconformably overlain on land by a sedimentary sequence as much as about 4200 m thick that comprises the Bear River Formation (early and middle Miocene) and the Wildcat Group (late Miocene to middle Pleistocene) and offshore by broadly coeval upper Tertiary and Quaternary deposits as much as 3300 m thick. Offshore, the southern part of the basin is typified by the seaward extensions of youthful northeast-dipping thrust and reverse faults and northwest-trending anticlines. The latest period of deformation in this part of the basin began during the middle Pleistocene and probably reflects north-northwestward migration of the Mendocino triple junction and encroachment of the Pacific plate. Farther north, the western basin margin and adjacent upper continental slope are separated from the axial part of the offshore basin by a narrow zone of north-northwest-trending, right-stepping en echelon folds. These folds indicate that northeast-southwest compression characteristic of the southern part of the basin is accompanied toward the north by right-lateral shear between the accretionary complex to the west and the basin to the east. The northeastern margin of the offshore basin is cut by north to north-northwest-trending high-angle reverse faults that vertically offset basement rocks as much as 1300 m, west side down. These faults, which may merge northward, coincide with older terrane boundaries and locally show evidence of late Cenozoic reactivation with possible right-lateral slip.

  20. Trojan Tour and Rendezvous (TTR): A New Frontiers Mission to Explore the Origin and Evolution of the Early Solar System

    NASA Astrophysics Data System (ADS)

    Bell, J. F., III; Olkin, C.; Castillo, J. C.

    2015-12-01

    The orbital properties, compositions, and physical properties of the diverse populations of small outer solar system bodies provide a forensic map of how our solar system formed and evolved. Perhaps the most potentially diagnostic, but least explored, of those populations are the Jupiter Trojan asteroids, which orbit at ~5 AU in the L4 and L5 Lagrange points of Jupiter. More than 6200 Jupiter Trojans are presently known, but these are predicted to be only a small fraction of the 500,000 to 1 million Trojans >1 km in size. The Trojans are hypothesized to be either former Kuiper Belt Objects (KBOs) that were scattered into the inner solar system by early giant planet migration and then trapped in the 1:1 Jupiter mean motion resonance, or bodies formed near 5 AU in a much more quiescent early solar system, and then trapped at L4 and L5. The 2011 Planetary Science Decadal Survey identified important questions about the origin and evolution of the solar system that can be addressed by studying of the Trojan asteroids, including: (a) How did the giant planets and their satellite systems accrete, and is there evidence that they migrated to new orbital positions? (b) What is the relationship between large and small KBOs? Is the small population derived by impact disruption of the large one? (c) What kinds of surface evolution, radiation chemistry, and surface-atmosphere interactions occur on distant icy primitive bodies? And (d) What are the sources of asteroid groups (Trojans and Centaurs) that remain to be explored by spacecraft? The Trojan Tour and Rendezvous (TTR) is a New Frontiers-class mission designed to answer these questions, and to test hypotheses for early giant planet migration and solar system evolution. Via close flybys of a large number of these objects,, and orbital characterization of at least one large Trojan, TTR will enable the first-time exploration of this population. Our primary mission goals are to characterize the overall surface geology

  1. Cenozoic right-lateral slip on the Great Glen Fault, Scotland: Additional Evidence and Possible Causes

    NASA Astrophysics Data System (ADS)

    Le Breton, E.; Cobbold, P. R.; Zanella, A.

    2012-04-01

    The Great Glen Fault (GGF) trends NNE-SSW across all of Northern Scotland, separating two Neoproterozoic supergroups (Moine and Dalradian). The GGF developed as a left-lateral fault during the Caledonian Orogeny (Ordovician to Early Devonian). However, according to previous studies (involving seismic data from the Moray Firth and analyses of Tertiary dyke swarms in NW Scotland), the GGF reactivated right-laterally in the Tertiary. Here we present additional evidence for this later phase, from a study of Jurassic outcrops along the GGF and the nearby Helmsdale Fault. At Eathie and Shandwick, on the NE coast of Scotland, Jurassic strata of marine origin (mostly shale) crop out along the GGF, in contact with Neoproterozoic basement or Devonian Old Red Sandstone. Minor folds and faults in these outcrops indicate post-depositional right-lateral slip, under transpression. In the shale, we have also found bedding-parallel calcite veins ('beef' and 'cone-in-cone'). If these veins provide evidence for overpressure development and maturation of organic matter at significant depth (as they do in other basins), the host sediment must have accumulated deeper offshore in the Moray Firth. Therefore, the Jurassic strata at Eathie and Shandwick must have been subject to Cenozoic exhumation during right-lateral displacement along the GGF. At Helmsdale, according to previous studies, the Jurassic 'Boulder Beds' accumulated during a period of normal faulting on the Helmsdale Fault. There the sedimentary facies are more proximal than those at Eathie and Shandwick and abundant conglomerate contains Devonian clasts but no 'beef'. However we have found steep calcite veins, which cut the entire Jurassic sequence. Their sigmoidal shapes indicate left-lateral slip along the Helmsdale fault zone. Such a motion is compatible with right-lateral displacement on the GGF. Indeed, according to previous studies, folds between the Helmsdale Fault and the GGF may have developed as a result of opposing

  2. A Middle Triassic thoracopterid from China highlights the evolutionary origin of overwater gliding in early ray-finned fishes

    PubMed Central

    Xu, Guang-Hui; Zhao, Li-Jun; Shen, Chen-Chen

    2015-01-01

    Gliding adaptations in thoracopterid flying fishes represent a remarkable case of convergent evolution of overwater gliding strategy with modern exocoetid flying fishes, but the evolutionary origin of this strategy was poorly known in the thoracopterids because of lack of transitional forms. Until recently, all thoracopterids, from the Late Triassic of Austria and Italy and the Middle Triassic of South China, were highly specialized ‘four-winged’ gliders in having wing-like paired fins and an asymmetrical caudal fin with the lower caudal lobe notably larger than the upper lobe. Here, we show that the new genus Wushaichthys and the previously alleged ‘peltopleurid’ Peripeltopleurus, from the Middle Triassic (Ladinian, 235–242 Ma) of South China and near the Ladinian/Anisian boundary of southern Switzerland and northern Italy, respectively, represent the most primitive and oldest known thoracopterids. Wushaichthys, the most basal thoracopterid, shows certain derived features of this group in the skull. Peripeltopleurus shows a condition intermediate between Wushaichthys and Thoracopterus in having a slightly asymmetrical caudal fin but still lacking wing-like paired fins. Phylogenetic studies suggest that the evolution of overwater gliding of thoracopterids was gradual in nature; a four-stage adaption following the ‘cranial specialization–asymmetrical caudal fin–enlarged paired fins–scale reduction’ sequence has been recognized in thoracopterid evolution. Moreover, Wushaichthys and Peripeltopleurus bear hooklets on the anal fin of supposed males, resembling those of modern viviparious teleosts. Early thoracopterids probably had evolved a live-bearing reproductive strategy. PMID:25568155

  3. A Middle Triassic thoracopterid from China highlights the evolutionary origin of overwater gliding in early ray-finned fishes.

    PubMed

    Xu, Guang-Hui; Zhao, Li-Jun; Shen, Chen-Chen

    2015-01-01

    Gliding adaptations in thoracopterid flying fishes represent a remarkable case of convergent evolution of overwater gliding strategy with modern exocoetid flying fishes, but the evolutionary origin of this strategy was poorly known in the thoracopterids because of lack of transitional forms. Until recently, all thoracopterids, from the Late Triassic of Austria and Italy and the Middle Triassic of South China, were highly specialized 'four-winged' gliders in having wing-like paired fins and an asymmetrical caudal fin with the lower caudal lobe notably larger than the upper lobe. Here, we show that the new genus Wushaichthys and the previously alleged 'peltopleurid' Peripeltopleurus, from the Middle Triassic (Ladinian, 235-242 Ma) of South China and near the Ladinian/Anisian boundary of southern Switzerland and northern Italy, respectively, represent the most primitive and oldest known thoracopterids. Wushaichthys, the most basal thoracopterid, shows certain derived features of this group in the skull. Peripeltopleurus shows a condition intermediate between Wushaichthys and Thoracopterus in having a slightly asymmetrical caudal fin but still lacking wing-like paired fins. Phylogenetic studies suggest that the evolution of overwater gliding of thoracopterids was gradual in nature; a four-stage adaption following the 'cranial specialization-asymmetrical caudal fin-enlarged paired fins-scale reduction' sequence has been recognized in thoracopterid evolution. Moreover, Wushaichthys and Peripeltopleurus bear hooklets on the anal fin of supposed males, resembling those of modern viviparious teleosts. Early thoracopterids probably had evolved a live-bearing reproductive strategy.

  4. A Middle Triassic thoracopterid from China highlights the evolutionary origin of overwater gliding in early ray-finned fishes.

    PubMed

    Xu, Guang-Hui; Zhao, Li-Jun; Shen, Chen-Chen

    2015-01-01

    Gliding adaptations in thoracopterid flying fishes represent a remarkable case of convergent evolution of overwater gliding strategy with modern exocoetid flying fishes, but the evolutionary origin of this strategy was poorly known in the thoracopterids because of lack of transitional forms. Until recently, all thoracopterids, from the Late Triassic of Austria and Italy and the Middle Triassic of South China, were highly specialized 'four-winged' gliders in having wing-like paired fins and an asymmetrical caudal fin with the lower caudal lobe notably larger than the upper lobe. Here, we show that the new genus Wushaichthys and the previously alleged 'peltopleurid' Peripeltopleurus, from the Middle Triassic (Ladinian, 235-242 Ma) of South China and near the Ladinian/Anisian boundary of southern Switzerland and northern Italy, respectively, represent the most primitive and oldest known thoracopterids. Wushaichthys, the most basal thoracopterid, shows certain derived features of this group in the skull. Peripeltopleurus shows a condition intermediate between Wushaichthys and Thoracopterus in having a slightly asymmetrical caudal fin but still lacking wing-like paired fins. Phylogenetic studies suggest that the evolution of overwater gliding of thoracopterids was gradual in nature; a four-stage adaption following the 'cranial specialization-asymmetrical caudal fin-enlarged paired fins-scale reduction' sequence has been recognized in thoracopterid evolution. Moreover, Wushaichthys and Peripeltopleurus bear hooklets on the anal fin of supposed males, resembling those of modern viviparious teleosts. Early thoracopterids probably had evolved a live-bearing reproductive strategy. PMID:25568155

  5. The Origin of Dust in the Early Universe: Probing the Star Formation History of Galaxies by Their Dust Content

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Cherchneff, Isabelle

    2010-01-01

    Two distinct scenarios for the origin of the approximately 4 x 10(exp 8) Solar Mass of dust observed in the high-redshift (z = 6.4) quasar J1148+5251 have been proposed. The first assumes that this galaxy is much younger than the age of the universe at that epoch so that only supernovae, could have produced this dust. The second scenario assumes a significantly older galactic age, so that the dust could have formed in lower-mass AGB stars. Presenting new integral solutions for the chemical evolution of metals and dust in galaxies, we offer a critical evaluation of these two scenarios. ^N;"(,, show that the AGB scenario is sensitive to the details of the galaxy's star formation history (SFH), which must consist of an early intense starburst followed by a period of low stellar activity. The presence or absence of massive amounts of dust in high-redshift galaxies can therefore be used to infer their SFH. However, a problem with the AGB scenario is that it produces a stellar mass that is significantly larger than the inferred dynamical mass of J1148+5251, an yet unresolved discrepancy. If this problem persists, then additional sites for the growth or formation of dust, such as molecular clouds or dense clouds around active galactic nuclei, must be considered.

  6. New evidence on the origin of non-spinose pitted-cancellate species of the early Danian planktonic foraminifera

    NASA Astrophysics Data System (ADS)

    Arenillas, Ignacio; Arz, Jose Antonio

    2013-06-01

    Intermediate forms identified in some of the most continuous lower Danian sections allow a better understanding of the origin and evolution of pitted (Globanomalina) and cancellate (Praemurica) planktonic foraminifera. Both Globanomalina and Praemurica are part of a major Paleocene lineage, namely the "non-spinose lineage", which started to diverge in the early Danian. Transitional specimens strongly suggest the evolution from Parvularugoglobigerina to Globanomalina, and then to Praemurica. These evolutionary turnovers were quite rapid (probably lasting less than 10 kyr), and seem to have begun in the time equivalent of the lower part of the E. simplicissima Subzone, namely the middle part of the standard Zone Pa. The initial evolutionary trends within this non-spinose lineage were the increase of test size and lip thickness, and the evolution from tiny pore-murals to large pore-pits, and from smooth to pitted and finally cancellate walls. Biostratigraphic data suggest that evolution of the wall texture preceded the morphological evolution within each genus. The oldest species of both Globanomalina and Praemurica, namely G. archeocompressa and Pr. taurica, initially retained the external morphology of the ancestral Parvularugoglobigerina eugubina. Since their divergence, Globanomalina and Praemurica followed a separate evolutionary path, evolving into morphologically different species.

  7. Beller Lectureship: From Artefacts to Atoms: The Origins and Early Years of the International Bureau of Weights and Measures (BIPM)

    NASA Astrophysics Data System (ADS)

    Quinn, Terry

    2012-02-01

    The BIPM was founded by the Metre Convention in 1875. Its main task was to maintain and disseminate the units of length and mass using the new International Prototypes of the Metre and Kilogram. My talk will be based on the opening chapters of my book ``From Artefacts to Atoms'' which recount the story of the Metre Convention and the creation of the BIPM at the Pavillon de Breteuil in Sèvres on the outskirts of Paris, as the first international scientific institute. I shall include a brief outline of the sometimes acrimonious discussions at the Diplomatic Conference of the Metre, which opened on 1 March 1875 and concluded with the signing of the Convention on 20 May, of the construction of a new laboratory building, recruitment of staff, purchase of instruments and equipment and the beginning of scientific work. There was no precedent for any of this, success was due to the wisdom and foresight of those who drafted the Convention and to the founder Members of the International Committee for Weights and Measures overseeing the BIPM and to the high quality of the original scientific staff. However, success came at a price, the decision to define the Metre at 0 ^oC, for example, led to much ill health in the early years among the staff from working in cold damp laboratories, an aspect of metrology that is easy to forget these days.

  8. Cenozoic oblique collision of South American and Caribbean plates: New evidence in the Coastal Cordillera of Venezuela and Trinidad

    SciTech Connect

    Speed, R.C. ); Russo, R.M. ); Foland, K.A. )

    1993-02-01

    The hinterland of the Caribbean Mts. orogen in Trinidad and Venezuela contains schist and gneiss whole protoliths are wholly or partly of continental provenance. The hinterland lies between the foreland thrust belt and terranes. The terranes are alien to continental South America (SA) and may have proto-Caribbean or Caribbean plate origins. The hinterland rocks were widely thought to come from sediments and granitoids of Mesozoic protolithic ages and to be of Cretaceous metamorphic age. Such rocks are now know to be of at least two or more types, as follows: (1) low grade, protoliths of pre-Mesozoic basement and shelfal cover of uncertain age range, inboard locus, Oligocene to mid-Miocene metamorphic ages younging eastward (Caracas, Paria, and Northern Range belts), and (2) higher grade including high P/T, varies protoliths of uncertain age range, Cretaceous and ( )early Paleogene metamorphic ages (Tacagua, Araya, Margarita). The geometry, protoliths, structures, and metamorphic ages of type 1 parautochthoneity and an origin as a thickened wedge of crust-cored passive margin cover. The wedge grew by accretion between about 35 and 20 Ma during oblique transport toward the foreland. The diachroneity of metamorphism implies, as does the timing of foreland deformation, that the wedge evolved in a right-oblique collision between northern SA and terranes moving wholly or partly with the Caribbean plate since the Eocene. Type 2 rocks probably came with the terranes and are products of convergent zone tectonics, either in the proto-Caribbean plate. The hinterland boundaries are brittle thrusts that are out of sequence and imply progressive contraction from mid-Cenozoic to the present.

  9. Cenozoic synthem stratigraphic architecture of the SE Brazilian shelf and its global eustatic context: evidence from the Pelotas Basin (offshore Brazil)

    NASA Astrophysics Data System (ADS)

    de Santana dos Anjos Zerfass, Geise; Ruban, Dmitry A.; Chemale, Farid, Jr.; Zerfass, Henrique

    2013-12-01

    The Pelotas Basin, located on the SE Brazilian shelf, has evolved since the Aptian. Stratigraphical data from the basin can be used for delineation of the unconformity-bounded units (synthems) on the shelf, which is a first step towards a full understanding of its stratigraphic architecture, evolution, and hydrocarbon potential. Hiatuses in the Cenozoic succession of the Pelotas Basin are established with both biostratigraphic (planktonic foraminifers and calcareous nannofossils) and isotopic (87Sr/86Sr) data. The seven recognised hiatuses are dated respectively as (1) Palaeocene (Danian- Thanetian), (2) Palaeocene/Eocene boundary (Thanetian-Ypresian), (3) Eocene (Ypresian-Lutetian), (4) Eocene-Oligocene (Lutetian-Rupelian), (5) early-late Oligocene (Rupelian-Chattian), (6) early Miocene (Aquitanian-Burdigalian), and (7) middle-late Miocene (Serravallian-Tortonian). These intervals between the hiatuses are correlated with those of the Santos and Campos Basins north from the Pelotas Basin. The breaks in sedimentation that these basins have in common occurred (1) at the Palaeocene-Eocene and (2) Eocene-Oligocene transitions, (3) in the early Miocene, and (4) in the middle-late Miocene. These main unconformities outline five synthems on the SE Brazilian shelf, viz. the SEBS-1 (Palaeocene), SEBS-2 (Eocene), SEBS-3 (Oligocene), SEBS-4 (early-middle Miocene) and SEBS-5 (late Miocene-Holocene). The above unconformities are correlated with those established in the Cenozoic sedimentary successions of different regions such as Western Siberia, Arabia, NW and NE Africa, peninsular India, S Australia, the Gulf of Mexico, NW Europe, and South Africa. The only regional unconformity, near the Oligocene/Miocene boundary, coincides with the nearly-global sedimentation break. The latter was resulted from a climatic event, i.e., the `Mi-1 glaciation'. Thus, a eustatic origin is supposed for this regional unconformity. The other regional unconformities also correspond to global sea

  10. Petromagnetic and paleomagnetic characterization deposits at Mesozoic/Cenozoic boundary: The Tetritskaro section (Georgia)

    NASA Astrophysics Data System (ADS)

    Pechersky, D. M.; Asanidze, B. Z.; Nourgaliev, D. K.; Sharonova, Z. N.

    2009-02-01

    Petromagnetic and magnetostratigraphic characteristics are obtained for the Tetritskaro section. The boundary layer at the Mesozoic/Cenozoic (K/T) boundary is fixed primarily by an abrupt rise in the paramagnetic magnetization (total Fe concentration) and, to a lesser degree, by an increase in the concentration of such magnetic minerals as goethite, hemoilmenite, and magnetite. The along-section distribution of titanomagnetite of volcanic origin and metallic iron of cosmic origin does not correlate with the K/T boundary and lithologic properties of the sediments. The boundary of the Mesozoic and Cenozoic geological eras lies within the reversed polarity chron C29r and is marked by an abrupt rise in the geomagnetic field paleointensity and an instability of paleomagnetic directions, rather than by a polarity change. The accumulation time of the boundary clay layer is about 1.5-2 kyr, while abrupt changes in the paleointensity and direction of the geomagnetic field encompass 30-40 kyr. Such long occurrence intervals of the events in question cannot be related to a short-term impact phenomenon.

  11. Cenozoic vertical motions in the Moray Firth Basin associated with initiation of the Iceland Plume

    NASA Astrophysics Data System (ADS)

    Mackay, L. M.; Turner, J.; Jones, S. M.; White, N. J.

    2005-10-01

    It is likely that the Iceland mantle plume generated transient uplift across the North Atlantic region when it initiated in earliest Cenozoic time. However, transient uplift recorded in sedimentary basins fringing the region can be overprinted by the effects of permanent uplift. Identifying and quantifying transient uplift can only be achieved in areas which have a well-constrained stratigraphic record and across which the relative importance of permanent and transient uplift varies (e.g., the Moray Firth Basin, North Sea). By analyzing the subsidence of 50 boreholes from the Moray Firth Basin (MFB), residual vertical motions unrelated to rifting have been isolated. Transient uplift of 180-425 m occurred during Paleocene times. The western MFB has also been affected by permanent Cenozoic uplift, with denudation decreasing from 1.3 ± 0.1 km in the west of the basin to zero denudation east of 1°W. Dynamic support above the Iceland Plume led to transient uplift of the entire MFB in early Paleocene times, peaking in latest Paleocene times. In early Eocene times the effect of the plume waned, and subsidence occurred. Paleocene permanent uplift of the NW British Isles is generally accepted to have been due to magmatic underplating of the crust emplaced during the British Tertiary Igneous Province (61-58.5 Ma). The cause of Neogene uplift events is poorly understood, but it could also be associated with the Iceland Plume.

  12. Biostratigraphy and geochronology of the late Cenozoic of Córdoba Province (central Argentina)

    NASA Astrophysics Data System (ADS)

    Cruz, Laura Edith

    2013-03-01

    In the last twenty years, several geological and stratigraphical studies have been undertaken in Córdoba Province, and they have provided useful bases for biostratigraphic work in the late Cenozoic. However, paleontological contributions have been limited to preliminary analyses of mammal assemblages, or specific discoveries. The aim of this work is to contribute to biostratigraphic knowledge of Argentina through the study of late Cenozoic mammals from Córdoba Province. Five localities have been analyzed: San Francisco, Miramar, Río Cuarto, Isla Verde, and Valle de Traslasierra. Through biostratigraphic analysis the first records of several taxa were established, and mammal assemblages with the description and correlation of the sedimentary strata were confirmed. Finally, three Assemblage Zones (Biozonas de Asociación) were proposed: 1) Neosclerocalyptus paskoensis-Equus (Amerhippus) assemblage zone with type area and profile based on the San Francisco locality, referred to the Lujanian (late Pleistocene-early Holocene), and comparable to the Equus (Amerhippus) neogeus Biozone of Buenos Aires Province; 2) Neosclerocalyptus ornatus-Catonyx tarijensis assemblage zone with type area and profile based on the San Francisco locality, referred to the Ensenadan (early Pleistocene) and comparable to the Mesotherium cristatum Biozone of Buenos Aires Province, and 3) Nonotherium hennigi-Propanochthus bullifer assemblage zone with type area and profile based on the Los Sauces river, Valle de Traslasierra, referred to the Montehermosan-Chapadmalalan interval (Pliocene), and comparable to the Trigodon gaudryi, Neocavia depressidens and/or Paraglyptodon chapadmalensis Biozones of Buenos Aires Province.

  13. Spatial patterns in the evolution of Cenozoic dynamic topography and its influence on the Antarctic continent

    NASA Astrophysics Data System (ADS)

    Anderson, Lester; Ferraccioli, Fausto; Eagles, Graeme; Steinberger, Bernhard; Ritsema, Jeroen

    2013-04-01

    Our knowledge of dynamic topography in Antarctica remains in an infancy stage compared to other continents. We assess the space-time variability in dynamic topography in Antarctica by analysing grids of global dynamic topography in the Cenozoic (and late Cretaceous) based on the tomographic model S40RTS. Our model reveals that the Gamburtsev Province and Dronning Maud Land, two of the major nucleation sites for the East Antarctic Ice Sheet (EAIS) were ~500 m higher 60 Ma ago. The increased elevation may have facilitated ephemeral ice cap development in the early Cenozoic. Between ca 25 and 50 Ma the northern Wilkes Subglacial Basin was ca 200 m higher than today and a major increase in regional elevation (>600 m) occurred over the last 20-15 Ma over the northern and southern Victoria Land in the Transantarctic Mountains (TAM). The most prominent signal is observed over the Ross Sea Rift (RSR) where predicted Neogene dynamic topography exceeds 1,000 m. The flow of warm mantle from the West Antarctic Rift System (WARS)may have driven these dynamic topography effects over the TAM and RSR. However, we found that these effects are comparatively less significant over the Marie Byrd Land Dome and the interior of the WARS. If these contrasting dynamic topography effects are included, then the predicted elevations of the Ross Sea Embayment ca 20 Ma ago are more similar to the interior of the WARS, with significant implications for the early development of the West Antarctic Ice Sheet.

  14. Progressive Cenozoic cooling and the demise of Antarctica's last refugium.

    PubMed

    Anderson, John B; Warny, Sophie; Askin, Rosemary A; Wellner, Julia S; Bohaty, Steven M; Kirshner, Alexandra E; Livsey, Daniel N; Simms, Alexander R; Smith, Tyler R; Ehrmann, Werner; Lawver, Lawrence A; Barbeau, David; Wise, Sherwood W; Kulhanek, Denise K; Kulhenek, Denise K; Weaver, Fred M; Majewski, Wojciech

    2011-07-12

    The Antarctic Peninsula is considered to be the last region of Antarctica to have been fully glaciated as a result of Cenozoic climatic cooling. As such, it was likely the last refugium for plants and animals that had inhabited the continent since it separated from the Gondwana supercontinent. Drill cores and seismic data acquired during two cruises (SHALDRIL I and II) in the northernmost Peninsula region yield a record that, when combined with existing data, indicates progressive cooling and associated changes in terrestrial vegetation over the course of the past 37 million years. Mountain glaciation began in the latest Eocene (approximately 37-34 Ma), contemporaneous with glaciation elsewhere on the continent and a reduction in atmospheric CO(2) concentrations. This climate cooling was accompanied by a decrease in diversity of the angiosperm-dominated vegetation that inhabited the northern peninsula during the Eocene. A mosaic of southern beech and conifer-dominated woodlands and tundra continued to occupy the region during the Oligocene (approximately 34-23 Ma). By the middle Miocene (approximately 16-11.6 Ma), localized pockets of limited tundra still existed at least until 12.8 Ma. The transition from temperate, alpine glaciation to a dynamic, polythermal ice sheet took place during the middle Miocene. The northernmost Peninsula was overridden by an ice sheet in the early Pliocene (approximately 5.3-3.6 Ma). The long cooling history of the peninsula is consistent with the extended timescales of tectonic evolution of the Antarctic margin, involving the opening of ocean passageways and associated establishment of circumpolar circulation.

  15. Cenozoic Eurasia is not a single rigid plate: Paleomagnetic evidence

    NASA Astrophysics Data System (ADS)

    Cogné, Jean-Pascal

    2013-11-01

    The widely distributed Cenozoic paleomagnetic inclination anomaly in Asia is usually attributed to either a widespread error of magnetic field recording due to an inclination flattening mechanism in sediments, or to the persistence of an anomalous non-dipolar component of the geomagnetic field throughout the Tertiary. Based on an analysis of the Asian paleomagnetic database for Meso-Cenozoic times, we suggest that instead this puzzling anomaly results from an overlooked global plate tectonics cause where the wide so-called Eurasian plate would have suffered from previously undetected transpressive north-south relative movements between its western and eastern ends since the Cretaceous. These relative movements are most probably accommodated by a component of right-lateral shear movement distributed in the Tornquist-Tesseyre zone, and a localized left-lateral shear movement in the Ural Mountain chain during the Tertiary. Therefore, Eurasia was not the single rigid plate that Cenozoic plate reconstructions have accepted.

  16. Consequences of Seed Origin and Biological Invasion for Early Establishment in Restoration of a North American Grass Species

    PubMed Central

    Herget, Mollie E.; Hufford, Kristina M.; Mummey, Daniel L.; Shreading, Lauren N.

    2015-01-01

    Local, wild-collected seeds of native plants are recommended for use in ecological restoration to maintain patterns of adaptive variation. However, some environments are so drastically altered by exotic, invasive weeds that original environmental conditions may no longer exist. Under these circumstances, cultivated varieties selected for improved germination and vigor may have a competitive advantage at highly disturbed sites. This study investigated differences in early establishment and seedling performance between wild and cultivated seed sources of the native grass, Poa secunda, both with and without competition from the invasive exotic grass, Bromus tectorum. We measured seedling survival and above-ground biomass at two experimental sites in western Montana, and found that the source of seeds selected for restoration can influence establishment at the restoration site. Cultivars had an overall advantage when compared with local genotypes, supporting evidence of greater vigor among cultivated varieties of native species. This advantage, however, declined rapidly in the presence of B. tectorum and most accessions were not significantly different for growth and survival in competition plots. Only one cultivar had a consistent advantage despite a strong decline in its performance when competing with invasive plants. As a result, cultivated varieties did not meet expectations for greater establishment and persistence relative to local genotypes in the presence of invasive, exotic species. We recommend the use of representative local or regional wild seed sources in restoration to minimize commercial selection, and a mix of individual accessions (wild, or cultivated when necessary) in highly invaded settings to capture vigorous genotypes and increase the odds native plants will establish at restoration sites. PMID:25741702

  17. Cenozoic denudation rates of the West African marginal upwarp recorded by lateritic paleotopographies

    NASA Astrophysics Data System (ADS)

    Beauvais, Anicet; Chardon, Dominique

    2013-04-01

    Quantifying long-term erosion of tropical shields is crucial to constraining the role of lateritic regolith covers as prominent sinks and sources of CO2 and sediments in the context of long-term Cenozoic climate change. It is also a key to understanding long-term landform evolution processes operating over most of the continental surface, particularly passive margins, and their control onto the sediment routing system. We study the surface evolution of West Africa over three erosion periods (~ 45-24, ~ 24-11 and ~ 11-0 Ma) recorded by relicts of 3 sub-continental scale lateritic paleolandsurfaces whose age is bracketed by 39Ar/40Ar dating of lateritic K-Mn oxides [1]. Denudation depths and rates compiled from 380 field stations show that despite heterogeneities confined to early-inherited reliefs, the sub-region underwent low and homogeneous denudation (~ 2-20 m Ma-1) over most of its surface whatever the considered time interval. This homogeneity is further documented by a worldwide compilation of cratonic denudation rates, over long-term, intermediate and modern Cenozoic time scales (100 - 107 yr). These results allow defining a steady-state cratonic denudation regime that is weathering-limited i.e. controlled by the thickness of the (lateritic) regolith available for stripping. Steady-state cratonic denudation regimes are enabled by maintained compartmentalization of the base levels between river knick points controlled by relief inheritance. Under such regimes, lowering of base levels and their fossilization are primarily imposed by long-term eustatic sea level fall and climate rather than by epeirogeny. The results suggest that Cenozoic post-rift vertical mobility of marginal upwarps in the tropical belt was unable to modify slow, weathering-controlled, steady state denudation regimes. The potentially complex expression of steady-state cratonic denudation regimes in clastic sedimentary fluxes remains to be investigated. [1] Beauvais et al., Journal of

  18. Cretaceous and Cenozoic episodic denudation of the Transantarctic Mountains, Antarctica: New constraints from apatite fission track thermochronology in the Scott Glacier region

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Paul G.; Stump, Edmund

    1997-04-01

    Apatite fission track thermochronology utilizing vertical sampling profiles, with results interpreted using the concept of exhumed partial annealing zones, is applied in the Scott Glacier area (86°S) of the Transantarctic Mountains (TAM). Patterns in age profiles indicate that episodes of denudation in the Early Cretaceous, Late Cretaceous, and Cenozoic were separated by periods of relative tectonic stability. Thermal modeling of time-temperature histories compared to observed data indicates that denudation episodes commenced at ˜125 Ma, ˜95 Ma, and 50-45 Ma. Magnitude of denudation is constrained only as >700 m for the Early Cretaceous and from barely detectable to 1.5 km for the Late Cretaceous. Since the early Cenozoic, denudation within the TAM Front was similar in magnitude to other localities along the TAM (˜4-6 km), decreasing inland. Rock uplift was also a maximum at the coast, decreasing inland. Patterns of rock uplift and denudation are complicated by Cenozoic faulting, mostly by faults oriented ˜45° to the TAM Front. Along the length of the TAM there is an apparent systematic variation in the angle of these Cenozoic faults to the TAM Front, possibly reflecting greater components of dextral transtension southward along the TAM. The three denudation episodes correspond to regional tectonic events: Early Cretaceous southward translation of the Ellsworth-Whitmore Mountains block of West Antarctica relative to East Antarctica; Late Cretaceous extension in the Ross Embayment between East and West Antarctica; and Cenozoic rejuvenated faulting, magmatism, and deformation within the Victoria Land Basin and its presumed southward extension under the Ross Ice Sheet.

  19. Plate-driving forces over the Cenozoic era

    NASA Technical Reports Server (NTRS)

    Jurdy, Donna M.; Stefanick, Michael

    1988-01-01

    Under the assumptions of a dynamical balance between active torques and plate drag as the passive torque, plate reconstructions have been used to determine plate torques for the Cenozoic era. A torque balance equation is derived in which slab-pull and ridge-push torques are proportional to boundary chord vectors, with the weights depending on powers of the subduction velocity at the middle of the chords. The unique angular velocity satisfying the torque balance requirements is obtained for each plate. Torques are found to be fairly stable throughout the Cenozoic, with the misfit between the balanced torque and drag torque increasing systematically for earlier reconstructions.

  20. Reconstruction of the Ogcheon Rift Basin and Pre-Cenozoic Tectonic Evolution of the Central Ogcheon Belt, Korea

    NASA Astrophysics Data System (ADS)

    Kang, J. H.

    2015-12-01

    The pre-Cenozoic tectonic structures of the Central Ogcheon Belt, Korea, were formed at least through five times of tectonic phases [D* Gyemyeongsan phase of Neoproterozoic˜Middle Permian, D1 Ogcheon-Cheongsan phase (Songnim orogeny) of Late Permian˜Middle Triassic, D2 Honam phase (Daebo orogeny) of Early˜Late Jurassic, D3 Cheongmari phase of Early Cretaceous, D4 Geumgang phase before Late Cretaceous] and three times of metamorphism [M1 medium-pressure type metamorphism of Late Permian, M2 contact metamorphism of Middle Jurassic, M3 retrograde metamorphism of Early Cretaceous]. The D* tectonic phase is marked by the rifting of the original Gyeonggi Massif into North Gyeonggi Massif (NGM: present Gyeonggi Massif) and South Gyeonggi Massif (SGM: Bakdallyeong and Busan gneiss complexes). Its associated bimodal type volcano-plutonism occurred at least four times, two times at Neoproterozoic, a Early Paleozoic, a Late Paleozoic ages. The lower (quartzose psammitic, pelitic, calcareous and basic rocks) and upper (conglomerate and pelitic rocks and acidic rocks) units of Ogcheon Supergroup (OSG) were deposited in the Ogcheon rift basin (ORB) during Early and Late Paleozoic times, respectively. The D1 phase is characterized by the coupling of NGM and SGM with closing of ORB and the M1 metamorphism of OSG at its earlier phase, and by the coupling of South China block (Gyeonggi Massif and Ogcheon Zone) and North China block (Yeongnam Massif and Taebaksan Zone) and Cheongsan dextral strike-slip shearing and formation of Middle Triassic Dadong basin in its later phase. The D2 is marked by Honam dextral strike-slip shearing and the M2 metamorphism of OSG by the intrusion of Daebo granitoids at the inter-tectonic phase. The D3 is by NNE-trending sinistral strike-slip shearing and the M3 retrograde metamorphism of OSG. The D4 occurred along Geumgang fault, and formed a giant-scale Geumgang drag fold intruded by Late Cretaceous acidic dykes.

  1. Pyroclastic conduits of the late Cenozoic collapse calderas from Japan

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Iwahashi, A.; Takahashi, T.; Nagahashi, Y.

    2006-12-01

    There are many late Cenozoic calderas in Japan. Many of the late Cenozoic calderas are the large-scale collapse calderas of the piston-cylinder type, and consist of collapsed volcanic basin surrounded by arcuate ring faults or array of vents and the surrounding pyroclastic flow deposits. Yoshida (1984) reported intrusive breccia dikes between the subsided block and wall rocks of the Ishizuchi cauldron, SW Japan. The intrusive breccias consist of tuff and tuff breccias containing many kinds of rock fragments. Contacts with surrounding rocks are sharp. Some breccia dikes along the marginal ring fracture zone of the cauldron, which are composed of welded pyroclastic rocks, probably fill vents from which the surrounding pyroclastic flow deposits were discharged. The matrix of the intrusive breccia is welded ash and/or clastic powder. Fragments vary in size from millimeters to several meters. Local continuity of structures from one fragment to another indicates that the brecciation was not a consequence of explosive action; these are interpreted as intrusive breccias produced by fluidization processes, probably associated with pyroclastic explosions. These breccias were intruded upward to their present positions as part of a fluidization system. Intrusive breccia and tuff within the ring fault complex contain a eutaxitic foliation oriented nearly parallel to contacts. This feature is thought to result from inwardly directed pressures exerted by the dike walls during caldera collapse following eruption of the pyroclastic flows. The eutaxitic foliation indicates that the intrusive breccia and tuff were emplaced as a fluidized system of gas, solid particles, and probably liquid droplets. Mt. Taiheizan is located 20km northeast of Akita, NE Japan. There is the late Miocene to early Pliocene Nibetsu cauldron on Mt. Taiheizan. Recent study revealed the details of a contemporary arcute pyroclastic conduit consisting of felsic tuff. This Hirasawa felsic tuff dyke is about 5 km

  2. Evolution of land mammal diversity in North America during the Cenozoic

    NASA Technical Reports Server (NTRS)

    Stucky, Richard K.

    1990-01-01

    The North American continental patterns of generic richness, extinction, and origination have been reexamined and analyzed in the context of alpha and beta species diversity. The major models of diversity are discussed as well as primary concepts and theories based on studies of living organisms. The adequacy of the fossil record is considered and patterns of genetic richness and species level diversity are outlined. Major shifts in mammalian community structures are reviewed and hypotheses are presented on diversity origin, regulation, and maintenance for the North American record. Results demonstrate a complex relationship between continental alpha and beta diversity characterized by marked changes through time and differences in patterns at each level. It is clear that both biotic and abiotic factors have strongly influenced the evolution of North American species diversity and that major restructuring occurred in Cenozoic mammalian communities.

  3. [Principal stages in the Cenozoic diversification of shallow-water molluscan faunas in the North Pacific].

    PubMed

    Kafanov, A I

    2006-01-01

    Cluster analysis of bivalve species recorded in Cenozoic deposits in Sakhalin Island, western Kamchatka, Hokkaido, and California was used to determine geological age of the modem North Pacific biogeographic region and its constituent subregions (Japan-Mandchurian, Beringian, and Oregon-Sitkan). The North Pacific region developed during the Paleogene-Neogene transition due to Drake Passage opening to deep-water movement, formation of the deep-water Antarctic Circumpolar Current, and the change in climate from greenhouse to psychospheric. Differentiation of the three subregions within the North Pacific Region seems to have occurred in late Miocene-early Pliocene, about 5.6 millions years ago and was probably due to the flooding of the Bering Land Bridge and development of the present configuration of circulation in the North Pacific. In the Northwest Pacific, during Paleogene and early Neogene, the faunal diversification occurred more rapidly and was more extensive than in the Northeast Pacific. PMID:17205791

  4. [Principal stages in the Cenozoic diversification of shallow-water molluscan faunas in the North Pacific].

    PubMed

    Kafanov, A I

    2006-01-01

    Cluster analysis of bivalve species recorded in Cenozoic deposits in Sakhalin Island, western Kamchatka, Hokkaido, and California was used to determine geological age of the modem North Pacific biogeographic region and its constituent subregions (Japan-Mandchurian, Beringian, and Oregon-Sitkan). The North Pacific region developed during the Paleogene-Neogene transition due to Drake Passage opening to deep-water movement, formation of the deep-water Antarctic Circumpolar Current, and the change in climate from greenhouse to psychospheric. Differentiation of the three subregions within the North Pacific Region seems to have occurred in late Miocene-early Pliocene, about 5.6 millions years ago and was probably due to the flooding of the Bering Land Bridge and development of the present configuration of circulation in the North Pacific. In the Northwest Pacific, during Paleogene and early Neogene, the faunal diversification occurred more rapidly and was more extensive than in the Northeast Pacific.

  5. Similarities between Silurian and Cenozoic basalts in rock-magnetic properties and its implication for Silurian paleogeography

    NASA Astrophysics Data System (ADS)

    Schnabl, P.; Pruner, P.; Cajz, V.; Tasaryova, Z.; Cizkova, K.; Kletetschka, G.

    2013-05-01

    We compare two groups of basalts produced in similar conditions of environment, but significantly different in age. The younger ones represent the Ústí Fm. volcanics of the České stredohorí Mts., situated inside the Eger Graben; and the others are developed in Silurian of the Prague Basin (Barrandian). Rocks of both groups were usually produced into the wet environs. Hyaloclastite are commonly observable rocks, documenting the environment in the time of their origin. We suppose similar primary composition of magnetic carriers because both groups represent the same petrologic type. The only difference is in their age - during the time, some secondary changes on magnetic carriers could take place. The set of Cenozoic basalts consists of 292 samples (23 locations) and the Silurian set includes 485 samples (32 locations). For the comparison, we have used magnetomineralogical properties like natural remanent magnetization (NRM; Silurian 1.1±3.8 A/m, Cenozoic 2.0±2.1 A/m) , magnetic susceptibility (MS; Silurian 7.0±16.1 x10-3SI, Cenozoic 24.4±11.5 x10-3SI), unblocking temperature (UT; Silurian 200-580°C, Cenozoic 150-580°C), mean destructive field (MDF; Silurian 4-58 mT, Cenozoic 3-60 mT), Königsberger 's parameter Q (Silurian 3.93, Cenozoic 2.05) and K-parameter (precision parameter coming from Fisher statistics; Silurian7-102, Cenozoic14-643). NRM reflects the quantity of ferromagnetic minerals; MS represents total amount of paramagnetic and ferromagnetic minerals; UT is the temperature of the steepest decrease of demagnetisation curve and it is close to transition between para- and ferromagnetic behaviour; MDF represents stability character of NRM during alternating field demagnetization when 50% of initial value is reached; Q-parameter is the ratio of the remanent magnetization to the induced magnetization (product of susceptibility and the Earth's magnetic field strength - a large Q-value indicates that the magnetic material will tend to maintain

  6. Cenozoic sedimentation rates and provenance variations in the South Pacific Gyre

    NASA Astrophysics Data System (ADS)

    Dunlea, A. G.; Murray, R. W.; Sauvage, J.; Spivack, A. J.; Harris, R. N.; D'Hondt, S. L.

    2013-12-01

    Pelagic clays are traditionally difficult to date due to the scarcity of biogenic deposition and the prevalence of homogenous, altered, very fine-grain sediment. Integrated Ocean Drilling Program Expedition 329 recovered completely oxic, brown, pelagic zeolitic metalliferous clay from the South Pacific Gyre (SPG). Despite post-depositional alteration, the sediment retains enough of its original chemical signature to track downcore changes in provenance. Of particular interest is the cosmogenic portion of the sediment (e.g., Co), which we use to determine sedimentation rates and explore the paleoceanographic implications of changing sedimentation in the SPG throughout the Cenozoic. Under the assumption that the flux of extraterrestrial cosmogenic dust is spatially and temporally constant (or can at least be constrained), the concentration of cosmic dust in the sediment is inversely proportional to the sedimentation rate. Previous studies have used this premise to successfully date pelagic clays and Fe-Mn crusts, using Co as a proxy for cosmic dust deposition. The SPG has the slowest marine sedimentation rates in the world (as low as 0.1 m/Myr) and subsequently has the highest concentration of cosmic dust in the seafloor, making it an ideal region to apply this techniques. Building upon Zhou and Kyte (1992, Paleocean., 7, 441-465) at the single location of DSDP Site 596, we are dating SPG pelagic clays and identifying provenance variations throughout the SPG using a combined analytical and statistical approach. We analyze bulk sediment from Exp. 329 for a wide suite of major, trace, and rare earth elements by ICP-ES/MS. We apply multivariate statistical methods to quantify the contributions through time from various sources, aiming to distinguish a cosmogenic component. From the cosmogenic abundances, we produce a high-resolution record of instantaneous sedimentation rates of SPG pelagic clays during the Cenozoic. Our preliminary constant cosmogenic Co models show

  7. Cenozoic Evolution of the West Cycladic Detachment System

    NASA Astrophysics Data System (ADS)

    Iglseder, Christoph; Grasemann, Bernhard; Schneider, Dave A.; Senkowski, Carley A.; Stöckli, Dani

    2010-05-01

    Extension in the Aegean led to the formation of metamorphic core complexes and domes, with multistage extensional detachments cutting rocks of the Attic-Cycladic Crystalline at different structural and lithostratigraphic levels. Four kinematic provenances are here distinguished in the Cycladic extensional detachment system: (1) The North (Andros-Ikaria) and (2) Central (Naxos-Paros) Cycladic Detachment Systems, showing top N/NE sense of shear; (3) the South Cycladic Detachment System (Ios-Amorgos), part of the South Cycladic Shear Zone, with evidence for two opposite kinematic domains, an older top S/SE and a younger top N/NW sense of shear. In contrast, the newly documented (4) West Cycladic Detachment System (Sifnos-Lavrion) is dominated by a top SW/SSW sense of shear. Low-angled extensional detachments nucleated in the ductile regime and show progressive overprinting by ductile-brittle and then brittle deformation processes on Kea, Kythnos and Serifos. On Sifnos, an older top NE and brittle-ductile younger event, with top SW kinematics has been documented. In comparison, on the Greek mainland in Attica, top SW/SSW sense of shear allows the regional structure to be expanded. At both Lavrion in Attica and Serifos, the extensional detachments were intruded by syn-tectonic Late Miocene granodiorites. Cenozoic extension in the Western Cyclades is suggested to begin in the Eocene, with early S-type granite intrusion on Serifos at 43-37 Ma (U-Pb zircon). This is supported by Eocene/Early Oligocene Rb/Sr and Ar/Ar (cooling) ages of hanging-wall schists and marbles. Similar cooling ages, (post-) dating high-pressure/low-temperature metamorphism, have been described from Sifnos. During the Oligocene/Miocene, a decrease in greenschist-facies ages has been determined on the Serifos-Kythnos-Kea transect. Similar ages of greenschist-facies metamorphism have also been found on Sifnos. Initial stages of the Serifos granodiorite intrusion, coeval with initiation of the main

  8. THE ORIGIN OF THE CONCEPT OF NEUROPATHIC PAIN IN EARLY MEDIEVAL PERSIA (9TH-12TH CENTURY CE).

    PubMed

    Heydari, Mojtaba; Shams, Mesbah; Hashempur, Mohammad Hashem; Zargaran, Arman; Dalfardi, Behnam; Borhani-Haghighi, Afshin

    2015-01-01

    Neuropathic pain is supposed to be a post-renaissance described medical entity. Although it is often believed that John Fothergill (1712-1780) provided the first description of this condition in 1773, a review of the medieval Persian medical writings will show the fact that neuropathic pain was a medieval-originated concept. "Auojae Asab" [Nerve-originated Pain] was used as a medical term in medieval Persian medical literature for pain syndromes which etiologically originated from nerves. Physicians like Rhazes (d. 925 CE), Haly Abbas (d. 982 CE), Avicenna (d. 1037 CE), and Jorjani (d. 1137 CE) have discussed multiple aspects of nerve-originated pain including its classification, etiology, differentiating characteristics, different qualities, and pharmacologic and non-pharmacologic treatments. Recognizing medieval scholars' views on nerve-originated pain can lighten old historical origins of this concept.

  9. Evolution of vacuolar proton pyrophosphatase domains and volutin granules: clues into the early evolutionary origin of the acidocalcisome

    PubMed Central

    2011-01-01

    domains support the early origin of the acidocalcisome organelle. In particular, the universality of volutin granules and presence of a functional V-H+PPase domain in the three superkingdoms of life reveals that the acidocalcisomes may have appeared earlier than the divergence of the superkingdoms. This result is remarkable and highlights the possibility that a high degree of cellular compartmentalization could already have been present in the LUCA. Reviewers This article was reviewed by Anthony Poole, Lakshminarayan Iyer and Daniel Kahn PMID:21974828

  10. Origin of Siletzia, an Accreted Large Igneous Province in the Cascadia Forearc, and the Early History of the Yellowstone Hotspot

    NASA Astrophysics Data System (ADS)

    Wells, R. E.; Bukry, D.; Friedman, R. M.; Pyle, D. G.; Duncan, R. A.; Haeussler, P. J.; Wooden, J.

    2014-12-01

    Siletzia as named by Irving (1979) is a Paleogene large igneous province forming the oceanic basalt basement of coastal OR, WA and S. BC that was accreted to North America in the early Eocene. U-Pb (magmatic, detrital zircon) and 40Ar/39Ar ages constrained by mapping, global coccolith (CP) zones, and magnetic polarities permit correlation of basalts with the geomagnetic polarity time scale of Gradstein et al. (2012). Siletzia was rapidly erupted 56-49 Ma (Chron 25-22), and accretion was completed between 51 and 49 Ma in Oregon. Magmatism continued until ca. 46 Ma with emplacement of a basalt sill complex during or shortly after accretion. Siletzia's great crustal thickness, rapid eruption, and timing of accretion are consistent with formation as an oceanic plateau. Eight m.y. after accretion, margin-parallel extension and regional dike swarms mark the Tillamook magmatic episode in the forearc (41.6 Ma; CP zone 14a; Chron 19r). We examined the origin of Siletzia and the possible role of a long-lived Yellowstone hotspot (YHS) in an open source plate modeling program. In most reference frames, the YHS is on or near an inferred northeast-striking Kula- Farallon and/or Resurrection-Farallon ridge 60 to 50 Ma. The YHS thus could have provided a 56-49 Ma source on the Farallon plate for Siletzia, which accreted to North America by 50 Ma. A sister plateau, the Eocene basalt basement of the Yakutat terrane, now in Alaska, formed on the adjacent Kula (or Resurrection) plate and accreted to coastal British Columbia at about the same time. Following accretion of Siletzia, the leading edge of North America overrode the YHS ca. 42 Ma. The encounter with an active YHS may explain the voluminous high-Ti tholeiitic to alkalic magmatism of the 42-34 Ma Tillamook episode and extension in the forearc. Clockwise rotation of western Oregon about a pole in the backarc has since moved the Tillamook center and underlying Siletzia northward ~250 km from the probable hotspot track on North

  11. Origin of Siletzia, a Large Igneous Province in the Cascadia Forearc, and the Early History of the Yellowstone Hotspot

    NASA Astrophysics Data System (ADS)

    Wells, R. E.; Bukry, D.; Friedman, R. M.; Pyle, D. G.; Duncan, R. A.; Haeussler, P. J.

    2015-12-01

    Siletzia is a Paleogene large igneous province (LIP) forming the oceanic basement of coastal OR, WA and S. BC that was accreted to North America (NAM) in the early Eocene. Crustal thickness from seismic refraction ranges from 10 to 32 km, with 16 km of pillow and subaerial basalt exposed on the Olympic Peninsula. At 1.7-2.4 x 106 km3, Siletzia is at least 10 times the volume of the Columbia River flood basalts. U-Pb and 40Ar/39Ar ages, global coccolith (CP) zones, and magnetostratigraphy allow correlation of Siletzia with the 2012 geomagnetic polarity time scale. Siletzia was erupted 56-49 Ma (Chron 25-22), and accretion was completed between 51 and 49 Ma in Oregon. Siletzia's composition, great crustal thickness, rapid eruption, and timing of accretion are consistent with formation as an oceanic plateau. Eight m.y. after accretion, margin-parallel extension and regional dike swarms accompanied the voluminous tholeiitic to highly alkalic Tillamook magmatic episode in the forearc (41.6 Ma; CP14a; Chron 19r). We examined the origin of Siletzia and the possible role of a long-lived Yellowstone hotspot (YHS) in GPlates. In most reference frames, the YHS is ~ 500km offshore S. OR, near an inferred northeast-striking Kula- Farallon and/or Resurrection-Farallon ridge 60 to 50 Ma. The YHS could have provided the 56-49 Ma source on the Farallon plate for Siletzia, which in the model accretes to NAM by 50 Ma. A sister plateau, the Eocene basalt basement of the Yakutat terrane, now in Alaska, may have formed on the adjacent Kula (or Resurrection) plate and accreted to British Columbia at about the same time. Following accretion, the leading edge of NAM overrode the YHS ca. 42 Ma. The encounter with an active YHS may explain the voluminous 42-34 Ma Tillamook episode and forearc extension. Clockwise rotation of western Oregon about a pole in the backarc has since moved the Tillamook center and underlying Siletzia northward ~250 km from the likely hotspot track on NAM.

  12. The evolution of mammal body sizes: responses to Cenozoic climate change in North American mammals.

    PubMed

    Lovegrove, B G; Mowoe, M O

    2013-06-01

    Explanations for the evolution of body size in mammals have remained surprisingly elusive despite the central importance of body size in evolutionary biology. Here, we present a model which argues that the body sizes of Nearctic mammals were moulded by Cenozoic climate and vegetation changes. Following the early Eocene Climate Optimum, forests retreated and gave way to open woodland and savannah landscapes, followed later by grasslands. Many herbivores that radiated in these new landscapes underwent a switch from browsing to grazing associated with increased unguligrade cursoriality and body size, the latter driven by the energetics and constraints of cellulose digestion (fermentation). Carnivores also increased in size and digitigrade, cursorial capacity to occupy a size distribution allowing the capture of prey of the widest range of body sizes. With the emergence of larger, faster carnivores, plantigrade mammals were constrained from evolving to large body sizes and most remained smaller than 1 kg throughout the middle Cenozoic. We find no consistent support for either Cope's Rule or Bergmann's Rule in plantigrade mammals, the largest locomotor guild (n = 1186, 59% of species in the database). Some cold-specialist plantigrade mammals, such as beavers and marmots, showed dramatic increases in body mass following the Miocene Climate Optimum which may, however, be partially explained by Bergmann's rule. This study reemphasizes the necessity of considering the evolutionary history and resultant form and function of mammalian morphotypes when attempting to understand contemporary mammalian body size distributions.

  13. Late Palaeozoic-Cenozoic assembly of the Tethyan orogen in the light of evidence from Greece and Albania

    NASA Astrophysics Data System (ADS)

    Robertson, A. H. F.

    2012-04-01

    The objective here is to use the geology and tectonics of a critical part of the Tethyan orogen, represented by Greece and Albania, to shed light on the tectonic development of Tethys on a regional, to global scale, particularly the history of convergence during Late Palaeozoic to Cenozoic time. For Carboniferous time much evidence suggests that the Korabi-Pelagonian crustal unit as exposed in Albania and Greece formed above a northward-dipping subduction zone along the Eurasia continental margin, with Palaeotethys to the south. However, there is also some evidence of southward subduction beneath Gondwana especially from southern Greece and central southern Turkey. Palaeotethys is inferred to have closed in Europe as far to the east as the longitude of Libya, while remaining open beyond this. There is still uncertainty about the Pangea A-type reconstruction that would restore all of the present units in the area to within the E Mediterranean region, versus the Pangea B-type reconstruction that would require right-lateral displacement of exotic terranes, by up to 3,500 km eastwards. In either reconstruction, fragments of the Variscan collisional orogen are likely to have been displaced eastwards (variable distances) in the Balkan region prior to Late Permian-Early Triassic time. From ~Late Permian, the Greece-Albania crustal units were located in their present relative position within Tethys as a whole. From the mid-Permian, onwards the northern margin of Gondwana was affected by crustal extension. A Mesozoic ocean (Pindos-Mirdita ocean) then rifted during Early-Middle Triassic time, culminating in final continental break-up and seafloor spreading during the Late Triassic (Carnian-Norian). Subduction-influenced volcanics of mainly Early-Middle Triassic age probably reflect the extraction of magma from sub-continental lithosphere that was enriched in subduction-related fluids and volatiles during an earlier, ?Variscan subduction event. The existence of Upper Triassic

  14. Southern Ocean hotspot tracks and the Cenozoic absolute motion of the African, Antarctic, and South American plates

    NASA Astrophysics Data System (ADS)

    Hartnady, C. J. H.; le Roex, A. P.

    1985-10-01

    A detailed analysis, based on an Antarctica-Africa finite reconstruction at chron C29 (64 Ma), an assumption of no relative wander between the Marion/Prince Edward and Tristan hotspots, and on recently revised bathymetric maps of the Southern Ocean region, shows that the fixed hotspot reference frame is tenable for "absolute" plate motions. Bouvet hotspot, and probably Trinidade as well, also shows little or no Cenozoic relative motion. Contrary to previous models. Bouvet hotspot is unrelated to the Meteor Rise-Cape Rise seamount chain. Instead, the bathymetric data, when compared with the predicted hotspot tracks, indicate another hotspot exists near the southernmost South Atlantic spreading ridge segment. New geochemical evidence from the latter region supports this hypothesis in showing the effects of "plume enrichment" from a source that is compositionally distinct from Bouvet. The peculiar zig-zag shape of the Cape Rise-Meteor Rise lineament is the result of this hotspot crossing the active transform segment of the Falkland-Agulhas Fracture Zone in Late Mesozoic times, followed by an early Cenozoic ridge-jump to the pre-weakened trace on the then South American plate. From the averaged Cenozoic absolute motions of the African, Antarctic, and South American plates, it is evident that Antarctica has been most nearly stationary in an absolute motion sense.

  15. Estimates of Late Cenozoic extension, east-central Idaho

    SciTech Connect

    Janecke, S.U.. . Dept. of Geology)

    1993-04-01

    Late Cenozoic normal faults define the southwest flanks of the Lost River, Lemhi and Beaverhead Ranges in east-central Idaho. Cross sections and structural analysis suggest that throws along the central parts of the Lost River and Lemhi faults range from about 2 to 5 km. If the Beaverhead fault has a similar throw, then Miocene to Recent extension of east-central Idaho ranged 5 to 15%. However, three additional Late Cenozoic normal faults (the Hawley Mountain, Goldburg and Barney faults) bound a NW-trending horst between the Lost River and Lemhi Ranges in the Hawley Mountain and Donkey Hills area. The horst-bounding normal faults are inferred to have formed during Late Cenozoic time because: (1) the faults parallel the NW to NNW strike of Late Cenozoic normal faults in the region, (2) scattered Quaternary fault scarps coincide with the Barney fault, (3) steep topographic fronts define parts of the Goldburg and Hawley Mountain faults, (4) the Hawley Mountain fault displaces two Eocene normal faults, and (5) gravity lows are present in the hanging walls of the Barney and Goldburg faults. Left-lateral separation across the inferred NE-dipping Barney fault suggests 2--3 km of throw, assuming dip-slip displacement. Throw across the Goldburg fault, which uplifts Oligocene basin-fill deposits in its footwall, is at least 500 m. Although two of the horst-bounding normal faults have not offset Quaternary surficial deposits, estimated slip across these faults have not offset Quaternary surficial deposits, estimated slip across these faults is similar to slip across the prominent range-front faults in the region. Therefore, estimated Late Cenozoic extension of east-central Idaho along a NE-SW cross section through the Hawley-Goldburg horst is about 10 to 20%.

  16. Origin of the Blue Ridge escarpment along the passive margin of Eastern North America

    USGS Publications Warehouse

    Spotila, J.A.; Bank, G.C.; Reiners, P.W.; Naeser, C.W.; Naeser, N.D.; Henika, B.S.

    2004-01-01

    The Blue Ridge escarpment is a rugged landform situated within the ancient Appalachian orogen. While similar in some respects to the great escarpments along other passive margins, which have evolved by erosion following rifting, its youthful topographic expression has inspired proposals of Cenozoic tectonic rejuvenation in eastern North America. To better understand the post-orogenic and post-rift geomorphic evolution of passive margins, we have examined the origin of this landform using low-temperature thermochronometry and manipulation of topographic indices. Apatite (U-Th)/He and fission-track analyses along transects across the escarpment reveal a younging trend towards the coast. This pattern is consistent with other great escarpments and fits with an interpretation of having evolved by prolonged erosion, without the requirement of tectonic rejuvenation. Measured ages are also comparable specifically to those measured along other great escarpments that are as much as 100 Myr younger. This suggests that erosional mechanisms that maintain rugged escarpments in the early post-rift stages may remain active on ancient passive margins for prolonged periods. The precise erosional evolution of the escarpment is less clear, however, and several end-member models can explain the data. Our preferred model, which fits with all data, involves a significant degree of erosional escarpment retreat in the Cenozoic. Although this suggests that early onset of topographic stability is not required of passive margin evolution, more data are required to better constrain the details of the escarpment's development. ?? 2003 Blackwell Publishing Ltd.

  17. Bayes’ Theorem and Early Solar Short-lived Radionuclides: The Case for an Unexceptional Origin for the Solar System

    NASA Astrophysics Data System (ADS)

    Young, Edward D.

    2016-08-01

    The presence of excesses of short-lived radionuclides in the early solar system evidenced in meteorites has been taken as testament to close encounters with exotic nucleosynthetic sources, including supernovae or AGB stars. An analysis of the likelihoods associated with different sources of these extinct nuclides in the early solar system indicates that, rather than being exotic, their abundances were typical of star-forming regions like those observed today in the Galaxy. The radiochemistry of the early solar system is therefore unexceptional, being the consequence of extensive averaging of solids from molecular clouds.

  18. Present-day climatic equivalents of European Cenozoic climates

    NASA Astrophysics Data System (ADS)

    Utescher, Torsten; Mosbrugger, Volker; Ivanov, Dimiter; Dilcher, David L.

    2009-07-01

    Recently, continental climate evolution in Central Europe over the last 45 Ma has been reconstructed from the palaeobotanical record using a Nearest Living Relative methodology (Coexistence Approach; CA). The reconstructed climate curves document in detail the transition from almost tropical conditions in the Mid-Eocene to a temperate climate at the Pliocene/Pleistocene transition. The observed climatic shifts are primarily expressed as non-proportional changes of the different variables taken into account. In the present study a published palaeoclimate data set for a total of 42 macrofloras complemented by new calculations is used as base to analyse the climatic space in which a fossil flora existed. To define these spaces CA intervals calculated for 3 temperature (mean annual temperature, cold and warm month mean) and 3 precipitation variables (mean annual precipitation, mean monthly precipitation of the driest and of the wettest month) are combined. Using a global gridded climatology (10' resolution), this climate space is then utilized to identify Recent climate analogues with respect to the variables regarded. For 18 macrofloras climatic analogue regions with respect to 6 variables are identified on the globe. For 16 macrofloras, analogues exist when three temperature parameters and mean annual precipitation are regarded. No Recent equivalents are found in 8 cases. This corroborates the assumption of the temporary existence of non-analogue climates in the Cenozoic. As shown by multivariate statistics the observed anomalies with respect to present-day conditions basically refer to high winter temperatures. Deploying a GIS, the Recent climate analogues can be presented as sets of grid cells for each flora that can be mapped on a globe. Once identified, these regions can be merged with adequate thematic layers to assess additional proxy data for the palaeofloras. To exemplify the procedure Koeppen climate type, numbers of days with ground frost, as well as

  19. The Cenozoic Arctic Ocean Unveiled through Scientific Ocean Drilling

    NASA Astrophysics Data System (ADS)

    Mayer, L.; Moran, K.; Backman, J.

    2007-12-01

    In late summer 2004, the Integrated Ocean Drilling Program (IODP) conducted one of the most transformational missions in the almost 40 year history of scientific ocean drilling: the Arctic Coring Expedition (ACEX). This technically-challenging expedition recovered the first Cenozoic sediment record from the Arctic Ocean-extending previous records from ~1.5 Ma to an unprecedented ~56 Ma. Glimpses of the breadth of this transformation were even seen during ACEX when the massulae from fresh water ferns were found and the presence of Apectodinium augustum confirmed that the Paleocene-Eocene Thermal Maximum (PETM) was unexpectedly recovered. Soon after the expedition, when the cores were opened and analyzed, ice-rafted debris was found to have occurred much earlier than previously thought-in the Eocene in an environment of high organic carbon content. The initial analyses also revealed an extensive hiatus that occurred between several of the most spectacular sediment cores in terms of color, e.g. turquoise, and structure, starkly contrasting black and white crossbedding that is now dubbed the "zebra" core. The exciting early results attracted other investigators that expanded the scientific investigating team to more than 40 people. This, in turn, extended the analyses to include new studies that revealed surprisingly high Arctic Ocean surface water temperatures and a hydrologically active system during the PETM. Although the hiatus is a lost window in time for the Arctic paleoclimate record, it spawned other studies that integrated the regional tectonic history with ACEX results revealing a major oceanographic reorganization at 17.5 Ma-ventilation of the Arctic Ocean to the North Atlantic through the Fram Strait. In this overview, recent results from the large ACEX scientific "family" are summarized and include: a new age model; detailed analyses of the middle Eocene that document a unique brackish water environment; sea ice and iceberg history reconstructions and

  20. Nearby early-type galaxies with ionized gas. IV. Origin and powering mechanism of the ionized gas

    NASA Astrophysics Data System (ADS)

    Annibali, F.; Bressan, A.; Rampazzo, R.; Zeilinger, W. W.; Vega, O.; Panuzzo, P.

    2010-09-01

    Aims: A significant fraction of early-type galaxies (ETGs) exhibit emission lines in their optical spectra. We attempt to identify the producing the emission mechanism and the ionized gas in ETGs, and its connection with the host galaxy evolution. Methods: We analyzed intermediate-resolution optical spectra of 65 ETGs, mostly located in low density environments and exhibiting spectros-copic diagnostic lines of ISM from which we had previously derived stellar population properties. To extract the emission lines from the galaxy spectra, we developed a new fitting procedure that accurately subtracts the underlying stellar continuum, and accounts for the uncertainties caused by the age-metallicity degeneracy. Results: Optical emission lines are detected in 89% of the sample. The incidence and strength of emission correlate with neither the E/S0 classification, nor the fast/slow rotator classification. By means of the classical [OIII]/Hβ versus [NII]/Hα diagnostic diagram, the nuclear galaxy activity is classified such that 72% of the galaxies with emission are LINERs, 9% are Seyferts, 12% are composite/transition objects, and 7% are non-classified. Seyferts have young luminostiy-weighted ages (≲5 Gyr), and appear, on average, significantly younger than LINERs and composites. Excluding the Seyferts from our sample, we find that the spread in the ([OIII], Hα, or [NII]) emission strength increases with the galaxy central velocity dispersion σ_c. Furthermore, the [NII]/Hα ratio tends to increase with σ_c. The [NII]/Hα ratio decreases with increasing galactocentric distance, indicative of either a decrease in the nebular metallicity, or a progressive “softening” of the ionizing spectrum. The average nebular oxygen abundance is slightly less than solar, and a comparison with the results obtained in Paper III from Lick indices shows that it is ≈0.2 dex lower than that of stars. Conclusions: The nuclear (r < re/16) emission can be attributed to photoionization

  1. Late Cenozoic structure and correlations to seismicity along the Olympic-Wallowa Lineament, northwest United States

    USGS Publications Warehouse

    Mann, G.M.; Meyer, C.E.

    1993-01-01

    Late Cenozoic fault geometry, structure, paleoseismicity, and patterns of recent seismicity at two seismic zones along the Olympic-Wallowa lineament (OWL) of western Idaho, northeast Oregon, and southeast Washington indicate limited right-oblique slip displacement along multiple northwest-striking faults that constitute the lineament. The southern end of the OWL originates in the Long Valley fault system and western Snake River Plain in western Idaho. The OWL in northeast Oregon consists of a wide zone of northwest-striking faults and is associated with several large, inferred, pull-apart basins. The OWL then emerges from the Blue Mountain uplift as a much narrower zone of faults in the Columbia Plateau known as the Wallula fault zone (WFZ). Stuctural relationships in the WFZ strongly suggest that it is a right-slip extensional duplex. -from Authors

  2. Thermochronologic limits on Late Cenozoic denudation of Fiordland, southwestern New Zealand: implications for subduction initiation

    NASA Astrophysics Data System (ADS)

    House, M.; Kamp, P. J.; Gurnis, M.; Sutherland, R.

    2001-12-01

    New (U-Th)/He and fission track ages in apatites from Fiordland, southwestern New Zealand, provide insight into the spatial and temporal patterns of crustal uplift and exhumation that accompanied the transition between subduction and transform motion across this section of the Pacific plate boundary during Late Cenozoic times. Preliminary helium and fission track ages in apatites (AHE and AFT, respectively) indicate that much of the Fiordland region cooled through temperatures of ~110-70 C during Late Miocene-Early Pliocene times. Early Pliocene AFT and AHE ages from a constant elevation transect collected at sea level along Doubtful Sound are similar to AFT and AHE ages from a lake-level transect along the shores of Lake Te Anau. Another sea-level transect collected in southwesternmost Fiordland along Dusky Sound yielded Middle and Late Miocene AFT and AHE ages. AHE and AFT ages from two vertical profiles (one in western Doubtful Sound and one at Lake Hauroko in southeastern Fiordland) have similar slopes, corresponding to exhumation rates of 0.2-0.3 km/my. However, the profiles are offset slightly so that cooling ages from western Doubtful Sound are approx 5 m.y. younger than those from Lake Hauroko. Oligocene and older AFT and AHE ages from several localities in eastern Fiordland serve to delimit the extent of recent crustal uplift and exhumation to regions to the west of the Moonlight, Hollyford and Hauroko fault zones. We speculate that the abundance of Middle Miocene and younger cooling ages from Fiordland reflects regional uplift and exhumation resulting from changing plate motion and subduction initiation to the south. A Late Cenozoic geothermal gradient of 30 C/km and a surface temperature of 5 C imply that AFT and AHE ages correspond to the removal of approx 3.5 km and 2.2 km of material, respectively. This age and magnitude of denudation is consistent with estimates of Fiordland uplift based on provenance studies in the Halfway Formation to the north, as

  3. Cenozoic tectonic evolution and petroleum exploration in Perl River Mouth basin, South China Sea

    SciTech Connect

    Chi Yukun; Xu Shice )

    1990-06-01

    The Pearl River Mouth basin is a large Cenozoic continental margin basin that is rich in hydrocarbon potential. Fluvial-lake sequences were deposited before Oligocene, but all were covered by Miocene marine clastic and carbonate rocks. Both paleo-Pearl River delta system and reef/bank carbonate system were widely developed. At the early stage of the evolution, two subsidence belts and one uplift between them distributed in NE regional direction; grabens occurred in the north belt and depressions in the south belt. Tectonic movement was stronger in the east than the west. The main production zones have been drilled both in Miocene sandstone and carbonate rocks. As the exploration activities are developing, the basin will be one of the most significant China offshore oil production areas.

  4. A Cenozoic-style scenario for the end-Ordovician glaciation.

    PubMed

    Ghienne, Jean-François; Desrochers, André; Vandenbroucke, Thijs R A; Achab, Aicha; Asselin, Esther; Dabard, Marie-Pierre; Farley, Claude; Loi, Alfredo; Paris, Florentin; Wickson, Steven; Veizer, Jan

    2014-09-01

    The end-Ordovician was an enigmatic interval in the Phanerozoic, known for massive glaciation potentially at elevated CO2 levels, biogeochemical cycle disruptions recorded as large isotope anomalies and a devastating extinction event. Ice-sheet volumes claimed to be twice those of the Last Glacial Maximum paradoxically coincided with oceans as warm as today. Here we argue that some of these remarkable claims arise from undersampling of incomplete geological sections that led to apparent temporal correlations within the relatively coarse resolution capability of Palaeozoic biochronostratigraphy. We examine exceptionally complete sedimentary records from two, low and high, palaeolatitude settings. Their correlation framework reveals a Cenozoic-style scenario including three main glacial cycles and higher-order phenomena. This necessitates revision of mechanisms for the end-Ordovician events, as the first extinction is tied to an early phase of melting, not to initial cooling, and the largest δ(13)C excursion occurs during final deglaciation, not at the glacial apex.

  5. Arctic plant origins and early formation of circumarctic distributions: a case study of the mountain sorrel, Oxyria digyna.

    PubMed

    Wang, Qian; Liu, Jianquan; Allen, Geraldine A; Ma, Yazhen; Yue, Wei; Marr, Kendrick L; Abbott, Richard J

    2016-01-01

    Many plant species comprising the present-day Arctic flora are thought to have originated in the high mountains of North America and Eurasia, migrated northwards as global temperatures fell during the late Tertiary period, and thereafter attained a circumarctic distribution. However, supporting evidence for this hypothesis that provides a temporal framework for the origin, spread and initial attainment of a circumarctic distribution by an arctic plant is currently lacking. Here we examined the origin and initial formation of a circumarctic distribution of the arctic mountain sorrel (Oxyria digyna) by conducting a phylogeographic analysis of plastid and nuclear gene DNA variation. We provide evidence for an origin of this species in the Qinghai-Tibet Plateau of southwestern China, followed by migration into Russia c. 11 million yr ago (Ma), eastwards into North America by c. 4 Ma, and westwards into Western Europe by c. 1.96 Ma. Thereafter, the species attained a circumarctic distribution by colonizing Greenland from both sides of the Atlantic Ocean. Following the arrival of the species in North America and Europe, population sizes appear to have increased and then stabilized there over the last 1 million yr. However, in Greenland a marked reduction followed by an expansion in population size is indicated to have occurred during the Pleistocene. PMID:26197783

  6. Arctic plant origins and early formation of circumarctic distributions: a case study of the mountain sorrel, Oxyria digyna.

    PubMed

    Wang, Qian; Liu, Jianquan; Allen, Geraldine A; Ma, Yazhen; Yue, Wei; Marr, Kendrick L; Abbott, Richard J

    2016-01-01

    Many plant species comprising the present-day Arctic flora are thought to have originated in the high mountains of North America and Eurasia, migrated northwards as global temperatures fell during the late Tertiary period, and thereafter attained a circumarctic distribution. However, supporting evidence for this hypothesis that provides a temporal framework for the origin, spread and initial attainment of a circumarctic distribution by an arctic plant is currently lacking. Here we examined the origin and initial formation of a circumarctic distribution of the arctic mountain sorrel (Oxyria digyna) by conducting a phylogeographic analysis of plastid and nuclear gene DNA variation. We provide evidence for an origin of this species in the Qinghai-Tibet Plateau of southwestern China, followed by migration into Russia c. 11 million yr ago (Ma), eastwards into North America by c. 4 Ma, and westwards into Western Europe by c. 1.96 Ma. Thereafter, the species attained a circumarctic distribution by colonizing Greenland from both sides of the Atlantic Ocean. Following the arrival of the species in North America and Europe, population sizes appear to have increased and then stabilized there over the last 1 million yr. However, in Greenland a marked reduction followed by an expansion in population size is indicated to have occurred during the Pleistocene.

  7. Late Cenozoic Underthrusting of the Continental Margin off Northernmost California.

    PubMed

    Silver, E A

    1969-12-01

    The presence of magnetic anomaly 3, age 5 million years, beneath the continental slope off northernmost California, is evidence for underthrusting of the continental margin during the late Cenozoic. Folded and faulted strata near the base of the slope attest to deformation of the eastern edge of the turbidite sedimzents in the Gorda Basin; the deformation observed is exactly that expected from underthrusting. The relative motions of three crustal plates also suggest underthrusting, possibly with a major component of right-lateral slip.

  8. Magnetostratigraphic dating of Cenozoic platform carbonates from Bahamas and Florida

    SciTech Connect

    McNeill, D.F.; Ginsburg, R.N.

    1988-02-01

    An earlier study of the magnetic reversals in a single core of late Cenozoic shallow-water carbonates from the Bahamas found that the sequence of reversals, measured with a SQUID magnetometer, correlated with the standard magnetic polarity time scale. This initial application of magnetostratigraphy to date shallow-water carbonates with little or no terrigenous components has now been confirmed by study of two additional cores from the Bahamas and an older outcrop sequence from Florida.

  9. Report on ICDP workshop CONOSC (COring the NOrth Sea Cenozoic)

    NASA Astrophysics Data System (ADS)

    Westerhoff, Wim; Donders, Timme; Luthi, Stefan

    2016-08-01

    ICDP workshop COring the NOrth Sea Cenozoic focused on the scientific objectives and the technical aspects of drilling and sampling. Some 55 participants attended the meeting, ranging from climate scientists, drilling engineers, and geophysicists to stratigraphers and public outreach experts. Discussion on the proposed research sharpened the main research lines and led to working groups and the necessary technical details to compile a full proposal that was submitted in January 2016.

  10. Cenozoic Uplift, Erosion and Dynamic Support of Madagascar

    NASA Astrophysics Data System (ADS)

    Stephenson, Simon; White, Nicky

    2016-04-01

    The physiography of Madagascar is characterised by high-elevation but low-relief topography; 42% of the landscape is above 500 m in elevation. Eocene (marine) nummulitic (marine) limestones at elevations of ˜400 m above sea level and newly dated, emergent 125 ka coral reefs suggest that Madagascar has experienced differential vertical motions during Cenozoic times. Malagasy rivers are often deeply incised and contain steepened reaches, implying that they have responded to changes in regional uplift rate. However, low temperature thermochronology and 10Be derived erosion rates suggest that both Cenozoic and Recent average denudation rates have been low. Extensive laterite-capped, low-relief surfaces also suggest that there have been long periods of tectonic quiescence. In contrast, the modern landscape is characterised by erosional gullies (i.e. lavaka), with very high local erosion rates. To bridge the gap between this disparate evidence, we inverted 2566 longitudinal river profiles using a damped non-negative, least-squares linear inversion to determine the history of regional uplift. We used a simplified version of the stream power erosional law. River profiles were extracted from the 3 arc-second Shuttle Radar Topography Mission (SRTM) digital elevation model. Calibration of the stream power erosional law is based upon Cenozoic limestones and new radiometrically dated marine terraces. The residual misfit between observed and calculated river profiles is small. Results suggest that Malagasy topography grew diachronously by 1-2 km over the last 15-20 Ma. Calculated uplift and denudation are consistent with independent observations. Thus drainage networks contain coherent signals that record regional uplift. The resultant waves of incision are the principal trigger for modern erosional processes. Admittance calculations, the history of basaltic volcanism and nearby oceanic residual age-depth measurements all suggest that as much as 0.8 - 1.1 km of Cenozoic uplift

  11. Investigating Late Cenozoic Mantle Dynamics beneath Yellowstone

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Liu, L.

    2015-12-01

    Recent tomography models (Sigloch, 2011; Schmandt & Lin, 2014) reveal unprecedented details of the mantle structure beneath the United States (U.S.). Prominent slow seismic anomalies below Yellowstone, traditionally interpreted as due to a mantle plume, are restricted to depths either shallower than 200 km or between 500 and 1000 km, but a continuation to greater depth is missing. Compared to fast seismic anomalies, which are usually interpreted as slabs or delaminated lithosphere, origin of deep slow seismic anomalies, especially those in the vicinity of subduction zones, is more enigmatic. As a consequence, both the dynamics and evolution of these slow anomalies remain poorly understood. To investigate the origin and evolution of the Yellowstone slow anomaly during the past 20 Myr, we construct a 4D inverse mantle convection model with a hybrid data assimilation scheme. On the one hand, we use the adjoint method to recover the past evolution of mantle seismic structures beyond the subduction zones. On the other hand, we use a high-resolution forward model to simulate the subduction of the oceanic (i.e., Farallon) plate. During the adjoint iterations, features from these two approaches are blended together at a depth of ~200 km below the subduction zone. In practice, we convert fast and slow seismic anomalies to effective positive and negative density heterogeneities. Our preliminary results indicate that at 20 Ma, the present-day shallow slow anomalies beneath the western U.S. were located inside the oceanic asthenosphere, which subsequently entered the mantle wedge, through the segmented Farallon slab. The eastward encroachment of the slow anomaly largely followed the Yellowstone hotspot track migration. The present deep mantle Yellowstone slow anomaly originated at shallower depths (i.e. transition zone), and was then translated down to the lower mantle accompanying the sinking fast anomalies. The temporal evolution of the slow anomalies suggests that the deep

  12. An analysis of the origin of an early medieval group of individuals from Gródek based on the analysis of stable oxygen isotopes.

    PubMed

    Lisowska-Gaczorek, A; Kozieł, S; Cienkosz-Stepańczak, B; Mądrzyk, K; Pawlyta, J; Gronkiewicz, S; Wołoszyn, M; Szostek, K

    2016-08-01

    In the early Middle Ages, the region of the Cherven Towns, which is now located on both sides of the Polish-Ukrainian border, was fiercely contested by Slavs in the process of forming their early states. The main objective of the present study was to investigate the homogeneity of an early medieval population uncovered in that region, in the town of Gródek on the Bug River, by screening for non-local individuals. The origin of the studied skeletons was ascertained using analysis of oxygen isotopes in the phosphates isolated from bone tissue. In this paper, the isotope ratios obtained for samples collected from 62 human skeletons were compared to the background δ(18)O (in precipitation water) from the regions of Kraków (south-eastern Poland), Lviv (western Ukraine), Brest (western Belarus), and Gródek, as well as to the ratios determined for the animals coexisting with the studied population. Proportions of oxygen isotopes obtained for all the studied individuals were found to be similar to those for the precipitation water and animals, which indicates the absence of bone fragments of individuals originating in other regions. PMID:27255160

  13. An analysis of the origin of an early medieval group of individuals from Gródek based on the analysis of stable oxygen isotopes.

    PubMed

    Lisowska-Gaczorek, A; Kozieł, S; Cienkosz-Stepańczak, B; Mądrzyk, K; Pawlyta, J; Gronkiewicz, S; Wołoszyn, M; Szostek, K

    2016-08-01

    In the early Middle Ages, the region of the Cherven Towns, which is now located on both sides of the Polish-Ukrainian border, was fiercely contested by Slavs in the process of forming their early states. The main objective of the present study was to investigate the homogeneity of an early medieval population uncovered in that region, in the town of Gródek on the Bug River, by screening for non-local individuals. The origin of the studied skeletons was ascertained using analysis of oxygen isotopes in the phosphates isolated from bone tissue. In this paper, the isotope ratios obtained for samples collected from 62 human skeletons were compared to the background δ(18)O (in precipitation water) from the regions of Kraków (south-eastern Poland), Lviv (western Ukraine), Brest (western Belarus), and Gródek, as well as to the ratios determined for the animals coexisting with the studied population. Proportions of oxygen isotopes obtained for all the studied individuals were found to be similar to those for the precipitation water and animals, which indicates the absence of bone fragments of individuals originating in other regions.

  14. Geology of the Eel River basin and adjacent region: implications for late Cenozoic tectonics of the southern Cascadia subduction zone and Mendocino triple junction

    USGS Publications Warehouse

    Clarke, S.H.

    1992-01-01

    Two upper Cenozoic depositional sequences of principally marine strata about 4000m thick overlie accreted basement terranes of the Central and Coastal belts of the Franciscan Complex in the onshore-offshore Eel River basin of northwestern California. The older depositional sequence is early to middle Miocene in age and represents slope basin and slope-blanket deposition, whereas the younger sequence, late Miocene to middle Pleistocene in age, consists largely of forearc basin deposits. -from Author

  15. Cenozoic Climate Change: Geochemical Proxy Records from Deep Ocean Sediments

    NASA Astrophysics Data System (ADS)

    Billups, K.; Venti, N.

    2009-04-01

    Cenozoic climate evolved from a the warm Paleocene and Eocene ( 16 Ma) to the relatively cold conditions of the modern world via three major ice growth events first on Antarctica at the Eocene/Oligocene boundary then during the middle Miocene and finally in the Northern Hemisphere during the late Pliocene. Much of what we know about past climate change comes from the oxygen isotopic composition of benthic foraminifera. Although this proxy outlines large scale changes in the degree of polar glaciation, the absolute magnitude and the relationship between ice extent and ocean temperature cannot be uniquely determined. The recent development of foraminiferal Mg/Ca ratios as a proxy for paleotemperatures provides an opportunity to improve our understanding of climate change on both tectonic and orbital time scales. For example, paired delta18O and Mg/Ca deep water records show that expansion of ice at the Eocene/Oligocene boundary occurred in steps and was accompanied by cooling of water temperatures by about 2-3C (Lear et al., 2008; Katz et al.2008). During the middle Miocene expansion of ice predates cooling of Southern Ocean surface waters providing evidence for the importance of heat and moisture transport in Antarctic ice growth (Shevenell and Kennett, 2007). Relatively few deep sea studies have focused on late Miocene climate, and foraminiferal delta18O records do not support major oceanographic and climatic changes. Although, the late Miocene may have been a time of global cooling, especially in the circum-Antarctic region, with the establishment of a grounded West Antarctic ice sheet. The early Pliocene, in contrast, has been the focus of much research because of the relevance to understanding intervals of sustained global climatic warmth with near modern-day tectonic configuration, warm upwelling regions, and elevated CO2 levels with respect to the pre-industrial atmosphere. The deep sea delta18O record, however, suggests that Antarctic ice sheet size remained

  16. Historical review of a long-overlooked paper by R. A. Daly concerning the origin and early history of the Moon

    NASA Astrophysics Data System (ADS)

    Baldwin, Ralph B.; Wilhelms, Don E.

    1992-03-01

    In 1946 the great geologist R. A. Daly published an important paper in which he discussed a great many problems concerning the Moon and its features and origin. His paper was almost completely ignored by the scientists of the day and was ``lost'' for nearly half a century. The present paper marks an attempt to outline Daly's contributions to the interpretation of these lunar problems, in particular the origin of the Moon. One of the major ideas, which probably was the incentive for him to write the paper, was that the Moon was born as a result of a very early glancing collision of the Earth and a planet-sized body. Other subjects covered are the origin of the craters from Earth fragments, although meteoritic impact is also presented; the nature of the maria as lava from the body of the Moon; and origin of the lines of small craters as produced by gas escaping from the Moon. Daly rejected all non impact models for crater origin except for the tiny gas-made aligned pits. He vigorously stated that the Moon was largely created from the body of the Earth and discussed three methods by which this could be accomplished, one internal and two external, before settling on the glancing collision model. Daly clearly was the pioneer in presenting the impact model of the origin of the Moon. Much later, works by others have modified the hypothesis, but this is only natural evolution. Two other ``lost'' papers will be mentioned to show that this is an all too frequent occurrence. In 1893 Gilbert wrote a milestone paper that was generally unrecognized for more than 50 years. He espoused the impact theory of the origin of lunar basins and craters. He was wrong about the mechanism involved, but he was right about the impact idea. Similarly, Öpik in 1916 showed that impact craters must be formed by explosions due to the high energies of striking meteorites. He showed that such impacts, even at low angles of fall would result in circular craters, thus correcting Gilbert, whom he did

  17. A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis.

    PubMed

    Ramesh, Marilee A; Malik, Shehre-Banoo; Logsdon, John M

    2005-01-26

    Sexual reproduction in eukaryotes is accomplished by meiosis, a complex and specialized process of cell division that results in haploid cells (e.g., gametes). The stereotypical reductive division in meiosis is a major evolutionary innovation in eukaryotic cells, and delineating its history is key to understanding the evolution of sex. Meiosis arose early in eukaryotic evolution, but when and how meiosis arose and whether all eukaryotes have meiosis remain open questions. The known phylogenetic distribution of meiosis comprises plants, animals, fungi, and numerous protists. Diplomonads including Giardia intestinalis (syn. G. lamblia) are not known to have a sexual cycle; these protists may be an early-diverging lineage and could represent a premeiotic stage in eukaryotic evolution. We surveyed the ongoing G. intestinalis genome project data and have identified, verified, and analyzed a core set of putative meiotic genes-including five meiosis-specific genes-that are widely present among sexual eukaryotes. The presence of these genes indicates that: (1) Giardia is capable of meiosis and, thus, sexual reproduction, (2) the evolution of meiosis occurred early in eukaryotic evolution, and (3) the conserved meiotic machinery comprises a large set of genes that encode a variety of component proteins, including those involved in meiotic recombination.

  18. Cenozoic carbon cycle imbalances and a variable weathering feedback

    NASA Astrophysics Data System (ADS)

    Caves, Jeremy K.; Jost, Adam B.; Lau, Kimberly V.; Maher, Kate

    2016-09-01

    The long-term stability of Earth's climate and the recovery of the ocean-atmosphere system after carbon cycle perturbations are often attributed to a stabilizing negative feedback between silicate weathering and climate. However, evidence for the operation of this feedback over million-year timescales and in response to tectonic and long-term climatic change remains scarce. For example, the past 50 million years of the Cenozoic Era are characterized by long-term cooling and declining atmospheric CO2 (pCO2). During this interval, constant or decreasing carbon fluxes from the solid Earth to the atmosphere suggest that stable or decreasing weathering fluxes are needed to balance the carbon cycle. In contrast, marine isotopic proxies of weathering (i.e., 87Sr/86Sr, δ7 Li , and 187Os/188Os) are interpreted to reflect increasing weathering fluxes. Here, we evaluate the existence of a negative feedback by reconstructing the imbalance in the carbon cycle during the Cenozoic using the surface inventories of carbon and alkalinity. Only a sustained 0.25-0.5% increase in silicate weathering is necessary to explain the long-term decline in pCO2 over the Cenozoic. We propose that the long-term decrease in pCO2 is due to an increase in the strength of the silicate weathering feedback (i.e., the constant of proportionality between the silicate weathering flux and climate), rather than an increase in the weathering flux. This increase in the feedback strength, which mirrors the marine isotope proxies, occurs as transient, <1 million year increases in the weathering flux, which remove CO2. As runoff and temperature decline in response, the integrated weathering flux over >1 million year timescales remains invariant to match the long-term inputs of carbon. Over the Cenozoic, this results in stable long-term weathering fluxes even as pCO2 decreases. We attribute increasing feedback strength to a change in the type and reactivity of rock in the weathering zone, which collectively has

  19. High GUD Incidence in the Early 20th Century Created a Particularly Permissive Time Window for the Origin and Initial Spread of Epidemic HIV Strains

    PubMed Central

    de Sousa, João Dinis; Müller, Viktor; Lemey, Philippe; Vandamme, Anne-Mieke

    2010-01-01

    The processes that permitted a few SIV strains to emerge epidemically as HIV groups remain elusive. Paradigmatic theories propose factors that may have facilitated adaptation to the human host (e.g., unsafe injections), none of which provide a coherent explanation for the timing, geographical origin, and scarcity of epidemic HIV strains. Our updated molecular clock analyses established relatively narrow time intervals (roughly 1880–1940) for major SIV transfers to humans. Factors that could favor HIV emergence in this time frame may have been genital ulcer disease (GUD), resulting in high HIV-1 transmissibility (4–43%), largely exceeding parenteral transmissibility; lack of male circumcision increasing male HIV infection risk; and gender-skewed city growth increasing sexual promiscuity. We surveyed colonial medical literature reporting incidences of GUD for the relevant regions, concentrating on cities, suffering less reporting biases than rural areas. Coinciding in time with the origin of the major HIV groups, colonial cities showed intense GUD outbreaks with incidences 1.5–2.5 orders of magnitude higher than in mid 20th century. We surveyed ethnographic literature, and concluded that male circumcision frequencies were lower in early 20th century than nowadays, with low rates correlating spatially with the emergence of HIV groups. We developed computer simulations to model the early spread of HIV-1 group M in Kinshasa before, during and after the estimated origin of the virus, using parameters derived from the colonial literature. These confirmed that the early 20th century was particularly permissive for the emergence of HIV by heterosexual transmission. The strongest potential facilitating factor was high GUD levels. Remarkably, the direct effects of city population size and circumcision frequency seemed relatively small. Our results suggest that intense GUD in promiscuous urban communities was the main factor driving HIV emergence. Low circumcision rates

  20. Chasing the Origin of Viruses: Capsid-Forming Genes as a Life-Saving Preadaptation within a Community of Early Replicators.

    PubMed

    Jalasvuori, Matti; Mattila, Sari; Hoikkala, Ville

    2015-01-01

    Virus capsids mediate the transfer of viral genetic information from one cell to another, thus the origin of the first viruses arguably coincides with the origin of the viral capsid. Capsid genes are evolutionarily ancient and their emergence potentially predated even the origin of first free-living cells. But does the origin of the capsid coincide with the origin of viruses, or is it possible that capsid-like functionalities emerged before the appearance of true viral entities? We set to investigate this question by using a computational simulator comprising primitive replicators and replication parasites within a compartment matrix. We observe that systems with no horizontal gene transfer between compartments collapse due to the rapidly emerging replication parasites. However, introduction of capsid-like genes that induce the movement of randomly selected genes from one compartment to another rescues life by providing the non-parasitic replicators a mean to escape their current compartments before the emergence of replication parasites. Capsid-forming genes can mediate the establishment of a stable meta-population where parasites cause only local tragedies but cannot overtake the whole community. The long-term survival of replicators is dependent on the frequency of horizontal transfer events, as systems with either too much or too little genetic exchange are doomed to succumb to replication-parasites. This study provides a possible scenario for explaining the origin of viral capsids before the emergence of genuine viruses: in the absence of other means of horizontal gene transfer between compartments, evolution of capsid-like functionalities may have been necessary for early life to prevail.

  1. Late Cenozoic Moisture History of East Africa

    NASA Astrophysics Data System (ADS)

    Trauth, Martin H.; Maslin, Mark A.; Deino, Alan; Strecker, Manfred R.

    2005-09-01

    Lake sediments in 10 Ethiopian, Kenyan, and Tanzanian rift basins suggest that there were three humid periods at 2.7 to 2.5 million years ago (Ma), 1.9 to 1.7 Ma, and 1.1 to 0.9 Ma, superimposed on the longer-term aridification of East Africa. These humid periods correlate with increased aridity in northwest and northeast Africa and with substantial global climate transitions. These episodes could have had important impacts on the speciation and dispersal of mammals and hominins, because a number of key events, such as the origin of the genus Homo and the evolution of the species Homo erectus, took place in this region during that time.

  2. Late Mesozoic and Cenozoic wrench tectonics in eastern Australia: Insights from the North Pine Fault System (southeast Queensland)

    NASA Astrophysics Data System (ADS)

    Babaahmadi, A.; Rosenbaum, G.

    2014-01-01

    The North Pine Fault System (NPFS) in SE Queensland belongs to a series of NNW-striking sinistral faults that displaced Paleozoic to Cenozoic rock units in eastern Australia. We have studied the geometry and kinematics of the NPFS by utilizing gridded aeromagnetic data, digital elevation models, and field observations. The results indicate that all segments of the NPFS were subjected to sinistral reverse strike-slip faulting. Restorations of displaced magnetic anomalies indicate sinistral offsets ranging from ˜3.4 to ˜8.2 km. The existence of a (possibly) Late Triassic granophyre dyke parallel to one of the fault segments, and the occurrence of NNW-striking steeply dipping strike-slip and normal faults in the Late Triassic-Early Cretaceous Maryborough Basin, indicate that the NPFS has likely been active during the Mesozoic. We propose that from Late Cretaceous to early Eocene, NNW-striking faults in eastern Australia, including the NPFS, were reactivated with oblique sinistral-normal kinematics in response to regional oblique extension associated with the opening of the Tasman and Coral Seas. This interpretation is consistent with the modeled dominant NNE- to NNW-directed horizontal tensional stress in the Eocene. The latest movements along the NPFS involved sinistral transpressional kinematics, which was possibly related to far-field contractional stresses from collisional tectonics at the eastern and northern boundaries of the Austr