Sample records for early cosmic chemical

  1. Cosmic ray models for early galactic lithium, beryllium, and boron production

    NASA Technical Reports Server (NTRS)

    Fields, Brian D.; Olive, Keith A.; Schramm, David N.

    1994-01-01

    To better understand the early galactic production of Li, Be, and B by cosmic ray spallation and fusion reactions, the dependence of these production rates on cosmic ray models and model parameters is examined. The sensitivity of elemental and isotropic production to the cosmic ray pathlength magnitude and energy dependence, source spectrum spallation kinematics, and cross section uncertainties is studied. Changes in these model features, particularly those features related to confinement, are shown to alter the Be- and B-versus-Fe slopes from a naive quadratic relation. The implications of our results for the diffuse gamma-ray background are examined, and the role of chemical evolution and its relation to our results is noted. It is also noted that the unmeasured high energy behavior of alpha + alpha fusion can lead to effects as large as a factor of 2 in the resultant yields. Future data should enable Population II Li, Be, and B abundances to constrain cosmic ray models for the early Galaxy.

  2. Cosmic-ray models for early Galactic Lithium, Beryllium, and Boron production

    NASA Technical Reports Server (NTRS)

    Fields, Brian D.; Olive, Keith A.; Schramm, David N.

    1994-01-01

    To understand better the early Galactic production of Li, Be, and B by comsmic-ray spallation and fusion reactions, the dependence of these production rates on cosmic-ray models and model parameters is examined. The sensitivity of elemental and isotopic production to the cosmic-ray path length magnitude and energy dependence, source spectrum, spallation kinematics, and cross section uncertainties is studied. Changes in these model features, particularly those features related to confinement, are shown to alter the Be- and B- versus-Fe slopes from a naive quadratic relation. The implications of our results for the diffuse gamma-ray background are examined, and the role of chemical evolution and its relation to our results is noted. It is also noted that the unmeasured high-energy behavior of alpha + alpha fusion can lead to effects as large as a factor of 2 in the resultant yields. Future data should enable Population II Li, Be, and B abundances to constrain cosmic-ray models for the early Galaxy.

  3. Xenia: A Probe of Cosmic Chemical Evolution

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa; Piro, L.

    2008-01-01

    Xenia is a concept study for a medium-size astrophysical cosmology mission addressing the Cosmic Origins key objective of NASA's Science Plan. The fundamental goal of this objective is to understand the formation and evolution of structures on various scales from the early Universe to the present time (stars, galaxies and the cosmic web). Xenia will use X-and y-ray monitoring and wide field X-ray imaging and high-resolution spectroscopy to collect essential information from three major tracers of these cosmic structures: the Warm Hot Intergalactic Medium (WHIM), Galaxy Clusters and Gamma Ray Bursts (GRBs). Our goal is to trace the chemo-dynamical history of the ubiquitous warm hot diffuse baryon component in the Universe residing in cosmic filaments and clusters of galaxies up to its formation epoch (at z =0-2) and to map star formation and galaxy metal enrichment into the re-ionization era beyond z 6. The concept of Xenia (Greek for "hospitality") evolved in parallel with the Explorer of Diffuse Emission and GRB Explosions (EDGE), a mission proposed by a multinational collaboration to the ESA Cosmic Vision 2015. Xenia incorporates the European and Japanese collaborators into a U.S. led mission that builds on the scientific objectives and technological readiness of EDGE.

  4. Xenia: A Probe of Cosmic Chemical Evolution

    NASA Astrophysics Data System (ADS)

    Kouveliotou, Chryssa; Piro, L.; Xenia Collaboration

    2008-03-01

    Xenia is a concept study for a medium-size astrophysical cosmology mission addressing the Cosmic Origins key objective of NASA's Science Plan. The fundamental goal of this objective is to understand the formation and evolution of structures on various scales from the early Universe to the present time (stars, galaxies and the cosmic web). Xenia will use X-and γ-ray monitoring and wide field X-ray imaging and high-resolution spectroscopy to collect essential information from three major tracers of these cosmic structures: the Warm Hot Intergalactic Medium (WHIM), Galaxy Clusters and Gamma Ray Bursts (GRBs). Our goal is to trace the chemo-dynamical history of the ubiquitous warm hot diffuse baryon component in the Universe residing in cosmic filaments and clusters of galaxies up to its formation epoch (at z =0-2) and to map star formation and galaxy metal enrichment into the re-ionization era beyond z 6. The concept of Xenia (Greek for "hospitality") evolved in parallel with the Explorer of Diffuse Emission and GRB Explosions (EDGE), a mission proposed by a multinational collaboration to the ESA Cosmic Vision 2015. Xenia incorporates the European and Japanese collaborators into a U.S. led mission that builds on the scientific objectives and technological readiness of EDGE.

  5. A Multi-Variate Fit to the Chemical Composition of the Cosmic-Ray Spectrum

    NASA Astrophysics Data System (ADS)

    Eisch, Jonathan

    Since the discovery of cosmic rays over a century ago, evidence of their origins has remained elusive. Deflected by galactic magnetic fields, the only direct evidence of their origin and propagation remain encoded in their energy distribution and chemical composition. Current models of galactic cosmic rays predict variations of the energy distribution of individual elements in an energy region around 3x1015 eV known as the knee. This work presents a method to measure the energy distribution of individual elemental groups in the knee region and its application to a year of data from the IceCube detector. The method uses cosmic rays detected by both IceTop, the surface-array component, and the deep-ice component of IceCube during the 2009-2010 operation of the IC-59 detector. IceTop is used to measure the energy and the relative likelihood of the mass composition using the signal from the cosmic-ray induced extensive air shower reaching the surface. IceCube, 1.5 km below the surface, measures the energy of the high-energy bundle of muons created in the very first interactions after the cosmic ray enters the atmosphere. These event distributions are fit by a constrained model derived from detailed simulations of cosmic rays representing five chemical elements. The results of this analysis are evaluated in terms of the theoretical uncertainties in cosmic-ray interactions and seasonal variations in the atmosphere. The improvements in high-energy cosmic ray hadronic-interaction models informed by this analysis, combined with increased data from subsequent operation of the IceCube detector, could provide crucial limits on the origin of cosmic rays and their propagation through the galaxy. In the course of developing this method, a number of analysis and statistical techniques were developed to deal with the difficulties inherent in this type of measurement. These include a composition-sensitive air shower reconstruction technique, a method to model simulated event

  6. Early results from the ultra heavy cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Jansen, F.; Domingo, C.

    1995-01-01

    Data extraction and analysis of the LDEF Ultra Heavy Cosmic Ray Experiment is continuing. Almost twice the pre LDEF world sample has been investigated and some details of the charge spectrum in the region from Z approximately 70 up to and including the actinides are presented. The early results indicate r process enhancement over solar system source abundances.

  7. Cosmic strings and superconducting cosmic strings

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund

    1988-01-01

    The possible consequences of forming cosmic strings and superconducting cosmic strings in the early universe are discussed. Lecture 1 describes the group theoretic reasons for and the field theoretic reasons why cosmic strings can form in spontaneously broken gauge theories. Lecture 2 discusses the accretion of matter onto string loops, emphasizing the scenario with a cold dark matter dominated universe. In lecture 3 superconducting cosmic strings are discussed, as is a mechanism which leads to the formation of structure from such strings.

  8. Cosmic archaeology with gravitational waves from cosmic strings

    NASA Astrophysics Data System (ADS)

    Cui, Yanou; Lewicki, Marek; Morrissey, David E.; Wells, James D.

    2018-06-01

    Cosmic strings are generic cosmological predictions of many extensions of the standard model of particle physics, such as a U (1 )' symmetry-breaking phase transition in the early Universe or remnants of superstring theory. Unlike other topological defects, cosmic strings can reach a scaling regime that maintains a small fixed fraction of the total energy density of the Universe from a very early epoch until today. If present, they will oscillate and generate gravitational waves with a frequency spectrum that imprints the dominant sources of total cosmic energy density throughout the history of the Universe. We demonstrate that current and future gravitational wave detectors, such as LIGO and LISA, could be capable of measuring the frequency spectrum of gravitational waves from cosmic strings and discerning the energy composition of the Universe at times well before primordial nucleosynthesis and the cosmic microwave background where standard cosmology has yet to be tested. This work establishes a benchmark case that gravitational waves may provide an unprecedented, powerful tool for probing the evolutionary history of the very early Universe.

  9. The Early Universe: Searching for Evidence of Cosmic Inflation

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2012-01-01

    In the past two decades, our understanding of the evolution and fate of the universe has increased dramatically. This "Age of Precision Cosmology" has been ushered in by measurements that have both elucidated the details of the Big Bang cosmology and set the direction for future lines of inquiry. Our universe appears to consist of 5% baryonic matter; 23% of the universe's energy content is dark matter which is responsible for the observed structure in the universe; and 72% of the energy density is so-called "dark energy" that is currently accelerating the expansion of the universe. In addition, our universe has been measured to be geometrically flat to 1 %. These observations and related details of the Big Bang paradigm have hinted that the universe underwent an epoch of accelerated expansion known as "inflation" early in its history. In this talk, I will review the highlights of modern cosmology, focusing on the contributions made by measurements of the cosmic microwave background, the faint afterglow of the Big Bang. I will also describe new instruments designed to measure the polarization of the cosmic microwave background in order to search for evidence of cosmic inflation.

  10. Creating a Context in the Early Childhood Classroom. Spotlight: Cosmic Education.

    ERIC Educational Resources Information Center

    Engel, Janet Wolfe

    2002-01-01

    Describes how to create a context for Cosmic Education, which develops an awareness of the interrelationships between the elements of the cosmos and the individual's place in that continuum, in the early childhood Montessori classroom. Discusses the importance of meeting the child's developmental needs, and preparing the adult teacher spiritually,…

  11. A cosmic microwave background feature consistent with a cosmic texture.

    PubMed

    Cruz, M; Turok, N; Vielva, P; Martínez-González, E; Hobson, M

    2007-12-07

    The Cosmic Microwave Background provides our most ancient image of the universe and our best tool for studying its early evolution. Theories of high-energy physics predict the formation of various types of topological defects in the very early universe, including cosmic texture, which would generate hot and cold spots in the Cosmic Microwave Background. We show through a Bayesian statistical analysis that the most prominent 5 degrees -radius cold spot observed in all-sky images, which is otherwise hard to explain, is compatible with having being caused by a texture. From this model, we constrain the fundamental symmetry-breaking energy scale to be (0) approximately 8.7 x 10(15) gigaelectron volts. If confirmed, this detection of a cosmic defect will probe physics at energies exceeding any conceivable terrestrial experiment.

  12. Cosmic reionization on computers. II. Reionization history and its back-reaction on early galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gnedin, Nickolay Y.; Kaurov, Alexander A., E-mail: gnedin@fnal.gov, E-mail: kaurov@uchicago.edu

    We compare the results from several sets of cosmological simulations of cosmic reionization, produced under the Cosmic Reionization On Computers project, with existing observational data on the high-redshift Lyα forest and the abundance of Lyα emitters. We find good consistency with the observational measurements and previous simulation work. By virtue of having several independent realizations for each set of numerical parameters, we are able to explore the effect of cosmic variance on observable quantities. One unexpected conclusion we are forced into is that cosmic variance is unusually large at z > 6, with both our simulations and, most likely, observationalmore » measurements still not fully converged for even such basic quantities as the average Gunn-Peterson optical depth or the volume-weighted neutral fraction. We also find that reionization has little effect on the early galaxies or on global cosmic star formation history, because galaxies whose gas content is affected by photoionization contain no molecular (i.e., star-forming) gas in the first place. In particular, measurements of the faint end of the galaxy luminosity function by the James Webb Space Telescope are unlikely to provide a useful constraint on reionization.« less

  13. The Cosmic Microwave Background Radiation - A Unique Window on the Early Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary F.

    2009-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approx. 1100. Data from the first five years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time.

  14. Looking for early black holes signatures in the anisotropies of Cosmic backgrounds

    NASA Astrophysics Data System (ADS)

    Cappelluti, Nico

    2016-04-01

    We currently do not know how Super Massive Black Holes are seeded and grow to form the observed massive QSO at z~7. This is puzzling, because at that redshift the Universe was still too young to allow the growth of such massive black holes from stellar remnant black hole seeds. Theoretical models, taking into account the paucity of metals in the early Universe, explain this by invoking the formation of massive black holes seeds at z>10 as Direct Collapse Black holes of remnants of dead POPIII stars. As of today we cannot claim any detection of any high-z (z>7) black hole in their early stage of life. However, our recent measures of the arcminute scale joint fluctuations of the Cosmic X-ray Background and the Cosmic Infrared Background by Chandra and Spitzer can be explained by a population of highly absorbed z>10 Direct Collapse Black Holes.I will review the recent discoveries obtained with different instruments and by different teams and critically discuss these findings and the interpretations.

  15. Early history of cosmic rays at Chicago

    NASA Astrophysics Data System (ADS)

    Yodh, Gaurang B.

    2013-02-01

    Cosmic ray studies at the University of Chicago were started by Arthur Compton during the late 1920s. The high points of cosmic ray studies at Chicago under Compton and Marcel Schein are the focus of this report, which summarizes the research done at Chicago up to the end of World War II.

  16. Organic Matter in Cosmic Dust

    PubMed Central

    Sandford, Scott A.; Engrand, Cecile; Rotundi, Alessandra

    2018-01-01

    Organics are observed to be a significant component of cosmic dust in nearly all environments were dust is observed. In many cases only remote telescope observations of these materials are obtainable and our knowledge of the nature of these materials is very basic. However, it is possible to obtain actual samples of extraterrestrial dust in the Earth’s stratosphere, in Antarctic ice and snow, in near-Earth orbit, and via spacecraft missions to asteroids and comets. It is clear that cosmic dust contains a diverse population of organic materials that owe their origins to a variety of chemical processes occurring in many different environments. The presence of isotopic enrichments of D and 15N suggests that many of these organic materials have an interstellar/protosolar heritage. The study of these samples is of considerable importance since they are the best preserved materials of the early Solar System available. PMID:29422977

  17. Cosmic Ray Physics with the KASCADE-Grande Observatory

    NASA Astrophysics Data System (ADS)

    Arteaga-Velázquez, J. C.; Apel, W. D.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    The existence of a knee at a few PeV in the all-particle cosmic ray energy spectrum has been well established by several experiments but its physical origin has eluded researches for a long time. It is believed that keys to disentangle the mystery could be found in the spectrum and the composition of cosmic rays between 1 PeV and 1 EeV. A first detailed look into the elemental chemical abundances of cosmic rays in this energy regime was provided by both the KASCADE and the KASCADE-Grande experiments. Their measurements opened the door to a wealth of new data on the subject, which led to the discovery of new structures in the all-particle energy spectrum and the confirmation of knee-like features in the spectra of individual mass groups, as well as the observation of an unexpected ankle-like structure at around 100 PeV in the flux of the light component of cosmic rays. In this contribution, early findings with the KASCADE-Grande experiment will be reviewed and then a short update on the analyses currently performed with the data of the observatory will be presented.

  18. Cosmic strings

    NASA Technical Reports Server (NTRS)

    Bennett, David P.

    1988-01-01

    Cosmic strings are linear topological defects which are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characterisitc microwave background anisotropy. It was recently discovered that details of cosmic string evolution are very differnt from the so-called standard model that was assumed in most of the string-induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain.

  19. Present-day cosmic abundances. A comprehensive study of nearby early B-type stars and implications for stellar and Galactic evolution and interstellar dust models

    NASA Astrophysics Data System (ADS)

    Nieva, M.-F.; Przybilla, N.

    2012-03-01

    Context. Early B-type stars are ideal indicators for present-day cosmic abundances since they preserve their pristine abundances and typically do not migrate far beyond their birth environments over their short lifetimes, in contrast to older stars like the Sun. They are also unaffected by depletion onto dust grains, unlike the cold/warm interstellar medium (ISM) or H ii regions. Aims: A carefully selected sample of early B-type stars in OB associations and the field within the solar neighbourhood is studied comprehensively. Quantitative spectroscopy is used to characterise their atmospheric properties in a self-consistent way. Present-day abundances for the astrophysically most interesting chemical elements are derived in order to investigate whether a present-day cosmic abundance standard can be established. Methods: High-resolution and high-S/N FOCES, FEROS and ELODIE spectra of well-studied sharp-lined early B-type stars are analysed in non-LTE. Line-profile fits based on extensive model grids and an iterative analysis methodology are used to constrain stellar parameters and elemental abundances at high accuracy and precision. Atmospheric parameters are derived from the simultaneous establishment of independent indicators, from multiple ionization equilibria and the Stark-broadened hydrogen Balmer lines, and they are confirmed by reproduction of the stars' global spectral energy distributions. Results: Effective temperatures are constrained to 1-2% and surface gravities to less than 15% uncertainty, along with accurate rotational, micro- and macroturbulence velocities. Good agreement of the resulting spectroscopic parallaxes with those from the new reduction of the Hipparcos catalogue is obtained. Absolute values for abundances of He, C, N, O, Ne, Mg, Si and Fe are determined to better than 25% uncertainty. The synthetic spectra match the observations reliably over almost the entire visual spectral range. Three sample stars, γ Ori, o Per and θ1 Ori D, are

  20. A cosmic book. [of physics of early universe

    NASA Technical Reports Server (NTRS)

    Peebles, P. J. E.; Silk, Joseph

    1988-01-01

    A system of assigning odds to the basic elements of cosmological theories is proposed in order to evaluate the strengths and weaknesses of the theories. A figure of merit for the theories is obtained by counting and weighing the plausibility of each of the basic elements that is not substantially supported by observation or mature fundamental theory. The magnetized strong model is found to be the most probable. In order of decreasing probability, the ranking for the rest of the models is: (1) the magnetized string model with no exotic matter and the baryon adiabatic model; (2) the hot dark matter model and the model of cosmic string loops; (3) the canonical cold dark matter model, the cosmic string loops model with hot dark matter, and the baryonic isocurvature model; and (4) the cosmic string loops model with no exotic matter.

  1. The Cosmic Microwave Background Radiation - A Unique Window on the Early Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary F.

    2009-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approximately 1100. Data from the first five years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. WMAP, part of NASA's Explorers program, was launched on June 30, 2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Oxford University; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.

  2. The Cosmic Microwave Background Radiation - A Unique Window on the Early Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary F.

    2008-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approximately 1100. Data from the first five years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. WMAP, part of NASA's Explorers program, was launched on June 30, 2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Oxford University; University of Chicago; Brown university; University of British Columbia; and University of California, Los Angeles.

  3. The Cosmic Microwave Background Radiation-A Unique Window on the Early Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary

    2010-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of 11 00. Data from the first seven years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. WMAP, part of NASA's Explorers program, was launched on June 30, 2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Oxford University; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.

  4. Cutaneous chemical burns: assessment and early management.

    PubMed

    Gnaneswaran, Neiraja; Perera, Eshini; Perera, Marlon; Sawhney, Raja

    2015-03-01

    Chemical burns are common and may cause significant physical, psychological, social and economic burden. Despite a wide variety of potentially harmful chemicals, important general principals may be drawn in the assessment and initial management of such injuries. Early treatment of chemical burns is crucial and may reduce the period of resulting morbidity. This article reviews the assessment and management of cutaneous chemical burns. Assessment of the patient should be rapid and occur in conjunction with early emergency management. Rapid history and pri-mary and secondary survey may be required to exclude systemic side effects of the injury. Depth of wound assessment is difficult given that necrosis caused by various chemicals can continue despite cessation of exposure. Early management should be conducted with consideration of clinician's safety, and appropriate precautions should be taken. Excluding specific situations and chemical exposure, copious irrigation with water remains the mainstay of early management. Referral to a centre of higher acuity may be required for expert evaluation.

  5. Robust constraint on cosmic textures from the cosmic microwave background.

    PubMed

    Feeney, Stephen M; Johnson, Matthew C; Mortlock, Daniel J; Peiris, Hiranya V

    2012-06-15

    Fluctuations in the cosmic microwave background (CMB) contain information which has been pivotal in establishing the current cosmological model. These data can also be used to test well-motivated additions to this model, such as cosmic textures. Textures are a type of topological defect that can be produced during a cosmological phase transition in the early Universe, and which leave characteristic hot and cold spots in the CMB. We apply bayesian methods to carry out a rigorous test of the texture hypothesis, using full-sky data from the Wilkinson Microwave Anisotropy Probe. We conclude that current data do not warrant augmenting the standard cosmological model with textures. We rule out at 95% confidence models that predict more than 6 detectable cosmic textures on the full sky.

  6. CHEMICAL ANALYSIS OF A DIFFUSE CLOUD ALONG A LINE OF SIGHT TOWARD W51: MOLECULAR FRACTION AND COSMIC-RAY IONIZATION RATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indriolo, Nick; Neufeld, D. A.; Gerin, M.

    2012-10-20

    Absorption lines from the molecules OH{sup +}, H{sub 2}O{sup +}, and H{sup +} {sub 3} have been observed in a diffuse molecular cloud along a line of sight near W51 IRS2. We present the first chemical analysis that combines the information provided by all three of these species. Together, OH{sup +} and H{sub 2}O{sup +} are used to determine the molecular hydrogen fraction in the outskirts of the observed cloud, as well as the cosmic-ray ionization rate of atomic hydrogen. H{sup +} {sub 3} is used to infer the cosmic-ray ionization rate of H{sub 2} in the molecular interior ofmore » the cloud, which we find to be {zeta}{sub 2} = (4.8 {+-} 3.4) Multiplication-Sign 10{sup -16} s{sup -1}. Combining the results from all three species we find an efficiency factor-defined as the ratio of the formation rate of OH{sup +} to the cosmic-ray ionization rate of H-of {epsilon} = 0.07 {+-} 0.04, much lower than predicted by chemical models. This is an important step in the future use of OH{sup +} and H{sub 2}O{sup +} on their own as tracers of the cosmic-ray ionization rate.« less

  7. Level crossing analysis of cosmic microwave background radiation: a method for detecting cosmic strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Movahed, M. Sadegh; Khosravi, Shahram, E-mail: m.s.movahed@ipm.ir, E-mail: khosravi@ipm.ir

    2011-03-01

    In this paper we study the footprint of cosmic string as the topological defects in the very early universe on the cosmic microwave background radiation. We develop the method of level crossing analysis in the context of the well-known Kaiser-Stebbins phenomenon for exploring the signature of cosmic strings. We simulate a Gaussian map by using the best fit parameter given by WMAP-7 and then superimpose cosmic strings effects on it as an incoherent and active fluctuations. In order to investigate the capability of our method to detect the cosmic strings for the various values of tension, Gμ, a simulated puremore » Gaussian map is compared with that of including cosmic strings. Based on the level crossing analysis, the superimposed cosmic string with Gμ∼>4 × 10{sup −9} in the simulated map without instrumental noise and the resolution R = 1' could be detected. In the presence of anticipated instrumental noise the lower bound increases just up to Gμ∼>5.8 × 10{sup −9}.« less

  8. Chemical enrichment in Ultra-Faint Dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Romano, Donatella

    2016-08-01

    Our view of the Milky Way's satellite population has radically changed after the discovery, ten years ago, of the first Ultra-Faint Dwarf galaxies (UFDs). These extremely faint, dark-matter dominated, scarcely evolved stellar systems are found in ever-increasing number in our cosmic neighbourhood and constitute a gold-mine for studies of early star formation conditions and early chemical enrichment pathways. Here we show what can be learned from the measurements of chemical abundances in UFD stars read through the lens of chemical evolution studies, point out the limitations of the classic approach, and discuss the way to go to improve the models.

  9. Formation of Cosmic Carbon Dust Analogues in Plasma Reactors

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2016-01-01

    Cosmic carbon dust analogs are produced, processed and analyzed in the laboratory using NASA's COSmIC (COSmIC Simulation Chamber) Facility. These experiments can be used to derive information on the most efficient molecular precursors in the chemical pathways that eventually lead to the formation of carbonaceous grains in the stellar envelopes of carbon stars.

  10. THE COSMIC-RAY INTENSITY NEAR THE ARCHEAN EARTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, O.; Drake, J. J.; Kota, J.

    2012-11-20

    We employ three-dimensional state-of-the-art magnetohydrodynamic models of the early solar wind and heliosphere and a two-dimensional model for cosmic-ray transport to investigate the cosmic-ray spectrum and flux near the Archean Earth. We assess how sensitive the cosmic-ray spectrum is to changes in the sunspot placement and magnetic field strength, the large-scale dipole magnetic field strength, the wind ram pressure, and the Sun's rotation period. Overall, our results confirm earlier work that suggested the Archean Earth would have experienced a greatly reduced cosmic-ray flux than is the case today. The cosmic-ray reduction for the early Sun is mainly due to themore » shorter solar rotation period and tighter winding of the Parker spiral, and to the different surface distribution of the more active solar magnetic field. These effects lead to a global reduction of the cosmic-ray flux at 1 AU by up to two orders of magnitude or more. Variations in the sunspot magnetic field have more effect on the flux than variations in the dipole field component. The wind ram pressure affects the cosmic-ray flux through its influence on the size of the heliosphere via the pressure balance with the ambient interstellar medium. Variations in the interstellar medium pressure experienced by the solar system in orbit through the Galaxy could lead to order of magnitude changes in the cosmic-ray flux at Earth on timescales of a few million years.« less

  11. Propagation of cosmic rays in the galaxy

    NASA Technical Reports Server (NTRS)

    Daniel, R. R.; Stephens, S. A.

    1974-01-01

    The characteristics of a model for analyzing the propagation of cosmic rays are discussed. The requirements for analyzing the relevant observational data on cosmic rays are defines as: (1) the chemical and isotopic composition of cosmic rays as a function of energy, (2) the flux and energy spectrum of the individual nucleonic components, (3) the flux and energy spectrum of the electronic component, (4) the cosmic ray prehistory, and (5) the degree of isotropy in their arrival directions as a function of energy. It is stated that the model which has been able to bring to pass the greatest measure of success is the galactic confinement model.

  12. Spectral distortions of the cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Adams, Fred C.; Mcdowell, Jonathan C.; Freese, Katherine; Levin, Janna

    1989-01-01

    Recent experiments indicate that the spectrum of the cosmic microwave background deviates from a pure blackbody; here, spectral distortions produced by cosmic dust are considered. The main result is that cosmic dust in conjunction with an injected radiation field (perhaps produced by an early generation of very massive stars) can explain the observed spectral distortions without violating existing cosmological constraints. In addition, it is shown that Compton y-distortions can also explain the observed spectral shape, but the energetic requirements are more severe.

  13. Cosmic strings and ultra-high energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, Pijushpani

    1989-01-01

    The flux is calculated of ultrahigh energy protons due to the process of cusp evaporation from cosmic string loops. For the standard value of the dimensionless cosmic string parameter epsilon is identical to G(sub mu) approx. = 10(exp -6), the flux is several orders of magnitude below the observed cosmic ray flux of ultrahigh energy protons. However, the flux at any energy initially increases as the value of epsilon is decreased. This at first suggests that there may be a lower limit on the value of epsilon, which would imply a lower limit on the temperature of a cosmic string forming phase transition in the early universe. However, the calculation shows that this is not the case -- the particle flux at any energy reaches its highest value at epsilon approx. = 10(exp -15) and it then decreases for further decrease of the value of epsilon. This is due to the fact that for too small values of epsilon (less than 10(exp -15)), the energy loss of the loops through the cusp evaporation process itself (rather than gravitational energy loss of the loops) becomes the dominant factor that controls the behavior of the number density of the loops at the relevant times of emission of the particles. The highest flux at any energy remains at least four orders of magnitude below the observed flux. There is thus no lower limit on epsilon.

  14. Chemical characterization of seven Large Area Collector particles by SXRF. [cosmic dust composition

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1991-01-01

    Optical microscopy and synchrotron X-ray fluorescence (SXRF) are used to analyze the chemical composition of seven dark-appearing cosmic-dust particles obtained in the stratosphere during NASA Johnson Large Area Collector flights. The experimental setup and procedures are outlined, and the results are presented in extensive tables. Three of the particles had abundances similar to those of chondrites (except for low Ca values in one particle); two had a metallic appearance and spectra dominated by Fe and Zn; one contained Cu and Cr plus small amounts of Fe and Zn; and one had igneous-type abundances of minor and trace elements while containing all of the elements seen in chondritic particles, suggesting it may be of extraterrestrial origin.

  15. Frontiers in In-Situ Cosmic Dust Detection and Analysis

    NASA Astrophysics Data System (ADS)

    Sternovsky, Zoltán; Auer, Siegfried; Drake, Keith; Grün, Eberhard; Horányi, Mihály; Le, Huy; Srama, Ralf; Xie, Jianfeng

    2011-11-01

    In-situ cosmic dust instruments and measurements played a critical role in the emergence of the field of dusty plasmas. The major breakthroughs included the discovery of β-meteoroids, interstellar dust particles within the solar system, Jovian stream particles, and the detection and analysis of Enceladus's plumes. The science goals of cosmic dust research require the measurements of the charge, the spatial, size and velocity distributions, and the chemical and isotopic compositions of individual dust particles. In-situ dust instrument technology has improved significantly in the last decade. Modern dust instruments with high sensitivity can detect submicron-sized particles even at low impact velocities. Innovative ion optics methods deliver high mass resolution, m/dm>100, for chemical and isotopic analysis. The accurate trajectory measurement of cosmic dust is made possible even for submicron-sized grains using the Dust Trajectory Sensor (DTS). This article is a brief review of the current capabilities of modern dust instruments, future challenges and opportunities in cosmic dust research.

  16. Genuine cosmic hair

    NASA Astrophysics Data System (ADS)

    Kastor, David; Ray, Sourya; Traschen, Jennie

    2017-02-01

    We show that asymptotically future de Sitter (AFdS) spacetimes carry ‘genuine’ cosmic hair; information that is analogous to the mass and angular momentum of asymptotically flat spacetimes and that characterizes how an AFdS spacetime approaches its asymptotic form. We define new ‘cosmological tension’ charges associated with future asymptotic spatial translation symmetries, which are analytic continuations of the ADM mass and tensions of asymptotically planar AdS spacetimes, and which measure the leading anisotropic corrections to the isotropic, exponential de Sitter expansion rate. A cosmological Smarr relation, holding for AFdS spacetimes having exact spatial translation symmetry, is derived. This formula relates cosmological tension, which is evaluated at future infinity, to properties of the cosmology at early times, together with a ‘cosmological volume’ contribution that is analogous to the thermodynamic volume of AdS black holes. Smarr relations for different spatial directions imply that the difference in expansion rates between two directions at late times is related in a simple way to their difference at early times. Hence information about the very early universe can be inferred from cosmic hair, which is potentially observable in a late time de Sitter phase. Cosmological tension charges and related quantities are evaluated for Kasner-de Sitter spacetimes, which serve as our primary examples.

  17. Chemical defense of early life stages of benthic marine invertebrates.

    PubMed

    Lindquist, Niels

    2002-10-01

    Accurate knowledge of factors affecting the survival of early life stages of marine invertebrates is critically important for understanding their population dynamics and the evolution of their diverse reproductive and life-history characteristics. Chemical defense is an important determinant of survival for adult stages of many sessile benthic invertebrates, yet relatively little consideration has been given to chemical defenses at the early life stages. This review examines the taxonomic breadth of early life-stage chemical defense in relation to various life-history and reproductive characteristics, as well as possible constraints on the expression of chemical defense at certain life stages. Data on the localization of defensive secondary metabolites in larvae and the fitness-related consequences of consuming even a small amount of toxic secondary metabolites underpin proposals regarding the potential for Müllerian and Batesian mimicry to occur among marine larvae. The involvement of microbial symbionts in the chemical defense of early life stages illustrates its complexity for some species. As our knowledge of chemical defenses in early life stages grows, we will be able to more rigorously examine connections among phylogeny, chemical defenses, and the evolution of reproductive and life-history characteristics among marine invertebrates.

  18. Chemical reactions in the nitrogen-acetone ice induced by cosmic ray analogues: relevance for the Solar system

    NASA Astrophysics Data System (ADS)

    de Barros, A. L. F.; Andrade, D. P. P.; da Silveira, E. F.; Alcantara, K. F.; Boduch, P.; Rothard, H.

    2018-02-01

    The radiolysis of 10:1 nitrogen:acetone mixture, condensed at 11 K, by 40 MeV 58Ni11 + ions is studied. These results are representative of studies concerning Solar system objects, such as transneptunian objects, exposed to cosmic rays. Bombardment by cosmic rays triggers chemical reactions leading to synthesis of larger molecules. In this work, destruction cross-sections of acetone and nitrogen molecules in solid phase are determined and compared with those for pure acetone. The N2 column density decreases very fast indicating that, under irradiation, nitrogen leaves quickly a porous sample. The most abundant molecular species formed in the radiolysis are C3H6, C2H6, N3, CO, CH4 and CO2. Some N-bearing species are also formed, but with low production yield. Dissolving acetone in nitrogen decreases the formation cross-sections of CH4, CO2 and H2CO, while increases those for CO and C2H6 species. This fact may explain the presence of C2H6 in Pluto's surface where CH4 is not pure, but diluted in an N2 matrix. The formation of more complex molecules, such as HNCO and, possibly, glycine is observed, suggesting the formation of small prebiotic species in objects beyond Neptune from acetone diluted in a N2 matrix irradiated by cosmic rays.

  19. Chemical characterization of the early evolutionary phases of high-mass star-forming regions

    NASA Astrophysics Data System (ADS)

    Gerner, Thomas

    2014-10-01

    The formation of high-mass stars is a very complex process and up to date no comprehensive theory about it exists. This thesis studies the early stages of high-mass star-forming regions and employs astrochemistry as a tool to probe their different physical conditions. We split the evolutionary sequence into four observationally motivated stages that are based on a classification proposed in the literature. The sequence is characterized by an increase of the temperatures and densities that strongly influences the chemistry in the different stages. We observed a sample of 59 high-mass star-forming regions that cover the whole sequence and statistically characterized the chemical compositions of the different stages. We determined average column densities of 18 different molecular species and found generally increasing abundances with stage. We fitted them for each stage with a 1D model, such that the result of the best fit to the previous stage was used as new input for the following. This is a unique approach and allowed us to infer physical properties like the temperature and density structure and yielded a typical chemical lifetime for the high-mass star-formation process of 1e5 years. The 18 analyzed molecular species also included four deuterated molecules whose chemistry is particularly sensitive to thermal history and thus is a promising tool to infer chemical ages. We found decreasing trends of the D/H ratios with evolutionary stage for 3 of the 4 molecular species and that the D/H ratio depends more on the fraction of warm and cold gas than on the total amount of gas. That indicates different chemical pathways for the different molecules and confirms the potential use of deuterated species as chemical age indicators. In addition, we mapped a low-mass star forming region in order to study the cosmic ray ionization rate, which is an important parameter in chemical models. While in chemical models it is commonly fixed, we found that it ! strongly varies with

  20. Cosmic Noise: The Pioneers of Early Radio Astronomy and Their Discoveries

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff T., III

    2012-01-01

    Extraterrestrial radio waves (the galactic background), often referred to as "cosmic noise", were first detected accidentally by Karl Jansky at a frequency of 20 MHz in 1932, with significant followup by Grote Reber. Yet after World War II it was England and Australia that dominated the field. An entirely different sky from that of visual astronomy was revealed by the discoveries of solar noise, "radio stars” (discrete sources such as Cas A, Tau A, Cyg A, Cen A and Vir A), galactic noise, lunar and meteor radar experiments, the detection of the 21 cm hydrogen line, and eventually optical identifications such as the Crab Nebula and M87. Key players included wartime radar experts such as Stanley Hey (the British Army's Operational Research Group), Martin Ryle (Cambridge University), Bernard Lovell (Jodrell Bank) and Joe Pawsey (Radiophysics Lab, Sydney). Younger leaders also emerged such as Graham Smith, Tony Hewish, John Davies, "Chris" Christiansen, Bernie Mills, Paul Wild, and John Bolton. Some optical astronomers (Jan Oort, Henk van de Hulst, Jesse Greenstein, Rudolph Minkowski, and Walter Baade) were also extremely supportive. By the end of the postwar decade, radio astronomy was firmly established within the gamut of astronomy, although very few of its practitioners had been trained as astronomers. I will also trace the technical and social aspects of this wholly new type of astronomy, with special attention on military and national influences. I argue that radio astronomy represents one of the key developments in twentieth century astronomy not only because of its own discoveries, but also its pathfinding for the further opening the electromagnetic spectrum. This study is based on exhaustive archival research and over one hundred interviews with pioneering radio astronomers. Full details are available in the book "Cosmic Noise: A History of Early Radio Astronomy" (Cambridge Univ. Pr.).

  1. Sources of cosmic dust in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Carrillo-Sánchez, J. D.; Nesvorný, D.; Pokorný, P.; Janches, D.; Plane, J. M. C.

    2016-12-01

    There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d-1), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud.

  2. ORIGIN: Metal Creation and Evolution From The Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Piro, L.; den Herder, J. W.; Ohashi, T.; Hartmann, D. H.; Kouveliotou, C.

    2011-08-01

    ORIGIN is a mission designed to use Gamma-Ray Bursts as a unique probe to study the cosmic history of baryons and the metal enrichment from the first stars up to the present Universe. Reconstructing the cosmic history of metals, from the first population of stars to the processes involved in the formation of galaxies and clusters of galaxies, is a key observational challenge. Observing any single star in the early Universe is in fact beyond the reach of presently planned mission. By measuring GRB redshifts and abundances in the circumburst medium deep into the era of re-ionization (z>6), ORIGIN will discover when star formation started and how it evolved into the present day structures. ORIGIN will collect 400 GRBs per year covering the full redshift distribution. About twice per month a GRB from the re-ionization era will trigger the instruments. The resulting multi-element abundance patterns derived from high resolution X-ray and IR observations will map the evolving chemical composition of the early Universe, ``fingerprint'' the elusive PopIII stars, and constrain the shape of the Initial Mass Function (IMF) of the first stars. While not observing GRB afterglows, ORIGIN will map element abundances in local structures (z<2) by determining the properties of the hot IGM in clusters and groups of galaxies and the Warm-Hot Intergalactic Medium (WHIM). In this paper we focus on the use of GRB to track the earliest star populations.

  3. Observing the Cosmic Microwave Background Radiation: A Unique Window on the Early Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics,of the early universe. Within the framework of inflationary dark matter models observations of the anisotropy on sub-degree angular scales will reveal the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approx. 1100. The validity of inflationary models will be tested and, if agreement is found, accurate values for most of the key cosmological parameters will result. If disagreement is found, we will need to rethink our basic ideas about the physics of the early universe. I will present an overview of the physical processes at work in forming the anisotropy and discuss what we have already learned from current observations. I will conclude with a brief overview of the recently launched Microwave Anisotropy Probe (MAP) mission which will observe the anisotropy over the full sky with 0.21 degree angular resolution. At the time of this meeting, MAP will have just arrived at the L2 Lagrange point, marking the start of its observing campaign. The MAP hardware is being produced by Goddard in partnership with Princeton University.

  4. Sources of cosmic dust in the Earth's atmosphere.

    PubMed

    Carrillo-Sánchez, J D; Nesvorný, D; Pokorný, P; Janches, D; Plane, J M C

    2016-12-16

    There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d -1 ), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud.

  5. Sources of cosmic dust in the Earth's atmosphere

    PubMed Central

    Carrillo‐Sánchez, J. D.; Nesvorný, D.; Pokorný, P.; Janches, D.

    2016-01-01

    Abstract There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d−1), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud. PMID:28275286

  6. Cosmic Feast of the Elements

    NASA Astrophysics Data System (ADS)

    Morisset, C.; Delgado-Inglada, G.; García-Rojas, J.

    2017-11-01

    In the past few decades most of our understanding of the history and chemical evolution of galaxies has been guided by the study of their stars and gaseous nebulae. Nebulae, thanks to their bright emission lines, are especially useful tracers of chemical elements from the very center to the outskirts of galaxies. In order to pin down the chemical abundances in nebulae, we must rely on careful analysis of emission lines combined with detailed models of the microscopic physical processes inside nebulae and state-of-the-art atomic data. Another important piece of the puzzle is the interplay between galaxy evolution and the activity of their central engines either as optical AGNs or radio jets. Last but not least, let us not forget the huge population of lineless, retired galaxies ionized by hot low-mass evolved stars: after nuclear and star formation activity quiets down, retired galaxies are the natural consequence of galaxy evolution. Grażyna Stasińska has made important contributions to each and every one of those aspects. This conference is to honor her work. We invite you to take part and share the latest news on this cosmic feast that transmutes chemical species, the onward journey of elements inside and outside galaxies either as lonely atoms or gregarious molecules and crystals, and their recycling in stars, which starts the cosmic feast all over again.

  7. High-Energy Cosmic Rays from Supernovae

    NASA Astrophysics Data System (ADS)

    Morlino, Giovanni

    Cosmic rays are charged relativistic particles that reach the Earth with extremely high energies, providing striking evidence of the existence of effective accelerators in the Universe. Below an energy around ˜ 1017 eV, cosmic rays are believed to be produced in the Milky Way, while above that energy, their origin is probably extragalactic. In the early 1930s, supernovae were already identified as possible sources for the galactic component of cosmic rays. After the 1970s this idea has gained more and more credibility, thanks to the development of the diffusive shock acceleration theory, which provides a robust theoretical framework for particle energization in astrophysical environments. Afterward, mostly in recent years, much observational evidence has been gathered in support of this framework, converting a speculative idea in a real paradigm. In this chapter the basic pillars of this paradigm will be illustrated. This includes the acceleration mechanism, the nonlinear effects produced by accelerated particles onto the shock dynamics needed to reach the highest energies, the escape process from the sources, and the transportation of cosmic rays through the Galaxy. The theoretical picture will be corroborated by discussing several observations which support the idea that supernova remnants are effective cosmic ray factories.

  8. The Probe of Inflation and Cosmic Origins

    NASA Astrophysics Data System (ADS)

    Hanany, Shaul; Inflation Probe Mission Study Team

    2018-01-01

    The Probe of Inflation and Cosmic Origins will map the polarization of the cosmic microwave background over the entire sky with unprecedented sensitivity. It will search for gravity wave signals from the inflationary epoch, thus probing quantum gravity and constraining the energy scale of inflation; it will test the standard model of particle physics by measuring the number of light particles in the Universe and the mass of the neutrino; it will elucidate the nature of dark matter and search for new forms of matter in the early Universe; it will constrain star formation history over cosmic time; and it will determine the mechanisms of structure formation from galaxy cluster to stellar scales. I will review the status of design of this probe-scale mission.

  9. Cosmic ray composition investigations using ICE/ISEE-3

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, Mark E.

    1992-01-01

    The analysis of data from the high energy cosmic experiment on ISEE-3 and associated modeling and interpretation activities are discussed. The ISEE-3 payload included two instruments capable of measuring the composition of heavy cosmic rays. The designs of these two instruments incorporated innovations which made it possible, for the first time, to measure isotopic as well as the chemical composition for a wide range of elements. As the result of the demonstrations by these two instruments of the capability to resolve individual cosmic ray isotopes, a new generation of detectors was developed using very similar designs, but having improved reliability and increased sensitive area. The composition measurements which were obtained from the ISEE-3 experiment are summarized.

  10. Cosmic strings: Gravitation without local curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helliwell, T.M.; Konkowski, D.A.

    1987-05-01

    Cosmic strings are very long, thin structures which might stretch over vast reaches of the universe. If they exist, they would have been formed during phase transitions in the very early universe. The space-time surrounding a straight cosmic string is flat but nontrivial: A two-dimensional spatial section is a cone rather than a plane. This feature leads to unique gravitational effects. The flatness of the cone means that many of the gravitational effects can be understood with no mathematics beyond trigonometry. This includes the observational predictions of the double imaging of quasars and the truncation of the images of galaxies.

  11. Cosmic Evolution: The History of an Idea

    NASA Astrophysics Data System (ADS)

    Dick, S. J.

    2004-12-01

    Cosmic evolution has become the conceptual framework within which modern astronomy is undertaken, and is the guiding principle of major NASA programs such as Origins and Astrobiology. While there are 19th- and early 20th century antecedents, as in the work of Robert Chambers, Herbert Spencer and Lawrence Henderson, it was only at mid-20th century that full-blown cosmic evolution began to be articulated and accepted as a research paradigm extending from the Big Bang to life, intelligence and the evolution of culture. Harlow Shapley was particularly important in spreading the idea to the public in the 1950s, and NASA embraced the idea in the 1970s as part of its SETI program and later its exobiology and astrobiology programs. Eric Chaisson, Carl Sagan and others were early proponents of cosmic evolution, and it continues to be elaborated in ever more subtle form as a research program and a philosophy. It has even been termed "Genesis for the 21st century." This paper documents the origin and development of the idea and offers a glimpse of where it could lead if cultural evolution is taken seriously, possibly leading to the concept of a postbiological universe.

  12. The Need for Direct High-Energy Cosmic-Ray Measurements

    NASA Technical Reports Server (NTRS)

    Jones, Frank C.; Streitmatter, Robert

    2004-01-01

    Measuring the chemical composition of the cosmic rays in the energy region of greater than or equal to 10(exp 12)eV would be highly useful in settling several nagging questions concerning the propagation of cosmic rays in the galaxy. In particular an accurate measurement of secondary to primary ratios such as Boron to Carbon would gibe clear evidence as to whether the propagation of cosmic rays is determined by a diffusion coefficient that varies with the particle's energy as E(sup 0.5) or E(sup 0.3). This would go a long ways in helping us to understand the anistropy (or lack thereof) of the highest energy cosmic rays and the power requirements for producing those particles at approximately equal to 10(exp 18) eV which are believed to be highest energy particles produced in the Galaxy. This would be only one of the benefits of a mission such as ACCESS to perform direct particle measurements on very high energy cosmic rays.

  13. Measurement of the cosmic ray spectrum and chemical composition in the 1015-1018 eV energy range

    NASA Astrophysics Data System (ADS)

    Chiavassa, Andrea

    2018-01-01

    Cosmic ray in the 1015-1018 eV energy range can only be detected with ground based experiments, sampling Extensive Air Showers (EAS) particles. The interest in this energetic interval is related to the search of the knee of the iron component of cosmic ray and to the study of the transition between galactic and extra-galactic primaries. The energy and mass calibration of these arrays can only be performed with complete EAS simulations as no sources are available for an absolute calibration. The systematic error on the energy assignment can be estimated around 30 ± 10%. The all particle spectrum measured in this energy range is more structured than previously thought, showing some faint features: a hardening slightly above 1016 eV and a steepening below 1017 eV. The studies of the primary chemical composition are quickly evolving towards the measurements of the primary spectra of different mass groups: up to now we are able to separate (on a event by event basis) light and heavy primaries. Above the knee a steepening of the heavy primary spectrum and a hardening of the light ones have been detected.

  14. Relativistic heavy cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Fernandez, J. I.; Israel, M. H.; Klarmann, J.; Binns, W. R.

    1972-01-01

    During three balloon flights of a 1 sq m sr ionization chamber/Cerenkov counter detector system, measurements were made of the atmospheric attenuation, flux, and charge composition of cosmic ray nuclei with 16 is less than or = Z is less than or = 30 and rigidity greater than 4.5 GV. The attenuation mean free path in air of VH (20 less than or = Z less than or = 30) nuclei is found to be 19.7 + or - 1.6 g/sq cm, a value somewhat greater than the best previous measurement. The attenuation mean free path of iron is found to be 15.6 + or - 2.2 g/sq cm, consistent with predictions of geometric cross-section formulae. An absolute flux of VH nuclei 10 to 20% higher than earlier experiments at similar geomagnetic cutoff and level of solar activity was measured. The relative abundances of even-charged nuclei are found to be in good agreement with results of other recent high resolution counter experiments. The observed cosmic ray chemical composition implies relative abundances at the cosmic ray source of Ca/Fe = 0.12 + or - 0.04 and S/Fe = 0.14 + or - 0.05.

  15. The Hungry Mind: From the Casa dei Bambini to Cosmic Education

    ERIC Educational Resources Information Center

    Grazzini, Baiba Krumins

    2016-01-01

    Baiba Krumins Grazzini has generously transformed her lecture, delivered at the AMI-USA Refresher Course in 2014, into a legacy article. This article establishes the role of storytelling in Cosmic Education while capturing both the whole and the detailed parts of Montessori Cosmic Education. Working from the early childhood transition into the…

  16. Early Cosmic Ray Research with Balloons

    NASA Astrophysics Data System (ADS)

    Walter, Michael

    2013-06-01

    The discovery of cosmic rays by Victor Hess during a balloon flight in 1912 at an altitude of 5350 m would not have been possible without the more than one hundred years development of scientific ballooning. The discovery of hot air and hydrogen balloons and their first flights in Europe is shortly described. Scientific ballooning was mainly connected with activities of meteorologists. It was also the geologist and meteorologist Franz Linke, who probably observed first indications of a penetrating radiation whose intensity seemed to increase with the altitude. Karl Bergwitz and Albert Gockel were the first physicists studying the penetrating radiation during balloon flights. The main part of the article deals with the discovery of the extraterrestrial radiation by V. Hess and the confirmation by Werner Kolhörster.

  17. Yakov Zeldovich and the Cosmic Web Paradigm

    NASA Astrophysics Data System (ADS)

    Einasto, Jaan

    2016-10-01

    I discuss the formation of the modern cosmological paradigm. In more detail I describe the early study of dark matter and cosmic web and the role of Yakov Zeldovich in the formation of the present concepts on these subjects.

  18. Quasars at Cosmic Dawn: Discoveries and Probes of the Early Universe

    NASA Astrophysics Data System (ADS)

    Wang, Feige; Wu, Xue-Bing; Fan, Xiaohui; Yang, Jinyi; Bian, Fuyan; McGreer, Ian D.; Green, Richard F.; Yang, Qian; Jiang, Linhua; Wang, Ran; DECaLS Team; UHS Team

    2017-01-01

    High redshift quasars, as the most luminous non-transient objects in the early universe, are the most promising tracers to address the history of cosmic reionization and how the origins of super-massive black hole (SMBH) are linked to galaxy formation and evolution. Over the last fifteen years, more than 100 quasars within the first billion years after the Big Bang have been discovered with the highest redshift at 7.1. We have developed a new method to select z>~6 quasars with both high efficiency and high completeness by combing optical and mid-IR Wide-field Infrared Survey Explorer (WISE) photometric data. We have applied this method to SDSS footprint and resulted in the discovery of the most luminous z>6 quasar ever discovered, which hosts a twelve billion solar mass black hole. I will present detailed follow-up observations of the host galaxies and environment of the most luminous quasars using HST, LBT and ALMA, in order to constrain early black hole growth and black hole/galaxy co-evolution at the highest redshift. I will also present initial results from a new quasar survey, which utilizes optical data from DECaLS, which is imaging 6700 deg^2 of sky down to z_AB˜23.0, and neaar-IR data from UHS and UKIDSS, which maps the whole northern sky at Decl.<+60deg. The combination of these datasets allows us to discover quasars at redshift z>~7 and to conduct a complete census of the faint quasar population at z~6.

  19. Biomonitoring of human fetal exposure to environmental chemicals in early pregnancy.

    PubMed

    Cooke, Gerard M

    2014-01-01

    The first trimester of human fetal life, a period of extremely rapid development of physiological systems, represents the most rapid growth phase in human life. Interference in the establishment of organ systems may result in abnormal development that may be manifest immediately or programmed for later abnormal function. Exposure to environmental chemicals may be affecting development at these early stages, and yet there is limited knowledge of the quantities and identities of the chemicals to which the fetus is exposed during early pregnancy. Clearly, opportunities for assessing fetal chemical exposure directly are extremely limited. Hence, this review describes indirect means of assessing fetal exposure in early pregnancy to chemicals that are considered disrupters of development. Consideration is given to such matrices as maternal hair, fingernails, urine, saliva, sweat, breast milk, amniotic fluid and blood, and fetal matrices such as cord blood, cord tissue, meconium, placenta, and fetal liver. More than 150 articles that presented data from chemical analysis of human maternal and fetal tissues and fluids were reviewed. Priority was given to articles where chemical analysis was conducted in more than one matrix. Where correlations between maternal and fetal matrices were determined, these articles were included and are highlighted, as these may provide the basis for future investigations of early fetal exposure. The determination of fetal chemical exposure, at the time of rapid human growth and development, will greatly assist regulatory agencies in risk assessments and establishment of advisories for risk management concerning environmental chemicals.

  20. Cosmic history of chameleonic dark matter in F (R ) gravity

    NASA Astrophysics Data System (ADS)

    Katsuragawa, Taishi; Matsuzaki, Shinya

    2018-03-01

    We study the cosmic history of the scalaron in F (R ) gravity with constructing the time evolution of the cosmic environment and discuss the chameleonic dark matter based on the chameleon mechanism in the early and current Universe. We then find that the scalaron can be a dark matter. We also propose an interesting possibility that the F (R ) gravity can address the coincidence problem.

  1. The cosmic web in our own backyard.

    PubMed

    Ibata, Rodrigo A; Lewis, Geraint F

    2008-01-04

    On the largest scales, matter is strung out on an intricate pattern known as the cosmic web. The tendrils of this web should reach right into our own cosmic backyard, lacing the Galactic halo with lumps of dark matter. The search for these lumps, lit up by stars that formed within them, is a major astronomical endeavor, although it has failed to find the huge expected population. Is this a dark matter crisis, or does it provide clues to the complexities of gas physics in the early universe? New technologies in the coming decade will reveal the answer.

  2. Patterns of the cosmic microwave background from evolving string networks

    NASA Technical Reports Server (NTRS)

    Bouchet, Francois R.; Bennett, David P.; Stebbins, Albert

    1988-01-01

    A network of cosmic strings generated in the early universe may still exist today. As the strings move across the sky, they produce, by gravitational lensing, a characteristic pattern of anisotropies in the temperature of the cosmic microwave background. The observed absence of such anisotropies places constraints on theories in which galaxy formation is seeded by strings, but it is anticipated that the next generation of experiments will detect them.

  3. Evolution of the cosmic web

    NASA Astrophysics Data System (ADS)

    Cautun, Marius; van de Weygaert, Rien; Jones, Bernard J. T.; Frenk, Carlos S.

    2014-07-01

    The cosmic web is the largest scale manifestation of the anisotropic gravitational collapse of matter. It represents the transitional stage between linear and non-linear structures and contains easily accessible information about the early phases of structure formation processes. Here we investigate the characteristics and the time evolution of morphological components. Our analysis involves the application of the NEXUS Multiscale Morphology Filter technique, predominantly its NEXUS+ version, to high resolution and large volume cosmological simulations. We quantify the cosmic web components in terms of their mass and volume content, their density distribution and halo populations. We employ new analysis techniques to determine the spatial extent of filaments and sheets, like their total length and local width. This analysis identifies clusters and filaments as the most prominent components of the web. In contrast, while voids and sheets take most of the volume, they correspond to underdense environments and are devoid of group-sized and more massive haloes. At early times the cosmos is dominated by tenuous filaments and sheets, which, during subsequent evolution, merge together, such that the present-day web is dominated by fewer, but much more massive, structures. The analysis of the mass transport between environments clearly shows how matter flows from voids into walls, and then via filaments into cluster regions, which form the nodes of the cosmic web. We also study the properties of individual filamentary branches, to find long, almost straight, filaments extending to distances larger than 100 h-1 Mpc. These constitute the bridges between massive clusters, which seem to form along approximatively straight lines.

  4. Testing parity-violating physics from cosmic rotation power reconstruction

    DOE PAGES

    Namikawa, Toshiya

    2017-02-22

    We study the reconstruction of the cosmic rotation power spectrum produced by parity-violating physics, with an eye to ongoing and near future cosmic microwave background (CMB) experiments such as BICEP Array, CMBS4, LiteBIRD and Simons Observatory. In addition to the inflationary gravitational waves and gravitational lensing, measurements of other various effects on CMB polarization open new window into the early Universe. One of these is anisotropies of the cosmic polarization rotation which probes the Chern-Simons term generally predicted by string theory. The anisotropies of the cosmic rotation are also generated by the primordial magnetism and in the Standard Model extentionmore » framework. The cosmic rotation anisotropies can be reconstructed as quadratic in CMB anisotropies. However, the power of the reconstructed cosmic rotation is a CMB four-point correlation and is not directly related to the cosmic-rotation power spectrum. Understanding all contributions in the four-point correlation is required to extract the cosmic rotation signal. Here, assuming inflationary motivated cosmic-rotation models, we employ simulation to quantify each contribution to the four-point correlation and find that (1) a secondary contraction of the trispectrum increases the total signal-to-noise, (2) a bias from the lensing-induced trispectrum is significant compared to the statistical errors in, e.g., LiteBIRD and CMBS4-like experiments, (3) the use of a realization-dependent estimator decreases the statistical errors by 10%–20%, depending on experimental specifications, and (4) other higher-order contributions are negligible at least for near future experiments.« less

  5. Search for Cosmic-Ray Antiproton Origins and for Cosmological Antimatter with BESS

    NASA Technical Reports Server (NTRS)

    Yamamoto, A.; Mitchell, J. W.; Yoshimura, K.; Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; hide

    2011-01-01

    The balloon-borne experiment with a superconducting spectrometer (BESS) has performed cosmic-ray observations as a US-Japan cooperative space science program, and has provided fundamental data on cosmic rays to study elementary particle phenomena in the early Universe. The BESS experiment has measured the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic origins such as dark matter candidates or primordial black holes. and searched for heavier antinuclei that might reach Earth from antimatter domains formed in the early Universe. The apex of the BESS program was reached with the Antarctic flight of BESS-Polar II, during the 2007- 2008 Austral Summer, that obtained over 4.7 billion cosmic-ray events from 24.5 days of observation. The flight took place at the expected solar minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. Here, we report the scientific restults, focusing on the long-duration flights of BESS-Polar I (2004) and BESS-Polar II (2007-2008).

  6. Early-life chemical exposures and risk of metabolic syndrome.

    PubMed

    De Long, Nicole E; Holloway, Alison C

    2017-01-01

    The global prevalence of obesity has been increasing at a staggering pace, with few indications of any decline, and is now one of the major public health challenges worldwide. While obesity and metabolic syndrome (MetS) have historically thought to be largely driven by increased caloric intake and lack of exercise, this is insufficient to account for the observed changes in disease trends. There is now increasing evidence to suggest that exposure to synthetic chemicals in our environment may also play a key role in the etiology and pathophysiology of metabolic diseases. Importantly, exposures occurring in early life (in utero and early childhood) may have a more profound effect on life-long risk of obesity and MetS. This narrative review explores the evidence linking early-life exposure to a suite of chemicals that are common contaminants associated with food production (pesticides; imidacloprid, chlorpyrifos, and glyphosate) and processing (acrylamide), in addition to chemicals ubiquitously found in our household goods (brominated flame retardants) and drinking water (heavy metals) and changes in key pathways important for the development of MetS and obesity.

  7. Cosmic background radiation anisotropy in an open inflation, cold dark matter cosmogony

    NASA Technical Reports Server (NTRS)

    Kamionkowski, Marc; Ratra, Bharat; Spergel, David N.; Sugiyama, Naoshi

    1994-01-01

    We compute the cosmic background radiation anisotropy, produced by energy-density fluctuations generated during an early epoch of inflation, in an open cosmological model based on the cold dark matter scenario. At Omega(sub 0) is approximately 0.3-0.4, the Cosmic Background Explorer (COBE) normalized open model appears to be consistent with most observations.

  8. Nuclear Physics in Space: What We Can Learn From Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.

    2004-01-01

    Studies and discoveries in cosmic-ray physics and generally in Astrophysics provide a fertile ground for research in many areas of Particle Physics and Cosmology, such as the search for dark matter, antimatter, new particles, and exotic physics, studies of the nucleosynthesis, origin of Galactic and extragalactic gamma-ray diffuse emission, formation of the large scale structure of the universe etc. In several years new missions are planned for cosmic-ray experiments, which will tremendously increase the quality and accuracy of cosmic-ray data. On the other hand, direct measurements of cosmic rays are possible in only one location on the outskirts of the Milky Way galaxy and present only a snapshot of very dynamic processes. It has been recently realized that direct information about the fluxes and spectra of cosmic rays in distant locations is provided by the Galactic diffuse gamma-rays, therefore, complementing the local cosmic-ray studies. A wealth of information is also contained in the isotopic abundances of cosmic rays, therefore, accurate evaluation of the isotopic production cross sections is of primary importance for Astrophysics of cosmic rays, studies of the galactic chemical evolution, and Cosmology. In this talk, I will show new results obtained with GALPROP, the most advanced numerical model for cosmic-ray propagation, which includes in a self-consistent way all cosmic-ray species (stable and long-lived radioactive isotopes from H to Ni, antiprotons, positrons and electrons, gamma rays and synchrotron radiation), and all relevant processes and reactions.

  9. What is Your Cosmic Connection to the Elements?

    NASA Technical Reports Server (NTRS)

    Lochner, J.

    2003-01-01

    This booklet provides information and classroom activities covering topics in astronomy, physics, and chemistry. Chemistry teachers will find information about the cosmic origin of the chemical elements. The astronomy topics include the big bang, life cycles of small and large stars, supernovae, and cosmic rays. Physics teachers will find information on fusion processes, and physical principles important in stellar evolution. While not meant to replace a textbook, the information provided here is meant to give the necessary background for the theme of :our cosmic connection to the elements." The activities can be used to re-enforce the material across a number of disciplines, using a variety of techniques, and to engage and excite students about the topic. Additional activities, and on-line versions of the activities published here, are available at http://imagine.gsfc.nasa.gov/docs/teachers/elements/.

  10. The beginnings of life as a cosmic phenomenon

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, N. C.

    2015-09-01

    The emerging consensus that comets carry the biochemical seeds of life coincides with the first step that was reached as early as 1977 in the historical development of the Hoyle-Wickramasinghe theory of cosmic life. To mark the centenary of the birth of Sir Fred Hoyle on 24 June 2015 this brief article retraces early developments that essentially heralded the new science of astrobiology.

  11. Unaltered cosmic spherules in a 1.4-Gyr-old sandstone from Finland.

    PubMed

    Deutsch, A; Greshake, A; Pesonen, L J; Pihlaja, P

    1998-09-10

    Micrometeorites-submillimetre-sized particles derived from asteroids and comets-occur in significant quantities in deep sea sediments, and the ice sheets of Greenland and Antarctica. The most abundant micrometeorites are cosmic spherules, which contain nickel-rich spinels that were crystallized and oxidized during atmospheric entry, therefore recording the oxygen content in the uppermost atmosphere. But the use of micrometeorites for detecting past changes in the flux of incoming extraterrestrial matter, and as probes of the evolution of the atmosphere, has been hampered by the fact that most objects with depositional ages higher than 0.5 Myr show severe chemical alteration. Here we report the discovery of unaltered cosmic spherules in a 1.4-Gyr-old sandstone (red bed) from Finland. From this we infer that red beds, a common lithology in the Earth's history, may contain substantial unbiased populations of fossil micrometeorites. The study of such populations would allow systematic research on variations in the micrometeorite flux from the early Proterozoic era to recent times (a time span of about 2.5 Gyr), and could help to better constrain the time when the atmospheric oxygen content was raised to its present level.

  12. Testing Cosmic Inflation

    NASA Technical Reports Server (NTRS)

    Chuss, David

    2010-01-01

    The Cosmic Microwave Background (CMB) has provided a wealth of information about the history and physics of the early Universe. Much progress has been made on uncovering the emerging Standard Model of Cosmology by such experiments as COBE and WMAP, and ESA's Planck Surveyor will likely increase our knowledge even more. Despite the success of this model, mysteries remain. Currently understood physics does not offer a compelling explanation for the homogeneity, flatness, and the origin of structure in the Universe. Cosmic Inflation, a brief epoch of exponential expansion, has been posted to explain these observations. If inflation is a reality, it is expected to produce a background spectrum of gravitational waves that will leave a small polarized imprint on the CMB. Discovery of this signal would give the first direct evidence for inflation and provide a window into physics at scales beyond those accessible to terrestrial particle accelerators. I will briefly review aspects of the Standard Model of Cosmology and discuss our current efforts to design and deploy experiments to measure the polarization of the CMB with the precision required to test inflation.

  13. Cosmic microwave background theory

    PubMed Central

    Bond, J. Richard

    1998-01-01

    A long-standing goal of theorists has been to constrain cosmological parameters that define the structure formation theory from cosmic microwave background (CMB) anisotropy experiments and large-scale structure (LSS) observations. The status and future promise of this enterprise is described. Current band-powers in ℓ-space are consistent with a ΔT flat in frequency and broadly follow inflation-based expectations. That the levels are ∼(10−5)2 provides strong support for the gravitational instability theory, while the Far Infrared Absolute Spectrophotometer (FIRAS) constraints on energy injection rule out cosmic explosions as a dominant source of LSS. Band-powers at ℓ ≳ 100 suggest that the universe could not have re-ionized too early. To get the LSS of Cosmic Background Explorer (COBE)-normalized fluctuations right provides encouraging support that the initial fluctuation spectrum was not far off the scale invariant form that inflation models prefer: e.g., for tilted Λ cold dark matter sequences of fixed 13-Gyr age (with the Hubble constant H0 marginalized), ns = 1.17 ± 0.3 for Differential Microwave Radiometer (DMR) only; 1.15 ± 0.08 for DMR plus the SK95 experiment; 1.00 ± 0.04 for DMR plus all smaller angle experiments; 1.00 ± 0.05 when LSS constraints are included as well. The CMB alone currently gives weak constraints on Λ and moderate constraints on Ωtot, but theoretical forecasts of future long duration balloon and satellite experiments are shown which predict percent-level accuracy among a large fraction of the 10+ parameters characterizing the cosmic structure formation theory, at least if it is an inflation variant. PMID:9419321

  14. Cosmic rays from primordial black holes

    NASA Technical Reports Server (NTRS)

    Macgibbon, Jane H.; Carr, B. J.

    1991-01-01

    The quark and gluon emission from primordial black holes (PBHs) which may have formed from initial density perturbations or phase transitions in the early universe are investigated. If the PBHs formed from scale-invariant initial density perturbations in the radiation dominated era, it is found that the emission can explain or contribute significantly to the extragalactic photon and interstellar cosmic-ray electron, positron, and antiproton spectra around 0.1-1 GeV. In particular, the PBH emission strongly resembles the cosmic-ray gamma-ray spectrum between 50 and 170 MeV. The upper limits on the PBH density today from the gamma-ray, e(+), e(-), and antiproton data are comparable, provided that the PBHs cluster to the same degree as the other matter in the Galactic halo.

  15. Microanalytical study of some cosmic dust discovered in sea-floor sediments in China

    NASA Technical Reports Server (NTRS)

    Shijie, Z.; Hanchang, P.; Zhong, Y.

    1984-01-01

    The study of cosmic dust can provide useful data in the investigation of the origin of the Earth and the evolution of celestial bodies. Three types of cosmic dust (ferriginous, siliceous, and glassy) were discovered in the seafloor sediments near China. Their chemical composition and microstructure were examined by X-ray diffraction, fractography, and electron microscopy. The major mineral in an iron-containing cosmic dust is magnetite. The silicate spheres contain sundry metals and metal oxides. Glassy microtektites are similar in composition to tektites, and are found in all the major meteorite areas worldwide.

  16. ngVLA Key Science Goal 3: Charting the Assembly, Structure, and Evolution of Galaxies Over Cosmic Time

    NASA Astrophysics Data System (ADS)

    Riechers, Dominik A.; Bolatto, Alberto D.; Carilli, Chris; Casey, Caitlin M.; Decarli, Roberto; Murphy, Eric Joseph; Narayanan, Desika; Walter, Fabian; ngVLA Galaxy Assembly through Cosmic Time Science Working Group, ngVLA Galaxy Ecosystems Science Working Group

    2018-01-01

    The Next Generation Very Large Array (ngVLA) will fundamentally advance our understanding of the formation processes that lead to the assembly of galaxies throughout cosmic history. The combination of large bandwidth with unprecedented sensitivity to the critical low-level CO lines over virtually the entire redshift range will open up the opportunity to conduct large-scale, deep cold molecular gas surveys, mapping the fuel for star formation in galaxies over substantial cosmic volumes. Imaging of the sub-kiloparsec scale distribution and kinematic structure of molecular gas in both normal main-sequence galaxies and large starbursts back to early cosmic epochs will reveal the physical processes responsible for star formation and black hole growth in galaxies over a broad range in redshifts. In the nearby universe, the ngVLA has the capability to survey the structure of the cold, star-forming interstellar medium at parsec-resolution out to the Virgo cluster. A range of molecular tracers will be accessible to map the motion, distribution, and physical and chemical state of the gas as it flows in from the outer disk, assembles into clouds, and experiences feedback due to star formation or accretion into central super-massive black holes. These investigations will crucially complement studies of the star formation and stellar mass histories with the Large UV/Optical/Infrared Surveyor and the Origins Space Telescope, providing the means to obtain a comprehensive picture of galaxy evolution through cosmic times.

  17. Nineteenth International Cosmic Ray Conference. Conference Papers: Invited Rapporteur, Highlight, Miscellaneous, Volume 9

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1986-01-01

    Invited talks, rapporteur talks, and highlight talks are included. Topics of the invited and highlight talks include astrophysical jets, gamma-ray line astronomy, cosmic rays and gamma rays in astrophysics, the early universe, elementary particle physics, solar flares and acceleration of energetic particles, cosmogenic nuclei, extragalactic astronomy, composition of solar flare particles, very high energy gamma ray sources, gamma-ray bursts, shock acceleration in the solar wind, cosmic rays in deep underground detectors, spectrum of cosmic rays at 10 to the 19th power eV, and nucleus-nucleus interactions.

  18. The boron-to-beryllium ratio in halo stars - A signature of cosmic-ray nucleosynthesis in the early Galaxy

    NASA Technical Reports Server (NTRS)

    Walker, T. P.; Steigman, G.; Schramm, D. N.; Olive, K. A.; Fields, B.

    1993-01-01

    We discuss Galactic cosmic-ray (GCR) spallation production of Li, Be, and B in the early Galaxy with particular attention to the uncertainties in the predictions of this model. The observed correlation between the Be abundance and the metallicity in metal-poor Population II stars requires that Be was synthesized in the early Galaxy. We show that the observations and such Population II GCR synthesis of Be are quantitatively consistent with the big bang nucleosynthesis production of Li-7. We find that there is a nearly model independent lower bound to B/Be of about 7 for GCR synthesis. Recent measurements of B/Be about 10 in HD 140283 are in excellent agreement with the predictions of Population II GCR nucleosynthesis. Measurements of the boron abundance in additional metal-poor halo stars is a key diagnostic of the GCR spallation mechanism. We also show that Population II GCR synthesis can produce amounts of Li-6 which may be observed in the hottest halo stars.

  19. Cosmic gamma-rays and cosmic nuclei above 1 TeV

    NASA Technical Reports Server (NTRS)

    Watson, A. A.

    1986-01-01

    Work on cosmic gamma rays and cosmic nuclei above I TeV is described and evaluated. The prospect that gamma ray astronomy above I TeV will give new insights into high energy cosmic ray origin within our galaxy is particularly bright.

  20. EXPLAINING TEV COSMIC-RAY ANISOTROPIES WITH NON-DIFFUSIVE COSMIC-RAY PROPAGATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, J. Patrick; Fryer, Chris L.; Mendel, Susan, E-mail: jpharding@lanl.gov, E-mail: fryer@lanl.gov, E-mail: smendel@lanl.gov

    2016-05-10

    Constraining the behavior of cosmic ray data observed at Earth requires a precise understanding of how the cosmic rays propagate in the interstellar medium. The interstellar medium is not homogeneous; although turbulent magnetic fields dominate over large scales, small coherent regions of magnetic field exist on scales relevant to particle propagation in the nearby Galaxy. Guided propagation through a coherent field is significantly different from random particle diffusion and could be the explanation of spatial anisotropies in the observed cosmic rays. We present a Monte Carlo code to propagate cosmic particle through realistic magnetic field structures. We discuss the detailsmore » of the model as well as some preliminary studies which indicate that coherent magnetic structures are important effects in local cosmic-ray propagation, increasing the flux of cosmic rays by over two orders of magnitude at anisotropic locations on the sky. The features induced by coherent magnetic structure could be the cause of the observed TeV cosmic-ray anisotropy.« less

  1. COSMIC monthly progress report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Activities of the Computer Software Management and Information Center (COSMIC) are summarized for the month of May 1994. Tables showing the current inventory of programs available from COSMIC are presented and program processing and evaluation activities are summarized. Nine articles were prepared for publication in the NASA Tech Brief Journal. These articles (included in this report) describe the following software items: (1) WFI - Windowing System for Test and Simulation; (2) HZETRN - A Free Space Radiation Transport and Shielding Program; (3) COMGEN-BEM - Composite Model Generation-Boundary Element Method; (4) IDDS - Interactive Data Display System; (5) CET93/PC - Chemical Equilibrium with Transport Properties, 1993; (6) SDVIC - Sub-pixel Digital Video Image Correlation; (7) TRASYS - Thermal Radiation Analyzer System (HP9000 Series 700/800 Version without NASADIG); (8) NASADIG - NASA Device Independent Graphics Library, Version 6.0 (VAX VMS Version); and (9) NASADIG - NASA Device Independent Graphics Library, Version 6.0 (UNIX Version). Activities in the areas of marketing, customer service, benefits identification, maintenance and support, and dissemination are also described along with a budget summary.

  2. Cosmic ray research in India: 1912-2012

    NASA Astrophysics Data System (ADS)

    Tonwar, Suresh C.

    2013-02-01

    The progress of research in cosmic rays in India over the last 100 years is reviewed, starting with the pioneering work of Debendra Mohan Bose and Homi Bhabha. Experimental research in cosmic rays in India received a big push with the establishment of the Tata Institute of Fundamental Research by Homi Bhabha in Bombay in 1945, the Physical Research Laboratory by Vikram Sarabhai in Ahemedabad in 1947 and the setting up of a cosmic ray research group by Piara Singh Gill at the Aligarh Muslim University in Aligarh in 1949. Studies on high energy interactions by B.V. Sreekantan and colleagues and on muons and neutrinos deep underground in KGF mines by M.G.K. Menon and coworkers were the highlights of the research work in India in 1950's and 60's. In 1970's and 80's, important advances were made in India in several areas, for example, search for proton decay in KGF mines by M.G.K. Menon et al, search for TeV cosmic gamma-ray sources at Ooty and Pachmari by P.V. Ramanamurthy and colleagues, search for PeV cosmic gamma ray sources by S.C. Tonwar et al at Ooty and by M.V.S. Rao and coworkers at KGF. In 1990's, Sreekantan and Tonwar initiated the GRAPES-3 project at Ooty to determine the composition of cosmic ray flux around the 'knee' in the primary energy spectrum at PeV energies using a large muon detector and a compact air shower array. Another major effort to search for TeV gamma-ray sources was initiated by H. Razdan and C.L. Bhat, initially at Gulmarg in Kashmir in the 1980's, leading to successful observations with a stereoscopic imaging atmospheric Cherenkov telescope at Mount Abu in early 2000. In recent years the Pachmari group and the Mount Abu group have joined together to install a sophisticated system of atmospheric Cherenkov detectors at Hanle in the Ladakh region at an altitude of 4200 m to continue studies on VHE sources of cosmic gammarays.

  3. Cosmic Gamma-Rays

    Science.gov Websites

    [Argonne Logo] [DOE Logo] Cosmic Gamma-Rays Home Publications Talks People Students Argonne > ; HEP > Cosmic Gamma-Rays Projects VERITAS Past Projects TrICE What's New CTA Cosmic Gamma-Rays The

  4. The Influence of COSMIC Satellite Data on Regional Analysis

    NASA Astrophysics Data System (ADS)

    Kuo, Y.

    2006-12-01

    The atmospheric limb sounding technique making use of radio signals transmitted by the Global Position System (GPS) has emerged as a promising approach for global atmospheric measurements. As demonstrated by the proof-of-concept GPS Meteorology (GPS/MET) experiment and more recently by the CHAMP and SAC-C missions, the GPS radio occultation (RO) sounding data are of high accuracy and high vertical resolution. On 15 April 2006, the joint U.S.-Taiwan COSMIC/FORMOSAT-3 mission, a constellation of six microsatellites, was launched from the Vandenberg Air Force Base. These satellites are being deployed to their final orbits, which would take about a year. During the early phase of the deployment, the satellites are closely located. This offers a unique opportunity to examine the precision of the GPS RO measurements. The COSMIC data are available in near real-time for global weather analysis and prediction and for climate monitoring. Currently, COSMIC is producing approximately 1300 GPS RO soundings per day at the end of August 2006. This number will be increased as the satellites are further separated through the deployment process. Radio occultation measures phase and amplitude of the microwave signals emitted from GPS. These signals are inverted to obtain profiles of signal bending, atmospheric refractivity, pressure temperature and water vapor. The main objective of the COSMIC/FORMOSAT-3 mission is to demonstrate the value of these radio occultation products for weather forecasting, climate monitoring, ionospheric research and space weather prediction. This presentation will provide an overview of the COSMIC/FORMOSAT-3 program. We will present results on the influence of COSMIC data on the regional analysis over the data void regions, particularly over the tropics and high latitudes. For further information on the COSMIC/FORMOSAT-3, please refer to http://www.cosmic.ucar.edu/.

  5. The origins of cosmic rays and quantum effects on gravity

    NASA Technical Reports Server (NTRS)

    Tomozawa, Y.

    1985-01-01

    The energy spectrum of primary cosmic rays is explained by particles emitted during a thermal expansion of explosive objects inside and near the galaxy, remnants of which may be supernova and/or active talaxies, or even stars or galaxies that disappeared from our sight after the explosion. A power law energy spectrum for cosmic rays, E to the (-alpha -1, is obtained from an expansion rate T is proportional to R to the alpha. Using the solution of the Einstein equation, we obtain a spectrum which agrees very well with experimental data. The implication of an inflationary early universe on the cosmic ray spectrum is also discussed. It is also suggested that the conflict between this model and the singularity theorem in classical general relativity may be eliminated by quantum effects.

  6. Quantifying cosmic variance

    NASA Astrophysics Data System (ADS)

    Driver, Simon P.; Robotham, Aaron S. G.

    2010-10-01

    We determine an expression for the cosmic variance of any `normal' galaxy survey based on examination of M* +/- 1 mag galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) data cube. We find that cosmic variance will depend on a number of factors principally: total survey volume, survey aspect ratio and whether the area surveyed is contiguous or comprising independent sightlines. As a rule of thumb cosmic variance falls below 10 per cent once a volume of 107h-30.7Mpc3 is surveyed for a single contiguous region with a 1:1 aspect ratio. Cosmic variance will be lower for higher aspect ratios and/or non-contiguous surveys. Extrapolating outside our test region we infer that cosmic variance in the entire SDSS DR7 main survey region is ~7 per cent to z < 0.1. The equation obtained from the SDSS DR7 region can be generalized to estimate the cosmic variance for any density measurement determined from normal galaxies (e.g. luminosity densities, stellar mass densities and cosmic star formation rates) within the volume range 103-107h-30.7Mpc3. We apply our equation to show that two sightlines are required to ensure that cosmic variance is <10 per cent in any ASKAP galaxy survey (divided into Δ z ~ 0.1 intervals, i.e. ~1Gyr intervals for z < 0.5). Likewise 10 MeerKAT sightlines will be required to meet the same conditions. GAMA, VVDS and zCOSMOS all suffer less than 10 per cent cosmic variance (~3-8 per cent) in Δ z intervals of 0.1, 0.25 and 0.5, respectively. Finally we show that cosmic variance is potentially at the 50-70 per cent level, or greater, in the Hubble Space Telescope (HST) Ultra Deep Field depending on assumptions as to the evolution of clustering. 100 or 10 independent sightlines will be required to reduce cosmic variance to a manageable level (<10 per cent) for HST ACS or HST WFC3 surveys, respectively (in Δ z ~ 1 intervals). Cosmic variance is therefore a significant factor in the z > 6 HST studies currently underway.

  7. Results from Two Low Mass Cosmic Ray Experiments Flown on the HASP Platform

    NASA Astrophysics Data System (ADS)

    Fontenot, R. S.; Hollerman, W. A.; Tittsworth, M.; Fountain, W.; Christl, M.; Thibodaux, C.; Broussard, B. M.

    2009-03-01

    The High Altitude Student Payload (HASP) program is designed to carry twelve student experiments to an altitude of about 123,000 feet (˜37 km). In 2006, students participated in the first HASP launch to measure cosmic ray intensities using traditional film and absorbers. This 10 kg payload flew from Fort Sumner, New Mexico in early September 2006 and was a great success. In 2007, students participated in the second HASP flight to measure the cosmic ray intensity and flux using a traditional film and absorber stack with five layers of optically stimulated luminescent (OSL) dosimeters. Results from both payloads showed that the cosmic ray flux decreases as a function of payload depth. As the cosmic rays go through the stack, they deposit their energy in the payload material. Determining cosmic ray flux is a tedious task. It involves digitizing the film and determining the real cosmic ray density. For the first HASP payload, students used a program known as GlobalLab to count particles. For the second payload, the students decided to use a combination of the GREYCStoration image regularization algorithm, an embossing filter, and a depth-merging filter to reconstruct the paths of the cosmic rays.

  8. The energy dependence of the neon-22 excess in the cosmic radiation

    NASA Technical Reports Server (NTRS)

    Herrstroem, N. Y.; Lund, N.

    1985-01-01

    It has been recognized now for some time that the heavy neon isotope, neon-22, is overabundant by a factor of 3 to 4 with respect to neon-22 in the cosmic ray source compared to the ratio of these isotopes in the Solar System. In view of the otherwise remarkable similarity of the chemical composition of the cosmic ray source and the composition of the Solar Energetic Particles, the anomaly regarding the neon isotopes is so much more striking. The observed excess of neon-22 is too large to be explained as a result of the chemical evolution of the Galaxy since the formation of the Solar System. Further information on the origin of the neon-22 excess may come from a comparison of the energy spectra of the two neon isotopes. If the cosmic radiation in the solar neighborhood is a mixture of material from several sources, one of which has an excess of neon-22, then the source energy spectra of neon-20 and neon-22 may differ significantly.

  9. On the size and velocity distribution of cosmic dust particles entering the atmosphere

    PubMed Central

    Carrillo‐Sánchez, J. D.; Feng, W.; Nesvorný, D.; Janches, D.

    2015-01-01

    Abstract The size and velocity distribution of cosmic dust particles entering the Earth's atmosphere is uncertain. Here we show that the relative concentrations of metal atoms in the upper mesosphere, and the surface accretion rate of cosmic spherules, provide sensitive probes of this distribution. Three cosmic dust models are selected as case studies: two are astronomical models, the first constrained by infrared observations of the Zodiacal Dust Cloud and the second by radar observations of meteor head echoes; the third model is based on measurements made with a spaceborne dust detector. For each model, a Monte Carlo sampling method combined with a chemical ablation model is used to predict the ablation rates of Na, K, Fe, Mg, and Ca above 60 km and cosmic spherule production rate. It appears that a significant fraction of the cosmic dust consists of small (<5 µg) and slow (<15 km s−1) particles. PMID:27478282

  10. Preheating of the Universe by cosmic rays from primordial supernovae at the beginning of cosmic reionization

    NASA Astrophysics Data System (ADS)

    Sazonov, S.; Sunyaev, R.

    2015-12-01

    The 21-cm signal from the cosmic reionization epoch can shed light on the history of heating of the primordial intergalactic medium (IGM) at z ˜ 30-10. It has been suggested that X-rays from the first accreting black holes could significantly heat the Universe at these early epochs. Here we propose another IGM heating mechanism associated with the first stars. As known from previous work, the remnants of powerful supernovae (SNe) ending the lives of massive Population III stars could readily expand out of their host dark matter minihaloes into the surrounding IGM, aided by the preceding photo-evaporation of the halo's gas by the UV radiation from the progenitor star. We argue that during the evolution of such a remnant, a significant fraction of the SN kinetic energy can be put into low-energy (E ≲ 30 MeV) cosmic rays that will eventually escape into the IGM. These subrelativistic cosmic rays could propagate through the Universe and heat the IGM by ˜10-100 K by z ˜ 15, before more powerful reionization/heating mechanisms associated with the first galaxies and quasars came into play. Future 21-cm observations could thus constrain the energetics of the first SNe and provide information on the magnetic fields in the primordial IGM.

  11. Cosmic void clumps

    NASA Astrophysics Data System (ADS)

    Lares, M.; Luparello, H. E.; Garcia Lambas, D.; Ruiz, A. N.; Ceccarelli, L.; Paz, D.

    2017-10-01

    Cosmic voids are of great interest given their relation to the large scale distribution of mass and the way they trace cosmic flows shaping the cosmic web. Here we show that the distribution of voids has, in consonance with the distribution of mass, a characteristic scale at which void pairs are preferentially located. We identify clumps of voids with similar environments and use them to define second order underdensities. Also, we characterize its properties and analyze its impact on the cosmic microwave background.

  12. Sixth Symposium on Chemical Evolution and the Origin and Evolution of Life

    NASA Technical Reports Server (NTRS)

    Acevedo, Sara (Editor); DeVincenzi, Donald L. (Editor); Chang, Sherwood (Editor)

    1998-01-01

    The 6th Symposium on Chemical Evolution and the Origin and Evolution of Life was convened at NASA Ames Research Center, November 17-20, 1997. This Symposium is convened every three years under the auspices of NASA's Exobiology Program Office. All Principal Investigators funded by this Program present their most recent research accomplishments at the Symposium. Scientific papers were presented in the following areas: cosmic evolution of the biogenic elements, prebiotic evolution (both planetary and chemical), evolution of early organisms and evolution of organisms in extreme environments, solar system exploration, and star and planet formation. The Symposium was attended by over 200 scientists from NASA centers and Universities nationwide.

  13. Explaining TeV cosmic-ray anisotropies with non-diffusive cosmic-ray propagation

    DOE PAGES

    Harding, James Patrick; Fryer, Chris Lee; Mendel, Susan Marie

    2016-05-11

    Constraining the behavior of cosmic ray data observed at Earth requires a precise understanding of how the cosmic rays propagate in the interstellar medium. The interstellar medium is not homogeneous; although turbulent magnetic fields dominate over large scales, small coherent regions of magnetic field exist on scales relevant to particle propagation in the nearby Galaxy. Guided propagation through a coherent field is significantly different from random particle diffusion and could be the explanation of spatial anisotropies in the observed cosmic rays. We present a Monte Carlo code to propagate cosmic particle through realistic magnetic field structures. We discuss the detailsmore » of the model as well as some preliminary studies which indicate that coherent magnetic structures are important effects in local cosmic-ray propagation, increasing the flux of cosmic rays by over two orders of magnitude at anisotropic locations on the sky. Furthermore, the features induced by coherent magnetic structure could be the cause of the observed TeV cosmic-ray anisotropy.« less

  14. Cosmic ray exposure ages of iron meteorites, complex irradiation and the constancy of cosmic ray flux in the past

    NASA Technical Reports Server (NTRS)

    Marti, K.; Lavielle, B.; Regnier, S.

    1984-01-01

    While previous calculations of potassium ages assumed a constant cosmic ray flux and a single stage (no change in size) exposure of iron meteorites, present calculations relaxed these constancy assumptions and the results reveal multistage irradiations for some 25% of the meteorites studied, implying multiple breakup in space. The distribution of exposure ages suggests several major collisions (based on chemical composition and structure), although the calibration of age scales is not yet complete. It is concluded that shielding-corrected (corrections which depend on size and position of sample) production rates are consistent for the age bracket of 300 to 900 years. These production rates differ in a systematic way from those calculated for present day fluxes of cosmic rays (such as obtained for the last few million years).

  15. CosmicSIG science and plans

    NASA Astrophysics Data System (ADS)

    Olinto, Angela V.

    2014-03-01

    Recent activities of the Cosmic Ray Science Interest Group (CosmicSIG) of the Physics of the Cosmos PAG will be reviewed. CosmicSIG was formed to provide an assessment to NASA HQ and the PCOS program office of the status of current and future missions in the area of cosmic-ray astrophysics. CosmicSIG also strives to act as a focal point and forum for the cosmic ray community.

  16. Calculation of Cosmic Ray Induced Single Event Upsets: Program CRUP, Cosmic Ray Upset Program

    DTIC Science & Technology

    1983-09-14

    1.., 0 .j ~ u M ~ t R A’- ~~ ’ .~ ; I .: ’ 1 J., ) ’- CALCULATION OF COSMIC RAY INDUCED SINGLE EVEI’o"T UPSETS: PROGRAM CRUP , COSMIC RAY UPSET...neceuety end Identity by blo..;k number) 0Thls report documents PROGR.Al\\1 CRUP , COSMIC RAY UPSET PROGRAM. The computer program calculates cosmic...34. » » •-, " 1 » V »1T"~ Calculation of Cosmic Ray Induced Single Event Upsets: PROGRAM CRUP , COSMIC RAY UPSET PROGRAM I. INTRODUCTION Since the

  17. Evidence for gravitational lensing of the cosmic microwave background polarization from cross-correlation with the cosmic infrared background.

    PubMed

    Ade, P A R; Akiba, Y; Anthony, A E; Arnold, K; Atlas, M; Barron, D; Boettger, D; Borrill, J; Borys, C; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Le Jeune, M; Lee, A T; Leitch, E M; Linder, E; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Poletti, D; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K; Schanning, I; Schenck, D E; Sherwin, B D; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tikhomirov, A; Tomaru, T; Wilson, B; Yadav, A; Zahn, O

    2014-04-04

    We reconstruct the gravitational lensing convergence signal from cosmic microwave background (CMB) polarization data taken by the Polarbear experiment and cross-correlate it with cosmic infrared background maps from the Herschel satellite. From the cross spectra, we obtain evidence for gravitational lensing of the CMB polarization at a statistical significance of 4.0σ and indication of the presence of a lensing B-mode signal at a significance of 2.3σ. We demonstrate that our results are not biased by instrumental and astrophysical systematic errors by performing null tests, checks with simulated and real data, and analytical calculations. This measurement of polarization lensing, made via the robust cross-correlation channel, not only reinforces POLARBEAR auto-correlation measurements, but also represents one of the early steps towards establishing CMB polarization lensing as a powerful new probe of cosmology and astrophysics.

  18. Observation of Galactic and Solar Cosmic Rays from October 13, 1959 to February 17, 1961 with Explorer VII (Satellite 1959 Iota)

    NASA Technical Reports Server (NTRS)

    Lin, Wei Ching

    1961-01-01

    This paper gives a comprehensive summary of cosmic-ray intensity observations at high latitudes over North America and over Australia in the altitude range 550 to 1100 km by means of Geiger tubes in Explorer VII (Earth satellite 1959 Iota). The time period covered is October 13, 1959 to February 17, 1961. Of special interest are the observational data on some 20 solar cosmic-ray events including major events of early April 1960, early September 1960, and of mid-November 1960. Detailed study of the latitude dependence of solar cosmic ray intensity will be presented in a later companion paper.

  19. The Emergence of Cosmic Education. Spotlight: Cosmic Education.

    ERIC Educational Resources Information Center

    Trudeau, Sr. Christina Marie

    2002-01-01

    Discusses the influence of Hindu, Moslem, and Buddhist metaphysics on Maria Montessori's own pedagogical philosophy of Cosmic Education, which she regarded as the core of all learning experiences, after her visit to India. Considers the relationship between Montessori's ideas of child development and Cosmic Education, and the effect of Indian…

  20. Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces

    NASA Astrophysics Data System (ADS)

    Plane, John M. C.; Flynn, George J.; Määttänen, Anni; Moores, John E.; Poppe, Andrew R.; Carrillo-Sanchez, Juan Diego; Listowski, Constantino

    2018-02-01

    Recent advances in interplanetary dust modelling provide much improved estimates of the fluxes of cosmic dust particles into planetary (and lunar) atmospheres throughout the solar system. Combining the dust particle size and velocity distributions with new chemical ablation models enables the injection rates of individual elements to be predicted as a function of location and time. This information is essential for understanding a variety of atmospheric impacts, including: the formation of layers of metal atoms and ions; meteoric smoke particles and ice cloud nucleation; perturbations to atmospheric gas-phase chemistry; and the effects of the surface deposition of micrometeorites and cosmic spherules. There is discussion of impacts on all the planets, as well as on Pluto, Triton and Titan.

  1. The Cosmic Dust Analyzer for Cassini

    NASA Technical Reports Server (NTRS)

    Bradley, James G.; Gruen, Eberhard; Srama, Ralf

    1996-01-01

    The Cosmic Dust Analyzer (CDA) is designed to characterize the dust environment in interplanetary space, in the Jovian and in the Saturnian systems. The instrument consists of two major components, the Dust Analyzer (DA) and the High Rate Detector (HRD). The DA has a large aperture to provide a large cross section for detection in low flux environments. The DA has the capability of determining dust particle mass, velocity, flight direction, charge, and chemical composition. The chemical composition is determined by the Chemical Analyzer system based on a time-of-flight mass spectrometer. The DA is capable of making full measurements up to one impact/second. The HRD contains two smaller PVDF detectors and electronics designed to characterize dust particle masses at impact rates up to 10(exp 4) impacts/second. These high impact rates are expected during Saturn ring, plane crossings.

  2. Ablation and Chemical Alteration of Cosmic Dust Particles during Entry into the Earth’s Atmosphere

    NASA Astrophysics Data System (ADS)

    Rudraswami, N. G.; Shyam Prasad, M.; Dey, S.; Plane, J. M. C.; Feng, W.; Carrillo-Sánchez, J. D.; Fernandes, D.

    2016-12-01

    Most dust-sized cosmic particles undergo ablation and chemical alteration during atmospheric entry, which alters their original properties. A comprehensive understanding of this process is essential in order to decipher their pre-entry characteristics. The purpose of the study is to illustrate the process of vaporization of different elements for various entry parameters. The numerical results for particles of various sizes and various zenith angles are treated in order to understand the changes in chemical composition that the particles undergo as they enter the atmosphere. Particles with large sizes (> few hundred μm) and high entry velocities (>16 km s‑1) experience less time at peak temperatures compared to those that have lower velocities. Model calculations suggest that particles can survive with an entry velocity of 11 km s‑1 and zenith angles (ZA) of 30°–90°, which accounts for ∼66% of the region where particles retain their identities. Our results suggest that the changes in chemical composition of MgO, SiO2, and FeO are not significant for an entry velocity of 11 km s‑1 and sizes <300 μm, but the changes in these compositions become significant beyond this size, where FeO is lost to a major extent. However, at 16 km s‑1 the changes in MgO, SiO2, and FeO are very intense, which is also reflected in Mg/Si, Fe/Si, Ca/Si, and Al/Si ratios, even for particles with a size of 100 μm. Beyond 400 μm particle sizes at 16 km s‑1, most of the major elements are vaporized, leaving the refractory elements, Al and Ca, suspended in the troposphere.

  3. Strong Cosmic Censorship

    NASA Astrophysics Data System (ADS)

    Isenberg, James

    2017-01-01

    The Hawking-Penrose theorems tell us that solutions of Einstein's equations are generally singular, in the sense of the incompleteness of causal geodesics (the paths of physical observers). These singularities might be marked by the blowup of curvature and therefore crushing tidal forces, or by the breakdown of physical determinism. Penrose has conjectured (in his `Strong Cosmic Censorship Conjecture`) that it is generically unbounded curvature that causes singularities, rather than causal breakdown. The verification that ``AVTD behavior'' (marked by the domination of time derivatives over space derivatives) is generically present in a family of solutions has proven to be a useful tool for studying model versions of Strong Cosmic Censorship in that family. I discuss some of the history of Strong Cosmic Censorship, and then discuss what is known about AVTD behavior and Strong Cosmic Censorship in families of solutions defined by varying degrees of isometry, and discuss recent results which we believe will extend this knowledge and provide new support for Strong Cosmic Censorship. I also comment on some of the recent work on ``Weak Null Singularities'', and how this relates to Strong Cosmic Censorship.

  4. Our Cosmic Insignificance

    PubMed Central

    Kahane, Guy

    2014-01-01

    The universe that surrounds us is vast, and we are so very small. When we reflect on the vastness of the universe, our humdrum cosmic location, and the inevitable future demise of humanity, our lives can seem utterly insignificant. Many philosophers assume that such worries about our significance reflect a banal metaethical confusion. They dismiss the very idea of cosmic significance. This, I argue, is a mistake. Worries about cosmic insignificance do not express metaethical worries about objectivity or nihilism, and we can make good sense of the idea of cosmic significance and its absence. It is also possible to explain why the vastness of the universe can make us feel insignificant. This impression does turn out to be mistaken, but not for the reasons typically assumed. In fact, we might be of immense cosmic significance—though we cannot, at this point, tell whether this is the case. PMID:25729095

  5. The origin of cosmic rays

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1986-01-01

    Data related to the development of cosmic rays are discussed. The relationship between cosmic ray production and the steady-state Boltzmann equation is analyzed. The importance of the power-law spectrum, the scattering rate, the theory of shock acceleration, anisotropic instabilities, and cosmic ray diffusion in the formation of cosmic rays is described. It is noted that spacecraft observations at the earth's bow shock are useful for studying cosmic rays and that the data support the collisionless shock-wave theory of cosmic ray origin.

  6. Subaru studies of the cosmic dawn

    PubMed Central

    IYE, Masanori

    2011-01-01

    An overview on the current status of the census of the early Universe population is given. Observational surveys of high redshift objects provide direct opportunities to study the early epoch of the Universe. The target population included are Lyman Alpha Emitters (LAE), Lyman Break Galaxies (LBG), gravitationally lensed galaxies, quasars and gamma-ray bursts (GRB). The basic properties of these objects and the methods used to study them are reviewed. The present paper highlights the fact that the Subaru Telescope group made significant contributions in this field of science to elucidate the epoch of the cosmic dawn and to improve the understanding of how and when infant galaxies evolve into mature ones. PMID:22075759

  7. Cosmic ray experimental observations

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Mcdonald, F. B.

    1974-01-01

    The current experimental situation in cosmic ray studies is discussed, with special emphasis on the development of new detector systems. Topics covered are the techniques for particle identification, energy measurements, gas Cerenkov counters, magnet spectrometers, ionization spectrometers, track detectors, nuclear emulsions, multiparameter analysis using arrays of detectors, the Goddard ionization spectrometer, charge spectra, relative abundances, isotope composition, antinuclei in cosmic rays, electrons, the measurement of cosmic ray arrival directions, and the prehistory of cosmic rays.

  8. Priming the search for cosmic superstrings using GADGET2 simulations

    NASA Astrophysics Data System (ADS)

    Cousins, Bryce; Jia, Hewei; Braverman, William; Chernoff, David

    2018-01-01

    String theory is an extensive mathematical theory which, despite its broad explanatory power, is still lacking empirical support. However, this may change when considering the scope of cosmology, where “cosmic superstrings” may serve as observational evidence. According to string theory, these superstrings were stretched to cosmic scales in the early Universe and may now be detectable, via microlensing or gravitational radiation. Negative results from prior surveys have put some limits on superstring properties, so to investigate the parameter space more effectively, we ask: “where should we expect to find cosmic superstrings, and how many should we predict?” This research investigates these questions by simulating cosmic string behavior during structure formation in the universe using GADGET2. The sizes and locations of superstring clusters are assessed using kernel density estimation and radial correlation functions. Currently, only preliminary small-scale simulations have been performed, producing superstring clustering with low sensitivity. However, future simulations of greater magnitude will offer far higher resolution, allowing us to more precisely track superstring behavior within structures. Such results will guide future searches, most imminently those made possible by LSST and WFIRST.

  9. Could Martian Strawberries Be? -- Prebiotic Chemical Evolution on an Early Wet Mars

    NASA Astrophysics Data System (ADS)

    Lerman, L.

    2005-03-01

    The universality of chemical physics dictates the ubiquity of bubbles, aerosols, and droplets on planets with water and simple amphiphiles. Their ability to functionally support prebiotic chemical evolution seems critical: on the early Earth and Mars, and quite likely for Titan and Europa.

  10. Cosmic Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The cosmic ray division participation in the cooperative agreement was activated in the second year. The scientific goals will be analysis of cosmic ray data from the Japanese-American Cooperative Emulsion Experiments (JACEE). Measurements of primary cosmic rays in the JACEE emulsion chambers will be made to derive for each detected particle the deposited energy in the chamber and the primary charge (atomic number). The data will be corrected to the primary flux above the atmosphere, and the composition and energy spectra will be derived. The spectra of the individual elements will be interpreted in context with the supernova shock and other models of cosmic ray acceleration. Additional information is contained in the original extended abstract.

  11. A New Laboratory For Terahertz Characterization Of Cosmic Analog Dusts

    NASA Astrophysics Data System (ADS)

    Perera, Thushara; Liu, Lunjun; Breyer, Fiona; Schonert, Ryan; O'Shea, Kyle; Roesner, Rebecca

    2016-06-01

    Most studies conducted with observatories such as ALMA, SOFIA, PLANCK, and Herschel will benefit from knowledge of (1) the predominant cosmic dust species in various environments and (2) the mm/sub-mm optical properties of cosmic dusts, including the temperature dependent-emissivity and spectral index. We have undertaken two efforts to enable the laboratory study of cosmic analogs dusts in the frequency range 60-2000 GHz. They are: (1) the construction of a novel compact Fourier Transform Spectrometer (FTS) design coupled to a dry 4-K cryostat which houses a cooled sample exchanger (filter wheel) and a bolometer. (2) The production of Mg- and Fe-rich silicate dusts using sol-gel methods; various tests to determine their physical and chemical properties; embedding of samples in LDPE pellets for insertion into the novel FTS. This presentation will focus on the current status of the apparatus and data from its first few months of use.

  12. Constraints on cosmic strings using data from the first Advanced LIGO observing run

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steer, D. A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y.-F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2018-05-01

    Cosmic strings are topological defects which can be formed in grand unified theory scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension G μ and the intercommutation probability, using not only the burst analysis performed on the O1 data set but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and big-bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider.

  13. Messengers from the Early Solar System - Comets as Carriers of Cosmic Information

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J.

    2011-01-01

    Viewed from a cosmic perspective, Earth is a dry planet yet its oceans are enriched in deuterium by a large factor relative to nebular hydrogen. Can comets have delivered Earth s water? The question of exogenous delivery of water and organics to Earth and other young planets is of critical importance for understanding the origin of Earth s water, and for assessing the possible existence of exo-planets similar to Earth. Strong gradients in temperature and chemistry in the proto-planetary disk, coupled with dynamical models, imply that comets from the Oort Cloud and Kuiper Disk reservoirs should have diverse composition. The primary volatiles in comets (ices native to the nucleus) provide the preferred metric, and taxonomies based on them are now beginning to emerge [1, 2, 3]. The measurement of cosmic parameters such as the nuclear spin temperatures for H2O, NH3, and CH4, and of enrichment factors for isotopologues (D/H in water and hydrogen cyanide, N-14/N-15 in CN and hydrogen cyanide) provide additional important tests for the origin of cometary material.

  14. Precision Measurements of the Cosmic Microwave Background Polarization from the POLARBEAR experiment

    NASA Astrophysics Data System (ADS)

    Steinbach, Bryan

    2013-04-01

    We present status and results from the first season of observations of the POLARBEAR experiment. POLARBEAR is measuring the Cosmic Microwave Background (CMB) polarization anisotropies to constrain neutrino mass, inflation, dark energy, and cosmic birefringence. Since early 2012 POLARBEAR has been performing a deep search in 30 square degrees of sky to find odd parity B modes in the CMB polarization anisotropies induced by gravitational lensing. POLARBEAR observes with 1000 single mode 150GHz detectors with 3.5' FWHM beams from an off axis Gregorian Dragone 3m telescope in the Atacama Desert in Chile.

  15. Calculation of cosmic ray induced single event upsets: Program CRUP (Cosmic Ray Upset Program)

    NASA Astrophysics Data System (ADS)

    Shapiro, P.

    1983-09-01

    This report documents PROGRAM CRUP, COSMIC RAY UPSET PROGRAM. The computer program calculates cosmic ray induced single-event error rates in microelectronic circuits exposed to several representative cosmic-ray environments.

  16. Exploring the Galactic Cosmic Rays at the lowest energies

    NASA Astrophysics Data System (ADS)

    Shapiro, M. M.

    2001-08-01

    The solar wind prevents the lowest-energy Galactic cosmic rays (GCR) from entering the Heliosphere. Consequently, space probes have thus far been unable to sample them. We suggest that astrochemistry may provide a handle on these particles. Clouds in the interstellar medium (ISM) are sites of chemical-reaction networks that produce various molecular species detectable by their radioastronomical signatures. Highly ionizing low-energy cosmic rays are thought to be the principal agents of molecule production in clouds. Some anomalous abundances, e.g., of deuterium molecules, have been detected. Could studies of the foregoing networks of reactions and their products yield clues to the fluxes and energy spectra of the lowest-energy GCR in the ISM? Other approaches to this problem are also cited.

  17. Cosmic ray diffusion: Report of the Workshop in Cosmic Ray Diffusion Theory

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.; Jones, F. C.

    1975-01-01

    A workshop in cosmic ray diffusion theory was held at Goddard Space Flight Center on May 16-17, 1974. Topics discussed and summarized are: (1) cosmic ray measurements as related to diffusion theory; (2) quasi-linear theory, nonlinear theory, and computer simulation of cosmic ray pitch-angle diffusion; and (3) magnetic field fluctuation measurements as related to diffusion theory.

  18. GNSS Radio Occultation Observations as a data source for Ionospheric Assimilation: COSMIC-1 & COSMIC-2

    NASA Astrophysics Data System (ADS)

    Yue, X.; Schreiner, W. S.; Kuo, Y. H.

    2014-12-01

    Since the pioneer GPS/MET mission, low Earth orbit (LEO) based global navigation satellite system (GNSS) Radio Occultation (RO) technique has been a powerful technique in ionosphere monitoring. After that, many LEO satellites were launched with RO payload, include: CHAMP , GRACE, SAC-C/D, COSMIC, C/NOFS, Metop-A/B, TerraSAR-X/TanDEM-X, and etc. COSMIC was the first constellation of satellites dedicated primarily to RO and delivering RO data in near real time. Currently in UCAR CDAAC, we process most of these missions' RO data for the community. Due to the success of COSMIC mission, a follow on mission called COSMIC-2 will be launched in 2016 and 2018, respectively. The COSMIC-2 RO data will be 4-6 times of COSMIC due to the doubled satellite and GNSS signals. In this paper we will describe: (1) Data process and quality in UCAR/CDAAC; (2) Ionospheric data assimilation results based on COSMIC data; (3) OSSE study for COSMIC-2.

  19. Cosmic ray propagation and containment

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1976-01-01

    The cosmic rays, an active gaseous component of the disk of the galaxy, are considered along with their propagation and containment as a part of the general dynamics of the disk. The sources of cosmic rays are a matter of speculation. The disk is inflated by the cosmic ray gas pressure comparable to the magnetic pressure, but the rate of inflation is unknown. The time spent by the individual cosmic ray particles in the disk is inversely proportional to the cosmic ray production rate. It is evident from the decay of Be(1c) that the cosmic rays circulate through a volume of space perhaps ten times the thickness of the gaseous disk, suggesting a magnetic halo extending out approximately 1 kpc from either face of the disk. The cosmic rays may be responsible for the halo by inflating the magnetic fields of the disk. Extension of the fields to 1 kpc would imply a high production rate and short life of cosmic rays in the dense gaseous disk of the galaxy.

  20. Inhomogeneous galactic chemical evolution of r-process elements

    NASA Astrophysics Data System (ADS)

    Wehmeyer, Benjamin

    2018-01-01

    Stars provide a fundamental contribution to the cosmic life cycle. Gas clouds form and collapse to stars, experiencing different evolutionary stages according to their properties like mass and metal content. Small stars like our Sun end their life as planetary nebulae, while more massive stars end their evolution with violent explosions like supernovae or hypernovae, leaving behind either a neutron star or a black hole. These compact objects may also merge, leading to a new ejection of material. Today the origin of the heaviest elements is still matter of debate. The relative contributions of the proposed sources of r-process elements (e.g., Supernovae, Neutron Star Mergers) in the early galaxy as well as in the Sun is one of the main uncertainties. We use the inhomogeneous chemical evolution tool “ICE” [1, 2] to study the role of some of the main parameters of the cosmic life cycle. With ICE's high resolution (≥ 20parsec/cell) runs, we are able to get converged simulations of the inhomogeneities in the early Galactic evolution stages, and of the observed scatter of r-process elements in metal-poor stars [3].[1] B. Wehmeyer, M. Pignatari, F.-K. Thielemann, 2015 MNRAS 452, 1970–1981[2] B. Wehmeyer, M. Pignatari, F.-K. Thielemann, 2016 AIPC 1743, 040009[3] I. Roederer et al., 2010 ApJ 724:975–993

  1. A Cosmic Variance Cookbook

    NASA Astrophysics Data System (ADS)

    Moster, Benjamin P.; Somerville, Rachel S.; Newman, Jeffrey A.; Rix, Hans-Walter

    2011-04-01

    Deep pencil beam surveys (<1 deg2) are of fundamental importance for studying the high-redshift universe. However, inferences about galaxy population properties (e.g., the abundance of objects) are in practice limited by "cosmic variance." This is the uncertainty in observational estimates of the number density of galaxies arising from the underlying large-scale density fluctuations. This source of uncertainty can be significant, especially for surveys which cover only small areas and for massive high-redshift galaxies. Cosmic variance for a given galaxy population can be determined using predictions from cold dark matter theory and the galaxy bias. In this paper, we provide tools for experiment design and interpretation. For a given survey geometry, we present the cosmic variance of dark matter as a function of mean redshift \\bar{z} and redshift bin size Δz. Using a halo occupation model to predict galaxy clustering, we derive the galaxy bias as a function of mean redshift for galaxy samples of a given stellar mass range. In the linear regime, the cosmic variance of these galaxy samples is the product of the galaxy bias and the dark matter cosmic variance. We present a simple recipe using a fitting function to compute cosmic variance as a function of the angular dimensions of the field, \\bar{z}, Δz, and stellar mass m *. We also provide tabulated values and a software tool. The accuracy of the resulting cosmic variance estimates (δσ v /σ v ) is shown to be better than 20%. We find that for GOODS at \\bar{z}=2 and with Δz = 0.5, the relative cosmic variance of galaxies with m *>1011 M sun is ~38%, while it is ~27% for GEMS and ~12% for COSMOS. For galaxies of m * ~ 1010 M sun, the relative cosmic variance is ~19% for GOODS, ~13% for GEMS, and ~6% for COSMOS. This implies that cosmic variance is a significant source of uncertainty at \\bar{z}=2 for small fields and massive galaxies, while for larger fields and intermediate mass galaxies, cosmic variance is

  2. Cold, warm, and composite (cool) cosmic string models

    NASA Astrophysics Data System (ADS)

    Carter, B.

    1994-01-01

    The dynamical behaviour of a cosmic string is strongly affected by any reduction of the effective string tension T below the constant value, T = m2 say, that typifies a simple, longitudinally Lorentz invariant Goto-Nambu type string model, where m is a fixed mass scale determined by the internal structure of an underlying Nielsen-Olesen type vacuum vortex. Such a reduction of tension occurs in the standard ``warm'' cosmic string model in which the effect of thermal perturbations of a simple Goto-Nambu model is represented by an effective tension T given in terms of the corresponding effective temperature, Θ say, by T2 = m2(m2 - 1/3πΘ2). A qualitatively similar though analytically more complicated tension reduction phenomenon occurs in ``cold'' conducting cosmic string models of the kind whose existence was first proposed by Witten, where the role of the temperature is played by an effective mass or chemical potential μ that is constructed as the scalar magnitude of the energy momentum covector obtained as the gradient of the phase ϕ of a bosonic condensate in the core of the vacuum vortex. The present article describes the construction and essential mechanical properties of a new category of composite ``cool'' cosmic string models that are intermediate between these ``warm'' and ``cold'' limit cases. These composite models are the string analogues of the standard Landau model for a two-constituent finite temperature superfluid, and as such involve two independent currents interpretable as that of the entropy on the one hand and that of the bosonic condensate on the other. It is surmised that the stationary (in particular ring) equilibrium states of such ``cool'' cosmic strings may be of cosmologicl significance.

  3. Beryllium and boron constraints on an early Galactic bright phase

    NASA Technical Reports Server (NTRS)

    Fields, Brian D.; Schramm, David N.; Truran, James W.

    1993-01-01

    The recent observations of Be and B in metal-deficient halo dwarfs are used to constrain a 'bright phase' of enhanced cosmic-ray flux in the early Galaxy. Assuming that this Be and B arises from cosmic-ray spallation in the early Galaxy, limits are placed on the intensity of the early (Population II) cosmic-ray flux relative to the present (Population I) flux. A simple estimate of bounds on the flux ratio is 1 - 40. This upper bound would restrict galaxies like our own from producing neutrino fluxes that would be detectable in any currently proposed detectors. It is found that the relative enhancement of the early flux varies inversely with the relative time of enhancement. It is noted that associated gamma-ray production via pp - pi sup 0 pp may be a significant contribution to the gamma-ray background above 100 MeV.

  4. High Energy Cosmic Electrons: Messengers from Nearby Cosmic Ray Sources or Dark Matter?

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2011-01-01

    This slide presentation reviews the recent discoveries by the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-Ray Telescope in reference to high energy cosmic electrons, and whether their source is cosmic rays or dark matter. Specific interest is devoted to Cosmic Ray electrons anisotropy,

  5. Cosmic-ray propagation and containment

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1977-01-01

    The cosmic rays are an active gaseous component of the disk of the galaxy, and their propagation and containment is a part of the general dynamics of the disk. The sources of cosmic rays are a matter of speculation. The disk is inflated by the cosmic-ray gas pressure, P, comparable to the magnetic pressure B super 2/ 8 pi, but the rate of inflation is unknown. The time spent by the individual cosmic-ray particles in the disk is inversely proportional to the cosmic-ray production rate and may be anything from 100,000 to more than 10 million years. It is evident from the decay of Be(10) that the cosmic rays circulate through a volume of space perhaps ten times the thickness of the gaseous disk, suggesting a magnetic halo extending out approximately 1 kpc from either face of the disk. The cosmic rays may be responsible for the halo by inflating the magnetic fields of the disk. Extension of the fields to 1 kpc would imply a high production rate and short life of cosmic rays in the dense gaseous disk of the galaxy.

  6. The Cosmic Connection

    Science.gov Websites

    Macy High School We have a simple cosmic ray detector that can be built by high school teachers. This cosmic rays vary with elevation. In addition, it is a valuable tool to teach elementary measurement

  7. Cosmic-Ray Extremely Distributed Observatory: a global cosmic ray detection framework

    NASA Astrophysics Data System (ADS)

    Sushchov, O.; Homola, P.; Dhital, N.; Bratek, Ł.; Poznański, P.; Wibig, T.; Zamora-Saa, J.; Almeida Cheminant, K.; Alvarez Castillo, D.; Góra, D.; Jagoda, P.; Jałocha, J.; Jarvis, J. F.; Kasztelan, M.; Kopański, K.; Krupiński, M.; Michałek, M.; Nazari, V.; Smelcerz, K.; Smolek, K.; Stasielak, J.; Sułek, M.

    2017-12-01

    The main objective of the Cosmic-Ray Extremely Distributed Observatory (CREDO) is the detection and analysis of extended cosmic ray phenomena, so-called super-preshowers (SPS), using existing as well as new infrastructure (cosmic-ray observatories, educational detectors, single detectors etc.). The search for ensembles of cosmic ray events initiated by SPS is yet an untouched ground, in contrast to the current state-of-the-art analysis, which is focused on the detection of single cosmic ray events. Theoretical explanation of SPS could be given either within classical (e.g., photon-photon interaction) or exotic (e.g., Super Heavy Dark Matter decay or annihilation) scenarios, thus detection of SPS would provide a better understanding of particle physics, high energy astrophysics and cosmology. The ensembles of cosmic rays can be classified based on the spatial and temporal extent of particles constituting the ensemble. Some classes of SPS are predicted to have huge spatial distribution, a unique signature detectable only with a facility of the global size. Since development and commissioning of a completely new facility with such requirements is economically unwarranted and time-consuming, the global analysis goals are achievable when all types of existing detectors are merged into a worldwide network. The idea to use the instruments in operation is based on a novel trigger algorithm: in parallel to looking for neighbour surface detectors receiving the signal simultaneously, one should also look for spatially isolated stations clustered in a small time window. On the other hand, CREDO strategy is also aimed at an active engagement of a large number of participants, who will contribute to the project by using common electronic devices (e.g., smartphones), capable of detecting cosmic rays. It will help not only in expanding the geographical spread of CREDO, but also in managing a large manpower necessary for a more efficient crowd-sourced pattern recognition scheme to

  8. Cosmic growth signatures of modified gravitational strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denissenya, Mikhail; Linder, Eric V., E-mail: mikhail.denissenya@nu.edu.kz, E-mail: evlinder@lbl.gov

    2017-06-01

    Cosmic growth of large scale structure probes the entire history of cosmic expansion and gravitational coupling. To get a clear picture of the effects of modification of gravity we consider a deviation in the coupling strength (effective Newton's constant) at different redshifts, with different durations and amplitudes. We derive, analytically and numerically, the impact on the growth rate and growth amplitude. Galaxy redshift surveys can measure a product of these through redshift space distortions and we connect the modified gravity to the observable in a way that may provide a useful parametrization of the ability of future surveys to testmore » gravity. In particular, modifications during the matter dominated era can be treated by a single parameter, the ''area'' of the modification, to an accuracy of ∼0.3% in the observables. We project constraints on both early and late time gravity for the Dark Energy Spectroscopic Instrument and discuss what is needed for tightening tests of gravity to better than 5% uncertainty.« less

  9. Background-Source Cosmic-Photon Elevation Scaling and Cosmic-Neutron/Photon Date Scaling in MCNP6

    NASA Astrophysics Data System (ADS)

    Tutt, J.; Anderson, C.; McKinney, G.

    Cosmic neutron and photon fluxes are known to scale exponentially with elevation. Consequently, cosmic neutron elevation scaling was implemented for use with the background-source option shortly after its introduction into MCNP6, whereby the neutron flux weight factor was adjusted by the elevation scaling factor when the user-specified elevation differed from the selected background.dat grid-point elevation. At the same time, an elevation scaling factor was suggested for the cosmic photon flux, however, cosmic photon elevation scaling is complicated by the fact that the photon background consists of two components: cosmic and terrestrial. Previous versions of the background.dat file did not provide any way to separate these components. With Rel. 4 of this file in 2015, two new columns were added that provide the energy grid and differential cosmic photon flux separately from the total photon flux. Here we show that the cosmic photon flux component can now be scaled independently and combined with the terrestrial component to form the total photon flux at a user-specified elevation in MCNP6. Cosmic background fluxes also scale with the solar cycle due to solar modulation. This modulation has been shown to be nearly sinusoidal over time, with an inverse effect - increased modulation leads to a decrease in cosmic fluxes. This effect was initially included with the cosmic source option in MCNP6 and has now been extended for use with the background source option when: (1) the date is specified in the background.dat file, and (2) when the user specifies a date on the source definition card. A description of the cosmic-neutron/photon date scaling feature will be presented along with scaling results for past and future date extrapolations.

  10. Tracing the First Stars with Fluctuations of the Cosmic Infrared Background

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.; Arendt, R. G.; Mather, J.; Moseley, S. H.

    2005-01-01

    The deepest space- and ground-based observations find metal-enriched galaxies at cosmic times when the Universe was less than 1 Gyr old. These stellar populations had to be preceded by the metal-free first stars, known as 'population III'. Recent cosmic microwave background polarization measurements indicate that stars started forming early-when the Universe was 5200 Myr old. It is now thought that population III stars were significantly more massive than the present metal-rich stellar populations. Although such sources will not be individually detectable by existing or planned telescopes, they would have produced significant cosmic infrared background radiation in the near-infrared, whose fluctuations reflect the conditions in the primordial density field. Here we report a measurement of diffuse flux fluctuations after removing foreground stars and galaxies. The anisotropies exceed the instrument noise and the more local foregrounds; they can be attributed to emission from population III stars, at an era dominated by these objects.

  11. Space Weather Observations by GNSS Radio Occultation: From FORMOSAT-3/COSMIC to FORMOSAT-7/COSMIC-2

    PubMed Central

    Yue, Xinan; Schreiner, William S; Pedatella, Nicholas; Anthes, Richard A; Mannucci, Anthony J; Straus, Paul R; Liu, Jann-Yenq

    2014-01-01

    The joint Taiwan-United States FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) mission, hereafter called COSMIC, is the first satellite constellation dedicated to remotely sense Earth's atmosphere and ionosphere using a technique called Global Positioning System (GPS) radio occultation (RO). The occultations yield abundant information about neutral atmospheric temperature and moisture as well as space weather estimates of slant total electron content, electron density profiles, and an amplitude scintillation index, S4. With the success of COSMIC, the United States and Taiwan are moving forward with a follow-on RO mission named FORMOSAT-7/COSMIC-2 (COSMIC-2), which will ultimately place 12 satellites in orbit with two launches in 2016 and 2019. COSMIC-2 satellites will carry an advanced Global Navigation Satellite System (GNSS) RO receiver that will track both GPS and Russian Global Navigation Satellite System signals, with capability for eventually tracking other GNSS signals from the Chinese BeiDou and European Galileo system, as well as secondary space weather payloads to measure low-latitude plasma drifts and scintillation at multiple frequencies. COSMIC-2 will provide 4–6 times (10–15X in the low latitudes) the number of atmospheric and ionospheric observations that were tracked with COSMIC and will also improve the quality of the observations. In this article we focus on COSMIC/COSMIC-2 measurements of key ionospheric parameters. PMID:26213514

  12. Space Weather Observations by GNSS Radio Occultation: From FORMOSAT-3/COSMIC to FORMOSAT-7/COSMIC-2.

    PubMed

    Yue, Xinan; Schreiner, William S; Pedatella, Nicholas; Anthes, Richard A; Mannucci, Anthony J; Straus, Paul R; Liu, Jann-Yenq

    2014-11-01

    The joint Taiwan-United States FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) mission, hereafter called COSMIC, is the first satellite constellation dedicated to remotely sense Earth's atmosphere and ionosphere using a technique called Global Positioning System (GPS) radio occultation (RO). The occultations yield abundant information about neutral atmospheric temperature and moisture as well as space weather estimates of slant total electron content, electron density profiles, and an amplitude scintillation index, S4. With the success of COSMIC, the United States and Taiwan are moving forward with a follow-on RO mission named FORMOSAT-7/COSMIC-2 (COSMIC-2), which will ultimately place 12 satellites in orbit with two launches in 2016 and 2019. COSMIC-2 satellites will carry an advanced Global Navigation Satellite System (GNSS) RO receiver that will track both GPS and Russian Global Navigation Satellite System signals, with capability for eventually tracking other GNSS signals from the Chinese BeiDou and European Galileo system, as well as secondary space weather payloads to measure low-latitude plasma drifts and scintillation at multiple frequencies. COSMIC-2 will provide 4-6 times (10-15X in the low latitudes) the number of atmospheric and ionospheric observations that were tracked with COSMIC and will also improve the quality of the observations. In this article we focus on COSMIC/COSMIC-2 measurements of key ionospheric parameters.

  13. The Origin of Cosmic Rays

    ScienceCinema

    Blasi, Pasquale

    2017-12-22

    Cosmic Rays reach the Earth from space with energies of up to more than 1020 eV, carrying information on the most powerful particle accelerators that Nature has been able to assemble. Understanding where and how cosmic rays originate has required almost one century of investigations, and, although the last word is not written yet, recent observations and theory seem now to fit together to provide us with a global picture of the origin of cosmic rays of unprecedented clarity. Here we will describe what we learned from recent observations of astrophysical sources (such as supernova remnants and active galaxies) and we will illustrate what these observations tell us about the physics of particle acceleration and transport. We will also discuss the “end” of the Galactic cosmic ray spectrum, which bridges out attention towards the so called ultra high energy cosmic rays (UHECRs). At ~1020 eV the gyration scale of cosmic rays in cosmic magnetic fields becomes large enough to allow us to point back to their sources, thereby allowing us to perform “cosmic ray astronomy”, as confirmed by the recent results obtained with the Pierre Auger Observatory. We will discuss the implications of these observations for the understanding of UHECRs, as well as some questions which will likely remain unanswered and will be the target of the next generation of cosmic ray experiments.

  14. Cosmic Ray Induced Neutron Irradiation

    NASA Astrophysics Data System (ADS)

    Overholt, Andrew

    2011-11-01

    After cancer studies performed on flight crews during the 1970s, it was found that cosmic rays produce a signficant flux of thermal neutrons at airplane altitudes. In the case of high energy cosmic rays these biologically threatening neutrons are increased at ground level. Our work models the flux of neutrons produced by high energy cosmic rays, exploring the possibility of biological impact due to extended periods of increase high energy cosmic ray flux.

  15. Constraints on cosmic strings due to black holes formed from collapsed cosmic string loops

    NASA Technical Reports Server (NTRS)

    Caldwell, R. R.; Gates, Evalyn

    1993-01-01

    The cosmological features of primordial black holes formed from collapsed cosmic string loops are studied. Observational restrictions on a population of primordial black holes are used to restrict f, the fraction of cosmic string loops which collapse to form black holes, and mu, the cosmic string mass-per-unit length. Using a realistic model of cosmic strings, we find the strongest restriction on the parameters f and mu is due to the energy density in 100MeV photons radiated by the black holes. We also find that inert black hole remnants cannot serve as the dark matter. If earlier, crude estimates of f are reliable, our results severely restrict mu, and therefore limit the viability of the cosmic string large-scale structure scenario.

  16. DustPedia: A Definitive Study of Cosmic Dust in the Local Universe

    NASA Astrophysics Data System (ADS)

    Davies, J. I.; Baes, M.; Bianchi, S.; Jones, A.; Madden, S.; Xilouris, M.; Bocchio, M.; Casasola, V.; Cassara, L.; Clark, C.; De Looze, I.; Evans, R.; Fritz, J.; Galametz, M.; Galliano, F.; Lianou, S.; Mosenkov, A. V.; Smith, M.; Verstocken, S.; Viaene, S.; Vika, M.; Wagle, G.; Ysard, N.

    2017-04-01

    The European Space Agency has invested heavily in two cornerstones missions: Herschel and Planck. The legacy data from these missions provides an unprecedented opportunity to study cosmic dust in galaxies so that we can, for example, answer fundamental questions about the origin of the chemical elements, physical processes in the interstellar medium (ISM), its effect on stellar radiation, its relation to star formation and how this relates to the cosmic far-infrared background. In this paper we describe the DustPedia project, which enables us to develop tools and computer models that will help us relate observed cosmic dust emission to its physical properties (chemical composition, size distribution, and temperature), its origins (evolved stars, supernovae, and growth in the ISM), and the processes that destroy it (high-energy collisions and shock heated gas). To carry out this research, we combine the Herschel/Planck data with that from other sources of data, and provide observations at numerous wavelengths (≤slant 41) across the spectral energy distribution, thus creating the DustPedia database. To maximize our spatial resolution and sensitivity to cosmic dust, we limit our analysis to 4231 local galaxies (v< 3000 km s-1) selected via their near-infrared luminosity (stellar mass). To help us interpret this data, we developed a new physical model for dust (THEMIS), a new Bayesian method of fitting and interpreting spectral energy distributions (HerBIE) and a state-of-the-art Monte Carlo photon-tracing radiative transfer model (SKIRT). In this, the first of the DustPedia papers, we describe the project objectives, data sets used, and provide an insight into the new scientific methods we plan to implement.

  17. D-term inflation, cosmic strings, and consistency with cosmic microwave background measurements.

    PubMed

    Rocher, Jonathan; Sakellariadou, Mairi

    2005-01-14

    Standard D-term inflation is studied in the framework of supergravity. D-term inflation produces cosmic strings; however, it can still be compatible with cosmic microwave background (CMB) measurements without invoking any new physics. The cosmic strings contribution to the CMB data is not constant, nor dominant, contrary to some previous results. Using current CMB measurements, the free parameters (gauge and superpotential couplings, as well as the Fayet-Iliopoulos term) of D-term inflation are constrained.

  18. Isotopic and chemical studies of early crustal metasedimentary rocks

    NASA Technical Reports Server (NTRS)

    Jacobsen, Stein B.

    1988-01-01

    The aim, within the bounds of the Early Crustal Genesis Project, was the isotopic and chemical study of selected early crustal meta-sedimentary rocks. Western Australia was chosen as the first field area to examine, as the Yilgarn and Pilbara Blocks comprise one of the largest and most varied Precambrian terranes. Furthermore, the Western Gneiss Terrane (on the western flank of the Yilgarn Block) and the Pilbara Block are both non-greenstone in character; these types of terrane were relatively neglected, but are of great significance in the understanding of early crustal meta-sediments. The meta-sediments of aluminous or peraluminous character, commonly also enriched in Mg and/or Fe relative to the more common pelitic meta-sediments, and at many locations, deficient in one or more of the elements Ca, N, and K, were initially chosen.

  19. Background-Source Cosmic-Photon Elevation Scaling and Cosmic-Neutron/Photon Date Scaling in MCNP6

    DOE PAGES

    Tutt, James Robert; Anderson, Casey Alan; McKinney, Gregg Walter

    2017-10-26

    Here, cosmic neutron and photon fluxes are known to scale exponentially with elevation. Consequently, cosmic neutron elevation scaling was implemented for use with the background-source option shortly after its introduction into MCNP6, whereby the neutron flux weight factor was adjusted by the elevation scaling factor when the user-specified elevation differed from the selected background.dat grid-point elevation. At the same time, an elevation scaling factor was suggested for the cosmic photon flux, however, cosmic photon elevation scaling is complicated by the fact that the photon background consists of two components: cosmic and terrestrial. Previous versions of the background.dat file did notmore » provide any way to separate these components. With Rel. 4 of this file in 2015, two new columns were added that provide the energy grid and differential cosmic photon flux separately from the total photon flux. Here we show that the cosmic photon flux component can now be scaled independently and combined with the terrestrial component to form the total photon flux at a user-specified elevation in MCNP6.« less

  20. Background-Source Cosmic-Photon Elevation Scaling and Cosmic-Neutron/Photon Date Scaling in MCNP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tutt, James Robert; Anderson, Casey Alan; McKinney, Gregg Walter

    Here, cosmic neutron and photon fluxes are known to scale exponentially with elevation. Consequently, cosmic neutron elevation scaling was implemented for use with the background-source option shortly after its introduction into MCNP6, whereby the neutron flux weight factor was adjusted by the elevation scaling factor when the user-specified elevation differed from the selected background.dat grid-point elevation. At the same time, an elevation scaling factor was suggested for the cosmic photon flux, however, cosmic photon elevation scaling is complicated by the fact that the photon background consists of two components: cosmic and terrestrial. Previous versions of the background.dat file did notmore » provide any way to separate these components. With Rel. 4 of this file in 2015, two new columns were added that provide the energy grid and differential cosmic photon flux separately from the total photon flux. Here we show that the cosmic photon flux component can now be scaled independently and combined with the terrestrial component to form the total photon flux at a user-specified elevation in MCNP6.« less

  1. DMR 'Map of the Early Universe.'

    NASA Technical Reports Server (NTRS)

    2002-01-01

    DMR 'Map of the Early Universe.' This false-color image shows tiny variations in the intensity of the cosmic microwave background measured in four years of observations by the Differential Microwave Radiometers on NASA's Cosmic Background Explorer (COBE). The cosmic microwave background is widely believed to be a remnant of the Big Bang; the blue and red spots correspond to regions of greater or lesser density in the early Universe. These 'fossilized' relics record the distribution of matter and energy in the early Universe before the matter became organized into stars and galaxies. While the initial discovery of variations in the intensity of the CMB (made by COBE in 1992) was based on a mathematical examination of the data, this picture of the sky from the full four-year mission gives an accurate visual impression of the data. The features traced in this map stretch across the visible Universe: the largest features seen by optical telescopes, such as the 'Great Wall' of galaxies, would fit neatly within the smallest feature in this map. (See Bennett et al. 1996, ApJ, 464, L1 and references therein for details.)

  2. Studies of the performance of the ATLAS detector using cosmic-ray muons

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2011-03-29

    Muons from cosmic-ray interactions in the atmosphere provide a high-statistics source of particles that can be used to study the performance and calibration of the ATLAS detector. Cosmic-ray muons can penetrate to the cavern and deposit energy in all detector subsystems. Such events have played an important role in the commissioning of the detector since the start of the installation phase in 2005 and were particularly important for understanding the detector performance in the time prior to the arrival of the first LHC beams. Global cosmic-ray runs were undertaken in both 2008 and 2009 and these data have been usedmore » through to the early phases of collision data-taking as a tool for calibration, alignment and detector monitoring. These large datasets have also been used for detector performance studies, including investigations that rely on the combined performance of different subsystems. This paper presents the results of performance studies related to combined tracking, lepton identification and the reconstruction of jets and missing transverse energy. Results are compared to expectations based on a cosmic-ray event generator and a full simulation of the detector response.« less

  3. The observable signature of late heating of the Universe during cosmic reionization.

    PubMed

    Fialkov, Anastasia; Barkana, Rennan; Visbal, Eli

    2014-02-13

    Models and simulations of the epoch of reionization predict that spectra of the 21-centimetre transition of atomic hydrogen will show a clear fluctuation peak, at a redshift and scale, respectively, that mark the central stage of reionization and the characteristic size of ionized bubbles. This is based on the assumption that the cosmic gas was heated by stellar remnants-particularly X-ray binaries-to temperatures well above the cosmic microwave background at that time (about 30 kelvin). Here we show instead that the hard spectra (that is, spectra with more high-energy photons than low-energy photons) of X-ray binaries make such heating ineffective, resulting in a delayed and spatially uniform heating that modifies the 21-centimetre signature of reionization. Rather than looking for a simple rise and fall of the large-scale fluctuations (peaking at several millikelvin), we must expect a more complex signal also featuring a distinct minimum (at less than a millikelvin) that marks the rise of the cosmic mean gas temperature above the microwave background. Observing this signal, possibly with radio telescopes in operation today, will demonstrate the presence of a cosmic background of hard X-rays at that early time.

  4. Studies of the performance of the ATLAS detector using cosmic-ray muons

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amelung, C.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, T.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Silva, J.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Dos Santos Pedrosa, F. Baltasar; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Barashkou, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C.; Begel, M.; Harpaz, S. Behar; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ami, S. Ben; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M. I.; Besson, N.; Bethke, S.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodet, E.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Calvet, D.; Camarri, P.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carron Montero, S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, S.; Chen, X.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chevallier, F.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coggeshall, J.; Cogneras, E.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Almenar, C. Cuenca; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Daly, C. H.; Dam, M.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A. R.; Dawson, I.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de Mora, L.; de Oliveira Branco, M.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Doan, T. K. O.; Dobos, D.; Dobson, E.; Dobson, M.; Doglioni, C.; Doherty, T.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dotti, A.; Dova, M. T.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Dris, M.; Dubbert, J.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Yildiz, H. Duran; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feligioni, L.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Martin, T. Fonseca; Fopma, J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; Navarro, J. E. García; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; Georgatos, F.; George, S.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Gomes, A.; Fajardo, L. S. Gomez; Gonçalo, R.; Gonella, L.; Gong, C.; González de La Hoz, S.; Silva, M. L. Gonzalez; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Eschrich, I. Gough; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Grishkevich, Y. V.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, T.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Correia, A. M. Henriques; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hernández Jiménez, Y.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Horazdovsky, T.; Horn, C.; Horner, S.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jež, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Belenguer, M. Jimenez; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jorge, P. M.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz, M.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kind, O.; King, B. T.; King, M.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostka, P.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kraus, J. K.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuze, M.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Lebedev, A.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Legendre, M.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lellouch, D.; Lellouch, J.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Leyton, M.; Li, H.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lilley, J. N.; Limosani, A.; Limper, M.; Lin, S. C.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Loureiro, K. F.; Lovas, L.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Miguens, J. Machado; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marroquim, F.; Marshall, Z.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, T. A.; Dit Latour, B. Martin; Martinez, M.; Outschoorn, V. Martinez; Martyniuk, A. C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S. J.; Mayne, A.; Mazini, R.; Mazur, M.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCubbin, N. A.; McFarlane, K. W.; McGlone, H.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Menke, S.; Meoni, E.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A. M.; Metcalfe, J.; Mete, A. S.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Misawa, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Moeller, V.; Mönig, K.; Möser, N.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R. W.; Herrera, C. Mora; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nožička, M.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olchevski, A. G.; Oliveira, M.; Damazio, D. Oliveira; Garcia, E. Oliver; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero Y Garzon, G.; Ottersbach, J. P.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th. D.; Park, S. J.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Codina, E. Perez; Pérez García-Estañ, M. T.; Reale, V. Perez; Perini, L.; Pernegger, H.; Perrino, R.; Persembe, S.; Perus, P.; Peshekhonov, V. D.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.-A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Pospelov, G. E.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Potter, K. P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Pribyl, L.; Price, D.; Price, L. E.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, W.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D. A.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Dos Santos, D. Roda; Rodriguez, D.; Garcia, Y. Rodriguez; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G. A.; Rosselet, L.; Rossetti, V.; Rossi, L. P.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A. F.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandhu, P.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strube, J.; Stugu, B.; Sturm, P.; Soh, D. A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tani, K.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Castanheira, M. Teixeira Dias; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Tennenbaum-Katan, Y. D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomson, E.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tuggle, J. M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vellidis, C.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Anh, T. Vu; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M. D.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Williams, E.; Williams, H. H.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wulf, E.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xu, D.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, O.; Ženiš, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Della Porta, G. Zevi; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.

    2011-03-01

    Muons from cosmic-ray interactions in the atmosphere provide a high-statistics source of particles that can be used to study the performance and calibration of the ATLAS detector. Cosmic-ray muons can penetrate to the cavern and deposit energy in all detector subsystems. Such events have played an important role in the commissioning of the detector since the start of the installation phase in 2005 and were particularly important for understanding the detector performance in the time prior to the arrival of the first LHC beams. Global cosmic-ray runs were undertaken in both 2008 and 2009 and these data have been used through to the early phases of collision data-taking as a tool for calibration, alignment and detector monitoring. These large datasets have also been used for detector performance studies, including investigations that rely on the combined performance of different subsystems. This paper presents the results of performance studies related to combined tracking, lepton identification and the reconstruction of jets and missing transverse energy. Results are compared to expectations based on a cosmic-ray event generator and a full simulation of the detector response.

  5. Deepening Cosmic Education

    ERIC Educational Resources Information Center

    Leonard, Gerard

    2013-01-01

    This article is a special blend of research, theory, and practice, with clear insight into the origins of Cosmic Education and cosmic task, while recalling memories of student explorations in botany, in particular, episodes from Mr. Leonard's teaching. Mr. Leonard speaks of a storytelling curriculum that eloquently puts perspective into dimensions…

  6. Cosmic Rays: "A Thin Rain of Charged Particles."

    ERIC Educational Resources Information Center

    Friedlander, Michael

    1990-01-01

    Discussed are balloons and electroscopes, understanding cosmic rays, cosmic ray paths, isotopes and cosmic-ray travel, sources of cosmic rays, and accelerating cosmic rays. Some of the history of the discovery and study of cosmic rays is presented. (CW)

  7. The microphysics and macrophysics of cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zweibel, Ellen G.

    2013-05-15

    This review paper commemorates a century of cosmic ray research, with emphasis on the plasma physics aspects. Cosmic rays comprise only ∼10{sup −9} of interstellar particles by number, but collectively their energy density is about equal to that of the thermal particles. They are confined by the Galactic magnetic field and well scattered by small scale magnetic fluctuations, which couple them to the local rest frame of the thermal fluid. Scattering isotropizes the cosmic rays and allows them to exchange momentum and energy with the background medium. I will review a theory for how the fluctuations which scatter the cosmicmore » rays can be generated by the cosmic rays themselves through a microinstability excited by their streaming. A quasilinear treatment of the cosmic ray–wave interaction then leads to a fluid model of cosmic rays with both advection and diffusion by the background medium and momentum and energy deposition by the cosmic rays. This fluid model admits cosmic ray modified shocks, large scale cosmic ray driven instabilities, cosmic ray heating of the thermal gas, and cosmic ray driven galactic winds. If the fluctuations were extrinsic turbulence driven by some other mechanism, the cosmic ray background coupling would be entirely different. Which picture holds depends largely on the nature of turbulence in the background medium.« less

  8. The COsmic-ray Soil Moisture Interaction Code (COSMIC) for use in data assimilation

    NASA Astrophysics Data System (ADS)

    Shuttleworth, J.; Rosolem, R.; Zreda, M.; Franz, T.

    2013-08-01

    Soil moisture status in land surface models (LSMs) can be updated by assimilating cosmic-ray neutron intensity measured in air above the surface. This requires a fast and accurate model to calculate the neutron intensity from the profiles of soil moisture modeled by the LSM. The existing Monte Carlo N-Particle eXtended (MCNPX) model is sufficiently accurate but too slow to be practical in the context of data assimilation. Consequently an alternative and efficient model is needed which can be calibrated accurately to reproduce the calculations made by MCNPX and used to substitute for MCNPX during data assimilation. This paper describes the construction and calibration of such a model, COsmic-ray Soil Moisture Interaction Code (COSMIC), which is simple, physically based and analytic, and which, because it runs at least 50 000 times faster than MCNPX, is appropriate in data assimilation applications. The model includes simple descriptions of (a) degradation of the incoming high-energy neutron flux with soil depth, (b) creation of fast neutrons at each depth in the soil, and (c) scattering of the resulting fast neutrons before they reach the soil surface, all of which processes may have parameterized dependency on the chemistry and moisture content of the soil. The site-to-site variability in the parameters used in COSMIC is explored for 42 sample sites in the COsmic-ray Soil Moisture Observing System (COSMOS), and the comparative performance of COSMIC relative to MCNPX when applied to represent interactions between cosmic-ray neutrons and moist soil is explored. At an example site in Arizona, fast-neutron counts calculated by COSMIC from the average soil moisture profile given by an independent network of point measurements in the COSMOS probe footprint are similar to the fast-neutron intensity measured by the COSMOS probe. It was demonstrated that, when used within a data assimilation framework to assimilate COSMOS probe counts into the Noah land surface model at the

  9. RESPONSE OF THE GREEK EARLY WARNING SYSTEM REUTER-STOKES IONIZATION CHAMBERS TO TERRESTRIAL AND COSMIC RADIATION EVALUATED IN COMPARISON WITH SPECTROSCOPIC DATA AND TIME SERIES ANALYSIS.

    PubMed

    Leontaris, F; Clouvas, A; Xanthos, S; Maltezos, A; Potiriadis, C; Kiriakopoulos, E; Guilhot, J

    2018-02-01

    The Telemetric Early Warning System Network of the Greek Atomic Energy Commission consists mainly of a network of 24 Reuter-Stokes high-pressure ionization chambers (HPIC) for gamma dose rate measurements and covers all Greece. In the present work, the response of the Reuter-Stokes HPIC to terrestrial and cosmic radiation was evaluated in comparison with spectroscopic data obtained by in situ gamma spectrometry measurements with portable hyper pure Germanium detectors (HPGe), near the Reuter-Stokes detectors and time series analysis. For the HPIC detectors, a conversion factor for the measured absorbed dose rate in air (in nGy h-1) to the total ambient dose equivalent rate Ḣ*(10), due to terrestrial and cosmic component, was deduced by the field measurements. Time series analysis of the mean monthly dose rate (measured by the Reuter-Stokes detector in Thessaloniki, northern Greece, from 2001 to 2016) was performed with advanced statistical methods (Fast Fourier Analysis and Zhao Atlas Marks Transform). Fourier analysis reveals several periodicities (periodogram). The periodogram of the absorbed dose rate in air values was compared with the periodogram of the values measured for the same period (2001-16) and in the same location with a NaI (Tl) detector which in principle is not sensitive to cosmic radiation. The obtained results are presented and discussed. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Chemical composition of cosmic rays with Z greater than or equal to 30 and E greater than or equal to 325 MeV/N

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Fernandez, J. I.; Israel, M. H.; Klarmann, J.; Maehl, R. C.; Mewaldt, R. A.

    1974-01-01

    Results are presented on the chemical composition of VVH cosmic rays from a series of six high-altitude balloon flights of a large-area, high-resolution electronic detector. The charge composition in the 32 less than or equal to Z less than or equal to 45 interval is found to be inconsistent with S-process nucleosynthesis. The energy spectrum of particles with Z greater than or equal to 32 between 600 and 1500 MeV/N at the top of the atmosphere is measured and is found to be consistent with the 25 less than or equal to Z less than or equal to 27 group within experimental error.

  11. Exploring the Excluded Galactic Cosmic Rays--those at the Lowest Energies.

    NASA Astrophysics Data System (ADS)

    Shapiro, Maurice M.

    2001-04-01

    The solar wind prevents the lowest- energy Galactic cosmic rays (GCR) from entering the heliosphere. Consequently, space probes have thus far been unable to sample them. We suggest that astrochemistry may provide a ``handle" on these particles. Clouds in the interstellar medium (ISM) are sites of chemical-reaction networks that produce various molecular species detectable by their radioastronomical signatures. Highly ionizing low-energy cosmic rays are thought to be the principal agents of molecule production in clouds. Some anomalous abundances, e.g., of deuterium molecules, have been detected. Could studies of the foregoing networks of reactions and their products yield clues to the fluxes and energy spectra of the lowest-energy GCR in the ISM? Other approaches to this problem are also cited.

  12. Hot atoms in cosmic chemistry.

    PubMed

    Rossler, K; Jung, H J; Nebeling, B

    1984-01-01

    High energy chemical reactions and atom molecule interactions might be important for cosmic chemistry with respect to the accelerated species in solar wind, cosmic rays, colliding gas and dust clouds and secondary knock-on particles in solids. "Hot" atoms with energies ranging from a few eV to some MeV can be generated via nuclear reactions and consequent recoil processes. The chemical fate of the radioactive atoms can be followed by radiochemical methods (radio GC or HPLC). Hot atom chemistry may serve for laboratory simulation of the reactions of energetic species with gaseous or solid interstellar matter. Due to the effective measurement of 10(8)-10(10) atoms only it covers a low to medium dose regime and may add to the studies of ion implantation which due to the optical methods applied are necessarily in the high dose regime. Experimental results are given for the systems: C/H2O (gas), C/H2O (solid, 77 K), N/CH4 (solid, 77K) and C/NH3 (solid, 77 K). Nuclear reactions used for the generation of 2 to 3 MeV atoms are: N(p,alpha) 11C, 16O(p,alpha pn) 11C and 12C(d,n) 13N with 8 to 45 MeV protons or deuterons from a cyclotron. Typical reactions products are: CO, CO2, CH4, CH2O, CH3OH, HCOOH, NH3, CH3NH2, cyanamide, formamidine, guanidine etc. Products of hot reactions in solids are more complex than in corresponding gaseous systems, which underlines the importance of solid state reactions for the build-up of precursors for biomolecules in space. As one of the major mechanisms for product formation, the simultaneous or fast consecutive reactions of a hot carbon with two target molecules (reaction complex) is discussed.

  13. Cosmic rays: a review for astrobiologists.

    PubMed

    Ferrari, Franco; Szuszkiewicz, Ewa

    2009-05-01

    Cosmic rays represent one of the most fascinating research themes in modern astronomy and physics. Significant progress is being made toward an understanding of the astrophysics of the sources of cosmic rays and the physics of interactions in the ultrahigh-energy range. This is possible because several new experiments in these areas have been initiated. Cosmic rays may hold answers to a great number of fundamental questions, but they also shape our natural habitat and influence the radiation environment of our planet Earth. The importance of the study of cosmic rays has been acknowledged in many fields, including space weather science and astrobiology. Here, we concentrate on the astrobiological aspects of cosmic rays with regard to the enormous amount of new data available, some of which may, in fact, improve our knowledge about the radiation of cosmic origin on Earth. We focus on fluxes arriving at Earth and doses received, and will guide the reader through the wealth of scientific literature on cosmic rays. We have prepared a concise and self-contained source of data and recipes useful for performing interdisciplinary research in cosmic rays and their effects on life on Earth.

  14. KCDC — The KASCADE Cosmic-ray Data Centre

    NASA Astrophysics Data System (ADS)

    Haungs, A.; Blumer, J.; Fuchs, B.; Kang, D.; Schoo, S.; Wochele, D.; Wochele, J.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K. H.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Zabierowski, J.

    2015-08-01

    KCDC, the ‘KASCADE Cosmic-ray Data Centre’, is a web portal, where data of astroparticle physics experiments will be made available for the interested public. The KASCADE experiment, financed by public money, was a large-area detector for the measurement of high-energy cosmic rays via the detection of air showers. KASCADE and its extension KASCADE-Grande stopped finally the active data acquisition of all its components including the radio EAS experiment LOPES end of 2012 after more than 20 years of data taking. In a first release, with KCDC we provide to the public the measured and reconstructed parameters of more than 160 million air showers. In addition, KCDC provides the conceptional design, how the data can be treated and processed so that they are also usable outside the community of experts in the research field. Detailed educational examples make a use also possible for high-school students and early stage researchers.

  15. The Cosmic Connection

    Science.gov Websites

    The Nuclear Science Division has produced a 25 minute video called The Cosmic Connection. The narrator and author is Tim Middleton, a teacher from Austin, Texas. This video describes cosmic rays and and Mount Diablo are shown. The video is suitable for grades 6 - 12. It can be found at http

  16. Studies of the cosmic ray spectrum and large scale anisotropies with the KASCADE-Grande experiment

    NASA Astrophysics Data System (ADS)

    Chiavassa, A.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Cossavella, F.; Curcio, C.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2014-08-01

    KASCADE-Grande is an air shower observatory devoted to the detection of cosmic rays in the 1016 - 1018eV energy range. For each event the arrival direction, the total number of charged particles (Nch) and the total number of muons (Nμ), at detection level (i.e. 110 m a.s.l.), are measured. The detection of these observarbles, with high accuracy, allows the study of the primary spectrum, chemical composition and large scale anisotropies, that are the relevant informations to investigate the astrophysics of cosmic rays in this energy range. These studies are of main importance to deeply investigate the change of slope of the primary spectrum detected at ~ 4 × 1015 eV, also known as the knee, and to search for the transition from galactic to extra-galactic cosmic rays.

  17. Single-Cell RNA-Seq Reveals Dynamic Early Embryonic-like Programs during Chemical Reprogramming.

    PubMed

    Zhao, Ting; Fu, Yao; Zhu, Jialiang; Liu, Yifang; Zhang, Qian; Yi, Zexuan; Chen, Shi; Jiao, Zhonggang; Xu, Xiaochan; Xu, Junquan; Duo, Shuguang; Bai, Yun; Tang, Chao; Li, Cheng; Deng, Hongkui

    2018-06-12

    Chemical reprogramming provides a powerful platform for exploring the molecular dynamics that lead to pluripotency. Although previous studies have uncovered an intermediate extraembryonic endoderm (XEN)-like state during this process, the molecular underpinnings of pluripotency acquisition remain largely undefined. Here, we profile 36,199 single-cell transcriptomes at multiple time points throughout a highly efficient chemical reprogramming system using RNA-sequencing and reconstruct their progression trajectories. Through identifying sequential molecular events, we reveal that the dynamic early embryonic-like programs are key aspects of successful reprogramming from XEN-like state to pluripotency, including the concomitant transcriptomic signatures of two-cell (2C) embryonic-like and early pluripotency programs and the epigenetic signature of notable genome-wide DNA demethylation. Moreover, via enhancing the 2C-like program by fine-tuning chemical treatment, the reprogramming process is remarkably accelerated. Collectively, our findings offer a high-resolution dissection of cell fate dynamics during chemical reprogramming and shed light on mechanistic insights into the nature of induced pluripotency. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. COSMIC program documentation experience

    NASA Technical Reports Server (NTRS)

    Kalar, M. C.

    1970-01-01

    A brief history of COSMIC as it relates to the handling of program documentation is summarized; the items that are essential for computer program documentation are also discussed. COSMIC documentation and program standards handbook is appended.

  19. Cosmic ray interactions in the ground: Temporal variations in cosmic ray intensities and geophysical studies

    NASA Technical Reports Server (NTRS)

    Lal, D.

    1986-01-01

    Temporal variations in cosmic ray intensity have been deduced from observations of products of interactions of cosmic ray particles in the Moon, meteorites, and the Earth. Of particular interest is a comparison between the information based on Earth and that based on other samples. Differences are expected at least due to: (1) differences in the extent of cosmic ray modulation, and (2) changes in the geomagnetic dipole field. Any information on the global changes in the terrestrial cosmic ray intensity is therefore of importance. In this paper a possible technique for detecting changes in cosmic ray intensity is presented. The method involves human intervention and is applicable for the past 10,000 yrs. Studies of changes over longer periods of time are possible if supplementary data on age and history of the sample are available using other methods. Also discussed are the possibilities of studying certain geophysical processes, e.g., erosion, weathering, tectonic events based on studies of certain cosmic ray-produced isotopes for the past several million years.

  20. Inconstant sun: how solar evolution has affected cosmic and ultraviolet radiation exposure over the history of life on Earth.

    PubMed

    Karam, P Andrew

    2003-03-01

    Four billion years ago, sea-level UV exposure was more than 400 times as intense as today, the dose from solar cosmic rays was five times present levels, and galactic cosmic rays accounted for only about 10% their current contribution to sea-level radiation doses. Exposure to cosmic radiation accounts for about 10% of natural background radiation exposure today and includes dose from galactic cosmic rays and solar charged particles. There is little exposure to ionizing wavelengths of UV due to absorption by ozone. The sun has evolved significantly over its life; in the past there were higher levels of particulate radiation and lower UV emissions from the sun, and a stronger solar wind reduced radiation dose in the inner solar system from galactic cosmic rays. Finally, since the early atmosphere contained little to no oxygen, surface levels of UV radiation were far higher in the past.

  1. Cosmic Dawn Science Interest Group

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.; Cosmic Origins Program Analysis Group

    2016-01-01

    Cosmic Dawn was identified as one of the three science objectives for this decade in the _New Worlds, New Horizons_ Decadal report, and it will likely continue to be a research focus well into the next decade. Cosmic Dawn refers to the interval during which the Universe transitioned from a nearly completely neutral state back to a nearly fully ionized state and includes the time during which the first stars formed and the first galaxies assembled.The Cosmic Dawn Science Interest Group (SIG) was formed recently under the auspices of the Cosmic Origins Program Analysis Group (COPAG). The Cosmic Dawn SIG focusses on the science cases, observations, and technology development needed to address the "great mystery" of Cosmic Origins. The reach of this SIG is broad, involving the nature of the first stars and the detectability of gamma-ray bursts at high redshifts, the extent to which the first galaxies and first supermassive black holes grew together, and the technology required to pursue these questions.For further information, consult the Cosmic Dawn SIG Web site http://cd-sig.jpl.nasa.gov/ and join the mailing list (by contacting the author).Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  2. Acoustic instability driven by cosmic-ray streaming

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.; Zweibel, Ellen G.

    1994-01-01

    We study the linear stability of compressional waves in a medium through which cosmic rays stream at the Alfven speed due to strong coupling with Alfven waves. Acoustic waves can be driven unstable by the cosmic-ray drift, provided that the streaming speed is sufficiently large compared to the thermal sound speed. Two effects can cause instability: (1) the heating of the thermal gas due to the damping of Alfven waves driven unstable by cosmic-ray streaming; and (2) phase shifts in the cosmic-ray pressure perturbation caused by the combination of cosmic-ray streaming and diffusion. The instability does not depend on the magnitude of the background cosmic-ray pressure gradient, and occurs whether or not cosmic-ray diffusion is important relative to streaming. When the cosmic-ray pressure is small compared to the gas pressure, or cosmic-ray diffusion is strong, the instability manifests itself as a weak overstability of slow magnetosonic waves. Larger cosmic-ray pressure gives rise to new hybrid modes, which can be strongly unstable in the limits of both weak and strong cosmic-ray diffusion and in the presence of thermal conduction. Parts of our analysis parallel earlier work by McKenzie & Webb (which were brought to our attention after this paper was accepted for publication), but our treatment of diffusive effects, thermal conduction, and nonlinearities represent significant extensions. Although the linear growth rate of instability is independent of the background cosmic-ray pressure gradient, the onset of nonlinear eff ects does depend on absolute value of DEL (vector differential operator) P(sub c). At the onset of nonlinearity the fractional amplitude of cosmic-ray pressure perturbations is delta P(sub C)/P(sub C) approximately (kL) (exp -1) much less than 1, where k is the wavenumber and L is the pressure scale height of the unperturbed cosmic rays. We speculate that the instability may lead to a mode of cosmic-ray transport in which plateaus of uniform cosmic

  3. Studies of the cosmic ray energy spectrum and chemical composition at 1016 - 1018 eV with the KASCADE-Grande experiment

    NASA Astrophysics Data System (ADS)

    KASCADE-Grande Collaboration; Cantoni, E.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blüumer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    The KASCADE-Grande experiment operates at Karlsruhe Institute of Technology (KIT) in Germany. It's aim is the study of the primary cosmic radiation, through Extensive Air Shower detection, in the range 1016 - 1018 eV. In this contribution, KASCADE-Grande recent results will be shown, especially drawing the attention on the measurement of the cosmic ray energy spectrum.

  4. COULD COSMIC RAYS AFFECT INSTABILITIES IN THE TRANSITION LAYER OF NONRELATIVISTIC COLLISIONLESS SHOCKS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroman, Thomas; Pohl, Martin; Niemiec, Jacek

    2012-02-10

    There is an observational correlation between astrophysical shocks and nonthermal particle distributions extending to high energies. As a first step toward investigating the possible feedback of these particles on the shock at the microscopic level, we perform particle-in-cell (PIC) simulations of a simplified environment consisting of uniform, interpenetrating plasmas, both with and without an additional population of cosmic rays. We vary the relative density of the counterstreaming plasmas, the strength of a homogeneous parallel magnetic field, and the energy density in cosmic rays. We compare the early development of the unstable spectrum for selected configurations without cosmic rays to themore » growth rates predicted from linear theory, for assurance that the system is well represented by the PIC technique. Within the parameter space explored, we do not detect an unambiguous signature of any cosmic-ray-induced effects on the microscopic instabilities that govern the formation of a shock. We demonstrate that an overly coarse distribution of energetic particles can artificially alter the statistical noise that produces the perturbative seeds of instabilities, and that such effects can be mitigated by increasing the density of computational particles.« less

  5. Cosmic ray transport in astrophysical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlickeiser, R.

    2015-09-15

    Since the development of satellite space technology about 50 years ago the solar heliosphere is explored almost routinely by several spacecrafts carrying detectors for measuring the properties of the interplanetary medium including energetic charged particles (cosmic rays), solar wind particle densities, and electromagnetic fields. In 2012, the Voyager 1 spacecraft has even left what could be described as the heliospheric modulation region, as indicated by the sudden disappearance of low energy heliospheric cosmic ray particles. With the available in-situ measurements of interplanetary turbulent electromagnetic fields and of the momentum spectra of different cosmic ray species in different interplanetary environments, themore » heliosphere is the best cosmic laboratory to test our understanding of the transport and acceleration of cosmic rays in space plasmas. I review both the historical development and the current state of various cosmic ray transport equations. Similarities and differences to transport theories for terrestrial fusion plasmas are highlighted. Any progress in cosmic ray transport requires a detailed understanding of the electromagnetic turbulence that is responsible for the scattering and acceleration of these particles.« less

  6. Cosmic Ray Experiments and the Implications for Indirect Detection of Dark Matter

    NASA Technical Reports Server (NTRS)

    Mitchell, John W.; Ormes, Jonathan F.; Streitmatter, Robert E.

    2013-01-01

    Detection of cosmic-ray antiprotons was first reported by Golden et al. in 1979 and their existence was firmly established by the BESS and IMAX collaborations in the early 1990s. Increasingly precise measurements of the antiproton spectrum, most recently from BESS-Polar and PAMELA, have made it an important tool for investigating cosmic-ray transport in the galaxy and heliosphere and for constraining dark-matter models. The history of antiproton measurements will be briefly reviewed. The current status will be discussed, focusing on the results of BESS-Polar II and their implications for the possibility of antiprotons from primordial black hole evaporation. The current results of the BESS-Polar II antihelium search are also presented.

  7. Indications of negative evolution for the sources of the highest energy cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Andrew M.; Ahlers, Markus; Hooper, Dan

    2015-09-14

    Using recent measurements of the spectrum and chemical composition of the highest energy cosmic rays, we consider the sources of these particles. We find that these data strongly prefer models in which the sources of the ultra-high-energy cosmic rays inject predominantly intermediate mass nuclei, with comparatively few protons or heavy nuclei, such as iron or silicon. If the number density of sources per comoving volume does not evolve with redshift, the injected spectrum must be very hard (α≃1) in order to fit the spectrum observed from Earth. Such a hard spectral index would be surprising and difficult to accommodate theoretically.more » In contrast, much softer spectral indices, consistent with the predictions of Fermi acceleration (α≃2), are favored in models with negative source evolution. Furthermore with this theoretical bias, these observations thus favor models in which the sources of the highest energy cosmic rays are preferentially located within the low-redshift universe.« less

  8. Cosmic Dust Collection Facility: Scientific objectives and programmatic relations

    NASA Technical Reports Server (NTRS)

    Hoerz, Fred (Editor); Brownlee, D. E.; Bunch, T. E.; Grounds, D.; Grun, E.; Rummel, Y.; Quaide, W. L.; Walker, R. M.

    1990-01-01

    The science objectives are summarized for the Cosmic Dust Collection Facility (CDCF) on Space Station Freedom and these objectives are related to ongoing science programs and mission planning within NASA. The purpose is to illustrate the potential of the CDCF project within the broad context of early solar system sciences that emphasize the study of primitive objects in state-of-the-art analytical and experimental laboratories on Earth. Current knowledge about the sources of cosmic dust and their associated orbital dynamics is examined, and the results are reviewed of modern microanalytical investigations of extraterrestrial dust particles collected on Earth. Major areas of scientific inquiry and uncertainty are identified and it is shown how CDCF will contribute to their solution. General facility and instrument concepts that need to be pursued are introduced, and the major development tasks that are needed to attain the scientific objectives of the CDCF project are identified.

  9. Cosmic Rays at Earth

    NASA Astrophysics Data System (ADS)

    Grieder, P. K. F.

    In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery. Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological

  10. Fitting cosmic microwave background data with cosmic strings and inflation.

    PubMed

    Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Urrestilla, Jon

    2008-01-18

    We perform a multiparameter likelihood analysis to compare measurements of the cosmic microwave background (CMB) power spectra with predictions from models involving cosmic strings. Adding strings to the standard case of a primordial spectrum with power-law tilt ns, we find a 2sigma detection of strings: f10=0.11+/-0.05, where f10 is the fractional contribution made by strings in the temperature power spectrum (at l=10). CMB data give moderate preference to the model ns=1 with cosmic strings over the standard zero-strings model with variable tilt. When additional non-CMB data are incorporated, the two models become on a par. With variable ns and these extra data, we find that f10<0.11, which corresponds to Gmicro<0.7x10(-6) (where micro is the string tension and G is the gravitational constant).

  11. Cosmic superstrings: Observable remnants of brane inflation

    NASA Astrophysics Data System (ADS)

    Wyman, Mark Charles

    Brane inflation provides a natural dynamical model for the physics which underlie the inflationary paradigm. Besides their inflationary predictions, brane models imply another observable consequence: cosmic strings. In this dissertation I outline the background of how cosmic strings arise in brane inflationary models and how the properties of the strings and the models are mutually tied (Chapter 2). I then use cosmological observations to put limits on the properties of any actually-existing cosmic string network (Chapter 3). Next, I study the question of how cosmic superstrings, as the cosmic strings arising from string theory are known, could be distinct from classical gauge- theory cosmic strings. In particular, I propose an analytical model for the cosmological evolution of a network of binding cosmic strings (Chapter 4); I also describe the distinctive gravitational lensing phenomena that are caused by binding strings (Chapter 5). Finally, I lay out the background for the numerical study of a gauge theory model for the dynamics of cosmic superstring binding (Chapter 6).

  12. COBE - New sky maps of the early universe

    NASA Technical Reports Server (NTRS)

    Smoot, G. F.

    1991-01-01

    This paper presents early results obtained from the first six months of measurements of the cosmic microwave background (CMB) by instruments aboard NASA's Cosmic Background Explorer (COBE) satellite and discusses the implications for cosmology. The three instruments: FIRAS, DMR, and DIRBE have operated well and produced significant new results. The FIRAS measurement of the CMB spectrum supports the standard big bang nucleosynthesis model. The maps made from the DMR instrument measurements show a surprisingly smooth early universe. The measurements are sufficiently precise that we must pay careful attention to potential systematic errors. The maps of galactic and local emission produced by the DIRBE instrument will be needed to identify foregrounds from extragalactic emission and thus to interpret the terms of events in the early universe.

  13. Impact of Cosmic-Ray Transport on Galactic Winds

    NASA Astrophysics Data System (ADS)

    Farber, R.; Ruszkowski, M.; Yang, H.-Y. K.; Zweibel, E. G.

    2018-04-01

    The role of cosmic rays generated by supernovae and young stars has very recently begun to receive significant attention in studies of galaxy formation and evolution due to the realization that cosmic rays can efficiently accelerate galactic winds. Microscopic cosmic-ray transport processes are fundamental for determining the efficiency of cosmic-ray wind driving. Previous studies modeled cosmic-ray transport either via a constant diffusion coefficient or via streaming proportional to the Alfvén speed. However, in predominantly cold, neutral gas, cosmic rays can propagate faster than in the ionized medium, and the effective transport can be substantially larger; i.e., cosmic rays can decouple from the gas. We perform three-dimensional magnetohydrodynamical simulations of patches of galactic disks including the effects of cosmic rays. Our simulations include the decoupling of cosmic rays in the cold, neutral interstellar medium. We find that, compared to the ordinary diffusive cosmic-ray transport case, accounting for the decoupling leads to significantly different wind properties, such as the gas density and temperature, significantly broader spatial distribution of cosmic rays, and higher wind speed. These results have implications for X-ray, γ-ray, and radio emission, and for the magnetization and pollution of the circumgalactic medium by cosmic rays.

  14. Cosmic Topology

    NASA Astrophysics Data System (ADS)

    Luminet, Jean-Pierre

    2015-08-01

    Cosmic Topology is the name given to the study of the overall shape of the universe, which involves both global topological features and more local geometrical properties such as curvature. Whether space is finite or infinite, simply-connected or multi-connected like a torus, smaller or greater than the portion of the universe that we can directly observe, are questions that refer to topology rather than curvature. A striking feature of some relativistic, multi-connected "small" universe models is to create multiples images of faraway cosmic sources. While the most recent cosmological data fit the simplest model of a zero-curvature, infinite space model, they are also consistent with compact topologies of the three homogeneous and isotropic geometries of constant curvature, such as, for instance, the spherical Poincaré Dodecahedral Space, the flat hypertorus or the hyperbolic Picard horn. After a "dark age" period, the field of Cosmic Topology has recently become one of the major concerns in cosmology, not only for theorists but also for observational astronomers, leaving open a number of unsolved issues.

  15. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Prince, Thomas A.

    1992-01-01

    Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen.

  16. Maria Montessori's Cosmic Vision, Cosmic Plan, and Cosmic Education

    ERIC Educational Resources Information Center

    Grazzini, Camillo

    2013-01-01

    This classic position of the breadth of Cosmic Education begins with a way of seeing the human's interaction with the world, continues on to the grandeur in scale of time and space of that vision, then brings the interdependency of life where each growing human becomes a participating adult. Mr. Grazzini confronts the laws of human nature in…

  17. Separation of gravitational-wave and cosmic-shear contributions to cosmic microwave background polarization.

    PubMed

    Kesden, Michael; Cooray, Asantha; Kamionkowski, Marc

    2002-07-01

    Inflationary gravitational waves (GW) contribute to the curl component in the polarization of the cosmic microwave background (CMB). Cosmic shear--gravitational lensing of the CMB--converts a fraction of the dominant gradient polarization to the curl component. Higher-order correlations can be used to map the cosmic shear and subtract this contribution to the curl. Arcminute resolution will be required to pursue GW amplitudes smaller than those accessible by the Planck surveyor mission. The blurring by lensing of small-scale CMB power leads with this reconstruction technique to a minimum detectable GW amplitude corresponding to an inflation energy near 10(15) GeV.

  18. The Parker Instability with Cosmic-Ray Streaming

    NASA Astrophysics Data System (ADS)

    Heintz, Evan; Zweibel, Ellen G.

    2018-06-01

    Recent studies have found that cosmic-ray transport plays an important role in feedback processes such as star formation and the launching of galactic winds. Although cosmic-ray buoyancy is widely held to be a destabilizing force in galactic disks, the effect of cosmic-ray transport on the stability of stratified systems has yet to be analyzed. We perform a stability analysis of a stratified layer for three different cosmic-ray transport models: decoupled (Classic Parker), coupled with γ c = 4/3 but not streaming (Modified Parker), and finally coupled with streaming at the Alfvén speed. When the compressibility of the cosmic rays is decreased the system becomes much more stable, but the addition of cosmic-ray streaming to the Parker instability severely destabilizes it. Through comparison of these three cases and analysis of the work contributions for the perturbed quantities of each system, we demonstrate that cosmic-ray heating of the gas is responsible for the destabilization of the system. We find that a 3D system is unstable over a larger range of wavelengths than the 2D system. Therefore, the Parker instability with cosmic-ray streaming may play an important role in cosmic-ray feedback.

  19. The cosmic Era and the Earth

    NASA Astrophysics Data System (ADS)

    Closca-Grigore, Carmen

    THe book describes the main directions of development of cosmic research in the USA, USSR, Europe, Japan and China. The main inventors and creators of cosmic technics are designed : Tsiolkovskii, Tsander, Korolev, Oberth, Verner von Braun, Goddard and the most important cosmic flies by Sputnik, Gagarin, Tereshkova, Leonov, Armstrong. The main program of cosmic research are outlined in such areas as maps, geological research, meteorolgy, television, radio and military. The Romanian contributions are described: Ioan Vitez, Konrad Haas, Traian Vuia, Aurel Vlaicu, Hermann Oberth and Dumnitru Prunariu.

  20. Cosmic Deuterium and Social Networking Software

    NASA Astrophysics Data System (ADS)

    Pasachoff, J. M.; Suer, T.-A.; Lubowich, D. A.; Glaisyer, T.

    2006-08-01

    For the education of newcomers to a scientific field and for the convenience of students and workers in the field, it is helpful to have all the basic scientific papers gathered. For the study of deuterium in the Universe, in 2004-5 we set up http://www.cosmicdeuterium.info with clickable links to all the historic and basic papers in the field and to many of the current papers. Cosmic deuterium is especially important because all deuterium in the Universe was formed in the epoch of nucleosynthesis in the first 1000 seconds after the Big Bang, so study of its relative abundance (D:H~1:100,000) gives us information about those first minutes of the Universe's life. Thus the understanding of cosmic deuterium is one of the pillars of modern cosmology, joining the cosmic expansion, the 3 degree cosmic background radiation, and the ripples in that background radiation. Studies of deuterium are also important for understanding Galactic chemical evolution, astrochemistry, interstellar processes, and planetary formation. Some papers had to be scanned while others are available at the Astrophysical Data System, adswww.harvard.edu, or to publishers' Websites. By 2006, social networking software (http:tinyurl.com/ zx5hk) had advanced with popular sites like facebook.com and MySpace.com; the Astrophysical Data System had even set up MyADS. Social tagging software sites like http://del.icio.us have made it easy to share sets of links to papers already available online. We have set up http://del.icio.us/deuterium to provide links to many of the papers on cosmicdeuterium.info, furthering previous del.icio.us work on /eclipses and /plutocharon. It is easy for the site owner to add links to a del.icio.us site; it takes merely clicking on a button on the browser screen once the site is opened and the desired link is viewed in a browser. Categorizing different topics by keywords allows subsets to be easily displayed. The opportunity to expose knowledge and build an ecosystem of web

  1. Cosmic ray topography

    NASA Astrophysics Data System (ADS)

    Bressler, Matthew; Goodwin, Lydia; Kryemadhi, Abaz

    2017-11-01

    Cosmic ray muons are produced when high energy particles interact with nuclei in Earth's atmosphere. Muons make up the majority of charged particles that reach sea level and are the only particles (apart from neutrinos) that can penetrate to significant depths underground. The muon flux underground decreases approximately exponentially as a function of depth. We use a cosmic ray detector developed by the QuarkNet Program at Fermi National Laboratory to map the topography of the mountain above an abandoned Pennsylvania Turnpike tunnel by analyzing muon flux at different rock overburdens. Cosmic ray muons have been used in this capacity before to search for hidden chambers in pyramids and for mapping volcanoes. This study provides a unique field experience to learn about particle physics and particle detectors, which could be of interest to students and teachers in physics.

  2. Challenges to studying the health effects of early life environmental chemical exposures on children's health.

    PubMed

    Braun, Joseph M; Gray, Kimberly

    2017-12-01

    Epidemiological studies play an important role in quantifying how early life environmental chemical exposures influence the risk of childhood diseases. These studies face at least four major challenges that can produce noise when trying to identify signals of associations between chemical exposure and childhood health. Challenges include accurately estimating chemical exposure, confounding from causes of both exposure and disease, identifying periods of heightened vulnerability to chemical exposures, and determining the effects of chemical mixtures. We provide recommendations that will aid in identifying these signals with more precision.

  3. In Search of Cosmic Rays: A Student Physics Project Aimed at Finding the Origin of Cosmic Rays.

    ERIC Educational Resources Information Center

    Antonelli, Jamie; Mahoney, Sean; Streich, Derek; Liebl, Michael

    2001-01-01

    Describes an ongoing project, the Cosmic Ray Observatory Project (CROP), being conducted by the University of Nebraska in partnership with several high schools. Each school group has installed cosmic ray detectors, and initial activities have included calibrating equipment, gathering preliminary data, and learning about cosmic ray showers. Aims to…

  4. Galactic cosmic ray composition and energy spectra

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1994-01-01

    Galactic cosmic ray nuclei represent a significant risk to long-duration spaceflight outside the magnetosphere. We review briefly existing measurements of the composition and energy spectra of heavy cosmic ray nuclei, pointing out which species and energy ranges are most critical to assessing cosmic ray risks for spaceflight. Key data sets are identified and a table of cosmic ray abundances is presented for elements from H to Ni (Z = 1 to 28). Because of the 22-year nature of the solar modulation cycle, data from the approaching 1998 solar minimum is especially important to reducing uncertainties in the cosmic ray radiation hazard. It is recommended that efforts to model this hazard take advantage of approaches that have been developed to model the astrophysical aspects of cosmic rays.

  5. Cosmic strings and galaxy formation

    NASA Technical Reports Server (NTRS)

    Bertschinger, Edmund

    1989-01-01

    The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.

  6. β+ decay and cosmic-ray half-life of 91Nb

    NASA Astrophysics Data System (ADS)

    Hindi, M. M.; Sur, Bhaskar; Wedding, Kristin L.; Bardayan, D. W.; Czerwinski, K. R.; da Cruz, M. T. F.; Hoffman, D. C.; Larimer, R.-M.; Lesko, K. T.; Norman, Eric B.

    1993-06-01

    In the laboratory, 91Nb decays by electron capture with a 680-yr half-life. However, as a high energy cosmic ray, it would be stripped of its atomic electrons and would be able to undergo only β+ decay. We produced and chemically purified a sample of 91Nb and observed its decay with an array of Ge and NaI detectors. By following the β+ annihilation radiation, we were able to determine the β+ branching ratios of both the 105-keV, 61-d isomer and the ground state of 91Nb. The ground-state branch is (7.7+/-0.8)×10-3% leading to a β+ partial half-like of (8.8+/-1.9)×106 yr. Such a value of the half-life makes 91Nb a good candidate for determining the confinement time of this secondary component of the cosmic rays.

  7. The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations

    PubMed Central

    Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien

    2018-01-01

    For over 20 years, the term ‘cosmic web’ has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile ‘spiderwebs’ is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos. PMID:29765637

  8. The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations.

    PubMed

    Neyrinck, Mark C; Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien

    2018-04-01

    For over 20 years, the term 'cosmic web' has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile 'spiderwebs' is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos.

  9. The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations

    NASA Astrophysics Data System (ADS)

    Neyrinck, Mark C.; Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien

    2018-04-01

    For over 20 years, the term `cosmic web' has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile `spiderwebs' is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos.

  10. Satellite Constellations for Space Weather and Ionospheric Studies: Overview of the COSMIC and COSMIC-2 Missions

    NASA Astrophysics Data System (ADS)

    Schreiner, W. S.; Pedatella, N. M.; Weiss, J.

    2016-12-01

    Measurements from constellations of low Earth orbiting (LEO) satellites are proving highly useful for ionospheric science and space weather studies. The Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC), a joint US/Taiwan mission launched in April 2006, is a six micro-satellite constellation carrying Global Positioning System (GPS) radio occultation (RO) receivers. COSMIC has collected a large amount of useful data from these scientific payloads and is still currently collecting up to 1,000 RO measurement events per day on average. The GPS RO dual-frequency L-band phase and amplitude measurements can be used to observe absolute Total Electron Content (TEC) and scintillation on lines of sight between the LEO and GPS satellites, and electron density profiles via the RO method. The large number and complete global and local time coverage of COSMIC data are allowing scientists to observe ionospheric and plasmaspheric phenomena that are difficult to see with other instruments. The success of COSMIC has prompted U.S. agencies and Taiwan to execute a COSMIC follow-on mission (called COSMIC-2) that will put twelve satellites with GNSS (Global Navigation Satellite System) RO payloads into orbit on two launches in the 2017-20 time frame. The first launch in 2017 will place six satellites in a 520-km altitude 24 deg inclination orbit, which is ideal for low latitude ionospheric research and space weather forecasting. The planned second launch (not currently funded) places six additional satellites in a 750 km 72 deg inclination orbit to provide global coverage and increased sampling density. COSMIC-2 will make use of an advanced radio occultation receiver with an innovative beam-forming antenna design, and is expected to produce at least 10,000 high-quality atmospheric and ionospheric profiles per day from GPS and GLONASS signals to support operational weather prediction, climate monitoring, and space weather forecasting. Each COSMIC-2 spacecraft

  11. Models of Cosmic-Ray Origin

    NASA Astrophysics Data System (ADS)

    Shapiro, M. M.

    2001-08-01

    Two models of cosmic-ray genesis are compared: (a) the author s red-dwarf hypothesis requiring the injection of seed particles from coronal mass ejections (CME) prior to shock acceleration, and (b) the direct acceleration of thermal ions and of grains in the ISM, proposed by Meyer, Drury and Ellison. Both models agree that shocks in the expanding envelopes of supernova remnants are principally responsible for acceleration to cosmic-ray energies. Both are designed to overcome the mismatch between the source composition of the Galactic cosmic rays (GCR) and the composition of the thermal ISM gas. Model (a) utilizes the prolific emissions of energetic particles from active dMe and dKe stars via their CME as the agents of seed-particle injection into the ISM. The composition of these seed particles is governed by the FIP (first-ionization potential) selection mechanism that operates for both Galactic cosmic rays and solar energetic particles. Hence it is consistent with the cosmic-ray source composition. Model (b) relies on the sputtering and acceleration of grains in the ISM (along with acceleration of thermal ions) to provide the known source composition. This model considers the FIP ordering of GCR abundances as purely coincidental, and it attributes the relative source abundances to selection according to volatility. Recent cosmic-ray observations in favor of each model are cited.

  12. Spaced-based Cosmic Ray Astrophysics

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2016-03-01

    The bulk of cosmic ray data has been obtained with great success by balloon-borne instruments, particularly with NASA's long duration flights over Antarctica. More recently, PAMELA on a Russian Satellite and AMS-02 on the International Space Station (ISS) started providing exciting measurements of particles and anti-particles with unprecedented precision upto TeV energies. In order to address open questions in cosmic ray astrophysics, future missions require spaceflight exposures for rare species, such as isotopes, ultra-heavy elements, and high (the ``knee'' and above) energies. Isotopic composition measurements up to about 10 GeV/nucleon that are critical for understanding interstellar propagation and origin of the elements are still to be accomplished. The cosmic ray composition in the knee (PeV) region holds a key to understanding the origin of cosmic rays. Just last year, the JAXA-led CALET ISS mission, and the DAMPE Chinese Satellite were launched. NASA's ISS-CREAM completed its final verification at GSFC, and was delivered to KSC to await launch on SpaceX. In addition, a EUSO-like mission for ultrahigh energy cosmic rays and an HNX-like mission for ultraheavy nuclei could accomplish a vision for a cosmic ray observatory in space. Strong support of NASA's Explorer Program category of payloads would be needed for completion of these missions over the next decade.

  13. Ralph A. Alpher, Robert C. Herman, and the Cosmic Microwave Background Radiation

    NASA Astrophysics Data System (ADS)

    Alpher, Victor S.

    2012-09-01

    Much of the literature on the history of the prediction and discovery of the Cosmic Microwave Background Radiation (CMBR) is incorrect in some respects. I focus on the early history of the CMBR, from its prediction in 1948 to its measurement in 1964, basing my discussion on the published literature, the private papers of Ralph A. Alpher, and interviews with several of the major figures involved in the prediction and measurement of the CMBR. I show that the early prediction of the CMBR continues to be widely misunderstood.

  14. A large area cosmic muon detector located at Ohya stone mine

    NASA Technical Reports Server (NTRS)

    Nii, N.; Mizutani, K.; Aoki, T.; Kitamura, T.; Mitsui, K.; Matsuno, S.; Muraki, Y.; Ohashi, Y.; Okada, A.; Kamiya, Y.

    1985-01-01

    The chemical composition of the primary cosmic rays between 10 to the 15th power eV and 10 to the 18th power eV were determined by a Large Area Cosmic Muon Detector located at Ohya stone mine. The experimental aims of Ohya project are; (1) search for the ultra high-energy gamma-rays; (2) search for the GUT monopole created by Big Bang; and (3) search for the muon bundle. A large number of muon chambers were installed at the shallow underground near Nikko (approx. 100 Km north of Tokyo, situated at Ohya-town, Utsunomiya-city). At the surface of the mine, very fast 100 channel scintillation counters were equipped in order to measure the direction of air showers. These air shower arrays were operated at the same time, together with the underground muon chamber.

  15. Astronomical Odds: A Policy Framework for the Cosmic Impact Hazard

    DTIC Science & Technology

    2004-06-01

    171. 52 An early example of an expost approach to NEO interceptor design is Project Icarus, a study effort that recommended a Saturn-V class system...68 vii viii Astronomical Odds: A Policy Framework for the Cosmic Impact Hazard 3.2. "Giggle factor" within USAF study report...the access to the NEO SDT Study model provided by MIT Lincoln Laboratory, with special thanks to Grant Stokes and Jenifer Evans. I am grateful for

  16. The BESS Search for Cosmic-Ray Antiproton Origins and for Cosmological Antimatter

    NASA Technical Reports Server (NTRS)

    Mitchell, John; Yamamoto, Akira

    2009-01-01

    The apex of the Balloon-borne Experiment with a Superconducting Spectrometer (BESS) program was reached with the Antarctic flight of BESS-Polar II, during the 2007-2008 Austral Summer, that obtained 24.5 days of data on over 4.7 billion cosmic-ray events. The US-Japan BESS Collaboration uses elementary particle measurements to study the early Universe and provides fundamental data on the spectra of light cosmic-ray elements and isotopes. BESS measures the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic sources, such as dark-matter candidates, and searches for heavier antinuclei that might reach Earth from antimatter domains formed during symmetry breaking processes in the early Universe. Since 1993, BESS has carried out eleven high-latitude balloon flights, two of long duration, that together have defined the study of antiprotons below about 4 GeV, provided standard references for light element and isotope spectra, and set the most sensitive limits on the existence of antideuterons and antihelium. The BESS-Polar II flight took place at Solar Minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. The rich BESS-Polar II dataset more than doubles the combined data from all earlier BESS flights and has 10-20 times the statistics of BESS data from the previous Solar Minimum. Here, we summarize the scientific results of BESS program, focusing on the results obtained using data from the long-duration flights of BESS-Polar I (2004) and BESS-Polar II.

  17. Measurement of cosmic-ray muons with the Distributed Electronic Cosmic-ray Observatory, a network of smartphones

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, J.; BenZvi, S.; Bravo, S.; Jensen, K.; Karn, P.; Meehan, M.; Peacock, J.; Plewa, M.; Ruggles, T.; Santander, M.; Schultz, D.; Simons, A. L.; Tosi, D.

    2016-04-01

    Solid-state camera image sensors can be used to detect ionizing radiation in addition to optical photons. We describe the Distributed Electronic Cosmic-ray Observatory (DECO), an app and associated public database that enables a network of consumer devices to detect cosmic rays and other ionizing radiation. In addition to terrestrial background radiation, cosmic-ray muon candidate events are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of candidate muon events detected by DECO to measure the thickness of the depletion region of the camera image sensor in a particular consumer smartphone model, the HTC Wildfire S. The track length distribution is fit better by a cosmic-ray muon angular distribution than an isotropic distribution, demonstrating that DECO can detect and identify cosmic-ray muons despite a background of other particle detections. Using the cosmic-ray distribution, we measure the depletion thickness to be 26.3 ± 1.4 μm. With additional data, the same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with a determination of the incident azimuthal angle directly from the track orientation in the sensor plane, this enables direction reconstruction of individual cosmic-ray events using a single consumer device. The results simultaneously validate the use of cell phone camera image sensors as cosmic-ray muon detectors and provide a measurement of a parameter of camera image sensor performance which is not otherwise publicly available.

  18. Cosmological constraint on the light gravitino mass from CMB lensing and cosmic shear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osato, Ken; Yoshida, Naoki; Sekiguchi, Toyokazu

    2016-06-01

    Light gravitinos of mass ∼< O (10) eV are of particular interest in cosmology, offering various baryogenesis scenarios without suffering from the cosmological gravitino problem. The gravitino may contribute considerably to the total matter content of the Universe and affect structure formation from early to present epochs. After the gravitinos decouple from other particles in the early Universe, they free-stream and consequently suppress density fluctuations of (sub-)galactic length scales. Observations of structure at the relevant length-scales can be used to infer or constrain the mass and the abundance of light gravitinos. We derive constraints on the light gravitino mass usingmore » the data of cosmic microwave background (CMB) lensing from Planck and of cosmic shear from the Canada France Hawaii Lensing Survey survey, combined with analyses of the primary CMB anisotropies and the signature of baryon acoustic oscillations in galaxy distributions. The obtained constraint on the gravitino mass is m {sub 3/2} < 4.7 eV (95 % C.L.), which is substantially tighter than the previous constraint from clustering analysis of Ly-α forests.« less

  19. Cosmic Education: The Child's Discovery of a Global Vision and a Cosmic Task

    ERIC Educational Resources Information Center

    Stephenson, Susan Mayclin

    2015-01-01

    Susan Mayclin Stephenson tackles a large subject, Cosmic Education, which Montessori defined as a "unifying global and universal view[s] of the past, present and future." Stephenson takes the reader from birth to the end of the elementary age with examples of how the child grows into an understanding of Cosmic Education through their…

  20. Cosmic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, J.; Martínez González, M. J.

    2018-05-01

    Magnetic fields play an important role in many astrophysical processes. They are difficult to detect and characterize since often their properties have to be inferred through interpreting the polarization of the light. Magnetic fields are also challenging to model and understand. Magnetized plasmas behave following highly non-linear differential equations having no general solution, so that every astrophysical problem represents a special case to be studied independently. Hence, magnetic fields are often an inconvenient subject which is overlooked or simply neglected (the elephant in the room, as they are dubbed in poster of the school). Such difficulty burdens the research on magnetic fields, which has evolved to become a very technical subject, with many small disconnected communities studying specific aspects and details. The school tried to amend the situation by providing a unifying view of the subject. The students had a chance to understand the behavior of magnetic fields in all astrophysical contexts, from cosmology to the Sun, and from starbursts to AGNs. The school was planed to present a balanced yet complete review of our knowledge, with excursions into the unknown to point out present and future lines of research. The subject of Cosmic Magnetic Fields was split into seven different topics: cosmic magnetic field essentials, solar magnetic fields, stellar magnetic fields, the role of magnetic fields on AGN feedback, magnetic fields in galaxies, magnetic fields in galaxy clusters and at larger scales, and primordial magnetic fields and magnetic fields in the early Universe. The corresponding lectures were delivered by seven well known and experienced scientists that have played key roles in the major advances of the field during the last years: F. Cattaneo, P. Judge, O. Kochukhov, R. Keppens, R. Beck, K. Dolag, and F. Finelli. Their lectures were recorded and are freely available at the IAC website: http://iactalks.iac.es/talks/serie/19.

  1. Multi-spectra Cosmic Ray Flux Measurement

    NASA Astrophysics Data System (ADS)

    He, Xiaochun; Dayananda, Mathes

    2010-02-01

    The Earth's upper atmosphere is constantly bombarded by rain of charged particles known as primary cosmic rays. These primary cosmic rays will collide with the atmospheric molecules and create extensive secondary particles which shower downward to the surface of the Earth. In recent years, a few studies have been done regarding to the applications of the cosmic ray measurements and the correlations between the Earth's climate conditions and the cosmic ray fluxes [1,2,3]. Most of the particles, which reach to the surface of the Earth, are muons together with a small percentage of electrons, gammas, neutrons, etc. At Georgia State University, multiple cosmic ray particle detectors have been constructed to measure the fluxes and energy distributions of the secondary cosmic ray particles. In this presentation, we will briefly describe these prototype detectors and show the preliminary test results. Reference: [1] K.Borozdin, G.Hogan, C.Morris, W.Priedhorsky, A.Saunders, L.Shultz, M.Teasdale, Nature, Vol.422, 277 (2003). [2] L.V. Egorova, V. Ya Vovk, O.A. Troshichev, Journal of Atmospheric and Terrestrial Physics 62, 955-966 (2000). [3] Henrik Svensmark, Phy. Rev. Lett. 81, 5027 (1998). )

  2. Cosmic rays in the heliosphere

    NASA Technical Reports Server (NTRS)

    Webber, William R.

    1987-01-01

    The different types of cosmic ray particles and their role in the heliosphere are briefly described. The rates of various energetic particles were examined as a function of time and used to derive various differential energy gradients. The Pioneer and Voyager cosmic ray observations throughout the heliosphere are indeed giving a perspective on the three-dimensional character and size of the heliosphere. Most clearly the observations are emphasizing the role that transient variations in the outer heliosphere, and most likely the heliospheric boundary shock, play in the 11 year solar cycle modulation of cosmic rays.

  3. Detection of Apoptosis in Early Life Stages as a Tool to Evaluate Chemical Control of Invasive Species

    DTIC Science & Technology

    2007-08-01

    ERDC/TN ANSRP-07-2 August 2007 Detection of Apoptosis in Early Life Stages as a Tool to Evaluate Chemical Control of Invasive Species by J...4. TITLE AND SUBTITLE Detection of Apoptosis in Early Life Stages as a Tool to Evaluate Chemical Control of Invasive Species 5a. CONTRACT NUMBER 5b...heralding apoptosis . Data analysis. An apoptotic index (API) was established by calculating the percentage of embryos in each life stage with

  4. Reanalysis of porous chondritic cosmic dust particles

    NASA Astrophysics Data System (ADS)

    Kapisinsky, I.; Figusch, V.; Ivan, J.; Izdinsky, K.; Zemankova, M.

    2001-10-01

    The particles reanalysed in this study were obtained from the NASA Johnson Space Center (JSC) Cosmic Dust Collection. The reanalysis of the particle L2008 P9 indicates typical assemblage of olivine - pyroxene. This sample can be classified as a chondritic porous IDP with the metallic phase grain containing essential amount of nickel and copper (the latter element is most probably due to instrumental artefact). The chemical composition of the particle L2011 S5 corresponds mostly to an assemblage of pyroxene phase - (Mg,Fe,Ni)SiO_3 roughly 75 wt.% and a sulphide phase - probably pyrrhotite (Fe,Ni)S about 25 wt.%.

  5. Formation of large-scale structure from cosmic strings and massive neutrinos

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Melott, Adrian L.; Bertschinger, Edmund

    1989-01-01

    Numerical simulations of large-scale structure formation from cosmic strings and massive neutrinos are described. The linear power spectrum in this model resembles the cold-dark-matter power spectrum. Galaxy formation begins early, and the final distribution consists of isolated density peaks embedded in a smooth background, leading to a natural bias in the distribution of luminous matter. The distribution of clustered matter has a filamentary appearance with large voids.

  6. Measurements of the global 21-cm signal from the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Bernardi, Gianni

    2018-05-01

    The sky-averaged (global) 21-cm signal is a very promising probe of the Cosmic Dawn, when the first luminous sources were formed and started to shine in a substantially neutral intergalactic medium. I here report on the status and early result of the Large-Aperture Experiment to Detect the Dark Age that focuses on observations of the global 21-cm signal in the 16 <~ z <~ 30 range.

  7. COSMIC RAYS AND COSMIC SPACE (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernova, S.N.

    1960-08-01

    An account is given of recent studies of cosmic rays utilizing both earthbound stations and artificial earth satellites. Phenomena recently uncovered by sputniks are described. A description is given of the cosmic ray laboratory of Moscow University. A particle possessing an energy of l0/sup 15/ ev was detected and the equipment and procedure by which this was done are described. mu mesons in a particle shower produced by cosmic rays were detected at a depth of thirty meters underground. The apparatus required in the sputriks for the study of cosmic rays outside the earth's atmosphere is discussed. The equipment inmore » the sputniks launched to date was transistorized; scintillation counters were used to determine particle energies. A description is given of the large burst of radiation detected by the second sputnik on Nov. 7, 1957. This burst was observed only at latitudes of about 50 to 70 degrees north latitude. The third sputnik had a scintillation counter of high sensitivity which detected relatively weak fluxes of electrons. This equipment fixed the location of the high intensity radiation belt around the earth. A typical graph of count rate and energy current versus geographic location is given. Data are given that indicate the coincidence of peak radiation intensities with those regions where the aurora borealis is seen. The radiation belt extends up to approximately 60,000 km from the earth's surface and is bounded by the magnetic lines of force that intersect the earth' s surface at geomagnetic latitudes of 55 deg and 70 deg . The earth's magnetic field traps these particles and holds them in an orbit that follows magnetic lines of force and oscillates from the northern to the southern hemisphere for long periods of time. A diagram is given of the trajectory of the first Soviet cosmic rocket and changes in radiation intensity along this trajectory are indicated. A maximum radiation intensity was detected at a distance of 20,000 km from the earth

  8. RELICS of the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Bradac, Marusa; Coe, Dan; Bradley, Larry; Huang, Kuang-Han; Ryan, Russell; Dawson, Will; Zitrin, Adi; Hoag, Austin; Jones, Christine; Czakon, Nicole; Sharon, Keren; Trenti, Michele; Stark, Daniel; Bouwens, Rychard

    2015-10-01

    When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. First galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang). Furthermore, it is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z>7-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose Spitzer imaging of the fields behind 41 powerful cosmic telescopes selected using Planck data from the RELICS program (Reionization Lensing Cluster Survey; 190 HST orbits). This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to detect early galaxies with Spitzer and directly study stellar properties of a large number, ~20 galaxies (10 at z~7, 7 at z~8, 3 at z~9, and 1 at z~10). Spitzer data will much improve photometric redshifts of the earliest galaxies and will be crucial to ascertain the nature of any z>~10 candidate galaxies uncovered in the HST data. Spitzer also allows for an efficient selection of likely line emitters (as demonstrated by our recent spectroscopic confirmation of the most distant galaxy to date at z=8.68). Finally this proposal will establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z~9. If confirmed in a larger sample, this result will require a paradigm shift in our understanding of the earliest star formation.

  9. Radiative feedback and cosmic molecular gas: the role of different radiative sources

    NASA Astrophysics Data System (ADS)

    Maio, Umberto; Petkova, Margarita; De Lucia, Gabriella; Borgani, Stefano

    2016-08-01

    We present results from multifrequency radiative hydrodynamical chemistry simulations addressing primordial star formation and related stellar feedback from various populations of stars, stellar spectral energy distributions (SEDs) and initial mass functions. Spectra for massive stars, intermediate-mass stars and regular solar-like stars are adopted over a grid of 150 frequency bins and consistently coupled with hydrodynamics, heavy-element pollution and non-equilibrium species calculations. Powerful massive Population III stars are found to be able to largely ionize H and, subsequently, He and He+, causing an inversion of the equation of state and a boost of the Jeans masses in the early intergalactic medium. Radiative effects on star formation rates are between a factor of a few and 1 dex, depending on the SED. Radiative processes are responsible for gas heating and photoevaporation, although emission from soft SEDs has minor impacts. These findings have implications for cosmic gas preheating, primordial direct-collapse black holes, the build-up of `cosmic fossils' such as low-mass dwarf galaxies, the role of active galactic nuclei during reionization, the early formation of extended discs and angular-momentum catastrophe.

  10. Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way.

    PubMed

    Howes, L M; Casey, A R; Asplund, M; Keller, S C; Yong, D; Nataf, D M; Poleski, R; Lind, K; Kobayashi, C; Owen, C I; Ness, M; Bessell, M S; Da Costa, G S; Schmidt, B P; Tisserand, P; Udalski, A; Szymański, M K; Soszyński, I; Pietrzyński, G; Ulaczyk, K; Wyrzykowski, Ł; Pietrukowicz, P; Skowron, J; Kozłowski, S; Mróz, P

    2015-11-26

    The first stars are predicted to have formed within 200 million years after the Big Bang, initiating the cosmic dawn. A true first star has not yet been discovered, although stars with tiny amounts of elements heavier than helium ('metals') have been found in the outer regions ('halo') of the Milky Way. The first stars and their immediate successors should, however, preferentially be found today in the central regions ('bulges') of galaxies, because they formed in the largest over-densities that grew gravitationally with time. The Milky Way bulge underwent a rapid chemical enrichment during the first 1-2 billion years, leading to a dearth of early, metal-poor stars. Here we report observations of extremely metal-poor stars in the Milky Way bulge, including one star with an iron abundance about 10,000 times lower than the solar value without noticeable carbon enhancement. We confirm that most of the metal-poor bulge stars are on tight orbits around the Galactic Centre, rather than being halo stars passing through the bulge, as expected for stars formed at redshifts greater than 15. Their chemical compositions are in general similar to typical halo stars of the same metallicity although intriguing differences exist, including lower abundances of carbon.

  11. The Cold Side of Galaxy Formation: Dense Gas Through Cosmic Time

    NASA Astrophysics Data System (ADS)

    Riechers, Dominik A.; ngVLA Galaxy Assembly through Cosmic Time Science Working Group, ngVLA Galaxy Ecosystems Science Working Group

    2018-01-01

    The processes that lead to the formation and evolution of galaxies throughout the history of the Universe involve the complex interplay between hierarchical merging of dark matter halos, accretion of primordial and recycled gas, transport of gas within galaxy disks, accretion onto central super-massive black holes, and the formation of molecular clouds which subsequently collapse and fragment. The resulting star formation and black hole accretion provide large sources of energy and momentum that light up galaxies and lead to feedback. The ngVLA will be key to further understand how gas is accreted onto galaxies, and the processes that regulate the growth of galaxies through cosmic history. It will reveal how and on which timescales star formation and black hole accretion impact the gas in galaxies, and how the physical properties and chemical state of the gas change as gas cycles between different phases for different galaxy populations over a broad range in redshifts. The ngVLA will have the capability to carry out unbiased, large cosmic volume surveys at virtually any redshift down to an order of magnitude lower gas masses than currently possible in the critical low-level CO lines, thus exposing the evolution of gaseous reservoirs from the earliest epochs to the peak of the cosmic history of star formation. It will also image routinely and systematically the sub-kiloparsec scale distribution and kinematic structure of molecular gas in both normal main-sequence galaxies and large starbursts. The ngVLA thus is poised to revolutionize our understanding of galaxy evolution through cosmic time.

  12. Fun Times with Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    Who would have thought cosmic rays could be so hip? Although discovered 90 years ago on death-defying manned balloon flights hip even by twenty-first-century extremesport standards cosmic rays quickly lost popularity as way-cool telescopes were finding way-too-cool phenomena across the electromagnetic spectrum. Yet cosmic rays are back in vogue, boasting their own set of superlatives. Scientists are tracking them down with new resolve from the Arctic to Antarctica and even on the high western plains of Argentina. Theorists, too, now see cosmic rays as harbingers of funky physics. Cosmic rays are atomic and subatomic particles - the fastest moving bits of matter in the universe and the only sample of matter we have from outside the solar system (with the exception of interstellar dust grains). Lower-energy cosmic rays come from the Sun. Mid-energy particles come from stellar explosions - either spewed directly from the star like shrapnel, or perhaps accelerated to nearly the speed of light by shock waves. The highest-energy cosmic rays, whose unequivocal existence remains one of astronomy's greatest mysteries, clock in at a staggering 10(exp 19) to 10(exp 22) electron volts. This is the energy carried in a baseball pitch; seeing as how there are as many atomic particles in a baseball as there are baseballs in the Moon, that s one powerful toss. No simple stellar explosion could produce them. At a recent conference in Albuquerque, scientists presented the first observational evidence of a possible origin for the highest-energy variety. A team led by Elihu Boldt at NASA s Goddard Space Flight Center found that five of these very rare cosmic rays (there are only a few dozen confirmed events) come from the direction of four 'retired' quasar host galaxies just above the arm of the Big Dipper, all visible with backyard telescopes: NGC 3610, NGC 3613, NGC 4589, and NGC 5322. These galaxies are billions of years past their glory days as the brightest beacons in the universe

  13. High energy physics in cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Lawrence W.

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic raymore » program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.« less

  14. Underground measurements on secondary cosmic rays

    NASA Technical Reports Server (NTRS)

    Wilson, C. W.; Fenton, A. G.; Fenton, K. B.

    1985-01-01

    Measurements made at the Poatina cosmic ray station (41.8 S 149.9 E, 347 m.w.e.) from August 1983 to July 1984 are summarized. The cosmic ray primary particles responsible for events detected at the station have a median primary energy of 1.2 TeV. The motivation for part of this work came from the reported detection of narrow angle anisotropies in the arrival direction of cosmic rays.

  15. Quantification of seasonal biomass effects on cosmic-ray soil water content determination

    NASA Astrophysics Data System (ADS)

    Baatz, R.; Bogena, H. R.; Hendricks Franssen, H.; Huisman, J. A.; Qu, W.; Montzka, C.; Korres, W.; Vereecken, H.

    2013-12-01

    The novel cosmic-ray soil moisture probes (CRPs) measure neutron flux density close to the earth surface. High energy cosmic-rays penetrate the Earth's atmosphere from the cosmos and become moderated by terrestrial nuclei. Hydrogen is the most effective neutron moderator out of all chemical elements. Therefore, neutron flux density measured with a CRP at the earth surface correlates inversely with the hydrogen content in the CRP's footprint. A major contributor to the amount of hydrogen in the sensor's footprint is soil water content. The ability to measure changes in soil water content within the CRP footprint at a larger-than-point scale (~30 ha) and at high temporal resolution (hourly) make these sensors an appealing measurement instrument for hydrologic modeling purposes. Recent developments focus on the identification and quantification of major uncertainties inherent in CRP soil moisture measurements. In this study, a cosmic-ray soil moisture network for the Rur catchment in Western Germany is presented. It is proposed to correct the measured neutron flux density for above ground biomass yielding vegetation corrected soil water content from cosmic-ray measurements. The correction for above ground water equivalents aims to remove biases in soil water content measurements on sites with high seasonal vegetation dynamics such as agricultural fields. Above ground biomass is estimated as function of indices like NDVI and NDWI using regression equations. The regression equations were obtained with help of literature information, ground-based control measurements, a crop growth model and globally available data from the Moderate Resolution Imaging Spectrometer (MODIS). The results show that above ground biomass could be well estimated during the first half of the year. Seasonal changes in vegetation water content yielded biases in soil water content of ~0.05 cm3/cm3 that could be corrected for with the vegetation correction. The vegetation correction has particularly

  16. Illuminating the Background: Topics in Cosmic Microwave Background Polarization Research

    NASA Astrophysics Data System (ADS)

    Miller, Nathan J.

    The cosmic microwave background provides a wealth of information about the origin and history of the universe. The statistics of the anisotropy and the polarization of the cosmic microwave background, among other things, can tell us about the distribution of matter, the redshift of reionization, and the nature of the primordial uctuations. From the lensing of cosmic microwave background due to intervening matter, we can extract information about neutrinos and the equation of state of dark energy. A measurement of the large angular scale B-mode polarization has been called the "smoking gun" of in ation, a theory that describes a possible early rapid expansion of the universe. The focus of current experiments is to measure this B-mode polarization, while several experiments, such as POLARBEAR, are also looking to measure the lensing of the cosmic microwave background. This dissertation will discuss several different topics in cosmic microwave background polarization research. I will make predictions for future experiments and I will also show analysis for two current experiments, POLARBEAR and BICEP. I will show how beam systematics affect the measurement of cosmological parameters and how well we must limit these systematics in order to get unbiased constraints on cosmological parameters for future experiments. I will discuss a novel way of using the temperature-polarization cross correlation to constrain the amount of inflationary gravitational waves. Through Markov Chain Monte Carlo methods, I will determine how well future experiments will be able to constrain the neutrino masses and their degeneracy parameters. I will show results from current data analysis and calibration being done on the Cedar Flat deployment for the POLARBEAR experiment which is currently being constructed in the Atacama desert in Chile. Finally, I will analyze the claim of detection of cosmological birefringence in the BICEP data and show that there is reason to believe it is due to

  17. Gravitational waves and cosmic strings

    NASA Astrophysics Data System (ADS)

    Siemens, Xavier

    2002-08-01

    Cosmic strings are potential candidates for a variety of interesting cosmological phenomena such as gamma ray bursts, gravitational wave bursts and ultra high energy cosmic rays. The predictions of cosmic string models, however, depend sensitively on the so far unresolved question of the size of the small-scale structure. This thesis deals largely with this problem. First, I present a gravitational back-reaction model that assumes the interaction between all Fourier modes that make up a given perturbation on a long cosmic string. This calculation leads to the generally accepted value of the small scale structure cutoff. It also, however, leads to paradoxical behaviour when applied to two oppositely moving modes: As one of the modes is stretched conformally the gravitational power radiated approaches a constant. This result is in contradiction with our expectation for the straight string limit in which no power is radiated. A more careful investigation of this problem reveals that, in the case of two oppositely moving modes, the gravitational power is exponentially suppressed when the wavelengths of the modes are sufficiently different. I use this result to construct an improved gravitational back-reaction model in which modes of very different wavelengths do not interact. This model leads to a new small scale structure cutoff which is sensitive to the initial spectrum of perturbations present on the string. I also tentatively examine the consequences of this result for the evolution of cosmic string loops. Finally, I investigate the effect of the presence of small scale structure on the gravitational wave-bursts produced at cosmic string cusps.

  18. Cosmic string loops as the seeds of super-massive black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramberger, Sebastian F.; Brandenberger, Robert H.; Jreidini, Paul

    2015-06-01

    Recent discoveries of super-massive black holes at high redshifts indicate a possible tension with the standard ΛCDM paradigm of early universe cosmology which has difficulties in explaining the origin of the required nonlinear compact seeds which trigger the formation of these super-massive black holes. Here we show that cosmic string loops which result from a scaling solution of strings formed during a phase transition in the very early universe lead to an additional source of compact seeds. The number density of string-induced seeds dominates at high redshifts and can help trigger the formation of the observed super-massive black holes.

  19. Research in particles and fields. [cosmic rays, gamma rays, and cosmic plasma

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Buffington, A.; Davis, L., Jr.; Prince, T. A.; Vogt, R. E.

    1984-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are reviewed. Energetic particle and photon detector systems flown on spacecraft and balloons were used to carry out the investigations. Specific instruments mentioned are: the high energy isotope spectrometer telescope, the electron/isotope spectrometer, the heavy isotope spectrometer telescope, and magnetometers. Solar flares, planetary magnetospheres, element abundance, the isotopic composition of low energy cosmic rays, and heavy nuclei are among the topics receiving research attention.

  20. COSMIC monthly progress report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Activities of the Computer Software Management and Information Center (COSMIC) are summarized for the month of January 1994. Tables showing the current inventory of programs available from COSMIC are presented and program processing and evaluation activities are discussed. Marketing and customer service activities in this period are presented as is the progress report of NASTRAN maintenance and support. Tables of disseminations and budget summary conclude the report.

  1. New insights into a hot environment for early life.

    PubMed

    Dai, Jianghong

    2017-06-01

    Investigating the physical-chemical setting of early life is a challenging task. In this contribution, the author attempted to introduce a provocative concept from cosmology - cosmic microwave background (CMB), which is the residual thermal radiation from a hot early Universe - to the field. For this purpose, the author revisited a recently deduced biomarker, the 1,6-anhydro bond of sugars in bacteria. In vitro, the 1,6-anhydro bond of sugars reflects and captures residual thermal radiation in thermochemical processes and therefore is somewhat analogous to CMB. In vivo, the formation process of the 1,6-anhydro bond of sugars on the peptidoglycan of prokaryotic cell wall is parallel to in vitro processes, suggesting that the 1,6-anhydro bond is an ideal CMB-like analogue that suggests a hot setting for early life. The CMB-like 1,6-anhydro bond is involved in the life cycle of viruses and the metabolism of eukaryotes, underlying this notion. From a novel perspective, the application of the concept of the CMB to microbial ecology may give new insights into a hot environment, such as hydrothermal vents, supporting early life and providing hypotheses to test in molecular palaeontology. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. A Shifting Shield Provides Protection Against Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    The Sun plays an important role in protecting us from cosmic rays, energetic particles that pelt us from outside our solar system. But can we predict when and how it will provide the most protection, and use this to minimize the damage to both pilotedand roboticspace missions?The Challenge of Cosmic RaysSpacecraft outside of Earths atmosphere and magnetic field are at risk of damage from cosmic rays. [ESA]Galactic cosmic rays are high-energy, charged particles that originate from astrophysical processes like supernovae or even distant active galactic nuclei outside of our solar system.One reason to care about the cosmic rays arriving near Earth is because these particles can provide a significant challenge for space missions traveling above Earths protective atmosphere and magnetic field. Since impacts from cosmic rays can damage human DNA, this risk poses a major barrier to plans for interplanetary travel by crewed spacecraft. And roboticmissions arent safe either: cosmic rays can flip bits, wreaking havoc on spacecraft electronics as well.The magnetic field carried by the solar wind provides a protective shield, deflecting galactic cosmic rays from our solar system. [Walt Feimer/NASA GSFCs Conceptual Image Lab]Shielded by the SunConveniently, we do have some broader protection against galactic cosmic rays: a built-in shield provided by the Sun. The interplanetary magnetic field, which is embedded in the solar wind, deflects low-energy cosmic rays from us at the outer reaches of our solar system, decreasing the flux of these cosmic rays that reach us at Earth.This shield, however, isnt stationary; instead, it moves and changes as the strength and direction of the solar wind moves and changes. This results in a much lower cosmic-ray flux at Earth when solar activity is high i.e., at the peak of the 11-year solar cycle than when solar activity is low. This visible change in local cosmic-ray flux with solar activity is known as solar modulation of the cosmic ray flux

  3. Testing the weak gravity-cosmic censorship connection

    NASA Astrophysics Data System (ADS)

    Crisford, Toby; Horowitz, Gary T.; Santos, Jorge E.

    2018-03-01

    A surprising connection between the weak gravity conjecture and cosmic censorship has recently been proposed. In particular, it was argued that a promising class of counterexamples to cosmic censorship in four-dimensional Einstein-Maxwell-Λ theory would be removed if charged particles (with sufficient charge) were present. We test this idea and find that indeed if the weak gravity conjecture is true, one cannot violate cosmic censorship this way. Remarkably, the minimum value of charge required to preserve cosmic censorship appears to agree precisely with that proposed by the weak gravity conjecture.

  4. The Lyα forest and the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Meiksin, Avery

    2016-10-01

    The accurate description of the properties of the Lyman-α forest is a spectacular success of the Cold Dark Matter theory of cosmological structure formation. After a brief review of early models, it is shown how numerical simulations have demonstrated the Lyman-α forest emerges from the cosmic web in the quasi-linear regime of overdensity. The quasi-linear nature of the structures allows accurate modeling, providing constraints on cosmological models over a unique range of scales and enabling the Lyman-α forest to serve as a bridge to the more complex problem of galaxy formation.

  5. Cosmic Rays in Intermittent Magnetic Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particlemore » energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.« less

  6. What is your Cosmic Connection to the Elements?

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Lochner, James; Rohrbach, Gail; Cochrane, Kim

    2003-01-01

    This information and activity booklet describes the roles of the Big Bang, types of stars, supernovae, cosmic ray interactions, and radioactive decay in the formation of the elements. The booklet includes instructions for the following classroom activities, intended for students in Grades 9-12: Grandma's Apple Pie; Cosmic Shuffle; Nickel-odeon; Kinesthetic Big Bang; Elemental Haiku; Cosmic Ray Collisions; Cosmic Abundances; and What's Out There.

  7. Simulating Cosmic Reionization and Its Observable Consequences

    NASA Astrophysics Data System (ADS)

    Shapiro, Paul

    2017-01-01

    I summarize recent progress in modelling the epoch of reionization by large- scale simulations of cosmic structure formation, radiative transfer and their interplay, which trace the ionization fronts that swept across the IGM, to predict observable signatures. Reionization by starlight from early galaxies affected their evolution, impacting reionization, itself, and imprinting the galaxies with a memory of reionization. Star formation suppression, e.g., may explain the observed underabundance of Local Group dwarfs relative to N-body predictions for Cold Dark Matter. I describe CoDa (''Cosmic Dawn''), the first fully-coupled radiation-hydrodynamical simulation of reionization and galaxy formation in the Local Universe, in a volume large enough to model reionization globally but with enough resolving power to follow all the atomic-cooling galactic halos in that volume. A 90 Mpc box was simulated from a constrained realization of primordial fluctuations, chosen to reproduce present-day features of the Local Group, including the Milky Way and M31, and the local universe beyond, including the Virgo cluster. The new RAMSES-CUDATON hybrid CPU-GPU code took 11 days to perform this simulation on the Titan supercomputer at Oak Ridge National Laboratory, with 4096-cubed N-body particles for the dark matter and 4096-cubed cells for the atomic gas and ionizing radiation.

  8. Anisotropy and corotation of galactic cosmic rays.

    PubMed

    Amenomori, M; Ayabe, S; Bi, X J; Chen, D; Cui, S W; Danzengluobu; Ding, L K; Ding, X H; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, J Y; Lou, Y-Q; Lu, H; Lu, S L; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nagai, A; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, B; Wang, H; Wang, X; Wang, Y G; Wu, H R; Xue, L; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhaxisangzhu; Zhou, X X

    2006-10-20

    The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields in the Milky Way. Here, we present two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV), using the large data sample of the Tibet Air Shower Arrays. Besides revealing finer details of the known anisotropies, a new component of Galactic cosmic ray anisotropy in sidereal time is uncovered around the Cygnus region direction. For cosmic-ray energies up to a few hundred TeV, all components of anisotropies fade away, showing a corotation of Galactic cosmic rays with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic rays, supernovae, magnetic fields, and heliospheric and Galactic dynamic environments.

  9. Semianalytic calculation of cosmic microwave background anisotropies from wiggly and superconducting cosmic strings

    NASA Astrophysics Data System (ADS)

    Rybak, I. Yu.; Avgoustidis, A.; Martins, C. J. A. P.

    2017-11-01

    We study how the presence of world-sheet currents affects the evolution of cosmic string networks, and their impact on predictions for the cosmic microwave background (CMB) anisotropies generated by these networks. We provide a general description of string networks with currents and explicitly investigate in detail two physically motivated examples: wiggly and superconducting cosmic string networks. By using a modified version of the CMBact code, we show quantitatively how the relevant network parameters in both of these cases influence the predicted CMB signal. Our analysis suggests that previous studies have overestimated the amplitude of the anisotropies for wiggly strings. For superconducting strings the amplitude of the anisotropies depends on parameters which presently are not well known—but which can be measured in future high-resolution numerical simulations.

  10. Cosmic-ray anisotropy studies with IceCube

    NASA Astrophysics Data System (ADS)

    McNally, Frank

    2014-03-01

    The IceCube neutrino observatory detects tens of billions of energetic muons per year produced by cosmic-ray interactions with the atmosphere. The size of this sample has allowed IceCube to observe a significant anisotropy in arrival direction for cosmic rays with median energies between 20 and 400 TeV. This anisotropy is characterized by a large scale structure of per-mille amplitude accompanied by structures with smaller amplitudes and with typical angular sizes between 10° and 20°. IceTop, the surface component of IceCube, has observed a similar anisotropy in the arrival direction distribution of cosmic rays, extending the study to PeV energies. The better energy resolution of IceTop allows for additional studies of the anisotropy, for example a comparison of the energy spectrum in regions of a cosmic-ray excess or deficit to the rest of the sky. We present an update on the cosmic-ray anisotropy observed with IceCube and IceTop and the results of first studies of the energy spectrum at locations of cosmic-ray excess or deficit.

  11. Evaluation of Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Heiblim, Samuel; Malott, Christopher

    2009-01-01

    Models of the galactic cosmic ray spectra have been tested by comparing their predictions to an evaluated database containing more than 380 measured cosmic ray spectra extending from 1960 to the present.

  12. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2009-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The existing models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  13. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2010-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The exising models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  14. Cosmic Microwave Background Polarization and Inflation

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2011-01-01

    Measurements of the cosmic microwave background (CMB) offer a means to explore the universe at a very early epoch. Specifically, if the universe went through a brief period of exponential expansion called inflation as current data suggest, gravitational waves from this period would polarize the CMB in a specific pattern. At GSFC, we are currently working towards two experiments that work in concert to measure this polarization pattern in search of evidence for inflation. The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization at frequencies between 40 and 150 GHz from the Atacama Desert in Chile. The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne experiment that will make similar measurements at frequencies between 200 and 600 GHz.

  15. The Cosmic Century

    NASA Astrophysics Data System (ADS)

    Longair, Malcolm S.

    2013-04-01

    Part I. Stars and Stellar Evolution up to the Second World War: 1. The legacy of the nineteenth century; 2. The classification of stellar spectra; 3. Stellar structure and evolution; 4. The end points of stellar evolution; Part II. The Large-Scale Structure of the Universe, 1900-1939: 5. The Galaxy and the nature of spiral nebulae; 6. The origins of astrophysical cosmology; Part III. The Opening up of the Electromagnetic Spectrum: 7. The opening up of the electromagnetic spectrum and the new astronomies; Part IV. The Astrophysics of Stars and Galaxies since 1945: 8. Stars and stellar evolution; 9. The physics of the interstellar medium; 10. The physics of galaxies and clusters of galaxies; 11. High-energy astrophysics; Part V. Astrophysical Cosmology since 1945: 12. Astrophysical cosmology; 13. The determination of cosmological parameters; 14. The evolution of galaxies and active galaxies with cosmic epoch; 15. The origin of galaxies and the large-scale structure of the Universe; 16. The very early Universe; References; Name index; Object index; Subject index.

  16. Long-Term Solar and Cosmic Radiation Data Bases

    DTIC Science & Technology

    1991-01-01

    determine the magnitude of the variations in the cosmic ray intensity caused by solar activity. Neutron monitors, with their much lower energy threshold...expression that neutron monitors are sensors on spacecraft EARTH. Here we will consider cosmic ray detectors to measure two components of cosmic ...A comparison with the solar cycle as illustrated by the sunspot number in Fig. 1. shows that the maximum cosmic ray intensity occurs near sunspot

  17. Cosmic vacuum energy decay and creation of cosmic matter.

    PubMed

    Fahr, Hans-Jörg; Heyl, Michael

    2007-09-01

    In the more recent literature on cosmological evolutions of the universe, the cosmic vacuum energy has become a nonrenouncable ingredient. The cosmological constant Lambda, first invented by Einstein, but later also rejected by him, presently experiences an astonishing revival. Interestingly enough, it acts like a constant vacuum energy density would also do. Namely, it has an accelerating action on cosmic dynamics, without which, as it appears, presently obtained cosmological data cannot be conciliated with theory. As we are going to show in this review, however, the concept of a constant vacuum energy density is unsatisfactory for very basic reasons because it would claim for a physical reality that acts upon spacetime and matter dynamics without itself being acted upon by spacetime or matter.

  18. Weakly ionized cosmic gas: Ionization and characterization

    NASA Technical Reports Server (NTRS)

    Rosenberg, M.; Mendis, D. A.; Chow, V. W.

    1994-01-01

    Since collective plasma behavior may determine important transport processes (e.g., plasma diffusion across a magnetic field) in certain cosmic environments, it is important to delineate the parameter space in which weakly ionized cosmic gases may be characterized as plasmas. In this short note, we do so. First, we use values for the ionization fraction given in the literature, wherein the ionization is generally assumed to be due primarily to ionization by cosmic rays. We also discuss an additional mechanism for ionization in such environments, namely, the photoelectric emission of electrons from cosmic dust grains in an interstellar Far Ultra Violet (FUV) radiation field. Simple estimates suggest that under certain conditions this mechanism may dominate cosmic ray ionization, and possibly also the photoionization of metal atoms by the interstellar FUV field, and thereby lead to an enhanced ionization level.

  19. Summary of Cosmic Ray Spectrum and Composition Below 1018 eV

    NASA Astrophysics Data System (ADS)

    Chiavassa, Andrea

    In this contribution I will review the main results recently obtained in the study of the cosmic ray spectrum and composition below 1018 eV. The interest in this range is growing being related to the search of the knee of the iron component of cosmic ray and to the study of the transition between galactic and extra-galactic primaries. The all particle spectrum measured in this energy range is more structured than previously thought, showing some faint features: a hardening slightly above 1016 eV and a steepening below 1017 eV. The studies of the primary chemical composition are quickly evolving towards the measurements of the primary spectra of different mass groups: light and heavy primaries. A steepening of the heavy primary spectrum and a hardening of the light ones has been claimed. I will review these measurements and I will try to discuss the main sources of systematic errors still affecting them.

  20. A likelihood method for measuring the ultrahigh energy cosmic ray composition

    NASA Astrophysics Data System (ADS)

    High Resolution Fly'S Eye Collaboration; Abu-Zayyad, T.; Amman, J. F.; Archbold, G. C.; Belov, K.; Blake, S. A.; Belz, J. W.; Benzvi, S.; Bergman, D. R.; Boyer, J. H.; Burt, G. W.; Cao, Z.; Connolly, B. M.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M.; Rodriguez, D.; Sasaki, M.; Schnetzer, S.; Seman, M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.

    2006-08-01

    Air fluorescence detectors traditionally determine the dominant chemical composition of the ultrahigh energy cosmic ray flux by comparing the averaged slant depth of the shower maximum, Xmax, as a function of energy to the slant depths expected for various hypothesized primaries. In this paper, we present a method to make a direct measurement of the expected mean number of protons and iron by comparing the shapes of the expected Xmax distributions to the distribution for data. The advantages of this method includes the use of information of the full distribution and its ability to calculate a flux for various cosmic ray compositions. The same method can be expanded to marginalize uncertainties due to choice of spectra, hadronic models and atmospheric parameters. We demonstrate the technique with independent simulated data samples from a parent sample of protons and iron. We accurately predict the number of protons and iron in the parent sample and show that the uncertainties are meaningful.

  1. Cosmic shear analysis of archival HST/ACS data. I. Comparison of early ACS pure parallel data to the HST/GEMS survey

    NASA Astrophysics Data System (ADS)

    Schrabback, T.; Erben, T.; Simon, P.; Miralles, J.-M.; Schneider, P.; Heymans, C.; Eifler, T.; Fosbury, R. A. E.; Freudling, W.; Hetterscheidt, M.; Hildebrandt, H.; Pirzkal, N.

    2007-06-01

    Context: This is the first paper of a series describing our measurement of weak lensing by large-scale structure, also termed “cosmic shear”, using archival observations from the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST). Aims: In this work we present results from a pilot study testing the capabilities of the ACS for cosmic shear measurements with early parallel observations and presenting a re-analysis of HST/ACS data from the GEMS survey and the GOODS observations of the Chandra Deep Field South (CDFS). Methods: We describe the data reduction and, in particular, a new correction scheme for the time-dependent ACS point-spread-function (PSF) based on observations of stellar fields. This is currently the only technique which takes the full time variation of the PSF between individual ACS exposures into account. We estimate that our PSF correction scheme reduces the systematic contribution to the shear correlation functions due to PSF distortions to <2 × 10-6 for galaxy fields containing at least 10 stars, which corresponds to ⪉5% of the cosmological signal expected on scales of a single ACS field. Results: We perform a number of diagnostic tests indicating that the remaining level of systematics is consistent with zero for the GEMS and GOODS data confirming the success of our PSF correction scheme. For the parallel data we detect a low level of remaining systematics which we interpret to be caused by a lack of sufficient dithering of the data. Combining the shear estimate of the GEMS and GOODS observations using 96 galaxies arcmin-2 with the photometric redshift catalogue of the GOODS-MUSIC sample, we determine a local single field estimate for the mass power spectrum normalisation σ8, CDFS=0.52+0.11-0.15 (stat) ± 0.07(sys) (68% confidence assuming Gaussian cosmic variance) at a fixed matter density Ω_m=0.3 for a ΛCDM cosmology marginalising over the uncertainty of the Hubble parameter and the redshift distribution. We

  2. Cosmic ray processing of N2-containing interstellar ice analogues at dark cloud conditions

    NASA Astrophysics Data System (ADS)

    Fedoseev, G.; Scirè, C.; Baratta, G. A.; Palumbo, M. E.

    2018-04-01

    N2 is believed to lock considerable part of nitrogen elemental budget and, therefore, to be one of the most abundant ice constituent in cold dark clouds. This laboratory-based research utilizes high energetic processing of N2 containing interstellar ice analogues using 200 keV H+ and He+ ions that mimics cosmic ray processing of the interstellar icy grains. It aims to investigate the formation of (iso)cyanates and cyanides in the ice mantles at the conditions typical for cold dark clouds and prestellar cores. Investigation of cosmic ray processing as a chemical trigger mechanism is explained by the high stability of N2 molecules that are chemically inert in most of the atom- and radical-addition reactions and cannot be efficiently dissociated by cosmic ray induced UV-field. Two sets of experiments are performed to closer address solid-state chemistry occurring in two distinct layers of the ice formed at different stages of dark cloud evolution, i.e. `H2O-rich' and `CO-rich' ice layers. Formation of HNCO and OCN- is discussed in all of the performed experiments. Corresponding kinetic curves for HNCO and OCN- are obtained. Furthermore, a feature around 2092 cm-1 assigned to the contributions of 13CO, CN-, and HCN is analysed. The kinetic curves for the combined HCN/CN- abundance are derived. In turn, normalized formation yields are evaluated by interpolation of the obtained results to the low irradiation doses relevant to dark cloud stage. The obtained values can be used to interpret future observations towards cold dark clouds using James Webb Space Telescope.

  3. Re-evaluation of cosmic ray cutoff terminology

    NASA Technical Reports Server (NTRS)

    Cooke, D. J.; Humble, J. E.; Shea, M. A.; Smart, D. F.; Lund, N.; Rasmussen, I. L.; Byrnak, B.; Goret, P.; Petrou, N.

    1985-01-01

    The study of cosmic ray access to locations inside the geomagnetic field has evolved in a manner that has led to some misunderstanding and misapplication of the terminology originally developed to describe particle access. This paper presents what is believed to be a useful set of definitions for cosmic ray cutoff terminology for use in theoretical and experimental cosmic ray studies.

  4. A Demonstration Device for Cosmic Rays Telescopes

    ERIC Educational Resources Information Center

    Esposito, Salvatore

    2018-01-01

    We describe a hands-on accurate demonstrator for cosmic rays realized by six high school students. The main aim is to show the relevance and the functioning of the principal parts of a cosmic ray telescope (muon detector), with the help of two large sized wooden artefacts. The first one points out how cosmic rays can be tracked in a muon…

  5. Cosmic-ray Exposure Ages of Meteorites

    NASA Astrophysics Data System (ADS)

    Herzog, G. F.

    2003-12-01

    experimental methods have lowered detection limits for cosmogenic nuclides and the modeling calculations needed to interpret the measurements have improved.With greater analytical power has come the ability to recognize and, increasingly, to characterize more complex irradiation histories. As it turns out, many meteorites retain the effects not only of recent irradiation but also of irradiations that took place at earlier times, in different settings.(i) Collisions in space reduced the sizes and changed the shapes of some meteoroids. The cosmogenic nuclide inventories in such meteorites may record the two distinct periods of exposure.(ii) Certain components of polymict meteoritic breccias (rocks that consist of unlike grains cemented together) spent time at the surfaces of their parent bodies before they were buried in parent bodies or perhaps in meteoroids. While at the parent-body surface these components must have been exposed directly not only to galactic cosmic rays (the high-energy particles from outside the solar system that are responsible for most of the production of cosmogenic nuclides), but also to lower-energy cosmic rays from the Sun.(iii) Selected petrologic phases - the chondrules and the calcium- and aluminum-rich inclusions found in some meteorites - may have been irradiated just after forming in the very early solar system. One proposed mechanism is irradiation by the so-called X-wind, an intense outflow of nuclear-active particles hypothesized for the primitive Sun (Shu et al., 1996).(iv) Interstellar grains isolated from certain meteorites retain cosmogenic nuclides made by irradiation in interstellar space or, perhaps, close to other stars, at a time predating the formation of the solar system. We will interweave a few examples of multistage exposures into the discussion, but our main emphasis will be on the most recent one.Honda and Arnold (1967), Wasson (1974), Reedy et al. (1983), Caffee et al. (1988), Vogt et al. (1990), Tuniz et al. (1998), Wieler

  6. Consistency of cosmic-ray source abudances with explosive nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Kozlovsky, B.; Ramaty, R.

    1973-01-01

    A model was examined in which the cosmic ray abundances of elements from C to Fe are consistent with explosive nucleosynthesis. The observed abundance of cosmic rays near the earth, cosmic ray source abundance, and solar system abundance are discussed along with the ratios of cosmic ray sources to the solar system abundances.

  7. Tracing the cosmic web

    NASA Astrophysics Data System (ADS)

    Libeskind, Noam I.; van de Weygaert, Rien; Cautun, Marius; Falck, Bridget; Tempel, Elmo; Abel, Tom; Alpaslan, Mehmet; Aragón-Calvo, Miguel A.; Forero-Romero, Jaime E.; Gonzalez, Roberto; Gottlöber, Stefan; Hahn, Oliver; Hellwing, Wojciech A.; Hoffman, Yehuda; Jones, Bernard J. T.; Kitaura, Francisco; Knebe, Alexander; Manti, Serena; Neyrinck, Mark; Nuza, Sebastián E.; Padilla, Nelson; Platen, Erwin; Ramachandra, Nesar; Robotham, Aaron; Saar, Enn; Shandarin, Sergei; Steinmetz, Matthias; Stoica, Radu S.; Sousbie, Thierry; Yepes, Gustavo

    2018-01-01

    The cosmic web is one of the most striking features of the distribution of galaxies and dark matter on the largest scales in the Universe. It is composed of dense regions packed full of galaxies, long filamentary bridges, flattened sheets and vast low-density voids. The study of the cosmic web has focused primarily on the identification of such features, and on understanding the environmental effects on galaxy formation and halo assembly. As such, a variety of different methods have been devised to classify the cosmic web - depending on the data at hand, be it numerical simulations, large sky surveys or other. In this paper, we bring 12 of these methods together and apply them to the same data set in order to understand how they compare. In general, these cosmic-web classifiers have been designed with different cosmological goals in mind, and to study different questions. Therefore, one would not a priori expect agreement between different techniques; however, many of these methods do converge on the identification of specific features. In this paper, we study the agreements and disparities of the different methods. For example, each method finds that knots inhabit higher density regions than filaments, etc. and that voids have the lowest densities. For a given web environment, we find a substantial overlap in the density range assigned by each web classification scheme. We also compare classifications on a halo-by-halo basis; for example, we find that 9 of 12 methods classify around a third of group-mass haloes (i.e. Mhalo ∼ 1013.5 h-1 M⊙) as being in filaments. Lastly, so that any future cosmic-web classification scheme can be compared to the 12 methods used here, we have made all the data used in this paper public.

  8. Cosmic ray interactions in starbursting galaxies

    NASA Astrophysics Data System (ADS)

    Yoast-Hull, Tova M.

    High quality gamma-ray and radio observations of nearby galaxies offer an unprecedented opportunity to quantitatively study the properties of their cosmic ray populations. Accounting for various interactions and energy losses, I developed a multi-component, single-zone model of the cosmic ray populations in the central molecular zones of star-forming galaxies. Using observational knowledge of the interstellar medium and star formation, I successfully predicted the radio, gamma-ray, and neutrino spectra for nearby starbursts. Using chi-squared tests to compare the models with observational radio and gamma-ray data, I placed constraints on magnetic field strengths, cosmic ray energy densities, and galactic wind (advection) speeds. The initial models were applied to and tested on the prototypical starburst galaxy M82. To further test the model and to explore the differences in environment between starbursts and active galactic nuclei, I studied NGC 253 and NGC 1068, both nearby giant spiral galaxies which have been detected in gamma-rays. Additionally, I demonstrated that the excess GeV energy gamma-ray emission in the Galactic Center is likely not diffuse emission from an additional population of cosmic rays accelerated in supernova remnants. Lastly, I investigated cosmic ray populations in the starburst nuclei of Arp 220, a nearby ultraluminous infrared galaxy which displays a high-intensity mode of star formation more common in young galaxies, and I showed that the nuclei are efficient cosmic-ray proton calorimeters.

  9. Development of the cosmic ray techniques

    NASA Technical Reports Server (NTRS)

    Rossi, B.

    1982-01-01

    It has been found that most advances of cosmic-ray physics have been directly related to the development of observational techniques. The history of observational techniques is discussed, taking into account ionization chambers, refinements applied to ionization chambers to make them suitable for an effective use in the study of cosmic radiation, the Wulf-type electrometer, the electrometer designed by Millikan and Neher, the Geiger-Mueller counter, the experiment of Bothe and Kolhoerster, the coincidence circuit, and a cosmic-ray 'telescope'. Attention is given to a magnetic lens for cosmic rays, a triangular arrangement of Geiger-Mueller counters used to demonstrate the production of a secondary radiation, a stereoscopic cloud-chamber photograph of showers, the cloud-chamber picture which provided the first evidence of the positive electron, and arrangements for studying photon components, mu-mesons, and air showers.

  10. Angular correlation of cosmic neutrinos with ultrahigh-energy cosmic rays and implications for their sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moharana, Reetanjali; Razzaque, Soebur, E-mail: reetanjalim@uj.ac.za, E-mail: srazzaque@uj.ac.za

    2015-08-01

    Cosmic neutrino events detected by the IceCube Neutrino Observatory with energy 0∼> 3 TeV have poor angular resolutions to reveal their origin. Ultrahigh-energy cosmic rays (UHECRs), with better angular resolutions at 0>6 EeV energies, can be used to check if the same astrophysical sources are responsible for producing both neutrinos and UHECRs. We test this hypothesis, with statistical methods which emphasize invariant quantities, by using data from the Pierre Auger Observatory, Telescope Array and past cosmic-ray experiments. We find that the arrival directions of the cosmic neutrinos are correlated with 0≥ 10 EeV UHECR arrival directions at confidence level ≈ 90%. The strengthmore » of the correlation decreases with decreasing UHECR energy and no correlation exists at energy 0∼ 6 EeV . A search in astrophysical databases within 3{sup o} of the arrival directions of UHECRs with energy 0≥ 10 EeV, that are correlated with the IceCube cosmic neutrinos, resulted in 18 sources from the Swift-BAT X-ray catalog with redshift z≤ 0.06. We also found 3 objects in the Kühr catalog of radio sources using the same criteria. The sources are dominantly Seyfert galaxies with Cygnus A being the most prominent member. We calculate the required neutrino and UHECR fluxes to produce the observed correlated events, and estimate the corresponding neutrino luminosity (25 TeV–2.2 PeV) and cosmic-ray luminosity (500 TeV–180 EeV), assuming the sources are the ones we found in the Swift-BAT and Kühr catalogs. We compare these luminosities with the X-ray luminosity of the corresponding sources and discuss possibilities of accelerating protons to 0∼> 10 EeV and produce neutrinos in these sources.« less

  11. The isotopic composition of cosmic-ray calcium

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.; George, J. S.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; Israel, M. H.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; hide

    2001-01-01

    We find that the relative abundance of cosmic ray calcium isotopes in the cosmic-ray source are very similar to those found in solar-system material, in spite of the fact that different types of stars are thought to be responsible for producing these two isotopes. This observation is consistent with the view that cosmic rays are derived from a mixed sample of interstellar matter.

  12. Cosmic ray modulation

    NASA Astrophysics Data System (ADS)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    2016-07-01

    Propagation of cosmic rays to and inside the heliosphere, encounter an outward moving solar wind with cyclic magnetic field fluctuation and turbulence, causing convection and diffusion in the heliosphere. Cosmic ray counts from the ground ground-based neutron monitors at different cut of rigidity show intensity changes, which are anti-correlated with sunspot numbers. They also lose energy as they propagate towards the Earth and experience various types of modulations due to different solar activity indices. In this work, we study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-2014 for Beijing, Moscow and Tokyo neutron monitoring stations located at different cut off rigidity. The amplitude of first harmonic remains high for low cutoff rigidity as compared to high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station as compared to the high cut off rigidity station on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The amplitude and direction of the anisotropy on quiet days does not show any significant dependence on high-speed solar wind streams for these neutron monitoring stations of different cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics, amplitude, phase.

  13. Voids and the Cosmic Web: cosmic depression & spatial complexity

    NASA Astrophysics Data System (ADS)

    van de Weygaert, Rien

    2016-10-01

    Voids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do theyrepresent a key constituent of the Cosmic Web, they also are one of the cleanest probesand measures of global cosmological parameters. The shape and evolution of voids are highly sensitive tothe nature of dark energy, while their substructure and galaxy population provides a direct key to thenature of dark matter. Also, the pristine environment of void interiors is an important testing groundfor our understanding of environmental influences on galaxy formation and evolution. In this paper, we reviewthe key aspects of the structure and dynamics ofvoids, with a particular focus on the hierarchical evolution of the void population. We demonstratehow the rich structural pattern of the Cosmic Web is related to the complex evolution and buildupof voids.

  14. Cosmic reionization after Planck II: contribution from quasars

    NASA Astrophysics Data System (ADS)

    Mitra, Sourav; Choudhury, T. Roy; Ferrara, Andrea

    2018-01-01

    In the light of the recent Planck downward revision of the electron scattering optical depth, and of the discovery of a faint active galactic nuclei (AGN) population at z > 4, we reassess the actual contribution of quasars to cosmic reionization. To this aim, we extend our previous Markov Chain Monte Carlo based data-constrained semi-analytic reionization model and study the role of quasars on global reionization history. We find that the quasars can alone reionize the Universe only for models with very high AGN emissivities at high redshift. These models are still allowed by the recent cosmic microwave background data and most of the observations related to H I reionization. However, they predict an extended and early He II reionization ending at z ≳ 4 and a much slower evolution in the mean He II Ly-α forest opacity than what the actual observation suggests. Thus, when we further constrain our model against the He II Ly-α forest data, this AGN-dominated scenario is found to be clearly ruled out at 2σ limits. The data seems to favour a standard two-component picture where quasar contributions become negligible at z ≳ 6 and a non-zero escape fraction of ∼ 10 per cent is needed from early-epoch galaxies. For such models, mean neutral hydrogen fraction decreases to ∼10-4 at z = 6.2 from ∼0.8 at z = 10.0 and helium becomes doubly ionized at much later time, z ∼ 3. We find that these models are as well in good agreement with the observed thermal evolution of IGM as opposed to models with very high AGN emissivities.

  15. Cosmic logic: a computational model

    NASA Astrophysics Data System (ADS)

    Vanchurin, Vitaly

    2016-02-01

    We initiate a formal study of logical inferences in context of the measure problem in cosmology or what we call cosmic logic. We describe a simple computational model of cosmic logic suitable for analysis of, for example, discretized cosmological systems. The construction is based on a particular model of computation, developed by Alan Turing, with cosmic observers (CO), cosmic measures (CM) and cosmic symmetries (CS) described by Turing machines. CO machines always start with a blank tape and CM machines take CO's Turing number (also known as description number or Gödel number) as input and output the corresponding probability. Similarly, CS machines take CO's Turing number as input, but output either one if the CO machines are in the same equivalence class or zero otherwise. We argue that CS machines are more fundamental than CM machines and, thus, should be used as building blocks in constructing CM machines. We prove the non-computability of a CS machine which discriminates between two classes of CO machines: mortal that halts in finite time and immortal that runs forever. In context of eternal inflation this result implies that it is impossible to construct CM machines to compute probabilities on the set of all CO machines using cut-off prescriptions. The cut-off measures can still be used if the set is reduced to include only machines which halt after a finite and predetermined number of steps.

  16. Scientific Goals and Objectives of the Probe of Inflation and Cosmic Origins

    NASA Astrophysics Data System (ADS)

    Wen, Qi; Hanany, Shaul; Young, Karl S.; PICO Team

    2018-01-01

    The Probe of Inflation and Cosmic Origins (PICO) is a space mission concept that is being studied in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. PICO will conduct a polarimetric full sky survey in 21 frequency bands between 20 and 800 GHz with 70 times the sensitivity of the Planck satellite. Using the data from 8 redundant full sky surveys PICO will detect or place new limits on the energy scale of inflation and the physics of quantum gravity; it will determine the effective number of light degrees of freedom in the early universe and the sum of neutrino masses; it will measure the optical depth to reionization up to cosmic variance limits; it will provide a full sky catalog of thousands of strongly lensed high-z infrared sources, of proto clusters, and of low-z low-mass galaxies extending our understanding of structure formation to populations not yet observed; it will find tens of thousands of new clusters across cosmic time, information that will further constrain cosmological parameters; and it will make sensitive maps of the galactic magnetic field, which will clarify its role in the process of star formation.We present an overview of the mission’s scientific goals, its design, and the current status of the study.

  17. The Nucleon-Mission: A New Approach to Cosmic Rays Investigation

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Bashindzhagyan, G.; Bashindzhagyan, P.; Chilingarian, A.; Donnelly, J.; Drury, L.; Egorov, N.; Golubkov, S.; Grebenyuk, V.; Hasebe, N.; hide

    2001-01-01

    A new approach to Cosmic Rays Investigation is proposed. The main idea is to combine two experimental methods (KLEM and UHIS) for the NUCLEON Project. The KLEM (Kinematic Lightweight Energy Meter) is aimed to study of chemical composition and elemental energy spectra of galactic CRs in extremely wide energy range 10(exp 11) - 10(exp 16) eV. The UHIS (Ultra Heavy Isotope Spectrometer) is suggested to use for the ultra heavy CR nuclei fluxes registration beyond the iron peak. Combination of the two techniques would give a unique instrument, with a number of advantages.

  18. Cosmic ray strangelets

    NASA Astrophysics Data System (ADS)

    Madsen, Jes

    2005-06-01

    Searching for strangelets in cosmic rays may be the best way to test the possible stability of strange quark matter. I review calculations of the astrophysical strangelet flux in the GV TV rigidity range, which will be investigated from the Alpha Magnetic Spectrometer (AMS-02) on the International Space Station, and discuss the merits of strangelets as ultra-high energy cosmic rays at EeV ZeV energies, beyond the Greisen Zatsepin Kuzmin cutoff. I also address some 'counter-arguments' sometimes raised against the possibility of stable strangelets. It will be argued that stability of strange quark matter remains a viable possibility, which must be tested by experiments.

  19. Alteration of Organic Compounds in Small Bodies and Cosmic Dusts by Cosmic Rays and Solar Radiation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Kaneko, Takeo; Mita, Hajime; Obayashi, Yumiko; Takahashi, Jun-ichi; Sarker, Palash K.; Kawamoto, Yukinori; Okabe, Takuto; Eto, Midori; Kanda, Kazuhiro

    2012-07-01

    A wide variety of complex organic compounds have been detected in extraterrestrial bodies like carbonaceous chondrites and comets, and their roles in the generation of terrestrial life are discussed. It was suggested that organics in small bodies were originally formed in ice mantles of interstellar dusts in dense cloud. Irradiation of frozen mixture of possible interstellar molecules including CO (or CH _{3}OH), NH _{3} and H _{2}O with high-energy particles gave complex amino acid precursors with high molecular weights [1]. Such complex organic molecules were taken in planetesimals or comets in the early solar system. In prior to the generation of the terrestrial life, extraterrestrial organics were delivered to the primitive Earth by such small bodies as meteorites, comets and space dusts. These organics would have been altered by cosmic rays and solar radiation (UV, X-rays) before the delivery to the Earth. We examined possible alteration of amino acids, their precursors and nucleic acid bases in interplanetary space by irradiation with high energy photons and heavy ions. A mixture of CO, NH _{3} and H _{2}O was irradiated with high-energy protons from a van de Graaff accelerator (TIT, Japan). The resulting products (hereafter referred to as CAW) are complex precursors of amino acids. CAW, amino acids (dl-Isovaline, glycine), hydantoins (amino acid precursors) and nucleic acid bases were irradiated with continuous emission (soft X-rays to IR; hereafter referred to as soft X-rays irradiation) from BL-6 of NewSUBARU synchrotron radiation facility (Univ. Hyogo). They were also irradiated with heavy ions (eg., 290 MeV/u C ^{6+}) from HIMAC accelerator (NIRS, Japan). After soft X-rays irradiation, water insoluble materials were formed. After irradiation with soft X-rays or heavy ions, amino acid precursors (CAW and hydantoins) gave higher ratio of amino acids were recovered after hydrolysis than free amino acids. Nucleic acid bases showed higher stability than free

  20. PhD Thesis: String theory in the early universe

    NASA Astrophysics Data System (ADS)

    Gwyn, Rhiannon

    2009-11-01

    The intersection of string theory with cosmology is unavoidable in the early universe, and its exploration may shine light on both fields. In this thesis, three papers at this intersection are presented and reviewed, with the aim of providing a thorough and pedagogical guide to their results. First, we address the longstanding problem of finding a string theory realisation of the axion. Using warped compactifications in heterotic string theory, we show that the axion decay constant can be lowered to acceptable values by the warp factor. Next, we move to the subject of cosmic strings, whose network evolution could have important consequences for astrophysics and cosmology. In particular, there are quantitative differences between cosmic superstring networks and GUT cosmic string networks. We investigate the properties of cosmic superstring networks in warped backgrounds, giving the tension and properties of three-string junctions in these backgrounds. Finally, we examine the possibility that cosmic strings in heterotic string theory could be responsible for generating the galactic magnetic fields that seeded those observed today.

  1. THE COSMIC RAY EQUATOR AND THE GEOMAGNETISM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakurai, K.

    1960-01-01

    It was formerly thought that the disagreement of the position of geomagnetic dipole equator with that of the cosmic ray equator was caused by 45 deg westward shifting of the latter. Referring to the theory of geomagnetic effect on cosmic rays, it was determined whether such westward shifting could be existent or not. It was found that the deviation of the cosmic ray equator from the geomagnetic dipole equator is negligible even if the magnetic cavity is present around the earth's outer atmosphere. Taking into account such results, the origin of the cosmic ray equator was investigated. It was foundmore » that this equater could be produced by the higher harmonic components combined with the dipole component of geomagnetism. The relation of the origin of the cosmic ray equater to the eccentric dipoles, near the outer pant of the earth's core, contributing to the secular variation of geomagnetism was considered. (auth)« less

  2. Black holes as beads on cosmic strings

    NASA Astrophysics Data System (ADS)

    Ashoorioon, Amjad; Mann, Robert B.

    2014-11-01

    We consider the possibility of the formation of cosmic strings with black holes as beads. We focus on the simplest setup where two black holes are formed on a long cosmic string. It turns out that in the absence of a background magnetic field and for observationally viable values for cosmic string tensions, μ \\lt 2× {{10}-7}, the tension of the strut in between the black holes has to be less than the ones that run into infinity. This result does not change if a cosmological constant is present. However, if a background magnetic field is turned on, we can have stable setups where the tensions of all cosmic strings are equal. We derive the equilibrium conditions in each of these setups depending on whether the black holes are extremal or non-extremal. We obtain cosmologically acceptable solutions with solar mass black holes and an intragalactic-strength cosmic magnetic field.

  3. Progress in high-energy cosmic ray physics

    NASA Astrophysics Data System (ADS)

    Mollerach, S.; Roulet, E.

    2018-01-01

    We review some of the recent progress in our knowledge about high-energy cosmic rays, with an emphasis on the interpretation of the different observational results. We discuss the effects that are relevant to shape the cosmic ray spectrum and the explanations proposed to account for its features and for the observed changes in composition. The physics of air-showers is summarized and we also present the results obtained on the proton-air cross section and on the muon content of the showers. We discuss the cosmic ray propagation through magnetic fields, the effects of diffusion and of magnetic lensing, the cosmic ray interactions with background radiation fields and the production of secondary neutrinos and photons. We also consider the cosmic ray anisotropies, both at large and small angular scales, presenting the results obtained from the TeV up to the highest energies and discuss the models proposed to explain their origin.

  4. The isotopic composition of cosmic-ray beryllium and its implication for the cosmic ray's age

    NASA Astrophysics Data System (ADS)

    Lukasiak, A.; Ferrando, P.; McDonald, F. B.; Webber, W. R.

    1994-03-01

    We report a new measurement of the cosmic-ray isotopic composition of beryllium in the low-energy range from 35 to 113 MeV per nucleon. This measurement was made using the High Energy Telescope of the CRS experiment on the Voyager 1 and 2 spacecraft during the time period from 1977 to 1991. In this overall time period of 14 years the average solar modulation level was about 500 MV. The cosmic-ray beryllium isotopes were completely separated with an average mass resolution sigma of 0.185 amu. The isotope fractions of Be-7, Be-9, and Be-10 obtained are 52.4 +/- 2.9%, 43.3 +/- 3.7%, and 4.3 +/- 1.5%, respectively. The measured cosmic-ray abundances of Be-7 and Be-9 are found to be in agreement with calculations based on standard Leaky-Box model for the interstellar propagation of cosmic-ray nuclei using the recent cross sections of the New Mexico-Saclay collaboration. From our observed ratio Be-10/Be = 4.3 +/- 1.5% we deduce an average interstellar density of about 0.28 (+0.14, -0.11) atoms/cu cm, and a cosmic-ray lifetime for escape of 27 (+19, -9) x 106 years. The surviving fraction of Be-10 is found to be 0.19 +/- 0.07. Modifications to the conclusions of the Leaky-Box model when a diffusion + convection halo model for propagation is used are also considered.

  5. Superbubbles and Local Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Streitmatter, Robert E.; Jones, Frank C.

    2005-01-01

    We consider the possibility that distinctive features of the local cosmic ray spectra and composition are influenced by the Solar system being embedded within the cavity of an ancient superbubble. Shifts in the measured cosmic ray composition between 10(exp 11) and 10(exp 20) eV as well as the "knee" and "second knee" may be understood in this picture.

  6. Cosmic radiation and cancer: is there a link?

    PubMed

    Di Trolio, Rossella; Di Lorenzo, Giuseppe; Fumo, Bruno; Ascierto, Paolo A

    2015-01-01

    Cosmic radiation can cause genetic and cytogenetic damage. Certain occupations including airline pilots and cabin crew are acknowledged to have a greater exposure to cosmic radiation. In a systematic search of MEDLINE, performed from 1990 to 2014, we analyzed clinical studies using the keywords: cosmic radiation, cancer, chromosome aberration, pilots and astronauts. Increased incidence of skin cancers among airline cabin crew has been reported in a number of studies and appears to be the most consistent finding. However, as with other cancers, it is unclear whether increased exposure to cosmic radiation is a factor in the increased incidence or whether this can be explained by lifestyle factors. Further research is needed to clarify the risk of cancer in relation to cosmic radiation.

  7. The COBE cosmic 3 K anisotropy experiment: A gravity wave and cosmic string probe

    NASA Technical Reports Server (NTRS)

    Bennett, Charles L.; Smoot, George F.

    1989-01-01

    Among the experiments to be carried into orbit next year, by the COBE satellite, are differential microwave radiometers. They will make sensitive all-sky maps of the temperature of the cosmic microwave background radiation at three frequencies, giving dipole, quadrupole, and higher order multipole measurements of the background radiation. The experiment will either detect, or place significant constraints on, the existence of cosmic strings and long wavelength gravity waves.

  8. A mechanism for inducing climatic variations through the stratosphere - Screening of cosmic rays by solar and terrestrial magnetic fields

    NASA Technical Reports Server (NTRS)

    Chamberlain, J. W.

    1977-01-01

    The ability of heliomagnetic and geomagnetic fields to bring about climatic variations of long period is examined theoretically. A chemical relationship between low-energy cosmic rays and ozone balance in the stratosphere is sought as a crucial clue to historical changes in earth climate. A perturbation analysis is developed to arrive at zone depletion and reduction of stratospheric solar heating resulting from increased NOx concentration; temperature feedback and opacity feedback are allowed for. Modulation of galactic cosmic-radiation fluxes and ozone destruction in the stratosphere, colder surface temperatures associated with reduced magnetic shielding, and redistribution with height of total ozone decrease are explored.

  9. Cosmology with cosmic shear observations: a review.

    PubMed

    Kilbinger, Martin

    2015-07-01

    Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.

  10. Isocurvature fluctuations through axion trapping by cosmic string wakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layek, Biswanath

    2005-03-15

    We consider wakelike density fluctuations produced by cosmic strings at the quark-hadron transition in the early universe. We show that low momentum axions which are produced through the radiation from the axionic string at an earlier stage, may get trapped inside these wakes due to delayed hadronization in these overdense regions. As the interfaces, bordering the wakes, collapse, the axions pick-up momentum from the walls and finally leave the wake regions. These axions thus can produce large scale isocurvature fluctuations. We have calculated the detailed profile of these axionic density fluctuations and discuss its astrophysical consequences.

  11. Light Nuclei and Isotope Abundances in Cosmic Rays. Results from AMS-01

    NASA Astrophysics Data System (ADS)

    Tomassetti, N.

    2011-06-01

    Observations of the chemical and isotopic composition of light cosmic-ray nuclei can be used to constrain the propagation models. Nearly 200,000 light nuclei (Z > 2) have been observed by AMS-01 during the 10-day flight STS-91 in June 1998. Using these data, we have measured Li, Be, B and C in the kinetic energy range 0.35 - 45 GeV/nucleon. In this proceeding, our charge and isotopic composition results are presented and discussed.

  12. Cosmic-ray detectors on the Moon

    NASA Technical Reports Server (NTRS)

    Linsley, John

    1988-01-01

    The state of cosmic ray physics is reviewed. It is concluded that the nonexistent lunar magnetic field, the low lunar radiation background, and the lack of an atmosphere on the Moon provide an excellent environment for the study of high energy primary cosmic rays.

  13. Cosmic Dust and the Earth's Atmosphere (Vilhelm Bjerknes Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Plane, John M. C.

    2017-04-01

    chemical ablation model to determine the rate of injection of metallic vapours into the atmosphere. Constraining these coupled models with lidar measurements of the vertical fluxes of Na and Fe in the MLT, and the rate of accretion of cosmic spherules at the South Pole, indicates that about 40 tonnes of dust enters the atmosphere each day, of which ˜18% ablates. The subsequent atmospheric chemistry of the ablated metallic vapours is then examined using the Whole Atmosphere Community Climate Model (WACCM), coupled with the aerosol microphysics model CARMA to treat the interplay of meteoric smoke particles with the stratospheric sulphate layer. While the optical extinction of meteoric smoke in the lower mesosphere, and of refractory material in polar stratospheric clouds is satisfactorily modelled, two problems remain. First, the injection rate of Na and Fe atoms is too large (by a factor between 5 and 10) for WACCM to replicate the observed metal atom layer densities in the MLT. It appears that vertical transport by eddy diffusion has to be significantly supplemented by chemical transport produced by unresolved (sub-grid) gravity waves (this process will significantly affect the transport of other species such as atomic O through the MLT). The second problem is that the rate of deposition of MSPs at polar latitudes is substantially underestimated by the model, indicating that there may be an efficient process for removing particles directly from the lower stratospheric winter polar vortex to the surface. Underpinning the model development are three novel experimental systems developed at Leeds: a Meteor Ablation Simulator, which measures the evaporation of metals from cosmic dust particles that are flash heated to over 2800 K; a Time-of-Flight mass spectrometer with laser photo-ionization which is used to study the reactions of neutral metallic compounds in the gas phase; and a flowing afterglow experiment to study the dissociative recombination of metallic ions with

  14. Long term variability of the cosmic ray intensity

    NASA Technical Reports Server (NTRS)

    Bhat, C. L.; Houston, B. P.; Mayer, C. J.; Wolfendale, A. W.

    1985-01-01

    In a previous paper Bhat, et al., assess the evidence for the continuing acceleration of cosmic rays in the Loop I supernova remnant. The enhanced gamma-ray emission is found consistent with the Blandford and Cowie model for particle acceleration at the remnant shock wave. The contributions of other supernovae remnants to the galactic cosmic ray energy density are now considered, paying anisotropy of cosmic rays accelerated by local supernovae ( 100 pc). The results are compared with geophysical data on the fluctuations in the cosmic ray intensity over the previous one billion years.

  15. The physics and early history of the intergalactic medium

    NASA Astrophysics Data System (ADS)

    Barkana, Rennan; Loeb, Abraham

    2007-04-01

    The intergalactic medium—the cosmic gas that fills the great spaces between the galaxies—is affected by processes ranging from quantum fluctuations in the very early Universe to radiative emission from newly formed stars. This gives the intergalactic medium a dual role as a powerful probe both of fundamental physics and of astrophysics. The heading of fundamental physics includes conditions in the very early Universe and cosmological parameters that determine the age of the Universe and its matter content. The astrophysics refers to chapters of the long cosmic history of stars and galaxies that are being revealed through the effects of stellar feedback on the cosmic gas. This review describes the physics of the intergalactic medium, focusing on recent theoretical and observational developments in understanding early cosmic history. In particular, the earliest generation of stars is thought to have transformed the Universe from darkness to light and to have had an enormous impact on the intergalactic medium. Half a million years after the Big Bang the Universe was filled with atomic hydrogen. As gravity pulled gas clouds together, the first stars ignited and their radiation turned the surrounding atoms back into free electrons and ions. From the observed spectral absorption signatures of the gas between us and distant sources, we know that the process of reionization pervaded most of space a billion years after the Big Bang, so that only a small fraction of the primordial hydrogen atoms remained between galaxies. Knowing exactly when and how the reionization process happened is a primary goal of cosmologists, because this would tell us when the early stars and black holes formed and in what kinds of galaxies. The distribution and clustering of these galaxies is particularly interesting since it is driven by primordial density fluctuations in the dark matter. Cosmic reionization is beginning to be understood with the help of theoretical models and computer

  16. Cosmic Ray Interactions in Shielding Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.

    2011-09-08

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electronmore » volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.« less

  17. 74 MHz nonthermal emission from molecular clouds: evidence for a cosmic ray dominated region at the galactic center.

    PubMed

    Yusef-Zadeh, F; Wardle, M; Lis, D; Viti, S; Brogan, C; Chambers, E; Pound, M; Rickert, M

    2013-10-03

    We present 74 MHz radio continuum observations of the Galactic center region. These measurements show nonthermal radio emission arising from molecular clouds that is unaffected by free–free absorption along the line of sight. We focus on one cloud, G0.13-0.13, representative of the population of molecular clouds that are spatially correlated with steep spectrum (α(327MHz)(74MHz) = 1.3 ± 0.3) nonthermal emission from the Galactic center region. This cloud lies adjacent to the nonthermal radio filaments of the Arc near l 0.2° and is a strong source of 74 MHz continuum, SiO (2-1), and Fe I Kα 6.4 keV line emission. This three-way correlation provides the most compelling evidence yet that relativistic electrons, here traced by 74 MHz emission, are physically associated with the G0.13-0.13 molecular cloud and that low-energy cosmic ray electrons are responsible for the Fe I Kα line emission. The high cosmic ray ionization rate 10(–1)3 s(–1) H(–1) is responsible for heating the molecular gas to high temperatures and allows the disturbed gas to maintain a high-velocity dispersion. Large velocity gradient (LVG) modeling of multitransition SiO observations of this cloud implies H2 densities 10(4–5) cm(–3) and high temperatures. The lower limit to the temperature of G0.13-0.13 is 100 K, whereas the upper limit is as high as 1000 K. Lastly, we used a time-dependent chemical model in which cosmic rays drive the chemistry of the gas to investigate for molecular line diagnostics of cosmic ray heating. When the cloud reaches chemical equilibrium, the abundance ratios of HCN/HNC and N2H+/HCO+ are consistent with measured values. In addition, significant abundance of SiO is predicted in the cosmic ray dominated region of the Galactic center. We discuss different possibilities to account for the origin of widespread SiO emission detected from Galactic center molecular clouds.

  18. The Late Eocene 187Os / 188Os excursion: Chemostratigraphy, cosmic dust flux and the Early Oligocene glaciation

    NASA Astrophysics Data System (ADS)

    Dalai, Tarun K.; Ravizza, Gregory E.; Peucker-Ehrenbrink, B.

    2006-01-01

    High resolution records (ca. 100 kyr) of Os isotope composition ( 187Os / 188Os) in bulk sediments from two tropical Pacific sites (ODP Sites 1218 and 1219) capture the complete Late Eocene 187Os / 188Os excursion and confirm that the Late Eocene 187Os / 188Os minimum, earlier reported by Ravizza and Peucker-Ehrenbrink [Earth Planet. Sci. Lett. 210 (2003) 151-165], is a global feature. Using the astronomically tuned age models available for these sites, it is suggested that the Late Eocene 187Os / 188Os minimum can be placed at 34.5 ± 0.1 Ma in the marine records. In addition, two other distinct features of the 187Os / 188Os excursion that are correlatable among sections are proposed as chemostratigraphic markers which can serve as age control points with a precision of ca. ± 0.1 Myr. We propose a speculative hypothesis that higher cosmic dust flux in the Late Eocene may have contributed to global cooling and Early Oligocene glaciation (Oi-1) by supplying bio-essential trace elements to the oceans and thereby resulting in higher ocean productivity, enhanced burial of organic carbon and draw down of atmospheric CO 2. To determine if the hypothesis that enhanced cosmic dust flux in the Late Eocene was a cause for the 187Os / 188Os excursion can be tested by using the paired bulk sediment and leachate Os isotope composition; 187Os / 188Os were also measured in sediment leachates. Results of analyses of leachates are inconsistent between the south Atlantic and the Pacific sites, and therefore do not yield a robust test of this hypothesis. Comparison of 187Os / 188Os records with high resolution benthic foraminiferal δ18O records across the Eocene-Oligocene transition suggests that 187Os flux to the oceans decreased during cooling and ice growth leading to the Oi-1 glaciation, whereas subsequent decay of ice-sheets and deglacial weathering drove seawater 187Os / 188Os to higher values. Although the precise timing and magnitude of these changes in weathering fluxes

  19. [beta][sup +] decay and cosmic-ray half-life of [sup 91]Nb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindi, M.M.; Sur, B.; Wedding, K.L.

    1993-06-01

    In the laboratory, [sup 91]Nb decays by electron capture with a 680-yr half-life. However, as a high energy cosmic ray, it would be stripped of its atomic electrons and would be able to undergo only [beta][sup +] decay. We produced and chemically purified a sample of [sup 91]Nb and observed its decay with an array of Ge and NaI detectors. By following the [beta][sup +] annihilation radiation, we were able to determine the [beta][sup +] branching ratios of both the 105-keV, 61-d isomer and the ground state of [sup 91]Nb. The ground-state branch is (7.7[plus minus]0.8)[times]10[sup [minus]3]% leading to amore » [beta][sup +] partial half-like of (8.8[plus minus]1.9)[times]10[sup 6] yr. Such a value of the half-life makes [sup 91]Nb a good candidate for determining the confinement time of this secondary component of the cosmic rays.« less

  20. Lightning Discharges, Cosmic Rays and Climate

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Siingh, Devendraa; Singh, R. P.; Singh, A. K.; Kamra, A. K.

    2018-03-01

    The entirety of the Earth's climate system is continuously bombarded by cosmic rays and exhibits about 2000 thunderstorms active at any time of the day all over the globe. Any linkage among these vast systems should have global consequences. Numerous studies done in the past deal with partial links between some selected aspects of this grand linkage. Results of these studies vary from weakly to strongly significant and are not yet complete enough to justify the physical mechanism proposed to explain such links. This review is aimed at presenting the current understanding, based on the past studies on the link between cosmic ray, lightning and climate. The deficiencies in some proposed links are pointed out. Impacts of cosmic rays on engineering systems and the possible effects of cosmic rays on human health are also briefly discussed. Also enumerated are some problems for future work which may help in developing the grand linkage among these three vast systems.

  1. Smooth halos in the cosmic web

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaite, José, E-mail: jose.gaite@upm.es

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description ofmore » the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.« less

  2. Cosmic ray antimatter and baryon symmetric cosmology

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1982-01-01

    The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic-ray antiprotons, including the new low-energy measurement of Buffington, et al. We conclude that the cosmic-ray antiproton data may be evidence for antimatter galaxies and baryon symmetric cosmology. The present bar P data are consistent with a primary extragalactic component having /p=/equiv 1+/- 3.2/0.7x10 = to the -4 independent of energy. We propose that the primary extragalactic cosmic ray antiprotons are most likely from active galaxies and that expected disintegration of bar alpha/alpha ban alpha/alpha. We further predict a value for ban alpha/alpha =/equiv 10 to the -5, within range of future cosmic ray detectors.

  3. Cosmic-ray streaming and anisotropies

    NASA Technical Reports Server (NTRS)

    Forman, M. A.; Gleeson, L. J.

    1975-01-01

    The paper is concerned with the differential current densities and anisotropies that exist in the interplanetary cosmic-ray gas, and in particular with a correct formulation and simple interpretation of the momentum equation that describes these on a local basis. Two examples of the use of this equation in the interpretation of previous data are given. It is demonstrated that in interplanetary space, the electric-field drifts and convective flow parallel to the magnetic field of cosmic-ray particles combine as a simple convective flow with the solar wind, and that there exist diffusive currents and transverse gradient drift currents. Thus direct reference to the interplanetary electric-field drifts is eliminated, and the study of steady-state and transient cosmic-ray anisotropies is both more systematic and simpler.

  4. The Cosmic Microwave Background: Detection and Interpretation of the First Light

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.

    2016-01-01

    A host of astrophysical observations suggest the early Universe was incredibly hot, dense, and homogeneous. A powerful and useful probe of this epoch is provided by the relic radiation, which we refer to today as the Cosmic Microwave Background (CMB). Precision maps of this light contain the earliest glimpse of the Universe after the Big Bang and signatures of the evolution of its contents. By exploiting these clues, constraints on the age, mass density, detailed composition, and geometry of the Universe can be made. A brief survey of the evolution of the radiometric and polarimetric imaging systems used in advancing our understanding of the early Universe will be reviewed. A survey of detector technologies, instrumentation techniques, and experimental challenges encountered in these efforts will be presented.

  5. Space-atmospheric interactions of energetic cosmic rays

    NASA Astrophysics Data System (ADS)

    Isar, Paula Gina

    2015-02-01

    Ultra-high energy cosmic rays are the most energetic particles in the Universe of which origin still remain a mystery since a century from their descovery. They are unique messengers coming from far beyond our Milky Way Galaxy, which provides insights into the fundamental matter, energy, space and time. As subatomic particles flying through space to nearly light speed, the ultra-high energy cosmic rays are so rare that they strike the Earth's atmosphere at a rate of up to only one particle per square kilometer per year or century. While the atmosphere is used as a giant calorimeter where cosmic rays induced air showers are initiated and the medium through which Cherenkov or fluorescence light or radio waves propagate, all cosmic ray measurements (performed either from space or ground) rely on an accurate atmospheric monitoring and understanding of atmospheric effects. The interdisciplinary link between Astroparticle Physics and Atmospheric Environment through the ultra-high energy comic rays space - atmospheric interactions, based on the present ground- and future space-based cosmic ray observatories, will be presented.

  6. A demonstration device for cosmic rays telescopes

    NASA Astrophysics Data System (ADS)

    Esposito, Salvatore

    2018-01-01

    We describe a hands-on accurate demonstrator for cosmic rays realized by six high school students. The main aim is to show the relevance and the functioning of the principal parts of a cosmic ray telescope (muon detector), with the help of two large sized wooden artefacts. The first one points out how cosmic rays can be tracked in a muon telescope, while the other one shows the key avalanche process of electronic ionization that effectively allows muon detection through a photomultiplier. Incoming cosmic rays are visualized in terms of laser beams, whose 3D trajectory is highlighted by turning on LEDs on two orthogonal matrices. Instead the avalanche ionization process is demonstrated through the avalanche falling off glass marbles on an inclined plane, finally turning on a LED. A pictured poster accompanying the demonstrator is as effective in assisting cosmic ray demonstration and its detection. The success of the demonstrator has been fully proven by the general public during a science festival, in which the corresponding project won the Honorable Mention in a dedicated competition.

  7. Interstellar matrices: the chemical composition and evolution of interstellar ices as observed by ISO.

    PubMed

    d'Hendecourt, L; Dartois, E

    2001-03-15

    Matrix isolation techniques have been developed in the early sixties as a tool for studying the spectroscopic properties of out of equilibrium species (atoms, radicals, ions, reactive molecules), embedded in rare gas inert matrices at low temperatures. Cold interstellar grains surfaces are able to condense out gas phase molecules, routinely observed by radioastronomy. These grain 'mantles' can be considered as 'interstellar matrices'. However, these matrices are not clean and unreactive. They are made principally of dirty ices whose composition must be determined carefully to assess the importance of the solid state chemistry that takes place in the Interstellar Medium. Infrared spectroscopy, both in astronomy and in the laboratory, is the unique tool to determine the chemical composition of these ices. Astronomical spectra can directly be compared with laboratory ones obtained using classical matrix isolation techniques. Furthermore, dedicated experiments may be undertaken to further improve the understanding of the basic physico-chemical processes that take place in cosmic ices.

  8. RELICS of the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Bradac, Marusa; Coe, Dan; Huang, Kuang-Han; Salmon, Brett; Hoag, Austin; Bradley, Larry; Ryan, Russell; Dawson, Will; Zitrin, Adi; Jones, Christine; Sharon, Keren; Trentu, Michele; Stark, Daniel; Bouwens, Rychard; Oesch, Pascal; Lam, Daniel; Patricia Carasco Nunez, Daniela; Paterno-Mahler, Rachel; Strait, Victoria

    2017-10-01

    When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. (1) First galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang). (2) It is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z 6-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose Spitzer imaging of the fields behind the most powerful cosmic telescopes selected using HST, Spitzer, and Planck data from the RELICS and SRELICS programs (Reionization Lensing Cluster Survey; 41 clusters, 190 HST orbits, 550 Spitzer hours). This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to study stellar properties of a large number, 20 galaxies at z 6-11. Deep Spitzer data will be crucial to unambiguously measure their stellar properties (age, SFR, M*). Finally this proposal is a unique opportunity to establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z 9. If confirmed, this result will require a paradigm shift in our understanding of the earliest star formation.

  9. RELICS of the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Bradac, Marusa; Coe, Dan; Huang, Kuang-Han; Salmon, Brett; Hoag, Austin; Bradley, Larry; Ryan, Russell; Dawson, Will; Zitrin, Adi; Jones, Christine; Sharon, Keren; Trenti, Michele; Stark, Daniel; Bouwens, Rychard; Oesch, Pascal; Lam, Daniel; Carrasco Nunez, Daniela Patricia

    2017-04-01

    When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. (1) First galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang). (2) It is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z 6-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose Spitzer imaging of the fields behind 3 most powerful cosmic telescopes selected using HST, Spitzer, and Planck data from the RELICS and SRELICS programs (Reionization Lensing Cluster Survey; 41 clusters, 190 HST orbits, 390 Spitzer hours). This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to study stellar properties of a large number, 30 galaxies at z 6-11. Deep Spitzer data will be crucial to unambiguously measure their stellar properties (age, SFR, M*). Finally this proposal will establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z 9. If confirmed in a larger sample, this result will require a paradigm shift in our understanding of the earliest star formation.

  10. The Formation of Solid Particles from their Gas-Phase Molecular Precursors in Cosmic Environments with NASA Ames' COSmIC Facility

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2014-01-01

    We present and discuss the unique characteristics and capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory. COSmIC stands for Cosmic Simulation Chamber and is dedicated to the study of molecules and ions under the low temperature and high vacuum conditions that are required to simulate interstellar, circumstellar and planetary physical environments in space. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a free jet supersonic expansion coupled to two ultrahigh-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) system for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection. Recent, unique, laboratory astrophysics results that were obtained using the capabilities of COSmIC will be discussed, in particular the progress that have been achieved in monitoring in the laboratory the formation of solid gains from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflow and planetary atmospheres. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of these studies for current and upcoming space missions.

  11. Galactic Cosmic Rays: From Earth to Sources

    NASA Technical Reports Server (NTRS)

    Brandt, Theresa J.

    2012-01-01

    For nearly 100 years we have known that cosmic rays come from outer space, yet proof of their origin, as well as a comprehensive understanding of their acceleration, remains elusive. Direct detection of high energy (up to 10(exp 15)eV), charged nuclei with experiments such as the balloon-born, antarctic Trans-Iron Galactic Element Recorder (TIGER) have provided insight into these mysteries through measurements of cosmic ray abundances. The abundance of these rare elements with respect to certain intrinsic properties suggests that cosmic rays include a component of massive star ejecta. Supernovae and their remnants (SNe & SNRs), often occurring at the end of a massive star's life or in an environment including massive star material, are one of the most likely candidates for sources accelerating galactic comic ray nuclei up to the requisite high energies. The Fermi Gamma-ray Space Telescope Large Area Detector (Fermi LAT) has improved our understanding of such sources by widening the window of observable energies and thus into potential sources' energetic processes. In combination with multiwavelength observations, we are now better able to constrain particle populations (often hadron-dominated at GeV energies) and environmental conditions, such as the magnetic field strength. The SNR CTB 37A is one such source which could contribute to the observed galactic cosmic rays. By assembling populations of SNRs, we will be able to more definitively define their contribution to the observed galactic cosmic rays, as well as better understand SNRs themselves. Such multimessenger studies will thus illuminate the long-standing cosmic ray mysteries, shedding light on potential sources, acceleration mechanisms, and cosmic ray propagation.

  12. Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument

    NASA Technical Reports Server (NTRS)

    Mather, J. C.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E., Jr.; Fixsen, D. J.; Hewagama, T.; Isaacman, R. B.; Jensen, K. A.; Meyer, S. S.; Noerdlinger, P. D.

    1994-01-01

    The cosmic microwave background radiation (CMBR) has a blackbody spectrum within 3.4 x 10(exp -8) ergs/sq cm/s/sr cm over the frequency range from 2 to 20/cm (5-0.5 mm). These measurements, derived from the Far-Infrared Absolute Spectrophotomer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite, imply stringent limits on energy release in the early universe after t approximately 1 year and redshift z approximately 3 x 10(exp 6). The deviations are less than 0.30% of the peak brightness, with an rms value of 0.01%, and the dimensionless cosmological distortion parameters are limited to the absolute value of y is less than 2.5 x 10(exp -5) and the absolute value of mu is less than 3.3 x 10(exp -4) (95% confidence level). The temperature of the CMBR is 2.726 +/- 0.010 K (95% confidence level systematic).

  13. Cosmic Radiation | RadTown USA | US EPA

    EPA Pesticide Factsheets

    2017-08-07

    Radiation from space is constantly hitting the Earth. Radiation from space is called cosmic radiation. Cosmic radiation makes up about five percent of annual radiation exposure of an average person in the United States.

  14. Cosmic muon induced EM showers in NO$$\

    DOE PAGES

    Yadav, Nitin; Duyang, Hongyue; Shanahan, Peter; ...

    2016-11-15

    Here, the NuMI Off-Axis v e Appearance (NOvA) experiment is a ne appearance neutrino oscillation experiment at Fermilab. It identifies the ne signal from the electromagnetic (EM) showers induced by the electrons in the final state of neutrino interactions. Cosmic muon induced EM showers, dominated by bremsstrahlung, are abundant in NOvA far detector. We use the Cosmic Muon- Removal technique to get pure EM shower sample from bremsstrahlung muons in data. We also use Cosmic muon decay in flight EM showers which are highly pure EM showers.The large Cosmic-EM sample can be used, as data driven method, to characterize themore » EM shower signature and provides valuable checks of the simulation, reconstruction, particle identification algorithm, and calibration across the NOvA detector.« less

  15. Cosmic muon induced EM showers in NO$$\

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Nitin; Duyang, Hongyue; Shanahan, Peter

    Here, the NuMI Off-Axis v e Appearance (NOvA) experiment is a ne appearance neutrino oscillation experiment at Fermilab. It identifies the ne signal from the electromagnetic (EM) showers induced by the electrons in the final state of neutrino interactions. Cosmic muon induced EM showers, dominated by bremsstrahlung, are abundant in NOvA far detector. We use the Cosmic Muon- Removal technique to get pure EM shower sample from bremsstrahlung muons in data. We also use Cosmic muon decay in flight EM showers which are highly pure EM showers.The large Cosmic-EM sample can be used, as data driven method, to characterize themore » EM shower signature and provides valuable checks of the simulation, reconstruction, particle identification algorithm, and calibration across the NOvA detector.« less

  16. Early Results from TUS, the First Orbital Detector of Extreme Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Zotov, Mikhail

    TUS is the world's first orbital detector of extreme energy cosmic rays (EECRs), which operates as a part of the scientific payload of the Lomonosov satellite since May 19, 2016. TUS employs the nocturnal atmosphere of the Earth to register ultraviolet (UV) fluorescence and Cherenkov radiation from extensive air showers generated by EECRs as well as UV radiation from lightning strikes and transient luminous events, micro-meteors and space debris. The first months of its operation in orbit have demonstrated an unexpectedly rich variety of UV radiation in the atmosphere. We briefly review the design of TUS and present a few examples of events recorded in a mode dedicated to registering EECRs.

  17. Introducing CoDa (Cosmic Dawn): Radiation-Hydrodynamics of Galaxy Formation in the Early Universe

    NASA Astrophysics Data System (ADS)

    Ocvirk, Pierre; Gillet, Nicolas; Shapiro, Paul; Aubert, Dominique; Iliev, Ilian; Romain, Teyssier; Yepes, Gustavo; Choi, Jun-hwan; Sullivan, David; Knebe, Alexander; Gottloeber, Stefan; D'Aloisio, Anson; Park, Hyunbae; Hoffman, Yehuda

    2015-08-01

    CoDa (Cosmic Dawn) is the largest fully coupled radiation hydrodynamics simulation of the reionization of the local Universe to date. It was performed using RAMSES-CUDATON running on 8192 nodes (i.e. 8192 GPUs) on the titan supercomputer at Oak Ridge National Laboratory to simulate a 64 h-1Mpc side box down to z=4.23. In this simulation, reionization proceeds self-consistently, driven by stellar radiation. We compare the simulation's reionization history, ionizing flux density, the cosmic star formation history and the CMB Thompson scattering optical depth with their observational values. Luminosity functions are also in rather good agreement with high redshift observations, although very bright objects (MAB1600 < -21) are overabundant in CoDa. We investigate the evolution of the intergalactic medium, and find that gas filaments present a sheathed structure, with a hot envelope surrounding a cooler core. They are however not able to self-shield, while regions denser than 10^-4.5 H atoms per comoving h^-3cm^3 are. Haloes below M ˜ 3.10^9 M⊙ are severely affected by the expanding, rising UV background: their ISM is quickly photo-heated to temperatures above our star formation threshold and therefore stop forming stars after local reionization has occured. Overall, the haloes between 10^(10-11) M⊙ dominate the star formation budget of the box for most of the Epoch of Reionization. Several additional studies will follow, looking for instance at environmental effects on galaxy properties, and the regimes of accretion.

  18. High redshift signatures in the 21 cm forest due to cosmic string wakes

    NASA Astrophysics Data System (ADS)

    Tashiro, Hiroyuki; Sekiguchi, Toyokazu; Silk, Joseph

    2014-01-01

    Cosmic strings induce minihalo formation in the early universe. The resultant minihalos cluster in string wakes and create a ``21 cm forest'' against the cosmic microwave background (CMB) spectrum. Such a 21 cm forest can contribute to angular fluctuations of redshifted 21 cm signals integrated along the line of sight. We calculate the root-mean-square amplitude of the 21 cm fluctuations due to strings and show that these fluctuations can dominate signals from minihalos due to primordial density fluctuations at high redshift (zgtrsim10), even if the string tension is below the current upper bound, Gμ < 1.5 × 10-7. Our results also predict that the Square Kilometre Array (SKA) can potentially detect the 21 cm fluctuations due to strings with Gμ ≈ 7.5 × 10-8 for the single frequency band case and 4.0 × 10-8 for the multi-frequency band case.

  19. Cosmic Balloons

    ERIC Educational Resources Information Center

    El Abed, Mohamed

    2014-01-01

    A team of French high-school students sent a weather balloon into the upper atmosphere to recreate Viktor Hess's historical experiment that demonstrated the existence of ionizing radiation from the sky--later called cosmic radiation. This discovery earned him the Nobel Prize for Physics in 1936.

  20. Dark cosmic rays

    DOE PAGES

    Hu, Ping-Kai; Kusenko, Alexander; Takhistov, Volodymyr

    2017-02-22

    If dark matter particles have an electric charge, as in models of millicharged dark matter, such particles should be accelerated in the same astrophysical accelerators that produce ordinary cosmic rays, and their spectra should have a predictable rigidity dependence. Depending on the charge, the resulting “dark cosmic rays” can be detected as muon-like or neutrino-like events in Super-Kamiokande, IceCube, and other detectors. We present new limits and propose several new analyses, in particular, for the Super-Kamiokande experiment, which can probe a previously unexplored portion of the millicharged dark matter parameter space. Here, most of our results are fairly general andmore » apply to a broad class of dark matter models.« less

  1. Cosmic Rays in the Heliosphere: Requirements for Future Observations

    NASA Astrophysics Data System (ADS)

    Mewaldt, R. A.

    2013-06-01

    Since the publication of Cosmic Rays in the Heliosphere in 1998 there has been great progress in understanding how and why cosmic rays vary in space and time. This paper discusses measurements that are needed to continue advances in relating cosmic ray variations to changes in solar and interplanetary activity and variations in the local interstellar environment. Cosmic ray acceleration and transport is an important discipline in space physics and astrophysics, but it also plays a critical role in defining the radiation environment for humans and hardware in space, and is critical to efforts to unravel the history of solar activity. Cosmic rays are measured directly by balloon-borne and space instruments, and indirectly by ground-based neutron, muon and neutrino detectors, and by measurements of cosmogenic isotopes in ice cores, tree-rings, sediments, and meteorites. The topics covered here include: what we can learn from the deep 2008-2009 solar minimum, when cosmic rays reached the highest intensities of the space era; the implications of 10Be and 14C isotope archives for past and future solar activity; the effects of variations in the size of the heliosphere; opportunities provided by the Voyagers for discovering the origin of anomalous cosmic rays and measuring cosmic-ray spectra in interstellar space; and future space missions that can continue the exciting exploration of the heliosphere that has occurred over the past 50 years.

  2. A Simplified Model for the Acceleration of Cosmic Ray Particles

    ERIC Educational Resources Information Center

    Gron, Oyvind

    2010-01-01

    Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…

  3. Cosmic-Ray Source Composition Determined from ACE

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M.

    2000-01-01

    The cosmic rays arriving at Earth comprise a mix of material produced by stellar sources and ejected into the interstellar medium (primary cosmic rays) and particles produced by fragmentation of heavier nuclei during transport through the Galaxy.

  4. A three-phase amplification of the cosmic magnetic field in galaxies

    NASA Astrophysics Data System (ADS)

    Martin-Alvarez, Sergio; Devriendt, Julien; Slyz, Adrianne; Teyssier, Romain

    2018-06-01

    Arguably the main challenge of galactic magnetism studies is to explain how the interstellar medium of galaxies reaches energetic equipartition despite the extremely weak cosmic primordial magnetic fields that are originally predicted to thread the inter-galactic medium. Previous numerical studies of isolated galaxies suggest that a fast dynamo amplification might suffice to bridge the gap spanning many orders of magnitude in strength between the weak early Universe magnetic fields and the ones observed in high redshift galaxies. To better understand their evolution in the cosmological context of hierarchical galaxy growth, we probe the amplification process undergone by the cosmic magnetic field within a spiral galaxy to unprecedented accuracy by means of a suite of constrained transport magnetohydrodynamical adaptive mesh refinement cosmological zoom simulations with different stellar feedback prescriptions. A galactic turbulent dynamo is found to be naturally excited in this cosmological environment, being responsible for most of the amplification of the magnetic energy. Indeed, we find that the magnetic energy spectra of simulated galaxies display telltale inverse cascades. Overall, the amplification process can be divided in three main phases, which are related to different physical mechanisms driving galaxy evolution: an initial collapse phase, an accretion-driven phase, and a feedback-driven phase. While different feedback models affect the magnetic field amplification differently, all tested models prove to be subdominant at early epochs, before the feedback-driven phase is reached. Thus the three-phase evolution paradigm is found to be quite robust vis-a-vis feedback prescriptions.

  5. Acceleration and propagation of cosmic rays

    NASA Astrophysics Data System (ADS)

    Fransson, C.; Epstein, R. I.

    1980-11-01

    Two general categories of cosmic ray models are discussed, concomitant acceleration and propagation (CAP) models and sequential acceleration and propagation (SAP) models. These normally correspond to the cosmic rays being continuously accelerated in the interstellar medium or being rapidly produced by discrete sources or strong shock waves, respectively. For the CAP models it is found that the ratio of the predominantly secondary nuclei (Li + Be + B + N) to the predominantly primary nuclei (C + O) varies by less than a factor of 1.5 between 1 and 100 GeV per nucleon. This is at variance with current measurements. It thus appears that the evolution of cosmic rays is best described by SAP models.

  6. The structure of cosmic ray shocks

    NASA Astrophysics Data System (ADS)

    Axford, W. I.; Leer, E.; McKenzie, J. F.

    1982-07-01

    The acceleration of cosmic rays by steady shock waves has been discussed in brief reports by Leer et al. (1976) and Axford et al. (1977). This paper presents a more extended version of this work. The energy transfer and the structure of the shock wave is discussed in detail, and it is shown that even for moderately strong shock waves most of the upstream energy flux in the background gas is transferred to the cosmic rays. This holds also when the upstream cosmic ray pressure is very small. For an intermediate Mach-number regime the overall shock structure is shown to consist of a smooth transition followed by a gas shock (cf. Drury and Voelk, 1980).

  7. Cosmic-ray record in solar system matter

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Arnold, J. R.; Lal, D.

    1983-01-01

    The interaction of galactic cosmic rays (GCR) and solar cosmic rays (SCR) with bodies in the solar system is discussed, and what the record of that interaction reveals about the history of the solar system is considered. The influence of the energy, charge, and mass of the particles on the interaction is addressed, showing long-term average fluxes of solar protons, predicted production rates for heavy-nuclei tracks and various radionuclides as a function of depth in lunar rock, and integral fluxes of protons emitted by solar flares. The variation of the earth's magnetic field, the gardening of the lunar surface, and the source of meteorites and cosmic dust are studied using the cosmic ray record. The time variation of GCR, SCR, and VH and VVH nuclei is discussed for both the short and the long term.

  8. Cosmic Rays - A Word-Wide Student Laboratory

    NASA Astrophysics Data System (ADS)

    Adams, Mark

    2017-01-01

    The QuarkNet program has distributed hundreds of cosmic ray detectors for use in high schools and research facilities throughout the world over the last decade. Data collected by those students has been uploaded to a central server where web-based analysis tools enable users to characterize and to analyze everyone's cosmic ray data. Since muons rain down on everyone in the world, all students can participate in this free, high energy particle environment. Through self-directed inquiry students have designed their own experiments: exploring cosmic ray rates and air shower structure; and using muons to measure their speed, time dilation, lifetime, and affects on biological systems. We also plan to expand our annual International Muon Week project to create a large student-led collaboration where similar cosmic ray measurements are performed simultaneously throughout the world.

  9. Low Clouds and Cosmic Rays: Possible Reasons for Correlation Changes

    NASA Astrophysics Data System (ADS)

    Veretenenko, S. V.; Ogurtsov, M. G.

    2015-03-01

    In this work we investigated the nature of correlations between low cloud cover anomalies (LCA) and galactic cosmic ray (GCR) variations detected on the decadal time scale, as well as possible reasons for the violation of these correlations in the early 2000s. It was shown that the link between cloud cover at middle latitudes and GCR fluxes is not direct, but it is realized through GCR influence on the development of extratropical baric systems (cyclones and troughs) which form cloud field. As the sign of GCR effects on the troposphere dynamics seems to depend on the strength of the stratospheric polar vortex, a possible reason for the violation of a positive correlation between LCA and GCR fluxes in the early 2000s may be the change of the vortex state which resulted in the reversal of GCR effects on extratropical cyclone development.

  10. Can cosmic shear shed light on low cosmic microwave background multipoles?

    PubMed

    Kesden, Michael; Kamionkowski, Marc; Cooray, Asantha

    2003-11-28

    The lowest multipole moments of the cosmic microwave background (CMB) are smaller than expected for a scale-invariant power spectrum. One possible explanation is a cutoff in the primordial power spectrum below a comoving scale of k(c) approximately equal to 5.0 x 10(-4) Mpc(-1). Such a cutoff would increase significantly the cross correlation between the large-angle CMB and cosmic-shear patterns. The cross correlation may be detectable at >2sigma which, combined with the low CMB moments, may tilt the balance between a 2sigma result and a firm detection of a large-scale power-spectrum cutoff. The cutoff also increases the large-angle cross correlation between the CMB and the low-redshift tracers of the mass distribution.

  11. Amplitudes of solar modulation of low energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Von Rosenvinge, T. T.; Paizis, C.

    1982-01-01

    There have been differences of opinion regarding the origin and behavior of the solar modulation of galactic cosmic rays. It has been shown that the return to solar maximum intensity levels beginning in early 1978 was dominated by Forbush decreases. These Forbush decreases were caused by radially moving interplanetary shocks resulting from large solar flares. The present investigation is concerned with solar modulation effects which were observed during the previous solar minimum. The effects were associated with high-speed streams in the solar wind. These streams caused the formation of corotating interaction regions with both forward and reverse shocks. The modulation effects seen near earth are intimately connected with these shocks.

  12. Charm: Cosmic history agnostic reconstruction method

    NASA Astrophysics Data System (ADS)

    Porqueres, Natalia; Ensslin, Torsten A.

    2017-03-01

    Charm (cosmic history agnostic reconstruction method) reconstructs the cosmic expansion history in the framework of Information Field Theory. The reconstruction is performed via the iterative Wiener filter from an agnostic or from an informative prior. The charm code allows one to test the compatibility of several different data sets with the LambdaCDM model in a non-parametric way.

  13. Alteration of the Carbon and Nitrogen Isotopic Composition in the Martian Surface Rocks Due to Cosmic Ray Exposure

    NASA Technical Reports Server (NTRS)

    Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.

    2014-01-01

    C-13/C-12 and N-15/N-14 isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce C-13 and N-15 isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both C-13 and N-15 due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is <10 ppm, then the "light," potentially "biological" C-13/C-12 ratio would be effectively erased by cosmic rays over 3.5 billion years of exposure. We found that for the rocks with relatively short exposure ages (e.g., 100 million years), cosmogenic changes in N-15/N-14 ratio are still very significant. We also show that a short exposure to cosmic rays of Allan Hills 84001 while on Mars can explain its high-temperature heavy nitrogen isotopic composition (N-15/N-14). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.

  14. PLASMA EFFECTS ON EXTRAGALACTIC ULTRAHIGH-ENERGY COSMIC-RAY HADRON BEAMS IN COSMIC VOIDS. II. KINETIC INSTABILITY OF PARALLEL ELECTROSTATIC WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krakau, S.; Schlickeiser, R., E-mail: steffen.krakau@rub.de, E-mail: rsch@tp4.rub.de

    2016-02-20

    The linear instability of an ultrarelativistic hadron beam in the unmagnetized intergalactic medium (IGM) is investigated with respect to the excitation of parallel electrostatic and electromagnetic fluctuations. This analysis is important for the propagation of extragalactic ultrarelativistic cosmic rays from their distant sources to Earth. As opposed to the previous paper, we calculate the minimum instability growth time for Lorentz-distributed cosmic rays which traverse the hot IGM. The growth times are orders of magnitude higher than the cosmic-ray propagation time in the IGM. Since the backreaction of the generated plasma fluctuations (plateauing) lasts longer than the propagation time, the cosmic-raymore » hadron beam can propagate to the Earth without losing a significant amount of energy to electrostatic turbulence.« less

  15. Transient cosmic ray increase associated with a geomagnetic storm

    NASA Technical Reports Server (NTRS)

    Kudo, S.; Wada, M.; Tanskanen, P.; Kodama, M.

    1985-01-01

    On the basis of worldwide network data of cosmic ray nucleonic components, the transient cosmic ray increase due to the depression of cosmic ray cutoff rigidity during a severe geomagnetic storm was investigated in terms of the longitudinal dependence. Multiple correlation analysis among isotropic and diurnal terms of cosmic ray intensity variations and Dst term of the geomagnetic field is applied to each of various station's data. It is shown that the amplitude of the transient cosmic ray increase associated with Dst depends on the local time of the station, and that its maximum phase is found in the evening sector. This fact is consistent with the theoretical estimation based on the azimuthally asymmetric ring current model for the magnetic DS field.

  16. Charge 4/3 leptons in cosmic rays

    NASA Technical Reports Server (NTRS)

    Wada, T.; Yamashita, Y.; Imaeda, K.; Yamamoto, I.

    1985-01-01

    A cosmic ray counter telescope has been operated at zenith angles of 0, 40, 44, and 60 degs in order to look for charge 4/3 particles. A few million clean single cosmic rays of each zenith angle are analyzed.

  17. The Cosmic Ray Electron Excess

    NASA Technical Reports Server (NTRS)

    Chang, J.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Christl, M.; Ganel, O.; Guzik, T. G.; Isbert, J.; Kim, K. C.; Kuznetsov, E. N.; hide

    2008-01-01

    This slide presentation reviews the possible sources for the apparent excess of Cosmic Ray Electrons. The presentation reviews the Advanced Thin Ionization Calorimeter (ATIC) instrument, the various parts, how cosmic ray electrons are measured, and shows graphs that review the results of the ATIC instrument measurement. A review of Cosmic Ray Electrons models is explored, along with the source candidates. Scenarios for the excess are reviewed: Supernova remnants (SNR) Pulsar Wind nebulae, or Microquasars. Each of these has some problem that mitigates the argument. The last possibility discussed is Dark Matter. The Anti-Matter Exploration and Light-nuclei Astrophysics (PAMELA) mission is to search for evidence of annihilations of dark matter particles, to search for anti-nuclei, to test cosmic-ray propagation models, and to measure electron and positron spectra. There are slides explaining the results of Pamela and how to compare these with those of the ATIC experiment. Dark matter annihilation is then reviewed, which represent two types of dark matter: Neutralinos, and kaluza-Kline (KK) particles, which are next explained. The future astrophysical measurements, those from GLAST LAT, the Alpha Magnetic Spectrometer (AMS), and HEPCAT are reviewed, in light of assisting in finding an explanation for the observed excess. Also the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) could help by revealing if there are extra dimensions.

  18. Cosmic Censorship for Gowdy Spacetimes.

    PubMed

    Ringström, Hans

    2010-01-01

    Due to the complexity of Einstein's equations, it is often natural to study a question of interest in the framework of a restricted class of solutions. One way to impose a restriction is to consider solutions satisfying a given symmetry condition. There are many possible choices, but the present article is concerned with one particular choice, which we shall refer to as Gowdy symmetry. We begin by explaining the origin and meaning of this symmetry type, which has been used as a simplifying assumption in various contexts, some of which we shall mention. Nevertheless, the subject of interest here is strong cosmic censorship. Consequently, after having described what the Gowdy class of spacetimes is, we describe, as seen from the perspective of a mathematician, what is meant by strong cosmic censorship. The existing results on cosmic censorship are based on a detailed analysis of the asymptotic behavior of solutions. This analysis is in part motivated by conjectures, such as the BKL conjecture, which we shall therefore briefly describe. However, the emphasis of the article is on the mathematical analysis of the asymptotics, due to its central importance in the proof and in the hope that it might be of relevance more generally. The article ends with a description of the results that have been obtained concerning strong cosmic censorship in the class of Gowdy spacetimes.

  19. Cosmic Ray Helium Intensities over the Solar Cycle from ACE

    NASA Technical Reports Server (NTRS)

    DeNolfo, G. A.; Yanasak, N. E.; Binns, W. R.; Cohen, C. M. S.; Cummings, A. C.; Davis, A. J.; George, J. S.; Hink. P. L.; Israel, M. H.; Lave, K.; hide

    2007-01-01

    Observations of cosmic-ray helium energy spectra provide important constraints on cosmic ray origin and propagation. However, helium intensities measured at Earth are affected by solar modulation, especially below several GeV/nucleon. Observations of helium intensities over a solar cycle are important for understanding how solar modulation affects galactic cosmic ray intensities and for separating the contributions of anomalous and galactic cosmic rays. The Cosmic Ray Isotope Spectrometer (CRIS) on ACE has been measuring cosmic ray isotopes, including helium, since 1997 with high statistical precision. We present helium elemental intensities between approx. 10 to approx. 100 MeV/nucleon from the Solar Isotope Spectrometer (SIS) and CRIS observations over a solar cycle and compare these results with the observations from other satellite and balloon-borne instruments, and with GCR transport and solar modulation models.

  20. Cosmocultural Evolution: Cosmic Motivation for Interstellar Travel?

    NASA Astrophysics Data System (ADS)

    Lupisella, M.

    Motivations for interstellar travel can vary widely from practical survival motivations to wider-ranging moral obligations to future generations. But it may also be fruitful to explore what, if any, "cosmic" relevance there may be regarding interstellar travel. Cosmocultural evolution can be defined as the coevolution of cosmos and culture, with cultural evolution playing an important and perhaps critical role in the overall evolution of the universe. Strong versions of cosmocultural evolution might suggest that cultural evolution may have unlimited potential as a cosmic force. In such a worldview, the advancement of cultural beings throughout the universe could have significant cosmic relevance, perhaps providing additional motivation for interstellar travel. This paper will explore some potential philosophical and policy implications for interstellar travel of a cosmocultural evolutionary perspective and other related concepts, including some from a recent NASA book, Cosmos and Culture: Cultural Evolution in a Cosmic Context.

  1. Carl Sagan's Cosmic Connection

    NASA Astrophysics Data System (ADS)

    Sagan, Carl; Agel, Jerome

    2000-08-01

    Foreword Freeman Dyson; Personal reflections Ann Druyan; Preface; Part I. Cosmic Perspective: 1. A transitional animal; 2. The Unicorn of Cetus; 3. A message from earth; 4. A message to earth; 5. Experiments in utopias; 6. Chauvinism; 7. Space exploration as a human enterprise I. The scientific interest; 8. Space exploration as a human enterprise II. The public interest; 9. Space exploration as a human enterprise III. The historical interest; Part II. The Solar System: 10. On teaching the first grade; 11. 'The ancient and legendary Gods of old'; 12. The Venus detective story; 13. Venus is hell; 14. Science and 'intelligence'; 15. The moons of Barsoom; 16. The mountains of Mars I. Observations from earth; 17. The mountains of Mars II. Observations from space; 18. The canals of Mars; 19. The lost pictures of Mars; 20. The Ice Age and the cauldron; 21. Beginnings and ends of the Earth; 22. Terraforming the plants; 23. The exploration and utlization of the solar system; Part III. Beyond the Solar System: 24. Some of my best friends are dolphins; 25. 'Hello, central casting? Send me twenty extraterrestrials'; 26. The cosmic connection; 27. Extraterrestrial life: an idea whose time has come; 28. Has the Earth been visited?; 29. A search strategy for detecting extraterrestrial intelligence; 30. If we succeed 31. Cables, drums, and seashells; 32. The night freight to the stars; 33. Astroengineering; 34. Twenty questions: a classification of cosmic civilisations; 35. Galactic cultural exchanges; 36. A passage to elsewhere; 37. Starfolk I. A Fable; 38. Starfolk II. A future; 39. Starfolk III. The cosmic Cheshire cats; Epilog David Morrison; Index.

  2. Excited cosmic strings with superconducting currents

    NASA Astrophysics Data System (ADS)

    Hartmann, Betti; Michel, Florent; Peter, Patrick

    2017-12-01

    We present a detailed analysis of excited cosmic string solutions that possess superconducting currents. These currents can be excited inside the string core, and—if the condensate is large enough—can lead to the excitations of the Higgs field. Next to the case with global unbroken symmetry, we discuss also the effects of the gauging of this symmetry and show that excited condensates persist when coupled to an electromagnetic field. The space-time of such strings is also constructed by solving the Einstein equations numerically and we show how the local scalar curvature is modified by the excitation. We consider the relevance of our results on the cosmic string network evolution as well as observations of primordial gravitational waves and cosmic rays.

  3. RELICS of the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Bradac, Marusa; Coe, Dan; Strait, Victoria; Salmon, Brett; Hoag, Austin; Bradley, Larry; Ryan, Russell; Dawson, Will; Zitrin, Adi; Jones, Christine; Sharon, Keren; Trenti, Michele; Stark, Daniel; Oesch, Pascal; Lam, Danel; Carrasco Nunez, Daniela Patricia; Paterno-Mahler, Rachel; Frye, Brenda

    2018-05-01

    When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. (1) First galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang). (2) It is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z 6-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose to complete deep Spitzer imaging of the fields behind the 10 most powerful cosmic telescopes selected using HST, Spitzer, and Planck data from the RELICS and SRELICS programs (Reionization Lensing Cluster Survey; 41 clusters, 190 HST orbits, 440 Spitzer hours). 6 clusters out of 10 are still lacking deep data. This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to study stellar properties of a large number, 60 galaxies at z 6-11. Deep Spitzer data will be crucial to unambiguously measure their stellar properties (age, SFR, M*). Finally this proposal will establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z 9. If confirmed in a larger sample, this result will require a paradigm shift in our understanding of the earliest star formation.

  4. Cosmic ray propagation in the local superbubble

    NASA Technical Reports Server (NTRS)

    Steitmatter, R. E.; Balasubrahmanyan, V. K.; Protheroe, R. J.; Ormes, J. F.

    1984-01-01

    It is suggested that a ring of HI gas lying in the galactic plane is part of a supershell which formed some 3 x to the 7th power years ago. The consequences of a closed magnetic supershell for cosmic ray propagation are examined and it is concluded that there is no evidence which precludes the production and trapping of cosmic rays in such a region. A consequence of superbubble confinement is that the mean age of cosmic rays would be independent of energy. This can be tested by high energy observations of the isotopic composition of Be.

  5. Cosmic string lensing and closed timelike curves

    NASA Astrophysics Data System (ADS)

    Shlaer, Benjamin; Tye, S.-H. Henry

    2005-08-01

    In an analysis of the gravitational lensing by two relativistic cosmic strings, we argue that the formation of closed timelike curves proposed by Gott is unstable in the presence of particles (e.g. the cosmic microwave background radiation). Because of the attractorlike behavior of the closed timelike curve, we argue that this instability is very generic. A single graviton or photon in the vicinity, no matter how soft, is sufficient to bend the strings and prevent the formation of closed timelike curves. We also show that the gravitational lensing due to a moving cosmic string is enhanced by its motion, not suppressed.

  6. Cosmic-ray antimatter - A primary origin hypothesis

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1983-01-01

    The present investigation is concerned with the possibility that the observed cosmic-ray protons are of primary extragalactic origin, taking into account the significance of the current antiproton data. Attention is given to questions regarding primary antiprotons, antihelium fluxes, and the propagation of extragalactic cosmic rays. It is concluded that the primary origin hypothesis should be considered as a serious alternative explanation for the cosmic-ray antiproton fluxes. Such extragalactic primary origin can be considered in the context of a baryon symmetric domain cosmology. The fluxes and propagation characteristics suggested are found to be in rough agreement with the present antiproton data.

  7. Electromagnetic Design of Feedhorn-Coupled Transition-Edge Sensors for Cosmic Microwave Background Polarimetery

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2011-01-01

    Observations of the cosmic microwave background (CMB) provide a powerful tool for probing the evolution of the early universe. Specifically, precision measurement of the polarization of the CMB enables a direct test for cosmic inflation. A key technological element on the path to the measurement of this faint signal is the capability to produce large format arrays of background-limited detectors. We describe the electromagnetic design of feedhorn-coupled, TES-based sensors. Each linear orthogonal polarization from the feed horn is coupled to a superconducting microstrip line via a symmetric planar orthomode transducer (OMT). The symmetric OMT design allows for highly-symmetric beams with low cross-polarization over a wide bandwidth. In addition, this architecture enables a single microstrip filter to define the passband for each polarization. Care has been taken in the design to eliminate stray coupling paths to the absorbers. These detectors will be fielded in the Cosmology Large Angular Scale Surveyor (CLASS).

  8. Wavelet-Bayesian inference of cosmic strings embedded in the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    McEwen, J. D.; Feeney, S. M.; Peiris, H. V.; Wiaux, Y.; Ringeval, C.; Bouchet, F. R.

    2017-12-01

    Cosmic strings are a well-motivated extension to the standard cosmological model and could induce a subdominant component in the anisotropies of the cosmic microwave background (CMB), in addition to the standard inflationary component. The detection of strings, while observationally challenging, would provide a direct probe of physics at very high-energy scales. We develop a framework for cosmic string inference from observations of the CMB made over the celestial sphere, performing a Bayesian analysis in wavelet space where the string-induced CMB component has distinct statistical properties to the standard inflationary component. Our wavelet-Bayesian framework provides a principled approach to compute the posterior distribution of the string tension Gμ and the Bayesian evidence ratio comparing the string model to the standard inflationary model. Furthermore, we present a technique to recover an estimate of any string-induced CMB map embedded in observational data. Using Planck-like simulations, we demonstrate the application of our framework and evaluate its performance. The method is sensitive to Gμ ∼ 5 × 10-7 for Nambu-Goto string simulations that include an integrated Sachs-Wolfe contribution only and do not include any recombination effects, before any parameters of the analysis are optimized. The sensitivity of the method compares favourably with other techniques applied to the same simulations.

  9. The early atmosphere: a new picture.

    PubMed

    Levine, J S

    1986-01-01

    Over the last several years, many of the fundamental ideas concerning the composition and chemical evolution of the Earth's early atmosphere have changed. While many aspects of this subject are clouded--either uncertain or unknown, a new picture is emerging. We are just beginning to understand how astronomical, geochemical, and atmospheric processes each contributed to the development of the gaseous envelope around the third planet from the sun some 4.6 billion years ago and how that envelope chemically evolved over the history of our planet. Simple compounds in that gaseous envelope, energized by atmospheric lightning and/or solar ultraviolet radiation, formed molecules of increasing complexity that eventually evolved into the first living systems on our planet. This process is called "chemical evolution" and immediately preceded biological evolution; once life developed and evolved, it began to alter the chemical composition of the atmosphere that provided the very essence of its creation. Photosynthetic organisms which have the ability to biochemically transform carbon dioxide and water to carbohydrates, which they use for food, produce large amounts of molecular oxygen (O2) as a by-product of the reaction. Atmospheric oxygen photochemically formed ozone, which absorbs ultraviolet radiation from the sun and shields the Earth's surface from this biologically lethal radiation. Once atmospheric ozone levels increased sufficiently, life could leave the safety of the oceans and go ashore for the first time. Throughout the history of our planet, there has been strong interaction between life and the atmosphere. Understanding our cosmic roots is particularly relevant as we embark on a search for life outside the Earth. At this very moment, several radio telescopes around the world are searching for extraterrestrial intelligence (SETI).

  10. Ultra-heavy cosmic rays: Theoretical implications of recent observations

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Hainebach, K. L.; Schramm, D. N.; Anglin, J. D.

    1977-01-01

    Extreme ultraheavy cosmic ray observations (Z greater or equal 70) are compared with r-process models. A detailed cosmic ray propagation calculation is used to transform the calculated source distributions to those observed at the earth. The r-process production abundances are calculated using different mass formulae and beta-rate formulae; an empirical estimate based on the observed solar system abundances is used also. There is the continued strong indication of an r-process dominance in the extreme ultra-heavy cosmic rays. However it is shown that the observed high actinide/Pt ratio in the cosmic rays cannot be fit with the same r-process calculation which also fits the solar system material. This result suggests that the cosmic rays probably undergo some preferential acceleration in addition to the apparent general enrichment in heavy (r-process) material. As estimate also is made of the expected relative abundance of superheavy elements in the cosmic rays if the anomalous heavy xenon in carbonaceous chondrites is due to a fissioning superheavy element.

  11. The Cosmic Microwave Background Anisotropy

    NASA Astrophysics Data System (ADS)

    Bennett, C. L.

    1994-12-01

    The properties of the cosmic microwave background radiation provide unique constraints on the history and evolution of the universe. The first detection of anisotropy of the microwave radiation was reported by the COBE Team in 1992, based on the first year of flight data. The latest analyses of the first two years of COBE data are reviewed in this talk, including the amplitude of the microwave anisotropy as a function of angular scale and the statistical nature of the fluctuations. The two-year results are generally consistent with the earlier first year results, but the additional data allow for a better determination of the key cosmological parameters. In this talk the COBE results are compared with other observational anisotropy results and directions for future cosmic microwave anisotropy observations will be discussed. The National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) is responsible for the design, development, and operation of the Cosmic Background Explorer (COBE). Scientific guidance is provided by the COBE Science Working Group.

  12. Is cosmic acceleration slowing down?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafieloo, Arman; Sahni, Varun; Starobinsky, Alexei A.

    2009-11-15

    We investigate the course of cosmic expansion in its recent past using the Constitution SN Ia sample, along with baryon acoustic oscillations (BAO) and cosmic microwave background (CMB) data. Allowing the equation of state of dark energy (DE) to vary, we find that a coasting model of the universe (q{sub 0}=0) fits the data about as well as Lambda cold dark matter. This effect, which is most clearly seen using the recently introduced Om diagnostic, corresponds to an increase of Om and q at redshifts z < or approx. 0.3. This suggests that cosmic acceleration may have already peaked andmore » that we are currently witnessing its slowing down. The case for evolving DE strengthens if a subsample of the Constitution set consisting of SNLS+ESSENCE+CfA SN Ia data is analyzed in combination with BAO+CMB data. The effect we observe could correspond to DE decaying into dark matter (or something else)« less

  13. Research in cosmic and gamma ray astrophysics: Cosmic physics portion

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Schindler, Stephen

    1993-01-01

    Research in particle astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology is supported under NASA Grant NAGW-1919. A three-year proposal for continuation of support was submitted a year ago and put into effect 1 October 1992. This report is the combined progress report and continuation application called for under the Federal Demonstration Project. Gamma-ray Astrophysics at SRL is separately supported under NAGW-1919 and will be separately summarized and proposed. This report will document progress and plans for our particle spectroscopy activities and for related data analysis, calibration, and community service activities. A bibliography and a budget will be attached as appendices. The Caltech SRL research program includes a heavy emphasis on elemental and isotopic spectroscopy of energetic particles in the cosmic radiation; in solar, interplanetary, and anomalous 'cosmic' radiation; and in planetary magnetospheres as discussed.

  14. A database of charged cosmic rays

    NASA Astrophysics Data System (ADS)

    Maurin, D.; Melot, F.; Taillet, R.

    2014-09-01

    Aims: This paper gives a description of a new online database and associated online tools (data selection, data export, plots, etc.) for charged cosmic-ray measurements. The experimental setups (type, flight dates, techniques) from which the data originate are included in the database, along with the references to all relevant publications. Methods: The database relies on the MySQL5 engine. The web pages and queries are based on PHP, AJAX and the jquery, jquery.cluetip, jquery-ui, and table-sorter third-party libraries. Results: In this first release, we restrict ourselves to Galactic cosmic rays with Z ≤ 30 and a kinetic energy per nucleon up to a few tens of TeV/n. This corresponds to more than 200 different sub-experiments (i.e., different experiments, or data from the same experiment flying at different times) in as many publications. Conclusions: We set up a cosmic-ray database (CRDB) and provide tools to sort and visualise the data. New data can be submitted, providing the community with a collaborative tool to archive past and future cosmic-ray measurements. http://lpsc.in2p3.fr/crdb; Contact: crdatabase@lpsc.in2p3.fr

  15. X-ray Observations of Cosmic Ray Acceleration

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2012-01-01

    Since the discovery of cosmic rays, detection of their sources has remained elusive. A major breakthrough has come through the identification of synchrotron X-rays from the shocks of supernova remnants through imaging and spectroscopic observations by the most recent generation of X-ray observatories. This radiation is most likely produced by electrons accelerated to relativistic energy, and thus has offered the first, albeit indirect, observational evidence that diffusive shock acceleration in supernova remnants produces cosmic rays to TeV energies, possibly as high as the "knee" in the cosmic ray spectrum. X-ray observations have provided information about the maximum energy to which these shOCks accelerate electrons, as well as indirect evidence of proton acceleration. Shock morphologies measured in X-rays have indicated that a substantial fraction of the shock energy can be diverted into particle acceleration. This presentation will summarize what we have learned about cosmic ray acceleration from X-ray observations of supernova remnants over the past two decades.

  16. Comparing cosmic web classifiers using information theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leclercq, Florent; Lavaux, Guilhem; Wandelt, Benjamin

    We introduce a decision scheme for optimally choosing a classifier, which segments the cosmic web into different structure types (voids, sheets, filaments, and clusters). Our framework, based on information theory, accounts for the design aims of different classes of possible applications: (i) parameter inference, (ii) model selection, and (iii) prediction of new observations. As an illustration, we use cosmographic maps of web-types in the Sloan Digital Sky Survey to assess the relative performance of the classifiers T-WEB, DIVA and ORIGAMI for: (i) analyzing the morphology of the cosmic web, (ii) discriminating dark energy models, and (iii) predicting galaxy colors. Ourmore » study substantiates a data-supported connection between cosmic web analysis and information theory, and paves the path towards principled design of analysis procedures for the next generation of galaxy surveys. We have made the cosmic web maps, galaxy catalog, and analysis scripts used in this work publicly available.« less

  17. A cosmic-ray-mediated shock in the solar system

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1981-01-01

    It is pointed out that the flare-induced blast wave of Aug. 4, 1972, the most violent disturbance in the solar wind on record, produced cosmic rays with an efficiency of about 50%. Such a high efficiency is predicted by the self-regulating production model of cosmic-ray origin in shocks. Most interplanetary shocks, according to simple theoretical analysis, are not strong enough to produce cosmic rays efficiently. However, if shock strength is the key parameter governing efficiency, as present interplanetary data suggest, then shocks from supernova blasts, quasar outbursts, and other violent astrophysical phenomena should be extremely efficient sources of cosmic rays.

  18. Relative distribution of cosmic rays and magnetic fields

    NASA Astrophysics Data System (ADS)

    Seta, Amit; Shukurov, Anvar; Wood, Toby S.; Bushby, Paul J.; Snodin, Andrew P.

    2018-02-01

    Synchrotron radiation from cosmic rays is a key observational probe of the galactic magnetic field. Interpreting synchrotron emission data requires knowledge of the cosmic ray number density, which is often assumed to be in energy equipartition (or otherwise tightly correlated) with the magnetic field energy. However, there is no compelling observational or theoretical reason to expect such a tight correlation to hold across all scales. We use test particle simulations, tracing the propagation of charged particles (protons) through a random magnetic field, to study the cosmic ray distribution at scales comparable to the correlation scale of the turbulent flow in the interstellar medium (≃100 pc in spiral galaxies). In these simulations, we find that there is no spatial correlation between the cosmic ray number density and the magnetic field energy density. In fact, their distributions are approximately statistically independent. We find that low-energy cosmic rays can become trapped between magnetic mirrors, whose location depends more on the structure of the field lines than on the field strength.

  19. Cosmic Rays Astrophysics: The Discipline, Its Scope, and Its Applications

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.

    2009-01-01

    This slide presentation gives an overview of the discipline surrounding cosmic ray astrophysics. It includes information on recent assertions surrounding cosmic rays, exposure levels, and a short history with specific information on the origin, acceleration, transport, and modulation of cosmic rays.

  20. NUCLEON-mission: A New Approach to Cosmic Rays Investigation

    NASA Technical Reports Server (NTRS)

    Adams, J.; Bashindzhagyan, G.; Chilingarian, A.; Drury, L.; Egorov, N.; Golubkov, S.; Grebenyuk, V.; Korotkova, N.; Mashkantcev, A.; Nanjo, H.; hide

    2001-01-01

    A new approach to Cosmic Rays Investigation is proposed. The main idea is to combine two experimental methods (KLEM and UHIS) for the NUCLEON Project. The KLEM (Kinematic Lightweight Energy Meter) method is used for the study of chemical composition and elemental energy spectra of galactic CRs in extremely wide energy range 10(exp 11)-10(exp 15) eV. The UHIS (Ultra Heavy Isotope Spectrometer) method is used for the ultra heavy CR nuclei fluxes registration nuclei beyond the iron peak. Combination of the two techniques will lead not to simple mechanical unification of two instruments in one block, but lead to the creation of a unique instrument, with a number of advantages.

  1. Cosmic Dawn with WFIRST

    NASA Astrophysics Data System (ADS)

    Rhoads, James

    Central objectives: WFIRST-AFTA has tremendous potential for studying the epoch of "Cosmic Dawn" the period encompassing the formation of the first galaxies and quasars, and their impact on the surrounding universe through cosmological reionization. Our goal is to ensure that this potential is realized through the middle stages of mission planning, culminating in designs for both WFIRST and its core surveys that meet the core objectives in dark energy and exoplanet science, while maximizing the complementary Cosmic Dawn science. Methods: We will consider a combined approach to studying Cosmic Dawn using a judicious mixture of guest investigator data analysis of the primary WFIRST surveys, and a specifically designed Guest Observer program to complement those surveys. The Guest Observer program will serve primarily to obtain deep field observations, with particular attention to the capabilities of WFIRST for spectroscopic deep fields using the WFI grism. We will bring to bear our years of experience with slitless spectroscopy on the Hubble Space Telescope, along with an expectation of JWST slitless grism spectroscopy. We will use this experience to examine the implications of WFIRST’s grism resolution and wavelength coverage for deep field observations, and if appropriate, to suggest potential modifications of these parameters to optimize the science return on WFIRST. We have assembled a team of experts specializing in (1) Lyman Break Galaxies at redshifts higher than 7 (2) Quasars at high redshifts (3) Lyman-alpha galaxies as probes of reionization (4) Theoretical simulations of high-redshift galaxies (5) Simulations of grism observations (6) post-processing analysis to find emission line galaxies and high redshift galaxies (7) JWST observations and calibrations. With this team we intend to do end-to-end simulations starting with halo populations and expected spectra of high redshift galaxies and finally extracting what we can learn about (a) reionization

  2. Cosmic-ray tracing

    NASA Astrophysics Data System (ADS)

    Becker Tjus, Julia

    2018-04-01

    Active galactic nuclei are firm favourites to be revealed as the source of cosmic rays, but solid evidence has proven elusive. A model taking both local and global nuclei propagation into account may help to close the deal.

  3. Direct observations of galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Müller, Dietrich

    2012-08-01

    The mysterious " radiation ... entering our atmosphere from above" discovered by Hess in 1912 is now known to be dominated by relativistic charged particles, mostly with energies in the GeV-range, but extending to energies higher by many orders of magnitude. As none of these particles can penetrate the earth's atmosphere without interaction, detailed studies of their composition and energy spectra require observations with high-altitude balloons or spacecraft. This became possible only towards the middle of the 20th century. The direct measurements have now revealed much detail about the Galactic cosmic rays below 1015eV, but do not yet provide much overlap with the air-shower region of energies. A historic overview of the measurements is given, beginning with the realization that the majority of the cosmic rays are protons. The discovery and astrophysical significance of the heavier nuclei, and of the ultra-heavy nuclei beyond iron and up to the actinides, are then described, and measurements of the isotopic composition are discussed. Observations of the individual energy spectra are reviewed, and finally, the detection of electrons, positrons, and anti-protons in the cosmic rays, and the searches for exotic or unusual phenomena are summarized. Emphasis is given to the fact that all of these discoveries have become possible through the evolution of increasingly sophisticated detection techniques, a process that is continuing through the present time. The precise knowledge of the abundance distributions of the elements in the cosmic rays and of their isotopic composition permits a comparison with the "universal abundance scale" and provides strong constraints on the origin of the cosmic-ray material in the interstellar medium. "Clock-isotopes" reveal the time history of the particles. The shapes of the energy spectra of the individual cosmic-ray components are related to evolving ideas about particle acceleration and propagation in the Galaxy. In conclusion

  4. Ionospheric Electron Density Measurements Using COSMIC

    NASA Astrophysics Data System (ADS)

    Dymond, K. F.; Budzien, S. A.; Bernhardt, P. A.; Rocken, C.; Syndergaard, S.

    2007-12-01

    At 0140 UTC on April 15, 2006, the joint Taiwan-U.S. COSMIC/FORMOSAT-3 (Constellation Observing System for Meteorology, Ionosphere, and Climate and Formosa Satellite mission #3; hereafter COSMIC) mission, a constellation of six micro-satellites, was launched into a 512-km orbit from Vandenberg Air Force Base in California. Using on-board propulsion these satellites have been deployed to their final orbits at 800 km with 30 degrees of separation. This process has taken about 17 months following the launch. There are three instruments aboard each COSMIC satellite: the GPS Occultation Experiment (GOX), the Tri-Band Beacon (TBB), and the Tiny Ionospheric Photometer (TIP). These three instruments constitute a unique suite of instruments for studying the Earth's ionosphere. The GOX instrument operates by inferring the slant total electron content (the integral of the electron density along the line-of-sight) between the COSMIC satellites and the GPS satellites as a function of tangent height above the Earth's limb. These data can be inverted to produce electron density profiles in the E and F regions of the ionosphere. The TBB is a three frequency radio beacon that radiates coherently at 150, 400, and 1067 MHz. When the relative phases of the signals are measured between the COSMIC satellites and ground-based or space-based receivers, the total electron content along the line-of-sight can be determined. By making the measurements from a set of receivers, the two-dimensional distribution of electrons beneath the satellite can be determined using tomographic techniques. The TIP instrument measures the optical signature of the natural decay of the ionosphere produced via ecombination of the O+ ions and electrons. The TIP measurements can be used to characterize the morphology and dynamics of the global ionosphere. Additionally, the TIP measurements can be inverted in conjunction with the GPS occultation measurements, using tomographic techniques, to produce the two

  5. Determination and study of the cosmic-ray composition above 100 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinnis, G.; Haines, T.J.; Hoffman, C.M.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to develop a new technique using ground-based measurements to determine the cosmic-ray composition at energies around 10{sup 15} eV (the knee in the cosmic-ray spectrum). Cosmic rays are high-energy nuclei that continuously bombard the earth. Though cosmic rays were first detected in the 1870s it wasn`t until 1915 that their cosmic origin was established. At present, the authors still do not know the source of cosmic rays. At energies above 50 TeVmore » (1 TeV = 1 trillion electron-volts) they do not know the composition of the cosmic rays. At about 5 PeV (1PeV = 10{sup 15} eV) the cosmic ray spectrum steepens. Knowledge of the composition above and below this point can help determine the origin of cosmic rays.« less

  6. Do cosmic ray air showers initiate lightning?: A statistical analysis of cosmic ray air showers and lightning mapping array data

    NASA Astrophysics Data System (ADS)

    Hare, B. M.; Dwyer, J. R.; Winner, L. H.; Uman, M. A.; Jordan, D. M.; Kotovsky, D. A.; Caicedo, J. A.; Wilkes, R. A.; Carvalho, F. L.; Pilkey, J. T.; Ngin, T. K.; Gamerota, W. R.; Rassoul, H. K.

    2017-08-01

    It has been argued in the technical literature, and widely reported in the popular press, that cosmic ray air showers (CRASs) can initiate lightning via a mechanism known as relativistic runaway electron avalanche (RREA), where large numbers of high-energy and low-energy electrons can, somehow, cause the local atmosphere in a thundercloud to transition to a conducting state. In response to this claim, other researchers have published simulations showing that the electron density produced by RREA is far too small to be able to affect the conductivity in the cloud sufficiently to initiate lightning. In this paper, we compare 74 days of cosmic ray air shower data collected in north central Florida during 2013-2015, the recorded CRASs having primary energies on the order of 1016 eV to 1018 eV and zenith angles less than 38°, with Lightning Mapping Array (LMA) data, and we show that there is no evidence that the detected cosmic ray air showers initiated lightning. Furthermore, we show that the average probability of any of our detected cosmic ray air showers to initiate a lightning flash can be no more than 5%. If all lightning flashes were initiated by cosmic ray air showers, then about 1.6% of detected CRASs would initiate lightning; therefore, we do not have enough data to exclude the possibility that lightning flashes could be initiated by cosmic ray air showers.

  7. The Cosmic Microwave Background Radiation and its Polarization

    NASA Astrophysics Data System (ADS)

    Wollack, Edward

    2016-03-01

    The cosmic microwave background (CMB) radiation and its faint polarization have provided a unique means to constrain the physical state of the early Universe. Continued advances in instrumentation, observation, and analysis have revealed polarized radiation signatures associated with gravitational lensing and have heightened the prospects for using precision polarimetry to experimentally confront the inflationary paradigm. Characterization of this relic radiation field has the power to constrain or reveal the detailed properties of astroparticle species and long wave gravitational radiation. On going and planned CMB polarization efforts from the ground, balloon, and space borne platforms will be briefly surveyed. Recent community activities by the Inflation Probe Science Interest Group (IPSIG) will also be summarized. NASA PCOS mini-symposium (invited IPSIG talk).

  8. Th/U/Pu/Cm dating of galactic cosmic rays with the extremely heavy cosmic ray composition observer

    NASA Astrophysics Data System (ADS)

    Westphal, Andrew J.; Weaver, Benjamin A.; Tarlé, Gregory

    The principal goal of ECCO, the Extremely-heavy Cosmic-ray Composition Observer, is the measurement of the age of heavy galactic cosmic-ray nuclei using the extremely rare actinides (Th, U, Pu, Cm) as clocks. ECCO is one of two cosmic-ray instruments comprising the Heavy Nuclei Explorer (HNX), which was recently selected as one of several missions for Phase A study under NASA's Small class Explorer (SMEX) program. ECCO is based on the flight heritage of Trek, an array of barium-phosphate glass tracketch detectors deployed on the Russian space station Mir from 1991-1995. Using Trek, we measured the abundances of elements with Z > 70 in the galactic cosmic rays (GCRs). Trek consisted of a 1 m 2 array of stacks of individually polished thin BP-1 glass detectors. ECCO will be a much larger instrument, but will achieve both excellent resolution and low cost through use of a novel detector configuration. Here we report the results of recent accelerator tests of the ECCO detectors that verify detector performance. We also show the expected charge and energy resolution of ECCO as a function of energy.

  9. Measurement of cosmic-ray reconstruction efficiencies in the MicroBooNE LArTPC using a small external cosmic-ray counter

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; de Vries, J. Jan; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Kalousis, L. N.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Lange, G.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Pelkey, R.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; von Rohr, C. Rudolf; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; John, J. St.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Zeller, G. P.; Zennamo, J.; Zhang, C.

    2017-12-01

    The MicroBooNE detector is a liquid argon time projection chamber at Fermilab designed to study short-baseline neutrino oscillations and neutrino-argon interaction cross-section. Due to its location near the surface, a good understanding of cosmic muons as a source of backgrounds is of fundamental importance for the experiment. We present a method of using an external 0.5 m (L) × 0.5 m (W) muon counter stack, installed above the main detector, to determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are acquired with this external muon counter stack placed in three different positions, corresponding to cosmic rays intersecting different parts of the detector. The data reconstruction efficiency of tracks in the detector is found to be epsilondata=(97.1±0.1 (stat) ± 1.4 (sys))%, in good agreement with the Monte Carlo reconstruction efficiency epsilonMC = (97.4±0.1)%. This analysis represents a small-scale demonstration of the method that can be used with future data coming from a recently installed cosmic-ray tagger system, which will be able to tag ≈80% of the cosmic rays passing through the MicroBooNE detector.

  10. Cosmic microwave background bispectrum from recombination.

    PubMed

    Huang, Zhiqi; Vernizzi, Filippo

    2013-03-08

    We compute the cosmic microwave background temperature bispectrum generated by nonlinearities at recombination on all scales. We use CosmoLib2nd, a numerical Boltzmann code at second order to compute cosmic microwave background bispectra on the full sky. We consistently include all effects except gravitational lensing, which can be added to our result using standard methods. The bispectrum is peaked on squeezed triangles and agrees with the analytic approximation in the squeezed limit at the few percent level for all the scales where this is applicable. On smaller scales, we recover previous results on perturbed recombination. For cosmic-variance limited data to l(max)=2000, its signal-to-noise ratio is S/N=0.47, corresponding to f(NL)(eff)=-2.79, and will bias a local signal by f(NL)(loc) ~/= 0.82.

  11. a New Laboratory for Terahertz Characterization of Cosmic Analog Dusts

    NASA Astrophysics Data System (ADS)

    Perera, Thushara

    2016-06-01

    Two efforts have been underway to enable the laboratory study of cosmic analogs dusts in the frequency range 60--2000 GHz. They are: (1) the construction of a novel compact Fourier Transform Spectrometer (FTS) design coupled to a dry 4-K cryostat which houses a cooled sample exchanger (filter wheel) and a bolometer. (2) The production of Mg- and Fe-rich silicate dusts using sol-gel methods; various tests to determine their physical and chemical properties; embedding of samples in LDPE pellets for insertion into the novel FTS. This presentation will focus on the current status of the apparatus and data from its first few months of use.

  12. Ultrahigh Energy Cosmic Rays: Old Physics or New Physics?

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    2004-01-01

    We consider the advantages of and the problems associated with hypotheses to explain the origin of ultrahigh energy cosmic rays (UHECR: E greater than 10 EeV) and the "trans-GZK" cosmic rays (TGZK: E greater than 100 EeV) both through "old physics" (acceleration in cosmic sources) and "new physics" (new particles, topological defects, fat neutrino cross sections, Lorentz invariance violation).

  13. The basis for cosmic ray feedback: Written on the wind

    PubMed Central

    Zweibel, Ellen G.

    2017-01-01

    Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback. Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed. PMID:28579734

  14. The basis for cosmic ray feedback: Written on the wind

    NASA Astrophysics Data System (ADS)

    Zweibel, Ellen G.

    2017-05-01

    Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback. Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed.

  15. The basis for cosmic ray feedback: Written on the wind.

    PubMed

    Zweibel, Ellen G

    2017-05-01

    Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback . Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed.

  16. Diagnosis of an intense atmospheric river impacting the pacific northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrievals

    USGS Publications Warehouse

    Neiman, P.J.; Ralph, F.M.; Wick, G.A.; Kuo, Y.-H.; Wee, T.-K.; Ma, Z.; Taylor, G.H.; Dettinger, M.D.

    2008-01-01

    This study uses the new satellite-based Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission to retrieve tropospheric profiles of temperature and moisture over the data-sparse eastern Pacific Ocean. The COSMIC retrievals, which employ a global positioning system radio occultation technique combined with "first-guess" information from numerical weather prediction model analyses, are evaluated through the diagnosis of an intense atmospheric river (AR; i.e., a narrow plume of strong water vapor flux) that devastated the Pacific Northwest with flooding rains in early November 2006. A detailed analysis of this AR is presented first using conventional datasets and highlights the fact that ARs are critical contributors to West Coast extreme precipitation and flooding events. Then, the COSMIC evaluation is provided. Offshore composite COSMIC soundings north of, within, and south of this AR exhibited vertical structures that are meteorologically consistent with satellite imagery and global reanalysis fields of this case and with earlier composite dropsonde results from other landfalling ARs. Also, a curtain of 12 offshore COSMIC soundings through the AR yielded cross-sectional thermodynamic and moisture structures that were similarly consistent, including details comparable to earlier aircraft-based dropsonde analyses. The results show that the new COSMIC retrievals, which are global (currently yielding ???2000 soundings per day), provide high-resolution vertical-profile information beyond that found in the numerical model first-guess fields and can help monitor key lower-tropospheric mesoscale phenomena in data-sparse regions. Hence, COSMIC will likely support a wide array of applications, from physical process studies to data assimilation, numerical weather prediction, and climate research. ?? 2008 American Meteorological Society.

  17. Cosmic Rays in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  18. The chemical abundance analysis of normal early A- and late B-type stars

    NASA Astrophysics Data System (ADS)

    Fossati, L.; Ryabchikova, T.; Bagnulo, S.; Alecian, E.; Grunhut, J.; Kochukhov, O.; Wade, G.

    2009-09-01

    Context: Modern spectroscopy of early-type stars often aims at studying complex physical phenomena such as stellar pulsation, the peculiarity of the composition of the photosphere, chemical stratification, the presence of a magnetic field, and its interplay with the stellar atmosphere and the circumstellar environment. Comparatively less attention is paid to identifying and studying the “normal” A- and B-type stars and testing how the basic atomic parameters and standard spectral analysis allow one to fit the observations. By contrast, this kind of study is paramount for eventually allowing one to correctly quantify the impact of the various physical processes that occur inside the atmospheres of A- and B-type stars. Aims: We wish to establish whether the chemical composition of the solar photosphere can be regarded as a reference for early A- and late B-type stars. Methods: We have obtained optical high-resolution, high signal-to-noise ratio spectra of three slowly rotating early-type stars (HD 145788, 21 Peg and π Cet) that show no obvious sign of chemical peculiarity, and performed a very accurate LTE abundance analysis of up to 38 ions of 26 elements (for 21 Peg), using a vast amount of spectral lines visible in the spectral region covered by our spectra. Results: We provide an exhaustive description of the abundance characteristics of the three analysed stars with a critical review of the line parameters used to derive the abundances. We compiled a table of atomic data for more than 1100 measured lines that may be used in the future as a reference. The abundances we obtained for He, C, Al, S, V, Cr, Mn, Fe, Ni, Sr, Y, and Zr are compatible with the solar ones derived with recent 3D radiative-hydrodynamical simulations of the solar photosphere. The abundances of the remaining studied elements show some degree of discrepancy compared to the solar photosphere. Those of N, Na, Mg, Si, Ca, Ti, and Nd may well be ascribed to non-LTE effects; for P, Cl, Sc and

  19. Gravitational-wave stochastic background from cosmic strings.

    PubMed

    Siemens, Xavier; Mandic, Vuk; Creighton, Jolien

    2007-03-16

    We consider the stochastic background of gravitational waves produced by a network of cosmic strings and assess their accessibility to current and planned gravitational wave detectors, as well as to big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and pulsar timing constraints. We find that current data from interferometric gravitational wave detectors, such as Laser Interferometer Gravitational Wave Observatory (LIGO), are sensitive to areas of parameter space of cosmic string models complementary to those accessible to pulsar, BBN, and CMB bounds. Future more sensitive LIGO runs and interferometers such as Advanced LIGO and Laser Interferometer Space Antenna (LISA) will be able to explore substantial parts of the parameter space.

  20. The Transient High-Energy Sky and Early Universe Surveyor (THESEUS)

    NASA Astrophysics Data System (ADS)

    Amati, L.

    2016-10-01

    THESEUS is a mission concept by a large international collaboration aimed at exploiting GRBs for investigating the early universe and at vastly increasing the discovery space of the high energy transient phenomena over the entire cosmic history.

  1. COSMIC monthly progress report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Activities of the Computer Software Management and Information Center (COSMIC) are summarized for the month of April 1994. Tables showing the current inventory of programs available from COSMIC are presented and program processing and evaluation activities are summarized. Five articles were prepared for publication in the NASA Tech Brief Journal. These articles (included in this report) describe the following software items: GAP 1.0 - Groove Analysis Program, Version 1.0; SUBTRANS - Subband/Transform MATLAB Functions for Image Processing; CSDM - COLD-SAT Dynamic Model; CASRE - Computer Aided Software Reliability Estimation; and XOPPS - OEL Project Planner/Scheduler Tool. Activities in the areas of marketing, customer service, benefits identification, maintenance and support, and disseminations are also described along with a budget summary.

  2. Ultra heavy cosmic ray experiment (A0178)

    NASA Technical Reports Server (NTRS)

    Thompson, A.; Osullivan, D.; Bosch, J.; Keegan, R.; Wenzel, K. P.; Jansen, F.; Domingo, C.

    1992-01-01

    The Ultra Heavy Cosmic Ray Experiment (UHCRE) is based on a modular array of 192 side viewing solid state nuclear track detector stacks. These stacks were mounted in sets of four in 48 pressure vessels using 16 peripheral LDEF trays. The geometry factor for high energy cosmic ray nuclei, allowing for Earth shadowing, was 30 sq m sr, giving a total exposure factor of 170 sq m sr y at an orbital inclination of 28.4 degs. Scanning results indicate that about 3000 cosmic ray nuclei in the charge region with Z greater than 65 were collected. This sample is more than ten times the current world data in the field (taken to be the data set from the HEAO-3 mission plus that from the Ariel-6 mission) and is sufficient to provide the world's first statistically significant sample of actinide cosmic rays. Results are presented including a sample of ultra heavy cosmic ray nuclei, analysis of pre-flight and post-flight calibration events and details of track response in the context of detector temperature history. The integrated effect of all temperature and age related latent track variations cause a maximum charge shift of + or - 0.8e for uranium and + or - 0.6e for the platinum-lead group. Astrophysical implications of the UHCRE charge spectrum are discussed.

  3. JUPITER AS A GIANT COSMIC RAY DETECTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimmer, P. B.; Stark, C. R.; Helling, Ch., E-mail: pr33@st-andrews.ac.uk

    We explore the feasibility of using the atmosphere of Jupiter to detect ultra-high-energy cosmic rays (UHECRs). The large surface area of Jupiter allows us to probe cosmic rays of higher energies than previously accessible. Cosmic ray extensive air showers in Jupiter's atmosphere could in principle be detected by the Large Area Telescope (LAT) on the Fermi observatory. In order to be observed, these air showers would need to be oriented toward the Earth, and would need to occur sufficiently high in the atmosphere that the gamma rays can penetrate. We demonstrate that, under these assumptions, Jupiter provides an effective cosmicmore » ray ''detector'' area of 3.3 × 10{sup 7} km{sup 2}. We predict that Fermi-LAT should be able to detect events of energy >10{sup 21} eV with fluence 10{sup –7} erg cm{sup –2} at a rate of about one per month. The observed number of air showers may provide an indirect measure of the flux of cosmic rays ≳ 10{sup 20} eV. Extensive air showers also produce a synchrotron signature that may be measurable by Atacama Large Millimeter/submillimeter Array (ALMA). Simultaneous observations of Jupiter with ALMA and Fermi-LAT could be used to provide broad constraints on the energies of the initiating cosmic rays.« less

  4. The isotopic composition of cosmic-ray beryllium and its implication for the cosmic ray's age

    NASA Technical Reports Server (NTRS)

    Lukasiak, A.; Ferrando, P.; Mcdonald, F. B.; Webber, W. R.

    1994-01-01

    We report a new measurement of the cosmic-ray isotopic composition of beryllium in the low-energy range from 35 to 113 MeV per nucleon. This measurement was made using the High Energy Telescope of the CRS experiment on the Voyager 1 and 2 spacecraft during the time period from 1977 to 1991. In this overall time period of 14 years the average solar modulation level was about 500 MV. The cosmic-ray beryllium isotopes were completely separated with an average mass resolution sigma of 0.185 amu. The isotope fractions of Be-7, Be-9, and Be-10 obtained are 52.4 +/- 2.9%, 43.3 +/- 3.7%, and 4.3 +/- 1.5%, respectively. The measured cosmic-ray abundances of Be-7 and Be-9 are found to be in agreement with calculations based on standard Leaky-Box model for the interstellar propagation of cosmic-ray nuclei using the recent cross sections of the New Mexico-Saclay collaboration. From our observed ratio Be-10/Be = 4.3 +/- 1.5% we deduce an average interstellar density of about 0.28 (+0.14, -0.11) atoms/cu cm, and acosmic-ray lifetime for escape of 27 (+19, -9) x 10(exp 6) years. The surviving fraction of Be-10 is found to be 0.19 +/- 0.07. Modifications to the conclusions of the Leaky-Box model when a diffusion + convection halo model for propagation is used are also considered.

  5. THE EVOLUTION OF EARLY- AND LATE-TYPE GALAXIES IN THE COSMIC EVOLUTION SURVEY UP TO z {approx} 1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannella, Maurilio; Gabasch, Armin; Drory, Niv

    2009-08-10

    The Cosmic Evolution Survey (COSMOS) allows for the first time a highly significant census of environments and structures up to redshift 1, as well as a full morphological description of the galaxy population. In this paper we present a study aimed to constrain the evolution, in the redshift range 0.2 < z < 1.2, of the mass content of different morphological types and its dependence on the environmental density. We use a deep multicolor catalog, covering an area of {approx}0.7 deg{sup 2} inside the COSMOS field, with accurate photometric redshifts (i {approx}< 26.5 and {delta}z/(z {sub spec} + 1) {approx}more » 0.035). We estimate galaxy stellar masses by fitting the multicolor photometry to a grid of composite stellar population models. We quantitatively describe the galaxy morphology by fitting point-spread function convolved Sersic profiles to the galaxy surface brightness distributions down to F814 = 24 mag for a sample of 41,300 objects. We confirm an evolution of the morphological mix with redshift: the higher the redshift the more disk-dominated galaxies become important. We find that the morphological mix is a function of the local comoving density: the morphology density relation extends up to the highest redshift explored. The stellar mass function of disk-dominated galaxies is consistent with being constant with redshift. Conversely, the stellar mass function of bulge-dominated systems shows a decline in normalization with redshift. Such different behaviors of late-types and early-types stellar mass functions naturally set the redshift evolution of the transition mass. We find a population of relatively massive, early-type galaxies, having high specific star formation rate (SSFR) and blue colors which live preferentially in low-density environments. The bulk of massive (>7 x 10{sup 10} M {sub sun}) early-type galaxies have similar characteristic ages, colors, and SSFRs independently of the environment they belong to, with those hosting the oldest stars

  6. Cosmic transparency and acceleration

    NASA Astrophysics Data System (ADS)

    Holanda, R. F. L.; Pereira, S. H.; Jain, Deepak

    2018-01-01

    In this paper, by considering an absorption probability independent of photon wavelength, we show that current type Ia supernovae (SNe Ia) and gamma-ray burst (GRB) observations plus high-redshift measurements of the cosmic microwave background (CMB) radiation temperature support cosmic acceleration regardless of the transparent-universe assumption. Two flat scenarios are considered in our analyses: the Λ CDM model and a kinematic model. We consider τ (z )=2 ln (1 +z )ɛ, where τ (z ) denotes the opacity between an observer at z =0 and a source at z . This choice is equivalent to deforming the cosmic distance duality relation as DLDA-1=(1 +z )2+ɛ and, if the absorption probability is independent of photon wavelength, the CMB temperature evolution law is TCMB(z )=T0(1 +z )1+2 ɛ /3. By marginalizing on the ɛ parameter, our analyses rule out a decelerating universe at 99.99% C.L. for all scenarios considered. Interestingly, by considering only SNe Ia and GRBs observations, we obtain that a decelerated universe—indicated by ΩΛ≤0.33 and q0>0 —is ruled out around 1.5 σ C.L. and 2 σ C.L., respectively, regardless of the transparent-universe assumption.

  7. Heliospheric Impact on Cosmic Rays Modulation

    NASA Astrophysics Data System (ADS)

    Tiwari, Bhupendra Kumar

    2016-07-01

    Heliospheric Impact on Cosmic RaysModulation B. K. Tiwari Department of Physics, A. P. S. University, Rewa (M.P.), btiwari70@yahoo.com Cosmic rays (CRs) flux at earth is modulated by the heliosphereric magnetic field and the structure of the heliosphere, controls by solar outputs and their variability. Sunspots numbers (SSN) is often treated as a primary indicator of solar activity (SA). GCRs entering the helioshphere are affected by the interplanetary magnetic field (IMF) and solar wind speed, their modulation varies with the varying solar activity. The observation based on data recoded from Omniweb data Centre for solar- interplanetary activity indices and monthly mean count rate of cosmic ray intensity (CRI) data from neutron monitors of different cut-off rigidities(Rc) (Moscow Rc=2.42Gv and Oulu Rc=0.80Gv). During minimum solar activity periodof solar cycle 23/24, the sun is remarkably quiet, weakest strength of the IMF and least dense and slowest, solar wind speed, whereas, in 2003, highest value of yearly averaged solar wind speed (~568 Km/sec) associated with several coronal holes, which generate high speed wind stream has been recorded. It is observed that GCRs fluxes reduces and is high anti-correlated with SSN (0.80) and IMF (0.86). CRI modulation produces by a strong solar flare, however, CME associated solar flare produce more disturbance in the interplanetary medium as well as in geomagnetic field. It is found that count rate of cosmic ray intensity and solar- interplanetary parameters were inverse correlated and solar indices were positive correlated. Keywords- Galactic Cosmic rays (GCRs), Sunspot number (SSN), Solar activity (SA), Coronal Mass Ejection (CME), Interplanetary magnetic field (IMF)

  8. The Cosmic Skidmark: witnessing galaxy transformation at z = 0.19

    NASA Astrophysics Data System (ADS)

    Murphy, David N. A.

    2015-02-01

    We present an early-look analysis of the ``Cosmic Skidmark''. Discovered following visual inspection of the Geach, Murphy & Bower (2011) SDSS Stripe 82 cluster catalogue generated by ORCA (an automated cluster algorithm searching for red-sequences; Murphy, Geach & Bower 2012), this z = 0.19 1.4L* galaxy appears to have been caught in the rare act of transformation while accreting onto an estimated 1013-1014 h -1 M⊙-mass galaxy group. SDSS spectroscopy reveals clear signatures of star formation whilst deep optical imaging reveals a pronounced 50 kpc cometary tail. Pending completion of our ALMA Cycle 2 and IFU observations, we show here preliminary analysis of this target.

  9. Cosmic Times: Astronomy History and Science for the Classroom

    NASA Astrophysics Data System (ADS)

    Lochner, James C.; Mattson, B.

    2008-05-01

    Cosmic Times is a series of curriculum support materials and classroom activities for upper middle school and high school students which teach the nature of science by exploring the history of our understanding of the universe during the past 100 years. Starting with the confirmation of Einstein's theory of gravity in 1919 to the current conundrum posed by the discovery of dark energy, Cosmic Times examines the discoveries, the theories, and the people involved in this changing [understanding] of the universe. Cosmic Times takes the form of 6 posters, each resembling the front page of a newspaper from a particular time in this history with articles describing the discoveries. Each poster is accompanied by 4-5 classroom lessons which enable students to examine the science concepts behind the discoveries, develop techniques to improve science literacy, and investigate the nature of science using historical examples. Cosmic Times directly connects with the IYA theme of Astronomy in the Classroom, as well as the general theme of the impact of astronomy history. Cosmic Times has been developed with a freelance writer to write the articles for the posters, a group of teachers to develop the lessons, and evaluator to provide testing of the materials with a group of rural teachers in underserved communities. This poster presentation previews the Cosmic Times materials, which are posted on http://cosmictimes.gsfc.nasa.gov/ as they become available. Cosmic Times is funded in part via a NASA IDEAS grant.

  10. Improvement of GPS radio occultation retrieval error of E region electron density: COSMIC measurement and IRI model simulation

    NASA Astrophysics Data System (ADS)

    Wu, Kang-Hung; Su, Ching-Lun; Chu, Yen-Hsyang

    2015-03-01

    In this article, we use the International Reference Ionosphere (IRI) model to simulate temporal and spatial distributions of global E region electron densities retrieved by the FORMOSAT-3/COSMIC satellites by means of GPS radio occultation (RO) technique. Despite regional discrepancies in the magnitudes of the E region electron density, the IRI model simulations can, on the whole, describe the COSMIC measurements in quality and quantity. On the basis of global ionosonde network and the IRI model, the retrieval errors of the global COSMIC-measured E region peak electron density (NmE) from July 2006 to July 2011 are examined and simulated. The COSMIC measurement and the IRI model simulation both reveal that the magnitudes of the percentage error (PE) and root mean-square-error (RMSE) of the relative RO retrieval errors of the NmE values are dependent on local time (LT) and geomagnetic latitude, with minimum in the early morning and at high latitudes and maximum in the afternoon and at middle latitudes. In addition, the seasonal variation of PE and RMSE values seems to be latitude dependent. After removing the IRI model-simulated GPS RO retrieval errors from the original COSMIC measurements, the average values of the annual and monthly mean percentage errors of the RO retrieval errors of the COSMIC-measured E region electron density are, respectively, substantially reduced by a factor of about 2.95 and 3.35, and the corresponding root-mean-square errors show averaged decreases of 15.6% and 15.4%, respectively. It is found that, with this process, the largest reduction in the PE and RMSE of the COSMIC-measured NmE occurs at the equatorial anomaly latitudes 10°N-30°N in the afternoon from 14 to 18 LT, with a factor of 25 and 2, respectively. Statistics show that the residual errors that remained in the corrected COSMIC-measured NmE vary in a range of -20% to 38%, which are comparable to or larger than the percentage errors of the IRI-predicted NmE fluctuating in a

  11. The Cosmic Background Explorer.

    ERIC Educational Resources Information Center

    Gulkis, Samuel; And Others

    1990-01-01

    Outlines the Cosmic Background Explorer (COBE) mission to measure celestial radiation. Describes the instruments used and experiments involving differential microwave radiometers, and a far infrared absolute spectrophotometer. (YP)

  12. Connecting blazars with ultrahigh-energy cosmic rays and astrophysical neutrinos

    NASA Astrophysics Data System (ADS)

    Resconi, E.; Coenders, S.; Padovani, P.; Giommi, P.; Caccianiga, L.

    2017-06-01

    We present a strong hint of a connection between high-energy γ-ray emitting blazars, very high energy neutrinos, and ultrahigh-energy cosmic rays. We first identify potential hadronic sources by filtering γ-ray emitters in spatial coincidence with the high-energy neutrinos detected by IceCube. The neutrino filtered γ-ray emitters are then correlated with the ultrahigh-energy cosmic rays from the Pierre Auger Observatory and the Telescope Array by scanning in γ-ray flux (Fγ) and angular separation (θ) between sources and cosmic rays. A maximal excess of 80 cosmic rays (42.5 expected) is found at θ ≤ 10° from the neutrino-filtered γ-ray emitters selected from the second hard Fermi-LAT catalogue (2FHL) and for Fγ(>50 GeV) ≥ 1.8 × 10-11 ph cm-2 s-1. The probability for this to happen is 2.4 × 10-5, which translates to ˜2.4 × 10-3 after compensation for all the considered trials. No excess of cosmic rays is instead observed for the complement sample of γ-ray emitters (I.e. not in spatial connection with IceCube neutrinos). A likelihood ratio test comparing the connection between the neutrino-filtered and the complement source samples with the cosmic rays favours a connection between neutrino-filtered emitters and cosmic rays with a probability of ˜1.8 × 10-3 (2.9σ) after compensation for all the considered trials. The neutrino-filtered γ-ray sources that make up the cosmic rays excess are blazars of the high synchrotron peak type. More statistics is needed to further investigate these sources as candidate cosmic ray and neutrino emitters.

  13. Planetary Habitability over Cosmic-Time Based on Cosmic-Ray Levels

    NASA Astrophysics Data System (ADS)

    Mason, Paul A.; Biermann, Peter L.

    2016-01-01

    Extreme cosmic-ray (CR) fluxes have a negative effect on life when flux densities are high enough to cause excessive biological, especially DNA, damage. The CR history of a planet plays an important role in its potential surface habitation. Both global and local CR conditions determine the ability of life to survive for astrobiologically relevant time periods. We highlight two CR life-limiting factors: 1) General galactic activity, starburst and AGN, was up by about a factor of 30 at redshift 1 - 2, per comoving frame, averaged over all galaxies. And 2) AGN activity is highly intermittent, so extreme brief but powerful bursts (Her A for example) can be detrimental at great distances. This means that during such brief bursts of AGN activity the extragalactic CRs might even overpower the local galactic CRs. But as shown by the starburst galaxy M82, the local CRs in a starburst can also be quite high. Moreover, in our cosmic neighborhood we have several super-massive black holes. These are in M31, M32, M81, NGC5128 (Cen A), and in our own Galaxy, all within about 4 Mpc today. Within about 20 Mpc today there are many more super-massive black holes. Cen A is of course the most famous one now, since it may be a major source of the ultra-high-energy CRs (UHECRs). Folding in what redshift means in terms of cosmic time, this implies that there may have been little chance for life to survive much earlier than Earth's starting epoch. We speculate, on whether the very slow start oflife on Earth is connected to the decay of disturbing CR activity.

  14. Scientific results from the Cosmic Background Explorer (COBE)

    PubMed Central

    Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Hauser, M. G.; Kelsall, T.; Mather, J. C.; Moseley, S. H.; Murdock, T. L.; Shafer, R. A.; Silverberg, R. F.; Smoot, G. F.; Weiss, R.; Wright, E. L.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has flown the COBE satellite to observe the Big Bang and the subsequent formation of galaxies and large-scale structure. Data from the Far-Infrared Absolute Spectrophotometer (FIRAS) show that the spectrum of the cosmic microwave background is that of a black body of temperature T = 2.73 ± 0.06 K, with no deviation from a black-body spectrum greater than 0.25% of the peak brightness. The data from the Differential Microwave Radiometers (DMR) show statistically significant cosmic microwave background anisotropy, consistent with a scale-invariant primordial density fluctuation spectrum. Measurements from the Diffuse Infrared Background Experiment (DIRBE) provide new conservative upper limits to the cosmic infrared background. Extensive modeling of solar system and galactic infrared foregrounds is required for further improvement in the cosmic infrared background limits. PMID:11607383

  15. Cosmic Ray-Air Shower Measurement from Space

    NASA Technical Reports Server (NTRS)

    Takahashi, Yoshiyuki

    1997-01-01

    A feasibility study has been initiated to observe from space the highest energy cosmic rays above 1021 eV. A satellite observatory concept, the Maximum-energy Auger (Air)-Shower Satellite (MASS), is recently renamed as the Orbital Wide-angle Collector (OWL) by taking its unique feature of using a very wide field-of-view (FOV) optics. A huge array of imaging devices (about 10(exp 6) pixels) is required to detect and record fluorescent light profiles of cosmic ray cascades in the atmosphere. The FOV of MASS could extend to as large as about 60 in. diameter, which views (500 - 1000 km) of earth's surface and more than 300 - 1000 cosmic ray events per year could be observed above 1020 eV. From far above the atmosphere, the MASS/OWL satellite should be capable of observing events at all angles including near horizontal tracks, and would have considerable aperture for high energy photon and neutrino observation. With a large aperture and the spatial and temporal resolution, MASS could determine the energy spectrum, the mass composition, and arrival anisotropy of cosmic rays from 1020 eV to 1022 eV; a region hitherto not explored by ground-based detectors such as the Fly's Eye and air-shower arrays. MASS/OWL's ability to identify cosmic neutrinos and gamma rays may help providing evidence for the theory which attributes the above cut-off cosmic ray flux to the decay of topological defects. Very wide FOV optics system of MASS/OWL with a large array of imaging devices is applicable to observe other atmospheric phenomena including upper atmospheric lightning. The wide FOV MASS optics being developed can also improve ground-based gamma-ray observatories by allowing simultaneous observation of many gamma ray sources located at different constellations.

  16. Cosmic Radiation Detection and Observations

    NASA Astrophysics Data System (ADS)

    Ramirez Chavez, Juan; Troncoso, Maria

    Cosmic rays consist of high-energy particles accelerated from remote supernova remnant explosions and travel vast distances throughout the universe. Upon arriving at earth, the majority of these particles ionize gases in the upper atmosphere, while others interact with gas molecules in the troposphere and producing secondary cosmic rays, which are the main focus of this research. To observe these secondary cosmic rays, a detector telescope was designed and equipped with two silicon photomultipliers (SiPMs). Each SiPM is coupled to a bundle of 4 wavelength shifting optical fibers that are embedded inside a plastic scintillator sheet. The SiPM signals were amplified using a fast preamplifier with coincidence between detectors established using a binary logic gate. The coincidence events were recorded with two devices; a digital counter and an Arduino micro-controller. For detailed analysis of the SiPM waveforms, a DRS4 sensory digitizer captured the waveforms for offline analysis with the CERN software package Physics Analysis Workstation in a Linux environment. Results from our experiments would be presented. Hartnell College STEM Internship Program.

  17. On pulsating cosmic /radio/ noise absorption

    NASA Technical Reports Server (NTRS)

    Dangelo, N.

    1981-01-01

    It has been proposed that some absorption events measured on riometers are actually due to backscatter of cosmic radio noise by E-region plasma waves (D'Angelo, 1976, 1978; D'Angelo and Mehta, 1980). Assuming that DC or nearly DC absorption is a viable process, it is shown that it may also be operative in producing pulsations in cosmic noise absorption on riometers, with periods ranging from a few seconds to several minutes.

  18. Lethal toxicity of industrial chemicals to early life stages of Tilapia guineensis.

    PubMed

    Ezemonye, L I N; Ogeleka, D F; Okieimen, F E

    2008-08-30

    The toxic effects of industrial chemicals on three early life stages of an economically important fish, Tilapia guineensis were investigated using the Organisation for Economic Cooperation and Development (OECD) # 203 recommended semi-static renewal bioassay. The assessment was necessary for the uncontrollable disposal of Neatex (liquid detergent) and Norust CR 486 (corrosion inhibitor) into the Niger Delta environment of Nigeria. The estimated 96-h LC(50) for 7-, 14- and 28-day-old fish in Norust CR 486 exposure was considered "more toxic" than Neatex in all life stages and was dependent on species age, exposure duration and environment. In the fresh water test, for Neatex and Norust CR 486 exposures for day 7, 14 and 28, the 96-h LC50 were 8.79, 17.10 and 82.42 mg/l and 5.55, 13.58 and 20.21 mg/l, respectively. In the brackish test, 15.42 and 46.52 mg/l, not determined (ND) and 7.35, 13.95 and 24.50mg/l were obtained. Differential toxicity was observed in the fresh and brackish water fish for the two chemicals and controls at p<0.05. The high sensitivity of the 7-day-old test organisms to both chemicals provides a rationale for regulatory surveillance and monitoring of both chemicals in the fragile Niger Delta environment.

  19. Searching for Dark Matter with Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2015-04-01

    One of the most exciting possibilities in cosmic ray research is the potential to discover new phenomena. A number of elementary particles were discovered in cosmic rays before modern-day accelerators became available to study their detailed properties. Since the discovery of cosmic ray antiprotons in 1979 using a balloon-borne magnet spectrometer, a series of magnet spectrometers have been flown to search for the signature of dark matter annihilation in antiprotons and positrons. Being the same as particles except for their opposite charge sign, antiparticles are readily distinguished as they bend in opposite directions in the magnetic field. As long-duration balloon flights over Antarctica became available, not only antiproton to proton ratios but also measurements of antiproton energy spectra became possible. More recently, space missions are also providing precision measurements of electron and position energy spectra. With other measurements to constrain cosmic ray propagation models, these new measurements play key roles in constraining dark-matter models for understanding the nature of dark matter. Recent results, their implications, and outlook for the field will be presented.

  20. Primary cosmic rays on the lunar surface

    NASA Technical Reports Server (NTRS)

    Vernov, S. N.; Lavrukhina, A. K.

    1977-01-01

    Results are reported for determination of the galactic cosmic ray flux during various time intervals in the 1965-1972 period, on the basis of data from the instruments of a spacecraft that made a soft landing on the lunar surface, and from the radioactivity of samples returned by the spacecraft. During minimum solar activity (the second half of 1965 and the beginning of 1966) I sub 0 (E greater than or equal to 30 percent MeV/nucleon) was determined to be 0.43 (plus or minus 10 percent). These values, within the error limits of the determinations, agree with the corresponding values of galactic cosmic ray intensities determined by stratospheric measurements. The mean flux of galactic cosmic rays over the past million years is equal to I (E greater or equal to 100 MeV/nucleon) + 0.28 (plus or minus 20 percent). This value agrees with the mean flux of modulated cosmic rays during the period of the nineteenth solar cycle. The mean flux of solar protons between 1965 and 1972 was 2.46.

  1. Measurement of cosmic-ray reconstruction efficiencies in the MicroBooNE LArTPC using a small external cosmic-ray counter

    DOE PAGES

    Acciarri, R.; Adams, C.; An, R.; ...

    2017-12-01

    The MicroBooNE detector is a liquid argon time projection chamber at Fermilab designed to study short-baseline neutrino oscillations and neutrino-argon interaction cross-section. Due to its location near the surface, a good understanding of cosmic muons as a source of backgrounds is of fundamental importance for the experiment. We present a method of using an external 0.5 m (L) x 0.5 m (W) muon counter stack, installed above the main detector, to determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are acquired with this external muon counter stack placed in three different positions, corresponding to cosmic rays intersecting different parts of the detector. The data reconstruction efficiency of tracks in the detector is found to bemore » $$\\epsilon_{\\mathrm{data}}=(97.1\\pm0.1~(\\mathrm{stat}) \\pm 1.4~(\\mathrm{sys}))\\%$$, in good agreement with the Monte Carlo reconstruction efficiency $$\\epsilon_{\\mathrm{MC}} = (97.4\\pm0.1)\\%$$. This analysis represents a small-scale demonstration of the method that can be used with future data coming from a recently installed cosmic-ray tagger system, which will be able to tag $$\\approx80\\%$$ of the cosmic rays passing through the MicroBooNE detector.« less

  2. Measurement of cosmic-ray reconstruction efficiencies in the MicroBooNE LArTPC using a small external cosmic-ray counter

    DOE PAGES

    Acciarri, R.; Adams, C.; An, R.; ...

    2017-12-20

    The MicroBooNE detector is a liquid argon time projection chamber at Fermilab designed to study short-baseline neutrino oscillations and neutrino-argon interaction cross-section. Due to its location near the surface, a good understanding of cosmic muons as a source of backgrounds is of fundamental importance for the experiment. In this paper, we present a method of using an external 0.5 m (L) × 0.5 m (W) muon counter stack, installed above the main detector, to determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are acquired with this external muon counter stack placed in three different positions, corresponding to cosmic rays intersectingmore » different parts of the detector. The data reconstruction efficiency of tracks in the detector is found to be ϵ data=(97.1±0.1 (stat) ± 1.4 (sys))%, in good agreement with the Monte Carlo reconstruction efficiency ϵ MC = (97.4±0.1)%. In conclusion, this analysis represents a small-scale demonstration of the method that can be used with future data coming from a recently installed cosmic-ray tagger system, which will be able to tag ≈80% of the cosmic rays passing through the MicroBooNE detector.« less

  3. Measurement of cosmic-ray reconstruction efficiencies in the MicroBooNE LArTPC using a small external cosmic-ray counter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; Adams, C.; An, R.

    The MicroBooNE detector is a liquid argon time projection chamber at Fermilab designed to study short-baseline neutrino oscillations and neutrino-argon interaction cross-section. Due to its location near the surface, a good understanding of cosmic muons as a source of backgrounds is of fundamental importance for the experiment. In this paper, we present a method of using an external 0.5 m (L) × 0.5 m (W) muon counter stack, installed above the main detector, to determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are acquired with this external muon counter stack placed in three different positions, corresponding to cosmic rays intersectingmore » different parts of the detector. The data reconstruction efficiency of tracks in the detector is found to be ϵ data=(97.1±0.1 (stat) ± 1.4 (sys))%, in good agreement with the Monte Carlo reconstruction efficiency ϵ MC = (97.4±0.1)%. In conclusion, this analysis represents a small-scale demonstration of the method that can be used with future data coming from a recently installed cosmic-ray tagger system, which will be able to tag ≈80% of the cosmic rays passing through the MicroBooNE detector.« less

  4. Measurement of cosmic-ray reconstruction efficiencies in the MicroBooNE LArTPC using a small external cosmic-ray counter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; et al.

    2017-07-31

    The MicroBooNE detector is a liquid argon time projection chamber at Fermilab designed to study short-baseline neutrino oscillations and neutrino-argon interaction cross-section. Due to its location near the surface, a good understanding of cosmic muons as a source of backgrounds is of fundamental importance for the experiment. We present a method of using an external 0.5 m (L) x 0.5 m (W) muon counter stack, installed above the main detector, to determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are acquired with this external muon counter stack placed in three different positions, corresponding to cosmic rays intersecting different parts of the detector. The data reconstruction efficiency of tracks in the detector is found to bemore » $$\\epsilon_{\\mathrm{data}}=(97.1\\pm0.1~(\\mathrm{stat}) \\pm 1.4~(\\mathrm{sys}))\\%$$, in good agreement with the Monte Carlo reconstruction efficiency $$\\epsilon_{\\mathrm{MC}} = (97.4\\pm0.1)\\%$$. This analysis represents a small-scale demonstration of the method that can be used with future data coming from a recently installed cosmic-ray tagger system, which will be able to tag $$\\approx80\\%$$ of the cosmic rays passing through the MicroBooNE detector.« less

  5. Does electromagnetic radiation accelerate galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  6. On the robustness of the Hβ Lick index as a cosmic clock in passive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Concas, Alice; Pozzetti, L.; Moresco, M.; Cimatti, A.

    2017-06-01

    We examine the Hβ Lick index in a sample of ˜24 000 massive (log(M/M_{⊙})>10.75) and passive early-type galaxies extracted from the Sloan Digital Sky Survey at z < 0.3, in order to assess the reliability of this index to constrain the epoch of formation and age evolution of these systems. We further investigate the possibility of exploiting this index as `cosmic chronometer', I.e. to derive the Hubble parameter from its differential evolution with redshift, hence constraining cosmological models independently of other probes. We find that the Hβ strength increases with redshift as expected in passive evolution models, and shows at each redshift weaker values in more massive galaxies. However, a detailed comparison of the observed index with the predictions of stellar population synthesis models highlights a significant tension, with the observed index being systematically lower than expected. By analysing the stacked spectra, we find a weak [N II] λ6584 emission line (not detectable in the single spectra) that anti-correlates with the mass, which can be interpreted as a hint of the presence of ionized gas. We estimated the correction of the Hβ index by the residual emission component exploiting different approaches, but find it very uncertain and model dependent. We conclude that, while the qualitative trends of the observed Hβ-z relations are consistent with the expected passive and downsizing scenario, the possible presence of ionized gas even in the most massive and passive galaxies prevents us to use this index for a quantitative estimate of the age evolution and for cosmological applications.

  7. COSMIC RADIATION AND TUBERCULOSIS. IV. INFLUENCE OF COSMIC RADIATION ON TUBERCULOSIS AT HIGH ALTITUDE (3,130 M) AND AT SEA-LEVEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, S.G.

    1964-01-01

    At high altitude (3,130 m) tuberculous mice exposed to cosmic radiation under 10 cm of lead showed significantly greater mean survival time and a significantly greater number of survivors than tuberculous mice exposed to direct cosmic radiation. Tuberculous mice exposed to cosmic radiation at high altitude under 10 cm of lead showed a significantly greater mean survival time than tuberculous mice kept at sea level, exposed to direct cosmic radiation, and to cosmic radiation under 1, 2, and 10 cm of lead. The correlation analysis shows that a decreas in lung lesions is associated with an increase in survival time.more » The decrease in lung lesions is associated with an enlargement of the spleen. At high altitude the female showed a significantly greater number of survivors than the male. At sea level no significant difference was observed. On the average the female showed a significantly greater number of survivors. The beneficial effect of daylight with ultraviolet light on tuberculous mice was manifested in a lower maximum of mortality and in a significant decrease of lung and spleen lesions. (auth)« less

  8. Applications of Cosmic Muon Tracking at Shallow Depth Underground

    NASA Astrophysics Data System (ADS)

    Oláh, L.; Barnaföldi, G. G.; Hamar, G.; Melegh, H. G.; Surányi, G.; Varga, D.

    2014-06-01

    A portable cosmic muon telescope has been developed for environmental and geophysical applications, as well as cosmic background measurements for nuclear research in underground labs by the REGARD group (Wigner RCP of the HAS and Eötvös Loránd University collaboration on gaseous detector R&D). The modular, low power consuming (5 W) Close Cathode Chamber-based tracking system has 10 mrad angular resolution with its sensitive area of 0.1 m2. The angular distribution of cosmic muons has been measured at shallow depth underground (< 70 meter-rock-equivalent) in four different remote locations. Application of cosmic muon detection for the reconstruction of underground caverns and building structures are demonstrated by the measurements.

  9. The Hubble Web: The Dark Matter Problem and Cosmic Strings

    NASA Astrophysics Data System (ADS)

    Alexander, Stephon

    2009-07-01

    I propose a reinterpretation of cosmic dark matter in which a rigid network of cosmic strings formed at the end of inflation. The cosmic strings fulfill three functions: At recombination they provide an accretion mechanism for virializing baryonic and warm dark matter into disks. These cosmic strings survive as configurations which thread spiral and elliptical galaxies leading to the observed flatness of rotation curves and the Tully-Fisher relation. We find a relationship between the rotational velocity of the galaxy and the string tension and discuss the testability of this model.

  10. ORIGIN: Metal Creation and Evolution from the Cosmic Dawn

    NASA Technical Reports Server (NTRS)

    Kouveliotou, C.; vanderHorst, A.; Weisskopf, M.; White, N.; denHerder, J. W.; Costantini, E.; denHartog, R.; Hermsen, W.; in'tZhand, J.; Kaastra, J.; hide

    2012-01-01

    ORIGIN is a proposal for the M3 mission call of ESA aimed at the study of metal creation from the epoch of cosmic dawn. Using high-spectral resolution in the soft X-ray band, ORIGIN will be able to identify the physical conditions of all abundant elements between C and Ni to red-shifts of z=10, and beyond. The mission will answer questions such as: When were the first metals created? How does the cosmic metal content evolve? Where do most of the metals reside in the Universe? What is the role of metals in structure formation and evolution? To reach out to the early Universe ORIGIN will use Gamma-Ray Bursts (GRBs) to study their local environments in their host galaxies. This requires the capability to slew the satellite in less than a minute to the GRB location. By studying the chemical composition and properties of clusters of galaxies we can extend the range of exploration to lower redshifts (z approx. 0.2). For this task we need a high-resolution spectral imaging instrument with a large field of view. Using the same instrument, we can also study the so far only partially detected baryons in the Warm-Hot Intergalactic Medium (WHIM). The less dense part of the WHIM will be studied using absorption lines at low redshift in the spectra for GRBs. The ORIGIN mission includes a Transient Event Detector (coded mask with a sensitivity of 0.4 photon/sq cm/s in 10 s in the 5-150 keV band) to identify and localize 2000 GRBs over a five year mission, of which approx.65 GRBs have a redshift >7. The Cryogenic Imaging Spectrometer, with a spectral resolution of 2.5 eV, a field of view of 30 arcmin and large effective area below 1 keV has the sensitivity to study clusters up to a significant fraction of the virial radius and to map the denser parts of the WHIM (factor 30 higher than achievable with current instruments). The payload is complemented by a Burst InfraRed Telescope to enable onboard red-shift determination of GRBs (hence securing proper follow up of high-z bursts

  11. Contributions to the 19th International Cosmic Ray Conference

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Various aspects of cosmic radiation, its measurements and their patterns are presented. Measurement techniques and variations in solar cosmic ray patterns and calculations of elemental abundances are reviewed.

  12. Evolution of cosmic string networks

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Turok, Neil

    1989-01-01

    Results on cosmic strings are summarized including: (1) the application of non-equilibrium statistical mechanics to cosmic string evolution; (2) a simple one scale model for the long strings which has a great deal of predictive power; (3) results from large scale numerical simulations; and (4) a discussion of the observational consequences of our results. An upper bound on G mu of approximately 10(-7) emerges from the millisecond pulsar gravity wave bound. How numerical uncertainties affect this are discussed. Any changes which weaken the bound would probably also give the long strings the dominant role in producing observational consequences.

  13. Type-I cosmic-string network

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Takashi; Sendouda, Yuuiti; Takahashi, Keitaro; Yamauchi, Daisuke; Yoo, Chul-Moon

    2013-10-01

    We study the network of Type-I cosmic strings using the field-theoretic numerical simulations in the Abelian-Higgs model. For Type-I strings, the gauge field plays an important role, and thus we find that the correlation length of the strings is strongly dependent upon the parameter β, the ratio between the masses of the scalar field and the gauge field, namely, β=mφ2/mA2. In particular, if we take the cosmic expansion into account, the network becomes densest in the comoving box for a specific value of β for β<1.

  14. Monitoring cosmic radiation on aircraft

    NASA Astrophysics Data System (ADS)

    Bentley, Robert D.; Iles, R. H. A.; Jones, J. B. L.; Hunter, R.; Taylor, G. C.; Thomas, D. J.

    2002-03-01

    The Earth is constantly bombarded by cosmic radiation that can be either galactic or solar in origin. At aircraft altitudes, the radiation levels are much higher than at sea level and recent European legislation has classified aircrew as radiation workers. University College London is working with Virgin Atlantic Airways on a 3 year project to monitor the levels of cosmic radiation on long-haul flights. The study will determine whether models currently used to predict radiation exposure of aircrew are adequate. It will also try to determine whether solar flare activity can cause significant enhancement to the predicted doses.

  15. Compact cosmic ray detector for unattended atmospheric ionization monitoring

    NASA Astrophysics Data System (ADS)

    Aplin, K. L.; Harrison, R. G.

    2010-12-01

    Two vertical cosmic ray telescopes for atmospheric cosmic ray ionization event detection are compared. Counter A, designed for low power remote use, was deployed in the Welsh mountains; its event rate increased with altitude as expected from atmospheric cosmic ray absorption. Independently, Counter B's event rate was found to vary with incoming particle acceptance angle. Simultaneous co-located comparison of both telescopes exposed to atmospheric ionization showed a linear relationship between their event rates.

  16. Balloon test project: Cosmic Ray Antimatter Calorimeter (CRAC)

    NASA Technical Reports Server (NTRS)

    Christy, J. C.; Dhenain, G.; Goret, P.; Jorand, J.; Masse, P.; Mestreau, P.; Petrou, N.; Robin, A.

    1984-01-01

    Cosmic ray observations from balloon flights are discussed. The cosmic ray antimatter calorimeter (CRAC) experiment attempts to measure the flux of antimatter in the 200-600 Mev/m energy range and the isotopes of light elements between 600 and 1,000 Mev/m.

  17. Cosmic Ray investigations on peak Musala in Bulgaria: A memoir

    NASA Astrophysics Data System (ADS)

    Kavlakov, S.

    2009-11-01

    A very brief historical description of the Bulgarian Cosmic Ray investigations, in the Cosmic Ray Station on peak Musala (2925 m.a.s.l.) is presented. Difficulties of the high mountain measurements that time are mentioned, together with the hard emotional and successful work done by a small staff of young Bulgarian cosmic ray scientists.

  18. Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    NASA Astrophysics Data System (ADS)

    Abreu, P.; Aglietta, M.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arisaka, K.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Badagnani, D.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Berat, C.; Bergmann, T.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Colombo, E.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; Deligny, O.; Della Selva, A.; Dembinski, H.; Denkiewicz, A.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Garrido, X.; Gascon, A.; Gelmini, G.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kadija, K.; Kaducak, M.; Kampert, K. H.; Karhan, P.; Karova, T.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McEwen, M.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meurer, C.; Mičanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Mueller, S.; Muller, M. A.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parrisius, J.; Parsons, R. D.; Pastor, S.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; Peķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rivière, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schroeder, F.; Schulte, S.; Schüssler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tapia, A.; Tarutina, T.; Taşcău, O.; Tcaciuc, R.; Tcherniakhovski, D.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Weidenhaupt, K.; Weindl, A.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winders, L.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.; Pierre Auger Collaboration

    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, 6 × 10 19 eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1° from the position of an active galactic nucleus within 75 Mpc (using the Véron-Cetty and Véron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is 38-6+7%, compared with 21% expected for isotropic cosmic rays. This is down from the early estimate of 69-13+11%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.

  19. Cosmic Ray Studies with IceCube

    NASA Astrophysics Data System (ADS)

    Gonzalez, Javier

    In this contribution we will give an overview of the cosmic ray studies conducted within the IceCube collaboration. The IceCube detector in the geographical south pole can be used to measure various characteristics of the extensive air showers induced by high energy cosmic rays. With IceTop, the surface component of the detector, we detect the electromagnetic and muon components of the air showers, while with the deep detector we detect the high energy muons. We have measured the energy spectrum of cosmic ray primaries in the range between 1.58PeV and 1.26 EeV. A combined analysis of the high energy muon bundles in the ice and the air shower footprint in IceTop provides a measure of primary composition. We will also discuss how the sensitivity to low energy muons in the air showers has the potential to produce additional measures of primary composition.

  20. Cosmic distance duality and cosmic transparency

    NASA Astrophysics Data System (ADS)

    Nair, Remya; Jhingan, Sanjay; Jain, Deepak

    2012-12-01

    We compare distance measurements obtained from two distance indicators, Supernovae observations (standard candles) and Baryon acoustic oscillation data (standard rulers). The Union2 sample of supernovae with BAO data from SDSS, 6dFGS and the latest BOSS and WiggleZ surveys is used in search for deviations from the distance duality relation. We find that the supernovae are brighter than expected from BAO measurements. The luminosity distances tend to be smaller then expected from angular diameter distance estimates as also found in earlier works on distance duality, but the trend is not statistically significant. This further constrains the cosmic transparency.

  1. The STScI STIS Pipeline V: Cosmic Ray Rejection

    NASA Astrophysics Data System (ADS)

    Baum, Stefi; Hsu, J. C.; Hodge, Phil; Ferguson, Harry

    1996-07-01

    In this ISR we describe calstis-2, the calstis calibration module which combines CRSPLIT exposures to produce a single cosmic ray rejected image. Cosmic ray rejection in the STIS pipeline will follow the same basic philosophy as does the STSDAS task crrej - a series of separate CRSPLIT exposures are combined to produce a single summed image, where discrepant (different by some number of sigma from the guess value) are discarded in forming the output image. The calstis pipeline is able to perform this cosmic ray rejection because the individually commanded exposures are associated together into a single dataset by TRANS and generic conversion. The crrej will also exist as a task in STSDAS to allow users to reperform the cosmic ray rejection, altering the input parameters.

  2. The Energetic Trans-Iron Cosmic-ray Experiment (ENTICE)

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Adams. J. H.; Barghouty, A. F.; Christian, E. R.; Cummings, A. C.; Hams, T.; Israel, M. H.; Labrador, A. W.; Leske, R. A.; Link, J. T.; hide

    2009-01-01

    The ENTICE experiment is one of two instruments that comprise the "Orbiting Astrophysical Spectrometer in Space (OASIS)", which is presently undergoing a NASA "Astrophysics Strategic Mission Concept Study". ENTICE is designed to make high precision measurements of the abundances of individual elements from neon through the actinides and, in addition, will search for possible superheavy nuclei in the galactic cosmic rays. The ENTICE instrument utilizes silicon detectors, aerogel and acrylic Cherenkov counters, and a scintillating optical fiber hodoscope to measure the charge and energy of these ultra-heavy nuclei for energies greater than 0.5 GeV/nucleon. It is a large instrument consisting of four modules with a total effective geometrical factor of approx.20 sq m sr. Measurements made in space for a period of three years with ENTICE will enable us to determine if cosmic rays include a component of recently synthesized transuranic elements (Pu-94 and Cm-96), to measure the age of that component, and to test the model of the OB association origin of galactic cosmic rays. Additionally, these observations will enable us to study how diffusive shock acceleration of cosmic rays operates differently on interstellar grains and gas. Keywords: cosmic rays Galaxy:abundances

  3. The LDEF ultra heavy cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Smit, A.; Domingo, C.

    1992-01-01

    The LDEF Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of four in 48 pressure vessels. The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 1800 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Post flight work to date and the current status of the experiment are reviewed.

  4. The Astrobiological Case for Our Cosmic Ancestry

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Chandra

    With steadily mounting evidence that points to a cosmic origin of terrestrial life, a cultural barrier prevails against admitting that such a connection exists. Astronomy continues to reveal the presence of organic molecules and organic dust on a huge cosmic scale, amounting to a third of interstellar carbon tied up in this form. Just as the overwhelming bulk of organics on Earth stored over geological timescales are derived from the degradation of living cells, so it seems most likely that interstellar organics in large measure also derive from biology. As we enter a new decade -- the year 2010 -- a clear pronouncement of our likely alien ancestry and of the existence of extraterrestrial life on a cosmic scale would seem to be overdue.

  5. The astrobiological case for our cosmic ancestry

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Chandra

    2010-04-01

    With steadily mounting evidence that points to a cosmic origin of terrestrial life, a cultural barrier prevails against admitting that such a connection exists. Astronomy continues to reveal the presence of organic molecules and organic dust on a huge cosmic scale, amounting to a third of interstellar carbon tied up in this form. Just as the overwhelming bulk of organics on Earth stored over geological timescales are derived from the degradation of living cells, so it seems likely that interstellar organics in large measure also derive from biology. As we enter a new decade - the year 2010 - a clear pronouncement of our likely alien ancestry and of the existence of extraterrestrial life on a cosmic scale would seem to be overdue.

  6. Cosmological consistency tests of gravity theory and cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Ishak-Boushaki, Mustapha B.

    2017-01-01

    Testing general relativity at cosmological scales and probing the cause of cosmic acceleration are among the important objectives targeted by incoming and future astronomical surveys and experiments. I present our recent results on consistency tests that can provide insights about the underlying gravity theory and cosmic acceleration using cosmological data sets. We use statistical measures, the rate of cosmic expansion, the growth rate of large scale structure, and the physical consistency of these probes with one another.

  7. An estimation of Canadian population exposure to cosmic rays.

    PubMed

    Chen, Jing; Timmins, Rachel; Verdecchia, Kyle; Sato, Tatsuhiko

    2009-08-01

    The worldwide average exposure to cosmic rays contributes to about 16% of the annual effective dose from natural radiation sources. At ground level, doses from cosmic ray exposure depend strongly on altitude, and weakly on geographical location and solar activity. With the analytical model PARMA developed by the Japan Atomic Energy Agency, annual effective doses due to cosmic ray exposure at ground level were calculated for more than 1,500 communities across Canada which cover more than 85% of the Canadian population. The annual effective doses from cosmic ray exposure in the year 2000 during solar maximum ranged from 0.27 to 0.72 mSv with the population-weighted national average of 0.30 mSv. For the year 2006 during solar minimum, the doses varied between 0.30 and 0.84 mSv, and the population-weighted national average was 0.33 mSv. Averaged over solar activity, the Canadian population-weighted average annual effective dose due to cosmic ray exposure at ground level is estimated to be 0.31 mSv.

  8. Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bersanetti, D.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2014-04-01

    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension Gμ below 10-8 in some regions of the cosmic string parameter space.

  9. Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors

    NASA Technical Reports Server (NTRS)

    Aasi, J.; Abadie, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Accadia, T.; Adams, C.; Adams, T.; Adhikari, R.X.; hide

    2014-01-01

    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension (Newton's Constant x mass per unit length) below 10(exp -8) in some regions of the cosmic string parameter space.

  10. Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors.

    PubMed

    Aasi, J; Abadie, J; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Adams, C; Adams, T; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ajith, P; Allen, B; Allocca, A; Amador Ceron, E; Amariutei, D; Anderson, R A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Ast, S; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barker, D; Barnum, S H; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J; Bauchrowitz, J; Bauer, Th S; Bebronne, M; Behnke, B; Bejger, M; Beker, M G; Bell, A S; Bell, C; Belopolski, I; Bergmann, G; Berliner, J M; Bersanetti, D; Bertolini, A; Bessis, D; Betzwieser, J; Beyersdorf, P T; Bhadbhade, T; Bilenko, I A; Billingsley, G; Birch, J; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bowers, J; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brannen, C A; Brau, J E; Breyer, J; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Calderón Bustillo, J; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Colombini, M; Constancio, M; Conte, A; Conte, R; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coulon, J-P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Craig, K; Creighton, J D E; Creighton, T D; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Dal Canton, T; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; De Rosa, R; Debreczeni, G; Degallaix, J; Del Pozzo, W; Deleeuw, E; Deléglise, S; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R; DeSalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Díaz, M; Dietz, A; Dmitry, K; Donovan, F; Dooley, K L; Doravari, S; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dumas, J-C; Dwyer, S; Eberle, T; Edwards, M; Effler, A; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, K; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W; Favata, M; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R; Flaminio, R; Foley, E; Foley, S; Forsi, E; Fotopoulos, N; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fujimoto, M-K; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Garcia, J; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Gergely, L; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gil-Casanova, S; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Griffo, C; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K E; Gustafson, E K; Gustafson, R; Hall, B; Hall, E; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hartman, M T; Haughian, K; Hayama, K; Heefner, J; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Holtrop, M; Hong, T; Hooper, S; Horrom, T; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hua, Z; Huang, V; Huerta, E A; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Iafrate, J; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jang, Y J; Jaranowski, P; Jiménez-Forteza, F; Johnson, W W; Jones, D; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kasprzack, M; Kasturi, R; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufman, K; Kawabe, K; Kawamura, S; Kawazoe, F; Kéfélian, F; Keitel, D; Kelley, D B; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, B K; Kim, C; Kim, K; Kim, N; Kim, W; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D; Kremin, A; Kringel, V; Królak, A; Kucharczyk, C; Kudla, S; Kuehn, G; Kumar, A; Kumar, P; Kumar, R; Kurdyumov, R; Kwee, P; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lawrie, C; Lazzarini, A; Le Roux, A; Leaci, P; Lebigot, E O; Lee, C-H; Lee, H K; Lee, H M; Lee, J; Lee, J; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levine, B; Lewis, J B; Lhuillier, V; Li, T G F; Lin, A C; Littenberg, T B; Litvine, V; Liu, F; Liu, H; Liu, Y; Liu, Z; Lloyd, D; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Luan, J; Lubinski, M J; Lück, H; Lundgren, A P; Macarthur, J; Macdonald, E; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Mageswaran, M; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; May, G; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meier, T; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Miller, J; Minenkov, Y; Mingarelli, C M F; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Mohan, M; Mohapatra, S R P; Mokler, F; Moraru, D; Moreno, G; Morgado, N; Mori, T; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Nanda Kumar, D; Nardecchia, I; Nash, T; Naticchioni, L; Nayak, R; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nishida, E; Nishizawa, A; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oppermann, P; O'Reilly, B; Ortega Larcher, W; O'Shaughnessy, R; Osthelder, C; Ott, C D; Ottaway, D J; Ottens, R S; Ou, J; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Paoletti, R; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Peiris, P; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pindor, B; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poole, V; Poux, C; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Quintero, E; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Rapagnani, P; Raymond, V; Re, V; Reed, C M; Reed, T; Regimbau, T; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Roddy, S; Rodriguez, C; Rodruck, M; Roever, C; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Schilling, R; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shaddock, D; Shah, S; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Sintes, A M; Skelton, G R; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Soden, K; Son, E J; Sorazu, B; Souradeep, T; Sperandio, L; Staley, A; Steinert, E; Steinlechner, J; Steinlechner, S; Steplewski, S; Stevens, D; Stochino, A; Stone, R; Strain, K A; Straniero, N; Strigin, S; Stroeer, A S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Szeifert, G; Tacca, M; Talukder, D; Tang, L; Tanner, D B; Tarabrin, S P; Taylor, R; ter Braack, A P M; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Ugolini, D; Unnikrishnan, C S; Vahlbruch, H; Vajente, G; Vallisneri, M; van den Brand, J F J; Van Den Broeck, C; van der Putten, S; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Verma, S; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J-Y; Vitale, S; Vlcek, B; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vrinceanu, D; Vyachanin, S P; Wade, A; Wade, L; Wade, M; Waldman, S J; Walker, M; Wallace, L; Wan, Y; Wang, J; Wang, M; Wang, X; Wanner, A; Ward, R L; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wibowo, S; Wiesner, K; Wilkinson, C; Williams, L; Williams, R; Williams, T; Willis, J L; Willke, B; Wimmer, M; Winkelmann, L; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yancey, C C; Yang, H; Yeaton-Massey, D; Yoshida, S; Yum, H; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J-P; Zhang, F; Zhang, L; Zhao, C; Zhu, H; Zhu, X J; Zotov, N; Zucker, M E; Zweizig, J

    2014-04-04

    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension Gμ below 10(-8) in some regions of the cosmic string parameter space.

  11. Annama H chondrite—Mineralogy, physical properties, cosmic ray exposure, and parent body history

    NASA Astrophysics Data System (ADS)

    Kohout, TomáÅ.¡; Haloda, Jakub; Halodová, Patricie; Meier, Matthias M. M.; Maden, Colin; Busemann, Henner; Laubenstein, Matthias; Caffee, Marc. W.; Welten, Kees C.; Hopp, Jens; Trieloff, Mario; Mahajan, Ramakant R.; Naik, Sekhar; Trigo-Rodriguez, Josep M.; Moyano-Cambero, Carles E.; Oshtrakh, Michael I.; Maksimova, Alevtina A.; Chukin, Andrey V.; Semionkin, Vladimir A.; Karabanalov, Maksim S.; Felner, Israel; Petrova, Evgeniya V.; Brusnitsyna, Evgeniia V.; Grokhovsky, Victor I.; Yakovlev, Grigoriy A.; Gritsevich, Maria; Lyytinen, Esko; Moilanen, Jarmo; Kruglikov, Nikolai A.; Ishchenko, Aleksey V.

    2017-08-01

    The fall of the Annama meteorite occurred early morning (local time) on April 19, 2014 on the Kola Peninsula (Russia). Based on mineralogy and physical properties, Annama is a typical H chondrite. It has a high Ar-Ar age of 4.4 Ga. Its cosmic ray exposure history is atypical as it is not part of the large group of H chondrites with a prominent 7-8 Ma peak in the exposure age histograms. Instead, its exposure age is within uncertainty of a smaller peak at 30 ± 4 Ma. The results from short-lived radionuclides are compatible with an atmospheric pre-entry radius of 30-40 cm. However, based on noble gas and cosmogenic radionuclide data, Annama must have been part of a larger body (radius >65 cm) for a large part of its cosmic ray exposure history. The 10Be concentration indicates a recent (3-5 Ma) breakup which may be responsible for the Annama parent body size reduction to 30-35 cm pre-entry radius.

  12. Nineteenth International Cosmic Ray Conference. OG Sessions, Volume 3

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. This volume addresses cosmic ray sources and acceleration, interstellar propagation and nuclear interactions, and detection techniques and instrumentation.

  13. Cosmic string catalysis of skyrmion decay

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth; Davis, Anne-Christine; Brandenberger, Robert

    1988-01-01

    The Callan-Witten picture is developed for monopole catalyzed skyrmion decay in order to analyze the corresponding cosmic string scenario. It is discovered that cosmic strings (both ordinary and superconducting) can catalyze proton decay, but that this catalysis only occurs on the scale of the core of the string. In order to do this we have to develop a vortex model for the superconducting string. An argument is also given for the difference in the enhancement factors for monopoles and strings.

  14. Cosmic Background Explorer (COBE) press kit

    NASA Technical Reports Server (NTRS)

    1989-01-01

    COBE, the Cosmic Background Explorer spacecraft, and its mission are described. COBE was designed to study the origin and dynamics of the universe including the theory that the universe began with a cataclysmic explosion referred to as the Big Bang. To this end, earth's cosmic background - the infrared radiation that bombards earth from every direction - will be measured by three sophisticated instruments: the Differential Microwave Radiometer (DMR), the Far Infrared Absolute Spectrophotometer (FIRAS), and the Diffuse Infrared Background Experiment (DIRBE).

  15. Modulation of Cosmic Ray Precipitation Related to Climate

    NASA Technical Reports Server (NTRS)

    Feynman, J.; Ruzmaikin, A.

    1998-01-01

    High energy cosmic rays may influence the formation of clouds, and thus can have an impact on weather and climate. Cosmic rays in the solar wind are incident on the magnetosphere boundary and are then transmitted through the magnetosphere and atmosphere to reach the upper troposphere.

  16. Probing the cosmic causes of errors in supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Cosmic rays from outer space are causing errors in supercomputers. The neutrons that pass through the CPU may be causing binary data to flip leading to incorrect calculations. Los Alamos National Laboratory has developed detectors to determine how much data is being corrupted by these cosmic particles.

  17. Demonstration of Cosmic Microwave Background Delensing Using the Cosmic Infrared Background.

    PubMed

    Larsen, Patricia; Challinor, Anthony; Sherwin, Blake D; Mak, Daisy

    2016-10-07

    Delensing is an increasingly important technique to reverse the gravitational lensing of the cosmic microwave background (CMB) and thus reveal primordial signals the lensing may obscure. We present a first demonstration of delensing on Planck temperature maps using the cosmic infrared background (CIB). Reversing the lensing deflections in Planck CMB temperature maps using a linear combination of the 545 and 857 GHz maps as a lensing tracer, we find that the lensing effects in the temperature power spectrum are reduced in a manner consistent with theoretical expectations. In particular, the characteristic sharpening of the acoustic peaks of the temperature power spectrum resulting from successful delensing is detected at a significance of 16σ, with an amplitude of A_{delens}=1.12±0.07 relative to the expected value of unity. This first demonstration on data of CIB delensing, and of delensing techniques in general, is significant because lensing removal will soon be essential for achieving high-precision constraints on inflationary B-mode polarization.

  18. Cosmic Ray Acceleration from Multiple Galactic Wind Shocks

    NASA Astrophysics Data System (ADS)

    Cotter, Cory; Bustard, Chad; Zweibel, Ellen

    2018-01-01

    Cosmic rays still have an unknown origin. Many mechanisms have been suggested for their acceleration including quasars, pulsars, magnetars, supernovae, supernova remnants, and galactic termination shocks. The source of acceleration may be a mixture of these and a different mixture in different energy regimes. Using numerical simulations, we investigate multiple shocks in galactic winds as potential cosmic rays sources. By having shocks closer to the parent galaxy, more particles may diffuse back to the disk instead of being blown out in the wind, as found in Bustard, Zweibel, and Cotter (2017, ApJ) and also Merten, Bustard, Zweibel, and Tjus (to be submitted to ApJ). Specifically, this flux of cosmic rays could contribute to the unexplained "shin" region between the well-known "knee" and "ankle" of the cosmic ray spectrum. We would like to acknowledge support from the National Science Foundation (NSF) Graduate Research Fellowship Program under grant No. DGE-125625 and NSF grant No. AST-1616037.

  19. Transport of cosmic ray nuclei in various materials

    NASA Technical Reports Server (NTRS)

    Silberberg, R.; Tsao, C. H.; Letaw, J. R.

    1988-01-01

    Cosmic-ray heavy ions have become a concern in space radiation effects analyses. Heavy ions rapidly deposit energy and create dense ionization trails as they traverse materials. Collection of the free charge disrupts the operation of microelectronic circuits. This effect, called the single-event upset, can cause a loss of digital data. Passage of high linear energy transfer particles through the eyes has been observed by Apollo astronauts. These heavy ions have great radiobiological effectiveness and are the primary risk factor for leukemia induction on a manned Mars mission. Models of the transport of heavy cosmic-ray nuclei through materials depend heavily on our understanding of the cosmic-ray environment, nuclear spallation cross sections, and computer transport codes. Our group has initiated and pursued the development of a full capability for modeling these transport processes. A recent review of this ongoing effort is presented in Ref. 5. In this paper, we discuss transport methods and present new results comparing the attenuation of cosmic rays in various materials.

  20. Experimental cosmic statistics - I. Variance

    NASA Astrophysics Data System (ADS)

    Colombi, Stéphane; Szapudi, István; Jenkins, Adrian; Colberg, Jörg

    2000-04-01

    Counts-in-cells are measured in the τCDM Virgo Hubble Volume simulation. This large N-body experiment has 109 particles in a cubic box of size 2000h-1Mpc. The unprecedented combination of size and resolution allows, for the first time, a realistic numerical analysis of the cosmic errors and cosmic correlations of statistics related to counts-in-cells measurements, such as the probability distribution function PN itself, its factorial moments Fk and the related cumulants ψ and SNs. These statistics are extracted from the whole simulation cube, as well as from 4096 subcubes of size 125h-1Mpc, each representing a virtual random realization of the local universe. The measurements and their scatter over the subvolumes are compared to the theoretical predictions of Colombi, Bouchet & Schaeffer for P0, and of Szapudi & Colombi and Szapudi, Colombi & Bernardeau for the factorial moments and the cumulants. The general behaviour of experimental variance and cross-correlations as functions of scale and order is well described by theoretical predictions, with a few per cent accuracy in the weakly non-linear regime for the cosmic error on factorial moments. On highly non-linear scales, however, all variants of the hierarchical model used by SC and SCB to describe clustering appear to become increasingly approximate, which leads to a slight overestimation of the error, by about a factor of two in the worst case. Because of the needed supplementary perturbative approach, the theory is less accurate for non-linear estimators, such as cumulants, than for factorial moments. The cosmic bias is evaluated as well, and, in agreement with SCB, is found to be insignificant compared with the cosmic variance in all regimes investigated. While higher order statistics were previously evaluated in several simulations, this work presents textbook quality measurements of SNs, 3<=N<=10, in an unprecedented dynamic range of 0.05 <~ ψ <~ 50. In the weakly non-linear regime the results confirm

  1. Cosmic ray injection spectrum at the galactic sources

    NASA Astrophysics Data System (ADS)

    Lagutin, Anatoly; Tyumentsev, Alexander; Volkov, Nikolay

    The spectra of cosmic rays measured at Earth are different from their source spectra. A key to understanding this difference, being crucial for solving the problem of cosmic-ray origin, is the determination of how cosmic-ray (CR) particles propagate through the turbulent interstellar medium (ISM). If the medium is a quasi-homogeneous the propagation process can be described by a normal diffusion model. However, during a last few decades many evidences, both from theory and observations, of the existence of multiscale structures in the Galaxy have been found. Filaments, shells, clouds are entities widely spread in the ISM. In such a highly non-homogeneous (fractal-like) ISM the normal diffusion model certainly is not kept valid. Generalization of this model leads to what is known as "anomalous diffusion". The main goal of the report is to retrieve the cosmic ray injection spectrum at the galactic sources in the framework of the anomalous diffusion (AD) model. The anomaly in this model results from large free paths ("Levy flights") of particles between galactic inhomogeneities. In order to evaluate the CR spectrum at the sources, we carried out new calculation of the CR spectra at Earth. AD equation in terms of fractional derivatives have been used to describe CR propagation from the nearby (r≤1 kpc) young (t≤ 1 Myr) and multiple old distant (r > 1 kpc) sources. The assessment of the key model parameters have been based on the results of the particles diffusion in the cosmic and laboratory plasma. We show that in the framework of the anomalous diffusion model the locally observed basic features of the cosmic rays (difference between spectral exponents of proton, He and other nuclei, "knee" problem, positron to electron ratio) can be explained if the injection spectrum at the main galactic sources of cosmic rays has spectral exponent p˜ 2.85. The authors acknowledge support from The Russian Foundation for Basic Research grant No. 14-02-31524.

  2. Examining the cosmic acceleration with the latest Union2 supernova data

    NASA Astrophysics Data System (ADS)

    Li, Zhengxiang; Wu, Puxun; Yu, Hongwei

    2011-01-01

    In this Letter, by reconstructing the Om diagnostic and the deceleration parameter q from the latest Union2 Type Ia Supernova sample with and without the systematic error along with the baryon acoustic oscillation (BAO) and the cosmic microwave background (CMB), we study the cosmic expanding history, using the Chevallier-Polarski-Linder (CPL) parametrization. We obtain that Union2+BAO favor an expansion with a decreasing of the acceleration at z<0.3. However, once the CMB data is added in the analysis, the cosmic acceleration is found to be still increasing, indicating a tension between low redshift data and high redshift. In order to reduce this tension significantly, two different methods are considered and thus two different subsamples of Union2 are selected. We then find that two different subsamples+BAO+CMB give completely different results on the cosmic expanding history when the systematic error is ignored, with one suggesting a decreasing cosmic acceleration, the other just the opposite, although both of them alone with BAO support that the cosmic acceleration is slowing down. However, once the systematic error is considered, two different subsamples of Union2 along with BAO and CMB all favor an increasing of the present cosmic acceleration. Therefore a clear-cut answer on whether the cosmic acceleration is slowing down calls for more consistent data and more reliable methods to analyze them.

  3. REVIEWS OF TOPICAL PROBLEMS: Cosmic vacuum

    NASA Astrophysics Data System (ADS)

    Chernin, Artur D.

    2001-11-01

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered.

  4. Lagrangian methods of cosmic web classification

    NASA Astrophysics Data System (ADS)

    Fisher, J. D.; Faltenbacher, A.; Johnson, M. S. T.

    2016-05-01

    The cosmic web defines the large-scale distribution of matter we see in the Universe today. Classifying the cosmic web into voids, sheets, filaments and nodes allows one to explore structure formation and the role environmental factors have on halo and galaxy properties. While existing studies of cosmic web classification concentrate on grid-based methods, this work explores a Lagrangian approach where the V-web algorithm proposed by Hoffman et al. is implemented with techniques borrowed from smoothed particle hydrodynamics. The Lagrangian approach allows one to classify individual objects (e.g. particles or haloes) based on properties of their nearest neighbours in an adaptive manner. It can be applied directly to a halo sample which dramatically reduces computational cost and potentially allows an application of this classification scheme to observed galaxy samples. Finally, the Lagrangian nature admits a straightforward inclusion of the Hubble flow negating the necessity of a visually defined threshold value which is commonly employed by grid-based classification methods.

  5. Cosmic ray antiprotons at high energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, Martin Wolfgang, E-mail: martin.winkler@su.se

    2017-02-01

    Cosmic ray antiprotons provide a powerful tool to probe dark matter annihilations in our galaxy. The sensitivity of this important channel is, however, diluted by sizable uncertainties in the secondary antiproton background. In this work, we improve the calculation of secondary antiproton production with a particular focus on the high energy regime. We employ the most recent collider data and identify a substantial increase of antiproton cross sections with energy. This increase is driven by the violation of Feynman scaling as well as by an enhanced strange hyperon production. The updated antiproton production cross sections are made publicly available formore » independent use in cosmic ray studies. In addition, we provide the correlation matrix of cross section uncertainties for the AMS-02 experiment. At high energies, the new cross sections improve the compatibility of the AMS-02 data with a pure secondary origin of antiprotons in cosmic rays.« less

  6. Conference on Early Mars: Geologic and Hydrologic Evolution, Physical and Chemical Environments, and the Implications for Life

    NASA Technical Reports Server (NTRS)

    Clifford, S. M. (Editor); Treiman, A. H. (Editor); Newsom, H. E. (Editor); Farmer, J. D. (Editor)

    1997-01-01

    Topics considered include: Geology alteration and life in an extreme environment; developing a chemical code to identify magnetic biominerals; effect of impacts on early Martin geologic evolution; spectroscopic identification of minerals in Hematite-bearing soils and sediments; exopaleontology and the search for a Fossil record on Mars; geochemical evolution of the crust of Mars; geological evolution of the early earth;solar-wind-induced erosion of the Mars atmosphere. Also included geological evolution of the crust of Mars.

  7. Probing Inflation via Cosmic Microwave Background Polarimetry

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2008-01-01

    The Cosmic Microwave Background (CMB) has been a rich source of information about the early Universe. Detailed measurements of its spectrum and spatial distribution have helped solidify the Standard Model of Cosmology. However, many questions still remain. Standard Cosmology does not explain why the early Universe is geometrically flat, expanding, homogenous across the horizon, and riddled with a small anisotropy that provides the seed for structure formation. Inflation has been proposed as a mechanism that naturally solves these problems. In addition to solving these problems, inflation is expected to produce a spectrum of gravitational waves that will create a particular polarization pattern on the CMB. Detection of this polarized signal is a key test of inflation and will give a direct measurement of the energy scale at which inflation takes place. This polarized signature of inflation is expected to be -9 orders of magnitude below the 2.7 K monopole level of the CMB. This measurement will require good control of systematic errors, an array of many detectors having the requisite sensitivity, and a reliable method for removing polarized foregrounds, and nearly complete sky coverage. Ultimately, this measurement is likely to require a space mission. To this effect, technology and mission concept development are currently underway.

  8. Studying Cosmic Dawn with WFIRST

    NASA Astrophysics Data System (ADS)

    Rhoads, James; Malhotra, Sangeeta; Jansen, Rolf A.; Windhorst, Rogier; Tilvi, Vithal; Finkelstein, Steven; Wold, Isak; Papovich, Casey; Fan, Xiaohui; Mellema, Garrelt; Zackrisson, Erik; Jensen, Hannes; T

    2018-01-01

    Our understanding of Cosmic Dawn can be revolutionized using WFIRST's combination of wide-field, sensitive, high resolution near-infrared imaging and spectroscopy. Guest investigator studies of WFIRST's high latitude imaging survey and supernova search fields will yield orders of magnitude increases in our samples of Lyman break galaxies from z=7 to z>12. The high latitude spectrsocopic survey will enable an unprecedented search for z>7 quasars. Guest observer deep fields can extend these studies to flux levels of Hubble's deepest fields, over regions measured in square degrees. The resulting census of luminous objects in the Cosmic Dawn will provide key insights into the sources of the ultraviolet photons that powered reionization. Moreover, because WFIRST has a wide field (slitless) spectroscopic capability, it can be used to search for Lyman alpha emitting galaxies over the full history of reionization. By comparing the Lyman alpha galaxy statistics to those of continuum sources, we can directly probe the transparency of the intergalactic gas and chart reionization history.Our team is planning for both Guest Investigator and Guest Observer applications of WFIRST to studying Cosmic Dawn, and welcomes dialog with other interested members of the community.

  9. Simulations of ultra-high energy cosmic rays in the local Universe and the origin of cosmic magnetic fields

    NASA Astrophysics Data System (ADS)

    Hackstein, S.; Vazza, F.; Brüggen, M.; Sorce, J. G.; Gottlöber, S.

    2018-04-01

    We simulate the propagation of cosmic rays at ultra-high energies, ≳1018 eV, in models of extragalactic magnetic fields in constrained simulations of the local Universe. We use constrained initial conditions with the cosmological magnetohydrodynamics code ENZO. The resulting models of the distribution of magnetic fields in the local Universe are used in the CRPROPA code to simulate the propagation of ultra-high energy cosmic rays. We investigate the impact of six different magneto-genesis scenarios, both primordial and astrophysical, on the propagation of cosmic rays over cosmological distances. Moreover, we study the influence of different source distributions around the Milky Way. Our study shows that different scenarios of magneto-genesis do not have a large impact on the anisotropy measurements of ultra-high energy cosmic rays. However, at high energies above the Greisen-Zatsepin-Kuzmin (GZK)-limit, there is anisotropy caused by the distribution of nearby sources, independent of the magnetic field model. This provides a chance to identify cosmic ray sources with future full-sky measurements and high number statistics at the highest energies. Finally, we compare our results to the dipole signal measured by the Pierre Auger Observatory. All our source models and magnetic field models could reproduce the observed dipole amplitude with a pure iron injection composition. Our results indicate that the dipole is observed due to clustering of secondary nuclei in direction of nearby sources of heavy nuclei. A light injection composition is disfavoured, since the increase in dipole angular power from 4 to 8 EeV is too slow compared to observation by the Pierre Auger Observatory.

  10. CMB temperature bispectrum induced by cosmic strings

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki

    2009-10-01

    The cosmic microwave background (CMB) bispectrum of the temperature anisotropies induced by a network of cosmic strings is derived for small angular scales, under the assumption that the principal cause of temperature fluctuations is the Gott-Kaiser-Stebbins effect. We provide analytical expressions for all isosceles triangle configurations in Fourier space. Their overall amplitude is amplified as the inverse cube of the angle and diverges for flat triangles. The isosceles configurations generically lead to a negative bispectrum with a power-law decay ℓ-6 for large multipole ℓ. However, collapsed triangles are found to be associated with a positive bispectrum whereas the squeezed triangles still exhibit negative values. We then compare our analytical estimates to a direct computation of the bispectrum from a set of 300 statistically independent temperature maps obtained from Nambu-Goto cosmic string simulations in a Friedmann-Lemaître-Robertson-Walker universe. We find good agreement for the overall amplitude, the power-law behavior, and the angle dependency of the various triangle configurations. At ℓ˜500 the cosmic string Gott-Kaiser-Stebbins effect contributes approximately the same equilateral CMB bispectrum amplitude as an inflationary model with |fNLloc|≃103, if the strings contribute about 10% of the temperature power spectrum at ℓ=10. Current bounds on fNL are not derived using cosmic string bispectrum templates, and so our fNL estimate cannot be used to derive bounds on strings. However it does suggest that string bispectrum templates should be included in the search of CMB non-Gaussianities.

  11. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1989-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. The activities are divided into sections and described, followed by a bibliography. The astrophysical aspects of cosmic rays, gamma rays, and of the radiation and electromagnetic field environment of the Earth and other planets are investigated. These investigations are performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  12. Heliospheric influence on the anisotropy of TeV cosmic rays

    DOE PAGES

    Zhang, Ming; Zuo, Pingbing; Pogorelov, Nikolai

    2014-06-26

    This article provides a theory of using Liouville's theorem to map the anisotropy of TeV cosmic rays seen at Earth using the particle distribution function in the local interstellar medium (LISM). The ultimate source of cosmic ray anisotropy is the energy, pitch angle, and spatial dependence of the cosmic ray distribution function in the LISM. Because young nearby cosmic ray sources can make a special contribution to the cosmic ray anisotropy, the anisotropy depends on the source age, distance and magnetic connection, and particle diffusion of these cosmic rays, all of which make the anisotropy sensitive to the particle energy.more » When mapped through the magnetic and electric field of a magnetohydrodynamic model heliosphere, the large-scale dipolar and bidirectional interstellar anisotropy patterns become distorted if they are seen from Earth, resulting in many small structures in the observations. Best fits to cosmic ray anisotropy measurements have allowed us to estimate the particle density gradient and pitch angle anisotropies in the LISM. It is found that the heliotail, hydrogen deflection plane, and the plane perpendicular to the LISM magnetic field play a special role in distorting cosmic ray anisotropy. These features can lead to an accurate determination of the LISM magnetic field direction and polarity. The effects of solar cycle variation, the Sun's coronal magnetic field, and turbulence in the LISM and heliospheric magnetic fields are minor but clearly visible at a level roughly equal to a fraction of the overall anisotropy amplitude. Lastly, the heliospheric influence becomes stronger at lower energies. Below 1 TeV, the anisotropy is dominated by small-scale patterns produced by disturbances in the heliosphere.« less

  13. Heliospheric influence on the anisotropy of TeV cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ming; Zuo, Pingbing; Pogorelov, Nikolai, E-mail: mzhang@fit.edu

    2014-07-20

    This paper provides a theory of using Liouville's theorem to map the anisotropy of TeV cosmic rays seen at Earth using the particle distribution function in the local interstellar medium (LISM). The ultimate source of cosmic ray anisotropy is the energy, pitch angle, and spatial dependence of the cosmic ray distribution function in the LISM. Because young nearby cosmic ray sources can make a special contribution to the cosmic ray anisotropy, the anisotropy depends on the source age, distance and magnetic connection, and particle diffusion of these cosmic rays, all of which make the anisotropy sensitive to the particle energy.more » When mapped through the magnetic and electric field of a magnetohydrodynamic model heliosphere, the large-scale dipolar and bidirectional interstellar anisotropy patterns become distorted if they are seen from Earth, resulting in many small structures in the observations. Best fits to cosmic ray anisotropy measurements have allowed us to estimate the particle density gradient and pitch angle anisotropies in the LISM. It is found that the heliotail, hydrogen deflection plane, and the plane perpendicular to the LISM magnetic field play a special role in distorting cosmic ray anisotropy. These features can lead to an accurate determination of the LISM magnetic field direction and polarity. The effects of solar cycle variation, the Sun's coronal magnetic field, and turbulence in the LISM and heliospheric magnetic fields are minor but clearly visible at a level roughly equal to a fraction of the overall anisotropy amplitude. The heliospheric influence becomes stronger at lower energies. Below 1 TeV, the anisotropy is dominated by small-scale patterns produced by disturbances in the heliosphere.« less

  14. Cosmic jets

    NASA Technical Reports Server (NTRS)

    Rees, M. J.

    1986-01-01

    The evidence that active galactic nuclei produce collimated plasma jets is summarised. The strongest radio galaxies are probably energised by relativistic plasma jets generated by spinning black holes interacting with magnetic fields attached to infalling matter. Such objects can produce e(+)-e(-) plasma, and may be relevant to the acceleration of the highest-energy cosmic ray primaries. Small-scale counterparts of the jet phenomenon within our own galaxy are briefly reviewed.

  15. Nonlocal Models of Cosmic Acceleration

    NASA Astrophysics Data System (ADS)

    Woodard, R. P.

    2014-02-01

    I review a class of nonlocally modified gravity models which were proposed to explain the current phase of cosmic acceleration without dark energy. Among the topics considered are deriving causal and conserved field equations, adjusting the model to make it support a given expansion history, why these models do not require an elaborate screening mechanism to evade solar system tests, degrees of freedom and kinetic stability, and the negative verdict of structure formation. Although these simple models are not consistent with data on the growth of cosmic structures many of their features are likely to carry over to more complicated models which are in better agreement with the data.

  16. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  17. Cosmic Rays and Their Radiative Processes in Numerical Cosmology

    NASA Astrophysics Data System (ADS)

    Ryu, D.; Miniati, F.; Jones, T. W.; Kang, H.

    2000-05-01

    A cosmological hydrodynamic code is described, which includes a routine to compute cosmic ray acceleration and transport in a simplified way. The routine was designed to follow explicitly diffusive acceleration at shocks, and second-order Fermi acceleration and adiabatic loss in smooth flows. Synchrotron cooling of the electron population can also be followed. The updated code is intended to be used to study the properties of nonthermal synchrotron emission and inverse Compton scattering from electron cosmic rays in clusters of galaxies, in addition to the properties of thermal bremsstrahlung emission from hot gas. The results of a test simulation using a grid of 1283 cells are presented, where cosmic rays and magnetic field have been treated passively and synchrotron cooling of cosmic ray electrons has not been included.

  18. Diffuse Galactic gamma rays from shock-accelerated cosmic rays.

    PubMed

    Dermer, Charles D

    2012-08-31

    A shock-accelerated particle flux is proportional to p(-s), where p is the particle momentum, follows from simple theoretical considerations of cosmic-ray acceleration at nonrelativistic shocks followed by rigidity-dependent escape into the Galactic halo. A flux of shock-accelerated cosmic-ray protons with s≈2.8 provides an adequate fit to the Fermi Large Area Telescope γ-ray emission spectra of high-latitude and molecular cloud gas when uncertainties in nuclear production models are considered. A break in the spectrum of cosmic-ray protons claimed by Neronov, Semikoz, and Taylor [Phys. Rev. Lett. 108, 051105 (2012)] when fitting the γ-ray spectra of high-latitude molecular clouds is a consequence of using a cosmic-ray proton flux described by a power law in kinetic energy.

  19. Cosmic Rays and Their Radiative Processes in Numerical Cosmology

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Miniati, Francesco; Jones, Tom W.; Kang, Hyesung

    2000-01-01

    A cosmological hydrodynamic code is described, which includes a routine to compute cosmic ray acceleration and transport in a simplified way. The routine was designed to follow explicitly diffusive, acceleration at shocks, and second-order Fermi acceleration and adiabatic loss in smooth flows. Synchrotron cooling of the electron population can also be followed. The updated code is intended to be used to study the properties of nonthermal synchrotron emission and inverse Compton scattering from electron cosmic rays in clusters of galaxies, in addition to the properties of thermal bremsstrahlung emission from hot gas. The results of a test simulation using a grid of 128 (exp 3) cells are presented, where cosmic rays and magnetic field have been treated passively and synchrotron cooling of cosmic ray electrons has not been included.

  20. The place of the Local Group in the cosmic web

    NASA Astrophysics Data System (ADS)

    Forero-Romero, Jaime E.; González, Roberto

    2016-10-01

    We use the Bolshoi Simulation to find the most probable location of the Local Group (LG) in the cosmic web. Our LG simulacra are pairs of halos with isolation and kinematic properties consistent with observations. The cosmic web is defined using a tidal tensor approach. We find that the LG's preferred location is regions with a dark matter overdensity close to the cosmic average. This makes filaments and sheets the preferred environment. We also find a strong alignment between the LG and the cosmic web. The orbital angular momentum is preferentially perpendicular to the smallest tidal eigenvector, while the vector connecting the two halos is strongly aligned along the the smallest tidal eigenvector and perpendicular to the largest tidal eigenvector; the pair lies and moves along filaments and sheets. We do not find any evidence for an alignment between the spin of each halo in the pair and the cosmic web.

  1. Second Symposium on Chemical Evolution and the Origin of Life

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L. (Editor); model. (Editor)

    1986-01-01

    Recent findings by NASA Exobiology investigators are reported. Scientific papers are presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).

  2. Second Symposium on Chemical Evolution and the Origin of Life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devincenzi, D.L.; Dufour, P.A.

    1986-05-01

    Recent findings by NASA Exobiology investigators are reported. Scientific papers are presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).

  3. Study of cosmic rays reveals secrets of solar-terrestrial science

    NASA Astrophysics Data System (ADS)

    Jokipii, J. R.

    For many years cosmic rays provided the most important source of energetic particles for studies of subatomic physics. Today, cosmic rays are being studied as a natural phenomenon that can tell us much about both the Earth's environment in space and distant astrophysical processes. Cosmic rays are naturally occurring energetic particles—mainly ions—with kinetic energies extending from just above thermal energies to more than 1020 electron volts (eV). They constantly bombard the Earth from all directions, with more than 1018 particles having energies >1 MeV striking the top of the Earth's atmosphere each second. Figure 1 illustrates the continuous cosmic ray energy spectrum.

  4. Cosmic Influence on the Sun-Earth Environment

    PubMed Central

    Mukherjee, Saumitra

    2008-01-01

    SOHO satellite data reveals geophysical changes before sudden changes in the Earth's Sun-Earth environment. The influence of extragalactic changes on the Sun as well as the Sun-Earth environment seems to be both periodic and episodic. The periodic changes in terms of solar maxima and minima occur every 11 years, whereas the episodic changes can happen at any time. Episodic changes can be monitored by cosmic ray detectors as a sudden increase or decrease of activity. During these solar and cosmic anomaly periods the environment of the Earth is affected. The Star-Sun-Earth connection has the potential to influence the thermosphere, atmosphere, ionosphere and lithosphere. Initial correlation of the cosmic and Sun-Earth connection has shown the possibility of predicting earthquakes, sudden changes in atmospheric temperatures and erratic rainfall/snowfall patterns. PMID:27873955

  5. PREFACE: 23rd European Cosmic Ray Symposium (and 32nd Russian Cosmic Ray Conference)

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Kokoulin, R. P.; Lidvansky, A. S.; Meroshnichenko, L. I.; Panasyuk, M. I.; Panov, A. D.; Wolfendale, A. W.

    2013-02-01

    The 23rd European Cosmic Ray Symposium (ECRS) took place in Moscow at the Lomonosov Moscow State University (3-7 July 2012), and was excellently organized by the Skobeltsyn Institute of Nuclear Physics of the Lomonosov Moscow State University, with the help of the Russian Academy of Sciences and the Council on the Complex Problem of Cosmic Rays of the Russian Academy of Sciences. The first symposia were held in 1968 in Lodz, Poland (high energy, extensive air showers and astrophysical aspects) and in Bern (solar and heliospheric phenomena) and the two 'strands' joined together in 1976 with the meeting in Leeds. Since then the symposia, which have been very successful, have covered all the major topics with some emphasis on European collaborations and on meeting the demands of young scientists. Initially, a driving force was the need to overcome the divisions caused by the 'Cold War' but the symposia continued even when that threat ceased and they have shown no sign of having outlived their usefulness. 2012 has been an important year in the history of cosmic ray studies, in that it marked the centenary of the discovery of enigmatic particles in the perilous balloon ascents of Victor Hess. A number of conferences have taken place in Western Europe during the year, but this one took place in Moscow as a tribute to the successful efforts of many former USSR and other Eastern European scientists in discovering the secrets of the subject, often under very difficult conditions. The symposium covers a wide range of scientific issues divided into the following topics: PCR-IPrimary cosmic rays I (E < 1015 eV) PCR-IIPrimary cosmic rays II (E > 1015 eV) MNCosmic ray muons and neutrinos GAGeV and TeV gamma astronomy SHEnergetic particles in the heliosphere (solar and anomalous CRs and GCR modulation) GEOCosmic rays and geophysics (energetic particles in the atmosphere and magnetosphere of the Earth) On a personal note, as I step down as co-founder and chairman of the

  6. Cosmic Origins: A Traveling Science Exhibit and Education Program

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.; Morrow, C. A.; Harold, J.

    2003-12-01

    The Space Science Institute of Boulder, Colorado, is developing a 3,000 square-foot traveling exhibition, called Cosmic Origins, which will bring origins-related research and discoveries to students and the American public. Cosmic Origins will have three interrelated exhibit areas: Star Formation, Planet Quest, and Search for Life. Exhibit visitors will explore the awesome events surrounding the birth of stars and planets; they will join scientists in the hunt for planets outside our solar system including those that may be in "habitable zones" around other stars; and finally they will be able to learn about the wide range of conditions for life on Earth and how scientists are looking for signs of life beyond Earth. Visitors will also learn about the tools scientists' use, such as space-based and ground-based telescopes, to improve our understanding of the cosmos. Exhibit content will address age-old questions that form the basis of NASA's Origins and Astrobiology programs: Where did we come from? Are we alone? In addition to the exhibit, our project will include workshops for educators and docents at host sites, as well as a public Web site that will use a virtual rendering of exhibit content. The exhibit's size will permit it to visit medium sized museums in underserved regions of the country. It will begin its 3-year tour to 9 host museums and science centers in early 2005. A second 3-year tour is also planned for 2008. The Association of Science-Technology Centers (ASTC) will manage the exhibit's national tour. Current partners in the Cosmic Origins project include ASTC, the Denver Museum of Nature and Science, Lawrence Hall of Science, NASA Astrobiology Institute, NASA missions (e.g. PlanetQuest, SIRTF, and Kepler), New York Hall of Science, the SETI Institute, and the Space Telescope Science Institute. The exhibition is supported by grants from NSF and NASA. This report will focus on the Planet Quest part of the exhibition.

  7. Harlow Shapley's Biological Universe: Cosmic Evolution and its Uses

    NASA Astrophysics Data System (ADS)

    Palmeri, J.

    2002-12-01

    Harlow Shapley was an astronomer with a lifelong interest in biological questions. An early fascination with ants acquired at Mount Wilson became a continuing avocation. During his years in California, Shapley made frequent trips to La Jolla biological station and interacted with prominent biologists. At Harvard in the 1920s Shapley initiated a series of interdisciplinary seminars, one of which was on "The Origin of Life." At this time he also displayed an interest in the question of life in the universe. In response to an inquiry from Charles Abbot of the Smithsonian, Shapley identified "life in the universe" as one of the most important scientific questions of the day. Shapley's continuing interest in these questions found expression in his many popularizations - articles, books, lectures, and other media. (A decade before Sagan's memorable appearances on the Johnny Carson show, Shapley was engaging in his own dialogue with the American public on life in the universe, through Tonight Show host Jack Paar). Evolution was the idea that underlay Shapley's discussions of these biological themes and the vehicle through which he popularized science as well as his own vision of the wider significance of science for humanity. As an astronomer with a profound interest in biological subjects, Shapley was uniquely positioned to popularize cosmic evolution, and to use this theme to promote his belief that science could serve as a kind of "stellar theology." Shapley's case illustrates how cosmic evolution, like biological evolution, has served as more than a scientific account of nature; it has become an idea invested with moral and cultural significance. Shapley's promotion of cosmic evolution throughout the 1950s and 1960s can be understood against the backdrop of developments in the sciences as well as the historical and personal factors that shaped his career as a spokesman for science. This research was supported by grants from the American Institute of Physics and the

  8. Cosmic Catastrophes

    NASA Astrophysics Data System (ADS)

    Wheeler, J. Craig

    2000-07-01

    In this tour de force of the ultimate and extreme in astrophysics, renowned astrophysicist and author J. Craig Wheeler takes us on a breathtaking journey to supernovae, black holes, gamma-ray bursts and adventures in hyperspace. This is no far-fetched science fiction tale, but an enthusiastic exploration of ideas at the cutting edge of current astrophysics. Wheeler follows the tortuous life of a star from birth to evolution and death, and goes on to consider the complete collapse of a star into a black hole, worm-hole time machines, the possible birth of baby bubble universes, and the prospect of a revolutionary view of space and time in a ten-dimensional string theory. Along the way he offers evidence that suggests the Universe is accelerating and describes recent developments in understanding gamma-ray bursts--perhaps the most catastrophic cosmic events of all. With the use of lucid analogies, simple language and crystal-clear cartoons, Cosmic Catastrophes makes accessible some of the most exciting and mind-bending objects and ideas in the Universe. J. Craig Wheeler is currently Samuel T. and Fern Yanagisawa Regents Professor of Astronomy at the University of Texas at Austin and Vice President of the American Astronomical Society as of 1999.

  9. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  10. Spallogenic Light Elements and Cosmic Ray Origin

    NASA Technical Reports Server (NTRS)

    Ramaty, Reuven

    2000-01-01

    Most of the Galactic Li-6, all of the Be and the bulk of the B are cosmic ray produced. I will discuss the production mechanisms and detail a recently developed evolutionary code for Fe,O and these light elements. I will review the leading models for Li, Be and B origin and discuss their implications on cosmic ray origin. I will also show evidence for extragalactic production of Li-6.

  11. Experimental Summary: Very High Energy Cosmic Rays and their Interactions

    NASA Astrophysics Data System (ADS)

    Kampert, Karl-Heinz

    2013-06-01

    The XVII International Symposium on Very High Energy Cosmic Ray Interactions, held in August of 2012 in Berlin, was the first one in the history of the Symposium,where a plethora of high precision LHC data with relevance for cosmic ray physics was presented. This report aims at giving a brief summary of those measurements andit discusses their relevance for observations of high energy cosmic rays. Enormous progress has been made also in air shower observations and in direct measurements of cosmic rays, exhibiting many more structure in the cosmic ray energy spectrum than just a simple power law with a knee and an ankle. At the highest energy, the flux suppression may not be dominated by the GZK-effect but by the limiting energy of a nearby source or source population. New projects and application of new technologies promise further advances also in the near future. We shall discuss the experimental and theoretical progress in the field and its prospects for coming years.

  12. Lateral distribution of muons in IceCube cosmic ray events

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker Tjus, J.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Bruijn, R.; Brunner, J.; Buitink, S.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jlelati, O.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lesiak-Bzdak, M.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönherr, L.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Smith, M. W. E.; Soiron, M.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van der Drift, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zilles, A.; Zoll, M.

    2013-01-01

    In cosmic ray air showers, the muon lateral separation from the center of the shower is a measure of the transverse momentum that the muon parent acquired in the cosmic ray interaction. IceCube has observed cosmic ray interactions that produce muons laterally separated by up to 400 m from the shower core, a factor of 6 larger distance than previous measurements. These muons originate in high pT (>2GeV/c) interactions from the incident cosmic ray, or high-energy secondary interactions. The separation distribution shows a transition to a power law at large values, indicating the presence of a hard pT component that can be described by perturbative quantum chromodynamics. However, the rates and the zenith angle distributions of these events are not well reproduced with the cosmic ray models tested here, even those that include charm interactions. This discrepancy may be explained by a larger fraction of kaons and charmed particles than is currently incorporated in the simulations.

  13. On the Slow time Geomagnetic field Modulation of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Okpala, K. C.; Egbunu, F.

    2016-12-01

    Cosmic rays of galactic origin are modulated by both heliospheric and geomagnetic conditions. The mutual (and mutually exclusive) contribution of both heliospheric and geomagnetic conditions to galactic cosmic rays (GCR) modulation is still an open question. While the rapid-time association of the galactic cosmic ray variation with different heliophysical and geophysical phenomena has been well studied, not so much attention has been paid to slow-time variations especially with regards to local effects. In this work, we employed monthly means of cosmic ray count rates from two mid latitude (Hermanus and Rome), and two higher latitude (Inuvik and Oulu) neutron monitors (NM), and compared their variability with geomagnetic stations that are in close proximity to the NMs. The data spans 1966 to 2008 and covers four (4) solar cycles. The difference (CRdiff)between the mean count rate of all days and the mean of the five quietest days for each month was compared with the Dst-related disturbance (Hdiff) derived from the nearby geomagnetic stations. Zeroth- and First- correlation between the cosmic ray parameters and geomagnetic parameters was performed to ascertain statistical association and test for spurious association. Our results show that solar activity is generally strongly correlated (>0.75) with mean strength of GCR count rate and geomagnetic field during individual solar cycles. The correlation between mean strength of cosmic ray intensity and Geomagnetic field strength is spurious and is basically moderated by the solar activity. The signature of convection driven disturbances at high latitude geomagnetic stations was evident during the declining phase of the solar cycles close to the solar minimums. The absence of this feature in the slow-time varying cosmic ray count rates in all stations, and in the mid latitude geomagnetic stations suggest that the local geomagnetic disturbance do not play a significant role in modulating the cosmic ray flux.

  14. Assessment of health risks resulting from early-life exposures: Are current chemical toxicity testing protocols and risk assessment methods adequate?

    PubMed

    Felter, Susan P; Daston, George P; Euling, Susan Y; Piersma, Aldert H; Tassinari, Melissa S

    2015-03-01

    Abstract Over the last couple of decades, the awareness of the potential health impacts associated with early-life exposures has increased. Global regulatory approaches to chemical risk assessment are intended to be protective for the diverse human population including all life stages. However, questions persist as to whether the current testing approaches and risk assessment methodologies are adequately protective for infants and children. Here, we review physiological and developmental differences that may result in differential sensitivity associated with early-life exposures. It is clear that sensitivity to chemical exposures during early-life can be similar, higher, or lower than that of adults, and can change quickly within a short developmental timeframe. Moreover, age-related exposure differences provide an important consideration for overall susceptibility. Differential sensitivity associated with a life stage can reflect the toxicokinetic handling of a xenobiotic exposure, the toxicodynamic response, or both. Each of these is illustrated with chemical-specific examples. The adequacy of current testing protocols, proposed new tools, and risk assessment methods for systemic noncancer endpoints are reviewed in light of the potential for differential risk to infants and young children.

  15. Cosmic Origins Program Annual Technology Report

    NASA Technical Reports Server (NTRS)

    Pham, Bruce Thai; Neff, Susan Gale

    2016-01-01

    What is the Cosmic Origins (COR) Program? From ancient times, humans have looked up at the night sky and wondered: Are we alone? How did the universe come to be? How does the universe work? COR focuses on the second question. Scientists investigating this broad theme seek to understand the origin and evolution of the universe from the Big Bang to the present day, determining how the expanding universe grew into a grand cosmic web of dark matter enmeshed with galaxies and pristine gas, forming, merging, and evolving over time.

  16. Cosmic Ray Observation at Mount Chacaltaya for beyond the Knee Region

    NASA Astrophysics Data System (ADS)

    Tsunesada, Y.; Kakimoto, F.; Furuhata, F.; Matsumoto, H.; Sugawara, T.; Wakamatsu, H.; Gotoh, E.; Nakatani, H.; Nishi, K.; Tajima, N.; Yamada, Y.; Shimoda, S.; Yoshii, H.; Kaneko, T.; Ogio, S.; Matsubara, Y.; Kadota, K.; Tokuno, H.; Mizumoto, Y.; Shirasaki, Y.; Toyoda, Y.; Burgoa, O.; Flores, V.; Miranda, P.; Salinas, J.; Velarde, A.

    We have installed a new air shower array at Mount Chacaltaya (5,200m above sea level) to observe primary cosmic rays with energies greater than 1015 eV. In our previous experiments, we measured energy spectrum and nuclear composition of primary cosmic rays around the knee region. Above all, we obtained the cosmic ray composition with three independent techniques, namely from the equi-intensity cuts, the arrival time distributions of Cherenkov lights associated with air showers, and the lateral distributions of Cherenkov photons around the shower axis. All the results from these experiments are in agreement and show that the average mass of cosmic ray nuclei increases with energies below and above the knee, and dominated by heavier nuclei as iron at 1016 eV. This result is consistent with the confinement and rigidity dependent acceleration models, and suggests that the cosmic ray origins are supernova remnants of massive population as Wolf-Rayet stars. It is of quite interest whether the mass of cosmic ray nuclei continues to increase with energies, or decreases by contributions of lighter components expected from the extra-galactic cosmic ray models. In this paper, we describe the characteristics of the new array and preliminary results from the first observation.

  17. Cosmic-ray electrons and galactic radio emission - A conflict

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Daniel, R. R.; Stephens, S. A.

    1977-01-01

    An analysis which takes into account the observed energy spectrum of cosmic-ray electrons above 5 GeV and calculated mean magnetic field data shows that the observed spectral index of the radio continuum in the Galaxy is in conflict with some of the cosmic-ray electron measurements. It is found that the absolute intensities of cosmic-ray electrons measured by some of the experimenters are so low that they cannot be reconciled either with the interstellar magnetic field limits or with the extent of the galactic disk toward the anticenter.

  18. Calculations of cosmic-ray helium transport in shielding materials

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1993-01-01

    The transport of galactic cosmic-ray helium nuclei and their secondaries through bulk shielding is considered using the straight-ahead approximation to the Boltzmann equation. A data base for nuclear interaction cross sections and secondary particle energy spectra for high-energy light-ion breakup is presented. The importance of the light ions H-2, H-3, and He-3 for cosmic-ray risk estimation is discussed, and the estimates of the fractional contribution to the neutron flux from helium interactions compared with other particle interactions are presented using a 1977 solar minimum cosmic-ray spectrum.

  19. Propagation of Galactic cosmic rays: the influence of anisotropic diffusion

    NASA Astrophysics Data System (ADS)

    AL-Zetoun, A.; Achterberg, A.

    2018-06-01

    We consider the anisotropic diffusion of cosmic rays in the large-scale Galactic magnetic field, where diffusion along the field and diffusion across the field proceeds at different rates. To calculate this diffusion, we use stochastic differential equations to describe the cosmic ray propagation, solving these numerically. The Galactic magnetic field is described using the Jansson-Farrar model for the Galactic magnetic field. In this paper, we study the influence of perpendicular diffusion on the residence time of cosmic rays in the Galaxy. This provides an estimate for the influence of anisotropic diffusion on the residence time and the amount of matter (grammage) that a typical cosmic ray traverses during its residence in the Galaxy.

  20. Chemical methods and techniques to monitor early Maillard reaction in milk products; A review.

    PubMed

    Aalaei, Kataneh; Rayner, Marilyn; Sjöholm, Ingegerd

    2018-01-23

    Maillard reaction is an extensively studied, yet unresolved chemical reaction that occurs as a result of application of the heat and during the storage of foods. The formation of advanced glycation end products (AGEs) has been the focus of several investigations recently. These molecules which are formed at the advanced stage of the Maillard reaction, are suspected to be involved in autoimmune diseases in humans. Therefore, understanding to which extent this reaction occurs in foods, is of vital significance. Because of their composition, milk products are ideal media for this reaction, especially when application of heat and prolonged storage are considered. Thus, in this work several chemical approaches to monitor this reaction in an early stage are reviewed. This is mostly done regarding available lysine blockage which takes place in the very beginning of the reaction. The most popular methods and their applications to various products are reviewed. The methods including their modifications are described in detail and their findings are discussed. The present paper provides an insight into the history of the most frequently-used methods and provides an overview on the indicators of the Maillard reaction in the early stage with its focus on milk products and especially milk powders.

  1. CMB temperature bispectrum induced by cosmic strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki

    2009-10-15

    The cosmic microwave background (CMB) bispectrum of the temperature anisotropies induced by a network of cosmic strings is derived for small angular scales, under the assumption that the principal cause of temperature fluctuations is the Gott-Kaiser-Stebbins effect. We provide analytical expressions for all isosceles triangle configurations in Fourier space. Their overall amplitude is amplified as the inverse cube of the angle and diverges for flat triangles. The isosceles configurations generically lead to a negative bispectrum with a power-law decay l{sup -6} for large multipole l. However, collapsed triangles are found to be associated with a positive bispectrum whereas the squeezedmore » triangles still exhibit negative values. We then compare our analytical estimates to a direct computation of the bispectrum from a set of 300 statistically independent temperature maps obtained from Nambu-Goto cosmic string simulations in a Friedmann-Lemaitre-Robertson-Walker universe. We find good agreement for the overall amplitude, the power-law behavior, and the angle dependency of the various triangle configurations. At l{approx}500 the cosmic string Gott-Kaiser-Stebbins effect contributes approximately the same equilateral CMB bispectrum amplitude as an inflationary model with |f{sub NL}{sup loc}|{approx_equal}10{sup 3}, if the strings contribute about 10% of the temperature power spectrum at l=10. Current bounds on f{sub NL} are not derived using cosmic string bispectrum templates, and so our f{sub NL} estimate cannot be used to derive bounds on strings. However it does suggest that string bispectrum templates should be included in the search of CMB non-Gaussianities.« less

  2. CMB ISW-lensing bispectrum from cosmic strings

    NASA Astrophysics Data System (ADS)

    Yamauchi, Daisuke; Sendouda, Yuuiti; Takahashi, Keitaro

    2014-02-01

    We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so-called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation of the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in order to characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, Gμ << 10-7, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.

  3. Our Cosmic Connection

    ERIC Educational Resources Information Center

    Young, Donna L.

    2005-01-01

    To help students understand the connection that Earth and the solar system have with the cosmic cycles of stellar evolution, and to give students an appreciation of the beauty and elegance of celestial phenomena, the Chandra X-Ray Center (CXC) educational website contains a stellar evolution module that is available free to teachers. In this…

  4. Cosmic rays and terrestrial life: A brief review

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra; Melott, Adrian L.

    2014-01-01

    “The investigation into the possible effects of cosmic rays on living organisms will also offer great interest.” - Victor F. Hess, Nobel Lecture, December 12, 1936 High-energy radiation bursts are commonplace in our Universe. From nearby solar flares to distant gamma ray bursts, a variety of physical processes accelerate charged particles to a wide range of energies, which subsequently reach the Earth. Such particles contribute to a number of physical processes occurring in the Earth system. A large fraction of the energy of charged particles gets deposited in the atmosphere, ionizing it, causing changes in its chemistry and affecting the global electric circuit. Remaining secondary particles contribute to the background dose of cosmic rays on the surface and parts of the subsurface region. Life has evolved over the past ∼3 billion years in presence of this background radiation, which itself has varied considerably during the period [1-3]. As demonstrated by the Miller-Urey experiment, lightning plays a very important role in the formation of complex organic molecules, which are the building blocks of more complex structures forming life. There is growing evidence of increase in the lightning rate with increasing flux of charged particles. Is there a connection between enhanced rate of cosmic rays and the origin of life? Cosmic ray secondaries are also known to damage DNA and cause mutations, leading to cancer and other diseases. It is now possible to compute radiation doses from secondary particles, in particular muons and neutrons. Have the variations in cosmic ray flux affected the evolution of life on earth? We describe the mechanisms of cosmic rays affecting terrestrial life and review the potential implications of the variation of high-energy astrophysical radiation on the history of life on earth.

  5. Cosmic Ray Flux Measurement with AMANDA-II

    NASA Astrophysics Data System (ADS)

    Chirkin, Dmitry A.; AMANDA Collaboration

    2003-07-01

    AMANDA-I I is a neutrino telescope composed of 677 optical sensors organized along 19 strings buried deep in the Antarctic ice cap. It is designed to detect Cherenkov light produced by cosmic-rayand neutrino-induced muons. The ma jority of events recorded by AMANDA-I I are caused by muons which are produced in the atmosphere by high-energy cosmic rays. The leading uncertainties in simulating such events come from the choice of the high-energy model used to describe the first interaction of the cosmic rays, uncertainties in our knowledge and implementation of the ice properties at the depth of the detector, and individual optical module sensitivities. A method is developed that results in a flux measurement of cosmic rays with energies 1.5-200 TeV per nucleon (95% of primaries causing low-multiplicity events in AMANDA-I I have energies in this range) indep endent of ice model and optical module sensitivities. Predictions of six commonly-used high-energy interaction models QGSJET, VENUS, NEXUS, DPMJET, HDPM, and SYBILL are compared to data. Best agreement with direct measurements is achieved with QGSJET, VENUS, and NEXUS (preliminary: Φ0,H = 0.106 ± 0.007 m-2 s-1 sr-1 TeV-1 , γH = 2.70 ± 0.02).

  6. Cosmic Ray Transport in the Distant Heliosheath

    NASA Technical Reports Server (NTRS)

    Florinski, V.; Adams, James H.; Washimi, H.

    2011-01-01

    The character of energetic particle transport in the distant heliosheath and especially in the vicinity of the heliopause could be quite distinct from the other regions of the heliosphere. The magnetic field structure is dominated by a tightly wrapped oscillating heliospheric current sheet which is transported to higher latitudes by the nonradial heliosheath flows. Both Voyagers have, or are expected to enter a region dominated by the sectored field formed during the preceding solar maximum. As the plasma flow slows down on approach to the heliopause, the distance between the folds of the current sheet decreases to the point where it becomes comparable to the cyclotron radius of an energetic ion, such as a galactic cosmic ray. Then, a charged particle can effectively drift across a stack of magnetic sectors with a speed comparable with the particle s velocity. Cosmic rays should also be able to efficiently diffuse across the mean magnetic field if the distance between sector boundaries varies. The region of the heliopause could thus be much more permeable to cosmic rays than was previously thought. This new transport proposed mechanism could explain the very high intensities (approaching the model interstellar values) of galactic cosmic rays measured by Voyager 1 during 2010-2011.

  7. Cosmic radiation exposure and persistent cognitive dysfunction

    PubMed Central

    Parihar, Vipan K.; Allen, Barrett D.; Caressi, Chongshan; Kwok, Stephanie; Chu, Esther; Tran, Katherine K.; Chmielewski, Nicole N.; Giedzinski, Erich; Acharya, Munjal M.; Britten, Richard A.; Baulch, Janet E.; Limoli, Charles L.

    2016-01-01

    The Mars mission will result in an inevitable exposure to cosmic radiation that has been shown to cause cognitive impairments in rodent models, and possibly in astronauts engaged in deep space travel. Of particular concern is the potential for cosmic radiation exposure to compromise critical decision making during normal operations or under emergency conditions in deep space. Rodents exposed to cosmic radiation exhibit persistent hippocampal and cortical based performance decrements using six independent behavioral tasks administered between separate cohorts 12 and 24 weeks after irradiation. Radiation-induced impairments in spatial, episodic and recognition memory were temporally coincident with deficits in executive function and reduced rates of fear extinction and elevated anxiety. Irradiation caused significant reductions in dendritic complexity, spine density and altered spine morphology along medial prefrontal cortical neurons known to mediate neurotransmission interrogated by our behavioral tasks. Cosmic radiation also disrupted synaptic integrity and increased neuroinflammation that persisted more than 6 months after exposure. Behavioral deficits for individual animals correlated significantly with reduced spine density and increased synaptic puncta, providing quantitative measures of risk for developing cognitive impairment. Our data provide additional evidence that deep space travel poses a real and unique threat to the integrity of neural circuits in the brain. PMID:27721383

  8. Revealing the Cosmic Web-dependent Halo Bias

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohu; Zhang, Youcai; Lu, Tianhuan; Wang, Huiyuan; Shi, Feng; Tweed, Dylan; Li, Shijie; Luo, Wentao; Lu, Yi; Yang, Lei

    2017-10-01

    Halo bias is the one of the key ingredients of the halo models. It was shown at a given redshift to be only dependent, to the first order, on the halo mass. In this study, four types of cosmic web environments—clusters, filaments, sheets, and voids—are defined within a state-of-the-art high-resolution N-body simulation. Within these environments, we use both halo-dark matter cross correlation and halo-halo autocorrelation functions to probe the clustering properties of halos. The nature of the halo bias differs strongly between the four different cosmic web environments described here. With respect to the overall population, halos in clusters have significantly lower biases in the {10}11.0˜ {10}13.5 {h}-1 {M}⊙ mass range. In other environments, however, halos show extremely enhanced biases up to a factor 10 in voids for halos of mass ˜ {10}12.0 {h}-1 {M}⊙ . Such a strong cosmic web environment dependence in the halo bias may play an important role in future cosmological and galaxy formation studies. Within this cosmic web framework, the age dependency of halo bias is found to be only significant in clusters and filaments for relatively small halos ≲ {10}12.5 {h}-1 {M}⊙ .

  9. Cosmic radiation exposure and persistent cognitive dysfunction.

    PubMed

    Parihar, Vipan K; Allen, Barrett D; Caressi, Chongshan; Kwok, Stephanie; Chu, Esther; Tran, Katherine K; Chmielewski, Nicole N; Giedzinski, Erich; Acharya, Munjal M; Britten, Richard A; Baulch, Janet E; Limoli, Charles L

    2016-10-10

    The Mars mission will result in an inevitable exposure to cosmic radiation that has been shown to cause cognitive impairments in rodent models, and possibly in astronauts engaged in deep space travel. Of particular concern is the potential for cosmic radiation exposure to compromise critical decision making during normal operations or under emergency conditions in deep space. Rodents exposed to cosmic radiation exhibit persistent hippocampal and cortical based performance decrements using six independent behavioral tasks administered between separate cohorts 12 and 24 weeks after irradiation. Radiation-induced impairments in spatial, episodic and recognition memory were temporally coincident with deficits in executive function and reduced rates of fear extinction and elevated anxiety. Irradiation caused significant reductions in dendritic complexity, spine density and altered spine morphology along medial prefrontal cortical neurons known to mediate neurotransmission interrogated by our behavioral tasks. Cosmic radiation also disrupted synaptic integrity and increased neuroinflammation that persisted more than 6 months after exposure. Behavioral deficits for individual animals correlated significantly with reduced spine density and increased synaptic puncta, providing quantitative measures of risk for developing cognitive impairment. Our data provide additional evidence that deep space travel poses a real and unique threat to the integrity of neural circuits in the brain.

  10. Cosmic Christ in a Quantum Universe.

    NASA Astrophysics Data System (ADS)

    Kohli, Mary Ann

    This study examines the figure of the second American Adam--the cosmic Christ archetype--in terms of a possible shift in the focus of Western consciousness. As science moves closer to religion and as Newtonian dualism gives way to a more holistic theory (in which observer, observed, and process of observation are all intricately interlinked), the cosmic Christ emerges as a symbol in contemporary American fiction of a potentially unified awareness which could reconnect post-Christian man to God, to the world, and to the self. Such a rebirth of unity would be contingent upon the death of a consciousness reliant upon the rational, linear, masculine, left-brained thinking associated with the old Newtonian paradigm. The resurrected consciousness would consolidate Eastern and Western religion by acknowledging the God within man through the Western symbology of the Christ prototype. It would also balance the intuitional with the rational, the cyclical with the linear, the feminine with the masculine, and the right brain with the left. In other words, the repressed elements of the collective Western psyche would be allowed to come to awareness and be integrated into the mind at large. This integrating process is implicit in the cosmic Christ imagery. The novels which are considered are all concerned with the role of consciousness in the postmodern world and the part that science and religion play in determining the nature of that role. In such varied works as Thomas Pynchon's Gravity's Rainbow, John Updike's Roger's Version, Saul Bellow's Herzog, Joan Didion's A Book of Common Prayer, and William Vollmann's The Ice-Shirt, a cosmic Christ figure invariably appears. The success of this figure, however, is ambiguous and uncertain. At best, the transition of consciousness that is achieved is individual rather than communal. Nevertheless, as chaos theory has demonstrated, small changes can bring about major effects. Consequently, both the science of today and the rapid growth

  11. Inflation physics from the cosmic microwave background and large scale structure

    NASA Astrophysics Data System (ADS)

    Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Buder, I.; Burke, D. L.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Crill, B. P.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Doré, O.; Dunkley, J.; Feng, J. L.; Fraisse, A.; Gallicchio, J.; Giddings, S. B.; Green, D.; Halverson, N. W.; Hanany, S.; Hanson, D.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Horowitz, G.; Hu, W.; Hubmayr, J.; Irwin, K.; Jackson, M.; Jones, W. C.; Kallosh, R.; Kamionkowski, M.; Keating, B.; Keisler, R.; Kinney, W.; Knox, L.; Komatsu, E.; Kovac, J.; Kuo, C.-L.; Kusaka, A.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linde, A.; Linder, E.; Lubin, P.; Maldacena, J.; Martinec, E.; McMahon, J.; Miller, A.; Mukhanov, V.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Senatore, L.; Sievers, J.; Silverstein, E.; Slosar, A.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, A.; Stompor, R.; Vieregg, A. G.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L. K.; Yoon, K. W.; Zahn, O.; Zaldarriaga, M.

    2015-03-01

    Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments-the theory of cosmic inflation-and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1% of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5 σ measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.

  12. Inflation Physics from the Cosmic Microwave Background and Large Scale Structure

    NASA Technical Reports Server (NTRS)

    Abazajian, K.N.; Arnold,K.; Austermann, J.; Benson, B.A.; Bischoff, C.; Bock, J.; Bond, J.R.; Borrill, J.; Buder, I.; Burke, D.L.; hide

    2013-01-01

    Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1 of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.

  13. How does the cosmic web impact assembly bias?

    NASA Astrophysics Data System (ADS)

    Musso, M.; Cadiou, C.; Pichon, C.; Codis, S.; Kraljic, K.; Dubois, Y.

    2018-06-01

    The mass, accretion rate, and formation time of dark matter haloes near protofilaments (identified as saddle points of the potential) are analytically predicted using a conditional version of the excursion set approach in its so-called upcrossing approximation. The model predicts that at fixed mass, mass accretion rate and formation time vary with orientation and distance from the saddle, demonstrating that assembly bias is indeed influenced by the tides imposed by the cosmic web. Starved, early-forming haloes of smaller mass lie preferentially along the main axis of filaments, while more massive and younger haloes are found closer to the nodes. Distinct gradients for distinct tracers such as typical mass and accretion rate occur because the saddle condition is anisotropic, and because the statistics of these observables depend on both the conditional means and their covariances. The theory is extended to other critical points of the potential field. The response of the mass function to variations of the matter density field (the so-called large-scale bias) is computed, and its trend with accretion rate is shown to invert along the filament. The signature of this model should correspond at low redshift to an excess of reddened galactic hosts at fixed mass along preferred directions, as recently reported in spectroscopic and photometric surveys and in hydrodynamical simulations. The anisotropy of the cosmic web emerges therefore as a significant ingredient to describe jointly the dynamics and physics of galaxies, e.g. in the context of intrinsic alignments or morphological diversity.

  14. Cosmic Rays as a Factor of Biosphere Evolution

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, L. I.

    2014-11-01

    There are no doubts that the Earth's space environment in the past inevitably exerted direct and/or indirect influence [1--4] on the conditions of terrestrial life and biospheric evolution. Well-known cosmic factors are usually streams of cosmic dust and gas, comets and asteroids, cosmic rays (energetic particles of galactic and/or solar origin), interplanetary plasma (solar wind), and electromagnetic radiation of different energies, wavelengths, or frequencies. Of great interest are radiation conditions and their variations, especially in the remote past (over the geological time scales). The Sun, the most important and indispensable condition for the existence of the Earth's biosphere, is also a potential source of dangerous emissions. In continuation of (and in addition to) our review paper [3], below we summarize the observational data and results of theoretical works that have been carried out and/or published mainly after 2012. These studies are actually in the frontier region between the Astrobiology and Space Weather. Our main attention is paid to cosmic rays (CR) of galactic and solar origin (GCR and SCR, respectively).

  15. Ultrahigh energy cosmic rays from nearby starburst galaxies

    NASA Astrophysics Data System (ADS)

    Attallah, Reda; Bouchachi, Dallel

    2018-04-01

    Ultrahigh energy cosmic rays are the most energetic of any subatomic particles ever observed in nature. The quest for their mysterious origin is currently a major scientific challenge. Here we explore the possibility that these particles originate from nearby starburst galaxies, a scenario that matches the recent observation by the Telescope Array experiment of a cosmic-ray hotspot above 57 EeV not far from the direction of the starburst galaxy M82. Specifically, we study the stochastic propagation in space of ultrahigh energy cosmic rays through the state-of-the-art simulation framework CRPropa 3, taking into account all relevant particle interactions as well as deflections by the intervening magnetic fields. To ensure a comprehensive understanding of this model, we consider the energy spectrum, the cosmogenic neutrinos and gamma rays, and the distribution of arrival directions. The starburst galaxy scenario reproduces well observations from both the Telescope Array and Pierre Auger Observatories, making it very attractive for explaining the origin of cosmic rays at the highest energies.

  16. Ultrahigh energy cosmic rays from nearby starburst galaxies

    NASA Astrophysics Data System (ADS)

    Attallah, Reda; Bouchachi, Dallel

    2018-07-01

    Ultrahigh energy cosmic rays are the most energetic of any subatomic particles ever observed in nature. The quest for their mysterious origin is currently a major scientific challenge. Here we explore the possibility that these particles originate from nearby starburst galaxies, a scenario that matches the recent observation by the Telescope Array experiment of a cosmic ray hotspot above 57 EeV not far from the direction of the starburst galaxy M82. Specifically, we study the stochastic propagation in space of ultrahigh ENERGY cosmic rays through the state-of-the-art simulation framework CRPROPA 3, taking into account all relevant particle interactions as well as deflections by the intervening magnetic fields. To ensure a comprehensive understanding of this model, we consider the energy spectrum, the cosmogenic neutrinos and gamma rays, and the distribution of arrival directions. The starburst galaxy scenario reproduces well observations from both the Telescope Array and Pierre Auger Observatories, making it very attractive for explaining the origin of cosmic rays at the highest energies.

  17. Cosmic-Ray Energetics and Mass Processing - Bonding

    NASA Image and Video Library

    2017-06-20

    Research that started aboard balloons a century ago will soon culminate in a three-year stint aboard the International Space Station as scientists work on solving a fundamental astrophysics mystery: What gives cosmic rays such incredible energies, and how does that affect the composition of the universe? The Cosmic-Ray Energetics and Mass investigation, known as CREAM, places a highly successful balloon-borne instrument aboard the International Space Station where it gathers an order of magnitude (ten times) more data, which has lower background interference because Earth's atmosphere is no longer interfering. CREAM's instruments measure the charges of cosmic rays ranging from hydrogen up through iron nuclei, over a broad energy range. The modified balloon instrument is carried aloft on a SpaceX Dragon Lab cargo supply mission and placed on the Japanese Exposed Module for a period of at least three years.

  18. The LDEF ultra heavy cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Smit, A.; Domingo, C.

    1991-01-01

    The Long Duration Exposure Facility (LDEF) Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of 4 pressure vessels (3 experiment tray). The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 2000 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Postflight work to date and the current status of the experiment are reviewed. Provisional results from analysis of preflight and postflight calibrations are presented.

  19. Cosmic Ray research in Armenia

    NASA Astrophysics Data System (ADS)

    Chilingarian, A.; Mirzoyan, R.; Zazyan, M.

    2009-11-01

    Cosmic Ray research on Mt. Aragats began in 1934 with the measurements of East-West anisotropy by the group from Leningrad Physics-Technical Institute and Norair Kocharian from Yerevan State University. Stimulated by the results of their experiments in 1942 Artem and Abraham Alikhanyan brothers organized a scientific expedition to Aragats. Since that time physicists were studying Cosmic Ray fluxes on Mt. Aragats with various particle detectors: mass spectrometers, calorimeters, transition radiation detectors, and huge particle detector arrays detecting protons and nuclei accelerated in most violent explosions in Galaxy. Latest activities at Mt. Aragats include Space Weather research with networks of particle detectors located in Armenia and abroad, and detectors of Space Education center in Yerevan.

  20. Aligned interactions in cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempa, J., E-mail: kempa@pw.plock.pl

    2015-12-15

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a typemore » of nuclear interactions at high energy with alignment.« less

  1. Early time evolution of a chemically produced electron depletion

    NASA Technical Reports Server (NTRS)

    Scales, W. A.; Bernhardt, P. A.; Ganguli, G.

    1995-01-01

    The early time evolution of an ionospheric electron depletion produced by a radially expanding electron attachment chemical release is studied with a two-dimensional simulation model. The model includes electron attachment chemistry, incorporates fluid electrons, particle ions and neutrals, and considers the evolution in a plane perpendicular to the geomagnetic field for a low beta plasma. Timescales considered are of the order of or less than the cyclotron period of the negative ions that result as a by-product of the electron attacment reaction. This corresponds to time periods of tenths of seconds during recent experiemts. Simulation results show that a highly sheared azimuthal electron flow velocity develops in the radially expanding depletion boundary. This sheared electron flow velocity and the steep density gradients in the boundary give rise to small-scale irregulatities in the form of electron density cavities and spikes. The nonlinear evolution of these irregularities results in trapping and ultimately turbulent heating of the negative ions.

  2. Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu, P.; /Lisbon, IST; Aglietta, M.

    2010-06-01

    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuzmin energy threshold, 6 x 10{sup 19} eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1{sup o} from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased frommore » 27 to 69, allowing a more precise measurement. The correlating fraction is (38{sub -6}{sup +7})%, compared with 21% expected for isotropic cosmic rays. This is down from the early estimate of (69{sub -13}{sup +11})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.« less

  3. Primary gamma rays. [resulting from cosmic ray interaction with interstellar matter

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.

    1974-01-01

    Within this galaxy, cosmic rays reveal their presence in interstellar space and probably in source regions by their interactions with interstellar matter which lead to gamma rays with a very characteristic energy spectrum. From the study of the intensity of the high energy gamma radiation as a function of galactic longitude, it is already clear that cosmic rays are almost certainly not uniformly distributed in the galaxy and are not concentrated in the center of the galaxy. The galactic cosmic rays appear to be tied to galactic structural features, presumably by the galactic magnetic fields which are in turn held by the matter in the arm segments and the clouds. On the extragalactic scale, it is now possible to say that cosmic rays are not universal at the density seen near the earth. The diffuse celestial gamma ray spectrum that is observed presents the interesting possibility of cosmological studies and possible evidence for a residual universal cosmic ray density, which is much lower than the present galactic cosmic ray density.

  4. Feasibility of Cosmic-Ray Muon Intensity Measurements for Tunnel Detection

    DTIC Science & Technology

    1990-06-01

    BUR-’TR-3110 TECHNICAL REPORT BRL-TR-3110 mBRL I• FEASIBILITY OF COSMIC - RAY MUON INTENSITY MEASUREMENTS FOR TUNNEL DETECTION AIVARS CELIN. , JUNE...Feasibility of Cosmic - Ray Muon Intensity Measurements f or Tunnel Detection 612786H20001 4.AUTNOR(S) Aivars Celmins 7. PERORMING ORGANIZATION NAMe(S) AND... cosmic - ray muon intensity depends on the amount, of material above the point of reference and is therefore influenced by anomalies in rock density

  5. Gauge-flation and cosmic no-hair conjecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maleknejad, A.; Sheikh-Jabbari, M.M.; Soda, Jiro, E-mail: azade@ipm.ir, E-mail: jabbari@theory.ipm.ac.ir, E-mail: jiro@tap.scphys.kyoto-u.ac.jp

    2012-01-01

    Gauge-flation, inflation from non-Abelian gauge fields, was introduced in [1, 2]. In this work, we study the cosmic no-hair conjecture in gauge-flation. Starting from Bianchi-type I cosmology and through analytic and numeric studies we demonstrate that the isotropic FLRW inflation is an attractor of the dynamics of the theory and that the anisotropies are damped within a few e-folds, in accord with the cosmic no-hair conjecture.

  6. Massive stars: privileged sources of cosmic-rays for interstellar astrochemistry

    NASA Astrophysics Data System (ADS)

    De Becker, M.

    2015-01-01

    Massive stars can be considered as crucial engines for interstellar physics. They are indeed the main providers of UV radiation field, and constitute a substantial source of chemical enrichment. On their evolution time-scale (at most about 10 Myr), they typically stay close to their formation site, i.e. close to molecular clouds very rich in interstellar molecules. These stellar objects have also the property to be involved in particle acceleration processes leading to the production of high energy charged particles (cosmic-rays). After rejection in the interstellar medium, these particles will play a substantial role in processes such as those simulated in various facilities dedicated to experimental astrochemistry. This short contribution intends to put these particles, crucial for astrochemistry, in their adequate astrophysical context.

  7. Elemental composition and energy spectra of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1988-01-01

    A brief review is presented of the major features of the elemental composition and energy spectra of galactic cosmic rays. The requirements for phenomenological models of cosmic ray composition and energy spectra are discussed, and possible improvements to an existing model are suggested.

  8. Nineteenth International Cosmic Ray Conference. SH Sessions, Volume 5

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. This volume contains papers addressing cosmic ray gradients in the heliosphere; siderial, diurnal, and long term modulations; geomagnetic and atmospheric effects; cosmogenic nuclides; solar neutrinos; and detection techniques.

  9. Ninteenth International Cosmic Ray Conference. OG Sessions, Volume 2

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Contributed papers addressing cosmic ray origin and galactic phenomena are compiled. Topic areas include the composition, spectra, and anisotropy of cosmic ray nuclei with energies and 1 TeV, isotopes, antiprotons and related subjects, and electrons, positrons, and measurements of synchrotron radiation.

  10. Big Data of the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco-Shu

    2016-10-01

    One of the main goals in cosmology is to understand how the Universe evolves, how it forms structures, why it expands, and what is the nature of dark matter and dark energy. Next decade large and expensive observational projects will bring information on the structure and the distribution of many millions of galaxies at different redshifts enabling us to make great progress in answering these questions. However, these data require a very special and complex set of analysis tools to extract the maximum valuable information. Statistical inference techniques are being developed, bridging the gaps between theory, simulations, and observations. In particular, we discuss the efforts to address the question: What is the underlying nonlinear matter distribution and dynamics at any cosmic time corresponding to a set of observed galaxies in redshift space? An accurate reconstruction of the initial conditions encodes the full phase-space information at any later cosmic time (given a particular structure formation model and a set of cosmological parameters). We present advances to solve this problem in a self-consistent way with Big Data techniques of the Cosmic Web.

  11. Caustic Skeleton & Cosmic Web

    NASA Astrophysics Data System (ADS)

    Feldbrugge, Job; van de Weygaert, Rien; Hidding, Johan; Feldbrugge, Joost

    2018-05-01

    We present a general formalism for identifying the caustic structure of a dynamically evolving mass distribution, in an arbitrary dimensional space. The identification of caustics in fluids with Hamiltonian dynamics, viewed in Lagrangian space, corresponds to the classification of singularities in Lagrangian catastrophe theory. On the basis of this formalism we develop a theoretical framework for the dynamics of the formation of the cosmic web, and specifically those aspects that characterize its unique nature: its complex topological connectivity and multiscale spinal structure of sheetlike membranes, elongated filaments and compact cluster nodes. Given the collisionless nature of the gravitationally dominant dark matter component in the universe, the presented formalism entails an accurate description of the spatial organization of matter resulting from the gravitationally driven formation of cosmic structure. The present work represents a significant extension of the work by Arnol'd et al. [1], who classified the caustics that develop in one- and two-dimensional systems that evolve according to the Zel'dovich approximation. His seminal work established the defining role of emerging singularities in the formation of nonlinear structures in the universe. At the transition from the linear to nonlinear structure evolution, the first complex features emerge at locations where different fluid elements cross to establish multistream regions. Involving a complex folding of the 6-D sheetlike phase-space distribution, it manifests itself in the appearance of infinite density caustic features. The classification and characterization of these mass element foldings can be encapsulated in caustic conditions on the eigenvalue and eigenvector fields of the deformation tensor field. In this study we introduce an alternative and transparent proof for Lagrangian catastrophe theory. This facilitates the derivation of the caustic conditions for general Lagrangian fluids, with

  12. Cosmic Rays Variation Before Changes in Sun-Earth Environment

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.

    2011-12-01

    Influence of cosmic rays variations on the Sun-Earth Environment has been observed before the changes in the atmospheric temperature, outbreak of influenza, cyclone, earthquake and tsunami. It has been recorded by Sun Observatory Heleospheric Observatory (SOHO) satellite data. Before the earthquake and tsunami the planetary indices (Kp) and Electron flux (E-flux) shows sudden changes followed by the atmospheric perturbations including very high temperature rise to sudden fall resulting snowfall in high altitude and rainfall in tropical areas. The active fault zones shows sudden faulting after the sudden drop in cosmic ray intensity and rise in Kp and E-flux. Besides the geo-environment the extraterrestrial influence on outbreak of H1N1 influenza has also been recorded based on the Mexico Cosmic ray data and its correlation with SOHO records. Distant stars have the potential to influence the heliophysical parameters by showering cosmic rays.

  13. Bayesian analysis of the dynamic cosmic web in the SDSS galaxy survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leclercq, Florent; Wandelt, Benjamin; Jasche, Jens, E-mail: florent.leclercq@polytechnique.org, E-mail: jasche@iap.fr, E-mail: wandelt@iap.fr

    Recent application of the Bayesian algorithm \\textsc(borg) to the Sloan Digital Sky Survey (SDSS) main sample galaxies resulted in the physical inference of the formation history of the observed large-scale structure from its origin to the present epoch. In this work, we use these inferences as inputs for a detailed probabilistic cosmic web-type analysis. To do so, we generate a large set of data-constrained realizations of the large-scale structure using a fast, fully non-linear gravitational model. We then perform a dynamic classification of the cosmic web into four distinct components (voids, sheets, filaments, and clusters) on the basis of themore » tidal field. Our inference framework automatically and self-consistently propagates typical observational uncertainties to web-type classification. As a result, this study produces accurate cosmographic classification of large-scale structure elements in the SDSS volume. By also providing the history of these structure maps, the approach allows an analysis of the origin and growth of the early traces of the cosmic web present in the initial density field and of the evolution of global quantities such as the volume and mass filling fractions of different structures. For the problem of web-type classification, the results described in this work constitute the first connection between theory and observations at non-linear scales including a physical model of structure formation and the demonstrated capability of uncertainty quantification. A connection between cosmology and information theory using real data also naturally emerges from our probabilistic approach. Our results constitute quantitative chrono-cosmography of the complex web-like patterns underlying the observed galaxy distribution.« less

  14. Global diffusion of cosmic rays in random magnetic fields

    NASA Astrophysics Data System (ADS)

    Snodin, A. P.; Shukurov, A.; Sarson, G. R.; Bushby, P. J.; Rodrigues, L. F. S.

    2016-04-01

    The propagation of charged particles, including cosmic rays, in a partially ordered magnetic field is characterized by a diffusion tensor whose components depend on the particle's Larmor radius RL and the degree of order in the magnetic field. Most studies of the particle diffusion presuppose a scale separation between the mean and random magnetic fields (e.g. there being a pronounced minimum in the magnetic power spectrum at intermediate scales). Scale separation is often a good approximation in laboratory plasmas, but not in most astrophysical environments such as the interstellar medium (ISM). Modern simulations of the ISM have numerical resolution of the order of 1 pc, so the Larmor radius of the cosmic rays that dominate in energy density is at least 106 times smaller than the resolved scales. Large-scale simulations of cosmic ray propagation in the ISM thus rely on oversimplified forms of the diffusion tensor. We take the first steps towards a more realistic description of cosmic ray diffusion for such simulations, obtaining direct estimates of the diffusion tensor from test particle simulations in random magnetic fields (with the Larmor radius scale being fully resolved), for a range of particle energies corresponding to 10-2 ≲ RL/lc ≲ 103, where lc is the magnetic correlation length. We obtain explicit expressions for the cosmic ray diffusion tensor for RL/lc ≪ 1, that might be used in a sub-grid model of cosmic ray diffusion. The diffusion coefficients obtained are closely connected with existing transport theories that include the random walk of magnetic lines.

  15. Operation of the Computer Software Management and Information Center (COSMIC)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The major operational areas of the COSMIC center are described. Quantitative data on the software submittals, program verification, and evaluation are presented. The dissemination activities are summarized. Customer services and marketing activities of the center for the calendar year are described. Those activities devoted to the maintenance and support of selected programs are described. A Customer Information system, the COSMIC Abstract Recording System Project, and the COSMIC Microfiche Project are summarized. Operational cost data are summarized.

  16. Latest AMS Results on elementary particles in cosmic rays

    NASA Astrophysics Data System (ADS)

    Kounine, Andrei; AMS Collaboration

    2017-01-01

    AMS-02 is a particle physics detector collecting data on the International Space Station since May 2011. Precision measurements of all elementary charged cosmic ray particles have been performed by AMS using a data sample of 85 billion cosmic ray events collected during the first five years of operations on the Station. The latest AMS results on the fluxes and flux ratios of the elementary cosmic ray particles are presented. They show unique features that require accurate theoretical interpretation as to their origin, be it from dark matter collisions or new astrophysical sources. On behalf of the AMS Collaboration.

  17. Low cloud properties influenced by cosmic rays

    PubMed

    Marsh; Svensmark

    2000-12-04

    The influence of solar variability on climate is currently uncertain. Recent observations have indicated a possible mechanism via the influence of solar modulated cosmic rays on global cloud cover. Surprisingly the influence of solar variability is strongest in low clouds (cosmic rays. If confirmed it suggests that the average state of the heliosphere is important for climate on Earth.

  18. Cosmic ray modulation and turbulent interaction regions near 11 AU

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Mcdonald, F. B.; Goldstein, M. L.; Lazarus, A. J.

    1985-01-01

    When Voyager 2 was near 11 AU, the counting rate of nuclei approx 75 MeV/nucleon decreased during the interval from July, 1982 to November, 1982, and it increased thereafter until August, 1983. A decrease in cosmic ray flux was generally associated with the passage of an interaction region in which the magnetic field strength B was higher than that predicted by the spiral field model, B sub p. Several large enhancements in B/B sup p were associated with merged interaction regions which probably resulted from the interaction of two or more distinct flows. During the passage of interaction regions the cosmic ray intensity decreased at a rate proportional to (B/B sup p -1), and during the passage of rarefaction regions (where B/B sup p 1) the cosmic ray intensity increased at a constant rate. The general form of the cosmic ray intensity profile during this approx 13 month minicycle can be described by integrating these relations using the observed B(t). Latitudinal variations of the interaction regions and of the short-term cosmic ray variations were identified.

  19. Anomalous Transport of Cosmic Rays in a Nonlinear Diffusion Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litvinenko, Yuri E.; Fichtner, Horst; Walter, Dominik

    2017-05-20

    We investigate analytically and numerically the transport of cosmic rays following their escape from a shock or another localized acceleration site. Observed cosmic-ray distributions in the vicinity of heliospheric and astrophysical shocks imply that anomalous, superdiffusive transport plays a role in the evolution of the energetic particles. Several authors have quantitatively described the anomalous diffusion scalings, implied by the data, by solutions of a formal transport equation with fractional derivatives. Yet the physical basis of the fractional diffusion model remains uncertain. We explore an alternative model of the cosmic-ray transport: a nonlinear diffusion equation that follows from a self-consistent treatmentmore » of the resonantly interacting cosmic-ray particles and their self-generated turbulence. The nonlinear model naturally leads to superdiffusive scalings. In the presence of convection, the model yields a power-law dependence of the particle density on the distance upstream of the shock. Although the results do not refute the use of a fractional advection–diffusion equation, they indicate a viable alternative to explain the anomalous diffusion scalings of cosmic-ray particles.« less

  20. Cosmic ray modulation and merged interaction regions

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Goldstein, M. L.; Mcdonald, F. B.

    1985-01-01

    Beyond several AU, interactions among shocks and streams give rise to merged interaction regions in which the magnetic field is turbulent. The integral intensity of . 75 MeV/Nuc cosmic rays at Voyager is generally observed to decrease when a merged interaction region moves past the spacecraft and to increase during the passage of a rarefaction region. When the separation between interaction regions is relatively large, the cosmic ray intensity tends to increase on a scale of a few months. This was the case at Voyager 1 from July 1, 1983 to May 1, 1984, when the spacecraft moved from 16.7 to 19.6 AU. Changes in cosmic ray intensity were related to the magnetic field strength in a simple way. It is estimated that the diffusion coefficient in merged interaction regions at this distance is similar to 0.6 x 10 to the 22nd power sq cm/s.