Sample records for early cretaceous fossil

  1. Fossil evidence of avian crops from the Early Cretaceous of China

    PubMed Central

    Zheng, Xiaoting; Martin, Larry D.; Zhou, Zhonghe; Burnham, David A.; Zhang, Fucheng; Miao, Desui

    2011-01-01

    The crop is characteristic of seed-eating birds today, yet little is known about its early history despite remarkable discoveries of many Mesozoic seed-eating birds in the past decade. Here we report the discovery of some early fossil evidence for the presence of a crop in birds. Two Early Cretaceous birds, the basal ornithurine Hongshanornis and a basal avian Sapeornis, demonstrate that an essentially modern avian digestive system formed early in avian evolution. The discovery of a crop in two phylogenetically remote lineages of Early Cretaceous birds and its absence in most intervening forms indicates that it was independently acquired as a specialized seed-eating adaptation. Finally, the reduction or loss of teeth in the forms showing seed-filled crops suggests that granivory was possibly one of the factors that resulted in the reduction of teeth in early birds. PMID:21896733

  2. A revised checklist of Nepticulidae fossils (Lepidoptera) indicates an Early Cretaceous origin.

    PubMed

    Doorenweerd, Camiel; Nieukerken, Erik J Van; Sohn, Jae-Cheon; Labandeira, Conrad C

    2015-05-27

    With phylogenetic knowledge of Lepidoptera rapidly increasing, catalysed by increasingly powerful molecular techniques, the demand for fossil calibration points to estimate an evolutionary timeframe for the order is becoming an increasingly pressing issue. The family Nepticulidae is a species rich, basal branch within the phylogeny of the Lepidoptera, characterized by larval leaf-mining habits, and thereby represents a potentially important lineage whose evolutionary history can be established more thoroughly with the potential use of fossil calibration points. Using our experience with extant global Nepticulidae, we discuss a list of characters that may be used to assign fossil leaf mines to Nepticulidae, and suggest useful methods for classifying relevant fossil material. We present a checklist of 79 records of Nepticulidae representing adult and leaf-mine fossils mentioned in literature, often with multiple exemplars constituting a single record. We provide our interpretation of these fossils. Two species now are included in the collective generic name Stigmellites: Stigmellites resupinata (Krassilov, 2008) comb. nov. (from Ophiheliconoma) and Stigmellites almeidae (Martins-Neto, 1989) comb. nov. (from Nepticula). Eleven records are for the first time attributed to Nepticulidae. After discarding several dubious records, including one possibly placing the family at a latest Jurassic position, we conclude that the oldest fossils likely attributable to Nepticulidae are several exemplars representing a variety of species from the Dakota Formation (USA). The relevant strata containing these earliest fossils are now dated at 102 Ma (million years ago) in age, corresponding to the latest Albian Stage of the Early Cretaceous. Integration of all records in the checklist shows that a continuous presence of nepticulid-like leaf mines preserved as compression-impression fossils and by amber entombment of adults have a fossil record extending to the latest Early Cretaceous.

  3. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution.

    PubMed

    Feild, Taylor S; Brodribb, Timothy J; Iglesias, Ari; Chatelet, David S; Baresch, Andres; Upchurch, Garland R; Gomez, Bernard; Mohr, Barbara A R; Coiffard, Clement; Kvacek, Jiri; Jaramillo, Carlos

    2011-05-17

    The flowering plants that dominate modern vegetation possess leaf gas exchange potentials that far exceed those of all other living or extinct plants. The great divide in maximal ability to exchange CO(2) for water between leaves of nonangiosperms and angiosperms forms the mechanistic foundation for speculation about how angiosperms drove sweeping ecological and biogeochemical change during the Cretaceous. However, there is no empirical evidence that angiosperms evolved highly photosynthetically active leaves during the Cretaceous. Using vein density (D(V)) measurements of fossil angiosperm leaves, we show that the leaf hydraulic capacities of angiosperms escalated several-fold during the Cretaceous. During the first 30 million years of angiosperm leaf evolution, angiosperm leaves exhibited uniformly low vein D(V) that overlapped the D(V) range of dominant Early Cretaceous ferns and gymnosperms. Fossil angiosperm vein densities reveal a subsequent biphasic increase in D(V). During the first mid-Cretaceous surge, angiosperm D(V) first surpassed the upper bound of D(V) limits for nonangiosperms. However, the upper limits of D(V) typical of modern megathermal rainforest trees first appear during a second wave of increased D(V) during the Cretaceous-Tertiary transition. Thus, our findings provide fossil evidence for the hypothesis that significant ecosystem change brought about by angiosperms lagged behind the Early Cretaceous taxonomic diversification of angiosperms.

  4. Fossil evidence for a herbaceous diversification of early eudicot angiosperms during the Early Cretaceous

    PubMed Central

    Jud, Nathan A.

    2015-01-01

    Eudicot flowering plants comprise roughly 70% of land plant species diversity today, but their early evolution is not well understood. Fossil evidence has been largely restricted to their distinctive tricolpate pollen grains and this has limited our understanding of the ecological strategies that characterized their primary radiation. I describe megafossils of an Early Cretaceous eudicot from the Potomac Group in Maryland and Virginia, USA that are complete enough to allow reconstruction of important life-history traits. I draw on quantitative and qualitative analysis of functional traits, phylogenetic analysis and sedimentological evidence to reconstruct the biology of this extinct species. These plants were small and locally rare but widespread, fast-growing herbs. They had complex leaves and they were colonizers of bright, wet, disturbance-prone habitats. Other early eudicot megafossils appear to be herbaceous rather than woody, suggesting that this habit was characteristic of their primary radiation. A mostly herbaceous initial diversification of eudicots could simultaneously explain the heretofore sparse megafossil record as well as their rapid diversification during the Early Cretaceous because the angiosperm capacity for fast reproduction and fast evolution is best expressed in herbs. PMID:26336172

  5. Fossil evidence for a herbaceous diversification of early eudicot angiosperms during the Early Cretaceous.

    PubMed

    Jud, Nathan A

    2015-09-07

    Eudicot flowering plants comprise roughly 70% of land plant species diversity today, but their early evolution is not well understood. Fossil evidence has been largely restricted to their distinctive tricolpate pollen grains and this has limited our understanding of the ecological strategies that characterized their primary radiation. I describe megafossils of an Early Cretaceous eudicot from the Potomac Group in Maryland and Virginia, USA that are complete enough to allow reconstruction of important life-history traits. I draw on quantitative and qualitative analysis of functional traits, phylogenetic analysis and sedimentological evidence to reconstruct the biology of this extinct species. These plants were small and locally rare but widespread, fast-growing herbs. They had complex leaves and they were colonizers of bright, wet, disturbance-prone habitats. Other early eudicot megafossils appear to be herbaceous rather than woody, suggesting that this habit was characteristic of their primary radiation. A mostly herbaceous initial diversification of eudicots could simultaneously explain the heretofore sparse megafossil record as well as their rapid diversification during the Early Cretaceous because the angiosperm capacity for fast reproduction and fast evolution is best expressed in herbs. © 2015 The Author(s).

  6. The early evolution of feathers: fossil evidence from Cretaceous amber of France

    PubMed Central

    Perrichot, Vincent; Marion, Loïc; Néraudeau, Didier; Vullo, Romain; Tafforeau, Paul

    2008-01-01

    The developmental stages of feathers are of major importance in the evolution of body covering and the origin of avian flight. Until now, there were significant gaps in knowledge of early morphologies in theoretical stages of feathers as well as in palaeontological material. Here we report fossil evidence of an intermediate and critical stage in the incremental evolution of feathers which has been predicted by developmental theories but hitherto undocumented by evidence from both the recent and the fossil records. Seven feathers have been found in an Early Cretaceous (Late Albian, ca 100 Myr) amber of western France, which display a flattened shaft composed by the still distinct and incompletely fused bases of the barbs forming two irregular vanes. Considering their remarkably primitive features, and since recent discoveries have yielded feathers of modern type in some derived theropod dinosaurs, the Albian feathers from France might have been derived either from an early bird or from a non-avian dinosaur. PMID:18285280

  7. Paleobotany of Livingston Island: The first report of a Cretaceous fossil flora from Hannah Point

    USGS Publications Warehouse

    Leppe, M.; Michea, W.; Muñoz, C.; Palma-Heldt, S.; Fernandoy, F.

    2007-01-01

    This is the first report of a fossil flora from Hannah Point, Livingston Island, South Shetland Islands, Antarctica. The fossiliferous content of an outcrop, located between two igneous rock units of Cretaceous age are mainly composed of leaf imprints and some fossil trunks. The leaf assemblage consists of 18 taxa of Pteridophyta, Pinophyta and one angiosperm. The plant assemblage can be compared to other Early Cretaceous floras from the South Shetland Islands, but several taxa have an evidently Late Cretaceous affinity. A Coniacian-Santonian age is the most probable age for the outcrops, supported by previous K/Ar isotopic studies of the basalts over and underlying the fossiliferous sequence

  8. A lower Cretaceous (Valanginian) seed cone provides the earliest fossil record for Picea (Pinaceae).

    PubMed

    Klymiuk, Ashley A; Stockey, Ruth A

    2012-06-01

    Sequence analyses for Pinaceae have suggested that extant genera diverged in the late Mesozoic. While the fossil record indicates that Pinaceae was highly diverse during the Cretaceous, there are few records of living genera. This description of an anatomically preserved seed cone extends the fossil record for Picea A. Dietrich (Pinaceae) by ∼75 Ma. The specimen was collected from the Apple Bay locality of Vancouver Island (Lower Cretaceous, Valanginian) and is described from anatomical sections prepared using cellulose acetate peels. Cladistic analyses of fossil and extant pinaceous seed cones employed parsimony ratchet searches of an anatomical and morphological matrix. This new seed cone has a combination of characters shared only with the genus Picea A. Dietr. and is thus described as Picea burtonii Klymiuk et Stockey sp. nov. Bisaccate pollen attributable to Picea is found in the micropyles of several ovules, corroborating the designation of this cone as an early spruce. Cladistic analyses place P. burtonii with extant Picea and an Oligocene representative of the genus. Furthermore, our analyses indicate that Picea is sister to Cathaya Chun et Kuang, and P. burtonii helps to establish a minimum date for this node in hypotheses of conifer phylogeny. As an early member of the extant genus Picea, this seed cone extends the fossil record of Picea to the Valanginian Stage of the Early Cretaceous, ca. 136 Ma, thereby resolving a ghost lineage predicted by molecular divergence analyses, and offers new insight into the evolution of Pinaceae.

  9. Inference of pCO2 Levels during the Late Cretaceous Using Fossil Lauraceae

    NASA Astrophysics Data System (ADS)

    Richey, J. D.; Upchurch, G. R.

    2011-12-01

    Botanical estimates of pCO2 for the Late Cretaceous have most commonly used Stomatal Index (SI) in fossil Ginkgo. Recently, SI in fossil Lauraceae has been used to infer changes in pCO2 across the Cenomanian-Turonian boundary, based on the relation between SI and pCO2 in extant Laurus and Hypodaphnis. To provide a broad-scale picture of pCO2 based on fossil Lauraceae, we examined dispersed cuticle of the leaf macrofossil genus Pandemophyllum from: 1) the early to middle Cenomanian of the Potomac Group of Maryland (Mauldin Mountain locality, lower Zone III) and 2) the Maastrichtian of southern Colorado (Raton Basin, Starkville South and Berwind Canyon localities). These samples fall within the Late Cretaceous decline in pCO2 inferred from geochemical modeling and other proxies. SI was calculated from fossil cuticle fragments using ImageJ and counts of up to 56,000 cells per sample, a far greater number of cells than are counted in most studies. CO2 levels were estimated using the relation between SI and CO2 published for Laurus nobilis and Hypodaphnis zenkeri. Early to middle Cenomanian atmospheric pCO2 is estimated at 362-536 parts per million (ppm). This represents the absolute minimum and maximum estimated CO2 levels from the ±95% confidence intervals (CI) of the relation between SI and CO2 for the modern equivalents, and SI ± 1 Standard Deviation (SD) in the fossil genus Pandemophyllum. Late Maastrichtian atmospheric pCO2 is estimated at 358-534 ppm. The Maastrichtian estimates falls within the range of published estimates from other proxies. The Cenomanian estimate, in contrast, is low relative to most other estimates. The 95% confidence intervals of our pCO2 estimates overlap each other and many of the assemblages published by Barclay et al. (2010) for Lauraceae across the Cenomanian-Turonian boundary. This could indicate that 1) pCO2 did not undergo a major long-term decline during the Late Cretaceous, 2) Lauraceae show low sensitivity to high pCO2, or 3

  10. New fossil ants in French Cretaceous amber (Hymenoptera: Formicidae)

    NASA Astrophysics Data System (ADS)

    Perrichot, Vincent; Nel, André; Néraudeau, Didier; Lacau, Sébastien; Guyot, Thierry

    2008-02-01

    Recent studies on the ant phylogeny are mainly based on the molecular analyses of extant subfamilies and do not include the extinct, only Cretaceous subfamily Sphecomyrminae. However, the latter is of major importance for ant relationships, as it is considered the most basal subfamily. Therefore, each new discovery of a Mesozoic ant is of high interest for improving our understanding of their early history and basal relationships. In this paper, a new sphecomyrmine ant, allied to the Burmese amber genus Haidomyrmex, is described from mid-Cretaceous amber of France as Haidomyrmodes mammuthus gen. and sp. n. The diagnosis of the tribe Haidomyrmecini is emended based on the new type material, which includes a gyne (alate female) and two incomplete workers. The genus Sphecomyrmodes, hitherto known by a single species from Burmese amber, is also reported and a new species described as S. occidentalis sp. n. after two workers remarkably preserved in a single piece of Early Cenomanian French amber. The new fossils provide additional information on early ant diversity and relationships and demonstrate that the monophyly of the Sphecomyrminae, as currently defined, is still weakly supported.

  11. Extending the fossil record of Polytrichaceae: Early Cretaceous Meantoinea alophosioides gen. et sp. nov., permineralized gametophytes with gemma cups from Vancouver Island.

    PubMed

    Bippus, Alexander C; Stockey, Ruth A; Rothwell, Gar W; Tomescu, Alexandru M F

    2017-04-01

    Diverse in modern ecosystems, mosses are dramatically underrepresented in the fossil record. Furthermore, most pre-Cenozoic mosses are known only from compression fossils, lacking detailed anatomical information. When preserved, anatomy vastly improves resolution in the systematic placement of fossils. Lower Cretaceous deposits at Apple Bay (Vancouver Island, British Columbia, Canada) contain a diverse anatomically preserved flora that includes numerous bryophytes, many of which have yet to be characterized. Among them is a polytrichaceous moss that is described here. Fossil moss gametophytes preserved in four carbonate concretions were studied in serial sections prepared using the cellulose acetate peel technique. We describe Meantoinea alophosioides gen. et sp. nov., a polytrichaceous moss with terminal gemma cups containing stalked, lenticular gemmae. Leaves with characteristic costal anatomy, differentiated into sheathing base and free lamina and bearing photosynthetic lamellae, along with a conducting strand in the stem, place Meantoinea in family Polytrichaceae. The bistratose leaf lamina with an adaxial layer of mamillose cells, short photosynthetic lamellae restricted to the costa, and presence of gemma cups indicate affinities with basal members of the Polytrichaceae, such as Lyellia , Bartramiopsis , and Alophosia . Meantoinea alophosioides enriches the documented moss diversity of an already-diverse Early Cretaceous plant fossil assemblage. This is the third moss described from the Apple Bay plant fossil assemblage and represents the first occurrence of gemma cups in a fossil moss. It is also the oldest unequivocal record of Polytrichaceae, providing a hard minimum age for the group of 136 million years. © 2017 Botanical Society of America.

  12. The origin and early evolution of metatherian mammals: the Cretaceous record.

    PubMed

    Williamson, Thomas E; Brusatte, Stephen L; Wilson, Gregory P

    2014-01-01

    Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg) boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary.

  13. Early Cretaceous greenhouse pumped higher taxa diversification in spiders.

    PubMed

    Shao, Lili; Li, Shuqiang

    2018-05-24

    The Cretaceous experienced one of the most remarkable greenhouse periods in geological history. During this time, ecosystem reorganizations significantly impacted the diversification of many groups of organisms. The rise of angiosperms marked a major biome turnover. Notwithstanding, relatively little remains known about how the Cretaceous global ecosystem impacted the evolution of spiders, which constitute one of the most abundant groups of predators. Herein, we evaluate the transcriptomes of 91 taxa representing more than half of the spider families. We add 23 newly sequenced taxa to the existing database to obtain a robust phylogenomic assessment. Phylogenetic reconstructions using different datasets and methods obtain novel placements of some groups, especially in the Synspermiata and the group having a retrolateral tibial apophysis (RTA). Molecular analyses indicate an expansion of the RTA clade at the Early Cretaceous with a hunting predatory strategy shift. Fossil analyses show a 7-fold increase of diversification rate at the same period, but this likely owes to the first occurrences spider in amber deposits. Additional analyses of fossil abundance show an accumulation of spider lineages in the Early Cretaceous. We speculate that the establishment of a warm greenhouse climate pumped the diversification of spiders, in particular among webless forms tracking the abundance of insect prey. Our study offers a new pathway for future investigations of spider phylogeny and diversification. Copyright © 2018. Published by Elsevier Inc.

  14. The origin and early evolution of metatherian mammals: the Cretaceous record

    PubMed Central

    Williamson, Thomas E.; Brusatte, Stephen L.; Wilson, Gregory P.

    2014-01-01

    Abstract Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg) boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary. PMID:25589872

  15. Discovery of fossil lamprey larva from the Lower Cretaceous reveals its three-phased life cycle

    PubMed Central

    Chang, Mee-mann; Wu, Feixiang; Miao, Desui; Zhang, Jiangyong

    2014-01-01

    Lampreys are one of the two surviving jawless vertebrate groups and one of a few vertebrate groups with the best exemplified metamorphosis during their life cycle, which consists of a long-lasting larval stage, a peculiar metamorphosis, and a relatively short adulthood with a markedly different anatomy. Although the fossil records have revealed that many general features of extant lamprey adults were already formed by the Late Devonian (ca. 360 Ma), little is known about the life cycle of the fossil lampreys because of the lack of fossilized lamprey larvae or transformers. Here we report the first to our knowledge discovery of exceptionally preserved premetamorphic and metamorphosing larvae of the fossil lamprey Mesomyzon mengae from the Lower Cretaceous of Inner Mongolia, China. These fossil ammocoetes look surprisingly modern in having an eel-like body with tiny eyes, oral hood and lower lip, anteriorly positioned branchial region, and a continuous dorsal skin fin fold and in sharing a similar feeding habit, as judged from the detritus left in the gut. In contrast, the larger metamorphosing individuals have slightly enlarged eyes relative to large otic capsules, thickened oral hood or pointed snout, and discernable radials but still anteriorly extended branchial area and lack a suctorial oral disk, which characterize the early stages of the metamorphosis of extant lampreys. Our discovery not only documents the larval conditions of fossil lampreys but also indicates the three-phased life cycle in lampreys emerged essentially in their present mode no later than the Early Cretaceous. PMID:25313060

  16. Spectroscopic studies of wood fossils from the Crato Formation, Cretaceous Period.

    PubMed

    da Silva, J H; Freire, P T C; Abagaro, B T O; Silva, J A F; Saraiva, G D; de Lima, F J; Barros, O A; Bantim, R A; Saraiva, A A F; Viana, B C

    2013-11-01

    In this work we study two types of wood fossils (Gymnosperms, Araucariaceae) from the Crato Formation of Araripe Basin in Brazil, from the Cretaceous Period. The samples were characterized by Raman and infrared spectroscopies, X-ray diffraction and scanning electron microscopy. The results obtained by different techniques showed that although the rocks surrounding the fossils have predominantly the same constitution - calcite - however, the formation processes of these types of wood fossils are quite different. One of the fossils, denominated as light wood, is predominantly composed of gypsum, while the other fossil, the dark wood, is rich in amorphous carbon, possibly the kerogen type. Implications relative to the environment where the plants lived millions years ago are also given. Finally, the results highlight the constitution of one of the most important paleontological sites of the Cretaceous Period in the South America. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Teacher Training and Authentic Scientific Research Utilizing Cretaceous Fossil Resources

    NASA Astrophysics Data System (ADS)

    Danch, J. M.

    2016-12-01

    The readily accessible Cretaceous fossil beds of central New Jersey provide an excellent opportunity for both teacher training in the utilization of paleontological resources in the classroom and authentic scientific student research at the middle and high school levels. Woodbridge Township New Jersey School District teachers participated in field trips to various fossiliferous sites to obtain photographic and video data and invertebrate and vertebrate fossil specimens for use in the classroom. Teachers were also presented with techniques allowing them to mentor students in performing authentic paleontological research. Students participated in multi-year research projects utilizing Cretaceous fossils collected in the field and presented their findings at science fairs and symposia. A workshop for K - 12 teachers statewide was developed for the New Jersey Science Convention providing information about New Jersey fossil resources and allowing participants to obtain, study and classify specimens. Additionally, the workshop provided participants with the information necessary for them to plan and conduct their own field trips.

  18. Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis.

    PubMed

    Pan, Yanhong; Zheng, Wenxia; Moyer, Alison E; O'Connor, Jingmai K; Wang, Min; Zheng, Xiaoting; Wang, Xiaoli; Schroeter, Elena R; Zhou, Zhonghe; Schweitzer, Mary H

    2016-12-06

    Microbodies associated with feathers of both nonavian dinosaurs and early birds were first identified as bacteria but have been reinterpreted as melanosomes. Whereas melanosomes in modern feathers are always surrounded by and embedded in keratin, melanosomes embedded in keratin in fossils has not been demonstrated. Here we provide multiple independent molecular analyses of both microbodies and the associated matrix recovered from feathers of a new specimen of the basal bird Eoconfuciusornis from the Early Cretaceous Jehol Biota of China. Our work represents the oldest ultrastructural and immunological recognition of avian beta-keratin from an Early Cretaceous (∼130-Ma) bird. We apply immunogold to identify protein epitopes at high resolution, by localizing antibody-antigen complexes to specific fossil ultrastructures. Retention of original keratinous proteins in the matrix surrounding electron-opaque microbodies supports their assignment as melanosomes and adds to the criteria employable to distinguish melanosomes from microbial bodies. Our work sheds new light on molecular preservation within normally labile tissues preserved in fossils.

  19. Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis

    PubMed Central

    Pan, Yanhong; Zheng, Wenxia; Moyer, Alison E.; O’Connor, Jingmai K.; Zheng, Xiaoting; Wang, Xiaoli; Schroeter, Elena R.; Zhou, Zhonghe; Schweitzer, Mary H.

    2016-01-01

    Microbodies associated with feathers of both nonavian dinosaurs and early birds were first identified as bacteria but have been reinterpreted as melanosomes. Whereas melanosomes in modern feathers are always surrounded by and embedded in keratin, melanosomes embedded in keratin in fossils has not been demonstrated. Here we provide multiple independent molecular analyses of both microbodies and the associated matrix recovered from feathers of a new specimen of the basal bird Eoconfuciusornis from the Early Cretaceous Jehol Biota of China. Our work represents the oldest ultrastructural and immunological recognition of avian beta-keratin from an Early Cretaceous (∼130-Ma) bird. We apply immunogold to identify protein epitopes at high resolution, by localizing antibody–antigen complexes to specific fossil ultrastructures. Retention of original keratinous proteins in the matrix surrounding electron-opaque microbodies supports their assignment as melanosomes and adds to the criteria employable to distinguish melanosomes from microbial bodies. Our work sheds new light on molecular preservation within normally labile tissues preserved in fossils. PMID:27872291

  20. Fossils of hydrothermal vent worms from Cretaceous sulfide ores of the Samail ophiolite, Oman

    USGS Publications Warehouse

    Haymon, R.M.; Koski, R.A.; Sinclair, C.

    1984-01-01

    Fossil worm tubes of Cretaceous age preserved in the Bayda massive sulfide deposit of the Samail ophiolite, Oman, are apparently the first documented examples of fossils embedded in massive sulfide deposits from the geologic record. The geologic setting of the Bayda deposit and the distinctive mineralogic and textural features of the fossiliferous samples suggest that the Bayda sulfide deposit and fossil fauna are remnants of a Cretaceous sea-floor hydrothermal vent similar to modern hot springs on the East Pacific Rise and the Juan de Fuca Ridge.

  1. Biotic association and palaeoenvironmental reconstruction of the "Loma del Pterodaustro" fossil site (Early Cretaceous, Argentina)

    USGS Publications Warehouse

    Chiappe, L.; Rivarola, D.; Cione, A.; Fregenal-Martinez, M.; Sozzi, H.; Buatois, L.; Gallego, O.; Laza, J.; Romero, E.; Lopez-Arbarello, A.; Buscalioni, A.; Marsicano, C.; Adamonis, S.; Ortega, F.; McGehee, S.; Di, Iorio O.

    1998-01-01

    A sedimentological analysis of the basal section of the Early Cretaceous, lacustrine Lagarcito Formation at "Loma del Pterodaustro" (San Luis, Argentina) and a summary of its biological components are presented. Three sedimentological facies can be recognized in the basal sequence of the Lagarcito Formation. Fossil remains are particularly abundant in laminated claystones of a facies interpreted as deposits formed in offshore areas of the lake. The preservation of delicate structures allows recognition of these deposits as a Konservat Lagersta??tte. Up to now, rocks at "Loma del Pterodaustro" have yielded plants, conchostracans, semionotid and pleuropholid fishes, pterodactyloid pterosaurs, and a variety of invertebrate traces. The chronology of the Lagarcito Formation is discussed and it is concluded that this unit is of Albian age. The palaeoenvironment of deposition of the basal sequence of the Lagarcito Formation at "Loma del Pterodaustro" is interpreted as a perennial, shallow lake developed within an alluvial plain, under semiarid climatic conditions.

  2. A fossil brain from the Cretaceous of European Russia and avian sensory evolution.

    PubMed

    Kurochkin, Evgeny N; Dyke, Gareth J; Saveliev, Sergei V; Pervushov, Evgeny M; Popov, Evgeny V

    2007-06-22

    Fossils preserving traces of soft anatomy are rare in the fossil record; even rarer is evidence bearing on the size and shape of sense organs that provide us with insights into mode of life. Here, we describe unique fossil preservation of an avian brain from the Volgograd region of European Russia. The brain of this Melovatka bird is similar in shape and morphology to those of known fossil ornithurines (the lineage that includes living birds), such as the marine diving birds Hesperornis and Enaliornis, but documents a new stage in avian sensory evolution: acute nocturnal vision coupled with well-developed hearing and smell, developed by the Late Cretaceous (ca 90Myr ago). This fossil also provides insights into previous 'bird-like' brain reconstructions for the most basal avian Archaeopteryx--reduction of olfactory lobes (sense of smell) and enlargement of the hindbrain (cerebellum) occurred subsequent to Archaeopteryx in avian evolution, closer to the ornithurine lineage that comprises living birds. The Melovatka bird also suggests that brain enlargement in early avians was not correlated with the evolution of powered flight.

  3. Two early eudicot fossil flowers from the Kamikitaba assemblage (Coniacian, Late Cretaceous) in northeastern Japan

    DOE PAGES

    Takahashi, Masamichi; Herendeen, Patrick S.; Xiao, Xianghui

    2017-05-11

    Two new fossil taxa referable to the basal eudicot grade are described from the Kamikitaba locality (ca. 89 MYBP, early Coniacian: Late Cretaceous) in the Ashizawa Formation (Asamigawa Member) of Futaba Group in northeastern Japan. These charcoalified mesofossils exhibit well-preserved three-dimensional structure and were analyzed using synchrotron-radiation X-ray microtomography (SRXTM) at the Advanced Photon Source (APS) to document the composition and internal structure. Cathiaria japonica sp. nov. is represented by infructescence segments that consist of an axis bearing three to four fruits. The capsular fruits are sessile and dehiscent and consist of a gynoecium subtended by a bract. No perianthmore » parts are present. The gynoecium is monocarpellate containing two pendulous seeds. The carpel is ascidiate in the lower half and conduplicate in the upper part, style is deflected abaxially with a dorsiventral suture and a large, obliquely decurrent stigma. Pollen grains are tricolpate with a reticulate exine. The morphological features of Cathiaria are consistent with an assignment to the Buxaceae s. l. (including Didymelaceae). Archaeostella verticillata gen. et sp. nov. is represented by flowers that are small, actinomorphic, pedicellate, bisexual, semi-inferior, and multicarpellate. The floral receptacle is cup shaped with a perigynous perianth consisting of several tepals inserted around the rim. The androecium comprises ca. 120 stamens with clear differentiation into anther and filament. The anthers are basifixed and tetrasporangiate. The gynoecium consists of a whorl of ten conduplicate, laterally connate but distally distinct carpels with a conspicuous dorsal bulge, including a central cavity. The styles are short, becoming recurved with a ventrally decurrent stigma. The fruit type is a follicle. Seeds are ca. 10 per carpel, marginal, pendulous from the broad, oblique summit of the locule. Seeds are small, spindle-shaped, with a chalazal extension

  4. Two early eudicot fossil flowers from the Kamikitaba assemblage (Coniacian, Late Cretaceous) in northeastern Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Masamichi; Herendeen, Patrick S.; Xiao, Xianghui

    Two new fossil taxa referable to the basal eudicot grade are described from the Kamikitaba locality (ca. 89 MYBP, early Coniacian: Late Cretaceous) in the Ashizawa Formation (Asamigawa Member) of Futaba Group in northeastern Japan. These charcoalified mesofossils exhibit well-preserved three-dimensional structure and were analyzed using synchrotron-radiation X-ray microtomography (SRXTM) at the Advanced Photon Source (APS) to document the composition and internal structure. Cathiaria japonica sp. nov. is represented by infructescence segments that consist of an axis bearing three to four fruits. The capsular fruits are sessile and dehiscent and consist of a gynoecium subtended by a bract. No perianthmore » parts are present. The gynoecium is monocarpellate containing two pendulous seeds. The carpel is ascidiate in the lower half and conduplicate in the upper part, style is deflected abaxially with a dorsiventral suture and a large, obliquely decurrent stigma. Pollen grains are tricolpate with a reticulate exine. The morphological features of Cathiaria are consistent with an assignment to the Buxaceae s. l. (including Didymelaceae). Archaeostella verticillata gen. et sp. nov. is represented by flowers that are small, actinomorphic, pedicellate, bisexual, semi-inferior, and multicarpellate. The floral receptacle is cup shaped with a perigynous perianth consisting of several tepals inserted around the rim. The androecium comprises ca. 120 stamens with clear differentiation into anther and filament. The anthers are basifixed and tetrasporangiate. The gynoecium consists of a whorl of ten conduplicate, laterally connate but distally distinct carpels with a conspicuous dorsal bulge, including a central cavity. The styles are short, becoming recurved with a ventrally decurrent stigma. The fruit type is a follicle. Seeds are ca. 10 per carpel, marginal, pendulous from the broad, oblique summit of the locule. Seeds are small, spindle-shaped, with a chalazal extension

  5. Fossil evidence for the early ant evolution

    NASA Astrophysics Data System (ADS)

    Perrichot, Vincent; Lacau, Sébastien; Néraudeau, Didier; Nel, André

    2008-02-01

    Ants are one of the most studied insects in the world; and the literature devoted to their origin and evolution, systematics, ecology, or interactions with plants, fungi and other organisms is prolific. However, no consensus yet exists on the age estimate of the first Formicidae or on the origin of their eusociality. We review the fossil and biogeographical record of all known Cretaceous ants. We discuss the possible origin of the Formicidae with emphasis on the most primitive subfamily Sphecomyrminae according to its distribution and the Early Cretaceous palaeogeography. And we review the evidence of true castes and eusociality of the early ants regarding their morphological features and their manner of preservation in amber. The mid-Cretaceous amber forest from south-western France where some of the oldest known ants lived, corresponded to a moist tropical forest close to the shore with a dominance of gymnosperm trees but where angiosperms (flowering plants) were already diversified. This palaeoenvironmental reconstruction supports an initial radiation of ants in forest ground litter coincident with the rise of angiosperms, as recently proposed as an ecological explanation for their origin and successful evolution.

  6. A new hynobiid-like salamander (Amphibia, Urodela) from Inner Mongolia, China, provides a rare case study of developmental features in an Early Cretaceous fossil urodele

    PubMed Central

    Jia, Jia

    2016-01-01

    A new fossil salamander, Nuominerpeton aquilonaris (gen. et sp. nov.), is named and described based on specimens from the Lower Cretaceous Guanghua Formation of Inner Mongolia, China. The new discovery documents a far northern occurrence of Early Cretaceous salamanders in China, extending the geographic distribution for the Mesozoic fossil record of the group from the Jehol area (40th–45th parallel north) to near the 49th parallel north. The new salamander is characterized by having the orbitosphenoid semicircular in shape; coracoid plate of the scapulocoracoid greatly expanded with a convex ventral and posterior border; ossification of two centralia in carpus and tarsus; and first digit being about half the length of the second digit in both manus and pes. The new salamander appears to be closely related to hynobiids, although this inferred relationship awaits confirmation by research in progress by us on a morphological and molecular combined analysis of cryptobranchoid relationships. Comparison of adult with larval and postmetamorphic juvenile specimens provides insights into developmental patterns of cranial and postcranial skeletons in this fossil species, especially resorption of the palatine and anterior portions of the palatopterygoid in the palate and the coronoid in the mandible during metamorphosis, and postmetamorphic ossification of the mesopodium in both manus and pes. Thus, this study provides a rare case study of developmental features in a Mesozoic salamander. PMID:27761316

  7. Modern mammal origins: evolutionary grades in the Early Cretaceous of North America.

    PubMed

    Jacobs, L L; Winkler, D A; Murry, P A

    1989-07-01

    Major groups of modern mammals have their origins in the Mesozoic Era, yet the mammalian fossil record is generally poor for that time interval. Fundamental morphological changes that led to modern mammals are often represented by small samples of isolated teeth. Fortunately, functional wear facets on teeth allow prediction of the morphology of occluding teeth that may be unrepresented by fossils. A major step in mammalian evolution occurred in the Early Cretaceous with the evolution of tribosphenic molars, which characterize marsupials and placentals, the two most abundant and diverse extant groups of mammals. A tooth from the Early Cretaceous (110 million years before present) of Texas tests previous predictions (based on lower molars) of the morphology of upper molars in early tribosphenic dentitions. The lingual cusp (protocone) is primitively without shear facets, as expected, but the cheek side of the tooth is derived (advanced) in having distinctive cusps along the margin. The tooth, although distressingly inadequate to define many features of the organism, demonstrates unexpected morphological diversity at a strategic stage of mammalian evolution and falsifies previous claims of the earliest occurrence of true marsupials.

  8. Modern mammal origins: evolutionary grades in the Early Cretaceous of North America.

    PubMed Central

    Jacobs, L L; Winkler, D A; Murry, P A

    1989-01-01

    Major groups of modern mammals have their origins in the Mesozoic Era, yet the mammalian fossil record is generally poor for that time interval. Fundamental morphological changes that led to modern mammals are often represented by small samples of isolated teeth. Fortunately, functional wear facets on teeth allow prediction of the morphology of occluding teeth that may be unrepresented by fossils. A major step in mammalian evolution occurred in the Early Cretaceous with the evolution of tribosphenic molars, which characterize marsupials and placentals, the two most abundant and diverse extant groups of mammals. A tooth from the Early Cretaceous (110 million years before present) of Texas tests previous predictions (based on lower molars) of the morphology of upper molars in early tribosphenic dentitions. The lingual cusp (protocone) is primitively without shear facets, as expected, but the cheek side of the tooth is derived (advanced) in having distinctive cusps along the margin. The tooth, although distressingly inadequate to define many features of the organism, demonstrates unexpected morphological diversity at a strategic stage of mammalian evolution and falsifies previous claims of the earliest occurrence of true marsupials. Images PMID:2740336

  9. Fossil traces of the bone-eating worm Osedax in early Oligocene whale bones

    PubMed Central

    Kiel, Steffen; Goedert, James L.; Kahl, Wolf-Achim; Rouse, Greg W.

    2010-01-01

    Osedax is a recently discovered group of siboglinid annelids that consume bones on the seafloor and whose evolutionary origins have been linked with Cretaceous marine reptiles or to the post-Cretaceous rise of whales. Here we present whale bones from early Oligocene bathyal sediments exposed in Washington State, which show traces similar to those made by Osedax today. The geologic age of these trace fossils (∼30 million years) coincides with the first major radiation of whales, consistent with the hypothesis of an evolutionary link between Osedax and its main food source, although older fossils should certainly be studied. Osedax has been destroying bones for most of the evolutionary history of whales and the possible significance of this “Osedax effect” in relation to the quality and quantity of their fossils is only now recognized. PMID:20424110

  10. Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds.

    PubMed

    Zhang, Fucheng; Kearns, Stuart L; Orr, Patrick J; Benton, Michael J; Zhou, Zhonghe; Johnson, Diane; Xu, Xing; Wang, Xiaolin

    2010-02-25

    Spectacular fossils from the Early Cretaceous Jehol Group of northeastern China have greatly expanded our knowledge of the diversity and palaeobiology of dinosaurs and early birds, and contributed to our understanding of the origin of birds, of flight, and of feathers. Pennaceous (vaned) feathers and integumentary filaments are preserved in birds and non-avian theropod dinosaurs, but little is known of their microstructure. Here we report that melanosomes (colour-bearing organelles) are not only preserved in the pennaceous feathers of early birds, but also in an identical manner in integumentary filaments of non-avian dinosaurs, thus refuting recent claims that the filaments are partially decayed dermal collagen fibres. Examples of both eumelanosomes and phaeomelanosomes have been identified, and they are often preserved in life position within the structure of partially degraded feathers and filaments. Furthermore, the data here provide empirical evidence for reconstructing the colours and colour patterning of these extinct birds and theropod dinosaurs: for example, the dark-coloured stripes on the tail of the theropod dinosaur Sinosauropteryx can reasonably be inferred to have exhibited chestnut to reddish-brown tones.

  11. New occurrences of fossilized feathers: systematics and taphonomy of the Santana Formation of the Araripe Basin (Cretaceous), NE, Brazil

    PubMed Central

    Anelli, Luiz Eduardo; Petri, Setembrino; Romero, Guilherme Raffaeli

    2016-01-01

    Here we describe three fossil feathers from the Early Cretaceous Santana Formation of the Araripe Basin, Brazil. Feathers are the most complex multiform vertebrate integuments; they perform different functions, occurring in both avian and non-avian dinosaurs. Despite their rarity, fossil feathers have been found across the world. Most of the Brazilian feather fossil record comes from the Santana Formation. This formation is composed of two members: Crato (lake) and Romualdo (lagoon); both of which are predominantly reduced deposits, precluding bottom dwelling organisms, resulting in exceptional preservation of the fossils. Despite arid and hot conditions during the Cretaceous, life teemed in the adjacency of this paleolake. Feathered non-avian dinosaurs have not yet been described from the Crato Member, even though there are suggestions of their presence in nearby basins. Our description of the three feathers from the Crato laminated limestone reveals that, despite the small sample size, they can be referred to coelurosaurian theropods. Moreover, based on comparisons with extant feather morphotypes they can be identified as one contour feather and two downy feathers. Despite their rareness and low taxonomic potential, fossilized feathers can offer insights about the paleobiology of its owners and the paleoecology of the Araripe Basin. PMID:27441102

  12. A nearly modern amphibious bird from the Early Cretaceous of northwestern China.

    PubMed

    You, Hai-Lu; Lamanna, Matthew C; Harris, Jerald D; Chiappe, Luis M; O'connor, Jingmai; Ji, Shu-An; Lü, Jun-Chang; Yuan, Chong-Xi; Li, Da-Qing; Zhang, Xing; Lacovara, Kenneth J; Dodson, Peter; Ji, Qiang

    2006-06-16

    Three-dimensional specimens of the volant fossil bird Gansus yumenensis from the Early Cretaceous Xiagou Formation of northwestern China demonstrate that this taxon possesses advanced anatomical features previously known only in Late Cretaceous and Cenozoic ornithuran birds. Phylogenetic analysis recovers Gansus within the Ornithurae, making it the oldest known member of the clade. The Xiagou Formation preserves the oldest known ornithuromorph-dominated avian assemblage. The anatomy of Gansus, like that of other non-neornithean (nonmodern) ornithuran birds, indicates specialization for an amphibious life-style, supporting the hypothesis that modern birds originated in aquatic or littoral niches.

  13. Early cretaceous dinosaurs from the sahara.

    PubMed

    Sereno, P C; Wilson, J A; Larsson, H C; Dutheil, D B; Sues, H D

    1994-10-14

    A major question in Mesozoic biogeography is how the land-based dinosaurian radiation responded to fragmentation of Pangaea. A rich fossil record has been uncovered on northern continents that spans the Cretaceous, when continental isolation reached its peak. In contrast, dinosaur remains on southern continents are scarce. The discovery of dinosaurian skeletons from Lower Cretaceous beds in the southern Sahara shows that several lineages of tetanuran theropods and broad-toothed sauropods had a cosmopolitan distribution across Pangaea before the onset of continental fragmentation. The distinct dinosaurian faunas of Africa, South America, and Asiamerica arose during the Cretaceous by differential survival of once widespread lineages on land masses that were becoming increasingly isolated from one another.

  14. Late Cretaceous Extreme Polar Warmth recorded by Vertebrate Fossils from the High Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Vandermark, D.; Tarduno, J. A.; Brinkman, D.

    2006-12-01

    A vertebrate fossil assemblage from Late Cretaceous (Coniacian-Turonian, ~92 to 86 Ma) rocks on Axel Heiberg Island in the High Canadian Arctic reflects what was once a diverse community of freshwater fishes and reptiles. Paleomagnetic data indicate a paleolatitude of ~71° N for the site; the fossils are from non-migratory fauna, so they can provide insight into Late Cretaceous polar climate. The fossil assemblage includes large (> 2.4 m long) champsosaurs (extinct crocodilelike reptiles). The presence of large champsosaurs suggests a mean annual temperature > 14 °C (and perhaps as great as 25 °C). Here we summarize findings and analyses following the discovery of the fossil-bearing strata in 1996. Examination of larger fish elements, isolated teeth and SEM studies of microstructures indicates the presence of lepisosteids, amiids and teleosts (Friedman et al., 2003) Interestingly, the only other known occurrence of amiids and lepisosteids, fossil or recent, are from intervals of extreme warmth during the Tertiary. Turtles present in the assemblage include Boreralochelys axelheibergensis, a generically indeterminate eucryptodire and a trioychid (Brinkman and Tarduno, 2005). The level of turtle diversity is also comparable to mid-latitude assemblages with a mean annual paleotemperature of at least 14 °C. A large portion of the champsosaur fossil assemblage is comprised of elements from subadults. This dominance of subadults is similar to that seen from low latitude sites. Because of the sensitivity of juveniles to ice formation, the make-up of the Arctic champsosaur population further indicates that the Late Cretaceous saw an interval of extreme warmth and low seasonality. We note the temporal coincidence of these fossils with volcanism at large igneous provinces (including high Arctic volcanism) and suggest that a pulse in volcanic carbon dioxide emissions helped cause the global warmth.

  15. Leaf economic traits from fossils support a weedy habit for early angiosperms.

    PubMed

    Royer, Dana L; Miller, Ian M; Peppe, Daniel J; Hickey, Leo J

    2010-03-01

    Many key aspects of early angiosperms are poorly known, including their ecophysiology and associated habitats. Evidence for fast-growing, weedy angiosperms comes from the Early Cretaceous Potomac Group, where angiosperm fossils, some of them putative herbs, are found in riparian depositional settings. However, inferences of growth rate from sedimentology and growth habit are somewhat indirect; also, the geographic extent of a weedy habit in early angiosperms is poorly constrained. Using a power law between petiole width and leaf mass, we estimated the leaf mass per area (LMA) of species from three Albian (110-105 Ma) fossil floras from North America (Winthrop Formation, Patapsco Formation of the Potomac Group, and the Aspen Shale). All LMAs for angiosperm species are low (<125 g/m(2); mean = 76 g/m(2)) but are high for gymnosperm species (>240 g/m(2); mean = 291 g/m(2)). On the basis of extant relationships between LMA and other leaf economic traits such as photosynthetic rate and leaf lifespan, we conclude that these Early Cretaceous landscapes were populated with weedy angiosperms with short-lived leaves (<12 mo). The unrivalled capacity for fast growth observed today in many angiosperms was in place by no later than the Albian and likely played an important role in their subsequent ecological success.

  16. Deciphering the preservation of fossil insects: a case study from the Crato Member, Early Cretaceous of Brazil

    PubMed Central

    Petri, Setembrino; Becker-Kerber, Bruno; Romero, Guilherme Raffaeli; Rizzutto, Marcia de Almeida; Rodrigues, Fabio; Galante, Douglas; da Silva, Tiago Fiorini; Curado, Jessica F.; Rangel, Elidiane Cipriano; Ribeiro, Rafael Parra; Pacheco, Mírian Liza Alves Forancelli

    2016-01-01

    Exceptionally well-preserved three-dimensional insects with fine details and even labile tissues are ubiquitous in the Crato Member Konservat Lagerstätte (northeastern Brazil). Here we investigate the preservational pathways which yielded such specimens. We employed high resolution techniques (EDXRF, SR-SXS, SEM, EDS, micro Raman, and PIXE) to understand their fossilisation on mineralogical and geochemical grounds. Pseudomorphs of framboidal pyrite, the dominant fossil microfabric, display size variation when comparing cuticle with inner areas or soft tissues, which we interpret as the result of the balance between ion diffusion rates and nucleation rates of pyrite through the originally decaying carcasses. Furthermore, the mineral fabrics are associated with structures that can be the remains of extracellular polymeric substances (EPS). Geochemical data also point to a concentration of Fe, Zn, and Cu in the fossils in comparison to the embedding rock. Therefore, we consider that biofilms of sulphate reducing bacteria (SRB) had a central role in insect decay and mineralisation. Therefore, we shed light on exceptional preservation of fossils by pyritisation in a Cretaceous limestone lacustrine palaeoenvironment. PMID:28028459

  17. The trace fossil Lepidenteron lewesiensis (Mantell, 1822) from the Upper Cretaceous of southern Poland

    NASA Astrophysics Data System (ADS)

    Jurkowska, Agata; Uchman, Alfred

    2013-12-01

    Jurkowska, A. and Uchman, A. 2013. The trace fossil Lepidenteron lewesiensis (Mantell, 1822) from the Upper Cretaceous of southern Poland. Acta Geologica Polonica, 63(4), 611-623. Warszawa. Lepidenteron lewesiensis (Mantell, 1822) is an unbranched trace fossil lined with small fish scales and bones, without a constructed wall. It is characteristic of the Upper Cretaceous epicontinental, mostly marly sediments in Europe. In the Miechow Segment of the Szczecin-Miechow Synclinorium in southern Poland, it occurs in the Upper Campanian-Lower Maastrichtian deeper shelf sediments, which were deposited below wave base and are characterized by total bioturbation and a trace fossil assemblage comprising Planolites, Palaeophycus, Thalassinoides , Trichichnus, Phycosiphon, Zoophycos and Helicodromites that is typical of the transition from the distal Cruziana to the Zoophycos ichnofacies. L. lewesiensis was produced by a burrowing predator or scavenger of fishes. The tracemaker candidates could be eunicid polychaetes or anguillid fishes.

  18. The Wandering Indian Plate and Its Changing Biogeography During the Late Cretaceous-Early Tertiary Period

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sankar; Scotese, Christopher

    Palaeobiogeographic analysis of Indian tetrapods during the Late Cretaceous-Early Tertiary time has recognized that both vicariance and geodispersal have played important roles in producing biogeographic congruence. The biogeographic patterns show oscillating cycles of geodispersal (Late Cretaceous), followed by congruent episodes of vicariance and geodispersal (Early Eocene), followed by another geodispersal event (Middle Eocene). New biogeographic synthesis suggests that the Late Cretaceous Indian tetrapod fauna is cosmopolitan with both Gondwanan and Laurasian elements. Throughout most of the Cretaceous, India was separated from the rest of Gondwana, but in the latest Cretaceous it reestablished contact with Africa through Kohistan-Dras (K-D) volcanic arc, and maintained biotic link with South America via Ninetyeast Ridge-Kerguelen-Antarctica corridor. These two geodispersal routes allowed exchanges of "pan-Gondwana" terrestrial tetrapods from Africa, South America, and Madagascar. During that time India also maintained biotic connections with Laurasia across the Neotethys via Kohistan-Dras Arc and Africa. During the Palaeocene, India, welded to the K-D Arc, rafted like a "Noah's Ark" as an island continent and underwent rapid cladogenesis because of allopatric speciation. Although the Palaeocene fossil record is blank, Early Eocene tetrapods contain both endemic and cosmopolitan elements, but Middle Eocene faunas have strong Asian character. India collided with Asia in Early and Middle Eocene time and established a new northeast corridor for faunal migration to facilitate the bidirectional "Great Asian Interchange" dispersals.

  19. New Crocodyliform specimens from Recôncavo-Tucano Basin (Early Cretaceous) of Bahia, Brazil.

    PubMed

    Souza, Rafael G DE; Campos, Diogenes A

    2018-04-16

    In 1940, L.I. Price and A. Oliveira recovered four crocodyliform specimens from the Early Cretaceous Bahia Supergroup (Recôncavo-Tucano Basin). In the present work, we describe four different fossil specimens: an osteoderm, a fibula, a tibia, and some autopodial bones. No further identification besides Mesoeucrocodylia was made due to their fragmentary nature and the reduced number of recognized synapomorphies for more inclusive clades. With exception of the fibula, all other specimens have at least one particular feature, which with new specimens could represent new species. The new specimens described here increase the known diversity of Early Cretaceous crocodyliforms from Brazil. This work highlights the great fossiliferous potential of Recôncavo-Tucano Basin with regard to crocodyliform remains.

  20. High-resolution leaf-fossil record spanning the Cretaceous/Tertiary boundary

    USGS Publications Warehouse

    Johnson, K.R.; Nichols, D.J.; Attrep, M.; Orth, C.J.

    1989-01-01

    THEORIES that explain the extinctions characterizing the Cretaceous/Tertiary (K/T) boundary1-3 need to be tested by analyses of thoroughly sampled biotas. Palynological studies are the primary means for stratigraphic placement of the terrestrial boundary and for estimates of plant extinction4-12, but have not been combined with quantitative analyses of fossil leaves (megaflora). Megafloral studies complement palynology by representing local floras with assemblages capable of high taxonomic resolution13, but have previously lacked the sample size and stratigraphic spacing needed to resolve latest Cretaceous floral history5,14-18. We have now combined megafloral data from a 100-m-thick composite K/T boundary section in North Dakota with detailed palynological analysis. Here the boundary is marked by a 30% palynofloral extinction coincident with iridium and shocked-mineral anomalies and lies ???2 m above the highest dinosaur remains. The megaflora undergoes a 79% turnover across the boundary, and smaller changes 17- and 25-m below it. This pattern is consistent with latest Cretaceous climatic warming preceding a bolide impact. ?? 1989 Nature Publishing Group.

  1. A gravid lizard from the Cretaceous of China and the early history of squamate viviparity

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Evans, Susan E.

    2011-09-01

    Although viviparity is most often associated with mammals, roughly one fifth of extant squamate reptiles give birth to live young. Phylogenetic analyses indicate that the trait evolved more than 100 times within Squamata, a frequency greater than that of all other vertebrate clades combined. However, there is debate as to the antiquity of the trait and, until now, the only direct fossil evidence of squamate viviparity was in Late Cretaceous mosasauroids, specialised marine lizards without modern equivalents. Here, we document viviparity in a specimen of a more generalised lizard, Yabeinosaurus, from the Early Cretaceous of China. The gravid female contains more than 15 young at a level of skeletal development corresponding to that of late embryos of living viviparous lizards. This specimen documents the first occurrence of viviparity in a fossil reptile that was largely terrestrial in life, and extends the temporal distribution of the trait in squamates by at least 30 Ma. As Yabeinosaurus occupies a relatively basal position within crown-group squamates, it suggests that the anatomical and physiological preconditions for viviparity arose early within Squamata.

  2. CRETACEOUS CLIMATE SENSITIVITY STUDY USING DINOSAUR & PLANT PALEOBIOGEOGRAPHY

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Main, D. J.; Noto, C. R.; Moore, T. L.; Scotese, C.

    2009-12-01

    The Early Cretaceous was characterized by cool poles and moderate global temperatures (~16° C). During the mid and late Cretaceous, long-term global warming (~20° - 22° C) was driven by increasing levels of CO2, rising sea level (lowering albedo) and the continuing breakup of Pangea. Paleoclimatic reconstructions for four time intervals during the Cretaceous: Middle Campanian (80 Ma), Cenomanian/Turonian (90 Ma), Early Albian (110 Ma) and Barremian-Hauterivian (130Ma) are presented here. These paleoclimate simulations were prepared using the Fast Ocean and Atmosphere Model (FOAM). The simulated results show the pattern of the pole-to-Equator temperature gradients, rainfall, surface run-off, the location of major rivers and deltas. In order to investigate the effect of potential dispersal routes on paleobiogeographic patterns, a time-slice series of maps from Early - Late Cretaceous were produced showing plots of dinosaur and plant fossil distributions. These Maps were created utilizing: 1) plant fossil localities from the GEON and Paleobiology (PBDB) databases; and 2) dinosaur fossil localities from an updated version of the Dinosauria (Weishampel, 2004) database. These results are compared to two different types of datasets, 1) Paleotemperature database for the Cretaceous and 2) locality data obtained from GEON, PBDB and Dinosauria database. Global latitudinal mean temperatures from both the model and the paelotemperature database were plotted on a series of latitudinal graphs along with the distributions of fossil plants and dinosaurs. It was found that most dinosaur localities through the Cretaceous tend to cluster within specific climate belts, or envelopes. Also, these Cretaceous maps show variance in biogeographic zonation of both plants and dinosaurs that is commensurate with reconstructed climate patterns and geography. These data are particularly useful for understanding the response of late Mesozoic ecosystems to geographic and climatic conditions that

  3. Oldest fossil flowers of hamamelidaceous affinity, from the Late Cretaceous of New Jersey.

    PubMed Central

    Crepet, W L; Nixon, K C; Friis, E M; Freudenstein, J V

    1992-01-01

    Exceptionally well-preserved staminate inflorescences, pistillate inflorescences, and detached stamens with important phylogenetic and paleoecological implications have been discovered from the Turonian (ca. 88.5-90.4 million years B.P.) Raritan Formation of New Jersey. The fossils have a combination of floral and pollen characters found in various genera of modern entomophilous and anemophilous Hamamelidaceae and anemophilous Platanus (Platanaceae). The floral characters of the fossils, including a sepal cup, staminal tube, and apparently nectariferous staminodes, indicate that this taxon was probably insect pollinated. The juxtaposition of character complexes in an extinct taxon from disparate modern taxa provides an interesting phylogenetic perspective on the origins of Hamamelidaceae and is a striking example of a fossil that is a mosaic of familial level characters relative to modern taxa. Of even broader interest, however, is the occurrence of staminodal nectaries that have structural characters intermediate between the fossil's functional stamens and modern hamamelidaceous petals. This transitional staminode morphology in the context of the other fossil characters suggests a staminodal origin of petals in the hamamelid-rosid lineage. This hypothesis is supported by the apparent staminode position within the fossil flowers where petals are found in modern genera. The character complex of morphologically transitional staminodes, a staminal tube, and sepal cup can be viewed as prehypanthial, lacking only fusion of the staminal tube to the sepal cup. The appearance of the character complex embodied in these flowers during the late mid-Cretaceous may signal the early stages of the relationship between specialized pollinators, such as bees, and the hamamelid-rosid-asterid lineage of angiosperms, arguably one of the most important events in angiosperm radiation. Images PMID:11607328

  4. Oldest fossil flowers of hamamelidaceous affinity, from the Late Cretaceous of New Jersey.

    PubMed

    Crepet, W L; Nixon, K C; Friis, E M; Freudenstein, J V

    1992-10-01

    Exceptionally well-preserved staminate inflorescences, pistillate inflorescences, and detached stamens with important phylogenetic and paleoecological implications have been discovered from the Turonian (ca. 88.5-90.4 million years B.P.) Raritan Formation of New Jersey. The fossils have a combination of floral and pollen characters found in various genera of modern entomophilous and anemophilous Hamamelidaceae and anemophilous Platanus (Platanaceae). The floral characters of the fossils, including a sepal cup, staminal tube, and apparently nectariferous staminodes, indicate that this taxon was probably insect pollinated. The juxtaposition of character complexes in an extinct taxon from disparate modern taxa provides an interesting phylogenetic perspective on the origins of Hamamelidaceae and is a striking example of a fossil that is a mosaic of familial level characters relative to modern taxa. Of even broader interest, however, is the occurrence of staminodal nectaries that have structural characters intermediate between the fossil's functional stamens and modern hamamelidaceous petals. This transitional staminode morphology in the context of the other fossil characters suggests a staminodal origin of petals in the hamamelid-rosid lineage. This hypothesis is supported by the apparent staminode position within the fossil flowers where petals are found in modern genera. The character complex of morphologically transitional staminodes, a staminal tube, and sepal cup can be viewed as prehypanthial, lacking only fusion of the staminal tube to the sepal cup. The appearance of the character complex embodied in these flowers during the late mid-Cretaceous may signal the early stages of the relationship between specialized pollinators, such as bees, and the hamamelid-rosid-asterid lineage of angiosperms, arguably one of the most important events in angiosperm radiation.

  5. Reanalysis of Wupus agilis (Early Cretaceous) of Chongqing, China as a Large Avian Trace: Differentiating between Large Bird and Small Non-Avian Theropod Tracks

    PubMed Central

    Xing, Lida; Buckley, Lisa G.; McCrea, Richard T.; Lockley, Martin G.; Zhang, Jianping; Piñuela, Laura; Klein, Hendrik; Wang, Fengping

    2015-01-01

    Trace fossils provide the only records of Early Cretaceous birds from many parts of the world. The identification of traces from large avian track-makers is made difficult given their overall similarity in size and tridactyly in comparison with traces of small non-avian theropods. Reanalysis of Wupus agilis from the Early Cretaceous (Aptian-Albian) Jiaguan Formation, one of a small but growing number of known avian-pterosaur track assemblages, of southeast China determines that these are the traces of a large avian track-maker, analogous to extant herons. Wupus, originally identified as the trace of a small non-avian theropod track-maker, is therefore similar in both footprint and trackway characteristics to the Early Cretaceous (Albian) large avian trace Limiavipes curriei from western Canada, and Wupus is reassigned to the ichnofamily Limiavipedidae. The reanalysis of Wupus reveals that it and Limiavipes are distinct from similar traces of small to medium-sized non-avian theropods (Irenichnites, Columbosauripus, Magnoavipes) based on their relatively large footprint length to pace length ratio and higher mean footprint splay, and that Wupus shares enough characters with Limiavipes to be reassigned to the ichnofamily Limiavipedidae. The ability to discern traces of large avians from those of small non-avian theropods provides more data on the diversity of Early Cretaceous birds. This analysis reveals that, despite the current lack of body fossils, large wading birds were globally distributed in both Laurasia and Gondwana during the Early Cretaceous. PMID:25993285

  6. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica.

    PubMed

    Barreda, Viviana D; Palazzesi, Luis; Tellería, Maria C; Olivero, Eduardo B; Raine, J Ian; Forest, Félix

    2015-09-01

    The Asteraceae (sunflowers and daisies) are the most diverse family of flowering plants. Despite their prominent role in extant terrestrial ecosystems, the early evolutionary history of this family remains poorly understood. Here we report the discovery of a number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back the timing of assumed origin of the family. Reliably dated to ∼76-66 Mya, these specimens are about 20 million years older than previously known records for the Asteraceae. Using a phylogenetic approach, we interpreted these fossil specimens as members of an extinct early diverging clade of the family, associated with subfamily Barnadesioideae. Based on a molecular phylogenetic tree calibrated using fossils, including the ones reported here, we estimated that the most recent common ancestor of the family lived at least 80 Mya in Gondwana, well before the thermal and biogeographical isolation of Antarctica. Most of the early diverging lineages of the family originated in a narrow time interval after the K/P boundary, 60-50 Mya, coinciding with a pronounced climatic warming during the Late Paleocene and Early Eocene, and the scene of a dramatic rise in flowering plant diversity. Our age estimates reduce earlier discrepancies between the age of the fossil record and previous molecular estimates for the origin of the family, bearing important implications in the evolution of flowering plants in general.

  7. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica

    PubMed Central

    Barreda, Viviana D.; Palazzesi, Luis; Tellería, Maria C.; Olivero, Eduardo B.; Raine, J. Ian; Forest, Félix

    2015-01-01

    The Asteraceae (sunflowers and daisies) are the most diverse family of flowering plants. Despite their prominent role in extant terrestrial ecosystems, the early evolutionary history of this family remains poorly understood. Here we report the discovery of a number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back the timing of assumed origin of the family. Reliably dated to ∼76–66 Mya, these specimens are about 20 million years older than previously known records for the Asteraceae. Using a phylogenetic approach, we interpreted these fossil specimens as members of an extinct early diverging clade of the family, associated with subfamily Barnadesioideae. Based on a molecular phylogenetic tree calibrated using fossils, including the ones reported here, we estimated that the most recent common ancestor of the family lived at least 80 Mya in Gondwana, well before the thermal and biogeographical isolation of Antarctica. Most of the early diverging lineages of the family originated in a narrow time interval after the K/P boundary, 60–50 Mya, coinciding with a pronounced climatic warming during the Late Paleocene and Early Eocene, and the scene of a dramatic rise in flowering plant diversity. Our age estimates reduce earlier discrepancies between the age of the fossil record and previous molecular estimates for the origin of the family, bearing important implications in the evolution of flowering plants in general. PMID:26261324

  8. Warm Middle Jurassic-Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Jenkyns, H. C.; Schouten-Huibers, L.; Schouten, S.; Sinninghe Damsté, J. S.

    2012-02-01

    Although a division of the Phanerozoic climatic modes of the Earth into "greenhouse" and "icehouse" phases is widely accepted, whether or not polar ice developed during the relatively warm Jurassic and Cretaceous Periods is still under debate. In particular, there is a range of isotopic and biotic evidence that favours the concept of discrete "cold snaps", marked particularly by migration of certain biota towards lower latitudes. Extension of the use of the palaeotemperature proxy TEX86 back to the Middle Jurassic indicates that relatively warm sea-surface conditions (26-30 °C) existed from this interval (∼160 Ma) to the Early Cretaceous (∼115 Ma) in the Southern Ocean, with a general warming trend through the Late Jurassic followed by a general cooling trend through the Early Cretaceous. The lowest sea-surface temperatures are recorded from around the Callovian-Oxfordian boundary, an interval identified in Europe as relatively cool, but do not fall below 25 °C. The early Aptian Oceanic Anoxic Event, identified on the basis of published biostratigraphy, total organic carbon and carbon-isotope stratigraphy, records an interval with the lowest, albeit fluctuating Early Cretaceous palaeotemperatures (∼26 °C), recalling similar phenomena recorded from Europe and the tropical Pacific Ocean. Extant belemnite δ18O data, assuming an isotopic composition of waters inhabited by these fossils of -1‰ SMOW, give palaeotemperatures throughout the Upper Jurassic-Lower Cretaceous interval that are consistently lower by ∼14 °C than does TEX86 and the molluscs likely record conditions below the thermocline. The long-term, warm climatic conditions indicated by the TEX86 data would only be compatible with the existence of continental ice if appreciable areas of high altitude existed on Antarctica, and/or in other polar regions, during the Mesozoic Era.

  9. Novel Insect Leaf-Mining after the End-Cretaceous Extinction and the Demise of Cretaceous Leaf Miners, Great Plains, USA

    PubMed Central

    Donovan, Michael P.; Wilf, Peter; Labandeira, Conrad C.; Johnson, Kirk R.; Peppe, Daniel J.

    2014-01-01

    Plant and associated insect-damage diversity in the western U.S.A. decreased significantly at the Cretaceous-Paleogene (K-Pg) boundary and remained low until the late Paleocene. However, the Mexican Hat locality (ca. 65 Ma) in southeastern Montana, with a typical, low-diversity flora, uniquely exhibits high damage diversity on nearly all its host plants, when compared to all known local and regional early Paleocene sites. The same plant species show minimal damage elsewhere during the early Paleocene. We asked whether the high insect damage diversity at Mexican Hat was more likely related to the survival of Cretaceous insects from refugia or to an influx of novel Paleocene taxa. We compared damage on 1073 leaf fossils from Mexican Hat to over 9000 terminal Cretaceous leaf fossils from the Hell Creek Formation of nearby southwestern North Dakota and to over 9000 Paleocene leaf fossils from the Fort Union Formation in North Dakota, Montana, and Wyoming. We described the entire insect-feeding ichnofauna at Mexican Hat and focused our analysis on leaf mines because they are typically host-specialized and preserve a number of diagnostic morphological characters. Nine mine damage types attributable to three of the four orders of leaf-mining insects are found at Mexican Hat, six of them so far unique to the site. We found no evidence linking any of the diverse Hell Creek mines with those found at Mexican Hat, nor for the survival of any Cretaceous leaf miners over the K-Pg boundary regionally, even on well-sampled, surviving plant families. Overall, our results strongly relate the high damage diversity on the depauperate Mexican Hat flora to an influx of novel insect herbivores during the early Paleocene, possibly caused by a transient warming event and range expansion, and indicate drastic extinction rather than survivorship of Cretaceous insect taxa from refugia. PMID:25058404

  10. A new lineage of Cretaceous jewel wasps (Chalcidoidea: Diversinitidae).

    PubMed

    Haas, Michael; Burks, Roger A; Krogmann, Lars

    2018-01-01

    Jewel wasps (Hymenoptera: Chalcidoidea) are extremely species-rich today, but have a sparse fossil record from the Cretaceous, the period of their early diversification. Three genera and three species, Diversinitus attenboroughi gen. & sp. n. , Burminata caputaeria gen. & sp. n. and Glabiala barbata gen. & sp. n. are described in the family Diversinitidae fam. n., from Lower Cretaceous Burmese amber. Placement in Chalcidoidea is supported by the presence of multiporous plate sensilla on the antennal flagellum and a laterally exposed prepectus. The new taxa can be excluded from all extant family level chalcidoid lineages by the presence of multiporous plate sensilla on the first flagellomere in both sexes and lack of any synapomorphies. Accordingly, a new family is proposed for the fossils and its probable phylogenetic position within Chalcidoidea is discussed. Morphological cladistic analyses of the new fossils within the Heraty et al. (2013) dataset did not resolve the phylogenetic placement of Diversinitidae, but indicated its monophyly. Phylogenetically relevant morphological characters of the new fossils are discussed with reference to Cretaceous and extant chalcidoid taxa. Along with mymarid fossils and a few species of uncertain phylogenetic placement, the newly described members of Diversinitidae are among the earliest known chalcidoids and advance our knowledge of their Cretaceous diversity.

  11. The conchostracan subgenus Orthestheria (Migransia) from the Tacuarembó Formation (Late Jurassic-?Early Cretaceous, Uruguay) with notes on its geological age

    NASA Astrophysics Data System (ADS)

    Yanbin, Shen; Gallego, Oscar F.; Martínez, Sergio

    2004-04-01

    Conchostracans from the Tacuarembó Formation s.s. of Uruguay are reassigned to the subgenus Orthestheria (Migransia) Chen and Shen. They show more similarities to genera of Late Jurassic age in the Congo Basin and China than to those of Early Cretaceous age. On the basis of the character of the conchostracans, we suggest that the Tacuarembó Formation is unlikely to be older than Late Jurassic. It is probably Kimmeridgian, but an Early Cretaceous age cannot be excluded. This finding is consistent with isotopic dating of the overlying basalts, as well as the age range of recently described fossil freshwater sharks.

  12. The emergence of modern type rain forests and mangroves and their traces in the palaeobotanical record during the Late Cretaceous and early Tertiary

    NASA Astrophysics Data System (ADS)

    Mohr, Barbara; Coiffard, Clément

    2014-05-01

    The origin of modern rain forests is still very poorly known. This ecosystem could have potentially fully evolved only after the development of relatively high numbers of flowering plant families adapted to rain forest conditions. During the early phase of angiosperm evolution in the early Cretaceous the palaeo-equatorial region was located in a seasonally dry climatic belt, so that during this phase, flowering plants often show adaptations to drought, rather than to continuously wet climate conditions. Therefore it is not surprising that except for the Nymphaeales, the most basal members of extant angiosperm families have members that do not necessarily occur in the continuously wet tropics today. However, during the late Early Cretaceous several clades emerged that later would give rise to families that are typically found today mostly in (shady) moist places in warmer regions. This is especially seen among the monocotyledons, a group of the mesangiosperms, that developed in many cases large leaves often with very specific venation patterns that make these leaves very unique and well recognizable. Especially members of three groups are here of interest: the arum family (Araceae), the palms (Arecaceae) and the Ginger and allies (Zingiberales). The earliest fossil of Araceae are restricted to low latitudes during the lower Cretaceous. Arecaceae and Zingiberales do not appear in the fossil record before the early late Cretaceous and occur at mid latitudes. During the Late Cretaceous, Araceae are represented at mid latitudes by non-tropical early diverging members and at low latitudes by derived rainforest members. Palms became widespread during the Late Cretataceous and also Nypa, a typical element of tropical to subtropical mangrove environments evolved during this time period. During the Paleocene Arecaceae appear to be restricted to lower latitudes as well as Zingiberales. All three groups are again widespread during the Eocene, reaching higher latitudes and

  13. Fossil Worm Burrows Reveal Very Early Terrestrial Animal Activity and Shed Light on Trophic Resources after the End-Cretaceous Mass Extinction

    PubMed Central

    Chin, Karen; Pearson, Dean; Ekdale, A. A.

    2013-01-01

    The widespread mass extinctions at the end of the Cretaceous caused world-wide disruption of ecosystems, and faunal responses to the one-two punch of severe environmental perturbation and ecosystem collapse are still unclear. Here we report the discovery of in situ terrestrial fossil burrows from just above the impact-defined Cretaceous-Paleogene (K/Pg) boundary in southwestern North Dakota. The crisscrossing networks of horizontal burrows occur at the interface of a lignitic coal and silty sandstone, and reveal intense faunal activity within centimeters of the boundary clay. Estimated rates of sedimentation and coal formation suggest that the burrows were made less than ten thousand years after the end-Cretaceous impact. The burrow characteristics are most consistent with burrows of extant earthworms. Moreover, the burrowing and detritivorous habits of these annelids fit models that predict the trophic and sheltering lifestyles of terrestrial animals that survived the K/Pg extinction event. In turn, such detritus-eaters would have played a critical role in supporting secondary consumers. Thus, some of the carnivorous vertebrates that radiated after the K/Pg extinction may owe their evolutionary success to thriving populations of earthworms. PMID:23951041

  14. Glandulocalyx upatoiensis, a fossil flower of Ericales (Actinidiaceae/Clethraceae) from the Late Cretaceous (Santonian) of Georgia, USA

    PubMed Central

    Schönenberger, Jürg; von Balthazar, Maria; Takahashi, Masamichi; Xiao, Xianghui; Crane, Peter R.; Herendeen, Patrick S.

    2012-01-01

    Background and Aims Ericales are a major group of extant asterid angiosperms that are well represented in the Late Cretaceous fossil record, mainly by flowers, fruits and seeds. Exceptionally well preserved fossil flowers, here described as Glandulocalyx upatoiensis gen. & sp. nov., from the Santonian of Georgia, USA, yield new detailed evidence of floral structure in one of these early members of Ericales and provide a secure basis for comparison with extant taxa. Methods The floral structure of several fossil specimens was studied by scanning electron microscopy (SEM), light microscopy of microtome thin sections and synchrotron-radiation X-ray tomographic microscopy (SRXTM). For direct comparisons with flowers of extant Ericales, selected floral features of Actinidiaceae and Clethraceae were studied with SEM. Key Results Flowers of G. upatoiensis have five sepals with quincuncial aestivation, five free petals with quincuncial aestivation, 20–28 stamens arranged in a single series, extrorse anther orientation in the bud, ventral anther attachment and a tricarpellate, syncarpous ovary with three free styles and numerous small ovules on axile, protruding-diffuse and pendant placentae. The calyx is characterized by a conspicuous indumentum of large, densely arranged, multicellular and possibly glandular trichomes. Conclusions Comparison with extant taxa provides clear evidence for a relationship with core Ericales comprised of the extant families Actinidiaceae, Roridulaceae, Sarraceniaceae, Clethraceae, Cyrillaceae and Ericaceae. Within this group, the most marked similarities are with extant Actinidiaceae and, to a lesser degree, with Clethraceae. More detailed analyses of the relationships of Glandulocalyx and other Ericales from the Late Cretaceous will require an improved understanding of the morphological features that diagnose particular extant groups defined on the basis of molecular data. PMID:22442339

  15. One hundred million year old ergot: psychotropic compounds in the Cretaceous?

    USDA-ARS?s Scientific Manuscript database

    A fungal sclerotium similar to sclerotia of the genus Claviceps, commonly known as ergot, was found infecting a grass kernel in Early Cretaceous Myanmar amber. This represents the first fossil record of ergot dating as far back as the Cretaceous period. The fungus, described as Palaeoclaviceps para...

  16. Tribosphenic mammal from the North American Early Cretaceous.

    PubMed

    Cifelli, R L

    1999-09-23

    The main groups of living mammals, marsupials and eutherians, are presumed to have diverged in the Early Cretaceous, but their early history and biogeography are poorly understood. Dental remains have suggested that the eutherians may have originated in Asia, spreading to North America in the Late Cretaceous, where an endemic radiation of marsupials was already well underway. Here I describe a new tribosphenic mammal (a mammal with lower molar heels that are three-cusped and basined) from the Early Cretaceous of North America, based on an unusually complete specimen. The new taxon bears characteristics (molarized last premolar, reduction to three molars) otherwise known only for Eutheria among the tribosphenic mammals. Morphometric analysis and character comparisons show, however, that its molar structure is primitive (and thus phylogenetically uninformative), emphasizing the need for caution in interpretation of isolated teeth. The new mammal is approximately contemporaneous with the oldest known Eutheria from Asia. If it is a eutherian, as is indicated by the available evidence, then this group was far more widely distributed in the Early Cretaceous than previously appreciated. An early presence of Eutheria in North America offers a potential source for the continent's Late Cretaceous radiations, which have, in part, proven difficult to relate to contemporary taxa in Asia.

  17. Spectroscopic studies of the fish fossils (Cladocyclus gardneri and Vinctifer comptoni) from the Ipubi Formation of the Cretaceous Period

    NASA Astrophysics Data System (ADS)

    Sousa Filho, F. E.; da Silva, J. H.; Saraiva, G. D.; Abagaro, B. T. O.; Barros, O. A.; Saraiva, A. A. F.; Viana, B. C.; Freire, P. T. C.

    2016-03-01

    Fossils are mineralized remains or traces from animals, plants and other organisms aged to about 108 years. The chemical processes of fossilization are dated back from old geological periods on Earth. The understanding of these processes and the structure of the fossils are one of the goals of paleontology and geology in the sedimentary environments. Many researches have tried to unveil details about special kinds of biological samples; however, a lack of data is noticed for various other specimens. This study reports the investigations through infrared spectroscopy, X-ray fluorescence and X-ray diffraction measurements for two types of fish fossils from the Cretaceous Period. The sample of Cladocyclus gardneri and Vinctifer comptoni fossils were collected from the Ipubi Formation, being one of the less studied, among the formations that constitute the important Santana group in the Araripe Basin, Brazil. The results obtained through different techniques, showed that the C. gardneri fish fossil contains hydroxyapatite and calcite as constituents whereas its rock matrix was formed by calcite, quartz and pyrite. Regarding the V. comptoni, the measurements confirmed the presence of hydroxyapatite in the fossil and its rock matrix gypsum, pyrite, quartz and calcite. The above scientific data contributed to the understanding the fossil formation in the Ipubi Formation, an important environment of the Cretaceous Period, which is rich in well-preserved fossils from different species.

  18. Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae.

    PubMed

    Prasad, V; Strömberg, C A E; Leaché, A D; Samant, B; Patnaik, R; Tang, L; Mohabey, D M; Ge, S; Sahni, A

    2011-09-20

    Rice and its relatives are a focal point in agricultural and evolutionary science, but a paucity of fossils has obscured their deep-time history. Previously described cuticles with silica bodies (phytoliths) from the Late Cretaceous period (67-65 Ma) of India indicate that, by the latest Cretaceous, the grass family (Poaceae) consisted of members of the modern subclades PACMAD (Panicoideae-Aristidoideae-Chloridoideae-Micrairoideae-Arundinoideae-Danthonioideae) and BEP (Bambusoideae-Ehrhartoideae-Pooideae), including a taxon with proposed affinities to Ehrhartoideae. Here we describe additional fossils and show that, based on phylogenetic analyses that combine molecular genetic data and epidermal and phytolith features across Poaceae, these can be assigned to the rice tribe, Oryzeae, of grass subfamily Ehrhartoideae. The new Oryzeae fossils suggest substantial diversification within Ehrhartoideae by the Late Cretaceous, pushing back the time of origin of Poaceae as a whole. These results, therefore, necessitate a re-evaluation of current models for grass evolution and palaeobiogeography.

  19. Dinoflagellates: Fossil motile-stage tests from the upper cretaceous of the Northern New Jersey coastal plain

    USGS Publications Warehouse

    May, F.E.

    1976-01-01

    Fossil dinoflagellate tests have been considered to represent encysted, nonmotile stages. The discovery of flagellar porelike structures and probable trichocyst pores in the Upper Cretaceous genus Dinogymnium suggests that motile stage tests are also preserved as acid-resistant, organic-walled microfossils.

  20. Discontinuity surfaces in the Lower Cretaceous of the high Andes (Mendoza, Argentina): Trace fossils and environmental implications

    NASA Astrophysics Data System (ADS)

    Mangano, M. G.; Buatois, L. A.

    The paleoecologic and paleoenvironmental significance of trace fossils related to discontinuity surfaces in the Lower Cretaceous marine deposits of the Aconcagua area are analysed here. Carbonate-evaporite shoaling-upward cycles, developed by high organic production in a shallow hypersaline restricted environment, make up the section. Two types of cycles are defined, being mainly distinguished by their subtidal unit. Cycle I begins with a highly dolomitized lower subtidal unit (Facies A), followed upward by an intensely bioturbated upper subtidal unit (Facies B). The nodular packstone facies (B 1) is capped by a discontinuity surface (firmground or hardground) and occasionally overlain by an oystreid bed (Facies C). Cycle II is characterized by a pelletoidal subtidal unit (Facies B 2) with an abnormal salinity impoverished fauna. Both cycles end with intertidal to supratidal evaporite deposits (Facies D and E, respectively). Attention is particularly focused on cycle I due to its ichologic content. The mode of preservation and the distribution of trace fossils in nodular packstone facies are controlled by original substrate consolidation. Thalassinoides paradoxicus (pre-omission suite) represents colonization in a soft bottom, while Thalassinoides suevicus (omission suite pre-lithification) is apparently restricted to firm substrates. When consolidation processes are interrupted early, only an embryonic hard-ground that represents a minor halt in sedimentation was developed. Sometimes, consolidation processes continued leading to an intraformational hardground. Colonization by Trypanites solitarius (omission suite post-lithification) and Exogyra-like oystreids possibly characterizes hard substrate stage. When two discontinuity surfaces follow closely, a post-omission suite may be defined in relation to the lower cemented surface. As trace fossils are so closely related to changes in the degree of bottom lithification, they prove to be very useful as indicators of

  1. Fossil flowers from the early Palaeocene of Patagonia, Argentina, with affinity to Schizomerieae (Cunoniaceae)

    PubMed Central

    Jud, Nathan A; Gandolfo, Maria A; Iglesias, Ari; Wilf, Peter

    2018-01-01

    Abstract Background and Aims Early Palaeocene (Danian) plant fossils from Patagonia provide information on the recovery from the end-Cretaceous extinction and Cenozoic floristic change in South America. Actinomorphic flowers with eight to ten perianth parts are described and evaluated in a phylogenetic framework. The goal of this study is to determine the identity of these fossil flowers and to discuss their evolutionary, palaeoecological and biogeographical significance Methods More than 100 fossilized flowers were collected from three localities in the Danian Salamanca and Peñas Coloradas Formations in southern Chubut. They were prepared, photographed and compared with similar extant and fossil flowers using published literature and herbarium specimens. Phylogenetic analysis was performed using morphological and molecular data. Key results The fossil flowers share some but not all the synapomorphies that characterize the Schizomerieae, a tribe within Cunoniaceae. These features include the shallow floral cup, variable number of perianth parts arranged in two whorls, laciniate petals, anthers with a connective extension, and a superior ovary with free styles. The number of perianth parts is doubled and the in situ pollen is tricolporate, with a surface more like that of other Cunoniaceae outside Schizomerieae, such as Davidsonia or Weinmannia. Conclusions An extinct genus of crown-group Cunoniaceae is recognized and placed along the stem lineage leading to Schizomerieae. Extant relatives are typical of tropical to southern-temperate rainforests, and these fossils likely indicate a similarly warm and wet temperate palaeoclimate. The oldest reliable occurrences of the family are fossil pollen and wood from the Upper Cretaceous of the Antarctica and Argentina, whereas in Australia the family first occurs in upper Palaeocene deposits. This discovery demonstrates that the family survived the Cretaceous–Palaeogene boundary event in Patagonia and that diversification

  2. Early Pliocene anuran fossils from Kanapoi, Kenya, and the first fossil record for the African burrowing frog Hemisus (Neobatrachia: Hemisotidae).

    PubMed

    Delfino, Massimo

    2017-07-13

    Isolated amphibian bones from the early Pliocene of Kanapoi (West Turkana, Kenya) help to improve the scarce fossil record of the late Neogene and Quaternary amphibians from East Africa. All currently available 579 bones are referable exclusively to the Anura (frogs and toads). More than half of the remains (366) are identified as Hemisus cf. Hemisus marmoratus, an extant species that still inhabits Kenya, but apparently not the northwest of the country and the Turkana area in particular. The rest of the remains are identified simply as Anura indet. because of poor preservation or non congruence with the relatively few African extant taxa whose osteology is known in detail. The Hemisus material represents the first fossil record for Hemisotidae, an endemic African family of peculiar, head-first burrowing frogs, whose sister taxon relationships indicate a divergence from brevicipitids in the Late Cretaceous or early Paleocene. The ecological requirements of extant H. marmoratus suggest that the Kanapoi area surrounding the fluvial and deltaic settings, from where the fossil remains of vertebrates were buried, was likely a grassland or relatively dry, open low tree-shrub savanna. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Spectroscopic studies of the fish fossils (Cladocyclus gardneri and Vinctifer comptoni) from the Ipubi Formation of the Cretaceous Period.

    PubMed

    Sousa Filho, F E; da Silva, J H; Saraiva, G D; Abagaro, B T O; Barros, O A; Saraiva, A A F; Viana, B C; Freire, P T C

    2016-03-15

    Fossils are mineralized remains or traces from animals, plants and other organisms aged to about 10(8)years. The chemical processes of fossilization are dated back from old geological periods on Earth. The understanding of these processes and the structure of the fossils are one of the goals of paleontology and geology in the sedimentary environments. Many researches have tried to unveil details about special kinds of biological samples; however, a lack of data is noticed for various other specimens. This study reports the investigations through infrared spectroscopy, X-ray fluorescence and X-ray diffraction measurements for two types of fish fossils from the Cretaceous Period. The sample of Cladocyclus gardneri and Vinctifer comptoni fossils were collected from the Ipubi Formation, being one of the less studied, among the formations that constitute the important Santana group in the Araripe Basin, Brazil. The results obtained through different techniques, showed that the C. gardneri fish fossil contains hydroxyapatite and calcite as constituents whereas its rock matrix was formed by calcite, quartz and pyrite. Regarding the V. comptoni, the measurements confirmed the presence of hydroxyapatite in the fossil and its rock matrix gypsum, pyrite, quartz and calcite. The above scientific data contributed to the understanding the fossil formation in the Ipubi Formation, an important environment of the Cretaceous Period, which is rich in well-preserved fossils from different species. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Form, function and environments of the early angiosperms: merging extant phylogeny and ecophysiology with fossils.

    PubMed

    Feild, Taylor S; Arens, Nan Crystal

    2005-05-01

    The flowering plants--angiosperms--appeared during the Early Cretaceous period and within 10-30 Myr dominated the species composition of many floras worldwide. Emerging insights into the phylogenetics of development and discoveries of early angiosperm fossils are shedding increased light on the patterns and processes of early angiosperm evolution. However, we also need to integrate ecology, in particular how early angiosperms established a roothold in pre-existing Mesozoic plant communities. These events were critical in guiding subsequent waves of angiosperm diversification during the Aptian-Albian. Previous pictures of the early flowering plant ecology have been diverse, ranging from large tropical rainforest trees, weedy drought-adapted and colonizing shrubs, disturbance- and sun-loving rhizomatous herbs, and, more recently, aquatic herbs; however, none of these images were tethered to a robust hypothesis of angiosperm phylogeny. Here, we synthesize our current understanding of early angiosperm ecology, focusing on patterns of functional ecology, by merging recent molecular phylogenetic studies and functional studies on extant 'basal angiosperms' with the picture of early angiosperm evolution drawn by the fossil record.

  5. Fossil Liposcelididae and the lice ages (Insecta: Psocodea)

    PubMed Central

    Grimaldi, David; Engel, Michael S

    2005-01-01

    Fossilized, winged adults belonging to the psocopteran family Liposcelididae are reported in amber from the mid-Cretaceous (ca 100 Myr) of Myanmar (described as Cretoscelis burmitica, gen. et sp. n.) and the Miocene (ca 20 Myr) of the Dominican Republic (Belaphopsocus dominicus sp. n.). Cretoscelis is an extinct sister group to all other Liposcelididae and the family is the free-living sister group to the true lice (order Phthiraptera, all of which are ectoparasites of birds and mammals). A phylogenetic hypothesis of relationships among genera of Liposcelididae, including fossils, reveals perfect correspondence between the chronology of fossils and cladistic rank of taxa. Lice and Liposcelididae minimally diverged 100 Myr, perhaps even in the earliest Cretaceous 145 Myr or earlier, in which case the hosts of lice would have been early mammals, early birds and possibly other feathered theropod dinosaurs, as well as haired pterosaurs. PMID:16537135

  6. Fossil scales illuminate the early evolution of lepidopterans and structural colors

    PubMed Central

    Zhang, Qingqing; Starkey, Timothy A.; McNamara, Maria E.; Jarzembowski, Edmund A.; Kelly, Richard; Ren, Xiaoyin; Chen, Jun; Zhang, Haichun

    2018-01-01

    Lepidopteran scales exhibit remarkably complex ultrastructures, many of which produce structural colors that are the basis for diverse communication strategies. Little is known, however, about the early evolution of lepidopteran scales and their photonic structures. We report scale architectures from Jurassic Lepidoptera from the United Kingdom, Germany, Kazakhstan, and China and from Tarachoptera (a stem group of Amphiesmenoptera) from mid-Cretaceous Burmese amber. The Jurassic lepidopterans exhibit a type 1 bilayer scale vestiture: an upper layer of large fused cover scales and a lower layer of small fused ground scales. This scale arrangement, plus preserved herringbone ornamentation on the cover scale surface, is almost identical to those of some extant Micropterigidae. Critically, the fossil scale ultrastructures have periodicities measuring from 140 to 2000 nm and are therefore capable of scattering visible light, providing the earliest evidence of structural colors in the insect fossil record. Optical modeling confirms that diffraction-related scattering mechanisms dominate the photonic properties of the fossil cover scales, which would have displayed broadband metallic hues as in numerous extant Micropterigidae. The fossil tarachopteran scales exhibit a unique suite of characteristics, including small size, elongate-spatulate shape, ridged ornamentation, and irregular arrangement, providing novel insight into the early evolution of lepidopteran scales. Combined, our results provide the earliest evidence for structural coloration in fossil lepidopterans and support the hypothesis that fused wing scales and the type 1 bilayer covering are groundplan features of the group. Wing scales likely had deep origins in earlier amphiesmenopteran lineages before the appearance of the Lepidoptera. PMID:29651455

  7. Fossil scales illuminate the early evolution of lepidopterans and structural colors.

    PubMed

    Zhang, Qingqing; Mey, Wolfram; Ansorge, Jörg; Starkey, Timothy A; McDonald, Luke T; McNamara, Maria E; Jarzembowski, Edmund A; Wichard, Wilfried; Kelly, Richard; Ren, Xiaoyin; Chen, Jun; Zhang, Haichun; Wang, Bo

    2018-04-01

    Lepidopteran scales exhibit remarkably complex ultrastructures, many of which produce structural colors that are the basis for diverse communication strategies. Little is known, however, about the early evolution of lepidopteran scales and their photonic structures. We report scale architectures from Jurassic Lepidoptera from the United Kingdom, Germany, Kazakhstan, and China and from Tarachoptera (a stem group of Amphiesmenoptera) from mid-Cretaceous Burmese amber. The Jurassic lepidopterans exhibit a type 1 bilayer scale vestiture: an upper layer of large fused cover scales and a lower layer of small fused ground scales. This scale arrangement, plus preserved herringbone ornamentation on the cover scale surface, is almost identical to those of some extant Micropterigidae. Critically, the fossil scale ultrastructures have periodicities measuring from 140 to 2000 nm and are therefore capable of scattering visible light, providing the earliest evidence of structural colors in the insect fossil record. Optical modeling confirms that diffraction-related scattering mechanisms dominate the photonic properties of the fossil cover scales, which would have displayed broadband metallic hues as in numerous extant Micropterigidae. The fossil tarachopteran scales exhibit a unique suite of characteristics, including small size, elongate-spatulate shape, ridged ornamentation, and irregular arrangement, providing novel insight into the early evolution of lepidopteran scales. Combined, our results provide the earliest evidence for structural coloration in fossil lepidopterans and support the hypothesis that fused wing scales and the type 1 bilayer covering are groundplan features of the group. Wing scales likely had deep origins in earlier amphiesmenopteran lineages before the appearance of the Lepidoptera.

  8. Flight aerodynamics in enantiornithines: Information from a new Chinese Early Cretaceous bird

    PubMed Central

    Liu, Di; Serrano, Francisco; Habib, Michael; Zhang, Yuguang; Meng, Qinjing

    2017-01-01

    We describe an exquisitely preserved new avian fossil (BMNHC-PH-919) from the Lower Cretaceous Yixian Formation of eastern Inner Mongolia, China. Although morphologically similar to Cathayornithidae and other small-sized enantiornithines from China’s Jehol Biota, many morphological features indicate that it represents a new species, here named Junornis houi. The new fossil displays most of its plumage including a pair of elongated, rachis-dominated tail feathers similarly present in a variety of other enantiornithines. BMNHC-PH-919 represents the first record of a Jehol enantiornithine from Inner Mongolia, thus extending the known distribution of these birds into the eastern portion of this region. Furthermore, its well-preserved skeleton and wing outline provide insight into the aerodynamic performance of enantiornithines, suggesting that these birds had evolved bounding flight—a flight mode common to passeriforms and other small living birds—as early as 125 million years ago. PMID:29020077

  9. Flight aerodynamics in enantiornithines: Information from a new Chinese Early Cretaceous bird.

    PubMed

    Liu, Di; Chiappe, Luis M; Serrano, Francisco; Habib, Michael; Zhang, Yuguang; Meng, Qinjing

    2017-01-01

    We describe an exquisitely preserved new avian fossil (BMNHC-PH-919) from the Lower Cretaceous Yixian Formation of eastern Inner Mongolia, China. Although morphologically similar to Cathayornithidae and other small-sized enantiornithines from China's Jehol Biota, many morphological features indicate that it represents a new species, here named Junornis houi. The new fossil displays most of its plumage including a pair of elongated, rachis-dominated tail feathers similarly present in a variety of other enantiornithines. BMNHC-PH-919 represents the first record of a Jehol enantiornithine from Inner Mongolia, thus extending the known distribution of these birds into the eastern portion of this region. Furthermore, its well-preserved skeleton and wing outline provide insight into the aerodynamic performance of enantiornithines, suggesting that these birds had evolved bounding flight-a flight mode common to passeriforms and other small living birds-as early as 125 million years ago.

  10. Visualizing fossilization using laser ablation-inductively coupled plasma-mass spectrometry maps of trace elements in Late Cretaceous bones

    USGS Publications Warehouse

    Koenig, A.E.; Rogers, R.R.; Trueman, C.N.

    2009-01-01

    Elemental maps generated by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) provide a previously unavailable high-resolution visualization of the complex physicochemical conditions operating within individual bones during the early stages of diagenesis and fossilization. A selection of LA-ICP-MS maps of bones collected from the Late Cretaceous of Montana (United States) and Madagascar graphically illustrate diverse paths to recrystallization, and reveal unique insights into geochemical aspects of taphonomic history. Some bones show distinct gradients in concentrations of rare earth elements and uranium, with highest concentrations at external bone margins. Others exhibit more intricate patterns of trace element uptake related to bone histology and its control on the flow paths of pore waters. Patterns of element uptake as revealed by LA-ICP-MS maps can be used to guide sampling strategies, and call into question previous studies that hinge upon localized bulk samples of fossilized bone tissue. LA-ICP-MS maps also allow for comparison of recrystallization rates among fossil bones, and afford a novel approach to identifying bones or regions of bones potentially suitable for extracting intact biogeochemical signals. ?? 2009 Geological Society of America.

  11. A new commelinid monocot seed fossil from the early Eocene previously identified as Solanaceae.

    PubMed

    Särkinen, Tiina; Kottner, Sören; Stuppy, Wolfgang; Ahmed, Farah; Knapp, Sandra

    2018-01-01

    Fossils provide minimum age estimates for extant lineages. Here we critically evaluate Cantisolanum daturoides Reid & Chandler and two other early putative seed fossils of Solanaceae, an economically important plant family in the Asteridae. Three earliest seed fossil taxa of Solanaceae from the London Clay Formation (Cantisolanum daturoides) and the Poole and Branksome Sand Formations (Solanum arnense Chandler and Solanispermum reniforme Chandler) were studied using x-ray microcomputed tomography (MCT) and scanning electron microscopy (SEM). The MCT scans of Cantisolanum daturoides revealed a high level of pyrite preservation at the cellular level. Cantisolanum daturoides can be clearly excluded from Solanaceae and has more affinities to the commelinid monocots based on a straight longitudinal axis, a prominent single layer of relatively thin-walled cells in the testa, and a clearly differentiated micropyle surrounded by radially elongated and inwardly curved testal cells. While the MCT scans show no internal preservation in Solanum arnense and Solanispermum reniforme, SEM images show the presence of several characteristics that allow the placement of these taxa at the stem node of Solanaceae. Cantisolanum daturoides is likely a member of commelinid monocots and not Solanaceae as previously suggested. The earliest fossil record of Solanaceae is revised to consist of fruit fossil with inflated calyces from the early Eocene of Patagonia (52 Ma) and fossilized seeds from the early to mid-Eocene of Europe (48-46 Ma). The new identity for Cantisolanum daturoides does not alter a late Cretaceous minimum age for commelinids. © 2018 Botanical Society of America.

  12. Reappraisal of Europe’s most complete Early Cretaceous plesiosaurian: Brancasaurus brancai Wegner, 1914 from the “Wealden facies” of Germany

    PubMed Central

    Hornung, Jahn J.; Kear, Benjamin P.

    2016-01-01

    The holotype of Brancasaurus brancai is one of the most historically famous and anatomically complete Early Cretaceous plesiosaurian fossils. It derived from the Gerdemann & Co. brickworks clay pit near Gronau (Westfalen) in North Rhine-Westphalia, northwestern Germany. Stratigraphically this locality formed part of the classic European “Wealden facies,” but is now more formally attributed to the upper-most strata of the Bückeberg Group (upper Berriasian). Since its initial description in 1914, the type skeleton of B. brancai has suffered damage both during, and after WWII. Sadly, these mishaps have resulted in the loss of substantial information, in particular many structures of the cranium and limb girdles, which are today only evidenced from published text and/or illustrations. This non-confirmable data has, however, proven crucial for determining the relationships of B. brancai within Plesiosauria: either as an early long-necked elasmosaurid, or a member of the controversial Early Cretaceous leptocleidid radiation. To evaluate these competing hypotheses and compile an updated osteological compendium, we undertook a comprehensive examination of the holotype as it is now preserved, and also assessed other Bückeberg Group plesiosaurian fossils to establish a morphological hypodigm. Phylogenetic simulations using the most species-rich datasets of Early Cretaceous plesiosaurians incorporating revised scores for B. brancai, together with a second recently named Bückeberg Group plesiosaurian Gronausaurus wegneri (Hampe, 2013), demonstrated that referral of these taxa to Leptocleididae was not unanimous, and that the topological stability of this clade is tenuous. In addition, the trait combinations manifested by B. brancai and G. wegneri were virtually identical. We therefore conclude that these monotypic individuals are ontogenetic morphs and G. wegneri is a junior synonym of B. brancai. Finally, anomalies detected in the diagnostic features for other

  13. Tracing climatic conditions during the deposition of late Cretaceous-early Eocene phosphate beds in Morocco by geochemical compositions of biogenic apatite fossils

    NASA Astrophysics Data System (ADS)

    Kocsis, L.; Gheerbrant, E.; Mouflih, M.; Cappetta, H.; Yans, J.; Ulianov, A.; Amaghzaz, M.

    2012-04-01

    Morocco's Western Atlantic coast was covered by shallow seas during the late Cretaceous-early Eocene when large amount of phosphate rich sediments were deposited. This time interval envelops a major part of the last greenhouse period and gives the opportunity to study the event's characteristics in shallow water settings. These phosphate deposits are extremely rich in vertebrate fossils, while other types of fossils are rare or often poorly preserved. Hence the local stratigraphy is based on the most abundant marine vertebrate fossils, on the selachian fauna (sharks and rays). Our geochemical investigations were also carried out on these remains, though in some cases frequently found coprolites were involved as well. The main goal of our study was to test whether stable isotope compositions (δ18OPO4, δ13C) of these fossils reflect any of the hyperthermal events and/or the related perturbations in the carbon cycle during the early Paleogene (Lourens et al. 2005) and whether these geochemical signals can be used to refine the local stratigraphy. Additionally, the samples were analyzed for trace element composition in order to better assess local taphonomy and burial conditions. The samples came from two major phosphate regions, the Ouled Abdoun and the Ganntour Basins and they were collected either directly on the field during excavations (Sidi Chennane) or were obtained from museum collections with known stratigraphical position (Sidi Daoui, Ben Guerrir). The phosphate oxygen isotopic compositions of shark teeth display large range across the entire series (18.5-22.4 ) which can partly be related to the habitat of sharks. For instance the genus Striatolamnia often yielded the highest δ18O values indicating possible deep water habitat. Despite the large variation in δ18O values, a general isotope trend is apparent. In the Maastrichtian after a small negative shift, the δ18O values increase till the Danian from where the trend decrease till the Ypresian. The

  14. Inversion of the Erlian Basin (NE China) in the early Late Cretaceous: Implications for the collision of the Okhotomorsk Block with East Asia

    NASA Astrophysics Data System (ADS)

    Guo, Zhi-Xin; Shi, Yuan-Peng; Yang, Yong-Tai; Jiang, Shuan-Qi; Li, Lin-Bo; Zhao, Zhi-Gang

    2018-04-01

    A significant transition in tectonic regime from extension to compression occurred throughout East Asia during the mid-Cretaceous and has stimulated much attention. However, the timing and driving mechanisms of the transition remain disputed. The Erlian Basin, a giant late Mesozoic intracontinental petroliferous basin located in the Inner Mongolia, Northeast China, contains important sedimentary and structural records related to the mid-Cretaceous compressional event. The stratigraphical, sedimentological and structural analyses reveal that a NW-SE compressional inversion occurred in the Erlian Basin between the depositions of the Lower Cretaceous Saihan and Upper Cretaceous Erlian formations, causing intense folding of the Saihan Formation and underlying strata, and the northwestward migration of the depocenters of the Erlian Formation. Based on the newly obtained detrital zircon U-Pb data and previously published paleomagnetism- and fossil-based ages, the Saihan and Erlian formations are suggested as latest Aptian-Albian and post-early Cenomanian in age, respectively, implying that the inversion in the Erlian Basin occurred in the early Late Cretaceous (Cenomanian time). Apatite fission-track thermochronological data record an early Late Cretaceous cooling/exhuming event in the basin, corresponding well with the aforementioned sedimentary, structural and chronological analyses. Combining with the tectono-sedimentary evolutions of the neighboring basins of the Erlian Basin, we suggest that the early Late Cretaceous inversional event in the Erlian Basin and the large scale tectonic transition in East Asia shared the common driving mechanism, probably resulting from the Okhotomorsk Block-East Asia collisional event at about 100-89 Ma.

  15. Molecular and Paleontological Evidence for a Post-Cretaceous Origin of Rodents

    PubMed Central

    Wu, Shaoyuan; Wu, Wenyu; Zhang, Fuchun; Ye, Jie; Ni, Xijun; Sun, Jimin; Edwards, Scott V.; Meng, Jin; Organ, Chris L.

    2012-01-01

    The timing of the origin and diversification of rodents remains controversial, due to conflicting results from molecular clocks and paleontological data. The fossil record tends to support an early Cenozoic origin of crown-group rodents. In contrast, most molecular studies place the origin and initial diversification of crown-Rodentia deep in the Cretaceous, although some molecular analyses have recovered estimated divergence times that are more compatible with the fossil record. Here we attempt to resolve this conflict by carrying out a molecular clock investigation based on a nine-gene sequence dataset and a novel set of seven fossil constraints, including two new rodent records (the earliest known representatives of Cardiocraniinae and Dipodinae). Our results indicate that rodents originated around 61.7–62.4 Ma, shortly after the Cretaceous/Paleogene (K/Pg) boundary, and diversified at the intraordinal level around 57.7–58.9 Ma. These estimates are broadly consistent with the paleontological record, but challenge previous molecular studies that place the origin and early diversification of rodents in the Cretaceous. This study demonstrates that, with reliable fossil constraints, the incompatibility between paleontological and molecular estimates of rodent divergence times can be eliminated using currently available tools and genetic markers. Similar conflicts between molecular and paleontological evidence bedevil attempts to establish the origination times of other placental groups. The example of the present study suggests that more reliable fossil calibration points may represent the key to resolving these controversies. PMID:23071573

  16. Early Cretaceous terrestrial ecosystems in East Asia based on food-web and energy-flow models

    USGS Publications Warehouse

    Matsukawa, M.; Saiki, K.; Ito, M.; Obata, I.; Nichols, D.J.; Lockley, M.G.; Kukihara, R.; Shibata, K.

    2006-01-01

    In recent years, there has been global interest in the environments and ecosystems around the world. It is helpful to reconstruct past environments and ecosystems to help understand them in the present and the future. The present environments and ecosystems are an evolving continuum with those of the past and the future. This paper demonstrates the contribution of geology and paleontology to such continua. Using fossils, we can make an estimation of past population density as an ecosystem index based on food-web and energy-flow models. Late Mesozoic nonmarine deposits are distributed widely on the eastern Asian continent and contain various kinds of fossils such as fishes, amphibians, reptiles, dinosaurs, mammals, bivalves, gastropods, insects, ostracodes, conchostracans, terrestrial plants, and others. These fossil organisms are useful for late Mesozoic terrestrial ecosystem reconstruction using food-web and energy-flow models. We chose Early Cretaceous fluvio-lacustrine basins in the Choyr area, southeastern Mongolia, and the Tetori area, Japan, for these analyses and as a potential model for reconstruction of other similar basins in East Asia. The food-web models are restored based on taxa that occurred in these basins. They form four or five trophic levels in an energy pyramid consisting of rich primary producers at its base and smaller biotas higher in the food web. This is the general energy pyramid of a typical ecosystem. Concerning the population densities of vertebrate taxa in 1 km2 in these basins, some differences are recognized between Early Cretaceous and the present. For example, Cretaceous estimates suggest 2.3 to 4.8 times as many herbivores and 26.0 to 105.5 times the carnivore population. These differences are useful for the evaluation of past population densities of vertebrate taxa. Such differences may also be caused by the different metabolism of different taxa. Preservation may also be a factor, and we recognize that various problems occur in

  17. Peculiar macrophagous adaptations in a new Cretaceous pliosaurid

    PubMed Central

    Arkhangelsky, Maxim S.; Stenshin, Ilya M.; Uspensky, Gleb N.; Zverkov, Nikolay G.

    2015-01-01

    During the Middle and Late Jurassic, pliosaurid plesiosaurs evolved gigantic body size and a series of craniodental adaptations that have been linked to the occupation of an apex predator niche. Cretaceous pliosaurids (i.e. Brachaucheninae) depart from this morphology, being slightly smaller and lacking the macrophagous adaptations seen in earlier forms. However, the fossil record of Early Cretaceous pliosaurids is poor, concealing the evolution and ecological diversity of the group. Here, we report a new pliosaurid from the Late Hauterivian (Early Cretaceous) of Russia. Phylogenetic analyses using reduced consensus methods recover it as the basalmost brachauchenine. This pliosaurid is smaller than other derived pliosaurids, has tooth alveoli clustered in pairs and possesses trihedral teeth with complex serrated carinae. Maximum-likelihood ancestral state reconstruction suggests early brachauchenines retained trihedral teeth from their ancestors, but modified this feature in a unique way, convergent with macrophagous archosaurs or sphenacodontoids. Our findings indicate that Early Cretaceous marine reptile teeth with serrated carinae cannot be unequivocally assigned to metriorhynchoid crocodylomorphs. Furthermore, they extend the known diversity of dental adaptations seen in Sauropterygia, the longest lived clade of marine tetrapods. PMID:27019740

  18. Early to mid Cretaceous vegetation of northern Gondwana - the onset of angiosperm radiation and climatic implications

    NASA Astrophysics Data System (ADS)

    Coiffard, Clément; Mohr, Barbara

    2014-05-01

    Early Cretaceous Northern Gondwana seems to be the cradle of many early flowering plants, especially mesangiosperms that include magnoliids and monocots and basal eudicots. So far our knowledge was based mostly on dispersed pollen and small flowering structures. New fossil finds from Brazil include more complete plants with attached roots, leaves and flowers. Taxonomic studies show that these fossils belonged to clades which are, based on macroscopic characters and molecular data, also considered to be rather basal, such as several members of Nymphaeales, Piperales, Laurales, Magnoliales, monocots (Araliaceae) and Ranunculales. Various parameters can be used in order to understand the physiology and habitat of these plants. Adaptations to climate and habitat are partly mirrored in their root anatomy (evidence of tap roots), leaf size and shape, leaf anatomy including presence of glands, and distribution of stomata. An important ecophysiolocical parameter is vein density as an indicator for the plants' cabability to pump water, and the stomatal pore index, representing the proportion of stomatal pore area on the leaf surface, which is related to the water vapor resistance of the leaf epidermis. During the mid-Cretaceous leaf vein density started to surpass that of gymnosperms, one factor that made angiosperms very successful in conquering many kinds of new environments. Using data on these parameters we deduce that during the late Early to mid Cretaceous angiosperms were already diverse, being represented as both herbs, with aquatic members, such as Nymphaeles, helophytes (e.g. some monocots) and plants that may have grown in shady locations. Other life forms included shrubs and perhaps already small trees (e.g. Magnoliales). These flowering plants occupied various habitats, ranging from xeric (e.g. some Magnoliales) to mesic and shady (e.g. Piperales) or aquatic (e.g. Araceae, Nymphaeales). Overall, it seems that several of these plants clearly exhibited some

  19. Paleovegetation changes recorded by n-alkyl lipids bound in macromolecules of plant fossils and kerogens from the Cretaceous sediments in Japan

    NASA Astrophysics Data System (ADS)

    Miyata, Y.; Sawada, K.; Nakamura, H.; Takashima, R.; Takahashi, M.

    2014-12-01

    Resistant macromolecules composing living plant tissues tend to be preserved through degradation and diagenesis, hence constituate major parts of sedimentary plant-derived organic matter (kerogen), and their monomer compositions vary widely among different plant taxa, organs and growth stages. Thus, analysis of such macromolecule may serve as new technique for paleobotanical evaluation distinctive from classical paleobotnical studies depends on morphological preservation of fossils. In the present study, we analyzed plant fossils and kerogens in sediments from the Cretaceous strata in Japan to examine chemotaxonomic characteristics of fossil macromolecules and to reconstruct paleovegetation change by kerogen analysis. The kerogens were separated from the powdered sediments of Cretaceous Yezo Group, Hokkaido, Japan. All kerogens have been confirmed to be mostly originated from land plant tissues by microscopic observation. Mummified angiosperm and gymnosperm fossil leaves were separated from carbonaceous sandstone of the Cretaceous Ashizawa Formation, Futaba Group. The kerogens and plant fossils were extracted with methanol and dichloromethane, and were subsequently refluxed under 110°C to remove free compounds completely. The residues are hydrolyzed by KOH/methanol under 110°C. These released compounds are analyzed by GC-MS. As main hydrolyzed products (ester-bound molecular units) from all kerogens, C10-C28 n-alkanoic acids and C10-C30 n-alkanols were detected. Recent studies on the hydrolysis products of plant tissues suggested the long chain (>C20) n-alkanols were predominantly abundant in deciduous broadleaved angiosperms. Correspondingly, the stratigraphic variation of the ratios of long chain (>C20) n-alkanols to fatty acids was concordant with the variation of angiosperm/gymnosperm ratios recorded by land plant-derived terpenoid biomarkers. In addition, we found that the long chain n-alkanols/fatty acids ratio in the angiosperm fossil leaf was

  20. A New Hadrosauroid Dinosaur from the Early Late Cretaceous of Shanxi Province, China

    PubMed Central

    Wang, Run-Fu; You, Hai-Lu; Xu, Shi-Chao; Wang, Suo-Zhu; Yi, Jian; Xie, Li-Juan; Jia, Lei; Li, Ya-Xian

    2013-01-01

    Background The origin of hadrosaurid dinosaurs is far from clear, mainly due to the paucity of their early Late Cretaceous close relatives. Compared to numerous Early Cretaceous basal hadrosauroids, which are mainly from Eastern Asia, only six early Late Cretaceous (pre-Campanian) basal hadrosauroids have been found: three from Asia and three from North America. Methodology/Principal Findings Here we describe a new hadrosauroid dinosaur, Yunganglong datongensis gen. et sp. nov., from the early Late Cretaceous Zhumapu Formation of Shanxi Province in northern China. The new taxon is represented by an associated but disarticulated partial adult skeleton including the caudodorsal part of the skull. Cladistic analysis and comparative studies show that Yunganglong represents one of the most basal Late Cretaceous hadrosauroids and is diagnosed by a unique combination of features in its skull and femur. Conclusions/Significance The discovery of Yunganglong adds another record of basal Hadrosauroidea in the early Late Cretaceous, and helps to elucidate the origin and evolution of Hadrosauridae. PMID:24204734

  1. A new hadrosauroid dinosaur from the early late cretaceous of Shanxi Province, China.

    PubMed

    Wang, Run-Fu; You, Hai-Lu; Xu, Shi-Chao; Wang, Suo-Zhu; Yi, Jian; Xie, Li-Juan; Jia, Lei; Li, Ya-Xian

    2013-01-01

    The origin of hadrosaurid dinosaurs is far from clear, mainly due to the paucity of their early Late Cretaceous close relatives. Compared to numerous Early Cretaceous basal hadrosauroids, which are mainly from Eastern Asia, only six early Late Cretaceous (pre-Campanian) basal hadrosauroids have been found: three from Asia and three from North America. Here we describe a new hadrosauroid dinosaur, Yunganglong datongensis gen. et sp. nov., from the early Late Cretaceous Zhumapu Formation of Shanxi Province in northern China. The new taxon is represented by an associated but disarticulated partial adult skeleton including the caudodorsal part of the skull. Cladistic analysis and comparative studies show that Yunganglong represents one of the most basal Late Cretaceous hadrosauroids and is diagnosed by a unique combination of features in its skull and femur. The discovery of Yunganglong adds another record of basal Hadrosauroidea in the early Late Cretaceous, and helps to elucidate the origin and evolution of Hadrosauridae.

  2. Cretaceous Small Scavengers: Feeding Traces in Tetrapod Bones from Patagonia, Argentina

    PubMed Central

    de Valais, Silvina; Apesteguía, Sebastián; Garrido, Alberto C.

    2012-01-01

    Ecological relationships among fossil vertebrate groups are interpreted based on evidence of modification features and paleopathologies on fossil bones. Here we describe an ichnological assemblage composed of trace fossils on reptile bones, mainly sphenodontids, crocodyliforms and maniraptoran theropods. They all come from La Buitrera, an early Late Cretaceous locality in the Candeleros Formation of northwestern Patagonia, Argentina. This locality is significant because of the abundance of small to medium-sized vertebrates. The abundant ichnological record includes traces on bones, most of them attributable to tetrapods. These latter traces include tooth marks that provde evidence of feeding activities made during the sub-aerial exposure of tetrapod carcasses. Other traces are attributable to arthropods or roots. The totality of evidence provides an uncommon insight into paleoecological aspects of a Late Cretaceous southern ecosystem. PMID:22253800

  3. Anatomically preserved fossil cornalean fruits from the Upper Cretaceous of Hokkaido: Eydeia hokkaidoensis gen. et sp. nov.

    PubMed

    Stockey, Ruth A; Nishida, Harufumi; Atkinson, Brian A

    2016-09-01

    The basal asterid clade Cornales radiated during the Late Cretaceous. However, our understanding of early evolutionary patterns and relationships remain obscure. New data from five permineralized fruits in calcareous concretions from the Upper Cretaceous (Coniacian-Santonian) Haborogawa Formation, Hokkaido, Japan provide anatomical details that aid our knowledge of the group. Specimens were studied from cellulose acetate peels, and three-dimensional reconstructions were rendered using AVIZO. Fruits are drupaceous, roughly pyriform, 2.9-4.3 mm in diameter, with a fleshy mesocarp, transition sclereids, and a stony endocarp of four to five locules, with the septa forming a cross or star-like pattern in transverse section, distinct germination valves, and one apically attached anatropous seed per locule. Vascular tissue occurs in zones between the mesocarp and exocarp, in two rows within the septa, and prominent seed bundles can be traced throughout the fruit sections. Seeds have a single integumentary layer of radially flattened square to rectangular cells and copious cellular endosperm. A fully formed, straight, cellular dicotyledonous embryo, with closely appressed, spathulate cotyledons, is present within each seed. The unique combination of characters shown by these fruits is found in Cornaceae, Curtisiaceae, and Davidiaceae and allows us to describe a new taxon of Cornales, Eydeia hokkaidoensis gen. et sp. nov., with many similarities to extant Davidia involucrata. These fossils underscore the phylogenetic diversification of Cornales that was underway during the Late Cretaceous and support the hypothesis that a Davidia-like fruit morphology is plesiomorphic within Cornales. © 2016 Botanical Society of America.

  4. The critical role of fossils in inferring deep-node phylogenetic relationships and macroevolutionary patterns in Cornales.

    PubMed

    Atkinson, Brian A

    2018-05-24

    The basal asterid order, Cornales, experienced a rapid radiation during the Cretaceous, which has made it difficult to elucidate the early evolution of the order using extant taxa only. Recent paleobotanical studies, however, have begun to shed light on the early diversification of Cornales. Herein, fossils are directly incorporated in phylogenetic and quantitative morphological analyses to reconstruct early cornalean evolution. A morphological matrix of 77 fruit characters and 58 taxa (24 extinct) was assembled. Parsimony analyses including and excluding fossils were conducted. A fossil inclusive tree was time-scaled to visualize the timing of the initial cornalean radiation. Disparity analyses were utilized to infer the morphological evolution of cornaleans with drupaceous fruits. Fossil inclusive and exclusive parsimony analyses resulted in well-resolved deep-node relationships within Cornales. Resolution in the fossil inclusive analysis is substantially higher, revealing a basal grade including Loasaceae, Hydrangeaceae, Hydrostachyaceae, Grubbiaceae, a Hironoia+Amersinia clade, and Curtisiaceae, respectively, that leads to a "core" group containing a clade comprising a Cretaceous grade leading to clade of Nyssaceae, Mastixiaceae, and Davidiaceae that is sister to a Cornaceae+Alangiaceae clade. The time-scaled tree indicates that the initial cornalean diversification occurred before 89.8 Ma. Disparity analyses suggest the morphological diversity of Cornales peaked during the Paleogene. Phylogenetic analyses clearly demonstrate that novel character mosaics of Cretaceous cornaleans play a critical role in resolving deep-node relationships within Cornales. The post-Cretaceous increase of cornalean disparity is associated with a shift in morphospace occupation, which can be explained from ecological and developmental perspectives. © 2018 Botanical Society of America.

  5. The oldest known snakes from the Middle Jurassic-Lower Cretaceous provide insights on snake evolution.

    PubMed

    Caldwell, Michael W; Nydam, Randall L; Palci, Alessandro; Apesteguía, Sebastián

    2015-01-27

    The previous oldest known fossil snakes date from ~100 million year old sediments (Upper Cretaceous) and are both morphologically and phylogenetically diverse, indicating that snakes underwent a much earlier origin and adaptive radiation. We report here on snake fossils that extend the record backwards in time by an additional ~70 million years (Middle Jurassic-Lower Cretaceous). These ancient snakes share features with fossil and modern snakes (for example, recurved teeth with labial and lingual carinae, long toothed suborbital ramus of maxillae) and with lizards (for example, pronounced subdental shelf/gutter). The paleobiogeography of these early snakes is diverse and complex, suggesting that snakes had undergone habitat differentiation and geographic radiation by the mid-Jurassic. Phylogenetic analysis of squamates recovers these early snakes in a basal polytomy with other fossil and modern snakes, where Najash rionegrina is sister to this clade. Ingroup analysis finds them in a basal position to all other snakes including Najash.

  6. Microbial Cretaceous park: biodiversity of microbial fossils entrapped in amber

    NASA Astrophysics Data System (ADS)

    Martín-González, Ana; Wierzchos, Jacek; Gutiérrez, Juan C.; Alonso, Jesús; Ascaso, Carmen

    2009-05-01

    Microorganisms are the most ancient cells on this planet and they include key phyla for understanding cell evolution and Earth history, but, unfortunately, their microbial records are scarce. Here, we present a critical review of fossilized prokaryotic and eukaryotic microorganisms entrapped in Cretaceous ambers (but not exclusively from this geological period) obtained from deposits worldwide. Microbiota in ambers are rather diverse and include bacteria, fungi, and protists. We comment on the most important microbial records from the last 25 years, although it is not an exhaustive bibliographic compilation. The most frequently reported eukaryotic microfossils are shells of amoebae and protists with a cell wall or a complex cortex. Likewise, diverse dormant stages (palmeloid forms, resting cysts, spores, etc.) are abundant in ambers. Besides, viral and protist pathogens have been identified inside insects entrapped in amber. The situation regarding filamentous bacteria and fungi is quite confusing because in some cases, the same record was identified consecutively as a member of these phylogenetically distant groups. To avoid these identification errors in the future, we propose to apply a more resolute microscopic and analytical method in amber studies. Also, we discuss the most recent findings about ancient DNA repair and bacterial survival in remote substrates, which support the real possibility of ancient DNA amplification and bacterial resuscitation from Cretaceous resins.

  7. Exploring Early Angiosperm Fire Feedbacks using Coupled Experiments and Modelling Approaches to Estimate Cretaceous Palaeofire Behaviour

    NASA Astrophysics Data System (ADS)

    Belcher, Claire; Hudpsith, Victoria

    2016-04-01

    Using the fossil record we are typically limited to exploring linkages between palaeoecological changes and palaeofire activity by assessing the abundance of charcoals preserved in sediments. However, it is the behaviour of fires that primarily governs their ecological effects. Therefore, the ability to estimate variations in aspects of palaeofire behaviour such as palaeofire intensity and rate of spread would be of key benefit toward understanding the coupled evolutionary history of ecosystems and fire. The Cretaceous Period saw major diversification in land plants. Previously, conifers (gymnosperms) and ferns (pteridophytes) dominated Earth's ecosystems until flowering plants (angiosperms) appear in the fossil record of the Early Cretaceous (~135Ma). We have created surface fire behaviour estimates for a variety of angiosperm invasion scenarios and explored the influence of Cretaceous superambient atmospheric oxygen levels on the fire behaviour occurring in these new Cretaceous ecosystems. These estimates are then used to explore the hypothesis that the early spread of the angiosperms was promoted by the novel fire regimes that they created. In order to achieve this we tested the flammability of Mesozoic analogue fuel types in controlled laboratory experiments using an iCone calorimeter, which measured the ignitability as well as the effective heat of combustion of the fuels. We then used the BehavePlus fire behaviour modelling system to scale up our laboratory results to the ecosystem scale. Our results suggest that fire-angiosperm feedbacks may have occurred in two phases: The first phase being a result of weedy angiosperms providing an additional easily ignitable fuel that enhanced both the seasonality and frequency of surface fires. In the second phase, the addition of shrubby understory fuels likely expanded the number of ecosystems experiencing more intense surface fires, resulting in enhanced mortality and suppressed post-fire recruitment of gymnosperms

  8. Chitinase genes (CHIAs) provide genomic footprints of a post-Cretaceous dietary radiation in placental mammals

    PubMed Central

    Emerling, Christopher A.

    2018-01-01

    The end-Cretaceous extinction led to a massive faunal turnover, with placental mammals radiating in the wake of nonavian dinosaurs. Fossils indicate that Cretaceous stem placentals were generally insectivorous, whereas their earliest Cenozoic descendants occupied a variety of dietary niches. It is hypothesized that this dietary radiation resulted from the opening of niche space, following the extinction of dinosaurian carnivores and herbivores. We provide the first genomic evidence for the occurrence and timing of this dietary radiation in placental mammals. By comparing the genomes of 107 placental mammals, we robustly infer that chitinase genes (CHIAs), encoding enzymes capable of digesting insect exoskeletal chitin, were present as five functional copies in the ancestor of all placental mammals, and the number of functional CHIAs in the genomes of extant species positively correlates with the percentage of invertebrates in their diets. The diverse repertoire of CHIAs in early placental mammals corroborates fossil evidence of insectivory in Cretaceous eutherians, with descendant lineages repeatedly losing CHIAs beginning at the Cretaceous/Paleogene (K/Pg) boundary as they radiated into noninsectivorous niches. Furthermore, the timing of gene loss suggests that interordinal diversification of placental mammals in the Cretaceous predates the dietary radiation in the early Cenozoic, helping to reconcile a long-standing debate between molecular timetrees and the fossil record. Our results demonstrate that placental mammal genomes, including humans, retain a molecular record of the post-K/Pg placental adaptive radiation in the form of numerous chitinase pseudogenes. PMID:29774238

  9. Eobowenia gen. nov. from the Early Cretaceous of Patagonia: indication for an early divergence of Bowenia?

    PubMed

    Coiro, Mario; Pott, Christian

    2017-04-07

    Even if they are considered the quintessential "living fossils", the fossil record of the extant genera of the Cycadales is quite poor, and only extends as far back as the Cenozoic. This lack of data represents a huge hindrance for the reconstruction of the recent history of this important group. Among extant genera, Bowenia (or cuticles resembling those of extant Bowenia) has been recorded in sediments from the Late Cretaceous and the Eocene of Australia, but its phylogenetic placement and the inference from molecular dating still imply a long ghost lineage for this genus. We re-examine the fossil foliage Almargemia incrassata from the Lower Cretaceous Anfiteatro de Ticó Formation in Patagonia, Argentina, in the light of a comparative cuticular analysis of extant Zamiaceae. We identify important differences with the other member of the genus, viz. A. dentata, and bring to light some interesting characters shared exclusively between A. incrassata and extant Bowenia. We interpret our results to necessitate the erection of the new genus Eobowenia to accommodate the fossil leaf earlier assigned as Almargemia incrassata. We then perfom phylogenetic analyses, including the first combined morphological and molecular analysis of the Cycadales, that indicate that the newly erected genus could be related to extant Bowenia. Eobowenia incrassata could represent an important clue for the understanding of evolution and biogeography of the extant genus Bowenia, as the presence of Eobowenia in Patagonia is yet another piece of the biogeographic puzzle that links southern South America with Australasia.

  10. New Australian sauropods shed light on Cretaceous dinosaur palaeobiogeography

    PubMed Central

    Poropat, Stephen F.; Mannion, Philip D.; Upchurch, Paul; Hocknull, Scott A.; Kear, Benjamin P.; Kundrát, Martin; Tischler, Travis R.; Sloan, Trish; Sinapius, George H. K.; Elliott, Judy A.; Elliott, David A.

    2016-01-01

    Australian dinosaurs have played a rare but controversial role in the debate surrounding the effect of Gondwanan break-up on Cretaceous dinosaur distribution. Major spatiotemporal gaps in the Gondwanan Cretaceous fossil record, coupled with taxon incompleteness, have hindered research on this effect, especially in Australia. Here we report on two new sauropod specimens from the early Late Cretaceous of Queensland, Australia, that have important implications for Cretaceous dinosaur palaeobiogeography. Savannasaurus elliottorum gen. et sp. nov. comprises one of the most complete Cretaceous sauropod skeletons ever found in Australia, whereas a new specimen of Diamantinasaurus matildae includes the first ever cranial remains of an Australian sauropod. The results of a new phylogenetic analysis, in which both Savannasaurus and Diamantinasaurus are recovered within Titanosauria, were used as the basis for a quantitative palaeobiogeographical analysis of macronarian sauropods. Titanosaurs achieved a worldwide distribution by at least 125 million years ago, suggesting that mid-Cretaceous Australian sauropods represent remnants of clades which were widespread during the Early Cretaceous. These lineages would have entered Australasia via dispersal from South America, presumably across Antarctica. High latitude sauropod dispersal might have been facilitated by Albian–Turonian warming that lifted a palaeoclimatic dispersal barrier between Antarctica and South America. PMID:27763598

  11. New Australian sauropods shed light on Cretaceous dinosaur palaeobiogeography.

    PubMed

    Poropat, Stephen F; Mannion, Philip D; Upchurch, Paul; Hocknull, Scott A; Kear, Benjamin P; Kundrát, Martin; Tischler, Travis R; Sloan, Trish; Sinapius, George H K; Elliott, Judy A; Elliott, David A

    2016-10-20

    Australian dinosaurs have played a rare but controversial role in the debate surrounding the effect of Gondwanan break-up on Cretaceous dinosaur distribution. Major spatiotemporal gaps in the Gondwanan Cretaceous fossil record, coupled with taxon incompleteness, have hindered research on this effect, especially in Australia. Here we report on two new sauropod specimens from the early Late Cretaceous of Queensland, Australia, that have important implications for Cretaceous dinosaur palaeobiogeography. Savannasaurus elliottorum gen. et sp. nov. comprises one of the most complete Cretaceous sauropod skeletons ever found in Australia, whereas a new specimen of Diamantinasaurus matildae includes the first ever cranial remains of an Australian sauropod. The results of a new phylogenetic analysis, in which both Savannasaurus and Diamantinasaurus are recovered within Titanosauria, were used as the basis for a quantitative palaeobiogeographical analysis of macronarian sauropods. Titanosaurs achieved a worldwide distribution by at least 125 million years ago, suggesting that mid-Cretaceous Australian sauropods represent remnants of clades which were widespread during the Early Cretaceous. These lineages would have entered Australasia via dispersal from South America, presumably across Antarctica. High latitude sauropod dispersal might have been facilitated by Albian-Turonian warming that lifted a palaeoclimatic dispersal barrier between Antarctica and South America.

  12. Pinaceae-like reproductive morphology in Schizolepidopsis canicularis sp. nov. from the Early Cretaceous (Aptian-Albian) of Mongolia.

    PubMed

    Leslie, Andrew B; Glasspool, Ian; Herendeen, Patrick S; Ichinnorov, Niiden; Knopf, Patrick; Takahashi, Masamichi; Crane, Peter R

    2013-12-01

    Seed cone scales assigned to the genus Schizolepidopsis are widespread in Late Triassic to Cretaceous Eurasian deposits. They have been linked to the conifer family Pinaceae based on associated vegetative remains, but their exact affinities are uncertain. Recently discovered material from the Early Cretaceous of Mongolia reveals important new information concerning Schizolepidopsis cone scales and seeds, and provides support for a relationship between the genus and extant Pinaceae. Specimens were collected from Early Cretaceous (probable Aptian-Albian) lignite deposits in central Mongolia. Lignite samples were disaggregated, cleaned in hydrofluoric acid, and washed in water. Specimens were selected for further study using light and electron microscopy. Schizolepidopsis canicularis seed cones consist of loosely arranged, bilobed ovulate scales subtended by a small bract. A single inverted seed with an elongate micropyle is borne on each lobe of the ovulate scale. Each seed has a wing formed by the separation of the adaxial surface of the ovulate scale. Schizolepidopsis canicularis produced winged seeds that formed in a manner that is unique to Pinaceae among extant conifers. We do not definitively place this species in Pinaceae pending more complete information concerning its pollen cones and vegetative remains. Nevertheless, this material suggests that Schizolepidopsis may be important for understanding the early evolution of Pinaceae, and may potentially help reconcile the appearance of the family in the fossil record with results based on phylogenetic analyses of molecular data.

  13. A new fossil fern assignable to Gleicheniaceae from Late Cretaceous sediments of New Jersey.

    PubMed

    Gandolfo, M; Nixon, K; Crepet, W; Ratcliffe, G

    1997-04-01

    The recent discovery of well-preserved charcoalified rhizomes, petioles. pinnules, sori, and spores from the Upper Cretaceous of New Jersey provides the basis for the description of a new gleicheniaceous fern, Boodlepteris turoniana. The fossils were collected from unconsolidated sediments of Turonian age (~90 MYBP million years before present; Raritan/ Lower Magothy Formation, Potomac Group). These deposits are rich in angiosperms, but also have a limited representation of fern and gymnosperm remains. Fossil specimens from this locality are particularly remarkable in that minute detail, including anatomical features, are often preserved. Some Boodlepteris specimens have cell by cell preservation that reveals the nature and structure of the stele in rhizomes and petioles, and others show minute details of the sori borne on fertile pinnae. Although these specimens are not in organic connection, there are sufficient structural and anatomical details preserved to confidently suggest that they belong to the same taxon. Cladistic analysis of the fossils, both separately and as a reconstruction, support assignment of Boodlepteris to the extant family Gleicheniaceae.

  14. Two new fossil flowers of magnoliid affinity from the Late Cretaceous of New Jersey.

    PubMed

    Crepet, W L; Nixon, K C

    1998-09-01

    Two taxa of cupulate magnoliid fossil flowers, Cronquistiflora and Detrusandra, are described from the Late Cretaceous (Turonian, ∼90 million years before present [MYBP]) Raritan (or lower Magothy) Formation of New Jersey. The fossil taxa are represented by flowers at various stages of development, associated fragments of cup-shaped floral receptacles with attached anthers, and isolated anthers. Both taxa have laminar stamens with adaxial thecae and valvate dehiscence. Pollen is boat-shaped and foveolate in anthers associated with Cronquistiflora and spherical with reticulate ornamentation in Detrusandra. Cup-shaped receptacles are externally bracteose in both taxa. The receptacle of Cronquistiflora is broader than the campanulate one of Detrusandra. Cronquistiflora also has more carpels (∼50 in a spiral vs. ∼5 in a whorl or tight spiral). In Detrusandra the carpels are surrounded by dorsiventrally flattened structures (pistillodes?) that are remote from the attachment of the stamens near the distal rim of the receptacular cupule. Detrusandra stigmas are rounded and bilobed, while those of Cronquistiflora, although bilateral in symmetry, are somewhat peltate. The fossil taxa share prominent characters with extant cupulate magnoliids (e.g., Eupomatia, Calycanthus), but also share characters with other magnoliids including Winteraceae. These fossils represent taxa that are character mosaics relative to currently recognized families. Inclusion of these fossils in existing data matrices and ensuing phylogenetic analyses effect changes in tree topologies consistent with their mosaicism relative to modern taxa. But such analyses do not definitively demonstrate the affinities of the fossils other than illustrating that these fossils are generalized magnoliids. Additional analysis of modern and fossil magnoliids is necessary to fully appreciate the phylogenetic significance and positions of these fossil taxa. However, the results of the phylogenetic analyses do

  15. A primitive therizinosauroid dinosaur from the Early Cretaceous of Utah

    USGS Publications Warehouse

    Kirkland, J.I.; Zanno, L.E.; Sampson, S.D.; Clark, J.M.; DeBlieux, D.D.

    2005-01-01

    Therizinosauroids are an enigmatic group of dinosaurs known mostly from the Cretaceous period of Asia, whose derived members are characterized by elongate necks, laterally expanded pelves, small, leaf-shaped teeth, edentulous rostra and mandibular symphyses that probably bore keratinized beaks. Although more than a dozen therizinosauroid taxa are known, their relationships within Dinosauria have remained controversial because of fragmentary remains and an unusual suite of characters. The recently discovered 'feathered' therizinosauroid Beipiaosaurus from the Early Cretaceous of China helped to clarify the theropod affinities of the group. However, Beipiaosaurus is also poorly represented. Here we describe a new, primitive therizinosauroid from an extensive paucispecific bonebed at the base of the Cedar Mountain Formation (Early Cretaceous) of east-central Utah. This new taxon represents the most complete and most basal therizinosauroid yet discovered. Phylogenetic analysis of coelurosaurian theropods incorporating this taxon places it at the base of the clade Therizinosauroiden, indicating that this species documents the earliest known stage in the poorly understood transition from carnivory to herbivory within Therizinosauroidea. The taxon provides the first documentation, to our knowledge, of therizinosauroids in North America during the Early Cretaceous.

  16. The origin of modern crocodyliforms: new evidence from the Cretaceous of Australia

    PubMed Central

    Salisbury, Steven W; Molnar, Ralph E; Frey, Eberhard; Willis, Paul M.A

    2006-01-01

    While the crocodyliform lineage extends back over 200 million years (Myr) to the Late Triassic, modern forms—members of Eusuchia—do not appear until the Cretaceous. Eusuchia includes the crown group Crocodylia, which comprises Crocodyloidea, Alligatoroidea and Gavialoidea. Fossils of non-crocodylian eusuchians are currently rare and, in most instances, fragmentary. Consequently, the transition from Neosuchia to Crocodylia has been one of the most poorly understood areas of crocodyliform evolution. Here we describe a new crocodyliform from the mid-Cretaceous (98–95 Myr ago; Albian–Cenomanian) Winton Formation of Queensland, Australia, as the most primitive member of Eusuchia. The anatomical changes associated with the emergence of this taxon indicate a pivotal shift in the feeding and locomotor behaviour of crocodyliforms—a shift that may be linked to the subsequent rapid diversification of Eusuchia 20 Myr later during the Late Cretaceous and Early Tertiary. While Laurasia (in particular North America) is the most likely ancestral area for Crocodylia, the biogeographic events associated with the origin of Eusuchia are more complex. Although the fossil evidence is limited, it now seems likely that at least part of the early history of Eusuchia transpired in Gondwana. PMID:16959633

  17. Late Cretaceous-Early Palaeogene tectonic development of SE Asia

    NASA Astrophysics Data System (ADS)

    Morley, C. K.

    2012-10-01

    The Late Cretaceous-Early Palaeogene history of the continental core of SE Asia (Sundaland) marks the time prior to collision of India with Asia when SE Asia, from the Tethys in the west to the Palaeo-Pacific in the east, lay in the upper plate of subduction zones. In Myanmar and Sumatra, subduction was interrupted in the Aptian-Albian by a phase of arc accretion (Woyla and Mawgyi arcs) and in Java, eastern Borneo and Western Sulawesi by collision of continental fragments rifted from northern Australia. Subsequent resumption of subduction in the Myanmar-Thailand sector explains: 1) early creation of oceanic crust in the Andaman Sea in a supra-subduction zone setting ~ 95 Ma, 2) the belt of granite plutons of Late Cretaceous-Early Palaeogene age (starting ~ 88 Ma) in western Thailand and central Myanmar, and 3) amphibolite grade metamorphism between 70 and 80 Ma seen in gneissic outcrops in western and central Thailand, and 4) accretionary prism development in the Western Belt of Myanmar, until glancing collision with the NE corner of Greater India promoted ophiolite obduction, deformation and exhumation of marine sediments in the early Palaeogene. The Ranong strike-slip fault and other less well documented faults, were episodically active during the Late Cretaceous-Palaeogene time. N to NW directed subduction of the Palaeo-Pacific ocean below Southern China, Vietnam and Borneo created a major magmatic arc, associated with rift basins, metamorphic core complexes and strike-slip deformation which continued into the Late Cretaceous. The origin and timing of termination of subduction has recently been explained by collision of a large Luconia continental fragment either during the Late Cretaceous or Palaeogene. Evidence for such a collision is absent from the South China Sea well and seismic reflection record and here collision is discounted. Instead relocation of the subducting margin further west, possibly in response of back-arc extension (which created the Proto

  18. Marine vs. local control on seawater Nd-isotope ratios at the northwest coast of Africa during the late Cretaceous-early Eocene

    NASA Astrophysics Data System (ADS)

    Kocsis, L.; Gheerbrant, E.; Mouflih, M.; Cappetta, H.; Ulianov, A.; Chiaradia, M.

    2013-12-01

    At the northwest corner of Africa excellent conditions existed for phosphate formation (i.e., stable upwelling system) during the late Cretaceous-early Eocene. This is probably in relation to stable tectonic evolution of shallow epicontinental basins at a passive continental margin and to their paleogeographic situation between the Atlantic and Tethys marine realms. To better comprehend paleoceanic conditions in this area, radiogenic isotope ratios (87Sr/86Sr and 143Nd/144Nd) and trace element compositions of fossil biogenic apatite are investigated from Maastrichtian to Ypresian shallow marine phosphorite deposits in Morocco (Ouled Abdoun and Ganntour Basins). Rare earth elements (REE) distributions in the fossils are compatible with early diagenetic marine pore fluid represented by negative Ce-anomaly and heavy REE enrichment. An overall shift in Ce-anomaly is apparent with gradually lower values in younger fossils along three distinct assemblages that correspond to Maastrichtian, Danian-Thanetian and Ypresian periods. The temporal change can be interpreted as presence of gradually more oxygenated seawater in the basins. Strontium isotopic ratios of the fossils follow the global Sr-evolution curve. However, the latest Cretaceous and the oldest Paleocene fossils yielded slightly higher ratios than the global ocean, which could reflect minor diagenetic alteration. Neodymium isotopic ratios are quite even along the phosphate series with ɛNd(t) values ranges from -6.8 to -5.8. These values are higher than those reported for average North Atlantic deep water and Tethyan seawater (e.g., Stille et al., 1996; Thomas et al., 2003). For the origin of the stable, high 143Nd/144Nd we propose three main hypotheses: (1) contribution of continental Nd-source, (2) locally controlled deep water Nd-isotope ratios near the coast from where upwelling originated in the area and (3) possible surface marine water contribution from the Pacific across the Atlantic. Stille, P., Steinmann

  19. Evidence of reworked Cretaceous fossils and their bearing on the existence of Tertiary dinosaurs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, J.G.; Kirkland, J.I.; Doi, K.

    The Paleocene Shotgun fauna of Wyoming includes marine sharks as well as mammals. It has been suggested that the sharks were introduced from the Cannonball Sea. It is more likely that these sharks were reworked from a Cretaceous rock sequence that included both marine and terrestrial deposits as there is a mixture of marine and freshwater taxa. These taxa have not been recorded elsewhere after the Cretaceous and are not known from the Cannonball Formation. Early Eocene localities at Raven Ridge, Utah, similarly contain teeth of Cretaceous marine and freshwater fish, dinosaurs, and Eocene mammals. The Cretaceous teeth are wellmore » preserved, variably abraded, and serve to cast doubts on criteria recently used to claim that dinosaur teeth recovered from the Paleocene of Montana are not reworked. Another Eocene locality in the San Juan Basin has produced an Eocene mammalian fauna with diverse Cretaceous marine sharks. Neither the nature of preservation nor the degree of abrasion could be used to distinguish reworked from contemporaneous material. The mixed environments represented by the fish taxa and recognition of the extensive pre-Tertiary extinction of both marine and freshwater fish were employed to recognize reworked specimens.« less

  20. First record of lobed trace fossils in Brazil's Upper Cretaceous paleosols: Rhizoliths or evidence of insects and their social behavior?

    NASA Astrophysics Data System (ADS)

    Luciano do Nascimento, Diego; Batezelli, Alessandro; Bernardes Ladeira, Francisco Sérgio

    2017-11-01

    This is the first report of trace fossils potentially associated with insect social behavior in sandy and well-drained paleosols of the Upper Cretaceous continental sequence of Brazil. The trace fossils consist of dozens of lobed and vertical structures cemented by CaCO3 and preserved mainly in full relief in paleosols of the Marilia Formation (Bauru Basin) in the state of Minas Gerais. The described ichnofossils are predominantly vertical, up to 2 m long, and are composed of horizontal lobed structures connected by vertical tunnel-like structures that intersect in the center and at the edges. The lobed structures range from 3 to 15 cm long and 2-6 cm thick. Two different hypotheses are analyzed to explain the origin of the trace fossils; the less probable one is that the structures are laminar calcretes associated with rhizoliths and rhizoconcretions. The hypothesis involving social insects was considered because the trace fossils described herein partially resemble a modern ant nest and the ichnofossil Daimoniobarax. The micromorphological analysis of the lobed and tunnel-like structures indicates modifications of the walls, such as the presence of inorganic fluidized linings, dark linings and oriented grains, supporting the hypothesis that they are chambers and shafts. The architecture and size of the reported nests suggest the possibility that social insect colonies existed during the Maastrichtian and are direct evidence of the social behavior and reproductive strategies of the Cretaceous pedofauna.

  1. Lower Cretaceous Puez key-section in the Dolomites - towards the mid-Cretaceous super-greenhouse

    NASA Astrophysics Data System (ADS)

    Lukeneder, A.; Halásová, E.; Rehákova, D.; Józsa, Š.; Soták, J.; Kroh, A.; Jovane, L.; Florindo, F.; Sprovieri, M.; Giorgioni, M.; Lukeneder, S.

    2012-04-01

    Investigations on different fossil groups in addition to isotopic, paleomagnetic and geochemical analysis are combined to extract the Early Cretaceous history of environmental changes, as displayed by the sea level and climate changes. Results on biostratigraphy are integrated with other dating methods as magnetostraigraphy, correlation and cyclostratigraphy. The main investigation topics of the submitted project within the above-described framework are the biostratigraphic (Lukeneder and Aspmair, 2006, 2012), palaeoecological (Lukeneder, 2008, 2012), palaeobiogeographic, lithostratigraphic (Lukeneder, 2010, 2011), cyclostratigraphic and magnetostratigraphic development of the Early Cretaceous in the Puez area. The main sections occur in expanded outcrops located on the southern margin of the Puez Plateau, within the area of the Puez-Geisler Natural Park, in the northern part of the Dolomites (South Tyrol, North Italy). The cephalopod, microfossil and nannofossil faunas and floras from the marly limestones to marls here indicates Hauterivian to Albian/Cenomanian age. Oxygen isotope values from the Lower Cretaceous Puez Formation show a decreasing trend throughout the log, from -1.5‰ in the Hauterivian to -4.5‰ in the Albian/Cenomanian. The decreasing values mirror an increasing trend in palaeotemperatures from ~ 15-18°C in the Hauterivian up to ~25-30 °C in the Albian/Cenomanian. The trend probably indicates the positive shift in temperature induced by the well known Mid Cretaceous Ocean warming (e.g., Super-Greenhouse). The cooperative project (FWF project P20018-N10; 22 international scientists): An integrative high resolution project. Macro- and microfossils, isotopes, litho-, cyclo-, magneto-and biostratigraphy as tools for investigating the Lower Cretaceous within the Dolomites (Southern Alps, Northern Italy) -The Puez area as a new key region of the Tethyan Realm), is on the way since 2008 by the Natural History Museum in Vienna and the 'Naturmuseum S

  2. An early Oligocene fossil demonstrates treeshrews are slowly evolving "living fossils".

    PubMed

    Li, Qiang; Ni, Xijun

    2016-01-14

    Treeshrews are widely considered a "living model" of an ancestral primate, and have long been called "living fossils". Actual fossils of treeshrews, however, are extremely rare. We report a new fossil species of Ptilocercus treeshrew recovered from the early Oligocene (~34 Ma) of China that represents the oldest definitive fossil record of the crown group of treeshrews and nearly doubles the temporal length of their fossil record. The fossil species is strikingly similar to the living Ptilocercus lowii, a species generally recognized as the most plesiomorphic extant treeshrew. It demonstrates that Ptilocercus treeshrews have undergone little evolutionary change in their morphology since the early Oligocene. Morphological comparisons and phylogenetic analysis support the long-standing idea that Ptilocercus treeshrews are morphologically conservative and have probably retained many characters present in the common stock that gave rise to archontans, which include primates, flying lemurs, plesiadapiforms and treeshrews. This discovery provides an exceptional example of slow morphological evolution in a mammalian group over a period of 34 million years. The persistent and stable tropical environment in Southeast Asia through the Cenozoic likely played a critical role in the survival of such a morphologically conservative lineage.

  3. Potomacapnos apeleutheron gen. et sp. nov., a new Early Cretaceous angiosperm from the Potomac Group and its implications for the evolution of eudicot leaf architecture.

    PubMed

    Jud, Nathan A; Hickey, Leo J

    2013-12-01

    Eudicots diverged early in the evolution of flowering plants and now comprise more than 70% of angiosperm species. In spite of the importance of eudicots, our understanding of the early evolution of this clade is limited by a poor fossil record and uncertainty about the order of early phylogenetic branching. The study of Lower Cretaceous fossils can reveal much about the evolution, morphology, and ecology of the eudicots. Fossils described here were collected from Aptian sediments of the Potomac Group exposed at the Dutch Gap locality in Virginia, USA. Specimens were prepared by degaging, then described and compared with leaves of relevant extant and fossil plants. We conducted a phylogenetic analysis of morphological characters using parsimony while constraining the tree search with the topology found through molecular phylogenetic analyses. The new species is closely related to ranunculalean eudicots and has leaf architecture remarkably similar to some living Fumarioideae (Papaveraceae). These are the oldest eudicot megafossils from North America, and they show complex leaf architecture reflecting developmental pathways unique to extant eudicots. The morphology and small size of the fossils suggest that they were herbaceous plants, as is seen in other putative early eudicots. The absence of co-occurring tricolpate pollen at Dutch Gap either (1) reflects low preservation probability for pollen of entomophilous herbs or (2) indicates that some leaf features of extant eudicots appeared before the origin of tricolpate pollen.

  4. Vertebrate assemblages from the early Late Cretaceous of southeastern Morocco: An overview

    NASA Astrophysics Data System (ADS)

    Cavin, L.; Tong, H.; Boudad, L.; Meister, C.; Piuz, A.; Tabouelle, J.; Aarab, M.; Amiot, R.; Buffetaut, E.; Dyke, G.; Hua, S.; Le Loeuff, J.

    2010-07-01

    Fossils of vertebrates have been found in great abundance in the continental and marine early Late Cretaceous sediments of Southeastern Morocco for more than 50 years. About 80 vertebrate taxa have so far been recorded from this region, many of which were recognised and diagnosed for the first time based on specimens recovered from these sediments. In this paper, we use published data together with new field data to present an updated overview of Moroccan early Late Cretaceous vertebrate assemblages. The Cretaceous series we have studied encompasses three Formations, the Ifezouane and Aoufous Formations, which are continental and deltaic in origin and are often grouped under the name "Kem Kem beds", and the Akrabou Formation which is marine in origin. New field observations allow us to place four recognised vertebrate clusters, corresponding to one compound assemblage and three assemblages, within a general temporal framework. In particular, two ammonite bioevents characterise the lower part of the Upper Cenomanian ( Calycoceras guerangeri Zone) at the base of the Akrabou Formation and the upper part of the Lower Turonian ( Mammites nodosoides Zone), that may extend into the Middle Turonian within the Akrabou Formation, and allow for more accurate dating of the marine sequence in the study area. We are not yet able to distinguish a specific assemblage that characterises the Ifezouane Formation when compared to the similar Aoufous Formation, and as a result we regard the oldest of the four vertebrate "assemblages" in this region to be the compound assemblage of the "Kem Kem beds". This well-known vertebrate assemblage comprises a mixture of terrestrial (and aerial), freshwater and brackish vertebrates. The archosaur component of this fauna appears to show an intriguingly high proportion of large-bodied carnivorous taxa, which may indicate a peculiar trophic chain, although collecting biases alter this palaeontological signal. A small and restricted assemblage, the

  5. A new Early Cretaceous eutherian mammal from the Sasayama Group, Hyogo, Japan

    PubMed Central

    Kusuhashi, Nao; Tsutsumi, Yukiyasu; Saegusa, Haruo; Horie, Kenji; Ikeda, Tadahiro; Yokoyama, Kazumi; Shiraishi, Kazuyuki

    2013-01-01

    We here describe a new Early Cretaceous (early Albian) eutherian mammal, Sasayamamylos kawaii gen. et sp. nov., from the ‘Lower Formation’ of the Sasayama Group, Hyogo Prefecture, Japan. Sasayamamylos kawaii is characterized by a robust dentary, a distinct angle on the ventral margin of the dentary at the posterior end of the mandibular symphysis, a lower dental formula of 3–4 : 1 : 4 : 3, a robust lower canine, a non-molariform lower ultimate premolar, and a secondarily reduced entoconid on the molars. To date, S. kawaii is the earliest known eutherian mammal possessing only four premolars, which demonstrates that the reduction in the premolar count in eutherians started in the late Early Cretaceous. The occurrence of S. kawaii implies that the relatively rapid diversification of eutherians in the mid-Cretaceous had already started by the early Albian. PMID:23536594

  6. A new Early Cretaceous eutherian mammal from the Sasayama Group, Hyogo, Japan.

    PubMed

    Kusuhashi, Nao; Tsutsumi, Yukiyasu; Saegusa, Haruo; Horie, Kenji; Ikeda, Tadahiro; Yokoyama, Kazumi; Shiraishi, Kazuyuki

    2013-05-22

    We here describe a new Early Cretaceous (early Albian) eutherian mammal, Sasayamamylos kawaii gen. et sp. nov., from the 'Lower Formation' of the Sasayama Group, Hyogo Prefecture, Japan. Sasayamamylos kawaii is characterized by a robust dentary, a distinct angle on the ventral margin of the dentary at the posterior end of the mandibular symphysis, a lower dental formula of 3-4 : 1 : 4 : 3, a robust lower canine, a non-molariform lower ultimate premolar, and a secondarily reduced entoconid on the molars. To date, S. kawaii is the earliest known eutherian mammal possessing only four premolars, which demonstrates that the reduction in the premolar count in eutherians started in the late Early Cretaceous. The occurrence of S. kawaii implies that the relatively rapid diversification of eutherians in the mid-Cretaceous had already started by the early Albian.

  7. The oldest fossil mushroom.

    PubMed

    Heads, Sam W; Miller, Andrew N; Crane, J Leland; Thomas, M Jared; Ruffatto, Danielle M; Methven, Andrew S; Raudabaugh, Daniel B; Wang, Yinan

    2017-01-01

    A new fossil mushroom is described and illustrated from the Lower Cretaceous Crato Formation of northeast Brazil. Gondwanagaricites magnificus gen. et sp. nov. is remarkable for its exceptional preservation as a mineralized replacement in laminated limestone, as all other fossil mushrooms are known from amber inclusions. Gondwanagaricites represents the oldest fossil mushroom to date and the first fossil mushroom from Gondwana.

  8. The oldest fossil mushroom

    PubMed Central

    Miller, Andrew N.; Crane, J. Leland; Thomas, M. Jared; Ruffatto, Danielle M.; Methven, Andrew S.; Raudabaugh, Daniel B.; Wang, Yinan

    2017-01-01

    A new fossil mushroom is described and illustrated from the Lower Cretaceous Crato Formation of northeast Brazil. Gondwanagaricites magnificus gen. et sp. nov. is remarkable for its exceptional preservation as a mineralized replacement in laminated limestone, as all other fossil mushrooms are known from amber inclusions. Gondwanagaricites represents the oldest fossil mushroom to date and the first fossil mushroom from Gondwana. PMID:28591180

  9. Recognition of Fossil Prokaryotes in Cretaceous Methane Seep Carbonates: Relevance to Astrobiology

    NASA Astrophysics Data System (ADS)

    Shapiro, Russell Scott

    2004-12-01

    Recovery of prokaryotic body fossils from methane seep carbonates such as those of the Cretaceous Tepee Buttes of Colorado serves as a model for sampling in future astrobiological missions. The fossils, found primarily at the interface between paragenetic fabrics, suggest a sharp physicochemical gradient. Evidence of these microbial fossils occurs at a variety of scales. In the field, microbialite is found as meter-scale thrombolitic zones and centimeterscale stromatolitic crusts lining voids inferred to be the sites of ancient methane seepage. Petrographic fabrics suggestive of microbialite include indistinct peloids (0.1-1 mm in diameter) and crusts of authigenic micrite. Primary evidence obtained from scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy analysis comprises pinnate bacteria (0.3 µm in diameter and 1-1.5 µm long), sheaths (2-4 µm in diameter), coccoids (0.5-1 µm in diameter, up to 40 per cluster), and the presence of framboidal pyrite (6-8 µm in diameter). These results are in agreement with studies of other ancient and modern seeps and suggest a morphological conservatism of microbial form that can be incorporated into studies of extraterrestrial environments where it is presumed that reduced gases drive the metabolic activity of prokaryote-like organisms. Target areas that could serve as conduits for reduced gas seeps include tectonic or impact-driven faulting, zones of cryosphere melting, or other disruptions in crustal coherence. Ancient seeps, preserved as localized anomalous evaporite deposits in the sedimentary cover, could be detected by remote sensing. Astrobiology 4, 438-449.

  10. Honeggeriella complexa gen. et sp. nov., a heteromerous lichen from the Lower Cretaceous of Vancouver Island (British Columbia, Canada).

    PubMed

    Matsunaga, Kelly K S; Stockey, Ruth A; Tomescu, Alexandru M F

    2013-02-01

    Colonists of even the most inhospitable environments, lichens are present in all terrestrial ecosystems. Because of their ecological versatility and ubiquity, they have been considered excellent candidates for early colonizers of terrestrial environments. Despite such predictions, good preservation potential, and the extant diversity of lichenized fungi, the fossil record of lichen associations is sparse. Unequivocal lichen fossils are rare due, in part, to difficulties in ascertaining the presence of both symbionts and in characterizing their interactions. This study describes an exceptionally well-preserved heteromerous lichen from the Lower Cretaceous of Vancouver Island. The fossil occurs in a marine carbonate concretion collected from the Apple Bay locality on Vancouver Island, British Columbia, and was prepared for light microscopy and SEM using the cellulose acetate peel technique. The lichen, Honeggeriella complexa gen. et sp. nov., is formed by an ascomycete mycobiont and a chlorophyte photobiont, and exhibits heteromerous thallus organization. This is paired with a mycobiont-photobiont interface characterized by intracellular haustoria, previously not documented in the fossil record. Honeggeriella adds a lichen component to one of the richest and best characterized Early Cretaceous floras and provides a significant addition to the sparse fossil record of lichens. As a heteromerous chlorolichen, it bridges the >350 million-year gap between previously documented Early Devonian and Eocene occurrences.

  11. Isotope and elemental geochemistry of Cretaceous fossiliferous concretions (Santana Formation, Brazil)

    NASA Astrophysics Data System (ADS)

    Heimhofer, Ulrich; Meister, Patrick; Bernasconi, Stefano M.; Ariztegui, Daniel; Martill, David M.; Schwark, Lorenz

    2014-05-01

    Exceptional three-dimensional fossil preservation (incl. phosphatization of soft-tissues) within organic carbon-rich mudstones is often associated with the formation of a protective carbonate shell surrounding the fossil specimen. Examples for this type of preservation are the Early Cretaceous fishes, turtles and pterosaurs from the Brazilian Santana Formation. Numerous studies proposed different conceptual models for concretion formation. Having new state-of-the-art geochemical tools at hand we revisited these models for the Santana Formation as an exemplary case. Differential compaction clearly indicates early precipitation of micritic calcite surrounding a central cavity containing the still decomposing fossil. The presence of pyrite forming a circular rim around the fossil and carbonate with negative carbon isotope compositions suggest intense sulphate reduction whereby the production of ammonium from the decay of proteins led to an increased alkalinity, which induced early carbonate precipitation. By means of micro-XRF scanning we found that pyrite is absent from the interior part of the concretions and that total iron content is very low, which indicate absence of sulphate reduction at the center of the concretions and possibly local onset of methanogenesis. We postulate that the central cavity may even have been filled with methane gas that evolved from the decaying animal. Methane diffusing outward was anaerobically oxidized in the surrounding sulphate reduction zone. Carbonate clumped isotopes revealed that micritic calcite formed early, but that these early precipitates are overprinted by two different late diagenetic cements precipitated at elevated temperatures. The occurrence of an outermost "cone-in-cone" calcite rim can be associated with burial showing temperatures of up to 60°C. Strontium-isotope ratios of matrix calcite and cement phases show radiogenic values (0.710416 to 0.712465), which are significantly higher than typical marine Cretaceous

  12. The late early Miocene Sabine River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manning, E.

    Work on a new late early Miocene vertebrate fossil site, in a paleochannel deposit of the upper Carnahan Bayou Member of the lower Fleming Formation, has revealed unexpected data on the course and nature of the Sabine River of that time. Screen washing for smaller vertebrate remains at the site, just west of the Sabine River in Newton County, central eastern Texas, has resulted in the recovery of early Permian, Early Cretaceous, Late Cretaceous (Maestrichtian), Paleocene/Eocene, late Eocene, and Oligocene/Miocene fossils, in addition to the main early Miocene fauna. The reworked fossils, as well as distinctive mineral grains, show thatmore » the late early Miocene Sabine River was connected to the Texas/Oklahoma/Arkansas boundary section of the Red River, as well as to rivers draining the southern Ouachita Mountains. These rivers must have joined the Texas/Louisiana boundary section of the Sabine River somewhere in northwest Louisiana at that time. This suggests that the Louisiana section of the present Red River pirated the Texas/Oklahoma/Arkansas boundary section of the river some time after the early Miocene. The preservation of recognizable fossils transported hundreds of miles in a large river itself requires explanation. It is speculated here that the late early Miocene Sabine River incorporated a large amount of the then recently deposited volcanic ash from the Trans-Pecos Volcanic Field. Montmorillonite clay from the altered volcanic ash would have made the river very turbid, which could have allowed coarse sand-sized particles to be carried in the suspended load of the river, rather than in its bed load (where they would have been destroyed by the rolling chert gravel). Additional evidence for such long-distance fossil transport in the late early Miocene rivers of the western Gulf Coastal Plain comes from the abundant Cretaceous fossils of the upper Oakville Formation of southeast Texas and the Siphonina davisi zone of the southeast Texas subsurface.« less

  13. Mid-Cretaceous amber fossils illuminate the past diversity of tropical lizards.

    PubMed

    Daza, Juan D; Stanley, Edward L; Wagner, Philipp; Bauer, Aaron M; Grimaldi, David A

    2016-03-01

    Modern tropical forests harbor an enormous diversity of squamates, but fossilization in such environments is uncommon and little is known about tropical lizard assemblages of the Mesozoic. We report the oldest lizard assemblage preserved in amber, providing insight into the poorly preserved but potentially diverse mid-Cretaceous paleotropics. Twelve specimens from the Albian-Cenomanian boundary of Myanmar (99 Ma) preserve fine details of soft tissue and osteology, and high-resolution x-ray computed tomography permits detailed comparisons to extant and extinct lizards. The extraordinary preservation allows several specimens to be confidently assigned to groups including stem Gekkota and stem Chamaleonidae. Other taxa are assignable to crown clades on the basis of similar traits. The detailed preservation of osteological and soft tissue characters in these specimens may facilitate their precise phylogenetic placement, making them useful calibration points for molecular divergence time estimates and potential keys for resolving conflicts in higher-order squamate relationships.

  14. Mid-Cretaceous amber fossils illuminate the past diversity of tropical lizards

    PubMed Central

    Daza, Juan D.; Stanley, Edward L.; Wagner, Philipp; Bauer, Aaron M.; Grimaldi, David A.

    2016-01-01

    Modern tropical forests harbor an enormous diversity of squamates, but fossilization in such environments is uncommon and little is known about tropical lizard assemblages of the Mesozoic. We report the oldest lizard assemblage preserved in amber, providing insight into the poorly preserved but potentially diverse mid-Cretaceous paleotropics. Twelve specimens from the Albian-Cenomanian boundary of Myanmar (99 Ma) preserve fine details of soft tissue and osteology, and high-resolution x-ray computed tomography permits detailed comparisons to extant and extinct lizards. The extraordinary preservation allows several specimens to be confidently assigned to groups including stem Gekkota and stem Chamaleonidae. Other taxa are assignable to crown clades on the basis of similar traits. The detailed preservation of osteological and soft tissue characters in these specimens may facilitate their precise phylogenetic placement, making them useful calibration points for molecular divergence time estimates and potential keys for resolving conflicts in higher-order squamate relationships. PMID:26973870

  15. Cretaceous flowers of Nymphaeaceae and implications for complex insect entrapment pollination mechanisms in early angiosperms.

    PubMed

    Gandolfo, M A; Nixon, K C; Crepet, W L

    2004-05-25

    Based on recent molecular systematics studies, the water lily lineage (Nymphaeales) provides an important key to understanding ancestral angiosperm morphology and is of considerable interest in the context of angiosperm origins. Therefore, the fossil record of Nymphaeales potentially provides evidence on both the timing and nature of diversification of one of the earliest clades of flowering plants. Recent fossil evidence of Turonian age (approximately 90 million years B.P.) includes fossil flowers with characters that, upon rigorous analysis, firmly place them within Nymphaeaceae. Unequivocally the oldest floral record of the Nymphaeales, these fossils are closely related to the modern Nymphaealean genera Victoria (the giant Amazon water lily) and Euryale. Although the fossils are much smaller than their modern relatives, the precise and dramatic correspondence between the fossil floral morphology and that of modern Victoria flowers suggests that beetle entrapment pollination was present in the earliest part of the Late Cretaceous.

  16. Early Cretaceous ice rafting and climate zonation in Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frakes, L.A.; Alley, N.F.; Deynoux, M.

    1995-07-01

    Lower Cretaceous (Valanginian to Albian) strata of the southwestern Eromanga and Carpentaria basins of central and northern Australia, respectively, provide evidence of strongly seasonal climates at high paleolatitudes. These include dispersed clasts (lonestones) in fine sediments and pseudomorphs of calcite after ikaite (glendonites), the latter being known to form only at temperatures below about 7{degrees}C. Rafting is regarded as the transport mechanism for clasts up to boulder size (lonestones) enclosed within dark mudrocks; this interpretation rests on rare occurrences of penetration by clasts into substrate layers. Driftwood and large floating algae are eliminated as possible rafts because fossil wood ismore » found mainly concentrated in nearshore areas of the basins and large algal masses have not been observed. Rafting by icebergs is considered unlikely in view of the global lack of tillites and related glacial deposits of this age. Our interpretation is that seasonal ice, formed in winter along stream courses and strandlines, incorporated clasts which, during the melt season, were dropped into muddy sediments in both basins. Eromanga fine-sediment and concentrations of large clasts and associated sand lenses, both lying above local erosion surfaces. In the Carpentaria Basin, local dumping of sediment from raft surfaces resulted in accumulation of pods of small clasts. Three zones can be identified for the Early Cretaceous climate of eastern Australia: (1) a very cold southern region, at latitudes above about 72{degrees} S, characterized by meteoric waters possibly originating as Antarctic glacial meltwaters; (2) a zone of strongly seasonal climates, with freezing winters and warm summers, between about 72{degrees} and 53{degrees} S.Lat.; and (3) a mid-latitude zone (below about 50{degrees} S. Lat.), where freezing temperatures were not common. 60 refs., 7 figs.« less

  17. Cretaceous biostratigraphy in the Wyoming thrust belt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, D.J.; Jacobson, S.R.

    Biostratigraphy is essential to exploration for oil and gas in the Wyoming thrust belt because fossils provide a temporal framework for interpretation of events of faulting, erosion, sedimentation, and the development of hydrocarbon traps and migration pathways. In the Cretaceous section, fossils are especially useful for dating and correlating repetitive facies of different ages in structurally complex terrain. The biostratigraphic zonation for the region is based on megafossils (chiefly ammonites), which permit accurate dating and correlation of outcrop sections, and which have been calibrated with the radiometric time scale for the Western Interior. Molluscan and vertebrate zone fossils are difficultmore » to obtain from the subsurface, however, and ammonities are restricted to rocks of margin origin. Palynomorphs (plant microfossils) have proven to be the most valuable fossils in investigations of stratigraphy and structures in the subsurface of the thrust belt because palynomorphs can be recovered from drill cuttings. Palynomorphs also are found in both marine and nonmarine rocks and can be used for correlation between facies. In this paper, stratigraphic ranges of selected Cretaceous marine and nonmarine palynomorphs in previously designated reference sections in Fossil Basin, Wyoming, are correlated with the occurrence of ammonities and other zone fossils in the same sections. These correlations can be related to known isotopic ages, and they contribute to the calibration of palynomorph ranges in the Cretaceous of the Western Interior.« less

  18. Debris-carrying camouflage among diverse lineages of Cretaceous insects.

    PubMed

    Wang, Bo; Xia, Fangyuan; Engel, Michael S; Perrichot, Vincent; Shi, Gongle; Zhang, Haichun; Chen, Jun; Jarzembowski, Edmund A; Wappler, Torsten; Rust, Jes

    2016-06-01

    Insects have evolved diverse methods of camouflage that have played an important role in their evolutionary success. Debris-carrying, a behavior of actively harvesting and carrying exogenous materials, is among the most fascinating and complex behaviors because it requires not only an ability to recognize, collect, and carry materials but also evolutionary adaptations in related morphological characteristics. However, the fossil record of such behavior is extremely scarce, and only a single Mesozoic example from Spanish amber has been recorded; therefore, little is known about the early evolution of this complicated behavior and its underlying anatomy. We report a diverse insect assemblage of exceptionally preserved debris carriers from Cretaceous Burmese, French, and Lebanese ambers, including the earliest known chrysopoid larvae (green lacewings), myrmeleontoid larvae (split-footed lacewings and owlflies), and reduviids (assassin bugs). These ancient insects used a variety of debris material, including insect exoskeletons, sand grains, soil dust, leaf trichomes of gleicheniacean ferns, wood fibers, and other vegetal debris. They convergently evolved their debris-carrying behavior through multiple pathways, which expressed a high degree of evolutionary plasticity. We demonstrate that the behavioral repertoire, which is associated with considerable morphological adaptations, was already widespread among insects by at least the Mid-Cretaceous. Together with the previously known Spanish specimen, these fossils are the oldest direct evidence of camouflaging behavior in the fossil record. Our findings provide a novel insight into early evolution of camouflage in insects and ancient ecological associations among plants and insects.

  19. Mycophagous rove beetles highlight diverse mushrooms in the Cretaceous

    PubMed Central

    Cai, Chenyang; Leschen, Richard A. B.; Hibbett, David S; Xia, Fangyuan; Huang, Diying

    2017-01-01

    Agaricomycetes, or mushrooms, are familiar, conspicuous and morphologically diverse Fungi. Most Agaricomycete fruiting bodies are ephemeral, and their fossil record is limited. Here we report diverse gilled mushrooms (Agaricales) and mycophagous rove beetles (Staphylinidae) from mid-Cretaceous Burmese amber, the latter belonging to Oxyporinae, modern members of which exhibit an obligate association with soft-textured mushrooms. The discovery of four mushroom forms, most with a complete intact cap containing distinct gills and a stalk, suggests evolutionary stasis of body form for ∼99 Myr and highlights the palaeodiversity of Agaricomycetes. The mouthparts of early oxyporines, including enlarged mandibles and greatly enlarged apical labial palpomeres with dense specialized sensory organs, match those of modern taxa and suggest that they had a mushroom feeding biology. Diverse and morphologically specialized oxyporines from the Early Cretaceous suggests the existence of diverse Agaricomycetes and a specialized trophic interaction and ecological community structure by this early date. PMID:28300055

  20. The semi-aquatic pondweed bugs of a Cretaceous swamp.

    PubMed

    Sánchez-García, Alba; Nel, André; Arillo, Antonio; Solórzano Kraemer, Mónica M

    2017-01-01

    Pondweed bugs (Hemiptera: Mesoveliidae), considered a sister group to all other Gerromorpha, are exceedingly rare as fossils. Therefore, each new discovery of a fossil mesoveliid is of high interest, giving new insight into their early evolutionary history and diversity and enabling the testing of their proposed relationships. Here, we report the discovery of new mesoveliid material from Spanish Lower Cretaceous (Albian) amber, which is the first such find in Spanish amber. To date, fossil records of this family only include one species from French Kimmeridgian as compression fossils, two species in French amber (Albian-Cenomanian boundary), and one in Dominican amber (Miocene). The discovery of two males and one female described and figured as Glaesivelia pulcherrima Sánchez-García & Solórzano Kraemer gen. et sp. n., and a single female described and figured as Iberovelia quisquilia Sánchez-García & Nel, gen. et sp. n., reveals novel combinations of traits related to some genera currently in the subfamily Mesoveliinae. Brief comments about challenges facing the study of fossil mesoveliids are provided, showing the necessity for a revision of the existing phylogenetic hypotheses. Some of the specimens were studied using infrared microscopy, a promising alternative to the systematic study of organisms preserved in amber that cannot be clearly visualised. The new taxa significantly expand the fossil record of the family and shed new light on its palaeoecology. The fossils indicate that Mesoveliidae were certainly diverse by the Cretaceous and that numerous tiny cryptic species living in humid terrestrial to marginal aquatic habitats remain to be discovered. Furthermore, the finding of several specimens as syninclusions suggests aggregative behaviour, thereby representing the earliest documented evidence of such ethology.

  1. Diatom life cycles and ecology in the Cretaceous.

    PubMed

    Jewson, David H; Harwood, David M

    2017-06-01

    The earliest known diatom fossils with well-preserved siliceous frustules are from Lower Cretaceous neritic marine deposits in Antarctica. In this study, we analyzed the cell wall structure to establish whether their cell and life cycles were similar to modern forms. At least two filamentous species (Basilicostephanus ornatus and Archepyrgus melosiroides) had girdle band structures that functioned during cell division in a similar way to present day Aulacoseira species. Also, size analyses of cell diameter indicated that the cyclic process of size decline and size restoration used to time modern diatom life cycles was present in five species from the Lower Cretaceous (B. ornatus, A. melosiroides, Gladius antiquus, Ancylopyrgus reticulatus, Kreagra forfex) as well as two species from Upper Cretaceous deposits (Trinacria anissimowii and Eunotogramma fueloepi) from the Southwest Pacific. The results indicate that the "Diatom Sex Clock" was present from an early evolutionary stage. Other ecological adaptations included changes in mantle height and coiling. Overall, the results suggest that at least some of the species in these early assemblages are on a direct ancestral line to modern forms. © 2017 Phycological Society of America.

  2. The late Cretaceous Arman flora of Magadan oblast, Northeastern Russia

    NASA Astrophysics Data System (ADS)

    Herman, A. B.; Golovneva, L. B.; Shczepetov, S. V.; Grabovsky, A. A.

    2016-12-01

    The Arman flora from the volcanogenic-sedimentary beds of the Arman Formation is systematically studied using materials from the Arman River basin and the Nelkandya-Khasyn interfluve (Magadan oblast, Northeastern Russia). Seventy-three species of fossil plants belonging to 49 genera are described. They consist of liverworts, horsetails, ferns, seed ferns, cycadaleans, bennettitaleans, ginkgoaleans, czekanowskialeans, conifers, gymnosperms of uncertain systematic affinity, and angiosperms. The Arman flora shows a unique combination, with relatively ancient Early Cretaceous ferns and gymnosperms occurring alongside younger Late Cretaceous plants, primarily angiosperms. The similarity of the Arman flora to the Penzhina and Kaivayam floras of northwestern Kamchatka and the Tylpegyrgynai flora of the Pekul'nei Ridge allows the Arman flora to be dated as Turonian and Coniacian (Late Cretaceous), which is corroborated by isotopic (U-Pb and 40Ar/39Ar) age determination for the plant-bearing layers.

  3. A Ceratopsian Dinosaur from the Lower Cretaceous of Western North America, and the Biogeography of Neoceratopsia

    PubMed Central

    Farke, Andrew A.; Maxwell, W. Desmond; Cifelli, Richard L.; Wedel, Mathew J.

    2014-01-01

    The fossil record for neoceratopsian (horned) dinosaurs in the Lower Cretaceous of North America primarily comprises isolated teeth and postcrania of limited taxonomic resolution, hampering previous efforts to reconstruct the early evolution of this group in North America. An associated cranium and lower jaw from the Cloverly Formation (?middle–late Albian, between 104 and 109 million years old) of southern Montana is designated as the holotype for Aquilops americanus gen. et sp. nov. Aquilops americanus is distinguished by several autapomorphies, including a strongly hooked rostral bone with a midline boss and an elongate and sharply pointed antorbital fossa. The skull in the only known specimen is comparatively small, measuring 84 mm between the tips of the rostral and jugal. The taxon is interpreted as a basal neoceratopsian closely related to Early Cretaceous Asian taxa, such as Liaoceratops and Auroraceratops. Biogeographically, A. americanus probably originated via a dispersal from Asia into North America; the exact route of this dispersal is ambiguous, although a Beringian rather than European route seems more likely in light of the absence of ceratopsians in the Early Cretaceous of Europe. Other amniote clades show similar biogeographic patterns, supporting an intercontinental migratory event between Asia and North America during the late Early Cretaceous. The temporal and geographic distribution of Upper Cretaceous neoceratopsians (leptoceratopsids and ceratopsoids) suggests at least intermittent connections between North America and Asia through the early Late Cretaceous, likely followed by an interval of isolation and finally reconnection during the latest Cretaceous. PMID:25494182

  4. Freshwater Fossil Pearls from the Nihewan Basin, Early Early Pleistocene.

    PubMed

    Li, Su-Ping; Yao, Pei-Yi; Li, Jin-Feng; Ferguson, David Kay; Min, Long-Rui; Chi, Zhen-Qing; Wang, Yong; Yao, Jian-Xin; Sha, Jin-Geng

    2016-01-01

    Fossil blister pearls attached to the shells of an Anodonta mollusk from China, early Early Pleistocene, are reported here for the first time. The pearls were investigated in detail using a variety of methods. Micro-CT scanning of the fossil pearls was carried out to discover the inner structure and the pearl nucleus. Using CTAn software, changes in the gray levels of the biggest pearl, which reflect the changing density of the material, were investigated. The results provide us with some clues on how these pearls were formed. Sand grains, shell debris or material with a similar density could have stimulated the development of these pearls. X-ray diffraction analysis of one fossil pearl and the shell to which it was attached reveals that only aragonite exists in both samples. The internal structures of our fossil shells and pearls were investigated using a Scanning Electron Microscope. These investigations throw some light on pearl development in the past.

  5. Rainfall seasonality on the Indian subcontinent during the Cretaceous greenhouse.

    PubMed

    Ghosh, Prosenjit; Prasanna, K; Banerjee, Yogaraj; Williams, Ian S; Gagan, Michael K; Chaudhuri, Atanu; Suwas, Satyam

    2018-05-31

    The Cretaceous greenhouse climate was accompanied by major changes in Earth's hydrological cycle, but seasonally resolved hydroclimatic reconstructions for this anomalously warm period are rare. We measured the δ 18 O and CO 2 clumped isotope Δ 47 of the seasonal growth bands in carbonate shells of the mollusc Villorita cyprinoides (Black Clam) growing in the Cochin estuary, in southern India. These tandem records accurately reconstruct seasonal changes in sea surface temperature (SST) and seawater δ 18 O, allowing us to document freshwater discharge into the estuary, and make inferences about rainfall amount. The same analytical approach was applied to well-preserved fossil remains of the Cretaceous (Early Maastrichtian) mollusc Phygraea (Phygraea) vesicularis from the nearby Kallankuruchchi Formation in the Cauvery Basin of southern India. The palaeoenvironmental record shows that, unlike present-day India, where summer rainfall predominates, most rainfall in Cretaceous India occurred in winter. During the Early Maastrichtian, the Indian plate was positioned at ~30°S latitude, where present-day rainfall and storm activity is also concentrated in winter. The good match of the Cretaceous climate and present-day climate at ~30°S suggests that the large-scale atmospheric circulation and seasonal hydroclimate patterns were similar to, although probably more intense than, those at present.

  6. Snakefly diversity in Early Cretaceous amber from Spain (Neuropterida, Raphidioptera)

    PubMed Central

    la Fuente, Ricardo Pérez-de; Peñalver, Enrique; Delclòs, Xavier; Engel, Michael S.

    2012-01-01

    Abstract The Albian amber from Spain presently harbors the greatest number and diversity of amber adult fossil snakeflies (Raphidioptera). Within Baissopteridae, Baissoptera? cretaceoelectra sp. n., from the Peñacerrada I outcrop (Moraza, Burgos), is the first amber inclusion belonging to the family and described from western Eurasia, thus substantially expanding the paleogeographical range of the family formerly known from the Cretaceous of Brazil and eastern Asia. Within the family Mesoraphidiidae, Necroraphidia arcuata gen. et sp. n. and Amarantoraphidia ventolina gen. et sp. n. are described from the El Soplao outcrop (Rábago, Cantabria), whereas Styporaphidia? hispanica sp. n. and Alavaraphidia imperterrita gen. et sp. n. are describedfrom Peñacerrada I. In addition, three morphospecies are recognized from fragmentary remains. The following combinations are restored: Yanoraphidia gaoi Ren, 1995, stat. rest., Mesoraphidia durlstonensis Jepson, Coram and Jarzembowski, 2009, stat. rest., and Mesoraphidia heteroneura Ren, 1997, stat. rest. The singularity of this rich paleodiversity could be due to the paleogeographic isolation of the Iberian territory and also the prevalence of wildfires during the Cretaceous. PMID:22787417

  7. Estimating Latest Cretaceous and Tertiary Atmospheric PCO2 from Stomatal Indices

    NASA Astrophysics Data System (ADS)

    Royer, D. L.; Wing, S. L.; Beerling, D. J.

    2001-05-01

    Most modern C3 seed plants show an inverse relationship between PCO2 and stomatal index (SI), where SI is the proportion of epidermal cells that are stomatal packages. This plant-atmosphere response therefore provides a reliable approach for estimating paleo-CO2 levels. Since stomatal responses to CO2 are generally species-specific, one is limited in paleo-reconstructions to species that exist both in the fossil record and living today. Fossils morphologically similar to living Ginkgo biloba and Metasequoia glyptostroboides extend back to the early and late Cretaceous, respectively, indicating that the fossil and living forms are very closely related. Measurements of SI made on fossil Ginkgo and Metasequoia were calibrated with historical collections of G. biloba and M. glyptostroboides leaves from sites that developed during the anthropogenically-driven CO2 increases of the past 145 years (288-369 ppmv) and with saplings of G. biloba and M. glyptostroboides grown in CO2 controlled growth chambers (350-800 ppmv). Both nonlinear regressions are highly significant (Ginkgo: n = 40, r2 = 0.91; Metasequoia: n = 18; r2 = 0.85). Results from a sequence of 23 latest Cretaceous to early Eocene-aged Ginkgo-bearing sites indicate that CO2 remained between 300 and 450 ppmv with the exception of one high estimate ( ~800 ppmv) near the Paleocene/Eocene boundary, and results from 4 middle Miocene-aged Ginkgo- and Metasequoia-bearing sites indicate that CO2 was between 320 and 400 ppmv. If correct, the CO2 values estimated here are too low to explain via the CO2 greenhouse effect alone the higher global mean temperatures (e.g., 3-4 ° C for the early Eocene) inferred from models and geological data for these two intervals.

  8. The semi-aquatic pondweed bugs of a Cretaceous swamp

    PubMed Central

    Sánchez-García, Alba; Nel, André; Arillo, Antonio

    2017-01-01

    Pondweed bugs (Hemiptera: Mesoveliidae), considered a sister group to all other Gerromorpha, are exceedingly rare as fossils. Therefore, each new discovery of a fossil mesoveliid is of high interest, giving new insight into their early evolutionary history and diversity and enabling the testing of their proposed relationships. Here, we report the discovery of new mesoveliid material from Spanish Lower Cretaceous (Albian) amber, which is the first such find in Spanish amber. To date, fossil records of this family only include one species from French Kimmeridgian as compression fossils, two species in French amber (Albian-Cenomanian boundary), and one in Dominican amber (Miocene). The discovery of two males and one female described and figured as Glaesivelia pulcherrima Sánchez-García & Solórzano Kraemer gen. et sp. n., and a single female described and figured as Iberovelia quisquilia Sánchez-García & Nel, gen. et sp. n., reveals novel combinations of traits related to some genera currently in the subfamily Mesoveliinae. Brief comments about challenges facing the study of fossil mesoveliids are provided, showing the necessity for a revision of the existing phylogenetic hypotheses. Some of the specimens were studied using infrared microscopy, a promising alternative to the systematic study of organisms preserved in amber that cannot be clearly visualised. The new taxa significantly expand the fossil record of the family and shed new light on its palaeoecology. The fossils indicate that Mesoveliidae were certainly diverse by the Cretaceous and that numerous tiny cryptic species living in humid terrestrial to marginal aquatic habitats remain to be discovered. Furthermore, the finding of several specimens as syninclusions suggests aggregative behaviour, thereby representing the earliest documented evidence of such ethology. PMID:28890856

  9. Early Evolution of Modern Birds Structured by Global Forest Collapse at the End-Cretaceous Mass Extinction.

    PubMed

    Field, Daniel J; Bercovici, Antoine; Berv, Jacob S; Dunn, Regan; Fastovsky, David E; Lyson, Tyler R; Vajda, Vivi; Gauthier, Jacques A

    2018-06-04

    The fossil record and recent molecular phylogenies support an extraordinary early-Cenozoic radiation of crown birds (Neornithes) after the Cretaceous-Paleogene (K-Pg) mass extinction [1-3]. However, questions remain regarding the mechanisms underlying the survival of the deepest lineages within crown birds across the K-Pg boundary, particularly since this global catastrophe eliminated even the closest stem-group relatives of Neornithes [4]. Here, ancestral state reconstructions of neornithine ecology reveal a strong bias toward taxa exhibiting predominantly non-arboreal lifestyles across the K-Pg, with multiple convergent transitions toward predominantly arboreal ecologies later in the Paleocene and Eocene. By contrast, ecomorphological inferences indicate predominantly arboreal lifestyles among enantiornithines, the most diverse and widespread Mesozoic avialans [5-7]. Global paleobotanical and palynological data show that the K-Pg Chicxulub impact triggered widespread destruction of forests [8, 9]. We suggest that ecological filtering due to the temporary loss of significant plant cover across the K-Pg boundary selected against any flying dinosaurs (Avialae [10]) committed to arboreal ecologies, resulting in a predominantly non-arboreal post-extinction neornithine avifauna composed of total-clade Palaeognathae, Galloanserae, and terrestrial total-clade Neoaves that rapidly diversified into the broad range of avian ecologies familiar today. The explanation proposed here provides a unifying hypothesis for the K-Pg-associated mass extinction of arboreal stem birds, as well as for the post-K-Pg radiation of arboreal crown birds. It also provides a baseline hypothesis to be further refined pending the discovery of additional neornithine fossils from the Latest Cretaceous and earliest Paleogene. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Investigating the stratigraphy and palaeoenvironments for a suite of newly discovered mid-Cretaceous vertebrate fossil-localities in the Winton Formation, Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Tucker, Ryan T.; Roberts, Eric M.; Darlington, Vikie; Salisbury, Steven W.

    2017-08-01

    The Winton Formation of central Queensland is recognized as a quintessential source of mid-Cretaceous terrestrial faunas and floras in Australia. However, sedimentological investigations linking fossil assemblages and palaeoenvironments across this unit remain limited. The intent of this study was to interpret depositional environments and improve stratigraphic correlations between multiple fossil localities within the preserved Winton Formation in the Eromanga Basin, including Isisford, Lark Quarry, and Bladensburg National Park. Twenty-three facies and six repeated facies associations were documented, indicating a mosaic of marginal marine to inland alluvial depositional environments. These developed synchronously with the final regression of the Eromanga Seaway from central Australia during the late Albian-early Turonian. Investigations of regional- and local-scale structural features and outcrop, core and well analysis were combined with detrital zircon provenance signatures to help correlate stratigraphy and vertebrate faunas across the basin. Significant palaeoenvironmental differences exist between the lower and upper portions of the preserved Winton Formation, warranting informal subdivisions; a lower tidally influenced fluvial-deltaic member and an upper inland alluvial member. This work further demonstrates that the Isisford fauna is part of the lower member of the preserved Winton Formation; whereas, fossil localities around Winton, including Lark Quarry and Bladensburg National Park, are part of the upper member of the Winton Formation. These results permit a more meaningful framework for both regional and global comparisons of the Winton flora and fauna.

  11. New Mid-Cretaceous (Latest Albian) Dinosaurs from Winton, Queensland, Australia

    PubMed Central

    Hocknull, Scott A.; White, Matt A.; Tischler, Travis R.; Cook, Alex G.; Calleja, Naomi D.; Sloan, Trish; Elliott, David A.

    2009-01-01

    Background Australia's dinosaurian fossil record is exceptionally poor compared to that of other similar-sized continents. Most taxa are known from fragmentary isolated remains with uncertain taxonomic and phylogenetic placement. A better understanding of the Australian dinosaurian record is crucial to understanding the global palaeobiogeography of dinosaurian groups, including groups previously considered to have had Gondwanan origins, such as the titanosaurs and carcharodontosaurids. Methodology/Principal Findings We describe three new dinosaurs from the late Early Cretaceous (latest Albian) Winton Formation of eastern Australia, including; Wintonotitan wattsi gen. et sp. nov., a basal titanosauriform; Diamantinasaurus matildae gen. et sp. nov., a derived lithostrotian titanosaur; and Australovenator wintonensis gen. et sp. nov., an allosauroid. We compare an isolated astragalus from the Early Cretaceous of southern Australia; formerly identified as Allosaurus sp., and conclude that it most-likely represents Australovenator sp. Conclusion/Significance The occurrence of Australovenator from the Aptian to latest Albian confirms the presence in Australia of allosauroids basal to the Carcharodontosauridae. These new taxa, along with the fragmentary remains of other taxa, indicate a diverse Early Cretaceous sauropod and theropod fauna in Australia, including plesiomorphic forms (e.g. Wintonotitan and Australovenator) and more derived forms (e.g. Diamantinasaurus). PMID:19584929

  12. Exceptional preservation of tiny embryos documents seed dormancy in early angiosperms.

    PubMed

    Friis, Else Marie; Crane, Peter R; Pedersen, Kaj Raunsgaard; Stampanoni, Marco; Marone, Federica

    2015-12-24

    The rapid diversification of angiosperms through the Early Cretaceous period, between about 130-100 million years ago, initiated fundamental changes in the composition of terrestrial vegetation and is increasingly well understood on the basis of a wealth of palaeobotanical discoveries over the past four decades and their integration with improved knowledge of living angiosperms. Prevailing hypotheses, based on evidence both from living and from fossil plants, emphasize that the earliest angiosperms were plants of small stature with rapid life cycles that exploited disturbed habitats in open, or perhaps understorey, conditions. However, direct palaeontogical data relevant to understanding the seed biology and germination ecology of Early Cretaceous angiosperms are sparse. Here we report the discovery of embryos and their associated nutrient storage tissues in exceptionally well-preserved angiosperm seeds from the Early Cretaceous. Synchrotron radiation X-ray tomographic microscopy of the fossil embryos from many taxa reveals that all were tiny at the time of dispersal. These results support hypotheses based on extant plants that tiny embryos and seed dormancy are basic for angiosperms as a whole. The minute size of the fossil embryos, and the modest nutrient storage tissues dictated by the overall small seed size, is also consistent with the interpretation that many early angiosperms were opportunistic, early successional colonizers of disturbance-prone habitats.

  13. Cretaceous Vertebrate Tracksites - Korean Cretaceous Dinosaur Coast World Heritage Nomination Site

    NASA Astrophysics Data System (ADS)

    Huh, M.; Woo, K. S.; Lim, J. D.; Paik, I. S.

    2009-04-01

    South Korea is one of the best known regions in the world for Cretaceous fossil footprints, which are also world-renowned. Korea has produced more scientifically named bird tracks (ichnotaxa) than any other region in the world. It has also produced the world's largest pterosaur tracks. Dinosaur tracksites also have the highest frequency of vertebrate track-bearing levels currently known in any stratigraphic sequence. Among the areas that have the best track records, and the greatest scientific significance with best documentation, Korea ranks very highly. Objective analysis of important individual tracksites and tracksite regions must be based on multiple criteria including: size of site, number of tracks, trackways and track bearing levels, number of valid named ichnotaxa including types, number of scientific publications, quality of preservation. The unique and distinctive dinosaur tracksites are known as one of the world's most important dinosaur track localities. In particular, the dinosaur track sites in southern coastal area of Korea are very unique. In the sites, we have excavated over 10,000 dinosaur tracks. The Hwasun sites show diverse gaits with unusual walking patterns and postures in some tracks. The pterosaur tracks are the most immense in the world. The longest pterosaur trackway yet known from any track sites suggests that pterosaurs were competent terrestrial locomotors. This ichnofauna contains the first pterosaur tracks reported from Asia. The Haenam Uhangri pterosaur assigns to a new genus Haenamichnus which accomodates the new ichnospecies, Haenamichnus uhangriensis. At least 12 track types have been reported from the Haman and Jindong Formations (probably late Lower Cretaceous). These include the types of bird tracks assigned to Koreanornis, Jindongornipes, Ignotornis and Goseongornipes. In addition the bird tracks Hwangsanipes, Uhangrichnus, the pterosaur track Haenamichnus and the dinosaur tracks, Brontopodus, Caririchnium, Minisauripus and

  14. Diverse dinosaur-dominated ichnofaunas from the Potomac Group (Lower Cretaceous) Maryland

    USGS Publications Warehouse

    Stanford, Ray; Lockley, Martin G.; Weems, Robert E.

    2007-01-01

    Until recently fossil footprints were virtually unknown from the Cretaceous of the eastern United States. The discovery of about 300 footprints in iron-rich siliciclastic facies of the Patuxent Formation (Potomac Group) of Aptian age is undoubtedly one of the most significant Early Cretaceous track discoveries since the Paluxy track discoveries in Texas in the 1930s. The Patuxent tracks include theropod, sauropod, ankylosaur and ornithopod dinosaur footprints, pterosaur tracks, and miscellaneous mammal and other vertebrate ichnites that collectively suggest a diversity of about 14 morphotypes. This is about twice the previous maximum estimate for any known Early Cretaceous vertebrate ichnofauna. Among the more distinctive forms are excellent examples of hypsilophodontid tracks and a surprisingly large mammal footprint. A remarkable feature of the Patuxent track assemblage is the high proportion of small tracks indicative of hatchlings, independently verified by the discovery of a hatchling-sized dinosaur. Such evidence suggests the proximity of nest sites. The preservation of such small tracks is very rare in the Cretaceous track record, and indeed throughout most of the Mesozoic.This unusual preservation not only provides us with a window into a diverse Early Cretaceous ecosystem, but it also suggests the potential of such facies to provide ichnological bonanzas. A remarkable feature of the assemblage is that it consists largely of reworked nodules and clasts that may have previously been reworked within the Patuxent Formation. Such unusual contexts of preservation should provide intriguing research opportunities for sedimentologists interested in the diagenesis and taphonomy of a unique track-bearing facies.

  15. Mating and aggregative behaviors among basal hexapods in the Early Cretaceous.

    PubMed

    Sánchez-García, Alba; Peñalver, Enrique; Delclòs, Xavier; Engel, Michael S

    2018-01-01

    Among the many challenges in paleobiology is the inference and reconstruction of behaviors that rarely, if ever, leave a physical trace on the environment that is suitable for fossilization. Of particular significance are those behaviors tied to mating and courtship, individual interactions critical for species integrity and continuance, as well as those for dispersal, permitting the taxon to expand its distribution as well as access new habitats in the face of local or long-term environmental change. In this context, two recently discovered fossils from the Early Cretaceous amber of Spain (ca. 105 mya) give a detailed view of otherwise fleeting ethologies in Collembola. These occurrences are phylogenetically spaced across the class, and from species representing the two major clades of springtails-Symphypleona and Entomobryomorpha. Specifically, we report unique evidence from a symphypleonan male (Pseudosminthurides stoechus Sánchez-García & Engel, 2016) with modified antennae that may have functioned as a clasping organ for securing females during mating on water's surface, and from an aggregation of entomobryomorphan individuals (Proisotoma communis Sánchez-García & Engel, 2016) purportedly representing a swarming episode on the forest floor. We demonstrate that the mating behavioral repertoire in P. stoechus, which is associated with considerable morphological adaptations, likely implied elaborate courtship and maneuvering for guarantee sperm transfer in an epineustic species. These discoveries reveal significant behaviors consistent with modern counterparts and a generalized stasis for some ancient hexapod ethologies associated with complex mating and courtship and social or pre-social aggregations, so critical to specific constancy and dispersal.

  16. Mating and aggregative behaviors among basal hexapods in the Early Cretaceous

    PubMed Central

    Sánchez-García, Alba; Peñalver, Enrique; Delclòs, Xavier

    2018-01-01

    Among the many challenges in paleobiology is the inference and reconstruction of behaviors that rarely, if ever, leave a physical trace on the environment that is suitable for fossilization. Of particular significance are those behaviors tied to mating and courtship, individual interactions critical for species integrity and continuance, as well as those for dispersal, permitting the taxon to expand its distribution as well as access new habitats in the face of local or long-term environmental change. In this context, two recently discovered fossils from the Early Cretaceous amber of Spain (ca. 105 mya) give a detailed view of otherwise fleeting ethologies in Collembola. These occurrences are phylogenetically spaced across the class, and from species representing the two major clades of springtails—Symphypleona and Entomobryomorpha. Specifically, we report unique evidence from a symphypleonan male (Pseudosminthurides stoechus Sánchez-García & Engel, 2016) with modified antennae that may have functioned as a clasping organ for securing females during mating on water’s surface, and from an aggregation of entomobryomorphan individuals (Proisotoma communis Sánchez-García & Engel, 2016) purportedly representing a swarming episode on the forest floor. We demonstrate that the mating behavioral repertoire in P. stoechus, which is associated with considerable morphological adaptations, likely implied elaborate courtship and maneuvering for guarantee sperm transfer in an epineustic species. These discoveries reveal significant behaviors consistent with modern counterparts and a generalized stasis for some ancient hexapod ethologies associated with complex mating and courtship and social or pre-social aggregations, so critical to specific constancy and dispersal. PMID:29466382

  17. The Completeness of the Fossil Record of Mesozoic Birds: Implications for Early Avian Evolution

    PubMed Central

    Brocklehurst, Neil; Upchurch, Paul; Mannion, Philip D.; O'Connor, Jingmai

    2012-01-01

    Many palaeobiological analyses have concluded that modern birds (Neornithes) radiated no earlier than the Maastrichtian, whereas molecular clock studies have argued for a much earlier origination. Here, we assess the quality of the fossil record of Mesozoic avian species, using a recently proposed character completeness metric which calculates the percentage of phylogenetic characters that can be scored for each taxon. Estimates of fossil record quality are plotted against geological time and compared to estimates of species level diversity, sea level, and depositional environment. Geographical controls on the avian fossil record are investigated by comparing the completeness scores of species in different continental regions and latitudinal bins. Avian fossil record quality varies greatly with peaks during the Tithonian-early Berriasian, Aptian, and Coniacian–Santonian, and troughs during the Albian-Turonian and the Maastrichtian. The completeness metric correlates more strongly with a ‘sampling corrected’ residual diversity curve of avian species than with the raw taxic diversity curve, suggesting that the abundance and diversity of birds might influence the probability of high quality specimens being preserved. There is no correlation between avian completeness and sea level, the number of fluviolacustrine localities or a recently constructed character completeness metric of sauropodomorph dinosaurs. Comparisons between the completeness of Mesozoic birds and sauropodomorphs suggest that small delicate vertebrate skeletons are more easily destroyed by taphonomic processes, but more easily preserved whole. Lagerstätten deposits might therefore have a stronger impact on reconstructions of diversity of smaller organisms relative to more robust forms. The relatively poor quality of the avian fossil record in the Late Cretaceous combined with very patchy regional sampling means that it is possible neornithine lineages were present throughout this interval but

  18. The Early Cretaceous Sulfur Isotope Record: New Data, Revised Ages, and Updated Modeling

    NASA Astrophysics Data System (ADS)

    Kristall, B.; Hurtgen, M.; Sageman, B. B.; Jacobson, A. D.

    2015-12-01

    The Early Cretaceous is a time of significant transformation with the continued break-up of Pangea, the emplacement of several LIPs, and a climatic shift from a cool greenhouse to a warm greenhouse. The timing of these major events and their relationship to seawater geochemistry (as recorded in isotope records) is critical for understanding changes in global biogeochemical cycles during this time. Within this context, recent revisions to the Cretaceous portion of the geologic timescale necessitate a reevaluation of the Cretaceous S isotope record as recorded in marine barite (Paytan et al., 2004). We present a revised Early Cretaceous S isotope record and present new δ34Sbarite data that extend the record further back in time and provide more detail during two major S isotope shifts of the Early Cretaceous. The new data maintain the major ~5‰ negative shift but raise questions on the timing and structure of this perturbation. Furthermore, recently updated estimates for global rates of marine microbial sulfate reduction (MSR) (Bowles et al., 2014) and sulfate burial during the Phanerozoic (Halevy et al., 2012) require notable revisions in the fluxes and isotopic values used to model the global S cycle. We present a revised global S cycle box model and reconstruct the evolution of the Early Cretaceous S isotope record primarily through perturbations in volcanic and hydrothermal fluxes (e.g., submarine LIPs). Changes to the weathering and pyrite burial fluxes and the global integrated fractionation factor for MSR are also used to modulate, balance, and smooth the LIP-driven perturbation. The massive evaporite burial during the Late Aptian post dates the major -5‰ shift and has little affect on the modeled S isotope composition of seawater sulfate, despite causing a major drop in sulfate concentration. The S cycle box model is coupled to a Sr cycle box model to provide additional constraints on the magnitude and timing of perturbations within the S isotope record.

  19. Fossil evidence for open, Proteaceae-dominated heathlands and fire in the Late Cretaceous of Australia.

    PubMed

    Carpenter, Raymond J; Macphail, Michael K; Jordan, Gregory J; Hill, Robert S

    2015-12-01

    The origin of biomes is of great interest globally. Molecular phylogenetic and pollen evidence suggest that several plant lineages that now characterize open, burnt habitats of the sclerophyll biome, became established during the Late Cretaceous of Australia. However, whether this biome itself dates to that time is problematic, fundamentally because of the near-absence of relevant, appropriately aged, terrestrial plant macro- or mesofossils. We recovered, identified, and interpreted the ecological significance of fossil pollen, foliar and other remains from a section of core drilled in central Australia, which we dated as Late Campanian-Maastrichtian. The sediments contain plant fossils that indicate nutrient-limited, open, sclerophyllous vegetation and abundant charcoal as evidence of fire. Most interestingly, >30 pollen taxa and at least 12 foliage taxa are attributable to the important Gondwanan family Proteaceae, including several minute, amphistomatic, and sclerophyllous foliage forms consistent with subfamily Proteoideae. Microfossils, including an abundance of Sphagnales and other wetland taxa, provided strong evidence of a fenland setting. The local vegetation also included diverse Ericaceae and Liliales, as well as a range of ferns and gymnosperms. The fossils provide strong evidence in support of hypotheses of great antiquity for fire and open vegetation in Australia, point to extraordinary persistence of Proteaceae that are now emblematic of the Mediterranean-type climate southwestern Australian biodiversity hotspot and raise the profile of open habitats as centers of ancient lineages. © 2015 Botanical Society of America.

  20. Highly specialized mammalian skulls from the Late Cretaceous of South America.

    PubMed

    Rougier, Guillermo W; Apesteguía, Sebastián; Gaetano, Leandro C

    2011-11-02

    Dryolestoids are an extinct mammalian group belonging to the lineage leading to modern marsupials and placentals. Dryolestoids are known by teeth and jaws from the Jurassic period of North America and Europe, but they thrived in South America up to the end of the Mesozoic era and survived to the beginnings of the Cenozoic. Isolated teeth and jaws from the latest Cretaceous of South America provide mounting evidence that, at least in western Gondwana, dryolestoids developed into strongly endemic groups by the Late Cretaceous. However, the lack of pre-Late Cretaceous dryolestoid remains made study of their origin and early diversification intractable. Here we describe the first mammalian remains from the early Late Cretaceous of South America, including two partial skulls and jaws of a derived dryolestoid showing dental and cranial features unknown among any other group of Mesozoic mammals, such as single-rooted molars preceded by double-rooted premolars, combined with a very long muzzle, exceedingly long canines and evidence of highly specialized masticatory musculature. On one hand, the new mammal shares derived features of dryolestoids with forms from the Jurassic of Laurasia, whereas on the other hand, it is very specialized and highlights the endemic, diverse dryolestoid fauna from the Cretaceous of South America. Our specimens include only the second mammalian skull known for the Cretaceous of Gondwana, bridging a previous 60-million-year gap in the fossil record, and document the whole cranial morphology of a dryolestoid, revealing an unsuspected morphological and ecological diversity for non-tribosphenic mammals.

  1. Recent advances in the cretaceous stratigraphy of Korea

    NASA Astrophysics Data System (ADS)

    Chang, Ki-Hong; Suzuki, Kazuhiro; Park, Sun-Ok; Ishida, Keisuke; Uno, Koji

    2003-06-01

    A subrounded, accidental, zircon grain from a rhyolite sample of the Oknyobong Formation has shown an U-Pb CHIME isochron age, 187 Ma, implying its derivation from a Jurassic felsic igneous rock. Such a lower limit of the geologic age of the Oknyobong Formation, combined with its pre-Kyongsang upper limit, constrains that the Oknyobong Formation belongs to the Jasong Synthem (Late Jurassic-early Early Cretaceous) typified in North Korea. The Jaeryonggang Movement terminated the deposition of the Jasong Synthem and caused a shift of the depocenter from North Korea to the Kyongsang Basin, Southeast Korea. The Cretaceous-Paleocene Kyongsang Supergroup of the Kyongsang Basin is the stratotype of the Kyongsang Synthem, an unconformity-bounded unit in the Korean Peninsula. The unconformity at the base of the Yuchon Volcanic Group is a local expression of the interregionally recognizable mid-Albian tectonism; it subdivides the Kyongsang Synthem into the Lower Kyongsang Subsynthem (Barremian-Early Albian) and the Upper Kyongsang Subsynthem (Late Albian-Paleocene). The latter is unconformably overlain by Eocene and younger strata. The Late Permian to Early Jurassic radiolarian fossils from the chert pebbles of the Kumidong and the Kisadong conglomerates of the Aptian-Early Albian Hayang Group of the Kyongsang Basin are equivalent with those of the cherts that constitute the Jurassic accretionary prisms in Japan, the provenance of the chert pebbles in the Kyongsang Basin. Bimodal volcanisms throughout the history of the Kyongsang Basin is exemplified by the felsic Kusandong Tuff erupted abruptly and briefly in the Late Aptian when semi-coeval volcanisms were of intermediate and mafic compositions. The mean paleomagnetic direction shown by the Kusandong Tuff is in good agreement with the Early Cretaceous directions known from North China, South China and Siberia Blocks.

  2. Subseafloor fluid mixing and fossilized microbial life in a Cretaceous 'Lost City'-type hydrothermal system at the Iberian Margin

    NASA Astrophysics Data System (ADS)

    Klein, F.; Humphris, S. E.; Guo, W.; Schubotz, F.; Schwarzenbach, E. M.; Orsi, W.

    2015-12-01

    Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support autotrophic microorganisms in the hydrated oceanic mantle (serpentinite). Despite the potentially significant implications for the distribution of microbial life on Earth and other water-bearing planetary bodies, our understanding of such environments remains elusive. In the present study we examined fossilized microbial communities and fluid mixing processes in the subseafloor of a Cretaceous 'Lost City'-type hydrothermal system at the passive Iberia Margin (ODP Leg 149, Hole 897D). Brucite and calcite co-precipitated from mixed fluids ca. 65m below the Cretaceous palaeo-seafloor at temperatures of 32±4°C within steep chemical gradients (fO2, pH, CH4, SO4, ΣCO2, etc) between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity within the oceanic basement. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon but depleted in 13C. We detected a combination of bacterial diether lipid biomarkers, archaeol and archaeal tetraethers analogous to those found in brucite-carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin during the Cretaceous, possibly before the onset of seafloor spreading in the Atlantic. 'Lost City'-type serpentinization systems have been discovered at mid-ocean ridges, in forearc settings of subduction zones and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments as demonstrated in the present study. Because equivalent systems have likely existed throughout most of Earth

  3. Subseafloor fluid mixing and fossilized microbial life in a Cretaceous 'Lost City'-type hydrothermal system at the Iberian Margin

    NASA Astrophysics Data System (ADS)

    Klein, F.; Humphris, S. E.; Guo, W.; Schubotz, F.; Schwarzenbach, E. M.; Orsi, W.

    2014-12-01

    Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support autotrophic microorganisms in the hydrated oceanic mantle (serpentinite). Despite the potentially significant implications for the distribution of microbial life on Earth and other water-bearing planetary bodies, our understanding of such environments remains elusive. In the present study we examined fossilized microbial communities and fluid mixing processes in the subseafloor of a Cretaceous 'Lost City'-type hydrothermal system at the passive Iberia Margin (ODP Leg 149, Hole 897D). Brucite and calcite co-precipitated from mixed fluids ca. 65m below the Cretaceous palaeo-seafloor at temperatures of 32±4°C within steep chemical gradients (fO2, pH, CH4, SO4, ΣCO2, etc) between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity within the oceanic basement. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon but depleted in 13C. We detected a combination of bacterial diether lipid biomarkers, archaeol and archaeal tetraethers analogous to those found in brucite-carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin during the Cretaceous, possibly before the onset of seafloor spreading in the Atlantic. 'Lost City'-type serpentinization systems have been discovered at mid-ocean ridges, in forearc settings of subduction zones and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments as demonstrated in the present study. Because equivalent systems have likely existed throughout most of Earth

  4. Morphologically Specialized Termite Castes and Advanced Sociality in the Early Cretaceous.

    PubMed

    Engel, Michael S; Barden, Phillip; Riccio, Mark L; Grimaldi, David A

    2016-02-22

    A hallmark of animals that are eusocial, or those with advanced sociality, is reproductive specialization into worker and queen castes. In the most derived societies, these divisions are essentially fixed and in some arthropods, include further specialization--a tripartite system with a soldier caste that defends the colony. Eusociality has originated numerous times among insects but is believed to have appeared first in the termites (Isoptera), in the Early Cretaceous. However, all termites known from the Cretaceous have, until now, only been winged reproductives (alates and dealates); the earliest soldiers and definitive workers were known from just the Miocene (ca. 17-20 million years ago [mya]). Here, we report six termite species preserved in Early Cretaceous (ca. 100 mya) amber from Myanmar, one described as Krishnatermes yoddha gen. et sp. nov., comprising the worker/pseudergate, winged reproductive, and soldier, and a second species, Gigantotermes rex gen. et sp. nov., based on one of the largest soldier termites yet known. Phylogenetic analysis indicates that Krishnatermes are in the basal "Meiatermes-grade" of Cretaceous termites. Workers/pseudergates of another four species are briefly described, but not named. One of these workers/pseudergates reveals that ants--the most serious enemies of modern termites--lived in close proximity to termites in the Burmese paleofauna. These discoveries demonstrate the Mesozoic antiquity of specialized termite caste systems and corroborate that among all social species, termites probably had the original societies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Environmental drivers of crocodyliform extinction across the Jurassic/Cretaceous transition

    PubMed Central

    Mannion, Philip D.; Upchurch, Paul

    2016-01-01

    Crocodyliforms have a much richer evolutionary history than represented by their extant descendants, including several independent marine and terrestrial radiations during the Mesozoic. However, heterogeneous sampling of their fossil record has obscured their macroevolutionary dynamics, and obfuscated attempts to reconcile external drivers of these patterns. Here, we present a comprehensive analysis of crocodyliform biodiversity through the Jurassic/Cretaceous (J/K) transition using subsampling and phylogenetic approaches and apply maximum-likelihood methods to fit models of extrinsic variables to assess what mediated these patterns. A combination of fluctuations in sea-level and episodic perturbations to the carbon and sulfur cycles was primarily responsible for both a marine and non-marine crocodyliform biodiversity decline through the J/K boundary, primarily documented in Europe. This was tracked by high extinction rates at the boundary and suppressed origination rates throughout the Early Cretaceous. The diversification of Eusuchia and Notosuchia likely emanated from the easing of ecological pressure resulting from the biodiversity decline, which also culminated in the extinction of the marine thalattosuchians in the late Early Cretaceous. Through application of rigorous techniques for estimating biodiversity, our results demonstrate that it is possible to tease apart the complex array of controls on diversification patterns in major archosaur clades. PMID:26962137

  6. Extreme adaptations for probable visual courtship behaviour in a Cretaceous dancing damselfly.

    PubMed

    Zheng, Daran; Nel, André; Jarzembowski, Edmund A; Chang, Su-Chin; Zhang, Haichun; Xia, Fangyuan; Liu, Haoying; Wang, Bo

    2017-03-20

    Courtship behaviours, frequent among modern insects, have left extremely rare fossil traces. None are known previously for fossil odonatans. Fossil traces of such behaviours are better known among the vertebrates, e.g. the hypertelic antlers of the Pleistocene giant deer Megaloceros giganteus. Here we describe spectacular extremely expanded, pod-like tibiae in males of a platycnemidid damselfly from mid-Cretaceous Burmese amber. Such structures in modern damselflies, help to fend off other suitors as well as attract mating females, increasing the chances of successful mating. Modern Platycnemidinae and Chlorocyphidae convergently acquired similar but less developed structures. The new findings provide suggestive evidence of damselfly courtship behaviour as far back as the mid-Cretaceous. These data show an unexpected morphological disparity in dancing damselfly leg structure, and shed new light on mechanisms of sexual selection involving intra- and intersex reproductive competition during the Cretaceous.

  7. The origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record.

    PubMed

    Hsiang, Allison Y; Field, Daniel J; Webster, Timothy H; Behlke, Adam D B; Davis, Matthew B; Racicot, Rachel A; Gauthier, Jacques A

    2015-05-20

    The highly derived morphology and astounding diversity of snakes has long inspired debate regarding the ecological and evolutionary origin of both the snake total-group (Pan-Serpentes) and crown snakes (Serpentes). Although speculation abounds on the ecology, behavior, and provenance of the earliest snakes, a rigorous, clade-wide analysis of snake origins has yet to be attempted, in part due to a dearth of adequate paleontological data on early stem snakes. Here, we present the first comprehensive analytical reconstruction of the ancestor of crown snakes and the ancestor of the snake total-group, as inferred using multiple methods of ancestral state reconstruction. We use a combined-data approach that includes new information from the fossil record on extinct crown snakes, new data on the anatomy of the stem snakes Najash rionegrina, Dinilysia patagonica, and Coniophis precedens, and a deeper understanding of the distribution of phenotypic apomorphies among the major clades of fossil and Recent snakes. Additionally, we infer time-calibrated phylogenies using both new 'tip-dating' and traditional node-based approaches, providing new insights on temporal patterns in the early evolutionary history of snakes. Comprehensive ancestral state reconstructions reveal that both the ancestor of crown snakes and the ancestor of total-group snakes were nocturnal, widely foraging, non-constricting stealth hunters. They likely consumed soft-bodied vertebrate and invertebrate prey that was subequal to head size, and occupied terrestrial settings in warm, well-watered, and well-vegetated environments. The snake total-group - approximated by the Coniophis node - is inferred to have originated on land during the middle Early Cretaceous (~128.5 Ma), with the crown-group following about 20 million years later, during the Albian stage. Our inferred divergence dates provide strong evidence for a major radiation of henophidian snake diversity in the wake of the Cretaceous-Paleogene (K

  8. Divergence time estimates of mammals from molecular clocks and fossils: relevance of new fossil finds from India.

    PubMed

    Prasad, G V R

    2009-11-01

    This paper presents a brief review of recent advances in the classification of mammals at higher levels using fossils and molecular clocks. It also discusses latest fossil discoveries from the Cretaceous - Eocene (66-55 m.y.) rocks of India and their relevance to our current understanding of placental mammal origins and diversifications.

  9. Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence?

    PubMed

    Condamine, Fabien L; Clapham, Matthew E; Kergoat, Gael J

    2016-01-18

    Macroevolutionary studies of insects at diverse taxonomic scales often reveal dynamic evolutionary patterns, with multiple inferred diversification rate shifts. Responses to major past environmental changes, such as the Cretaceous Terrestrial Revolution, or the development of major key innovations, such as wings or complete metamorphosis are usually invoked as potential evolutionary triggers. However this view is partially contradicted by studies on the family-level fossil record showing that insect diversification was relatively constant through time. In an attempt to reconcile both views, we investigate large-scale insect diversification dynamics at family level using two distinct types of diversification analyses on a molecular timetree representing ca. 82% of the extant families, and reassess the insect fossil diversity using up-to-date records. Analyses focusing on the fossil record recovered an early burst of diversification, declining to low and steady rates through time, interrupted by extinction events. Phylogenetic analyses showed that major shifts of diversification rates only occurred in the four richest holometabolous orders. Both suggest that neither the development of flight or complete metamorphosis nor the Cretaceous Terrestrial Revolution environmental changes induced immediate changes in diversification regimes; instead clade-specific innovations likely promoted the diversification of major insect orders.

  10. Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence?

    PubMed Central

    Condamine, Fabien L.; Clapham, Matthew E.; Kergoat, Gael J.

    2016-01-01

    Macroevolutionary studies of insects at diverse taxonomic scales often reveal dynamic evolutionary patterns, with multiple inferred diversification rate shifts. Responses to major past environmental changes, such as the Cretaceous Terrestrial Revolution, or the development of major key innovations, such as wings or complete metamorphosis are usually invoked as potential evolutionary triggers. However this view is partially contradicted by studies on the family-level fossil record showing that insect diversification was relatively constant through time. In an attempt to reconcile both views, we investigate large-scale insect diversification dynamics at family level using two distinct types of diversification analyses on a molecular timetree representing ca. 82% of the extant families, and reassess the insect fossil diversity using up-to-date records. Analyses focusing on the fossil record recovered an early burst of diversification, declining to low and steady rates through time, interrupted by extinction events. Phylogenetic analyses showed that major shifts of diversification rates only occurred in the four richest holometabolous orders. Both suggest that neither the development of flight or complete metamorphosis nor the Cretaceous Terrestrial Revolution environmental changes induced immediate changes in diversification regimes; instead clade-specific innovations likely promoted the diversification of major insect orders. PMID:26778170

  11. Palynologically calibrated vertebrate record from North Dakota consistent with abrupt dinosaur extinction at the Cretaceous-Tertiary boundary

    USGS Publications Warehouse

    Pearson, D.A.; Schaefer, T.; Johnson, K.R.; Nichols, D.J.

    2001-01-01

    New data from 17 Cretaceous-Tertiary (K-T) boundary sections and 53 vertebrate sites in the Hell Creek and Fort Union Formations in southwestern North Dakota document a 1.76 m barren interval between the highest Cretaceous vertebrate fossils and the palynologically recognized K-T boundary. The boundary is above the formational contact at 15 localities and coincident with it at two, demonstrating that the formational contact is diachronous. Dinosaurs are common in the highest Cretaceous vertebrate samples and a partial dinosaur skeleton in the Fort Union Formation is the highest recorded Cretaceous vertebrate fossil in this area.

  12. A complete skull of an early cretaceous sauropod and the evolution of advanced titanosaurians.

    PubMed

    Zaher, Hussam; Pol, Diego; Carvalho, Alberto B; Nascimento, Paulo M; Riccomini, Claudio; Larson, Peter; Juarez-Valieri, Rubén; Pires-Domingues, Ricardo; da Silva, Nelson Jorge; Campos, Diógenes de Almeida

    2011-02-07

    Advanced titanosaurian sauropods, such as nemegtosaurids and saltasaurids, were diverse and one of the most important groups of herbivores in the terrestrial biotas of the Late Cretaceous. However, little is known about their rise and diversification prior to the Late Cretaceous. Furthermore, the evolution of their highly-modified skull anatomy has been largely hindered by the scarcity of well-preserved cranial remains. A new sauropod dinosaur from the Early Cretaceous of Brazil represents the earliest advanced titanosaurian known to date, demonstrating that the initial diversification of advanced titanosaurians was well under way at least 30 million years before their known radiation in the latest Cretaceous. The new taxon also preserves the most complete skull among titanosaurians, further revealing that their low and elongated diplodocid-like skull morphology appeared much earlier than previously thought.

  13. A New Sail-Backed Styracosternan (Dinosauria: Ornithopoda) from the Early Cretaceous of Morella, Spain.

    PubMed

    Gasulla, José Miguel; Escaso, Fernando; Narváez, Iván; Ortega, Francisco; Sanz, José Luis

    2015-01-01

    A new styracosternan ornithopod genus and species is here described based on a partial postcranial skeleton and an associated dentary tooth of a single specimen from the Arcillas de Morella Formation (Early Cretaceous, late Barremian) at the Morella locality, (Castellón, Spain). Morelladon beltrani gen. et sp. nov. is diagnosed by eight autapomorphic features. The set of autapomorphies includes: very elongated and vertical neural spines of the dorsal vertebrae, midline keel on ventral surface of the second to fourth sacral vertebrae restricted to the anterior half of the centrum, a posterodorsally inclined medial ridge on the postacetabular process of the ilium that meets its dorsal margin and distal end of the straight ischial shaft laterally expanded, among others. Phylogenetic analyses reveal that the new Iberian form is more closely related to its synchronic and sympatric contemporary European taxa Iguanodon bernissartensis and Mantellisaurus atherfieldensis, known from Western Europe, than to other Early Cretaceous Iberian styracosternans (Delapparentia turolensis and Proa valdearinnoensis). The recognition of Morelladon beltrani gen. et sp. nov. indicates that the Iberian Peninsula was home to a highly diverse medium to large bodied styracosternan assemblage during the Early Cretaceous.

  14. Precious metals associated with Late Cretaceous-early Tertiary igneous rocks of southwestern Alaska

    USGS Publications Warehouse

    Bundtzen, Thomas K.; Miller, Marti L.; Goldfarb, Richard J.; Miller, Lance D.

    1997-01-01

    Placer gold and precious metal-bearing lode deposits of southwestern Alaska lie within a region 550 by 350 km, herein referred to as the Kuskokwim mineral belt. This mineral belt has yielded 100,240 kg (3.22 Moz) of gold, 12, 813 kg (412,000 oz) of silver, 1,377,412 kg (39,960 flasks) of mercury, and modest amounts of antimony and tungsten derived primarily from the late Cretaceous-early Tertiary igneous complexes of four major types: (1) alkali-calcic, comagmatic volcanic-plutonic complexes and isolated plutons, (2) calc-alkaline, meta-aluminous reduced plutons, (3) peraluminous alaskite or granite-porphyry sills and dike swarms, and (4) andesite-rhyolite subaerial volcanic rocks.About 80 percent of the 77 to 52 Ma intrusive and volcanic rocks intrude or overlie the middle to Upper Cretaceous Kuskokwim Group sedimentary and volcanic rocks, as well as the Paleozoic-Mesozoic rocks of the Nixon Fork, Innoko, Goodnews, and Ruby preaccretionary terranes.The major precious metal-bearing deposit types related to Late Cretaceous-early Tertiary igneous complexes of the Kuskokwim mineral belt are subdivided as follows: (1) plutonic-hosted copper-gold polymetallic stockwork, skarn, and vein deposits, (2) peraluminous granite-porphory-hosted gold polymetallic deposits, (3) plutonic-related, boron-enriched silver-tin polymetallic breccia pipes and replacement deposits, (4) gold and silver mineralization in epithermal systems, and (5) gold polymetallic heavy mineral placer deposits. Ten deposits genetically related to Late Cretaceous-early Tertiary intrusions contain minimum, inferred reserves amounting to 162,572 kg (5.23 Moz) of gold, 201,015 kg (6.46 Moz) silver, 12,160 metric tons (t) of tin, and 28,088 t of copper.The lodes occur in veins, stockworks, breccia pipes, and replacement deposits that formed in epithermal to mesothermal temperature-pressure conditions. Fluid inclusion, isotopic age, mineral assemblage, alteration assemblage, and structural data indicate that

  15. Isotopic evidence for continental ice sheet in mid-latitude region in the supergreenhouse Early Cretaceous

    PubMed Central

    Yang, Wu-Bin; Niu, He-Cai; Sun, Wei-Dong; Shan, Qiang; Zheng, Yong-Fei; Li, Ning-Bo; Li, Cong-Ying; Arndt, Nicholas T.; Xu, Xing; Jiang, Yu-Hang; Yu, Xue-Yuan

    2013-01-01

    Cretaceous represents one of the hottest greenhouse periods in the Earth's history, but some recent studies suggest that small ice caps might be present in non-polar regions during certain periods in the Early Cretaceous. Here we report extremely negative δ18O values of −18.12‰ to −13.19‰ for early Aptian hydrothermal zircon from an A-type granite at Baerzhe in northeastern China. Given that A-type granite is anhydrous and that magmatic zircon of the Baerzhe granite has δ18O value close to mantle values, the extremely negative δ18O values for hydrothermal zircon are attributed to addition of meteoric water with extremely low δ18O, mostly likely transported by glaciers. Considering the paleoaltitude of the region, continental glaciation is suggested to occur in the early Aptian, indicating much larger temperature fluctuations than previously thought during the supergreenhouse Cretaceous. This may have impact on the evolution of major organism in the Jehol Group during this period. PMID:24061068

  16. An analytical approach for estimating fossil record and diversification events in sharks, skates and rays.

    PubMed

    Guinot, Guillaume; Adnet, Sylvain; Cappetta, Henri

    2012-01-01

    Modern selachians and their supposed sister group (hybodont sharks) have a long and successful evolutionary history. Yet, although selachian remains are considered relatively common in the fossil record in comparison with other marine vertebrates, little is known about the quality of their fossil record. Similarly, only a few works based on specific time intervals have attempted to identify major events that marked the evolutionary history of this group. Phylogenetic hypotheses concerning modern selachians' interrelationships are numerous but differ significantly and no consensus has been found. The aim of the present study is to take advantage of the range of recent phylogenetic hypotheses in order to assess the fit of the selachian fossil record to phylogenies, according to two different branching methods. Compilation of these data allowed the inference of an estimated range of diversity through time and evolutionary events that marked this group over the past 300 Ma are identified. Results indicate that with the exception of high taxonomic ranks (orders), the selachian fossil record is by far imperfect, particularly for generic and post-Triassic data. Timing and amplitude of the various identified events that marked the selachian evolutionary history are discussed. Some identified diversity events were mentioned in previous works using alternative methods (Early Jurassic, mid-Cretaceous, K/T boundary and late Paleogene diversity drops), thus reinforcing the efficiency of the methodology presented here in inferring evolutionary events. Other events (Permian/Triassic, Early and Late Cretaceous diversifications; Triassic/Jurassic extinction) are newly identified. Relationships between these events and paleoenvironmental characteristics and other groups' evolutionary history are proposed.

  17. The global Cretaceous-Tertiary fire: Biomass or fossil carbon

    NASA Technical Reports Server (NTRS)

    Gilmour, Iain; Guenther, Frank

    1988-01-01

    The global soot layer at the K-T boundary indicates a major fire triggered by meteorite impact. However, it is not clear whether the principal fuel was biomass or fossil carbon. Forests are favored by delta value of C-13, which is close to the average for trees, but the total amount of elemental C is approximately 10 percent of the present living carbon, and thus requires very efficient conversion to soot. The PAH was analyzed at Woodside Creek, in the hope of finding a diagnostic molecular marker. A promising candidate is 1-methyl-7-isopropyl phenanthrene (retene,), which is probably derived by low temperature degradation of abietic acid. Unlike other PAH that form by pyrosynthesis at higher temperatures, retene has retained the characteristic side chains of its parent molecule. A total of 11 PAH compounds were identified in the boundary clay. Retene is present in substantial abundance. The identification was confirmed by analysis of a retene standard. Retene is characteristic of the combustion of resinous higher plants. Its formation depends on both temperature and oxygen access, and is apparently highest in oxygen-poor fires. Such fires would also produce soot more efficiently which may explain the high soot abundance. The relatively high level of coronene is not typical of a wood combustion source, however, though it can be produced during high temperature pyrolysis of methane, and presumably other H, C-containing materials. This would require large, hot, low O2 zones, which may occur only in very large fires. The presence of retene indicates that biomass was a significant fuel source for the soot at the Cretaceous-Tertiary boundary. The total amount of elemental C produced requires a greater than 3 percent soot yield, which is higher than typically observed for wildfires. However, retene and presumably coronene imply limited access of O2 and hence high soot yield.

  18. Low ecological disparity in Early Cretaceous birds

    PubMed Central

    Mitchell, Jonathan S.; Makovicky, Peter J.

    2014-01-01

    Ecological divergence is thought to be coupled with evolutionary radiations, yet the strength of this coupling is unclear. When birds diversified ecologically has received much less attention than their hotly debated crown divergence time. Here, we quantify how accurately skeletal morphology can predict ecology in living and extinct birds, and show that the earliest known assemblage of birds (= pygostylians) from the Jehol Biota (≈ 125 Ma) was substantially impoverished ecologically. The Jehol avifauna has few representatives of highly preservable ecomorphs (e.g. aquatic forms) and a notable lack of ecomorphological overlap with the pterosaur assemblage (e.g. no large or aerially foraging pygostylians). Comparisons of the Jehol functional diversity with modern and subfossil avian assemblages show that taphonomic bias alone cannot explain the ecomorphological impoverishment. However, evolutionary simulations suggest that the constrained ecological diversity of the Early Cretaceous pygostylians is consistent with what is expected from a relatively young radiation. Regardless of the proximate biological explanation, the anomalously low functional diversity of the Jehol birds is evidence both for ecological vacancies in Cretaceous ecosystems, which were subsequently filled by the radiation of crown Aves, and for discordance between taxonomic richness and ecological diversity in the best-known Mesozoic ecosystem. PMID:24870044

  19. Fossilized skin reveals coevolution with feathers and metabolism in feathered dinosaurs and early birds.

    PubMed

    McNamara, Maria E; Zhang, Fucheng; Kearns, Stuart L; Orr, Patrick J; Toulouse, André; Foley, Tara; Hone, David W E; Rogers, Chris S; Benton, Michael J; Johnson, Diane; Xu, Xing; Zhou, Zhonghe

    2018-05-25

    Feathers are remarkable evolutionary innovations that are associated with complex adaptations of the skin in modern birds. Fossilised feathers in non-avian dinosaurs and basal birds provide insights into feather evolution, but how associated integumentary adaptations evolved is unclear. Here we report the discovery of fossil skin, preserved with remarkable nanoscale fidelity, in three non-avian maniraptoran dinosaurs and a basal bird from the Cretaceous Jehol biota (China). The skin comprises patches of desquamating epidermal corneocytes that preserve a cytoskeletal array of helically coiled α-keratin tonofibrils. This structure confirms that basal birds and non-avian dinosaurs shed small epidermal flakes as in modern mammals and birds, but structural differences imply that these Cretaceous taxa had lower body heat production than modern birds. Feathered epidermis acquired many, but not all, anatomically modern attributes close to the base of the Maniraptora by the Middle Jurassic.

  20. Parasites in the Fossil Record: A Cretaceous Fauna with Isopod-Infested Decapod Crustaceans, Infestation Patterns through Time, and a New Ichnotaxon

    PubMed Central

    Klompmaker, Adiël A.; Artal, Pedro; van Bakel, Barry W. M.; Fraaije, René H. B.; Jagt, John W. M.

    2014-01-01

    Parasites are common in modern ecosystems and are also known from the fossil record. One of the best preserved and easily recognisable examples of parasitism in the fossil record concerns isopod-induced swellings in the branchial chamber of marine decapod crustaceans. However, very limited quantitative data on the variability of infestation percentages at the species, genus, and family levels are available. Here we provide this type of data for a mid-Cretaceous (upper Lower Cretaceous, upper Albian) reef setting at Koskobilo, northern Spain, on the basis of 874 specimens of anomurans and brachyurans. Thirty-seven specimens (4.2%), arranged in ten species, are infested. Anomurans are more heavily infested than brachyurans, variability can be high within genera, and a relationship may exist between the number of specimens and infestation percentage per taxon, possibly suggesting host-specificity. We have also investigated quantitative patterns of infestation through geological time based on 88 infested species (25 anomurans, 55 brachyurans, seven lobsters, and one shrimp), to show that the highest number of infested species can be found in the Late Jurassic, also when corrected for the unequal duration of epochs. The same Late Jurassic peak is observed for the percentage of infested decapod species per epoch. This acme is caused entirely by infested anomurans and brachyurans. Biases (taphonomic and otherwise) and causes of variability with regard to the Koskobilo assemblage and infestation patterns through time are discussed. Finally, a new ichnogenus and -species, Kanthyloma crusta, are erected to accommodate such swellings or embedment structures (bioclaustrations). PMID:24667587

  1. Impact of the terminal Cretaceous event on plant–insect associations

    PubMed Central

    Labandeira, Conrad C.; Johnson, Kirk R.; Wilf, Peter

    2002-01-01

    Evidence for a major extinction of insect herbivores is provided by presence–absence data for 51 plant–insect associations on 13,441 fossil plant specimens, spanning the Cretaceous/Paleogene boundary in southwestern North Dakota. The most specialized associations, which were diverse and abundant during the latest Cretaceous, almost disappeared at the boundary and failed to recover in younger strata even while generalized associations regained their Cretaceous abundances. These results are consistent with a sudden ecological perturbation that precipitated a diversity bottleneck for insects and plants. PMID:11854501

  2. Dental Disparity and Ecological Stability in Bird-like Dinosaurs prior to the End-Cretaceous Mass Extinction.

    PubMed

    Larson, Derek W; Brown, Caleb M; Evans, David C

    2016-05-23

    The causes, rate, and selectivity of the end-Cretaceous mass extinction continue to be highly debated [1-5]. Extinction patterns in small, feathered maniraptoran dinosaurs (including birds) are important for understanding extant biodiversity and present an enigma considering the survival of crown group birds (Neornithes) and the extinction of their close kin across the end-Cretaceous boundary [6]. Because of the patchy Cretaceous fossil record of small maniraptorans [7-12], this important transition has not been closely examined in this group. Here, we test the hypothesis that morphological disparity in bird-like dinosaurs was decreasing leading up to the end-Cretaceous mass extinction, as has been hypothesized in some dinosaurs [13, 14]. To test this, we examined tooth morphology, an ecological indicator in fossil reptiles [15-19], from over 3,100 maniraptoran teeth from four groups (Troodontidae, Dromaeosauridae, Richardoestesia, and cf. Aves) across the last 18 million years of the Cretaceous. We demonstrate that tooth disparity, a proxy for variation in feeding ecology, shows no significant decline leading up to the extinction event within any of the groups. Tooth morphospace occupation also remains static over this time interval except for increased size during the early Maastrichtian. Our data provide strong support that extinction within this group occurred suddenly after a prolonged period of ecological stability. To explain this sudden extinction of toothed maniraptorans and the survival of Neornithes, we propose that diet may have been an extinction filter and suggest that granivory associated with an edentulous beak was a key ecological trait in the survival of some lineages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A total petroleum system of the Browse Basin, Australia; Late Jurassic, Early Cretaceous-Mesozoic

    USGS Publications Warehouse

    Bishop, M.G.

    1999-01-01

    The Browse Basin Province 3913, offshore northern Australia, contains one important petroleum system, Late Jurassic, Early Cretaceous-Mesozoic. It is comprised of Late Jurassic through Early Cretaceous source rocks deposited in restricted marine environments and various Mesozoic reservoir rocks deposited in deep-water fan to fluvial settings. Jurassic age intraformational shales and claystones and Cretaceous regional claystones seal the reservoirs. Since 1967, when exploration began in this 105,000 km2 area, fewer than 40 wells have been drilled and only one recent oil discovery is considered potentially commercial. Prior to the most recent oil discovery, on the eastern side of the basin, a giant gas field was discovered in 1971, under a modern reef on the west side of the basin. Several additional oil and gas discoveries and shows were made elsewhere. A portion of the Vulcan sub-basin lies within Province 3913 where a small field, confirmed in 1987, produced 18.8 million barrels of oil (MMBO) up to 1995 and has since been shut in.

  4. A new basal titanosaur (Dinosauria, Sauropoda) from the Lower Cretaceous of Brazil

    NASA Astrophysics Data System (ADS)

    Carvalho, Ismar de Souza; Salgado, Leonardo; Lindoso, Rafael Matos; Araújo-Júnior, Hermínio Ismael de; Nogueira, Francisco Cézar Costa; Soares, José Agnelo

    2017-04-01

    Although dinosaurian ichnofaunas are common in the Northeastern Brazilian Interior Basins, osteological remains are poorly represented in these areas. One of the main challenges in vertebrate paleontology in the Lower Cretaceous of this region is to recognize body-fossils, which can unveil the anatomy, functional morphology and paleoecological aspects of the dinosaurian fauna recorded until now only by footprints and trackways. The discovery of a new dinosaur specimen in the Rio Piranhas Formation of the Triunfo Basin opens new perspectives into the comprehension of paleogeographical and temporal distribution of the titanosaur sauropods. Titanosaurs are common in Upper Cretaceous rocks of Brazil and Argentina. The age of the Rio Piranhas Formation is considered to range from Berriasian to early Hauterivian. Thus, the description of this new species opens new viewpoints concerning the paleobiogeographical aspects of these sauropod dinosaurs.

  5. Paleomagnetic tests for tectonic reconstructions of the Late Jurassic-Early Cretaceous Woyla Group, Sumatra

    NASA Astrophysics Data System (ADS)

    Advokaat, Eldert; Bongers, Mayke; van Hinsbergen, Douwe; Rudyawan, Alfend; Marshal, Edo

    2017-04-01

    SE Asia consists of multiple continental blocks, volcanic arcs and suture zones representing remnants of closing ocean basins. The core of this mainland is called Sundaland, and was formed by accretion of continental and arc fragments during the Paleozoic and Mesozoic. The former positions of these blocks are still uncertain but reconstructions based on tectonostratigraphic, palaeobiogeographic, geological and palaeomagnetic studies indicate the continental terranes separated from the eastern margin of Gondwana. During the mid-Cretaceous, more continental and arc fragments accreted to Sundaland, including the intra-oceanic Woyla Arc now exposed on Sumatra. These continental fragments were derived from Australia, but the former position of the Woyla Arc is unconstrained. Interpretations on the former position of the Woyla Arc fall in two end-member groups. The first group interprets the Woyla Arc to be separated from West Sumatra by a small back-arc basin. This back arc basin opened in the Late Jurassic, and closed mid-Cretaceous, when the Woyla Arc collided with West Sumatra. The other group interprets the Woyla Arc to be derived from Gondwana, at a position close to the northern margin of Greater India in the Late Jurassic. Subsequently the Woyla Arc moved northwards and collided with West Sumatra in the mid-Cretaceous. Since these scenarios predict very different plate kinematic evolutions for the Neotethyan realm, we here aim to place paleomagnetic constraints on paleolatitudinal evolution of the Woyla Arc. The Woyla Arc consists mainly of basaltic to andesitic volcanics and dykes, and volcaniclastic shales and sandstones. Associated limestones with volcanic debris are interpreted as fringing reefs. This assemblage is interpreted as remnants of an Early Cretaceous intra-oceanic arc. West Sumatra exposes granites, surrounded by quartz sandstones, shales and volcanic tuffs. These sediments are in part metamorphosed. This assemblage is interpreted as a Jurassic-Early

  6. X-ray computed tomography datasets for forensic analysis of vertebrate fossils.

    PubMed

    Rowe, Timothy B; Luo, Zhe-Xi; Ketcham, Richard A; Maisano, Jessica A; Colbert, Matthew W

    2016-06-07

    We describe X-ray computed tomography (CT) datasets from three specimens recovered from Early Cretaceous lakebeds of China that illustrate the forensic interpretation of CT imagery for paleontology. Fossil vertebrates from thinly bedded sediments often shatter upon discovery and are commonly repaired as amalgamated mosaics grouted to a solid backing slab of rock or plaster. Such methods are prone to inadvertent error and willful forgery, and once required potentially destructive methods to identify mistakes in reconstruction. CT is an efficient, nondestructive alternative that can disclose many clues about how a specimen was handled and repaired. These annotated datasets illustrate the power of CT in documenting specimen integrity and are intended as a reference in applying CT more broadly to evaluating the authenticity of comparable fossils.

  7. X-ray computed tomography datasets for forensic analysis of vertebrate fossils

    PubMed Central

    Rowe, Timothy B.; Luo, Zhe-Xi; Ketcham, Richard A.; Maisano, Jessica A.; Colbert, Matthew W.

    2016-01-01

    We describe X-ray computed tomography (CT) datasets from three specimens recovered from Early Cretaceous lakebeds of China that illustrate the forensic interpretation of CT imagery for paleontology. Fossil vertebrates from thinly bedded sediments often shatter upon discovery and are commonly repaired as amalgamated mosaics grouted to a solid backing slab of rock or plaster. Such methods are prone to inadvertent error and willful forgery, and once required potentially destructive methods to identify mistakes in reconstruction. CT is an efficient, nondestructive alternative that can disclose many clues about how a specimen was handled and repaired. These annotated datasets illustrate the power of CT in documenting specimen integrity and are intended as a reference in applying CT more broadly to evaluating the authenticity of comparable fossils. PMID:27272251

  8. Extreme Morphogenesis and Ecological Specialization among Cretaceous Basal Ants.

    PubMed

    Perrichot, Vincent; Wang, Bo; Engel, Michael S

    2016-06-06

    Ants comprise one lineage of the triumvirate of eusocial insects and experienced their early diversification within the Cretaceous [1-9]. Their ecological success is generally attributed to their remarkable social behavior. Not all ants cooperate in social hunting, however, and some of the most effective predatory ants are solitary hunters with powerful trap jaws [10]. Recent evolutionary studies predict that the early branching lineages of extant ants formed small colonies of ground-dwelling, solitary specialist predators [2, 5, 7, 11, 12], while some Cretaceous fossils suggest group recruitment and socially advanced behavior among stem-group ants [9]. We describe a trap-jaw ant from 99 million-year-old Burmese amber with head structures that presumably functioned as a highly specialized trap for large-bodied prey. These are a cephalic horn resulting from an extreme modification of the clypeus hitherto unseen among living and extinct ants and scythe-like mandibles that extend high above the head, both demonstrating the presence of exaggerated morphogenesis early among stem-group ants. The new ant belongs to the Haidomyrmecini, possibly the earliest ant lineage [9], and together these trap-jaw ants suggest that at least some of the earliest Formicidae were solitary specialist predators. With their peculiar adaptations, haidomyrmecines had a refined ecology shortly following the advent of ants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. EVOLUTION. A four-legged snake from the Early Cretaceous of Gondwana.

    PubMed

    Martill, David M; Tischlinger, Helmut; Longrich, Nicholas R

    2015-07-24

    Snakes are a remarkably diverse and successful group today, but their evolutionary origins are obscure. The discovery of snakes with two legs has shed light on the transition from lizards to snakes, but no snake has been described with four limbs, and the ecology of early snakes is poorly known. We describe a four-limbed snake from the Early Cretaceous (Aptian) Crato Formation of Brazil. The snake has a serpentiform body plan with an elongate trunk, short tail, and large ventral scales suggesting characteristic serpentine locomotion, yet retains small prehensile limbs. Skull and body proportions as well as reduced neural spines indicate fossorial adaptation, suggesting that snakes evolved from burrowing rather than marine ancestors. Hooked teeth, an intramandibular joint, a flexible spine capable of constricting prey, and the presence of vertebrate remains in the guts indicate that this species preyed on vertebrates and that snakes made the transition to carnivory early in their history. The structure of the limbs suggests that they were adapted for grasping, either to seize prey or as claspers during mating. Together with a diverse fauna of basal snakes from the Cretaceous of South America, Africa, and India, this snake suggests that crown Serpentes originated in Gondwana. Copyright © 2015, American Association for the Advancement of Science.

  10. Early Cretaceous stratigraphy, paleontology, and sedimentary tectonics in Paris overthrust foredeep (western Wyoming and southeastern Idaho) compared with Quaternary features of indo-gangetic plain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorr, J.A. Jr.

    1983-08-01

    Fluviatile clastics of the nonmarine, early Cretaceous Gannett and Wayan groups were deposited on wet alluvial megafans and on intervening interfan piedmont slopes which declined eastward into more poorly drained lowlands from a western highland source area uplifted episodically by movements of the Paris overthrust. Lacustrine episodes of deposition intercalated Peterson and Draney limestones with Gannett fluvial clastics. Westward marine transgressions (Skull Creek, Mowry) intercalated mixed lacustrine and brackish facies (Smiths and Cokedale formations) into Wayan fluviatile clastics. Newly discovered fossil vertebrate and invertebrate materials (all fragmentary but identifiable) include: Gannett Group - large reptiles including turtles; Thomas Fork Formationmore » - freshwater gastropods and unionid pelecypods, gastroliths, two types of turtles, large reptilian fragments (dinosaur), and abundant dinosaur eggshell fragments; Wayan Formation - perennially aquatic snails, turtles, unidentifiable large reptiles, two types of crocodilians, an iguanodontid dinosaur (Tenontosaurus), an ankylosaurian dinosaur, a large ornithopod dinosaur, gastroliths, abundant and ubiquitous dinosaur eggshell fragments (numerous types and sizes), and miscellaneous unidentifiable small vertebrate bone fragments. A census of analogous modern reptile reproductive behaviors supports the conclusion that the Wayan, and probably also the Gannett, alluvial fan environments were used as upland breeding grounds by dinosaurs and perhaps other reptiles. Comparison of these Early Cretaceous data with observations on the tectonic setting, sedimentology, and biology of the Quaternary indo-gangetic plain suggests many close analogies between the two sedimentary tectonic settings.« less

  11. Changes to Cretaceous surface fire behaviour influenced the spread of the early angiosperms.

    PubMed

    Belcher, Claire M; Hudspith, Victoria A

    2017-02-01

    Angiosperms evolved and diversified during the Cretaceous period. Early angiosperms were short-stature weedy plants thought to have increased fire frequency and mortality in gymnosperm forest, aiding their own expansion. However, no explorations have considered whether the range of novel fuel types that diversified throughout the Cretaceous also altered fire behaviour, which should link more strongly to mortality than fire frequency alone. We measured ignitability and heat of combustion in analogue Cretaceous understorey fuels (conifer litter, ferns, weedy and shrubby angiosperms) and used these data to model palaeofire behaviour. Variations in ignition, driven by weedy angiosperms alone, were found to have been a less important feedback to changes in Cretaceous fire activity than previously estimated. Our model estimates suggest that fires in shrub and fern understories had significantly greater fireline intensities than those fuelled by conifer litter or weedy angiosperms, and whilst fern understories supported the most rapid fire spread, angiosperm shrubs delivered the largest amount of heat per unit area. The higher fireline intensities predicted by the models led to estimates of enhanced scorch of the gymnosperm canopy and a greater chance of transitioning to crown fires. Therefore, changes in fire behaviour driven by the addition of new Cretaceous fuel groups may have assisted the angiosperm expansion. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. A Diplodocid Sauropod Survivor from the Early Cretaceous of South America

    PubMed Central

    Gallina, Pablo A.; Apesteguía, Sebastián; Haluza, Alejandro; Canale, Juan I.

    2014-01-01

    Diplodocids are by far the most emblematic sauropod dinosaurs. They are part of Diplodocoidea, a vast clade whose other members are well-known from Jurassic and Cretaceous strata in Africa, Europe, North and South America. However, Diplodocids were never certainly recognized from the Cretaceous or in any other southern land mass besides Africa. Here we report a new sauropod, Leikupal laticauda gen. et sp. nov., from the early Lower Cretaceous (Bajada Colorada Formation) of Neuquén Province, Patagonia, Argentina. This taxon differs from any other sauropod by the presence of anterior caudal transverse process extremely developed with lateroventral expansions reinforced by robust dorsal and ventral bars, very robust centroprezygapophyseal lamina in anterior caudal vertebra and paired pneumatic fossae on the postzygapophyses in anterior-most caudal vertebra. The phylogenetic analyses support its position not only within Diplodocidae but also as a member of Diplodocinae, clustering together with the African form Tornieria, pushing the origin of Diplodocoidea to the Middle Jurassic or even earlier. The new discovery represents the first record of a diplodocid for South America and the stratigraphically youngest record of this clade anywhere. PMID:24828328

  13. A diplodocid sauropod survivor from the early cretaceous of South America.

    PubMed

    Gallina, Pablo A; Apesteguía, Sebastián; Haluza, Alejandro; Canale, Juan I

    2014-01-01

    Diplodocids are by far the most emblematic sauropod dinosaurs. They are part of Diplodocoidea, a vast clade whose other members are well-known from Jurassic and Cretaceous strata in Africa, Europe, North and South America. However, Diplodocids were never certainly recognized from the Cretaceous or in any other southern land mass besides Africa. Here we report a new sauropod, Leikupal laticauda gen. et sp. nov., from the early Lower Cretaceous (Bajada Colorada Formation) of Neuquén Province, Patagonia, Argentina. This taxon differs from any other sauropod by the presence of anterior caudal transverse process extremely developed with lateroventral expansions reinforced by robust dorsal and ventral bars, very robust centroprezygapophyseal lamina in anterior caudal vertebra and paired pneumatic fossae on the postzygapophyses in anterior-most caudal vertebra. The phylogenetic analyses support its position not only within Diplodocidae but also as a member of Diplodocinae, clustering together with the African form Tornieria, pushing the origin of Diplodocoidea to the Middle Jurassic or even earlier. The new discovery represents the first record of a diplodocid for South America and the stratigraphically youngest record of this clade anywhere.

  14. Closure of the Mongol-Okhotsk Ocean as Constrained by Late Permian to Early Cretaceous Paleomagnetic Data from the Suture Zone

    NASA Astrophysics Data System (ADS)

    Cogne, J.; Kravchinsky, V.; Gilder, S.; Hankard, F.

    2005-12-01

    The Paleozoic Mongol-Okhotsk Ocean separated the Siberian craton to the north from a landmass composed of Amuria, Tarim, Qaidam, Tibet and the North and South China blocks to the south. Based on a comparison of paleomagnetic data from the NCB with the Eurasian apparent polar wander path, this ocean closed by the beginning of the Cretaceous. We present here a review of recent paleomagnetic studies of Late Permian to Early Cretaceous formations from the Transbaikal area of south Siberia, coming from localities situated on both sides of the Mongol-Okhotsk suture zone. The main conclusions that we draw from these studies are as follows. (1) A Late Permian ~4500 km latitude difference indeed existed between Amuria and the Siberia blocks at 110°E longitude. (2) In Middle-Late Jurassic times, a 1700 to 2700 km paleolatitudinal gap still existed between the two blocks. This contradicts geological interpretations of a Middle Jurassic closure of the ocean at this longitude. (3) Consistency of Early Cretaceous paleolatitudes from both sides of the suture demonstrates the closure of the ocean at that time. Altogether, these suggest a quite fast closure between the Middle Jurassic and the Early Cretaceous, at about 15±11 cm/yr. Finally, all pre-Late Cretaceous paleomagnetic poles appear to be distributed along small-circles centered on site localities. We think this is due to continued deformation acting in the Mongol-Okhotsk suture region related to suturing. Conversely, the post-Early Cretaceous rotations may be related to Tertiary deformation under the effect of the India-Asia collision.

  15. A small azhdarchoid pterosaur from the latest Cretaceous, the age of flying giants.

    PubMed

    Martin-Silverstone, Elizabeth; Witton, Mark P; Arbour, Victoria M; Currie, Philip J

    2016-08-01

    Pterosaur fossils from the Campanian-Maastrichtian of North America have been reported from the continental interior, but few have been described from the west coast. The first pterosaur from the Campanian Northumberland Formation (Nanaimo Group) of Hornby Island, British Columbia, is represented here by a humerus, dorsal vertebrae (including three fused notarial vertebrae), and other fragments. The elements have features typical of Azhdarchoidea, an identification consistent with dominance of this group in the latest Cretaceous. The new material is significant for its size and ontogenetic stage: the humerus and vertebrae indicate a wingspan of ca 1.5 m, but histological sections and bone fusions indicate the individual was approaching maturity at time of death. Pterosaurs of this size are exceedingly rare in Upper Cretaceous strata, a phenomenon commonly attributed to smaller pterosaurs becoming extinct in the Late Cretaceous as part of a reduction in pterosaur diversity and disparity. The absence of small juveniles of large species-which must have existed-in the fossil record is evidence of a preservational bias against small pterosaurs in the Late Cretaceous, and caution should be applied to any interpretation of latest Cretaceous pterosaur diversity and success.

  16. Dolomitization in Late Jurassic-Early Cretaceous Platform Carbonates (Berdiga Formation), Ayralaksa Yayla (Trabzon), NE Turkey

    NASA Astrophysics Data System (ADS)

    Yıldız, Merve; Ziya Kırmacı, Mehmet; Kandemir, Raif

    2017-04-01

    ABSTRACT Pontides constitute an E-W trending orogenic mountain belt that extends about 1100 km along the northern side of Turkey from the immediate east of Istanbul to the Georgian border at the east. Tectono-stratigraphically, the Pontides are divided into three different parts: Eastern, Central, and Western Pontides. The Eastern Pontides, including the studied area, comprise an area of 500 km in length and 100 km in width, extending along the southeast coast of the Black Sea from the Kizilirmak and Yesilirmak Rivers in the vicinity of Samsun to the Little Caucasus. This area is bordered by the Eastern Black Sea basin to the north and the Ankara-Erzincan Neotethyan suture zone to the south. The Late Jurassic-Early Cretaceous platform carbonates are widely exposed in E-W direction in the Eastern Pontides (NE Turkey). The Platform carbonates shows varying lithofacies changing from supratidal to platform margin reef laterally and vertically, and was buried until the end of Late Cretaceous. The studied Ayralaksa Yayla (Trabzon, NE Turkey) area comprises one of the best typical exposures of formation in northern zone of Eastern Pontides. In this area, the lower parts of the formation are pervasively dolomitized by fabric-destructive and fabric-preserving replacement dolomite which are Ca-rich and nonstoichiometric (Ca56-66Mg34-44). Replacement dolomites (Rd) are represented by D18O values of -19.0 to -4.2 (VPDB), D13C values of 4.4 to 2.1 \\permil (VPDB) and 87Sr/86Sr ratios of 0.70889 to 0.70636. Petrographic and geochemical data indicate that Rd dolomites are formed prior to compaction at shallow-moderate burial depths from Late Jurassic-Early Cretaceous seawater and/or partly modified seawater as a result of water/rock interaction and they were recrystallized at elevated temperatures during subsequent burial. In the subsequent diagenetic process during the Late Cretaceous when the region became a magmatic arc, as a result of interaction with Early Jurassic volcanic

  17. Early cretaceous topographic growth of the Lhasaplano, Tibetan plateau: Constraints from the Damxung conglomerate

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Gang; Hu, Xiumian; Garzanti, Eduardo; Ji, Wei-Qiang; Liu, Zhi-Chao; Liu, Xiao-Chi; Wu, Fu-Yuan

    2017-07-01

    Constraining the timing of early topographic growth on the Tibetan plateau is critical for any models of India-Asia collision, Himalayan orogeny and subsequent plateau development in the Cenozoic. Stratigraphic, sedimentological and provenance analysis of the Lower Cretaceous red-beds of the Damxung Conglomerate provide new key information to reconstruct the paleogeography and the tectonic evolution of the Lhasa terrane at the time. The over 700-m-thick Damxung Conglomerate documents distal alluvial fan to braidplain sedimentation passing upward to proximal alluvial fan sedimentation. Deposition began near sea level, as documented by limestone beds occurring at the base of the unit. Zircon U-Pb dating of interbedded tuff layers constrain deposition age at ca. 111 Ma. Abundance of volcanic clasts, Cretaceous U-Pb ages and Hf isotopes of detrital zircons yielding mainly negative ɛHf(t) values together with paleocurrent data indicate an active volcanic source located in the North Lhasa subterrane. Pre-Mesozoic-aged zircon, recycled quartz and (meta) sedimentary rock fragments increase up-section, indicating progressive erosional exhumation of the Paleozoic sedimentary/metasedimentary basement. The Damxung Conglomerate thus records a significant uplift and unroofing stage in the source region, implying initial topographic growth on the Lhasa terrane at early Albian time. Early Cretaceous topographic growth on the Lhasa terrane is supported by the stratigraphic record in the Linzhou basin, the Xigaze forearc basin and the southern Nima basin. In contrast, marine strata in the central-western Lhasa terrane lasted until the early Cenomanian (ca. 96 Ma), indicating diachronous marine regression on the Lhasa terrane from east to west.

  18. Biostratigraphic data from Upper Cretaceous formations-eastern Wyoming, central Colorado, and northeastern New Mexico

    USGS Publications Warehouse

    Merewether, E.A.; Cobban, W.A.; Obradovich, J.D.

    2011-01-01

    Lithological and paleontological studies of outcrops of Upper Cretaceous formations were conducted at 12 localities in eastern Wyoming, central Colorado, and northeastern New Mexico. The sequence extends upward from the top of the Mowry Shale, or age-equivalent rocks, through the Graneros Shale, Greenhorn Limestone, Carlile Shale, Niobrara Formation, Pierre Shale, and Fox Hills Sandstone, or age-equivalent formations, to the top of the Laramie Formation, or laterally equivalent formations. The strata are mainly siliciclastic and calcareous, with thicknesses ranging from about 3,300 ft in northeastern New Mexico to as much as 13,500 ft in eastern Wyoming. Deposition was mainly in marine environments and molluscan fossils of Cenomanian through Maastrichtian ages are common. Radiometric ages were determined from beds of bentonite that are associated with fossil zones. The Upper Cretaceous formations at the 12 study localities are herein divided into three informal time-stratigraphic units based on fossil content and contact relations with adjacent strata. The basal unit in most places extends from the base of the Graneros to the top of the Niobrara, generally to the horizon of the fossil Scaphites hippocrepis, and spans a period of about 14 million years. The middle unit generally extends from the top of the Niobrara to the approximate middle of the Pierre, the horizon of the fossil Baculites gregoryensis, and represents a period of about 5 million years. The upper unit includes strata between the middle of the Pierre and the top of the Upper Cretaceous Series, which is the top of the Laramie Formation or of laterally equivalent formations; it represents a period of deposition of as much as 11 million years. Comparisons of the collections of fossils from each outcrop with the complete sequence of Upper Cretaceous index fossils can indicate disconformable contacts and lacunae. Widespread disconformities have been found within the Carlile Shale and between the Carlile

  19. Extant-only comparative methods fail to recover the disparity preserved in the bird fossil record.

    PubMed

    Mitchell, Jonathan S

    2015-09-01

    Most extant species are in clades with poor fossil records, and recent studies of comparative methods show they have low power to infer even highly simplified models of trait evolution without fossil data. Birds are a well-studied radiation, yet their early evolutionary patterns are still contentious. The fossil record suggests that birds underwent a rapid ecological radiation after the end-Cretaceous mass extinction, and several smaller, subsequent radiations. This hypothesized series of repeated radiations from fossil data is difficult to test using extant data alone. By uniting morphological and phylogenetic data on 604 extant genera of birds with morphological data on 58 species of extinct birds from 50 million years ago, the "halfway point" of avian evolution, I have been able to test how well extant-only methods predict the diversity of fossil forms. All extant-only methods underestimate the disparity, although the ratio of within- to between-clade disparity does suggest high early rates. The failure of standard models to predict high early disparity suggests that recent radiations are obscuring deep time patterns in the evolution of birds. Metrics from different models can be used in conjunction to provide more valuable insights than simply finding the model with the highest relative fit. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  20. Middle Jurassic - Early Cretaceous rifting on the Chortis Block in Honduras: Implications for proto-Caribbean opening (Invited)

    NASA Astrophysics Data System (ADS)

    Rogers, R. D.; Emmet, P. A.

    2009-12-01

    Regional mapping integrated with facies analysis, age constraints and airborne geophysical data reveal WNW and NE trends of Middle Jurassic to Early Cretaceous basins which intersect in southeast Honduras that we interpret as the result of rifting associated with the breakup of the Americas and opening of the proto-Caribbean seaway. The WNW-trending rift is 250 km long by 90 km wide and defined by a basal 200 to 800 m thick sequence of Middle to Late Jurassic fluvial channel and overbank deposits overlain by transgressive clastic shelf strata. At least three sub-basins are apparent. Flanking the WNW trending rift basins are fault bounded exposures of the pre-Jurassic continental basement of the Chortis block which is the source of the conglomeratic channel facies that delineate the axes of the rifts. Cretaceous terrigenous strata mantle the exposed basement-cored rift flanks. Lower Cretaceous clastic strata and shallow marine limestone strata are dominant along this trend indicating that post-rift related subsidence continued through the Early Cretaceous. The rifts coincide with a regional high in the total magnetic intensity data. We interpret these trends to reflect NNE-WSW extension active from the Middle Jurassic through Early Cretaceous. These rifts were inverted during Late Cretaceous shortening oriented normal to the rift axes. To the east and at a 120 degree angle to the WNW trending rift is the 300 km long NE trending Guayape fault system that forms the western shoulder of the Late Jurassic Agua Fria rift basin filled by > 2 km thickness of clastic marine shelf and slope strata. This NE trending basin coincides with the eastern extent of the surface exposure of continental basement rocks and a northeast-trending fabric of the Jurassic (?) metasedimentary basement rocks. We have previously interpreted the eastern basin to be the Jurassic rifted margin of the Chortis block with the Guayape originating as a normal fault system. These two rifts basin intersect

  1. Explosive radiation of Malpighiales supports a mid-cretaceous origin of modern tropical rain forests.

    PubMed

    Davis, Charles C; Webb, Campbell O; Wurdack, Kenneth J; Jaramillo, Carlos A; Donoghue, Michael J

    2005-03-01

    Fossil data have been interpreted as indicating that Late Cretaceous tropical forests were open and dry adapted and that modern closed-canopy rain forest did not originate until after the Cretaceous-Tertiary (K/T) boundary. However, some mid-Cretaceous leaf floras have been interpreted as rain forest. Molecular divergence-time estimates within the clade Malpighiales, which constitute a large percentage of species in the shaded, shrub, and small tree layer in tropical rain forests worldwide, provide new tests of these hypotheses. We estimate that all 28 major lineages (i.e., traditionally recognized families) within this clade originated in tropical rain forest well before the Tertiary, mostly during the Albian and Cenomanian (112-94 Ma). Their rapid rise in the mid-Cretaceous may have resulted from the origin of adaptations to survive and reproduce under a closed forest canopy. This pattern may also be paralleled by other similarly diverse lineages and supports fossil indications that closed-canopy tropical rain forests existed well before the K/T boundary. This case illustrates that dated phylogenies can provide an important new source of evidence bearing on the timing of major environmental changes, which may be especially useful when fossil evidence is limited or controversial.

  2. Isolated teeth of Anhangueria  (Pterosauria: Pterodactyloidea) from the Lower Cretaceous of Lightning Ridge, New South Wales, Australia

    PubMed Central

    Smith, Elizabeth T.; Bell, Phil R.

    2017-01-01

    The fossil record of Australian pterosaurs is sparse, consisting of only a small number of isolated and fragmentary remains from the Cretaceous of Queensland, Western Australia and Victoria. Here, we describe two isolated pterosaur teeth from the Lower Cretaceous (middle Albian) Griman Creek Formation at Lightning Ridge (New South Wales) and identify them as indeterminate members of the pterodactyloid clade Anhangueria. This represents the first formal description of pterosaur material from New South Wales. The presence of one or more anhanguerian pterosaurs at Lightning Ridge correlates with the presence of ‘ornithocheirid’ and Anhanguera-like pterosaurs from the contemporaneous Toolebuc Formation of central Queensland and the global distribution attained by ornithocheiroids during the Early Cretaceous. The morphology of the teeth and their presence in the estuarine- and lacustrine-influenced Griman Creek Formation is likely indicative of similar life habits of the tooth bearer to other members of Anhangueria. PMID:28480142

  3. Theropod courtship: large scale physical evidence of display arenas and avian-like scrape ceremony behaviour by Cretaceous dinosaurs.

    PubMed

    Lockley, Martin G; McCrea, Richard T; Buckley, Lisa G; Lim, Jong Deock; Matthews, Neffra A; Breithaupt, Brent H; Houck, Karen J; Gierliński, Gerard D; Surmik, Dawid; Kim, Kyung Soo; Xing, Lida; Kong, Dal Yong; Cart, Ken; Martin, Jason; Hadden, Glade

    2016-01-07

    Relationships between non-avian theropod dinosaurs and extant and fossil birds are a major focus of current paleobiological research. Despite extensive phylogenetic and morphological support, behavioural evidence is mostly ambiguous and does not usually fossilize. Thus, inferences that dinosaurs, especially theropods displayed behaviour analogous to modern birds are intriguing but speculative. Here we present extensive and geographically widespread physical evidence of substrate scraping behavior by large theropods considered as compelling evidence of "display arenas" or leks, and consistent with "nest scrape display" behaviour among many extant ground-nesting birds. Large scrapes, up to 2 m in diameter, occur abundantly at several Cretaceous sites in Colorado. They constitute a previously unknown category of large dinosaurian trace fossil, inferred to fill gaps in our understanding of early phases in the breeding cycle of theropods. The trace makers were probably lekking species that were seasonally active at large display arena sites. Such scrapes indicate stereotypical avian behaviour hitherto unknown among Cretaceous theropods, and most likely associated with terrirorial activity in the breeding season. The scrapes most probably occur near nesting colonies, as yet unknown or no longer preserved in the immediate study areas. Thus, they provide clues to paleoenvironments where such nesting sites occurred.

  4. Theropod courtship: large scale physical evidence of display arenas and avian-like scrape ceremony behaviour by Cretaceous dinosaurs

    NASA Astrophysics Data System (ADS)

    Lockley, Martin G.; McCrea, Richard T.; Buckley, Lisa G.; Deock Lim, Jong; Matthews, Neffra A.; Breithaupt, Brent H.; Houck, Karen J.; Gierliński, Gerard D.; Surmik, Dawid; Soo Kim, Kyung; Xing, Lida; Yong Kong, Dal; Cart, Ken; Martin, Jason; Hadden, Glade

    2016-01-01

    Relationships between non-avian theropod dinosaurs and extant and fossil birds are a major focus of current paleobiological research. Despite extensive phylogenetic and morphological support, behavioural evidence is mostly ambiguous and does not usually fossilize. Thus, inferences that dinosaurs, especially theropods displayed behaviour analogous to modern birds are intriguing but speculative. Here we present extensive and geographically widespread physical evidence of substrate scraping behavior by large theropods considered as compelling evidence of “display arenas” or leks, and consistent with “nest scrape display” behaviour among many extant ground-nesting birds. Large scrapes, up to 2 m in diameter, occur abundantly at several Cretaceous sites in Colorado. They constitute a previously unknown category of large dinosaurian trace fossil, inferred to fill gaps in our understanding of early phases in the breeding cycle of theropods. The trace makers were probably lekking species that were seasonally active at large display arena sites. Such scrapes indicate stereotypical avian behaviour hitherto unknown among Cretaceous theropods, and most likely associated with terrirorial activity in the breeding season. The scrapes most probably occur near nesting colonies, as yet unknown or no longer preserved in the immediate study areas. Thus, they provide clues to paleoenvironments where such nesting sites occurred.

  5. Theropod courtship: large scale physical evidence of display arenas and avian-like scrape ceremony behaviour by Cretaceous dinosaurs

    PubMed Central

    Lockley, Martin G.; McCrea, Richard T.; Buckley, Lisa G.; Deock Lim, Jong; Matthews, Neffra A.; Breithaupt, Brent H.; Houck, Karen J.; Gierliński, Gerard D.; Surmik, Dawid; Soo Kim, Kyung; Xing, Lida; Yong Kong, Dal; Cart, Ken; Martin, Jason; Hadden, Glade

    2016-01-01

    Relationships between non-avian theropod dinosaurs and extant and fossil birds are a major focus of current paleobiological research. Despite extensive phylogenetic and morphological support, behavioural evidence is mostly ambiguous and does not usually fossilize. Thus, inferences that dinosaurs, especially theropods displayed behaviour analogous to modern birds are intriguing but speculative. Here we present extensive and geographically widespread physical evidence of substrate scraping behavior by large theropods considered as compelling evidence of “display arenas” or leks, and consistent with “nest scrape display” behaviour among many extant ground-nesting birds. Large scrapes, up to 2 m in diameter, occur abundantly at several Cretaceous sites in Colorado. They constitute a previously unknown category of large dinosaurian trace fossil, inferred to fill gaps in our understanding of early phases in the breeding cycle of theropods. The trace makers were probably lekking species that were seasonally active at large display arena sites. Such scrapes indicate stereotypical avian behaviour hitherto unknown among Cretaceous theropods, and most likely associated with terrirorial activity in the breeding season. The scrapes most probably occur near nesting colonies, as yet unknown or no longer preserved in the immediate study areas. Thus, they provide clues to paleoenvironments where such nesting sites occurred. PMID:26741567

  6. Fossil bryophytes as recorders of ancient CO2 levels: Experimental evidence and a Cretaceous case study

    NASA Astrophysics Data System (ADS)

    Fletcher, Benjamin J.; Beerling, David J.; Brentnall, Stuart J.; Royer, Dana L.

    2005-09-01

    Biological and geochemical CO2 proxies provide critical constraints on understanding the role of atmospheric CO2 in driving climate change during Earth history. As no single existing CO2 proxy is without its limitations, there is a clear need for new approaches to reconstructing past CO2 concentrations. Here we develop a new pre-Quaternary CO2 proxy based on the stable carbon isotope composition (δ13C) of astomatous land plants. In a series of CO2-controlled laboratory experiments, we show that the carbon isotope discrimination (Δ13C) of a range of bryophyte (liverwort and moss) species increases with atmospheric CO2 across the range 375 to 6000 ppm. Separate experiments establish that variations in growth temperature, water content and substrate type have minor impacts on the Δ13C of liverworts but not mosses, indicating the greater potential of liverworts to faithfully record past variations in CO2. A mechanistic model for calculating past CO2 concentrations from bryophyte Δ13C (White et al., 1994) is extended and calibrated using our experimental results. The potential for fossil liverworts to record past CO2 changes is investigated by analyzing the δ13C of specimens collected from Alexander Island, Antarctica dating to the "greenhouse" world of the mid-Cretaceous. Our analysis and isotopic model yield mid-Cretaceous CO2 concentrations of 1000-1400 ppm, in general agreement with independent proxy data and long-term carbon cycle models. The exceptionally long evolutionary history of bryophytes offers the possibility of reconstructing CO2 concentrations back to the mid-Ordovician, pre-dating all currently used quantitative CO2 proxies.

  7. Taphonomic and paleoenvironmental considerations for the concentrations of macroinvertibrate fossils in the Romualdo Member, Santana Formation, Late Aptian - Early Albian, Araripe Basin, Araripina, NE, Brazil

    NASA Astrophysics Data System (ADS)

    Prado, Ludmila Alves Cadeira Do; Pereira, Priscilla Albuquerque; Sales, Alexandre Magno Feitosa; Barreto, Alcina Magnólia Franca

    2015-10-01

    Benthic macroinvertebrate fossils can be seen towards to the top of the Romualdo Member of the Santana Formation, in the Araripe Basin, Northeast Brazil, and can provide paleoenvironmental and paleobiogeographical information regarding the Cretaceous marine transgression which reached the interior basins in Northeast Brazil. We analyse taphonomic characteristics of macroinvertebrate concentrations of two outcrops (Torrinha and Torre Grande) within the municipality Araripina, Pernambuco, in order to enhance our understanding of the Cretaceous paleoenvironment in the western portion of the Araripe Basin. At the outcrop Torrinha, proximal tempestitic taphofacies were identified. These predominantly consist of ceritid, cassiopid, and later, naticid gastropods as well as undetermined bivalves. Given this lack of variability it can be deduced that there were no significant paleoenvironmental changes during the successive stages tempestitic sedimentation. In the Torre Grande outcrop distal to proximal tempestitic taphofacies were identified from the base to the top respectively pointing to a decrease in paleodepth. Asides from the macroinvertebrates present in Torrinha, there are also echinoids - unequivocal evidence for marine conditions. These occurrences appear to be restricted to Romualdo Member outcrops in the Araripina municipality (the Southeast portion of the Araripe Basin) confirming a previously published hypothesis suggesting that the Cretaceous marine transgression originated from the neighbouring Parnaíba Basin to the west. This study identified marine molluscs of a similar age to those in the Romualdo Member's equivalent rock units in the Parnaíba and Sergipe-Alagoas (SE-AL) basins suggesting a marine connection between these basins and the Araripe Basin during the Early Cretaceous.

  8. Fossils matter: improved estimates of divergence times in Pinus reveal older diversification.

    PubMed

    Saladin, Bianca; Leslie, Andrew B; Wüest, Rafael O; Litsios, Glenn; Conti, Elena; Salamin, Nicolas; Zimmermann, Niklaus E

    2017-04-04

    The taxonomy of pines (genus Pinus) is widely accepted and a robust gene tree based on entire plastome sequences exists. However, there is a large discrepancy in estimated divergence times of major pine clades among existing studies, mainly due to differences in fossil placement and dating methods used. We currently lack a dated molecular phylogeny that makes use of the rich pine fossil record, and this study is the first to estimate the divergence dates of pines based on a large number of fossils (21) evenly distributed across all major clades, in combination with applying both node and tip dating methods. We present a range of molecular phylogenetic trees of Pinus generated within a Bayesian framework. We find the origin of crown Pinus is likely up to 30 Myr older (Early Cretaceous) than inferred in most previous studies (Late Cretaceous) and propose generally older divergence times for major clades within Pinus than previously thought. Our age estimates vary significantly between the different dating approaches, but the results generally agree on older divergence times. We present a revised list of 21 fossils that are suitable to use in dating or comparative analyses of pines. Reliable estimates of divergence times in pines are essential if we are to link diversification processes and functional adaptation of this genus to geological events or to changing climates. In addition to older divergence times in Pinus, our results also indicate that node age estimates in pines depend on dating approaches and the specific fossil sets used, reflecting inherent differences in various dating approaches. The sets of dated phylogenetic trees of pines presented here provide a way to account for uncertainties in age estimations when applying comparative phylogenetic methods.

  9. The clasts of Cretaceous marls in the conglomerates of the Konradsheim Formation (Pöchlau quarry, Gresten Klippen Zone, Austria)

    NASA Astrophysics Data System (ADS)

    Ślączka, Andrzej; Gasiñski, M. Adam; Bąk, Marta; Wessely, Godfrid

    2009-04-01

    Investigations were carried out on foraminiferids and radiolaria from redeposited clasts within the conglomerates of the Konradsheim Formation (Gresten Klippen Zone) in the area of the Pöchlau hill, east of Maria Neustift. These shales and marls are of Middle to Late Jurassic and Early Cretaceous age. In the latter clasts, foraminiferal assemblages with Tritaxia ex gr. gaultina as well as radiolaria species Angulobracchia portmanni Baumgartner, Dictyomitra communis (Squinabol), Hiscocapsa asseni (Tan), Pseudodictyomitra lodogaensis Pessagno, Pseudoeucyrtis hanni (Tan), Rhopalosyringium fossile (Squinabol) were found. In one block from the uppermost part of the sequence there is an assemblage with Caudammina (H) gigantea, Rotalipora appenninica and Globotruncana bulloides. However, the brecciated character of this block and occurrence near a fault suggest that it was probably wedged into the conglomerates of the Konradsheim Formation during tectonic movements. In pelitic siliceous limestones below the Konradsheim Limestone radiolarian assemblages of Middle Callovian to Early Tithonian age were found. They enable correlation with the Scheibbsbach Formation. In a marly sequence, above the conglomeratic limestone, the foraminiferal assemblages contain taxa from mid-Cretaceous up to Paleocene. The present biostratigraphic investigation confirmed the previous stratigraphic assignments and imply clearly that the sedimentation of deposits similar to the Konradsheim Formation also occurred at the end of the Early Cretaceous and deposition of conglomeratic limestones within the Gresten Klippen Zone, and especially within the Konradsheim Formation, was repeated several times during the Late Jurassic and Early Cretaceous.

  10. Predatory Dinosaurs from the Sahara and Late Cretaceous Faunal Differentiation

    PubMed

    Sereno; Dutheil; Iarochene; Larsson; Lyon; Magwene; Sidor; Varricchio; Wilson

    1996-05-17

    Late Cretaceous (Cenomanian) fossils discovered in the Kem Kem region of Morocco include large predatory dinosaurs that inhabited Africa as it drifted into geographic isolation. One, represented by a skull approximately 1.6 meters in length, is an advanced allosauroid referable to the African genus Carcharodontosaurus. Another, represented by a partial skeleton with slender proportions, is a new basal coelurosaur closely resembling the Egyptian genus Bahariasaurus. Comparisons with Cretaceous theropods from other continents reveal a previously unrecognized global radiation of carcharodontosaurid predators. Substantial geographic differentiation of dinosaurian faunas in response to continental drift appears to have arisen abruptly at the beginning of the Late Cretaceous.

  11. Late Cretaceous terrestrial vertebrate fauna, North Slope, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clemens, W.A.; Allison, C.W.

    1985-01-01

    Closely related terrestrial vertebrates in Cretaceous mid-latitude (30/sup 0/ to 50/sup 0/) faunas of North America and Asia as well as scattered occurrences of footprints and skin impressions suggested that in the Late Mesozoic the Alaskan North Slope supported a diverse fauna. In 1961 abundant skeletal elements of Cretaceous, Alaskan dinosaurs (hadrosaurids) were discovered by the late R.L. Liscomb. This material is being described by K.L. Davies. Additional fossils collected by E.M. Brouwers and her associates include skeletal elements of hadrosaurid and carnosaurian (.tyrannosaurid) dinosaurs and other vertebrates. The fossil locality on the North Slope is not at about 70/supmore » 0/N. In the Late Cretaceous the members of this fauna were subject to the daylight regime and environment at a paleolatitude closer to 80/sup 0/N. Current hypotheses attributing extinctions of dinosaurs and some other terrestrial vertebrates to impact of an extraterrestrial object cite periods of darkness, decreased temperature (possibly followed by extreme warming) and acid rain as the direct causes of their demise. Unless members of this North Slope fauna undertook long-distance migrations, their high latitude occurrence indicates groups of dinosaurs and other terrestrial vertebrates regularly tolerated months of darkness.« less

  12. The Rise of Flowering Plants and Land Surface Physics: The Cretaceous and Eocene Were Different

    NASA Astrophysics Data System (ADS)

    Upchurch, G. R.; Feild, T.

    2010-12-01

    The Cretaceous and Eocene have served as the poster children of past greenhouse climates. One difference between the two time periods is that angiosperms (flowering plants) underwent a major diversification and rise to dominance during the mid-Cretaceous to Paleocene. Flowering plants differ from all other living and fossil plants in having significantly higher rates of transpiration and photosynthesis, which in modern leaves correlate with the density of venation (Dv), a feature that can be measured directly from fossils. This increase in Dv, coupled with an increase in the abundance of angiosperms, is thought to have had major impact on the climate system. This is, in part, because transpiration plays an important role in determining the ratio of sensible to latent heat flux from the land surface and in determining precipitation rate in regions such as the equatorial rainforest. Analysis of Dv in fossil leaves indicates two phases of increase in transpiration rate for angiosperms during the Cretaceous-Paleocene. The oldest known angiosperms (Aptian-early Albian) have a low Dv characteristic of extant and fossil ferns and gymnosperms. At this time angiosperms are low-stature plants of minor importance in terms of relative abundance and diversity (<5%). The first phase of Dv increase occurs during the Late Albian to Cenomanian, where average Dv is 40% greater than that of conifers and ferns, and maximum Dv reaches levels characteristic of many trees from the temperate zone. This first phase coincides with the first local dominance of angiosperms, the first occurrence of moderate to large angiosperm trees (up to 1 m in diameter) , and the first common occurrence of angiosperms in the Arctic. The second phase of Dv increase occurs during the Maastrichtian to Paleocene, where average Dv reaches levels characteristic of modern tropical forests and maximum Dv reaches the level found in highly productive modern vegetation. This second phase coincides with the rise to

  13. REE compositions in fossil vertebrate dental tissues indicate biomineral preservation

    NASA Astrophysics Data System (ADS)

    Žigaite, Ž.; Kear, B.; Pérez-Huerta, A.; Jeffries, T.; Blom, H.

    2012-04-01

    Rare earth element (REE) abundances have been measured in a number of Palaeozoic and Mesozoic dental tissues using Laser Ablation Inductively Coupled Plasma Mass-spectrometry (LA-ICP-MS). Fossil vertebrates analysed comprise scales and tesserae of Silurian and Devonian acanthodians, chondrichthyans, galeaspids, mongolepids, thelodonts, as well as teeth of Cretaceous lungfish and marine reptiles. The evaluation of fossil preservation level has been made by semi-quantitative spot geochemistry analyses on fine polished teeth and scale thin sections, using Energy Dispersive X-ray Spectroscopy (EDS). Fossil teeth and scales with significant structure and colour alteration have shown elevated heavy element concentrations, and the silicification of bioapatite has been common in their tissues. Stable oxygen isotope measurements (δ18O) of bulk biomineral have been conducted in parallel, and showed comparatively lower heavy oxygen values in the same fossil tissues with stronger visible alteration. Significant difference in REE concentrations has been observed between the dentine and enamel of Cretaceous plesiosaurs, suggesting the enamel to be more geochemically resistant to diagenetic overprint.

  14. A new fossil from the mid-Paleocene of New Zealand reveals an unexpected diversity of world's oldest penguins.

    PubMed

    Mayr, Gerald; De Pietri, Vanesa L; Paul Scofield, R

    2017-04-01

    We describe leg bones of a giant penguin from the mid-Paleocene Waipara Greensand of New Zealand. The specimens were found at the type locality of Waimanu manneringi and together with this species they constitute the oldest penguin fossils known to date. Tarsometatarsus dimensions indicate a species that reached the size of Anthropornis nordenskjoeldi, one of the largest known penguin species. Stem group penguins therefore attained a giant size very early in their evolution, with this gigantism existing for more than 30 million years. The new fossils are from a species that is phylogenetically more derived than Waimanu, and the unexpected coexistence of Waimanu with more derived stem group Sphenisciformes documents a previously unknown diversity amongst the world's oldest penguins. The characteristic tarsometatarsus shape of penguins evolved early on, and the significant morphological disparity between Waimanu and the new fossil conflicts with recent Paleocene divergence estimates for penguins, suggesting an older, Late Cretaceous, origin.

  15. A new fossil from the mid-Paleocene of New Zealand reveals an unexpected diversity of world's oldest penguins

    NASA Astrophysics Data System (ADS)

    Mayr, Gerald; De Pietri, Vanesa L.; Paul Scofield, R.

    2017-04-01

    We describe leg bones of a giant penguin from the mid-Paleocene Waipara Greensand of New Zealand. The specimens were found at the type locality of Waimanu manneringi and together with this species they constitute the oldest penguin fossils known to date. Tarsometatarsus dimensions indicate a species that reached the size of Anthropornis nordenskjoeldi, one of the largest known penguin species. Stem group penguins therefore attained a giant size very early in their evolution, with this gigantism existing for more than 30 million years. The new fossils are from a species that is phylogenetically more derived than Waimanu, and the unexpected coexistence of Waimanu with more derived stem group Sphenisciformes documents a previously unknown diversity amongst the world's oldest penguins. The characteristic tarsometatarsus shape of penguins evolved early on, and the significant morphological disparity between Waimanu and the new fossil conflicts with recent Paleocene divergence estimates for penguins, suggesting an older, Late Cretaceous, origin.

  16. Early Cretaceous Archaeamphora is not a carnivorous angiosperm

    PubMed Central

    Wong, William Oki; Dilcher, David Leonard; Labandeira, Conrad C.; Sun, Ge; Fleischmann, Andreas

    2015-01-01

    Archaeamphora longicervia H. Q. Li was described as an herbaceous, Sarraceniaceae-like pitcher plant from the mid Early Cretaceous Yixian Formation of Liaoning Province, northeastern China. Here, a re-investigation of A. longicervia specimens from the Yixian Formation provides new insights into its identity and the morphology of pitcher plants claimed by Li. We demonstrate that putative pitchers of Archaeamphora are insect-induced leaf galls that consist of three components: (1) an innermost larval chamber; (2) an intermediate zone of nutritive tissue; and (3) an outermost wall of sclerenchyma. Archaeamphora is not a carnivorous, Sarraceniaceae-like angiosperm, but represents insect-galled leaves of the previously reported gymnosperm Liaoningocladus boii G. Sun et al. from the Yixian Formation. PMID:25999978

  17. Early Cretaceous Umkomasia from Mongolia: implications for homology of corystosperm cupules.

    PubMed

    Shi, Gongle; Leslie, Andrew B; Herendeen, Patrick S; Herrera, Fabiany; Ichinnorov, Niiden; Takahashi, Masamichi; Knopf, Patrick; Crane, Peter R

    2016-06-01

    Corystosperms, a key extinct group of Late Permian to Early Cretaceous plants, are important for understanding seed plant phylogeny, including the evolution of the angiosperm carpel and anatropous bitegmic ovule. Here, we describe a new species of corystosperm seed-bearing organ, Umkomasia mongolica sp. nov., based on hundreds of three-dimensionally preserved mesofossils from the Early Cretaceous of Mongolia. Individual seed-bearing units of U. mongolica consist of a bract subtending an axis that bifurcates, with each fork (cupule stalk) bearing a cupule near the tip. Each cupule is formed by the strongly reflexed cupule stalk and two lateral flaps that partially enclose an erect seed. The seed is borne at, or close to, the tip of the reflexed cupule stalk, with the micropyle oriented towards the stalk base. The corystosperm cupule is generally interpreted as a modified leaf that bears a seed on its abaxial surface. However, U. mongolica suggests that an earlier interpretation, in which the seed is borne directly on an axis (shoot), is equally likely. The 'axial' interpretation suggests a possible relationship of corystosperms to Ginkgo. It also suggests that the cupules of corystosperms may be less distinct from those of Caytonia than has previously been supposed. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  18. A dating success story: genomes and fossils converge on placental mammal origins

    PubMed Central

    2012-01-01

    The timing of the placental mammal radiation has been a source of contention for decades. The fossil record of mammals extends over 200 million years, but no confirmed placental mammal fossils are known prior to 64 million years ago, which is approximately 1.5 million years after the Cretaceous-Paleogene (K-Pg) mass extinction that saw the end of non-avian dinosaurs. Thus, it came as a great surprise when the first published molecular clock studies suggested that placental mammals originated instead far back in the Cretaceous, in some cases doubling divergence estimates based on fossils. In the last few decades, more than a hundred new genera of Mesozoic mammals have been discovered, and molecular divergence studies have grown from simple clock-like models applied to a few genes to sophisticated analyses of entire genomes. Yet, molecular and fossil-based divergence estimates for placental mammal origins have remained remote, with knock-on effects for macro-scale reconstructions of mammal evolution. A few recent molecular studies have begun to converge with fossil-based estimates, and a new phylogenomic study in particular shows that the palaeontological record was mostly correct; most placental mammal orders diversified after the K-Pg mass extinction. While a small gap still remains for Late Cretaceous supraordinal divergences, this study has significantly improved the congruence between molecular and palaeontological data and heralds a broader integration of these fields of evolutionary science. PMID:22883371

  19. Geomagnetic Reversals of the Late Jurassic and Early Cretaceous Captured in a North China Core

    NASA Astrophysics Data System (ADS)

    Kuhn, T.; Fu, R. R.; Kent, D. V.; Olsen, P. E.

    2016-12-01

    The Tuchengzi formation in North China nominally spans nearly 20 million years of the Late Jurassic and Early Cretaceous, an interval during which age calibration of the Geomagnetic Polarity Time Scale (GPTS) based on seafloor magnetic anomalies is poorly known. The overlying Yixian formation is of special paleontological interest due to an abundance of spectacularly preserved macrofossils of feathered non-avian dinosaurs, birds, mammals, and insects. Scarce fossils in the Tuchengzi, sparse accurate radiometric dates on both the Tuchengzi and overlying Yixian formation, and scant previous paleomagnetic studies on these formations motivated our application of magnetostratigraphy as a geochronological tool. We constructed a geomagnetic reversal sequence from the upper 142m of a 200m core extracted in Liaoning Province at Huangbanjigou spanning the lower Yixian Formation and the unconformably underlying Tuchengzi Formation. Thermal demagnetization up to 680°C in steps of 25-50°C revealed predominantly normal overprints consistent with the modern day field with unblocking temperatures between 125°C and as high as 550°C, as well as normal and reverse characteristic components with unblocking temperatures between 500°C and 680°C. Going up from the base of the core, there is a reverse polarity magnetozone >6m thick, followed by a 5m normal magnetozone, a 10m reverse magnetozone, a 25m normal magnetozone, and a 6m reverse magnetozone truncated by the Yixian-Tuchengzi unconformity. Above the unconformity, all 81m of core were normal. These results indicate that a meaningful polarity stratigraphy can be recovered from the Tuchengzi and Yixian formations that will be invaluable for correlations across the Tuchengzi and potentially the Yixian formations, which span thousands of square kilometers and vary in thickness by many hundreds of meters. The results also demonstrate that, in combination with accurate and precise radiometric dates, the Tuchengzi Formation has the

  20. Rationale of Early Adopters of Fossil Fuel Divestment

    ERIC Educational Resources Information Center

    Beer, Christopher Todd

    2016-01-01

    Purpose: This research uses the social science perspectives of institutions, ecological modernization and social movements to analyze the rationale used by the early-adopting universities of fossil fuel divestment in the USA. Design/methodology/approach: Through analysis of qualitative data from interviews with key actors at the universities that…

  1. New methods reveal oldest known fossil epiphyllous moss: Bryiidites utahensis gen. et sp. nov. (Bryidae).

    PubMed

    Barclay, Richard S; McElwain, Jennifer C; Duckett, Jeffrey G; van Es, Maarten H; Mostaert, Anika S; Pressel, Silvia; Sageman, Bradley B

    2013-12-01

    Epiphyllous bryophytes are a highly characteristic feature of many humid tropical forest ecosystems. In contrast to the extensive fossil record for the leaves of their host plants, the record is virtually nonexistent for the epiphylls themselves, despite a fossil record for mosses that begins in the Middle Carboniferous Period, 330 million years ago. Epifluorescence optical microscopy, scanning electron microscopy, and atomic force microscopy were employed to investigate an intimate association between a newly discovered epiphyllous moss and a Lauraceae plant host from the middle Cretaceous. We describe the oldest fossil specimen of an epiphyllous moss, Bryiidites utahensis gen. et sp. nov., identified from an individual specimen only 450 µm long, situated on an approximately one millimeter square fossil leaf fragment. The moss epiphyll is exquisitely preserved as germinating spores and short-celled protonemata with transverse and oblique cross-walls closely matching those of extant epiphyllous mosses on the surface of the plant-leaf hosts. The extension of the epiphyll record back to the middle Cretaceous provides fossil evidence for the appearance of epiphyllous mosses during the diversification of flowering plants, at least 95 million years ago. It also provides substantive evidence for a tropical maritime climate in central North America during the middle Cretaceous.

  2. Mummified precocial bird wings in mid-Cretaceous Burmese amber

    PubMed Central

    Xing, Lida; McKellar, Ryan C.; Wang, Min; Bai, Ming; O'Connor, Jingmai K.; Benton, Michael J.; Zhang, Jianping; Wang, Yan; Tseng, Kuowei; Lockley, Martin G.; Li, Gang; Zhang, Weiwei; Xu, Xing

    2016-01-01

    Our knowledge of Cretaceous plumage is limited by the fossil record itself: compression fossils surrounding skeletons lack the finest morphological details and seldom preserve visible traces of colour, while discoveries in amber have been disassociated from their source animals. Here we report the osteology, plumage and pterylosis of two exceptionally preserved theropod wings from Burmese amber, with vestiges of soft tissues. The extremely small size and osteological development of the wings, combined with their digit proportions, strongly suggests that the remains represent precocial hatchlings of enantiornithine birds. These specimens demonstrate that the plumage types associated with modern birds were present within single individuals of Enantiornithes by the Cenomanian (99 million years ago), providing insights into plumage arrangement and microstructure alongside immature skeletal remains. This finding brings new detail to our understanding of infrequently preserved juveniles, including the first concrete examples of follicles, feather tracts and apteria in Cretaceous avialans. PMID:27352215

  3. Mummified precocial bird wings in mid-Cretaceous Burmese amber.

    PubMed

    Xing, Lida; McKellar, Ryan C; Wang, Min; Bai, Ming; O'Connor, Jingmai K; Benton, Michael J; Zhang, Jianping; Wang, Yan; Tseng, Kuowei; Lockley, Martin G; Li, Gang; Zhang, Weiwei; Xu, Xing

    2016-06-28

    Our knowledge of Cretaceous plumage is limited by the fossil record itself: compression fossils surrounding skeletons lack the finest morphological details and seldom preserve visible traces of colour, while discoveries in amber have been disassociated from their source animals. Here we report the osteology, plumage and pterylosis of two exceptionally preserved theropod wings from Burmese amber, with vestiges of soft tissues. The extremely small size and osteological development of the wings, combined with their digit proportions, strongly suggests that the remains represent precocial hatchlings of enantiornithine birds. These specimens demonstrate that the plumage types associated with modern birds were present within single individuals of Enantiornithes by the Cenomanian (99 million years ago), providing insights into plumage arrangement and microstructure alongside immature skeletal remains. This finding brings new detail to our understanding of infrequently preserved juveniles, including the first concrete examples of follicles, feather tracts and apteria in Cretaceous avialans.

  4. Terrestrial biota and climate during Cretaceous greenhouse in NE China

    NASA Astrophysics Data System (ADS)

    Wan, X.

    2016-12-01

    Northeast China offers a unique opportunity to perceive Cretaceous stratigraphy and climate of terrestrial settings. The sediments contain variegated clastic and volcanic rocks, diverse terrestrial fossils, and important coal and oil resources. Four Cretaceous biotas of Jehol, Fuxin, Songhuajiang and Jiayin occurred in ascending order. For scientific purpose, a coring program (SK1 & 2) provides significant material for Cretaceous research. The SK1 present a continuous section of Upper Cretaceous non-marine fossil, magnetochron successions and chronostratigraphic events. These chronostratigraphic events are integrated with marine events by an X/Y graphic plot between the core data and a global database of GSSP and key reference sections. More precisely, age interpolation based on CA-ID-TIMS U-Pb zircon dates and the calibrated cyclostratigraphy places the end of the Cretaceous Normal Superchon at 83.07 ±0.15Ma. This date also serves as an estimate for the Santonian-Campanian stage boundary. It also places the K/Pg boundary within the upper part of the Mingshui Formation. The terrestrial and marine life and the analysis of elemental composition, δ13Corg, biomarkers show that lake water salinity changed along with a Coniacian-Santonian marine incursion. High lake-level coincides with the sea transgression during the time. High salinity resulted in the development of periodic anoxic environments of the basin. One of these times of deposition of organic-rich mud correlates with the mangnetochron of C34N/C33R and Coniacian-Santonian planktic foraminifera. This marine flooding correlates with OAE 3 and it is possible that the global oceanic anoxic event may have influenced organic carbon burial in the Songliao Basin for this brief period. The evolution of 4 biotas corresponds to the Cretaceous climate change. We tentatively interpret the terrestrial record to reflect the changes in both global climate and regional basin evolution.

  5. Island life in the Cretaceous - faunal composition, biogeography, evolution, and extinction of land-living vertebrates on the Late Cretaceous European archipelago

    PubMed Central

    Csiki-Sava, Zoltán; Buffetaut, Eric; Ősi, Attila; Pereda-Suberbiola, Xabier; Brusatte, Stephen L.

    2015-01-01

    Abstract The Late Cretaceous was a time of tremendous global change, as the final stages of the Age of Dinosaurs were shaped by climate and sea level fluctuations and witness to marked paleogeographic and faunal changes, before the end-Cretaceous bolide impact. The terrestrial fossil record of Late Cretaceous Europe is becoming increasingly better understood, based largely on intensive fieldwork over the past two decades, promising new insights into latest Cretaceous faunal evolution. We review the terrestrial Late Cretaceous record from Europe and discuss its importance for understanding the paleogeography, ecology, evolution, and extinction of land-dwelling vertebrates. We review the major Late Cretaceous faunas from Austria, Hungary, France, Spain, Portugal, and Romania, as well as more fragmentary records from elsewhere in Europe. We discuss the paleogeographic background and history of assembly of these faunas, and argue that they are comprised of an endemic ‘core’ supplemented with various immigration waves. These faunas lived on an island archipelago, and we describe how this insular setting led to ecological peculiarities such as low diversity, a preponderance of primitive taxa, and marked changes in morphology (particularly body size dwarfing). We conclude by discussing the importance of the European record in understanding the end-Cretaceous extinction and show that there is no clear evidence that dinosaurs or other groups were undergoing long-term declines in Europe prior to the bolide impact. PMID:25610343

  6. Diverse Early Paleocene Fossil Floras from the San Juan Basin (New Mexico, USA) Linked to Warm and Wet Climate

    NASA Astrophysics Data System (ADS)

    Flynn, A. G.; Peppe, D. J.

    2017-12-01

    Early Paleocene floras from the Northern Great Plains of North America are typically far less diverse than floras from the latest Cretaceous, and are commonly dominated by long-ranging, cosmopolitan taxa. Additionally, there is pattern of decreasing species richness from the early to the middle Paleocene concurrent with a decrease in mean annual temperature (MAT). However, a diverse rainforest flora from the Denver Basin, Colorado 1.5 Myr after the K-Pg boundary run contrary to these trends. Whether this flora represents an isolated response to the extinction and climate change or regional differences between floras in the Northern Great Plains and southern North America is unclear. The majority of early Paleocene floras from North America are derived from the Northern Great Plains inhibiting regional comparisons of floral diversity, paleoclimate, and floral response to climate change or north-gradients in diversity and species richness. The San Juan Basin (SJB), located in northwest New Mexico, preserves a continuous sequence of early Paleocene terrestrial deposits making it an ideal area to study early Paleocene fossil floras from southern North America. Here we present an assessment of floral diversity and terrestrial paleoclimate reconstruction using leaf physiognomy during the first 2.6 Myrs of the early Paleocene from the SJB. Fossil plants were collected from the early Paleocene Ojo Alamo Sandstone and lower Nacimiento Formation corresponding to magnetic polarity chrons 29r - 28n ( 66.0 - 63.5 Mya). The SJB flora is more diverse than contemporaneous floras from the Northern Great Plains. The majority of SJB taxa are endemic, while taxa common in the Northern Great Plains are absent. Paleoclimate estimates using leaf physiognomy indicate high MAT ( 22-28 oC) and relatively high mean annual precipitation ( 1400-2000 mm/yr). These paleoclimate estimates are significantly warmer and wetter than previously studied localities in the Northern Great Plains. A

  7. An early Oligocene fossil demonstrates treeshrews are slowly evolving “living fossils”

    PubMed Central

    Li, Qiang; Ni, Xijun

    2016-01-01

    Treeshrews are widely considered a “living model” of an ancestral primate, and have long been called “living fossils”. Actual fossils of treeshrews, however, are extremely rare. We report a new fossil species of Ptilocercus treeshrew recovered from the early Oligocene (~34 Ma) of China that represents the oldest definitive fossil record of the crown group of treeshrews and nearly doubles the temporal length of their fossil record. The fossil species is strikingly similar to the living Ptilocercus lowii, a species generally recognized as the most plesiomorphic extant treeshrew. It demonstrates that Ptilocercus treeshrews have undergone little evolutionary change in their morphology since the early Oligocene. Morphological comparisons and phylogenetic analysis support the long-standing idea that Ptilocercus treeshrews are morphologically conservative and have probably retained many characters present in the common stock that gave rise to archontans, which include primates, flying lemurs, plesiadapiforms and treeshrews. This discovery provides an exceptional example of slow morphological evolution in a mammalian group over a period of 34 million years. The persistent and stable tropical environment in Southeast Asia through the Cenozoic likely played a critical role in the survival of such a morphologically conservative lineage. PMID:26766238

  8. Systematics, phylogeny, and taphonomy of ghost shrimps (Decapoda): a perspective from the fossil record

    PubMed Central

    Klompmaker, Adiël A.

    2016-01-01

    Ghost shrimps of Callianassidae and Ctenochelidae are soft-bodied, usually heterochelous decapods representing major bioturbators of muddy and sandy (sub)marine substrates. Ghost shrimps have a robust fossil record spanning from the Early Cretaceous (~ 133 Ma) to the Holocene and their remains are present in most assemblages of Cenozoic decapod crustaceans. Their taxonomic interpretation is in flux, mainly because the generic assignment is hindered by their insufficient preservation and disagreement in the biological classification. Furthermore, numerous taxa are incorrectly classified within the catch-all taxon Callianassa. To show the historical patterns in describing fossil ghost shrimps and to evaluate taphonomic aspects influencing the attribution of ghost shrimp remains to higher level taxa, a database of all fossil species treated at some time as belonging to the group has been compiled: 250 / 274 species are considered valid ghost shrimp taxa herein. More than half of these taxa (160 species, 58.4%) are known only from distal cheliped elements, i.e., dactylus and / or propodus, due to the more calcified cuticle locally. Rarely, ghost shrimps are preserved in situ in burrows or in direct association with them, and several previously unpublished occurrences are reported herein. For generic assignment, fossil material should be compared to living species because many of them have modern relatives. Heterochely, intraspecific variation, ontogenetic changes and sexual dimorphism are all factors that have to be taken into account when working with fossil ghost shrimps. Distal elements are usually more variable than proximal ones. Preliminary results suggest that the ghost shrimp clade emerged not before the Hauterivian (~ 133 Ma). The divergence of Ctenochelidae and Paracalliacinae is estimated to occur within the interval of Hauterivian to Albian (133–100 Ma). Callichirinae and Eucalliacinae likely diverged later during the Late Cretaceous (100–66 Ma

  9. The shape of pterosaur evolution: evidence from the fossil record.

    PubMed

    Dyke, G J; McGowan, A J; Nudds, R L; Smith, D

    2009-04-01

    Although pterosaurs are a well-known lineage of Mesozoic flying reptiles, their fossil record and evolutionary dynamics have never been adequately quantified. On the basis of a comprehensive data set of fossil occurrences correlated with taxon-specific limb measurements, we show that the geological ages of pterosaur specimens closely approximate hypothesized patterns of phylogenetic divergence. Although the fossil record has expanded greatly in recent years, collectorship still approximates a sigmoid curve over time as many more specimens (and thus taxa) still remain undiscovered, yet our data suggest that the pterosaur fossil record is unbiased by sites of exceptional preservation (lagerstätte). This is because as new species are discovered the number of known formations and sites yielding pterosaur fossils has also increased - this would not be expected if the bulk of the record came from just a few exceptional faunas. Pterosaur morphological diversification is, however, strongly age biased: rarefaction analysis shows that peaks of diversity occur in the Late Jurassic and Early Cretaceous correlated with periods of increased limb disparity. In this respect, pterosaurs appear unique amongst flying vertebrates in that their disparity seems to have peaked relatively late in clade history. Comparative analyses also show that there is little evidence that the evolutionary diversification of pterosaurs was in any way constrained by the appearance and radiation of birds.

  10. Glendonites as a paleoenvironmental tool: Implications for early Cretaceous high latitudinal climates in Australia

    NASA Astrophysics Data System (ADS)

    De Lurio, Jennifer L.; Frakes, L. A.

    1999-04-01

    Glendonites, calcite pseudomorphs after the metastable mineral ikaite (CaCO 3 · 6H 2O), occur in the Late Aptian interval of the Bulldog Shale in the Eromanga Basin, Australia and in other Early Cretaceous basins at high paleolatitudes. Ikaite precipitation in the marine environment requires near-freezing temperatures (not higher than 4°C), high alkalinity, increased levels of orthophosphate, and high P CO2. The rapid and complete transformation of ikaite to calcite at temperatures between 5 and 8°C provides an upper limit on the oxygen isotopic composition of the pore waters: -2.6 <δ w <-3.4‰SMOW. If it is assumed that these pore waters are representative of the shallow Eromanga Basin, the calculated δ w can be used to reassess belemnite fossil oxygen isotopic paleotemperatures - temperature recorded by fauna living in the basin at the time of ikaite precipitation. Data previously reported as 11 to 16°C (assuming δ w = 0.0‰SMOW) yield paleotemperatures ranging from -1 to 5°C, squarely in the range of ikaite stability. The low δ w indicates hyposaline conditions, most likely caused by mixing high latitude meteoric waters with seawater. The 18O depleted, low temperature waters suggest that the region was at least seasonally colder than previously accepted.

  11. Sedimentology, stratigraphy, and extinctions during the Cretaceous-Paleogene transition at Bug Creek, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fastovsky, D.E.; Dott, R.H. Jr.

    1986-04-01

    Bug Creek Valley, the source of an unusual and controversial Cretaceous-Paleogene coincidence of mammals, dinosaurs, pollen, and iridium, exemplifies the importance of depositional process in the reconstruction of evolutionary events. Five sedimentary facies are recognized at Bug Creek: a cross-stratified sandstone, a green and purple siltstone, a lateral accretionary sandstone, a coal, and a variegated siltstone. Repeated fluvial channeling restricts the accuracy of lateral correlations, and the relationship of the fossil assemblage to the presumed Cretaceous-Paleogene boundary cannot be established. Sedimentologically, the Cretaceous-Paleogene transition is represented here by Cretaceous meandering channels that gave way initially to Paleogene swamp deposition. 13more » references, 4 figures.« less

  12. Post-early cretaceous landform evolution along the western margin of the banca~nnia trough, western nsw

    USGS Publications Warehouse

    Gibson, D.L.

    2000-01-01

    Previously undated post-Devonian sediments outcropping north of Fowlers Gap station near the western margin of the Bancannia Trough are shown by plant macro- and microfossil determinations to be of Early Cretaceous (most likely Neocomian and/or Aptian) age, and thus part of the Eromanga Basin. They are assigned to the previously defined Telephone Creek Formation. Study of the structural configuration of this unit and the unconformably underlying Devonian rocks suggests that the gross landscape architecture of the area results from post-Early Cretaceous monoclinal folding along blind faults at the western margin of the trough, combined with the effects of differential erosion. This study shows that, while landscape evolution in the area has been dynamic, the major changes that have occurred are on a geological rather than human timescale.

  13. Significance of "tethyan" fossils in the american cordillera.

    PubMed

    Newton, C R

    1988-10-21

    Equatorial faunas of the ancient Tethyan seaway, which extended from western Europe to southeastern Asia, comprise some of the most diverse marine taxa in the fossil record. Comparable or identical "Tethyan" species that occur far from the Tethyan seaway in Paleozoic and Mesozoic rocks of the North and South American Cordillera have long been considered as a major biogeographic anomaly. Two leading theories to account for the occurrence of these anomalous "Tethyan" faunas in the Cordillera are that they were transported long distances to the east on tectonic blocks(suspect terranes that originated near the Tethys) or that they migrated westward via undiscovered marine corridors through continental areas of Pangea. An alternative model is that these "Tethyan" fauna were pantropic species that extended with attenuated diversities into the eastern proto-Pacific Ocean. This pantropic model can better account for the distribution patterns of many Paleozoic and early Mesozoic "Tethyan" species in the American Cordillera and provides a steady state hypothesis against which the other models can be tested. The distribution of pre-Cretaceous "Tethyan" faunas is similar to the known pantropic distribution of many Cretaceous and Cenozoic tropical biotas. During the Cenozoic, taxa were most diverse in the Tethys and Indo-West Pacific regions but extended with attenuated diversity to many parts of the equatorial Pacific Ocean, including the west coasts of North and South America. The eastern Pacific occurrence of many Indo-West Pacific species provides a modern analog for the occurrence of many anomalous "Tethyan" fossils in the American Cordillera.

  14. Mid-Cretaceous charred fossil flowers reveal direct observation of arthropod feeding strategies

    PubMed Central

    Hartkopf-Fröder, Christoph; Rust, Jes; Wappler, Torsten; Friis, Else Marie; Viehofen, Agnes

    2012-01-01

    Although plant–arthropod relationships underpin the dramatic rise in diversity and ecological dominance of flowering plants and their associated arthropods, direct observations of such interactions in the fossil record are rare, as these ephemeral moments are difficult to preserve. Three-dimensionally preserved charred remains of Chloranthistemon flowers from the Late Albian to Early Cenomanian of Germany preserve scales of mosquitoes and an oribatid mite with mouthparts inserted into the pollen sac. Mosquitoes, which today are frequent nectar feeders, and the mite were feeding on pollen at the time wildfire consumed the flowers. These findings document directly arthropod feeding strategies and their role in decomposition. PMID:21900310

  15. A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds.

    PubMed

    Knoll, Fabien; Chiappe, Luis M; Sanchez, Sophie; Garwood, Russell J; Edwards, Nicholas P; Wogelius, Roy A; Sellers, William I; Manning, Phillip L; Ortega, Francisco; Serrano, Francisco J; Marugán-Lobón, Jesús; Cuesta, Elena; Escaso, Fernando; Sanz, Jose Luis

    2018-03-05

    Fossils of juvenile Mesozoic birds provide insight into the early evolution of avian development, however such fossils are rare. The analysis of the ossification sequence in these early-branching birds has the potential to address important questions about their comparative developmental biology and to help understand their morphological evolution and ecological differentiation. Here we report on an early juvenile enantiornithine specimen from the Early Cretaceous of Europe, which sheds new light on the osteogenesis in this most species-rich clade of Mesozoic birds. Consisting of a nearly complete skeleton, it is amongst the smallest known Mesozoic avian fossils representing post-hatching stages of development. Comparisons between this new specimen and other known early juvenile enantiornithines support a clade-wide asynchronous pattern of osteogenesis in the sternum and the vertebral column, and strongly indicate that the hatchlings of these phylogenetically basal birds varied greatly in size and tempo of skeletal maturation.

  16. A new specimen of Manchurochelys manchoukuoensis from the Early Cretaceous Jehol Biota of Chifeng, Inner Mongolia, China and the phylogeny of Cretaceous basal eucryptodiran turtles

    PubMed Central

    2014-01-01

    Background Manchurochelys manchoukuoensis is an emblematic turtle from the Cretaceous Yixian Formation of Liaoning, China, a geological rock unit that is famous for yielding perfectly preserved skeletons of fossil vertebrates, including that of feathered dinosaurs. Manchurochelys manchoukuoensis was one of the first vertebrates described from this fauna, also known as the Jehol Biota. The holotype was lost during World War II and only one additional specimen has been described since. Manchurochelys manchoukuoensis is a critical taxon for unraveling the phylogenetic relationships of Cretaceous pancryptodires from Asia, a group that is considered to be of key importance for the origin of crown-group hidden-neck turtles (Cryptodira). Results A new specimen of Manchurochelys manchoukuoensis is described here from the Jiufotang Formation of Qilinshan, Chifeng, Inner Mongolia, China. This is the third specimen described and expands the range of this taxon from the Yixian Formation of the Fuxin-Yixian Basin in Liaoning to the Jiufotang Formation of the Chifeng-Yuanbaoshan Basin. A possible temporal extension of the range is less certain. The new finding adds to our understanding of the morphology of this taxon and invites a thorough revision of the phylogeny of Macrobaenidae, Sinemydidae, and closely allied forms. Conclusions Our comprehensive phylogenetic analyses of Cretaceous Asian pancryptodires yielded two main competing hypotheses: in the first these taxa form a paraphyletic grade, whereas in the second they form a monophyletic clade. The inclusion of problematic tree changing taxa, such as Panpleurodires (stem + crown side-neck turtles) has a major influence on the phylogenetic relationships of Sinemydidae and closely allied forms. Manchurochelys manchoukuoensis nests within Sinemydidae together with Sinemys spp. and Dracochelys bicuspis in the majority of our analyses. PMID:24707892

  17. A drowned Mesozoic bird breeding colony from the Late Cretaceous of Transylvania.

    PubMed

    Dyke, Gareth; Vremir, Mátyás; Kaiser, Gary; Naish, Darren

    2012-06-01

    Despite a rapidly improving fossil record, the reproductive biology of Mesozoic birds remains poorly known: only a handful of undisputed, isolated Cretaceous eggs (some containing embryonic remains) are known. We report here the first fossil evidence for a breeding colony of Mesozoic birds, preserved at the Late Cretaceous (Maastrichtian) Oarda de Jos (Od) site in the Sebeş area of Transylvania, Romania. A lens of calcareous mudstone with minimum dimensions of 80 cm length, 50 cm width and 20 cm depth contains thousands of tightly packed, morphologically homogenous eggshell fragments, seven near-complete eggs and neonatal and adult avialan skeletal elements. Eggshell forms 70-80 % of the matrix, and other fossils are entirely absent. The bones exhibit clear characters of the Cretaceous avialan clade Enantiornithes, and the eggshell morphology is also consistent with this identification. Both taphonomy and lithology show that the components of this lens were deposited in a single flood event, and we conclude that it represents the drowned remains of a larger enantiornithine breeding colony, swamped by rising water, washed a short distance and deposited in a shallow, low-energy pond. The same fate often befalls modern bird colonies. Such a large concentration of breeding birds suggests aquatic feeding in this species, augments our understanding of enantiornithine biology and shows that colonial nesting was not unique to crown birds.

  18. Non-marine carbonate facies, facies models and palaeogeographies of the Purbeck Formation (Late Jurassic to Early Cretaceous) of Dorset (Southern England).

    NASA Astrophysics Data System (ADS)

    Gallois, Arnaud; Bosence, Dan; Burgess, Peter

    2015-04-01

    Non-marine carbonates are relatively poorly understood compared with their more abundant marine counterparts. Sedimentary facies and basin architecture are controlled by a range of environmental parameters such as climate, hydrology and tectonic setting but facies models are few and limited in their predictive value. Following the discovery of extensive Early Cretaceous, non-marine carbonate hydrocarbon reservoirs in the South Atlantic, the interest of understanding such complex deposits has increased during recent years. This study is developing a new depositional model for non-marine carbonates in a semi-arid climate setting in an extensional basin; the Purbeck Formation (Upper Jurassic - Lower Cretaceous) in Dorset (Southern England). Outcrop study coupled with subsurface data analysis and petrographic study (sedimentology and early diagenesis) aims to constrain and improve published models of depositional settings. Facies models for brackish water and hypersaline water conditions of these lacustrine to palustrine carbonates deposited in the syn-rift phase of the Wessex Basin will be presented. Particular attention focusses on the factors that control the accumulation of in-situ microbialite mounds that occur within bedded inter-mound packstones-grainstones in the lower Purbeck. The microbialite mounds are located in three units (locally known as the Skull Cap, the Hard Cap and the Soft Cap) separated by three fossil soils (locally known as the Basal, the Lower and the Great Dirt Beds) respectively within three shallowing upward lacustrine sequences. These complex microbialite mounds (up to 4m high), are composed of tabular small-scale mounds (flat and long, up to 50cm high) divided into four subfacies. Many of these small-scale mounds developed around trees and branches which are preserved as moulds (or silicified wood) which are surrounded by a burrowed mudstone-wackestone collar. Subsequently a thrombolite framework developed on the upper part only within

  19. Polyphase exhumation in the western Qinling Mountains, China: Rapid Early Cretaceous cooling along a lithospheric-scale tear fault and pulsed Cenozoic uplift

    PubMed Central

    Heberer, Bianca; Anzenbacher, Thomas; Neubauer, Franz; Genser, Johann; Dong, Yunpeng; Dunkl, István

    2014-01-01

    The western sector of the Qinling–Dabie orogenic belt plays a key role in both Late Jurassic to Early Cretaceous “Yanshanian” intracontinental tectonics and Cenozoic lateral escape triggered by India–Asia collision. The Taibai granite in the northern Qinling Mountains is located at the westernmost tip of a Yanshanian granite belt. It consists of multiple intrusions, constrained by new Late Jurassic and Early Cretaceous U–Pb zircon ages (156 ± 3 Ma and 124 ± 1 Ma). Applying various geochronometers (40Ar/39Ar on hornblende, biotite and K-feldspar, apatite fission-track, apatite [U–Th–Sm]/He) along a vertical profile of the Taibai Mountain refines the cooling and exhumation history. The new age constraints record the prolonged pre-Cenozoic intracontinental deformation as well as the cooling history mostly related to India–Asia collision. We detected rapid cooling for the Taibai granite from ca. 800 to 100 °C during Early Cretaceous (ca. 123 to 100 Ma) followed by a period of slow cooling from ca. 100 Ma to ca. 25 Ma, and pulsed exhumation of the low-relief Cretaceous peneplain during Cenozoic times. We interpret the Early Cretaceous rapid cooling and exhumation as a result from activity along the southern sinistral lithospheric scale tear fault of the recently postulated intracontinental subduction of the Archean/Palaeoproterozoic North China Block beneath the Alashan Block. A Late Oligocene to Early Miocene cooling phase might be triggered either by the lateral motion during India–Asia collision and/or the Pacific subduction zone. Late Miocene intensified cooling is ascribed to uplift of the Tibetan Plateau. PMID:27065503

  20. New Ophthalmosaurid Ichthyosaurs from the European Lower Cretaceous Demonstrate Extensive Ichthyosaur Survival across the Jurassic–Cretaceous Boundary

    PubMed Central

    Fischer, Valentin; Maisch, Michael W.; Naish, Darren; Kosma, Ralf; Liston, Jeff; Joger, Ulrich; Krüger, Fritz J.; Pérez, Judith Pardo; Tainsh, Jessica

    2012-01-01

    Background Ichthyosauria is a diverse clade of marine amniotes that spanned most of the Mesozoic. Until recently, most authors interpreted the fossil record as showing that three major extinction events affected this group during its history: one during the latest Triassic, one at the Jurassic–Cretaceous boundary (JCB), and one (resulting in total extinction) at the Cenomanian-Turonian boundary. The JCB was believed to eradicate most of the peculiar morphotypes found in the Late Jurassic, in favor of apparently less specialized forms in the Cretaceous. However, the record of ichthyosaurs from the Berriasian–Barremian interval is extremely limited, and the effects of the end-Jurassic extinction event on ichthyosaurs remains poorly understood. Methodology/Principal Findings Based on new material from the Hauterivian of England and Germany and on abundant material from the Cambridge Greensand Formation, we name a new ophthalmosaurid, Acamptonectes densus gen. et sp. nov. This taxon shares numerous features with Ophthalmosaurus, a genus now restricted to the Callovian–Berriasian interval. Our phylogenetic analysis indicates that Ophthalmosauridae diverged early in its history into two markedly distinct clades, Ophthalmosaurinae and Platypterygiinae, both of which cross the JCB and persist to the late Albian at least. To evaluate the effect of the JCB extinction event on ichthyosaurs, we calculated cladogenesis, extinction, and survival rates for each stage of the Oxfordian–Barremian interval, under different scenarios. The extinction rate during the JCB never surpasses the background extinction rate for the Oxfordian–Barremian interval and the JCB records one of the highest survival rates of the interval. Conclusions/Significance There is currently no evidence that ichthyosaurs were affected by the JCB extinction event, in contrast to many other marine groups. Ophthalmosaurid ichthyosaurs remained diverse from their rapid radiation in the Middle Jurassic to

  1. A Late Cretaceous Piper (Piperaceae) from Colombia and diversification patterns for the genus.

    PubMed

    Martínez, Camila; Carvalho, Mónica R; Madriñán, Santiago; Jaramillo, Carlos A

    2015-02-01

    Documented fossil floras in the neotropics are sparse, yet their records provide evidence on the spatial and temporal occurrence of taxa, allowing for testing of biogeographical and diversification scenarios on individual lineages. A new fossil Piper from the Late Cretaceous of Colombia is described here, and its importance for assessing diversification patterns in the genus is addressed. Leaf architecture of 32 fossil leaf compressions from the Guaduas Formation was compared with that of 294 extant angiosperm species. The phylogenetic position of the fossil named Piper margaritae sp. nov. was established based on leaf traits and a molecular scaffold of Piper. The age of the fossil was independently used as a calibration point for divergence time estimations. Natural affinities of P. margaritae to the Schilleria clade of Piper indicate that the genus occurred in tropical America by the Late Cretaceous. Estimates of age divergence and lineage accumulation reveal that most of the extant diversity of the genus accrued during the last ∼30 Myr. The recent radiation of Piper is coeval with both the Andean uplift and the emergence of Central America, which have been proposed as important drivers of diversity. This pattern could exemplify a recurrent theme among many neotropical plant lineages. © 2015 Botanical Society of America, Inc.

  2. An extraterrestrial trigger for the Early Cretaceous massive volcanism? Evidence from the paleo-Tethys Ocean.

    PubMed

    Tejada, M L G; Ravizza, G; Suzuki, K; Paquay, F S

    2012-01-01

    The Early Cretaceous Greater Ontong Java Event in the Pacific Ocean may have covered ca. 1% of the Earth's surface with volcanism. It has puzzled scientists trying to explain its origin by several mechanisms possible on Earth, leading others to propose an extraterrestrial trigger to explain this event. A large oceanic extraterrestrial impact causing such voluminous volcanism may have traces of its distal ejecta in sedimentary rocks around the basin, including the paleo-Tethys Ocean which was then contiguous with the Pacific Ocean. The contemporaneous marine sequence at central Italy, containing the sedimentary expression of a global oceanic anoxic event (OAE1a), may have recorded such ocurrence as indicated by two stratigraphic intervals with (187)Os/(188)Os indicative of meteoritic influence. Here we show, for the first time, that platinum group element abundances and inter-element ratios in this paleo-Tethyan marine sequence provide no evidence for an extraterrestrial trigger for the Early Cretaceous massive volcanism.

  3. An extraterrestrial trigger for the Early Cretaceous massive volcanism? Evidence from the paleo-Tethys Ocean

    PubMed Central

    Tejada, M. L. G.; Ravizza, G.; Suzuki, K.; Paquay, F. S.

    2012-01-01

    The Early Cretaceous Greater Ontong Java Event in the Pacific Ocean may have covered ca. 1% of the Earth's surface with volcanism. It has puzzled scientists trying to explain its origin by several mechanisms possible on Earth, leading others to propose an extraterrestrial trigger to explain this event. A large oceanic extraterrestrial impact causing such voluminous volcanism may have traces of its distal ejecta in sedimentary rocks around the basin, including the paleo-Tethys Ocean which was then contiguous with the Pacific Ocean. The contemporaneous marine sequence at central Italy, containing the sedimentary expression of a global oceanic anoxic event (OAE1a), may have recorded such ocurrence as indicated by two stratigraphic intervals with 187Os/188Os indicative of meteoritic influence. Here we show, for the first time, that platinum group element abundances and inter-element ratios in this paleo-Tethyan marine sequence provide no evidence for an extraterrestrial trigger for the Early Cretaceous massive volcanism. PMID:22355780

  4. Evaluating the use of amber in palaeoatmospheric reconstructions: The carbon-isotope variability of modern and Cretaceous conifer resins

    NASA Astrophysics Data System (ADS)

    Dal Corso, Jacopo; Schmidt, Alexander R.; Seyfullah, Leyla J.; Preto, Nereo; Ragazzi, Eugenio; Jenkyns, Hugh C.; Delclòs, Xavier; Néraudeau, Didier; Roghi, Guido

    2017-02-01

    Stable carbon-isotope geochemistry of fossilized tree resin (amber) potentially could be a very useful tool to infer the composition of past atmospheres. To test the reliability of amber as a proxy for the atmosphere, we studied the variability of modern resin δ13C at both local and global scales. An amber δ13C curve was then built for the Cretaceous, a period of abundant resin production, and interpreted in light of data from modern resins. Our data show that hardening changes the pristine δ13C value by causing a 13C-depletion in solid resin when compared to fresh liquid-viscous resin, probably due to the loss of 13C-enriched volatiles. Modern resin δ13C values vary as a function of physiological and environmental parameters in ways that are similar to those described for leaves and wood. Resin δ13C varies between plant species and localities, within the same tree and between different plant tissues by up to 6‰, and in general increases with increasing altitudes of the plant-growing site. We show that, as is the case with modern resin, Cretaceous amber δ13C has a high variability, generally higher than that of other fossil material. Despite the high natural variability, amber shows a negative 2.5-3‰ δ13C trend from the middle Early Cretaceous to the Maastrichtian that parallels published terrestrial δ13C records. This trend mirrors changes in the atmospheric δ13C calculated from the δ13C and δ18O of benthic foraminiferal tests, although the magnitude of the shift is larger in plant material than in the atmosphere. Increasing mean annual precipitation and pO2 could have enhanced plant carbon-isotope fractionation during the Late Cretaceous, whereas changing pCO2 levels seem to have had no effect on plant carbon-isotope fractionation. The results of this study suggest that amber is a powerful fossil plant material for palaeoenvironmental and palaeoclimatic reconstructions. Improvement of the resolution of the existing data coupled with more detailed

  5. A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds

    DOE PAGES

    Knoll, Fabien; Chiappe, Luis M.; Sanchez, Sophie; ...

    2018-03-05

    Fossils of juvenile Mesozoic birds provide insight into the early evolution of avian development, however such fossils are rare. The analysis of the ossification sequence in these early-branching birds has the potential to address important questions about their comparative developmental biology and to help understand their morphological evolution and ecological differentiation. Here we report on an early juvenile enantiornithine specimen from the Early Cretaceous of Europe, which sheds new light on the osteogenesis in this most species-rich clade of Mesozoic birds. Consisting of a nearly complete skeleton, it is amongst the smallest known Mesozoic avian fossils representing post-hatching stages ofmore » development. Finally, comparisons between this new specimen and other known early juvenile enantiornithines support a clade-wide asynchronous pattern of osteogenesis in the sternum and the vertebral column, and strongly indicate that the hatchlings of these phylogenetically basal birds varied greatly in size and tempo of skeletal maturation.« less

  6. A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoll, Fabien; Chiappe, Luis M.; Sanchez, Sophie

    Fossils of juvenile Mesozoic birds provide insight into the early evolution of avian development, however such fossils are rare. The analysis of the ossification sequence in these early-branching birds has the potential to address important questions about their comparative developmental biology and to help understand their morphological evolution and ecological differentiation. Here we report on an early juvenile enantiornithine specimen from the Early Cretaceous of Europe, which sheds new light on the osteogenesis in this most species-rich clade of Mesozoic birds. Consisting of a nearly complete skeleton, it is amongst the smallest known Mesozoic avian fossils representing post-hatching stages ofmore » development. Finally, comparisons between this new specimen and other known early juvenile enantiornithines support a clade-wide asynchronous pattern of osteogenesis in the sternum and the vertebral column, and strongly indicate that the hatchlings of these phylogenetically basal birds varied greatly in size and tempo of skeletal maturation.« less

  7. Perinate and eggs of a giant caenagnathid dinosaur from the Late Cretaceous of central China

    PubMed Central

    Pu, Hanyong; Zelenitsky, Darla K.; Lü, Junchang; Currie, Philip J.; Carpenter, Kenneth; Xu, Li; Koppelhus, Eva B.; Jia, Songhai; Xiao, Le; Chuang, Huali; Li, Tianran; Kundrát, Martin; Shen, Caizhi

    2017-01-01

    The abundance of dinosaur eggs in Upper Cretaceous strata of Henan Province, China led to the collection and export of countless such fossils. One of these specimens, recently repatriated to China, is a partial clutch of large dinosaur eggs (Macroelongatoolithus) with a closely associated small theropod skeleton. Here we identify the specimen as an embryo and eggs of a new, large caenagnathid oviraptorosaur, Beibeilong sinensis. This specimen is the first known association between skeletal remains and eggs of caenagnathids. Caenagnathids and oviraptorids share similarities in their eggs and clutches, although the eggs of Beibeilong are significantly larger than those of oviraptorids and indicate an adult body size comparable to a gigantic caenagnathid. An abundance of Macroelongatoolithus eggs reported from Asia and North America contrasts with the dearth of giant caenagnathid skeletal remains. Regardless, the large caenagnathid-Macroelongatoolithus association revealed here suggests these dinosaurs were relatively common during the early Late Cretaceous. PMID:28486442

  8. The fossil record and macroevolutionary history of the beetles

    PubMed Central

    Smith, Dena M.; Marcot, Jonathan D.

    2015-01-01

    Coleoptera (beetles) is the most species-rich metazoan order, with approximately 380 000 species. To understand how they came to be such a diverse group, we compile a database of global fossil beetle occurrences to study their macroevolutionary history. Our database includes 5553 beetle occurrences from 221 fossil localities. Amber and lacustrine deposits preserve most of the beetle diversity and abundance. All four extant suborders are found in the fossil record, with 69% of all beetle families and 63% of extant beetle families preserved. Considerable focus has been placed on beetle diversification overall, however, for much of their evolutionary history it is the clade Polyphaga that is most responsible for their taxonomic richness. Polyphaga had an increase in diversification rate in the Early Cretaceous, but instead of being due to the radiation of the angiosperms, this was probably due to the first occurrences of beetle-bearing amber deposits in the record. Perhaps, most significant is that polyphagan beetles had a family-level extinction rate of zero for most of their evolutionary history, including across the Cretaceous–Palaeogene boundary. Therefore, focusing on the factors that have inhibited beetle extinction, as opposed to solely studying mechanisms that may promote speciation, should be examined as important determinants of their great diversity today. PMID:25788597

  9. A mid-Cretaceous Eccrinales infesting a primitive wasp in Myanmar amber.

    PubMed

    Poinar, George

    2016-12-01

    A mid-Cretaceous Eccrinales in Myanmar amber is described as Paleocadus burmiticus gen. et sp. nov. in the family Eccrinaceae. The fossil is represented by two types of sporangiospores formed on different thalli protruding from the anus of a primitive wasp, with secondary infestation spores multinucleate and thin walled. Its presence establishes the Eccrinales in the mid-Cretaceous and shows that at that time, lineages of this group parasitized wasps, an association unknown with extant members of the Order. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  10. New Evidence for opening of the Black Sea; U-Pb analysis of detrital zircons and paleocurrent measurements of the Early Cretaceous turbidites

    NASA Astrophysics Data System (ADS)

    Akdoğan, Remziye; Okay, Aral I.; Sunal, Gürsel; Tari, Gabor; Kylander-Clark, Andrew R. C.

    2015-04-01

    Shelf to submarine turbidite fan deposits of the Early Cretaceous crop out over a large area along the southern coast of the Black Sea. Early Cretaceous turbidites have a thickness of over 2000 meters in the Central Pontides. The shelf of this turbidite basin, represented by shallow marine clastics and carbonates, crops out along the Black Sea coast between Zonguldak and Amasra. Paleocurrent directions in the Lower Cretaceous turbidites were measured in 90 localities using mostly flute and groove casts and to a lesser extend cross-beds. At the eastern part of the basin, the paleocurrents were from north to south. It is scattered in the west of the basin, however, the main paleocurrent directions were from the north. Detrital zircons were analyzed using LA-ICP-MS in eleven samples from the turbiditic sandstones and two samples from the shelf sandstones. Four samples are from the western part (two samples from shelf sediments), four samples from the central part and five samples from the eastern part of the Lower Cretaceous basin. 1085 of 1348 zircon analyses are concordant with rates of 95-105% and the zircon ages range between 141 ± 4 Ma (Berriasian) and 3469 ± 8 Ma (Paleoarchean). 22% of the detrital zircon ages are Paleoproterozoic, 20% Archean, 16% Carboniferous, 13% Neoproterozoic, 8% Permian, 6% Triassic, 5% Mesoproterozoic and 11% other ages. In the western part of the basin the Carboniferous zircons constitute the main population with a less dominant peak at Ordovician, Cambrian and Late Neoproterozoic. The zircons from the center of the basin show scattered distribution with dominant populations in the Triassic, Permian, Carboniferous, Silurian, Paleoproterozoic, Early Neoproterozoic-Late Mesoproterozoic, and minor peak at Late Neoarchean. On the other hand, zircons from the eastern most part of the basin, show dominant peaks in the Paleoproterozoic, Mesoarchean and Permian with minor peaks in Triassic, Carboniferous and Silurian. Anatolia and the Balkans

  11. The oldest fossil bee: Apoid history, evolutionary stasis, and antiquity of social behavior

    PubMed Central

    Michener, Charles D.; Grimaldi, David A.

    1988-01-01

    Trigona prisca, a stingless honey bee (Apidae; Meliponinae), is reported from Cretaceous New Jersey amber (96-74 million years before present). This is about twice the age of the oldest previously known fossil bee, although Trigona is one of the most derived bee genera. T. prisca is closely similar to modern neotropical species. Most of bee evolution probably occurred during the ≈50 million years between the beginning of the Cretaceous when flowering plants (on which bees depend) appeared and the time of T. prisca. Since then, in this phyletic line of Meliponinae, there has been almost no morphological evolution. Since the fossil is a worker, social organization had arisen by its time. Images PMID:16593976

  12. Major wildfires at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Anders, Edward; Wolbach, Wendy S.; Gilmour, Iain

    1991-01-01

    The current status of the reconstruction of major biomass fire events at the Cretaceous-Tertiary boundary is discussed. Attention is given to the sources of charcoal and soot, the identification of biomass and fossil carbon, and such ignition-related problems as delated fires, high atmospheric O2 content, ignition mechanisms, and the greenhouse-effect consequences of fire on the scale envisioned. Consequences of these factors for species extinction patterns are noted.

  13. Insect diversity in the fossil record

    NASA Technical Reports Server (NTRS)

    Labandeira, C. C.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1993-01-01

    Insects possess a surprisingly extensive fossil record. Compilation of the geochronologic ranges of insect families demonstrates that their diversity exceeds that of preserved vertebrate tetrapods through 91 percent of their evolutionary history. The great diversity of insects was achieved not by high origination rates but rather by low extinction rates comparable to the low rates of slowly evolving marine invertebrate groups. The great radiation of modern insects began 245 million years ago and was not accelerated by the expansion of angiosperms during the Cretaceous period. The basic trophic machinery of insects was in place nearly 100 million years before angiosperms appeared in the fossil record.

  14. Zeolites replacing plant fossils in the Denver formation, Lakewood, Colorado.

    USGS Publications Warehouse

    Modreski, P.J.; Verbeek, E.R.; Grout, M.A.

    1984-01-01

    Well-developed crystals of heulandite and stilbite, within fossil wood, occur in sedimentary rocks in Lakewood, Jefferson County. The rocks belong to the Denver formation, a locally fossiliferous deposit of fluvial claystone, siltstone, sandstone and conglomerate, containing some volcanic mudflows (andesitic) of late Cretaceous to Palaeocene age. Altered volcanic glass released Na and Ca into the ground-water and subsequently zeolites were crystallized in the open spaces between grains and within fossil plant structures. Minor pyrite, quartz (jasper), calcite and apatite also occur as replacements of fossil wood. Similar zeolite occurrences in other areas are reviewed.-R.S.M.

  15. A temporary pond in the Early Cretaceous of southern England: palaeoclimatic implications of nonmarine "Purbeck-Wealden" ostracod faunas

    NASA Astrophysics Data System (ADS)

    Horne, D. J.

    2009-04-01

    Excavation of the partial skeleton of an Iguanodon from the Upper Weald Clay (Barremian, Early Cretaceous) at Smokejacks Brickworks near Ockley, Surrey, UK included detailed sampling for micropalaeontological and palynological and studies (Nye et al., 2008). Rich and well-preserved non-marine assemblages of pollen and spores include early angiosperms as well as freshwater green algae. Taphonomic analyses show the ostracod assemblages to be autochthonous thanatocoenoses, indicative of local environment at the time of deposition. Using a palaeobiological approach, the ostracods and palynomorphs demonstrate temporary / ephemeral freshwater conditions at the time when the Iguanodon died and the carcase was buried. Ostracod "faunicycles" in "Purbeck-Wealden" deposits may represent salinity variations in non-marine water-bodies, influenced by the balance between precipitation and evaporation, and/or the relative abundance of permanent and temporary waterbodies in the landscape; many assemblages resulted from post-mortem mixing, perhaps during flood events (Horne, 2002). Faunal alternations may therefore reflect shifts of the boundary between warm temperate and paratropical climate in the Early Cretaceous of NW Europe. The previously rejected suggestion that such assemblage variations record Milankovitch cyclicity deserves to be reconsidered, as does the possibility that they reflect changes on sub-Milankovitch timescales. Climate variability may have influenced the differential evolutionary success of sexual, mixed and parthenogenetic reproductive strategies in nonmarine ostracods. Latitudinally restricted distribution patterns and wind dispersal of resting eggs offer potential for inferring global climate patterns from ostracod palaeobiogeography, although dispersal by large animals (e.g., crocodiles, pterosaurs) is likely to have confused any aeolian transport patterns. References Horne, D. J. 2002. Ostracod biostratigraphy and palaeoecology of the Purbeck Limestone

  16. Grimmiaceae in the Early Cretaceous: Tricarinella crassiphylla gen. et sp. nov. and the value of anatomically preserved bryophytes.

    PubMed

    Savoretti, Adolfina; Bippus, Alexander C; Stockey, Ruth A; Rothwell, Gar W; Tomescu, Alexandru M F

    2018-06-08

    Widespread and diverse in modern ecosystems, mosses are rare in the fossil record, especially in pre-Cenozoic rocks. Furthermore, most pre-Cenozoic mosses are known from compression fossils, which lack detailed anatomical information. When preserved, anatomy significantly improves resolution in the systematic placement of fossils. Lower Cretaceous (Valanginian) deposits on Vancouver Island (British Columbia, Canada) contain a diverse anatomically preserved flora including numerous bryophytes, many of which have yet to be characterized. Among them is the grimmiaceous moss described here. One fossil moss gametophyte preserved in a carbonate concretion was studied in serial sections prepared using the cellulose acetate peel technique. Tricarinella crassiphylla gen. et sp. nov. is a moss with tristichous phyllotaxis and strongly keeled leaves. The combination of an acrocarpous condition (inferred based on a series of morphological features), a central conducting strand, a homogeneous leaf costa and a lamina with bistratose portions and sinuous cells, and multicellular gemmae, supports placement of Tricarinella in family Grimmiaceae. Tricarinella is similar to Grimmia, a genus that exhibits broad morphological variability. However, tristichous phyllotaxis and especially the lamina, bistratose at the base but not in distal portions of the leaf, set Tricarinella apart as a distinct genus. Tricarinella crassiphylla marks the oldest record for both family Grimmiaceae and sub-class Dicranidae, providing a hard minimum age (136 million years) for these groups. The fact that this fossil could be placed in an extant family, despite a diminutive size, emphasizes the considerable resolving power of anatomically preserved bryophyte fossils, even when recovered from allochthonous assemblages of marine sediments, such as the Apple Bay flora. Discovery of Tricarinella re-emphasizes the importance of paleobotanical studies as the only approach allowing access to a significant segment

  17. An archaic crested plesiosaur in opal from the Lower Cretaceous high-latitude deposits of Australia

    PubMed Central

    Kear, Benjamin P; Schroeder, Natalie I; Lee, Michael S.Y

    2006-01-01

    Umoonasaurus demoscyllus gen. et sp. nov. is a new small-bodied (approx. 2.5 m) pliosauroid plesiosaur from the Lower Cretaceous (Aptian–Albian) of southern Australia. It is represented by several partial skeletons (one with a near complete skull is the most complete opalized vertebrate fossil yet known), and is unique in having large crests on the skull midline and above the orbits. Umoonasaurus is surprisingly archaic despite its relatively late age (approx. 115 Myr ago)—being simultaneously the most basal (primitive) and last surviving rhomaleosaurid. Notably, it lacks the ‘pliosauromorph’ features (large head, short neck, gigantism) typically characterizing many more derived Jurassic rhomaleosaurids; thus, reinforcing the suspected convergent evolution of the ‘pliosauromorph’ hypercarnivore body plan. Umoonasaurus inhabited an Early Cretaceous high-latitude (approx. 70° S) inland seaway subject to seasonally near-freezing climatic conditions. This extreme environment supported a diverse range of plesiosaur taxa, suggesting that these marine reptiles might have possessed adaptations (e.g. heightened metabolic levels) to cope with cold-water temperatures. Indeed, survival of ancient endemic lineages such as Umoonasaurus is a common phenomenon in Australian Cretaceous vertebrate assemblages and might have been facilitated by isolation in low-temperature high-latitude regions. PMID:17148303

  18. Paleomagnetism of the Cretaceous Galula Formation and implications for vertebrate evolution

    NASA Astrophysics Data System (ADS)

    Widlansky, Sarah J.; Clyde, William C.; O'Connor, Patrick M.; Roberts, Eric M.; Stevens, Nancy J.

    2018-03-01

    This study uses magnetostratigraphy to help constrain the age of the paleontologically important Galula Formation (Rukwa Rift Basin, southwestern Tanzania). The formation preserves a Cretaceous vertebrate fauna, including saurischian dinosaurs, a putative gondwanatherian mammal, and notosuchian crocodyliforms. With better dating, the Galula Formation and its fossils help fill a temporal gap in our understanding of vertebrate evolution in continental Africa, enabling better evaluation of competing paleobiogeographic hypotheses concerning faunal exchange throughout Gondwana during the Cretaceous. Paleomagnetic samples for this study were collected from the Namba (higher in section) and Mtuka (lower in section) members of the Galula Formation and underwent stepwise thermal demagnetization. All samples displayed a strong normal magnetic polarity overprint, and maximum unblocking temperatures at approximately 690 °C. Three short reversed intervals were identified in the Namba Member, whereas the Mtuka Member lacked any clear reversals. Given the relatively limited existing age constraints, one interpretation correlates the Namba Member to Chron C32. An alternative correlation assigns reversals in the Namba Member to recently proposed short reversals near the end of the Cretaceous Normal Superchron (Chron C34), a time that is traditionally interpreted as having stable normal polarity. The lack of reversals in the Mtuka Member supports deposition within Chron C34. These data suggest that the Namba Member is no older than Late Cretaceous (Cenomanian-Campanian), with the Mtuka Member less well constrained to the middle Cretaceous (Aptian-Cenomanian). The paleomagnetic results are supported by the application of fold and reversal tests for paleomagnetic stability, and paleomagnetic poles for the Namba (246.4°/77.9°, α95 5.9°) and Mtuka (217.1°/72.2°, α95 11.1°) members closely matching the apparent polar wander path for Africa during the Late Cretaceous. These

  19. Late Jurassic-Early Cretaceous continental convergence and intracontinental orogenesis in East Asia: A synthesis of the Yanshan Revolution

    NASA Astrophysics Data System (ADS)

    Dong, Shuwen; Zhang, Yueqiao; Zhang, Fuqin; Cui, Jianjun; Chen, Xuanhua; Zhang, Shuanhong; Miao, Laicheng; Li, Jianhua; Shi, Wei; Li, Zhenhong; Huang, Shiqi; Li, Hailong

    2015-12-01

    The basic tectonic framework of continental East Asia was produced by a series of nearly contemporaneous orogenic events in the late Middle Jurassic to Early Cretaceous. Commonly, the Late Mesozoic orogenic processes were characterized by continent-continent collision, large-scale thrusting, strike-slip faulting and intense crustal shortening, crustal thickening, regional anatexis and metamorphism, followed by large-scale lithospheric extension, rifting and magmatism. To better understand the geological processes, this paper reviews and synthesizes existing multi-disciplinary geologic data related to sedimentation, tectonics, magmatism, metamorphism and geochemistry, and proposes a two-stage tectono-thermal evolutionary history of East Asia during the late Middle Jurassic to Early Cretaceous (ca. 170-120 Ma). In the first stage, three orogenic belts along the continental margins were formed coevally at ca. 170-135 Ma, i.e., the north Mongol-Okhotsk orogen, the east paleo-Pacific coastal orogen, and the west Bangong-Nujiang orogen. Tectonism related to the coastal orogen caused extensive intracontinental folding and thrusting that resulted in a depositional hiatus in the Late Jurassic, as well as crustal anatexis that generated syn-kinematic granites, adakites and migmatites. The lithosphere of the East Asian continent was thickened, reaching a maximum during the latest Jurassic or the earliest Cretaceous. In the second stage (ca. 135-120 Ma), delamination of the thickened lithosphere resulted in a remarkable (>120 km) lithospheric thinning and the development of mantle-derived magmatism, mineralization, metamorphic core complexes and rift basins. The Middle Jurassic-Early Cretaceous subduction of oceanic plates (paleo-Pacific, meso-Tethys, and Mongol-Okhotsk) and continent-continent collision (e.g. Lhasa and Qiangtang) along the East Asian continental margins produced broad coastal and intracontinental orogens. These significant tectonic activities, marked by

  20. Brazilian continental cretaceous

    NASA Astrophysics Data System (ADS)

    Petri, Setembrino; Campanha, Vilma A.

    1981-04-01

    Cretaceous deposits in Brazil are very well developed, chiefly in continental facies and in thick sequences. Sedimentation occurred essentially in rift-valleys inland and along the coast. Three different sequences can be distinguished: (1) a lower clastic non-marine section, (2) a middle evaporitic section, (3) an upper marine section with non-marine regressive lithosomes. Continental deposits have been laid down chiefly between the latest Jurassic and Albian. The lower lithostratigraphic unit is represented by red shales with occasional evaporites and fresh-water limestones, dated by ostracods. A series of thick sandstone lithosomes accumulated in the inland rift-valleys. In the coastal basins these sequences are often incompletely preserved. Uplift in the beginning of the Aptian produced a widespread unconformity. In many of the inland rift-valleys sedimentation ceased at that time. A later transgression penetrated far into northeastern Brazil, but shortly after continental sedimentation continued, with the deposition of fluvial sandstones which once covered large areas of the country and which have been preserved in many places. The continental Cretaceous sediments have been laid down in fluvial and lacustrine environments, under warm climatic conditions which were dry from time to time. The fossil record is fairly rich, including besides plants and invertebrates, also reptiles and fishes. As faulting tectonism was rather strong, chiefly during the beginning of the Cretaceous, intercalations of igneous rocks are frequent in some places. Irregular uplift and erosion caused sediments belonging to the remainder of this period to be preserved only in tectonic basins scattered across the country.

  1. Water-use responses of 'living fossil' conifers to CO2 enrichment in a simulated Cretaceous polar environment.

    PubMed

    Llorens, Laura; Osborne, Colin P; Beerling, David J

    2009-07-01

    During the Mesozoic, the polar regions supported coniferous forests that experienced warm climates, a CO(2)-rich atmosphere and extreme seasonal variations in daylight. How the interaction between the last two factors might have influenced water use of these conifers was investigated. An experimental approach was used to test the following hypotheses: (1) the expected beneficial effects of elevated [CO(2)] on water-use efficiency (WUE) are reduced or lost during the 24-h light of the high-latitude summer; and (2) elevated [CO(2)] reduces plant water use over the growing season. Measurements of leaf and whole-plant gas exchange, and leaf-stable carbon isotope composition were made on one evergreen (Sequoia sempervirens) and two deciduous (Metasequoia glyptostroboides and Taxodium distichum) 'living fossil' coniferous species after 3 years' growth in controlled-environment simulated Cretaceous Arctic (69 degrees N) conditions at either ambient (400 micromol mol(-1)) or elevated (800 micromol mol(-1)) [CO(2)]. Stimulation of whole-plant WUE (WUE(P)) by CO(2) enrichment was maintained over the growing season for the three studied species but this pattern was not reflected in patterns of WUE inferred from leaf-scale gas exchange measurements (iWUE(L)) and delta(13)C of foliage (tWUE(L)). This response was driven largely by increased rates of carbon uptake, because there was no overall CO(2) effect on daily whole-plant transpiration or whole-plant water loss integrated over the study period. Seasonal patterns of tWUE(L) differed from those measured for iWUE(L). The results suggest caution against over simplistic interpretations of WUE(P) based on leaf isotopic composition. The data suggest that the efficiency of whole-tree water use may be improved by CO(2) enrichment in a simulated high-latitude environment, but that transpiration is relatively insensitive to atmospheric CO(2) in the living fossil species investigated.

  2. The Evolution of Reproduction within Testudinata as Evidenced by the Fossil Record

    NASA Astrophysics Data System (ADS)

    Lawver, Daniel Ryan

    Although known from every continent except Antarctica and having a fossil record ranging from the Middle Jurassic to the Pleistocene, fossil turtle eggs are relatively understudied. In this dissertation I describe four fossil specimens, interpret paleoecology and conduct cladistic analyses in order to investigate the evolution of turtle reproduction. Fossil eggshell descriptions primarily involve analysis by scanning electron and polarized light microscopy, as well as cathodoluminescence to determine the degree of diagenetic alteration. Carapace lengths and gas conductance are estimated in order to investigate the ecology of the adults that produced fossil turtle eggs and clutches, as well as their incubation environments, respectively. Cladistic analyses of turtle egg and reproductive characters permit assessment of the usefulness of these characters for determining phylogenetic relationships of fossil specimens and the evolution of reproduction in turtles. Specimens described here include 1) Testudoolithus oosp. from the Late Cretaceous of Madagascar, 2) a clutch of eggs (some containing late stage embryos and at least one exhibiting multilayer eggshell) from the Late Cretaceous Judith River Formation of Montana and named Testudoolithus zelenitskyae oosp. nov., 3) an egg contained within an adult Basilemys nobilis from the Late Cretaceous Kaiparowits Formation of Utah, and 4) a clutch of Meiolania platyceps eggs from the Pleistocene of Lord Howe Island, Australia. Meiolania platyceps eggs are named Testudoolithus lordhowensis oosp. nov. and provide valuable information on the origin of aragonite eggshell composition and nesting behaviors. Cladistic analyses utilizing egg and reproductive characters are rarely performed on taxa outside of Dinosauria. My analyses demonstrate that morphological data produces poorly resolved trees in which only the clades Adocia and Trionychia are resolved and all other turtles form a large polytomy. However, when combined with

  3. Early Cretaceous bimodal volcanic rocks in the southern Lhasa terrane, south Tibet: Age, petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Ding, Lin; Liu, Zhi-Chao; Zhang, Li-Yun; Yue, Ya-Hui

    2017-01-01

    Limited geochronological and geochemical data from Early Cretaceous igneous rocks of the Gangdese Belt have resulted in a dispute regarding the subduction history of Neo-Tethyan Ocean. To approach this issue, we performed detailed in-situ zircon U-Pb and Hf isotopic, whole-rock elemental and Sr-Nd isotopic analyses on Late Mesozoic volcanic rocks exposed in the Liqiongda area, southern Lhasa terrane. These volcanic rocks are calc-alkaline series, dominated by basalts, basaltic andesites, and subordinate rhyolites, with a bimodal suite. The LA-ICPMS zircon U-Pb dating results of the basaltic andesites and rhyolites indicate that these volcanic rocks erupted during the Early Cretaceous (137-130 Ma). The basaltic rocks are high-alumina (average > 17 wt.%), enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), and depleted in high field strength elements (HFSEs), showing subduction-related characteristics. They display highly positive zircon εHf(t) values (+ 10.0 to + 16.3) and whole-rock εNd(t) values (+ 5.38 to + 7.47). The silicic suite is characterized by low Al2O3 (< 15.4 wt.%), Mg# (< 40), and TiO2 (< 0.3 wt.%) abundances; enriched and variable concentrations of LILEs and REEs; and strongly negative Eu anomalies (Eu/Eu* = 0.08-0.19), as well as depleted Hf isotopic compositions (εHf(t) = + 4.9 to + 16.4) and Nd isotopic compositions (εNd(t) = + 5.26 to + 6.71). Consequently, we envision a process of basaltic magmas similar to that of MORB extracted from a source metasomatized by slab-derived components for the petrogenesis of mafic rocks, whereas the subsequent mafic magma underplating triggered partial melting of the juvenile crust to generate acidic magma. Our results confirm the presence of Early Cretaceous volcanism in the southern Lhasa terrane. Combined with the distribution of the contemporary magmatism, deformation style, and sedimentary characteristics in the Lhasa terrane, we favor the suggestion that the Neo

  4. Unlocking the early fossil record of the arthropod central nervous system

    PubMed Central

    Edgecombe, Gregory D.; Ma, Xiaoya; Strausfeld, Nicholas J.

    2015-01-01

    Extant panarthropods (euarthropods, onychophorans and tardigrades) are hallmarked by stunning morphological and taxonomic diversity, but their central nervous systems (CNS) are relatively conserved. The timing of divergences of the ground pattern CNS organization of the major panarthropod clades has been poorly constrained because of a scarcity of data from their early fossil record. Although the CNS has been documented in three-dimensional detail in insects from Cenozoic ambers, it is widely assumed that these tissues are too prone to decay to withstand other styles of fossilization or geologically older preservation. However, Cambrian Burgess Shale-type compressions have emerged as sources of fossilized brains and nerve cords. CNS in these Cambrian fossils are preserved as carbon films or as iron oxides/hydroxides after pyrite in association with carbon. Experiments with carcasses compacted in fine-grained sediment depict preservation of neural tissue for a more prolonged temporal window than anticipated by decay experiments in other media. CNS and compound eye characters in exceptionally preserved Cambrian fossils predict divergences of the mandibulate and chelicerate ground patterns by Cambrian Stage 3 (ca 518 Ma), a dating that is compatible with molecular estimates for these splits. PMID:26554038

  5. A basal thunnosaurian from Iraq reveals disparate phylogenetic origins for Cretaceous ichthyosaurs

    PubMed Central

    Fischer, Valentin; Appleby, Robert M.; Naish, Darren; Liston, Jeff; Riding, James B.; Brindley, Stephen; Godefroit, Pascal

    2013-01-01

    Cretaceous ichthyosaurs have typically been considered a small, homogeneous assemblage sharing a common Late Jurassic ancestor. Their low diversity and disparity have been interpreted as indicative of a decline leading to their Cenomanian extinction. We describe the first post-Triassic ichthyosaur from the Middle East, Malawania anachronus gen. et sp. nov. from the Early Cretaceous of Iraq, and re-evaluate the evolutionary history of parvipelvian ichthyosaurs via phylogenetic and cladogenesis rate analyses. Malawania represents a basal grade in thunnosaurian evolution that arose during a major Late Triassic radiation event and was previously thought to have gone extinct during the Early Jurassic. Its pectoral morphology appears surprisingly archaic, retaining a forefin architecture similar to that of its Early Jurassic relatives. After the initial latest Triassic radiation of early thunnosaurians, two subsequent large radiations produced lineages with Cretaceous representatives, but the radiation events themselves are pre-Cretaceous. Cretaceous ichthyosaurs therefore include distantly related lineages, with contrasting evolutionary histories, and appear more diverse and disparate than previously supposed. PMID:23676653

  6. Composition and depositional environment of concretionary strata of early Cenomanian (early Late Cretaceous) age, Johnson County, Wyoming

    USGS Publications Warehouse

    Merewether, E.A.; Gautier, Donald L.

    2000-01-01

    Unusual, concretion-bearing mudrocks of early Late Cretaceous age, which were deposited in an early Cenomanian epeiric sea, have been recognized at outcrops in eastern Wyoming and in adjoining areas of Montana, South Dakota, Nebraska, and Colorado. In Johnson County, Wyo., on the western flank of the Powder River Basin, these strata are in the lower part of the Belle Fourche Member of the Frontier Formation. At a core hole in south-central Johnson County, they are informally named Unit 2. These strata are about 34 m (110 ft) thick and consist mainly of medium- to dark-gray, noncalcareous, silty shale and clayey or sandy siltstone; and light-gray to grayish-red bentonite. The shale and siltstone are either bioturbated or interlaminated; the laminae are discontinuous, parallel, and even or wavy. Several ichnogenera of deposit feeders are common in the unit but filter feeders are sparse. The unit also contains marine and continental palynomorphs and, near the top, a few arenaceous foraminifers. No invertebrate macrofossils have been found in these rocks. Unit 2 conformably overlies lower Cenomanian shale in the lowermost Belle Fourche Member, informally named Unit 3, and is conformably overlain by lower and middle Cenomanian shale, siltstone, and sandstone within the member, which are informally named Unit 1. The mineral and chemical composition of the three Cenomanian units is comparable and similar to that of shale and siltstone in the Upper Cretaceous Pierre Shale, except that these units contain more SiO2 and less CaO, carbonate carbon, and manganese. Silica is generally more abundant and CaO is generally less abundant in river water than in seawater. The composition of Unit 2 contrasts significantly with that of the underlying and overlying units. Unit 2 contains no pyrite and dolomite and much less sulfur than Units 1 and 3. Sulfate is generally less abundant in river water than in seawater. Unit 2 also includes sideritic and calcitic concretions, whereas Units

  7. Evolution and palaeoenvironment of the Bauru Basin (Upper Cretaceous, Brazil)

    NASA Astrophysics Data System (ADS)

    Fernandes, Luiz Alberto; Magalhães Ribeiro, Claudia Maria

    2015-08-01

    , amphibians, molluscs, crustaceans, and charophyte algae lived. The fossil record mainly consists of transported bones and other skeletal fragments. In the northeastern and eastern marginal regions fossils are found in marginal alluvial fan deposits, broad plains of braided streams and ephemeral alkaline water lakes. In the basin interior the fossil record is related to deposits in sand sheets with braided streams, small dunes, and shallow lakes. In the great Caiuá inner desert a few smaller animals could survive (small reptiles and early mammals), sometimes leaving their footprints in dune foreset deposits. The aim of this article is to present and link the basin sedimentary evolution, palaeoecological features and palaeontological record.

  8. Mountain building triggered late cretaceous North American megaherbivore dinosaur radiation.

    PubMed

    Gates, Terry A; Prieto-Márquez, Albert; Zanno, Lindsay E

    2012-01-01

    Prior studies of Mesozoic biodiversity document a diversity peak for dinosaur species in the Campanian stage of the Late Cretaceous, yet have failed to provide explicit causal mechanisms. We provide evidence that a marked increase in North American dinosaur biodiversity can be attributed to dynamic orogenic episodes within the Western Interior Basin (WIB). Detailed fossil occurrences document an association between the shift from Sevier-style, latitudinally arrayed basins to smaller Laramide-style, longitudinally arrayed basins and a well substantiated decreased geographic range/increased taxonomic diversity of megaherbivorous dinosaur species. Dispersal-vicariance analysis demonstrates that the nearly identical biogeographic histories of the megaherbivorous dinosaur clades Ceratopsidae and Hadrosauridae are attributable to rapid diversification events within restricted basins and that isolation events are contemporaneous with known tectonic activity in the region. SymmeTREE analysis indicates that megaherbivorous dinosaur clades exhibited significant variation in diversification rates throughout the Late Cretaceous. Phylogenetic divergence estimates of fossil clades offer a new lower boundary on Laramide surficial deformation that precedes estimates based on sedimentological data alone.

  9. Mountain Building Triggered Late Cretaceous North American Megaherbivore Dinosaur Radiation

    PubMed Central

    Gates, Terry A.; Prieto-Márquez, Albert; Zanno, Lindsay E.

    2012-01-01

    Prior studies of Mesozoic biodiversity document a diversity peak for dinosaur species in the Campanian stage of the Late Cretaceous, yet have failed to provide explicit causal mechanisms. We provide evidence that a marked increase in North American dinosaur biodiversity can be attributed to dynamic orogenic episodes within the Western Interior Basin (WIB). Detailed fossil occurrences document an association between the shift from Sevier-style, latitudinally arrayed basins to smaller Laramide-style, longitudinally arrayed basins and a well substantiated decreased geographic range/increased taxonomic diversity of megaherbivorous dinosaur species. Dispersal-vicariance analysis demonstrates that the nearly identical biogeographic histories of the megaherbivorous dinosaur clades Ceratopsidae and Hadrosauridae are attributable to rapid diversification events within restricted basins and that isolation events are contemporaneous with known tectonic activity in the region. SymmeTREE analysis indicates that megaherbivorous dinosaur clades exhibited significant variation in diversification rates throughout the Late Cretaceous. Phylogenetic divergence estimates of fossil clades offer a new lower boundary on Laramide surficial deformation that precedes estimates based on sedimentological data alone. PMID:22876302

  10. Paleoclimate from fossil plants and application to the early Cenozoic Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Wing, S. L.

    2011-12-01

    Wladimir Köppen called vegetation "crystallized, visible climate," and his metaphor encouraged paleobotanists to climb the chain of inference from fossil plants to paleovegetation to paleoclimate. Inferring paleovegetation from fossils has turned out to be very difficult, however, and today most paleobotanical methods for inferring paleoclimate do not try to reconstruct paleovegetation as a first step. Three major approaches are widely use to infer paleoclimate from plant fossils: 1) phylogenetic inferences rely on the climatic distributions of extant relatives of fossils, 2) morphological inferences use present-day correlations of climate with plant morphology (e.g, leaf shape, wood anatomy), and 3) chemical inferences rely on correlations between climate and the stable isotopic composition of plants or organic compounds. Each approach makes assumptions that are hard to verify. Phylogenetic inference depends on accurate identification of fossils, and also assumes that evolution and/or extinction has not shifted the climatic distributions of plant lineages through time. On average this assumption is less valid for older time periods, but probably it is not radically wrong for the early Cenozoic. Morphological approaches don't require taxonomic identification of plant fossils, but do assume that correlations between plant form and climate have been constant over time. This assumption is bolstered if the ecophysiological cause of the morphology-climate correlation is well understood, but often it isn't. Stable isotopic approaches assume that present-day correlations between isotopic composition and climate apply to the past. Commonly the chemical and physiological mechanisms responsible for the correlation are moderately well known, but often the variation among different taxonomic and functional groups of plants is poorly characterized. In spite of limitations and uncertainties on all methods for inferring paleoclimate from fossil plants, broad patterns emerge from

  11. New long-proboscid lacewings of the mid-Cretaceous provide insights into ancient plant-pollinator interactions.

    PubMed

    Lu, Xiu-Mei; Zhang, Wei-Wei; Liu, Xing-Yue

    2016-05-05

    Many insects with long-proboscid mouthparts are among the pollinators of seed plants. Several cases of the long-proboscid pollination mode are known between fossil insects (e.g., true flies, scorpionflies, and lacewings) and various extinct gymnosperm lineages, beginning in the Early Permian and increasing during the Middle Jurassic to Early Cretaceous. However, details on the morphology of lacewing proboscides and the relevant pollination habit are largely lacking. Here we report on three lacewing species that belong to two new genera and a described genus from mid-Cretaceous (Albian-Cenomanian) amber of Myanmar. All these species possess relatively long proboscides, which are considered to be modified from maxillary and labial elements, probably functioning as a temporary siphon for feeding on nectar. Remarkably, these proboscides range from 0.4-1.0 mm in length and are attributed to the most diminutive ones among the contemporary long-proboscid insect pollinators. Further, they clearly differ from other long-proboscid lacewings which have a much longer siphon. The phylogenetic analysis indicates that these Burmese long-proboscid lacewings belong to the superfamily Psychopsoidea but cannot be placed into any known family. The present findings represent the first description of the mouthparts of long-proboscid lacewings preserved in amber and highlight the evolutionary diversification of the ancient plant-pollinator interactions.

  12. Trace-fossil and storm-deposit relationships of San Carlos formation, west Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metz, C.L.; Bednarski, S.P.

    1986-05-01

    Two distinct assemblages of trace fossils are preserved in the storm deposits in delta-front facies of the Upper Cretaceous San Carlos Formation, west Texas. The assemblages represent two widely differing responses to storm deposition and sediment-trace-fossil relationships, indicating that other environmental parameters, probably water depth and oxygen levels, influenced trace-fossil distribution within the San Carlos delta front. Evidence of the storm-deposited nature of the sandstones includes a scoured basal contact, planar to hummocky cross-stratification, and a upper contact that is either ripple marked or is gradational with overlying shales.

  13. A roller-like bird (Coracii) from the Early Eocene of Denmark.

    PubMed

    Bourdon, Estelle; Kristoffersen, Anette V; Bonde, Niels

    2016-09-27

    The fossil record of crown group birds (Neornithes) prior to the Cretaceous-Paleogene boundary is scarce and fragmentary. Early Cenozoic bird fossils are more abundant, but are typically disarticulated and/or flattened. Here we report the oldest roller (Coracii), Septencoracias morsensis gen. et sp. nov. (Primobucconidae), based on a new specimen from the Early Eocene (about 54 million years ago) Fur Formation of Denmark. The new fossil is a nearly complete, three-dimensionally preserved and articulated skeleton. It lies at the lower end of the size range for extant rollers. Salient diagnostic features of Septencoracias relative to other Coracii include the proportionally larger skull and the small, ovoid and dorsally positioned narial openings. Our discovery adds to the evidence that the Coracii had a widespread northern hemisphere distribution in the Eocene. Septencoracias is the oldest substantial record of the Picocoraciae and provides a reliable calibration point for molecular phylogenetic studies.

  14. Anza palaeoichnological site. Late Cretaceous. Morocco. Part I. The first African pterosaur trackway (manus only)

    NASA Astrophysics Data System (ADS)

    Masrour, Moussa; Pascual-Arribas, Carlos; de Ducla, Marc; Hernández-Medrano, Nieves; Pérez-Lorente, Félix

    2017-10-01

    Cretaceous pterosaurs tracksites are very rare worldwide. Until now,only one African Cretaceous site withtracks of (Agadirichnus elegans and Pteraichnus) was known. This makes the discovery of a new outcrop in the Upper Cretaceous of Anza (Morocco) the third manifestation of this type of footprint in Africa, extending the existence of such traces from the Coniacian-Santonian to the Maastrichtian. The site contains only manus tracks, which can be explained as a result of erosion of pes prints. The lack of pes prints and the morphometric characteristics of the manus prints only allow us to relate these prints to Agadirichnus, Pteraichnus or maybe to a new ichnogenus. It is possible that the trackmakers are related to Ornithocheiroidea or Azhdarchoidea superfamilies whose fossil bones have been found from the Late Cretaceous in Morocco.

  15. Dinosaur Footprints and Other Ichnofauna from the Cretaceous Kem Kem Beds of Morocco

    PubMed Central

    Ibrahim, Nizar; Varricchio, David J.; Sereno, Paul C.; Wilson, Jeff A.; Dutheil, Didier B.; Martill, David M.; Baidder, Lahssen; Zouhri, Samir

    2014-01-01

    We describe an extensive ichnofossil assemblage from the likely Cenomanian-age ‘lower’ and ‘upper’ units of the ‘Kem Kem beds’ in southeastern Morocco. In the lower unit, trace fossils include narrow vertical burrows in cross-bedded sandstones and borings in dinosaur bone, with the latter identified as the insect ichnotaxon Cubiculum ornatus. In the upper unit, several horizons preserve abundant footprints from theropod dinosaurs. Sauropod and ornithischian footprints are much rarer, similar to the record for fossil bone and teeth in the Kem Kem assemblage. The upper unit also preserves a variety of invertebrate traces including Conichnus (the resting trace of a sea-anemone), Scolicia (a gastropod trace), Beaconites (a probable annelid burrow), and subvertical burrows likely created by crabs for residence and detrital feeding on a tidal flat. The ichnofossil assemblage from the Upper Cretaceous Kem Kem beds contributes evidence for a transition from predominantly terrestrial to marine deposition. Body fossil and ichnofossil records together provide a detailed view of faunal diversity and local conditions within a fluvial and deltaic depositional setting on the northwestern coast of Africa toward the end of the Cretaceous. PMID:24603467

  16. Fossil Evidence for a Late Cretaceous Origin of "Hoofed" Mammals

    PubMed

    Archibald

    1996-05-24

    Seventeen of eighteen orders of living placental mammals are not known before 65 million years ago. The monophyly of each order is well established, but interrelations have been less certain. A superordinal grouping of up to seven extant orders plus a variety of extinct orders, all included within Ungulata ("hoofed" mammals), can be linked to Late Cretaceous mammals from the 85-million-year-old Bissekty Formation, Uzbekistan (and, less certainly, North America and Europe), thus pushing the origin of this major clade back by 20 million years. Ungulatomorphs are not closely related to primates, rodents, or rabbits.

  17. Homo floresiensis-like fossils from the early Middle Pleistocene of Flores.

    PubMed

    van den Bergh, Gerrit D; Kaifu, Yousuke; Kurniawan, Iwan; Kono, Reiko T; Brumm, Adam; Setiyabudi, Erick; Aziz, Fachroel; Morwood, Michael J

    2016-06-09

    The evolutionary origin of Homo floresiensis, a diminutive hominin species previously known only by skeletal remains from Liang Bua in western Flores, Indonesia, has been intensively debated. It is a matter of controversy whether this primitive form, dated to the Late Pleistocene, evolved from early Asian Homo erectus and represents a unique and striking case of evolutionary reversal in hominin body and brain size within an insular environment. The alternative hypothesis is that H. floresiensis derived from an older, smaller-brained member of our genus, such as Homo habilis, or perhaps even late Australopithecus, signalling a hitherto undocumented dispersal of hominins from Africa into eastern Asia by two million years ago (2 Ma). Here we describe hominin fossils excavated in 2014 from an early Middle Pleistocene site (Mata Menge) in the So'a Basin of central Flores. These specimens comprise a mandible fragment and six isolated teeth belonging to at least three small-jawed and small-toothed individuals. Dating to ~0.7 Ma, these fossils now constitute the oldest hominin remains from Flores. The Mata Menge mandible and teeth are similar in dimensions and morphological characteristics to those of H. floresiensis from Liang Bua. The exception is the mandibular first molar, which retains a more primitive condition. Notably, the Mata Menge mandible and molar are even smaller in size than those of the two existing H. floresiensis individuals from Liang Bua. The Mata Menge fossils are derived compared with Australopithecus and H. habilis, and so tend to support the view that H. floresiensis is a dwarfed descendent of early Asian H. erectus. Our findings suggest that hominins on Flores had acquired extremely small body size and other morphological traits specific to H. floresiensis at an unexpectedly early time.

  18. Crown Group Lejeuneaceae and Pleurocarpous Mosses in Early Eocene (Ypresian) Indian Amber.

    PubMed

    Heinrichs, Jochen; Scheben, Armin; Bechteler, Julia; Lee, Gaik Ee; Schäfer-Verwimp, Alfons; Hedenäs, Lars; Singh, Hukam; Pócs, Tamás; Nascimbene, Paul C; Peralta, Denilson F; Renner, Matt; Schmidt, Alexander R

    2016-01-01

    Cambay amber originates from the warmest period of the Eocene, which is also well known for the appearance of early angiosperm-dominated megathermal forests. The humid climate of these forests may have triggered the evolution of epiphytic lineages of bryophytes; however, early Eocene fossils of bryophytes are rare. Here, we present evidence for lejeuneoid liverworts and pleurocarpous mosses in Cambay amber. The preserved morphology of the moss fossil is inconclusive for a detailed taxonomic treatment. The liverwort fossil is, however, distinctive; its zig-zagged stems, suberect complicate-bilobed leaves, large leaf lobules, and small, deeply bifid underleaves suggest a member of Lejeuneaceae subtribe Lejeuneinae (Harpalejeunea, Lejeunea, Microlejeunea). We tested alternative classification possibilities by conducting divergence time estimates based on DNA sequence variation of Lejeuneinae using the age of the fossil for corresponding age constraints. Consideration of the fossil as a stem group member of Microlejeunea or Lejeunea resulted in an Eocene to Late Cretaceous age of the Lejeuneinae crown group. This reconstruction is in good accordance with published divergence time estimates generated without the newly presented fossil evidence. Balancing available evidence, we describe the liverwort fossil as the extinct species Microlejeunea nyiahae, representing the oldest crown group fossil of Lejeuneaceae.

  19. First North American fossil monkey and early Miocene tropical biotic interchange.

    PubMed

    Bloch, Jonathan I; Woodruff, Emily D; Wood, Aaron R; Rincon, Aldo F; Harrington, Arianna R; Morgan, Gary S; Foster, David A; Montes, Camilo; Jaramillo, Carlos A; Jud, Nathan A; Jones, Douglas S; MacFadden, Bruce J

    2016-05-12

    New World monkeys (platyrrhines) are a diverse part of modern tropical ecosystems in North and South America, yet their early evolutionary history in the tropics is largely unknown. Molecular divergence estimates suggest that primates arrived in tropical Central America, the southern-most extent of the North American landmass, with several dispersals from South America starting with the emergence of the Isthmus of Panama 3-4 million years ago (Ma). The complete absence of primate fossils from Central America has, however, limited our understanding of their history in the New World. Here we present the first description of a fossil monkey recovered from the North American landmass, the oldest known crown platyrrhine, from a precisely dated 20.9-Ma layer in the Las Cascadas Formation in the Panama Canal Basin, Panama. This discovery suggests that family-level diversification of extant New World monkeys occurred in the tropics, with new divergence estimates for Cebidae between 22 and 25 Ma, and provides the oldest fossil evidence for mammalian interchange between South and North America. The timing is consistent with recent tectonic reconstructions of a relatively narrow Central American Seaway in the early Miocene epoch, coincident with over-water dispersals inferred for many other groups of animals and plants. Discovery of an early Miocene primate in Panama provides evidence for a circum-Caribbean tropical distribution of New World monkeys by this time, with ocean barriers not wholly restricting their northward movements, requiring a complex set of ecological factors to explain their absence in well-sampled similarly aged localities at higher latitudes of North America.

  20. First North American fossil monkey and early Miocene tropical biotic interchange

    NASA Astrophysics Data System (ADS)

    Bloch, Jonathan I.; Woodruff, Emily D.; Wood, Aaron R.; Rincon, Aldo F.; Harrington, Arianna R.; Morgan, Gary S.; Foster, David A.; Montes, Camilo; Jaramillo, Carlos A.; Jud, Nathan A.; Jones, Douglas S.; MacFadden, Bruce J.

    2016-05-01

    New World monkeys (platyrrhines) are a diverse part of modern tropical ecosystems in North and South America, yet their early evolutionary history in the tropics is largely unknown. Molecular divergence estimates suggest that primates arrived in tropical Central America, the southern-most extent of the North American landmass, with several dispersals from South America starting with the emergence of the Isthmus of Panama 3-4 million years ago (Ma). The complete absence of primate fossils from Central America has, however, limited our understanding of their history in the New World. Here we present the first description of a fossil monkey recovered from the North American landmass, the oldest known crown platyrrhine, from a precisely dated 20.9-Ma layer in the Las Cascadas Formation in the Panama Canal Basin, Panama. This discovery suggests that family-level diversification of extant New World monkeys occurred in the tropics, with new divergence estimates for Cebidae between 22 and 25 Ma, and provides the oldest fossil evidence for mammalian interchange between South and North America. The timing is consistent with recent tectonic reconstructions of a relatively narrow Central American Seaway in the early Miocene epoch, coincident with over-water dispersals inferred for many other groups of animals and plants. Discovery of an early Miocene primate in Panama provides evidence for a circum-Caribbean tropical distribution of New World monkeys by this time, with ocean barriers not wholly restricting their northward movements, requiring a complex set of ecological factors to explain their absence in well-sampled similarly aged localities at higher latitudes of North America.

  1. Earliest evolution of multituberculate mammals revealed by a new Jurassic fossil.

    PubMed

    Yuan, Chong-Xi; Ji, Qiang; Meng, Qing-Jin; Tabrum, Alan R; Luo, Zhe-Xi

    2013-08-16

    Multituberculates were successful herbivorous mammals and were more diverse and numerically abundant than any other mammal groups in Mesozoic ecosystems. The clade also developed diverse locomotor adaptations in the Cretaceous and Paleogene. We report a new fossil skeleton from the Late Jurassic of China that belongs to the basalmost multituberculate family. Dental features of this new Jurassic multituberculate show omnivorous adaptation, and its well-preserved skeleton sheds light on ancestral skeletal features of all multituberculates, especially the highly mobile joints of the ankle, crucial for later evolutionary success of multituberculates in the Cretaceous and Paleogene.

  2. Brachyceran Diptera (Insecta) in Cretaceous ambers, Part IV, Significant New Orthorrhaphous Taxa

    PubMed Central

    Grimaldi, David A.; Arillo, Antonio; Cumming, Jeffrey M.; Hauser, Martin

    2011-01-01

    Abstract Thirteen species of basal Brachycera (11 described as new) are reported, belonging to nine families and three infraorders. They are preserved in amber from the Early Cretaceous (Neocomian) of Lebanon, Albian of northern Spain, upper Albian to lower Cenomanian of northern Myanmar, and Late Cretaceous of New Jersey USA (Turonian) and Alberta, Canada (Campanian). Taxa are as follows, with significance as noted: In Stratiomyomorpha: Stratiomyidae (Cretaceogaster pygmaeus Teskey [2 new specimens in Canadian amber], Lysistrata emerita Grimaldi & Arillo, gen. et sp. n. [stem-group species of the family in Spanish amber]), and Xylomyidae (Cretoxyla azari Grimaldi & Cumming, gen. et sp. n. [in Lebanese amber], and an undescribed species from Spain). In Tabanomorpha: Tabanidae (Cratotabanus newjerseyensis Grimaldi, sp. n., in New Jersey amber). In Muscomorpha: Acroceridae (Schlingeromyia minuta Grimaldi & Hauser, gen. et sp. n. and Burmacyrtus rusmithi Grimaldi & Hauser gen. et sp. n., in Burmese amber, the only definitive species of the family from the Cretaceous); Mythicomyiidae (Microburmyia analvena Grimaldi & Cumming gen. et sp. n. and Microburmyia veanalvena Grimaldi & Cumming, sp. n., stem-group species of the family, both in Burmese amber); Apsilocephalidae or near (therevoid family-group) (Kumaromyia burmitica Grimaldi & Hauser, gen. et sp. n. [in Burmese amber]); Apystomyiidae (Hilarimorphites burmanica Grimaldi & Cumming, sp. n. [in Burmese amber], whose closest relatives are from the Late Jurassic of Kazachstan, the Late Cretaceous of New Jersey, and Recent of California). Lastly, two species belonging to families incertae sedis, both in Burmese amber: Tethepomyiidae (Tethepomyia zigrasi Grimaldi & Arillo sp. n., the aculeate oviscapt of which indicates this family was probably parasitoidal and related to Eremochaetidae); and unplaced to family is Myanmyia asteiformia Grimaldi, gen. et sp. n., a minute fly with highly reduced venation. These new taxa

  3. Brachyceran Diptera (Insecta) in Cretaceous ambers, Part IV, Significant New Orthorrhaphous Taxa.

    PubMed

    Grimaldi, David A; Arillo, Antonio; Cumming, Jeffrey M; Hauser, Martin

    2011-01-01

    Thirteen species of basal Brachycera (11 described as new) are reported, belonging to nine families and three infraorders. They are preserved in amber from the Early Cretaceous (Neocomian) of Lebanon, Albian of northern Spain, upper Albian to lower Cenomanian of northern Myanmar, and Late Cretaceous of New Jersey USA (Turonian) and Alberta, Canada (Campanian). Taxa are as follows, with significance as noted: In Stratiomyomorpha: Stratiomyidae (Cretaceogaster pygmaeus Teskey [2 new specimens in Canadian amber], Lysistrata emerita Grimaldi & Arillo, gen. et sp. n. [stem-group species of the family in Spanish amber]), and Xylomyidae (Cretoxyla azari Grimaldi & Cumming, gen. et sp. n. [in Lebanese amber], and an undescribed species from Spain). In Tabanomorpha: Tabanidae (Cratotabanus newjerseyensis Grimaldi, sp. n., in New Jersey amber). In Muscomorpha: Acroceridae (Schlingeromyia minuta Grimaldi & Hauser, gen. et sp. n. and Burmacyrtus rusmithi Grimaldi & Hauser gen. etsp. n., in Burmese amber, the only definitive species of the family from the Cretaceous); Mythicomyiidae (Microburmyia analvena Grimaldi & Cumming gen. et sp. n. and Microburmyia veanalvena Grimaldi & Cumming, sp. n., stem-group species of the family, both in Burmese amber); Apsilocephalidae or near (therevoid family-group) (Kumaromyia burmitica Grimaldi & Hauser, gen. et sp. n. [in Burmese amber]); Apystomyiidae (Hilarimorphites burmanica Grimaldi & Cumming, sp. n. [in Burmese amber], whose closest relatives are from the Late Jurassic of Kazachstan, the Late Cretaceous of New Jersey, and Recent of California). Lastly, two species belonging to families incertae sedis, both in Burmese amber: Tethepomyiidae (Tethepomyia zigrasi Grimaldi & Arillo sp. n., the aculeate oviscapt of which indicates this family was probably parasitoidal and related to Eremochaetidae); and unplaced to family is Myanmyia asteiformia Grimaldi, gen. et sp. n., a minute fly with highly reduced venation. These new taxa significantly

  4. Cretaceous arachnid Chimerarachne yingi gen. et sp. nov. illuminates spider origins.

    PubMed

    Wang, Bo; Dunlop, Jason A; Selden, Paul A; Garwood, Russell J; Shear, William A; Müller, Patrick; Lei, Xiaojie

    2018-04-01

    Spiders (Araneae) are a hugely successful lineage with a long history. Details of their origins remain obscure, with little knowledge of their stem group and few insights into the sequence of character acquisition during spider evolution. Here, we describe Chimerarachne yingi gen. et sp. nov., a remarkable arachnid from the mid-Cretaceous (approximately 100 million years ago) Burmese amber of Myanmar, which documents a key transition stage in spider evolution. Like uraraneids, the two fossils available retain a segmented opisthosoma bearing a whip-like telson, but also preserve two traditional synapomorphies for Araneae: a male pedipalp modified for sperm transfer and well-defined spinnerets resembling those of modern mesothele spiders. This unique character combination resolves C. yingi within a clade including both Araneae and Uraraneida; however, its exact position relative to these orders is sensitive to different parameters of our phylogenetic analysis. Our new fossil most likely represents the earliest branch of the Araneae, and implies that there was a lineage of tailed spiders that presumably originated in the Palaeozoic and survived at least into the Cretaceous of Southeast Asia.

  5. Modelling the interactions between vegetation and climate from the Cretaceous to the Eocene

    NASA Astrophysics Data System (ADS)

    Loptson, Claire; Lunt, Dan; Francis, Jane

    2013-04-01

    The climates during the Cretaceous (~144 to 66 Ma) and the early Eocene (~56 to 48 Ma) were much warmer than the present day. Atmospheric CO2 levels for these past climates have a large uncertainty associated with them, but were possibly as high as 2000 to 3000 ppm for the early Eocene (Beerling and Royer, 2011; Lowenstein and Demicco, 2006) and maximum values are thought to range from 800 to 1800 ppm during the Cretaceous (Royer et al., 2012). Current modelling efforts have had great difficulty in replicating the shallow latitudinal temperature gradient indicated by proxy data for these time periods (e.g. Heinemann et al., 2009; Winguth et al., 2010; Shellito et al., 2009). Mechanisms that can result in such a low temperature gradient have not been found (Winguth et al., 2010; Beerling et al., 2011; Sloan and Morrill, 1998), but a contributing factor could be that not all climate feedbacks are included in these models. Vegetation feedbacks have been shown to be especially important (e.g. Otto-Bliesner and Upchurch, 1997; Bonan, 2008) so by including a more accurate representation of vegetation in the climate model, the model-data discrepancies may be reduced. A fully coupled atmosphere-ocean GCM, HadCM3L, coupled to a dynamic global vegetation model (TRIFFID), was used to simulate the climate and the predicted vegetation distributions for and the early Eocene and 12 different time slices representing different ages throughout the Cretaceous at 4x pre-industrial CO2. The only difference in the way these simulations were set up are different boundary conditions that are specific to that time period, e.g. different solar constants and paleogeographies. This allows a direct comparison between the time slices. We present the changes in climate, and therefore vegetation, during the Cretaceous due to changes in these boundary conditions alone, with a focus on Antarctica. Additional Eocene simulations were also carried out with a) fixed globally-uniform vegetation and b

  6. Text to accompany slides/photographs of Lower Cretaceous pollen and spores in sediments from the Muirkirk clay pit (Prince Georges County, MD)

    USGS Publications Warehouse

    Robbins, Eleanora I.

    1991-01-01

    The pollen and spores found in clay beds at the Muirkirk clay pit are those of ferns and lycopods, seed ferns, shrubby conifers, bald cypress-type conifers, and tree-sized conifers. Some of the ferns and conifers have modern representatives which help interpret the vegetation of this site that bears Early Cretaceous dinosaur fossils. The plants, as well as the presence of algae, fungi, and mineral remains of bacteria, show that the site was once a wetland that developed on the clay floor of a waning oxbow lake.

  7. A bizarre theropod from the Early Cretaceous of Japan highlighting mosaic evolution among coelurosaurians

    PubMed Central

    Azuma, Yoichi; Xu, Xing; Shibata, Masateru; Kawabe, Soichiro; Miyata, Kazunori; Imai, Takuya

    2016-01-01

    Our understanding of coelurosaurian evolution, particularly of bird origins, has been greatly improved, mainly due to numerous recently discovered fossils worldwide. Nearly all these discoveries are referable to the previously known coelurosaurian subgroups. Here, we report a new theropod, Fukuivenator paradoxus, gen. et sp. nov., based on a nearly complete specimen from the Lower Cretaceous Kitadani Formation of the Tetori Group, Fukui, Japan. While Fukuivenator possesses a large number of morphological features unknown in any other theropod, it has a combination of primitive and derived features seen in different theropod subgroups, notably dromaeosaurid dinosaurs. Computed-tomography data indicate that Fukuivenator possesses inner ears whose morphology is intermediate between those of birds and non-avian dinosaurs. Our phylogenetic analysis recovers Fukuivenator as a basally branching maniraptoran theropod, yet is unable to refer it to any known coelurosaurian subgroups. The discovery of Fukuivenator considerably increases the morphological disparity of coelurosaurian dinosaurs and highlights the high levels of homoplasy in coelurosaurian evolution. PMID:26908367

  8. Paleoenvironmental conditions and strontium isotope stratigraphy in the Paleogene Gafsa Basin (Tunisia) deduced from geochemical analyses of phosphatic fossils

    NASA Astrophysics Data System (ADS)

    Kocsis, László; Ounis, Anouar; Chaabani, Fredj; Salah, Neili Mohamed

    2013-06-01

    Fossil shark teeth and coprolites from three major phosphorite occurrences in the Gafsa Basin (southwestern Tunisia) were investigated for their geochemical compositions to improve local stratigraphy and to better assess paleoenvironmental conditions. 87Sr/86Sr isotope ratios of shark teeth from the Early Maastrichtian El Haria Formation and from the Early Eocene Métlaoui s.s. Formation yielded Sr isotope ages of 68 ± 1 and 47.9 ± 1.3 Ma, respectively, which accord with the expected stratigraphic positions of these sediments. Conversely, shark teeth from the Paleocene-Eocene Chouabine Formation have large variation in Sr isotope ratios even within individual layers. After statistical treatment and then elimination of certain outlier samples, three age-models are proposed and discussed. The most reasonable solution includes three subsequent Sr ages of 61.8 ± 2.2 Ma, 57.2 ± 1.8 and 54.6 ± 1.6 for layer IX, layers VIII-V and layers IV-0, respectively. Three scenarios are discussed for explanation of the presence of the outliers: (1) diagenesis, (2) re-working and (3) locally controlled seawater Sr isotope ratio. The most plausible account for the higher 87Sr/86Sr ratios relative to the global ocean in some fossils is enhanced intrabasinal re-working due to low sea level. Conversely, the sample with lower 87Sr/86Sr than the global seawater may link to diagenesis or to seawater influenced by weathering of Late Cretaceous marine carbonates, which latter is supported by model calculation as well. The ɛNd values of these fossils are very similar to those reported for Paleogene and Late Cretaceous Tethyan seawater and are compatible with the above interpretations. The relatively low oxygen isotope values in shark teeth from the topmost phosphate bed of the Chouabine Formation, together with the Sr isotope results, point toward recovering better connections with the open sea. These δ18O data reflect elevated ambient temperature, which may link to the Early Eocene

  9. Unmineralized fossil bacteria

    USGS Publications Warehouse

    Bradley, W.H.

    1963-01-01

    Unmineralized bacterial cells, mostly Micrococcus sp., but including also Streptococcus sp. and Actinomyces sp., were found in enormous numbers in lake beds of the Newark Canyon Formation of Early Cretaceous age, Eureka County, Nevada. The micrococci are black, and have an average diameter about 0.5 ??. Similar black micrococci (0.4 to 0.7 ??.) were found in profusion in the bottom mud of Green Lake, New York. About 80 percent of this mud consists of minute idiomorphic calcite crystals and about 20 percent of these contain enormous numbers of the black micrococci. It is suggested that the Early Cretaceous bacterial cells owe their preservation to occlusion in calcite crystals that grew in a black, bacterial mud in a meromictic lake in which part of the Newark Canyon Formation accumulated.

  10. Structural implications of an offset Early Cretaceous shoreline in northern California

    USGS Publications Warehouse

    Jones, D.L.; Irwin, W.P.

    1971-01-01

    Recognition of a nonmarine to marine transition in sedimentary rocks at Glade Creek and Big Bar in the southern Klamath Mountains permits reconstruction of the approximate position of a north-trending Early Cretaceous (Valanginian) shoreline. At the southern end of the Klamath Mountains, the shoreline is displaced 60 mi or more to the east by a west-northwest-trending fault zone. South of this fault zone the shoreline is buried at a much lower level beneath late Cenozoic rocks in the Great Valley. This large displacement probably is the result of differential movement along a system of left-lateral tear faults in the upper plate of the Coast Range thrust. The westward bulge of the Klamath arc also may have resulted from this faulting, as the amount and direction of the bulge is comparable with the displacement of the Valanginian shoreline.Basal clastic strata at both Glade Creek and Big Bar contain abundant fresh-water or brackish-water clams, many of which consist of unabraded paired valves. These are conformably overlain by Valanginian marine strata containing Buchia crassicollis solida.The position of the Valanginian shoreline beneath the Great Valley cannot be directly observed because it is buried by thick late Cenozoic deposits. However, its approximate westernmost limit must lie between the outcrop belt of marine strata on the west side of the valley and drill holes to basement on the east side, in which equivalent strata are absent.Franciscan rocks containing Valanginian fossils occur 10 mi southwest of Glade Creek, but these are deep-water marine eugeosynclinal rocks that were deposited far to the west of the shoreline. The deformation responsible for the displacement of the Valanginian shoreline and juxtaposition of the Franciscan rocks and Klamath Mountain basement rocks involved eastward under-thrusting of the Franciscan beneath the Coast Range thrust contemporaneous with differential movement along tear faults within the upper plate.

  11. New Eocene Coleoid (Cephalopoda) Diversity from Statolith Remains: Taxonomic Assignation, Fossil Record Analysis, and New Data for Calibrating Molecular Phylogenies

    PubMed Central

    Neige, Pascal; Lapierre, Hervé; Merle, Didier

    2016-01-01

    New coleoid cephalopods are described from statolith remains from the Middle Eocene (Middle Lutetian) of the Paris Basin. Fifteen fossil statoliths are identified and assigned to the Sepiidae (Sepia boletzkyi sp. nov.,? Sepia pira sp. nov.), Loliginidae (Loligo clarkei sp. nov.), and Ommastrephidae (genus indet.) families. The sediments containing these fossils indicate permanent aquatic settings in the infralittoral domain. These sediments range in age from 46 Mya to 43 Mya. Analysis of the fossil record of statoliths (from findings described here, together with a review of previously published data) indicates marked biases in our knowledge. Fossil statoliths are known from as far back as the Early Jurassic (199.3 to 190.8 Mya) but surprisingly, to the best of our knowledge, no record occurs in the Cretaceous. This is a “knowledge bias” and clearly calls for further studies. Finally, we attempt to compare findings described here with fossils previously used to constrain divergence and/or diversification ages of some coleoid subclades in molecular phylogenies. This comparison clearly indicates that the new records detailed here will challenge some estimated divergence times of coleoid cephalopod subclades. PMID:27192490

  12. New Eocene Coleoid (Cephalopoda) Diversity from Statolith Remains: Taxonomic Assignation, Fossil Record Analysis, and New Data for Calibrating Molecular Phylogenies.

    PubMed

    Neige, Pascal; Lapierre, Hervé; Merle, Didier

    2016-01-01

    New coleoid cephalopods are described from statolith remains from the Middle Eocene (Middle Lutetian) of the Paris Basin. Fifteen fossil statoliths are identified and assigned to the Sepiidae (Sepia boletzkyi sp. nov.,? Sepia pira sp. nov.), Loliginidae (Loligo clarkei sp. nov.), and Ommastrephidae (genus indet.) families. The sediments containing these fossils indicate permanent aquatic settings in the infralittoral domain. These sediments range in age from 46 Mya to 43 Mya. Analysis of the fossil record of statoliths (from findings described here, together with a review of previously published data) indicates marked biases in our knowledge. Fossil statoliths are known from as far back as the Early Jurassic (199.3 to 190.8 Mya) but surprisingly, to the best of our knowledge, no record occurs in the Cretaceous. This is a "knowledge bias" and clearly calls for further studies. Finally, we attempt to compare findings described here with fossils previously used to constrain divergence and/or diversification ages of some coleoid subclades in molecular phylogenies. This comparison clearly indicates that the new records detailed here will challenge some estimated divergence times of coleoid cephalopod subclades.

  13. A roller-like bird (Coracii) from the Early Eocene of Denmark

    PubMed Central

    Bourdon, Estelle; Kristoffersen, Anette V.; Bonde, Niels

    2016-01-01

    The fossil record of crown group birds (Neornithes) prior to the Cretaceous-Paleogene boundary is scarce and fragmentary. Early Cenozoic bird fossils are more abundant, but are typically disarticulated and/or flattened. Here we report the oldest roller (Coracii), Septencoracias morsensis gen. et sp. nov. (Primobucconidae), based on a new specimen from the Early Eocene (about 54 million years ago) Fur Formation of Denmark. The new fossil is a nearly complete, three-dimensionally preserved and articulated skeleton. It lies at the lower end of the size range for extant rollers. Salient diagnostic features of Septencoracias relative to other Coracii include the proportionally larger skull and the small, ovoid and dorsally positioned narial openings. Our discovery adds to the evidence that the Coracii had a widespread northern hemisphere distribution in the Eocene. Septencoracias is the oldest substantial record of the Picocoraciae and provides a reliable calibration point for molecular phylogenetic studies. PMID:27670387

  14. A total-evidence approach to dating with fossils, applied to the early radiation of the hymenoptera.

    PubMed

    Ronquist, Fredrik; Klopfstein, Seraina; Vilhelmsen, Lars; Schulmeister, Susanne; Murray, Debra L; Rasnitsyn, Alexandr P

    2012-12-01

    Phylogenies are usually dated by calibrating interior nodes against the fossil record. This relies on indirect methods that, in the worst case, misrepresent the fossil information. Here, we contrast such node dating with an approach that includes fossils along with the extant taxa in a Bayesian total-evidence analysis. As a test case, we focus on the early radiation of the Hymenoptera, mostly documented by poorly preserved impression fossils that are difficult to place phylogenetically. Specifically, we compare node dating using nine calibration points derived from the fossil record with total-evidence dating based on 343 morphological characters scored for 45 fossil (4--20 complete) and 68 extant taxa. In both cases we use molecular data from seven markers (∼5 kb) for the extant taxa. Because it is difficult to model speciation, extinction, sampling, and fossil preservation realistically, we develop a simple uniform prior for clock trees with fossils, and we use relaxed clock models to accommodate rate variation across the tree. Despite considerable uncertainty in the placement of most fossils, we find that they contribute significantly to the estimation of divergence times in the total-evidence analysis. In particular, the posterior distributions on divergence times are less sensitive to prior assumptions and tend to be more precise than in node dating. The total-evidence analysis also shows that four of the seven Hymenoptera calibration points used in node dating are likely to be based on erroneous or doubtful assumptions about the fossil placement. With respect to the early radiation of Hymenoptera, our results suggest that the crown group dates back to the Carboniferous, ∼309 Ma (95% interval: 291--347 Ma), and diversified into major extant lineages much earlier than previously thought, well before the Triassic. [Bayesian inference; fossil dating; morphological evolution; relaxed clock; statistical phylogenetics.].

  15. A Total-Evidence Approach to Dating with Fossils, Applied to the Early Radiation of the Hymenoptera

    PubMed Central

    Ronquist, Fredrik; Klopfstein, Seraina; Vilhelmsen, Lars; Schulmeister, Susanne; Murray, Debra L.; Rasnitsyn, Alexandr P.

    2012-01-01

    Abstract Phylogenies are usually dated by calibrating interior nodes against the fossil record. This relies on indirect methods that, in the worst case, misrepresent the fossil information. Here, we contrast such node dating with an approach that includes fossils along with the extant taxa in a Bayesian total-evidence analysis. As a test case, we focus on the early radiation of the Hymenoptera, mostly documented by poorly preserved impression fossils that are difficult to place phylogenetically. Specifically, we compare node dating using nine calibration points derived from the fossil record with total-evidence dating based on 343 morphological characters scored for 45 fossil (4--20 complete) and 68 extant taxa. In both cases we use molecular data from seven markers (∼5 kb) for the extant taxa. Because it is difficult to model speciation, extinction, sampling, and fossil preservation realistically, we develop a simple uniform prior for clock trees with fossils, and we use relaxed clock models to accommodate rate variation across the tree. Despite considerable uncertainty in the placement of most fossils, we find that they contribute significantly to the estimation of divergence times in the total-evidence analysis. In particular, the posterior distributions on divergence times are less sensitive to prior assumptions and tend to be more precise than in node dating. The total-evidence analysis also shows that four of the seven Hymenoptera calibration points used in node dating are likely to be based on erroneous or doubtful assumptions about the fossil placement. With respect to the early radiation of Hymenoptera, our results suggest that the crown group dates back to the Carboniferous, ∼309 Ma (95% interval: 291--347 Ma), and diversified into major extant lineages much earlier than previously thought, well before the Triassic. [Bayesian inference; fossil dating; morphological evolution; relaxed clock; statistical phylogenetics.] PMID:22723471

  16. A reappraisal of Polyptychodon (Plesiosauria) from the Cretaceous of England

    PubMed Central

    2016-01-01

    Pliosauridae is a globally distributed clade of aquatic predatory amniotes whose fossil record spans from the Lower Jurassic to the Upper Cretaceous. However, the knowledge of pliosaurid interrelationships remains limited. In part, this is a consequence of a few key taxa awaiting detailed reassessment. Among them, the taxon Polyptychodon is of special importance. It was established on isolated teeth from the mid-Cretaceous strata of East and South East England and subsequently associated with numerous finds of near-cosmopolitan distribution. Here the taxon is reassessed based on the original dental material from England, with special focus on a large collection of late Albian material from the Cambridge Greensand near Cambridge. The dental material is reviewed here from historical and stratigraphic perspective, described in detail, and discussed in terms of its diagnostic nature. The considerable morphological variability observed in the teeth attributed to Polyptychodon, together with a wide stratigraphic range of the ascribed material, possibly exceeding 35 Ma (early Aptian to ?middle Santonian), suggests that the taxon is based on a multispecies assemblage, possibly incorporating members of different plesiosaur clades. Due to the absence of any autapomorphic characters or unique character combinations in the original material, Polyptychodon interruptus, the type species of Polyptychodon, is considered nomen dubium. From a global perspective, Polyptychodon is viewed as a wastebasket taxon whose material originating from different localities should be reconsidered separately. PMID:27190712

  17. Global history of the ancient monocot family Araceae inferred with models accounting for past continental positions and previous ranges based on fossils.

    PubMed

    Nauheimer, Lars; Metzler, Dirk; Renner, Susanne S

    2012-09-01

    The family Araceae (3790 species, 117 genera) has one of the oldest fossil records among angiosperms. Ecologically, members of this family range from free-floating aquatics (Pistia and Lemna) to tropical epiphytes. Here, we infer some of the macroevolutionary processes that have led to the worldwide range of this family and test how the inclusion of fossil (formerly occupied) geographical ranges affects biogeographical reconstructions. Using a complete genus-level phylogeny from plastid sequences and outgroups representing the 13 other Alismatales families, we estimate divergence times by applying different clock models and reconstruct range shifts under different models of past continental connectivity, with or without the incorporation of fossil locations. Araceae began to diversify in the Early Cretaceous (when the breakup of Pangea was in its final stages), and all eight subfamilies existed before the K/T boundary. Early lineages persist in Laurasia, with several relatively recent entries into Africa, South America, South-East Asia and Australia. Water-associated habitats appear to be ancestral in the family, and DNA substitution rates are especially high in free-floating Araceae. Past distributions inferred when fossils are included differ in nontrivial ways from those without fossils. Our complete genus-level time-scale for the Araceae may prove to be useful for ecological and physiological studies. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  18. Origin of spiders and their spinning organs illuminated by mid-Cretaceous amber fossils.

    PubMed

    Huang, Diying; Hormiga, Gustavo; Cai, Chenyang; Su, Yitong; Yin, Zongjun; Xia, Fangyuan; Giribet, Gonzalo

    2018-04-01

    Understanding the genealogical relationships among the arachnid orders is an onerous task, but fossils have aided in anchoring some branches of the arachnid tree of life. The discovery of Palaeozoic fossils with characters found in both extant spiders and other arachnids provided evidence for a series of extinctions of what was thought to be a grade, Uraraneida, that led to modern spiders. Here, we report two extraordinarily well-preserved Mesozoic members of Uraraneida with a segmented abdomen, multi-articulate spinnerets with well-defined spigots, modified male palps, spider-like chelicerae and a uropygid-like telson. The new fossils, belonging to the species Chimerarachne yingi, were analysed phylogenetically in a large data matrix of extant and extinct arachnids under a diverse regime of analytical conditions, most of which resulted in placing Uraraneida as the sister clade of Araneae (spiders). The phylogenetic placement of this arachnid fossil extends the presence of spinnerets and modified palps more basally in the arachnid tree than was previously thought. Ecologically, the new fossil extends the record of Uraraneida 170 million years towards the present, thus showing that uraraneids and spiders co-existed for a large fraction of their evolutionary history.

  19. Early environmental effects of the terminal Cretaceous impact

    NASA Technical Reports Server (NTRS)

    Gilmour, Iain; Wolbach, Wendy S.; Anders, Edward

    1988-01-01

    The environmental aftereffects of the terminal Cretaceous impact are examined on the basis of the carbon and nitrogen geochemistry in the basal layer of the K-T boundary clay at Woodside Creek, New Zealand. It is shown that organic carbon and nitrogen at this level are enriched by 15 and 20 times Cretaceous values, respectively. Also, it is found that the N abundances and, to a lesser extent, the organic C abundances are closely correlated with the Ir abundances. The changes in carbon and nitrogen content through the basal layer are outlined, focusing on the possible environmental conditions which could have caused enrichment. In addition, consideration is given to the soot and pyrotoxin content. Possible scenarios for the K-T event and the importance of selective extinction are discussed.

  20. Isotopic evaluation of ocean circulation in the Late Cretaceous North American seaway

    NASA Astrophysics Data System (ADS)

    Coulson, Alan B.; Kohn, Matthew J.; Barrick, Reese E.

    2011-12-01

    During the mid- and Late Cretaceous period, North America was split by the north-south oriented Western Interior Seaway. Its role in creating and maintaining Late Cretaceous global greenhouse conditions remains unclear. Different palaeoceanographic reconstructions portray diverse circulation patterns. The southward extent of relatively cool, low-salinity, low-δ18O surface waters critically distinguishes among these models, but past studies of invertebrates could not independently assess water temperature and isotopic compositions. Here we present oxygen isotopes in biophosphate from coeval marine turtle and fish fossils from western Kansas, representing the east central seaway, and from the Mississippi embayment, representing the marginal Tethys Ocean. Our analyses yield precise seawater isotopic values and geographic temperature differences during the main transition from the Coniacian to the early Campanian age (87-82 Myr), and indicate that the seaway oxygen isotope value and salinity were 2‰ and 3‰ lower, respectively, than in the marginal Tethys Ocean. We infer that the influence of northern freshwater probably reached as far south as Kansas. Our revised values imply relatively large temperature differences between the Mississippi embayment and central seaway, explain the documented regional latitudinal palaeobiogeographic zonation and support models with relatively little inflow of surface waters from the Tethys Ocean to the Western Interior Seaway.

  1. Discriminating signal from noise in the fossil record of early vertebrates reveals cryptic evolutionary history

    PubMed Central

    Sansom, Robert S.; Randle, Emma; Donoghue, Philip C. J.

    2015-01-01

    The fossil record of early vertebrates has been influential in elucidating the evolutionary assembly of the gnathostome bodyplan. Understanding of the timing and tempo of vertebrate innovations remains, however, mired in a literal reading of the fossil record. Early jawless vertebrates (ostracoderms) exhibit restriction to shallow-water environments. The distribution of their stratigraphic occurrences therefore reflects not only flux in diversity, but also secular variation in facies representation of the rock record. Using stratigraphic, phylogenetic and palaeoenvironmental data, we assessed the veracity of the fossil records of the jawless relatives of jawed vertebrates (Osteostraci, Galeaspida, Thelodonti, Heterostraci). Non-random models of fossil recovery potential using Palaeozoic sea-level changes were used to calculate confidence intervals of clade origins. These intervals extend the timescale for possible origins into the Upper Ordovician; these estimates ameliorate the long ghost lineages inferred for Osteostraci, Galeaspida and Heterostraci, given their known stratigraphic occurrences and stem–gnathostome phylogeny. Diversity changes through the Silurian and Devonian were found to lie within the expected limits predicted from estimates of fossil record quality indicating that it is geological, rather than biological factors, that are responsible for shifts in diversity. Environmental restriction also appears to belie ostracoderm extinction and demise rather than competition with jawed vertebrates. PMID:25520359

  2. Early Cretaceous adakitic magmatism in central eastern China controlled by ridge subduction

    NASA Astrophysics Data System (ADS)

    Ling, M.; Luo, Z.; Sun, W.

    2017-12-01

    Early Cretaceous adakites are widely distributed in central eastern China, e.g., Lower Yangtze River Belt (LYRB), Dabie orogen and south Tan-Lu Fault (STLF) area. Adakite from the LYRB is closely associated with mineralization, while adakites from Dabie orogen and STLF are ore barren. Their origins, however, remain controversial. Detailed geochemical comparison between these adakites indicates that the LYRB adakite are formed by partial melting of oceanic crust, i.e., slab melting, whereas those from Dabie orogen and STLF (e.g., Guandian pluton) have origin of lower continental crust (LCC) 1,2. Base on the distribution of igneous rocks, e.g., adakite, A-type granite and Nb-enriched basalts, as well as other lines of evidence, ridge subduction of the Pacific and Izanagi plates was proposed to explain the genesis of Cretaceous magmatism and associated mineralization in the LYRB 1. Ridge subduction is a special plate tectonic process that can provide both physical erosion and thermal erosion 3. Flat subduction of a spreading ridge will result in strong physical subduction-related erosion, and trigger destruction (e.g., in the Dabie orogen) or delamination (e.g., in the STLF) of the thickened LCC. Subsequently, ridge subduction, accompanied by opening of a slab window, will facilitate partial melting of the LCC by thermal erosion. References: 1. Ling, M. X. et al. Cretaceous ridge subduction along the Lower Yangtze river belt, eastern China. Econ. Geol. 104, 303-321, doi:10.2113/gsecongeo.104.2.303 (2009). 2. Ling, M. X., Wang, F. Y., Ding, X., Zhou, J. B. & Sun, W. D. Different origins of adakites from the Dabie Mountains and the Lower Yangtze River Belt, eastern China: Geochemical constraints. International Geology Review 53, 727-740 (2011). 3. Ling, M. X. et al. Destruction of the North China Craton Induced by Ridge Subductions. Journal of Geology 121, 197-213 (2013).

  3. New long-proboscid lacewings of the mid-Cretaceous provide insights into ancient plant-pollinator interactions

    PubMed Central

    Lu, Xiu-Mei; Zhang, Wei-Wei; Liu, Xing-Yue

    2016-01-01

    Many insects with long-proboscid mouthparts are among the pollinators of seed plants. Several cases of the long-proboscid pollination mode are known between fossil insects (e.g., true flies, scorpionflies, and lacewings) and various extinct gymnosperm lineages, beginning in the Early Permian and increasing during the Middle Jurassic to Early Cretaceous. However, details on the morphology of lacewing proboscides and the relevant pollination habit are largely lacking. Here we report on three lacewing species that belong to two new genera and a described genus from mid-Cretaceous (Albian-Cenomanian) amber of Myanmar. All these species possess relatively long proboscides, which are considered to be modified from maxillary and labial elements, probably functioning as a temporary siphon for feeding on nectar. Remarkably, these proboscides range from 0.4–1.0 mm in length and are attributed to the most diminutive ones among the contemporary long-proboscid insect pollinators. Further, they clearly differ from other long-proboscid lacewings which have a much longer siphon. The phylogenetic analysis indicates that these Burmese long-proboscid lacewings belong to the superfamily Psychopsoidea but cannot be placed into any known family. The present findings represent the first description of the mouthparts of long-proboscid lacewings preserved in amber and highlight the evolutionary diversification of the ancient plant-pollinator interactions. PMID:27149436

  4. A Gigantic Shark from the Lower Cretaceous Duck Creek Formation of Texas

    PubMed Central

    Frederickson, Joseph A.; Schaefer, Scott N.; Doucette-Frederickson, Janessa A.

    2015-01-01

    Three large lamniform shark vertebrae are described from the Lower Cretaceous of Texas. We interpret these fossils as belonging to a single individual with a calculated total body length of 6.3 m. This large individual compares favorably to another shark specimen from the roughly contemporaneous Kiowa Shale of Kansas. Neither specimen was recovered with associated teeth, making confident identification of the species impossible. However, both formations share a similar shark fauna, with Leptostyrax macrorhiza being the largest of the common lamniform sharks. Regardless of its actual identification, this new specimen provides further evidence that large-bodied lamniform sharks had evolved prior to the Late Cretaceous. PMID:26039066

  5. Discovery of a new stonefly genus with three new species from mid-Cretaceous Burmese amber (Plecoptera: Perlidae).

    PubMed

    Chen, Zhi-Teng; Wang, Bo; Du, Yu-Zhou

    2018-02-11

    A new fossil stonefly genus of the subfamily Acroneuriinae Klapálek, 1914 (Plecoptera: Perlidae), Largusoperla gen. nov. is reported based on three well-preserved specimens in mid-Cretaceous amber from northern Myanmar. Three new species of this new genus, L. acus sp. nov, L. flata sp. nov and L. arcus sp. nov. are described and illustrated. This is the first report of stonefly specimens from mid-Cretaceous Burmese amber. The taxonomic placement of the new genus is discussed.

  6. Fossil Microorganisms and Formation of Early Precambrian Weathering Profiles

    NASA Technical Reports Server (NTRS)

    Rozanov, A. Yu; Astafieva, M. M.; Vrevsky, A. B.; Alfimova, N. A.; Matrenichev, V. A.; Hoover, R. B.

    2009-01-01

    Weathering crusts are the only reliable evidences of the existence of continental conditions. Often they are the only source of information about exogenous processes and subsequently about conditions under which the development of the biosphere occurred. A complex of diverse fossil microorganisms was discovered as a result of Scanning Electron Microscope investigations. The chemical composition of the discovered fossils is identical to that of the host rocks and is represented by Si, Al, Fe, Ca and Mg. Probably, the microorganisms fixed in rocks played the role of catalyst. The decomposition of minerals comprising the rocks and their transformation into clayey (argillaceous) minerals, most likely occurred under the influence of microorganisms. And may be unique weathering crusts of Early Precambrian were formed due to interaction between specific composition of microorganism assemblage and conditions of hypergene transformations. So it is possible to speak about colonization of land by microbes already at that time and about existence of single raw from weathering crusts (Primitive soils) to real soils.

  7. A diverse mammal-dominated, footprint assemblage from wetland deposits in the Lower Cretaceous of Maryland.

    PubMed

    Stanford, Ray; Lockley, Martin G; Tucker, Compton; Godfrey, Stephen; Stanford, Sheila M

    2018-01-31

    A newly discovered assemblage of predominantly small tracks from the Cretaceous Patuxent Formation at NASA's Goddard Space Flight Center, Maryland, reveals one of the highest track densities and diversities ever reported (~70 tracks, representing at least eight morphotypes from an area of only ~2 m 2 ). The assemblage is dominated by small mammal tracks including the new ichnotxon Sederipes goddardensis, indicating sitting postures. Small crow-sized theropod trackways, the first from this unit, indicate social trackmakers and suggest slow-paced foraging behavior. Tracks of pterosaurs, and other small vertebrates suggest activity on an organic-rich substrate. Large well-preserved sauropod and nodosaurs tracks indicate the presence of large dinosaurs. The Patuxent Formation together with the recently reported Angolan assemblage comprise the world's two largest Mesozoic mammal footprint assemblages. The high density of footprint registration at the NASA site indicates special preservational and taphonomic conditions. These include early, penecontemporaneous deposition of siderite in organic rich, reducing wetland settings where even the flesh of body fossils can be mummified. Thus, the track-rich ironstone substrates of the Patuxent Formation, appear to preserve a unique vertebrate ichnofacies, with associated, exceptionally-preserved body fossil remains for which there are currently no other similar examples preserved in the fossil record.

  8. A new interpretation of the bee fossil Melitta willardi Cockerell (Hymenoptera, Melittidae) based on geometric morphometrics of the wing.

    PubMed

    Dewulf, Alexandre; De Meulemeester, Thibaut; Dehon, Manuel; Engel, Michael S; Michez, Denis

    2014-01-01

    Although bees are one of the major lineages of pollinators and are today quite diverse, few well-preserved fossils are available from which to establish the tempo of their diversification/extinction since the Early Cretaceous. Here we present a reassessment of the taxonomic affinities of Melitta willardiCockerell 1909, preserved as a compression fossil from the Florissant shales of Colorado, USA. Based on geometric morphometric wing shape analyses M. willardi cannot be confidently assigned to the genus Melitta Kirby (Anthophila, Melittidae). Instead, the species exhibits phenotypic affinity with the subfamily Andreninae (Anthophila, Andrenidae), but does not appear to belong to any of the known genera therein. Accordingly, we describe a new genus, Andrenopteryx gen. n., based on wing shape as well as additional morphological features and to accommodate M. willardi. The new combination Andrenopteryx willardi (Cockerell) is established.

  9. A new interpretation of the bee fossil Melitta willardi Cockerell (Hymenoptera, Melittidae) based on geometric morphometrics of the wing

    PubMed Central

    Dewulf, Alexandre; De Meulemeester, Thibaut; Dehon, Manuel; Engel, Michael S.; Michez, Denis

    2014-01-01

    Abstract Although bees are one of the major lineages of pollinators and are today quite diverse, few well-preserved fossils are available from which to establish the tempo of their diversification/extinction since the Early Cretaceous. Here we present a reassessment of the taxonomic affinities of Melitta willardi Cockerell 1909, preserved as a compression fossil from the Florissant shales of Colorado, USA. Based on geometric morphometric wing shape analyses M. willardi cannot be confidently assigned to the genus Melitta Kirby (Anthophila, Melittidae). Instead, the species exhibits phenotypic affinity with the subfamily Andreninae (Anthophila, Andrenidae), but does not appear to belong to any of the known genera therein. Accordingly, we describe a new genus, Andrenopteryx gen. n., based on wing shape as well as additional morphological features and to accommodate M. willardi. The new combination Andrenopteryx willardi (Cockerell) is established. PMID:24715773

  10. A Sauropod Tooth from the Santonian of Hungary and the European Late Cretaceous 'Sauropod Hiatus'.

    PubMed

    Ősi, Attila; Csiki-Sava, Zoltán; Prondvai, Edina

    2017-06-12

    The lack of sauropod body fossils from the 20 My-long mid-Cenomanian to the late Campanian interval of the Late Cretaceous in Europe is referred to as the 'sauropod hiatus', with only a few footprints reported from the Apulian microplate (i.e. the southern part of the European archipelago). Here we describe a single tooth from the Santonian continental beds of Iharkút, Hungary, that represents the first European body fossil evidence of a sauropod from this critical time interval. The mosaic of derived and plesiomorphic features documented by the tooth crown morphology points to a basal titanosauriform affinity suggesting the occurrence of a clade of sauropods in the Upper Cretaceous of Europe that is quite different from the previously known Campano-Maastrichtian titanosaurs. Along with the footprints coming from shallow marine sediments, this tooth further strengthens the view that the extreme rarity of sauropod remains from this period of Europe is the result of sampling bias related to the dominance of coastal over inland sediments, in the latter of which sauropod fossils usually occur. This is also in line with the hypothesis that sauropods preferred inland habitats to swampy environments.

  11. Calcification and Silicification: Fossilization Potential of Cyanobacteria from Stromatolites of Niuafo‘ou's Caldera Lakes (Tonga) and Implications for the Early Fossil Record

    PubMed Central

    Kazmierczak, Józef; Łukomska-Kowalczyk, Maja; Kempe, Stephan

    2012-01-01

    Abstract Calcification and silicification processes of cyanobacterial mats that form stromatolites in two caldera lakes of Niuafo‘ou Island (Vai Lahi and Vai Si‘i) were evaluated, and their importance as analogues for interpreting the early fossil record are discussed. It has been shown that the potential for morphological preservation of Niuafo‘ou cyanobacteria is highly dependent on the timing and type of mineral phase involved in the fossilization process. Four main modes of mineralization of cyanobacteria organic parts have been recognized: (i) primary early postmortem calcification by aragonite nanograins that transform quickly into larger needle-like crystals and almost totally destroy the cellular structures, (ii) primary early postmortem silicification of almost intact cyanobacterial cells that leave a record of spectacularly well-preserved cellular structures, (iii) replacement by silica of primary aragonite that has already recrystallized and obliterated the cellular structures, (iv) occasional replacement of primary aragonite precipitated in the mucopolysaccharide sheaths and extracellular polymeric substances by Al-Mg-Fe silicates. These observations suggest that the extremely scarce earliest fossil record may, in part, be the result of (a) secondary replacement by silica of primary carbonate minerals (aragonite, calcite, siderite), which, due to recrystallization, had already annihilated the cellular morphology of the mineralized microbiota or (b) relatively late primary silicification of already highly degraded and no longer morphologically identifiable microbial remains. Key Words: Stromatolites—Cyanobacteria—Calcification—Silicification—Niuafo‘ou (Tonga)—Archean. Astrobiology 12, 535–548. PMID:22794297

  12. First complete sauropod dinosaur skull from the Cretaceous of the Americas and the evolution of sauropod dentition.

    PubMed

    Chure, Daniel; Britt, Brooks B; Whitlock, John A; Wilson, Jeffrey A

    2010-04-01

    Sauropod dinosaur bones are common in Mesozoic terrestrial sediments, but sauropod skulls are exceedingly rare--cranial materials are known for less than one third of sauropod genera and even fewer are known from complete skulls. Here we describe the first complete sauropod skull from the Cretaceous of the Americas, Abydosaurus mcintoshi, n. gen., n. sp., known from 104.46 +/- 0.95 Ma (megannum) sediments from Dinosaur National Monument, USA. Abydosaurus shares close ancestry with Brachiosaurus, which appeared in the fossil record ca. 45 million years earlier and had substantially broader teeth. A survey of tooth shape in sauropodomorphs demonstrates that sauropods evolved broad crowns during the Early Jurassic but did not evolve narrow crowns until the Late Jurassic, when they occupied their greatest range of crown breadths. During the Cretaceous, brachiosaurids and other lineages independently underwent a marked diminution in tooth breadth, and before the latest Cretaceous broad-crowned sauropods were extinct on all continental landmasses. Differential survival and diversification of narrow-crowned sauropods in the Late Cretaceous appears to be a directed trend that was not correlated with changes in plant diversity or abundance, but may signal a shift towards elevated tooth replacement rates and high-wear dentition. Sauropods lacked many of the complex herbivorous adaptations present within contemporaneous ornithischian herbivores, such as beaks, cheeks, kinesis, and heterodonty. The spartan design of sauropod skulls may be related to their remarkably small size--sauropod skulls account for only 1/200th of total body volume compared to 1/30th body volume in ornithopod dinosaurs.

  13. Measures of maturation in early fossil hominins: events at the first transition from australopiths to early Homo

    PubMed Central

    Dean, M. Christopher

    2016-01-01

    An important question in palaeoanthropology is whether, among the australopiths and the first fossil hominins attributed to early Homo, there was a shift towards a more prolonged period of growth that can be distinguished from that of the living great apes and whether between the end of weaning and the beginning of puberty there was a slow period of growth as there is in modern humans. Evidence for the pace of growth in early fossil hominins comes from preserved tooth microstructure. A record of incremental growth in enamel and dentine persists, which allows us to reconstruct tooth growth and compare key measures of dental maturation with modern humans and living great apes. Despite their diverse diets and way of life, it is currently difficult to identify any clear differences in the timing of dental development among living great apes, australopiths and the earliest hominins attributed to the genus Homo. There is, however, limited evidence that some early hominins may have attained a greater proportion of their body mass and stature relatively earlier in the growth period than is typical of modern humans today. This article is part of the themed issue ‘Major transitions in human evolution’. PMID:27298465

  14. The Strontium Isotope Composition of Fossil Hackberry Seed Carbonate and Tooth Enamel as a Potential Record of Soil Erosion

    NASA Astrophysics Data System (ADS)

    Cooke, M. J.; Stern, L. A.; Banner, J. L.

    2001-12-01

    The Edwards Plateau in central Texas has experienced significant soil erosion since the Last Glacial Maximum. In contrast to the thin soils that mantle the Cretaceous limestone bedrock of the modern Edwards Plateau, Quaternary fossils of burrowing mammals contained within several central Texas cave deposits suggest soil cover was much thicker in the latest Pleistocene and early Holocene. As the landscape is denuded, the Cretaceous limestone bedrock is exhumed and becomes a more important source of exchangeable Sr to the soils. Therefore, the Sr isotope composition of the soil and organisms deriving nutrients from the soil, such as plants and herbivores, should become more like the Sr isotope composition of the bedrock as erosion continues. Because the marine limestone bedrock has a lower 87Sr/86Sr value than the soil, the exchangeable soil Sr should evolve to lower 87Sr/86Sr values through time resulting in a decrease in the 87Sr/86Sr of plants and animals deriving nutrients from the soil. In order to test this hypothesis, terrestrial fossils from an extensively dated Quaternary deposit within Hall's Cave, Kerr County, Texas were analyzed by TIMS for 87Sr/86Sr. The materials analyzed include aragonitic fossil hackberry seeds and rodent tooth enamel. Results indicate an overall decrease in the 87Sr/86Sr of fossil hackberry seed aragonite and rodent tooth enamel over the last 16,000 years, with the highest rate of decrease in the 87Sr/86Sr of fossil hackberry seeds (0.70982 to 0.70841) occurring between approximately 16,000 and 10,000 Y.B.P. This decrease in the 87Sr/86Sr is interpreted as evidence for an increase in the proportion of bedrock-derived Sr to the soils, corresponding to a general decrease in soil thickness. An increase in aridity or an increase in the seasonality of precipitation during this time could account for the post-glacial soil erosion in central Texas. This study suggests that the 87Sr/86Sr of fossils may be a useful proxy for paleo soil depth

  15. Early Cretaceous paleomagnetic and geochronologic results from the Tethyan Himalaya: Insights into the Neotethyan paleogeography and the India-Asia collision.

    PubMed

    Ma, Yiming; Yang, Tianshui; Bian, Weiwei; Jin, Jingjie; Zhang, Shihong; Wu, Huaichun; Li, Haiyan

    2016-02-17

    To better understand the Neotethyan paleogeography, a paleomagnetic and geochronological study has been performed on the Early Cretaceous Sangxiu Formation lava flows, which were dated from ~135.1 Ma to ~124.4 Ma, in the Tethyan Himalaya. The tilt-corrected site-mean characteristic remanent magnetization (ChRM) direction for 26 sites is Ds = 296.1°, Is = -65.7°, ks = 51.7, α95 = 4.0°, corresponding to a paleopole at 5.9°S, 308.0°E with A95 = 6.1°. Positive fold and reversal tests prove that the ChRM directions are prefolding primary magnetizations. These results, together with reliable Cretaceous-Paleocene paleomagnetic data observed from the Tethyan Himalaya and the Lhasa terrane, as well as the paleolatitude evolution indicated by the apparent polar wander paths (APWPs) of India, reveal that the Tethyan Himalaya was a part of Greater India during the Early Cretaceous (135.1-124.4 Ma) when the Neotethyan Ocean was up to ~6900 km, it rifted from India sometime after ~130 Ma, and that the India-Asia collision should be a dual-collision process including the first Tethyan Himalaya-Lhasa terrane collision at ~54.9 Ma and the final India-Tethyan Himalaya collision at ~36.7 Ma.

  16. Similarity and Differences of Cretaceous Magmatism in the Arctic Region

    NASA Astrophysics Data System (ADS)

    Peyve, A. A.

    2018-03-01

    The paper considers Cretaceous magmatism at the continental margin of the Arctic Region. It is shown that Cretaceous igneous rocks of this region are rather heterogeneous in age, composition, and geodynamic formation setting. This differentiates them from rocks of typical large igneous provinces (LIPs). Local areas of magmatic activity, their substantial remoteness them from one another, and significant distinctions in age, composition of rocks, and formation conditions prevent us from unreservedly combining all occurrences of Cretaceous magmatism at the continental margin of the Arctic Region into a common igneous province. The stage of tholeiitic magmatism in the Svalbard Archipelago, Franz Josef Land, Arctic Canada, and the Alpha-Mendeleev Rise, which can be considered an LIP, began in the Early Cretaceous and continued for a long time, at least until the Campanian. The magmatism apparently had a plume source and was caused by extension during opening of the Canada Basin. Tholeiitic magmatism gave way to the alkaline magmatism stage from the Campanian to the onset of the Paleocene, related to continental rifting at the initial stage of formation of Eurasian Basin in the Arctic Region. No convincing evidence for a genetic link between Early Cretaceous tholeiitic and Late Cretaceous alkaline magmatism is known at present, nor for the alkaline magmatism belonging to a plume source.

  17. Early-mid-Cretaceous evolution in Tethyan reef communities and sea level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, R.W.

    1988-01-01

    The replacement of corals by rudists in Early Cretaceous reefal communities spanned a 30-m.y. period when sea level rose and drowned continental shelves. During this time corals formed communities in the deeper parts of reefs and rudists occupied the shallow, high-energy habitats. By Aptian time rudists dominated reefs that fringed interior shelf basins and corals formed reefs with rudists on the outer shelf margins. By late Albian coral communities had virtually disappeared, presumably because of complex environmental changes and cycles of organic productivity. Two important events of eustatic sea level rise are represented by unconformities separating carbonate depositional sequences onmore » the Arabian platform that correlate with sequence boundaries on the Gulf Coast platform. Graphic correlation techniques test the synchroneity of these events. A composite standard time scale dates these sea level rises at 115.8 Ma and 94.6 Ma; a third, intra-Albian event at 104.3 Ma is present in many places and may also be eustatic. Associated with these sea level rises were apparent changes in ocean water chemistry as evidenced by changes in isotopes and trace elements, where diagenetic effects can be discounted. During this time the climate became more humid and atmospheric CO/sub 2/ increased. The concomitant environmental changes in the oceanic conditions presumably stressed the deeper coral communities on reefs. The emergence of rudists as reef contributors had a profound effect on Late Cretaceous depositional conditions and the development of hydrocarbon reservoirs.« less

  18. Early-mid-Cretaceous evolution in Tethyan reef communities and sea level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, R.W.

    1988-02-01

    The replacement of corals by rudists in Early Cretaceous reefal communities spanned a 30-m.y. period when sea level rose and drowned continental shelves. During this time corals formed communities in the deeper parts of reefs and rudists occupied the shallow, high-energy habitats. By Aptian time rudists dominated reefs that fringed interior shelf basins and corals formed reefs with rudists on the outer shelf margins. By late Albian coral communities had virtually disappeared, presumably because of complex environmental changes and cycles of organic productivity. Two important events of eustatic sea level rise are represented by unconformities separating carbonate depositional sequences onmore » the Arabian platform that correlate with sequence boundaries on the Gulf Coast platform. Graphic correlation techniques test the synchroneity of these events. A composite standard time scale dates these sea level rises at 115.8 Ma and 94.6 Ma; a third, intra-Albian event at 104.3 Ma is present in many places and may also be eustatic. Associated with these sea level rises were apparent changes in ocean water chemistry as evidenced by changes in isotopes and trace elements, where diagenetic effects can be discounted. During this time the climate became more humid and atmospheric CO/sub 2/ increased. The concomitant environmental changes in the oceanic conditions presumably stressed the deeper coral communities on reefs. The emergence of rudists as reef contributors had a profound effect on Late Cretaceous depositional conditions and the development of hydrocarbon reservoirs.« less

  19. Plant-arthropod interaction in the Early Cretaceous (Berriasian) of the Araripe Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Pires, Etiene Fabbrin; Sommer, Margot Guerra

    2009-02-01

    Plant-arthropod interactions provide the first relevant data for addressing evidence of phytophagy for an assemblage of coniferous silicified woods from the pre-rift phase in the Araripe Basin, Brazil. A complex system of borings, sometimes filled with small, oval to hexagonal coprolites, allow inferences to be made about the activities of termites (Isoptera). Previous dendrological data indicated that the climate during the Early Cretaceous on the landmasses of the northern Afro-Brazilian Depression was dry and savanna like, where termite borings were common. Features of wood preservation demonstrate that the damage was probably caused by herbivores, not detritivores.

  20. Foraminifera and the ecology of sea grass communities since the late Cretaceous

    NASA Astrophysics Data System (ADS)

    Hart, Malcolm; Smart, Christopher; Jagt, John

    2016-04-01

    Sea grasses are marine angiosperms (plants) that, in the late Cretaceous, migrated from the land into shallow-water marine environments. They represent a distinct, but fragile, marine habitat and sea grass meadows are often regarded as biodiversity hot-spots with a range of species (including fish, sea horses and cuttlefish) using them as nurseries for their young. Foraminifera are often found associated with sea grass meadows, with the associated taxa reflecting both the environment and palaeolatitude. In the tropics and sub-tropics, miliolid foraminifera dominate (e.g., Peneroplis spp.) as do large discoidal taxa such as Marginopora and Calcarina. In temperate to cool latitudes the assemblage changes to one dominated by smaller benthic taxa, including Elphidium spp. One taxon, Elphidium crispum, is geotropic and is often found - in the summer months - to crowd the fronds of the sea grass. In the Gulpen and Maastricht formations of the Maastricht area (The Netherlands and Belgium) sea grass fossils (both fronds and rhizomes) have been recorded in association with assemblages of both larger and smaller benthic foraminifera (Hart et al., 2016). Some of the large discoidal forms (e.g., Omphalocyclus and Orbitoides/Lepidorbitoides) and the distinctive Siderolites are associated with these sea grass fossils and are suggestive of the modern sea grass communities of sub-tropical areas. While earlier records were of relatively isolated sea grasses, in September/October 2015 surfaces with abundant sea grasses were found that are suggestive of complete 'meadows'. Preservation of some silicified rhizomes indicates that silicification must have been very rapid, before any degradation or compaction of the delicate tissues. The presence of sea grass fossils and their associated benthic foraminifera is indicative of a clear, shallow-water seaway, with a maximum depth of 15-20 m. The reported variations in sea level during the latest Cretaceous cannot, therefore, have been very

  1. The relationship of angiosperms and oleanane in petroleum through geologic time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moldowan, J.M.; Dahl, J.E.; Huizinga, B.J.

    1993-02-01

    The biological marker oleanane has been suggested as an indicator of angiosperm (flowering plant) input into source rocks and their derived oils. Parallels should therefore be evident between the angiosperm fossil record and oleanane occurrence and abundance. A global selection of more than 50 core samples from marine rocks of different ages and from different locations was quantitatively analyzed for oleanane to determine its abundance over geologic time relative to the bacterial marker hopane. Oleanane was recognized using Metastable Reaction Monitoring (MRM) GC-MS. A parallel was observed between the oleanane/hopane ratio and angiosperm diversity in the fossil record through time.more » The first fossil evidence of angiosperms is during the Early Cretaceous with radiation during the Late Cretaceous and Tertiary. Occurrences of oleanane are confirmed throughout the Cretaceous system. Early-to-middle Cretaceous (Berriasian-Cenomanian) occurrences are sporadic and oleanan/hopane ratios are less than 0.07. Late Cretaceous (Turonian-Maastrichtian) oleanane/hopane ratios range up to 0.15 with higher ratios in many Tertiary samples. It appears that oleanane/hopane ratios of oils can restrict the age of their unavailable or unknown source rocks. High ratios indicate Tertiary age and lower ratios can indicate Cretaceous or Tertiary age, depending on depositional environment. While these data do not rule out pre-Cretaceous oleanane, preliminary data show that oleanane/hopane ratios for Jurassic and older rock extracts are typically below our detection limits (<0.03). While oleanane precursors are abundant in angiosperms, they also occur, rarely, in other modern plant groups. We identified oleanane in low abundances in three Early Cretaceous fossil benettitialeans, an extinct plant group (Late Triassic to Late Cretaceous) thought to be related to angiosperms. These findings suggest that oleanane could be present in low abundance in some pre-Cretaceous rocks and oils.« less

  2. Cellular preservation of musculoskeletal specializations in the Cretaceous bird Confuciusornis

    PubMed Central

    Jiang, Baoyu; Zhao, Tao; Regnault, Sophie; Edwards, Nicholas P.; Kohn, Simon C.; Li, Zhiheng; Wogelius, Roy A.; Benton, Michael J.; Hutchinson, John R.

    2017-01-01

    The hindlimb of theropod dinosaurs changed appreciably in the lineage leading to extant birds, becoming more ‘crouched' in association with changes to body shape and gait dynamics. This postural evolution included anatomical changes of the foot and ankle, altering the moment arms and control of the muscles that manipulated the tarsometatarsus and digits, but the timing of these changes is unknown. Here, we report cellular-level preservation of tendon- and cartilage-like tissues from the lower hindlimb of Early Cretaceous Confuciusornis. The digital flexor tendons passed through cartilages, cartilaginous cristae and ridges on the plantar side of the distal tibiotarsus and proximal tarsometatarsus, as in extant birds. In particular, fibrocartilaginous and cartilaginous structures on the plantar surface of the ankle joint of Confuciusornis may indicate a more crouched hindlimb posture. Recognition of these specialized soft tissues in Confuciusornis is enabled by our combination of imaging and chemical analyses applied to an exceptionally preserved fossil. PMID:28327586

  3. Relative sea level changes during the Cretaceous in Israel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flexer, A.; Rosenfeld, A.; Lipson-Benitah, S.

    1986-11-01

    Detailed lithologic, microfaunal, and biometric investigations, using relative abundances, diversity indexes, and duration charts of ostracods and foraminifera, allowed the recognition of sea level changes during the Cretaceous of Israel. Three major transgressive-regressive sedimentation cycles occur on the northwest margins of the Arabian craton. These cycles are the Neocomian-Aptian, which is mostly terrigenous sediments; the Albian-Turonian, which is basin marls and platform carbonates; and the Senonian, which is uniform marly chalks. The cycles are separated by two major regional unconformities, the Aptian-Albian and Turonian-Coniacian boundaries. The sedimentary cycles are related to regional tectonic and volcanic events and eustatic changes. Themore » paleodepth curve illustrates the gradual sea level rise, reaching its maximum during the Late Cretaceous, with conspicuous advances during the late Aptian, late Albian-Cenomanian, early Turonian, early Santonian, and early Campanian. Major lowstands occur at the Aptian-Albian, Cenomanian-Turonian, Turonian-Coniacian, and Campanian-Maastrichtian boundaries. This model for Israel agrees well with other regional and global sea level fluctuations. Four anoxic events (black shales) accompanying transgressions correspond to the Cretaceous oceanic record. They hypothesize the presence of mature oil shales in the present-day eastern Mediterranean basin close to allochthonous reef blocks detached from the Cretaceous platform. 11 figures.« less

  4. Phylogenetic diversification of Early Cretaceous seed plants: The compound seed cone of Doylea tetrahedrasperma.

    PubMed

    Rothwell, Gar W; Stockey, Ruth A

    2016-05-01

    Discovery of cupulate ovules of Doylea tetrahedrasperma within a compact, compound seed cone highlights the rich diversity of fructification morphologies, pollination biologies, postpollination enclosure of seeds, and systematic diversity of Early Cretaceous gymnosperms. Specimens were studied using the cellulose acetate peel technique, three-dimensional reconstructions (in AVIZO), and morphological phylogenetic analyses (in TNT). Doylea tetrahedrasperma has bract/fertile short shoot complexes helically arranged within a compact, compound seed cone. Complexes diverge from the axis as a single unit and separate distally into a free bract tip and two sporophylls. Each sporophyll bears a single, abaxial seed, recurved toward the cone axis, that is enveloped after pollinaton by sporophyll tissue, forming a closed cupule. Ovules are pollinated by bisaccate grains captured by micropylar pollination horns. The unique combination of characters shown by D. tetrahedrasperma includes the presence of cupulate seeds borne in conifer-like compound seed cones, an ovuliferous scale analogue structurally equivalent to the ovulate stalk of Ginkgo biloba, gymnospermous pollination, and nearly complete enclosure of mature seeds. These features characterize the Doyleales ord. nov., clearly distinguish it from the seed fern order Corystospermales, and allow for recognition of another recently described Early Cretaceous seed plant as a second species in genus Doylea. A morphological phylogenetic analysis highlights systematic relationships of the Doyleales ord. nov. and emphasizes the explosive phylogenetic diversification of gymnosperms that was underway at the time when flowering plants may have originated and/or first began to radiate. © 2016 Botanical Society of America.

  5. The age and diversification of terrestrial New World ecosystems through Cretaceous and Cenozoic time.

    PubMed

    Graham, Alan

    2011-03-01

    Eight ecosystems that were present in the Cretaceous about 100 Ma (million years ago) in the New World eventually developed into the 12 recognized for the modern Earth. Among the forcing mechanisms that drove biotic change during this interval was a decline in global temperatures toward the end of the Cretaceous, augmented by the asteroid impact at 65 Ma and drainage of seas from continental margins and interiors; separation of South America from Africa beginning in the south at ca. 120 Ma and progressing northward until completed 90-100 Ma; the possible emission of 1500 gigatons of methane and CO(2) attributed to explosive vents in the Norwegian Sea at ca. 55 Ma, resulting in a temperature rise of 5°-6°C in an already warm world; disruption of the North Atlantic land bridge at ca. 45 Ma at a time when temperatures were falling; rise of the Andes Mountains beginning at ca. 40 Ma; opening of the Drake Passage between South America and Antarctica at ca. 32 Ma with formation of the cold Humboldt at ca. 30 Ma; union of North and South America at ca. 3.5 Ma; and all within the overlay of evolutionary processes. These processes generated a sequence of elements (e.g., species growing in moist habitats within an overall dry environment; gallery forests), early versions (e.g., mangrove communities without Rhizophora until the middle Eocene), and essentially modern versions of present-day New World ecosystems. As a first approximation, the fossil record suggests that early versions of aquatic communities (in the sense of including a prominent angiosperm component) appeared early in the Middle to Late Cretaceous, the lowland neotropical rainforest at 64 Ma (well developed by 58-55 Ma), shrubland/chaparral-woodland-savanna and grasslands around the middle Miocene climatic optimum at ca. 15-13 Ma, deserts in the middle Miocene/early Pliocene at ca. 10 Ma, significant tundra at ca. 7-5 Ma, and alpine tundra (páramo) shortly thereafter when cooling temperatures were augmented

  6. Late Cretaceous-Early Eocene Climate Change Linked to Tectonic Eevolution of Neo-Tethyan Subduction Systems

    NASA Astrophysics Data System (ADS)

    Jagoutz, O. E.; Royden, L.; Macdonald, F. A.

    2015-12-01

    In this presentation we demonstrate that the two tectonic events in the late Cretaceous-Early Tertiary triggered the two distinct cooling events that followed the Cretaceous Thermal Maximum (CTM). During much of the Cretaceous time, the northern Neo Tethyan ocean was dominated by two east-west striking subduction system. Subduction underneath Eurasia formed a continental arc on the southern margin of Eurasia and intra oceanic subduction in the equatorial region of the Neo Tethys formed and intra oceanic arc. Beginning at ~85-90 Ma the western part of the TTSS collided southward with the Afro-Arabian continental margin, terminating subduction. This resulted in southward obduction of the peri-Arabian ophiolite belt, which extends for ~4000 km along strike and includes the Cypus, Semail and Zagros ophiolites. At the same time also the eastern part of the TTS collided northwards wit Eurasia. After this collisional event, only the central part of the subduction system remained active until it collided with the northern margin of the Indian continent at ~50-55 Ma. The collision of the arc with the Indian margin, over a length of ~3000 km, also resulted in the obduction of arc material and ophiolitic rocks. Remnants of these rocks are preserved today as the Kohistan-Ladakh arc and ophiolites of the Indus-Tsangpo suture zone of the Himalayas. Both of these collision events occurred in the equatorial region, near or within the ITCZ, where chemical weathering rates are high and are contemporaneous with the onset of the global cooling events that mark the end of the CTM and the EECO. The tectonic collision events resulted in a shut down of subduction zone magmatism, a major CO2 source and emplacement of highly weatherable basaltic rocks within the ITCZ (CO2 sink). In order to explore the effect of the events in the TTSS on atmospheric CO2, we model the potential contribution of subduction zone volcanism (source) and ophiolite obduction (sink) to the global atmospheric CO2

  7. Morphological Analysis of Cretaceous-Paleogene Boundary Foraminiferal Taxa

    NASA Astrophysics Data System (ADS)

    Mikenas, M.; Hull, P. M.; Henehan, M. J.

    2014-12-01

    66 million years ago at the end of the Cretaceous period, an asteroid impact in the Gulf of Mexico triggered the sudden extinction of an estimated 50% of marine invertebrate species. The event profoundly affected planktonic foraminifera, marine protists with an excellent fossil records in open marine sediments. The mass extinction and expansive fossil record of foraminifera creates the opportunity for detailed studies of the way species and ecosystems evolve and respond to environmental changes. Community level research is, however, relatively rare compared to geochemical paleoceanographic approaches. This is due, in part, to the fact that community level data collection is labor intensive and only partially records all aspects of the biological response. Here, I use a new approach to quantify community change with a computer-controlled microscope able to take high-resolution images of thousands of foraminifera at a time. Analytical software is used to classify populations by morphology, and this data is compared with traditional assemblage counts from multiple oceanic core sites from the late Maastrichtian to the early Danian. Previous studies have suggested that certain phenotypic characteristics are related to ecological niches -here, the direct measurement of shape of large populations of foraminifera is used to research the possible correlation between the K-Pg boundary events and community structure. Continued study of morphological data can be used to investigate the evolution of foraminiferal phenotypes, the connection between shape and ecological behavior, and the changes they exhibit in response to both sudden and long term changes in climate such as occurred near the K/Pg boundary. The image database of Maastrichtian and early Danian foraminifera will be made available to the scientific community, enabling inter-lab and cross-site comparisons.

  8. Early Cretaceous Shallow-Water Platform Carbonates of the Bolkar Mountains, Central Taurides - South Turkey: Facies Analysis and Depositional Environments

    NASA Astrophysics Data System (ADS)

    Solak, Cemile; Taslı, Kemal; Koç, Hayati

    2016-10-01

    The study area comprises southern non-metamorphic part of the Bolkar Mountains which are situated in southern Turkey, eastern part of the Central Taurides. The studied five outcrops form geologically parts of the tectonostratigraphic units called as allochthonous Aladag Unit and autochthonous Geyikdagi Unit. The aim of this study is to describe microfacies and depositional environments of the Bolkar Mountains Early Cretaceous shallow- water platform carbonates. The Lower Cretaceous is represented by continuous thick- bedded to massive dolomite sequence ranging from 100 to 150 meters thick, which only contains locally laminated limestone intercalations in the Yüğlük section and thick to very thick-bedded uniform limestones ranging from approximately 50 to 120 meters, consist of mainly laminated- fenestral mudstone, peloidal-intraclastic grainstone-packstone, bioclastic packstone- wackestone, benthic foraminiferal-intraclastic grainstone-packstone, ostracod-fenestral wackestone-mudstone, dasycladacean algal packstone-wackestone and ooidal grainstone microfacies. Based on a combination sedimantological data, facies/microfacies and micropaleontological (predominantly dasycladacean algae and diverse benthic foraminifera) analysis, it is concluded that Early Cretaceous platform carbonates of the Bolkar Mountains reflect a tidally affected tidal-flat and restricted lagoon settings. During the Berriasian- Valanginian unfavourable facies for benthic foraminifera and dolomitization were predominate. In the Hauterivian-early Aptian, the effect of dolomitization largely disappeared and inner platform conditions still prevailed showing alternations of peritidal and lagoon facies, going from peritidal plains (representing various sub-environments including supratidal, intertidal area, tidal-intertidal ponds and ooid bars) dominated by ostracod and miliolids, to dasycladacean algae-rich restricted lagoons-subtidal. These environments show a transition in the vertical and

  9. Early Cretaceous MORB-type basalt and A-type rhyolite in northern Tibet: Evidence for ridge subduction in the Bangong-Nujiang Tethyan Ocean

    NASA Astrophysics Data System (ADS)

    Fan, Jian-Jun; Li, Cai; Sun, Zhen-Ming; Xu, Wei; Wang, Ming; Xie, Chao-Ming

    2018-04-01

    New zircon U-Pb ages, major- and trace-element data, and Hf isotopic compositions are presented for bimodal volcanic rocks of the Zhaga Formation (ZF) in the western-middle segment of the Bangong-Nujiang suture zone (BNSZ), northern Tibet. The genesis of these rocks is described, and implications for late-stage evolution of the Bangong-Nujiang Tethyan Ocean (BNTO) are considered. Detailed studies show that the ZF bimodal rocks, which occur as layers within a typical bathyal to abyssal flysch deposit, comprise MORB-type basalt that formed at a mid-ocean ridge, and low-K calc-alkaline A-type rhyolite derived from juvenile crust. The combination of MORB-type basalt, calc-alkaline A-type rhyolite, and bathyal to abyssal flysch deposits in the ZF leads us to propose that they formed as a result of ridge subduction. The A-type ZF rhyolites yield LA-ICP-MS zircon U-Pb ages of 118-112 Ma, indicating formation during the Early Cretaceous. Data from the present study, combined with regional geological data, indicate that the BNTO underwent conversion from ocean opening to ocean closure during the Late Jurassic-Early Cretaceous. The eastern segment of the BNTO closed during this period, while the western and western-middle segments were still at least partially open and active during the Early Cretaceous, accompanied by ridge subduction within the Bangong-Nujiang Tethyan Ocean.

  10. An enigmatic crocodyliform tooth from the bauxites of western Hungary suggests hidden mesoeucrocodylian diversity in the Early Cretaceous European archipelago

    PubMed Central

    Rabi, Márton; Makádi, László

    2015-01-01

    Background. The Cretaceous of southern Europe was characterized by an archipelago setting with faunas of mixed composition of endemic, Laurasian and Gondwanan elements. However, little is known about the relative timing of these faunal influences. The Lower Cretaceous of East-Central Europe holds a great promise for understanding the biogeographic history of Cretaceous European biotas because of the former proximity of the area to Gondwana (as part of the Apulian microcontinent). However, East-Central European vertebrates are typically poorly known from this time period. Here, we report on a ziphodont crocodyliform tooth discovered in the Lower Cretaceous (Albian) Alsópere Bauxite Formation of Olaszfalu, western Hungary. Methods. The morphology of the tooth is described and compared with that of other similar Cretaceous crocodyliforms. Results. Based on the triangular, slightly distally curved, constricted and labiolingually flattened crown, the small, subequal-sized true serrations on the carinae mesially and distally, the longitudinal fluting labially, and the extended shelves along the carinae lingually the tooth is most similar to some peirosaurid, non-baurusuchian sebecosuchian, and uruguaysuchid notosuchians. In addition, the paralligatorid Wannchampsus also possesses similar anterior teeth, thus the Hungarian tooth is referred here to Mesoeucrocodylia indet. Discussion. Supposing a notosuchian affinity, this tooth is the earliest occurrence of the group in Europe and one of the earliest in Laurasia. In case of a paralligatorid relationship the Hungarian tooth would represent their first European record, further expanding their cosmopolitan distribution. In any case, the ziphodont tooth from the Albian bauxite deposit of western Hungary belongs to a group still unknown from the Early Cretaceous European archipelago and therefore implies a hidden diversity of crocodyliforms in the area. PMID:26339542

  11. A new Cheirolepidiaceae (Coniferales) from the Early Jurassic of Patagonia (Argentina): Reconciling the records of impression and permineralized fossils.

    PubMed

    Escapa, Ignacio; Leslie, Andrew

    2017-02-01

    Plants preserved in different fossil modes provide complementary data concerning the paleobiology and evolutionary relationships among plant groups. New material from the Early Jurassic of Patagonia shows the importance of combining these sources of information, as we describe the first compression/impression fossils of Pararaucaria , a genus of the extinct conifer family Cheirolepidiaceae previously known from permineralized fossils. These fossils extend the temporal range of this genus and may allow its wider recognition in the fossil record. We studied fossil plants from the Early Jurassic (Pleinsbachian-Toarcian) locality of Taquetrén in Patagonia, Argentina using standard paleobotanical preparation and description techniques. Pararaucaria taquetrensis consists of isolated ovuliferous scales and small seed cones with helically arranged bract-scale complexes attached to scale-leaf foliage. Bract-scale complexes consist of separated bracts and ovuliferous scales with two seeds and three broad distal lobes. Pararaucaria taquetrensis represents the oldest known Cheirolepidiaceae seed cones from the Southern Hemisphere, and this material highlights the importance of compression and impression fossils in understanding the distribution of fossil taxa. This material also suggests that Cheirolepidiaceae cone scales can be easily confused with those of another common conifer family, the Araucariaceae, which has important implications for accurately understanding Mesozoic conifer diversity and paleoecology. © 2017 Botanical Society of America.

  12. New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs.

    PubMed

    Brusatte, Stephen L; Averianov, Alexander; Sues, Hans-Dieter; Muir, Amy; Butler, Ian B

    2016-03-29

    Tyrannosaurids--the familiar group of carnivorous dinosaurs including Tyrannosaurus and Albertosaurus--were the apex predators in continental ecosystems in Asia and North America during the latest Cretaceous (ca. 80-66 million years ago). Their colossal sizes and keen senses are considered key to their evolutionary and ecological success, but little is known about how these features developed as tyrannosaurids evolved from smaller basal tyrannosauroids that first appeared in the fossil record in the Middle Jurassic (ca. 170 million years ago). This is largely because of a frustrating 20+ million-year gap in the mid-Cretaceous fossil record, when tyrannosauroids transitioned from small-bodied hunters to gigantic apex predators but from which no diagnostic specimens are known. We describe the first distinct tyrannosauroid species from this gap, based on a highly derived braincase and a variety of other skeletal elements from the Turonian (ca. 90-92 million years ago) of Uzbekistan. This taxon is phylogenetically intermediate between the oldest basal tyrannosauroids and the latest Cretaceous forms. It had yet to develop the giant size and extensive cranial pneumaticity of T. rex and kin but does possess the highly derived brain and inner ear characteristic of the latest Cretaceous species. Tyrannosauroids apparently developed huge size rapidly during the latest Cretaceous, and their success in the top predator role may have been enabled by their brain and keen senses that first evolved at smaller body size.

  13. New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs

    PubMed Central

    Brusatte, Stephen L.; Averianov, Alexander; Sues, Hans-Dieter; Muir, Amy; Butler, Ian B.

    2016-01-01

    Tyrannosaurids—the familiar group of carnivorous dinosaurs including Tyrannosaurus and Albertosaurus—were the apex predators in continental ecosystems in Asia and North America during the latest Cretaceous (ca. 80–66 million years ago). Their colossal sizes and keen senses are considered key to their evolutionary and ecological success, but little is known about how these features developed as tyrannosaurids evolved from smaller basal tyrannosauroids that first appeared in the fossil record in the Middle Jurassic (ca. 170 million years ago). This is largely because of a frustrating 20+ million-year gap in the mid-Cretaceous fossil record, when tyrannosauroids transitioned from small-bodied hunters to gigantic apex predators but from which no diagnostic specimens are known. We describe the first distinct tyrannosauroid species from this gap, based on a highly derived braincase and a variety of other skeletal elements from the Turonian (ca. 90–92 million years ago) of Uzbekistan. This taxon is phylogenetically intermediate between the oldest basal tyrannosauroids and the latest Cretaceous forms. It had yet to develop the giant size and extensive cranial pneumaticity of T. rex and kin but does possess the highly derived brain and inner ear characteristic of the latest Cretaceous species. Tyrannosauroids apparently developed huge size rapidly during the latest Cretaceous, and their success in the top predator role may have been enabled by their brain and keen senses that first evolved at smaller body size. PMID:26976562

  14. New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs

    NASA Astrophysics Data System (ADS)

    Brusatte, Stephen L.; Averianov, Alexander; Sues, Hans-Dieter; Muir, Amy; Butler, Ian B.

    2016-03-01

    Tyrannosaurids-the familiar group of carnivorous dinosaurs including Tyrannosaurus and Albertosaurus-were the apex predators in continental ecosystems in Asia and North America during the latest Cretaceous (ca. 80-66 million years ago). Their colossal sizes and keen senses are considered key to their evolutionary and ecological success, but little is known about how these features developed as tyrannosaurids evolved from smaller basal tyrannosauroids that first appeared in the fossil record in the Middle Jurassic (ca. 170 million years ago). This is largely because of a frustrating 20+ million-year gap in the mid-Cretaceous fossil record, when tyrannosauroids transitioned from small-bodied hunters to gigantic apex predators but from which no diagnostic specimens are known. We describe the first distinct tyrannosauroid species from this gap, based on a highly derived braincase and a variety of other skeletal elements from the Turonian (ca. 90-92 million years ago) of Uzbekistan. This taxon is phylogenetically intermediate between the oldest basal tyrannosauroids and the latest Cretaceous forms. It had yet to develop the giant size and extensive cranial pneumaticity of T. rex and kin but does possess the highly derived brain and inner ear characteristic of the latest Cretaceous species. Tyrannosauroids apparently developed huge size rapidly during the latest Cretaceous, and their success in the top predator role may have been enabled by their brain and keen senses that first evolved at smaller body size.

  15. The first Mesozoic microwhip scorpion (Palpigradi): a new genus and species in mid-Cretaceous amber from Myanmar

    NASA Astrophysics Data System (ADS)

    Engel, Michael S.; Breitkreuz, Laura C. V.; Cai, Chenyang; Alvarado, Mabel; Azar, Dany; Huang, Diying

    2016-04-01

    A fossil palpigrade is described and figured from mid-Cretaceous (Cenomanian) amber from northern Myanmar. Electrokoenenia yaksha Engel and Huang, gen. n. et sp. n., is the first Mesozoic fossil of its order and the only one known as an inclusion in amber, the only other fossil being a series of individuals encased in Pliocene onyx marble and 94-97 million years younger than E. yaksha. The genus is distinguished from other members of the order but is remarkably consistent in observable morphological details when compared to extant relatives, likely reflecting a consistent microhabitat and biological preferences over the last 100 million years.

  16. Newly combined 40Ar/39Ar and U-Pb ages of the Upper Cretaceous timescale from Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Gaylor, J. R.; Heredia, B. D.; Quidelleur, X.; Takashima, R.; Nishi, H.; Mezger, K.

    2011-12-01

    The main targets for GTS next project (www.gtsnext.eu) are to develop highly refined geological time scales, including the Upper Cretaceous. The Cretaceous period is characterised by numerous global anoxic events in the marine realm, rich ammonitic fossil assemblages and specialised foraminifera. However, lack of age diagnostic macro and micro fossils in the North Pacific sections has made it difficult to link these with global sections such as the Western Interior Basin (North America). Using advances with terrestrial C-isotope and planktic foraminifera records within Central Hokkaido we are able to correlate these sections globally. The Cretaceous Yezo group in Central Hokkaido comprises deep marine mudstones and turbidite sandstones interbedded with acidic volcanic tuffs. Using various sections within the Yezo group, we radiometrically dated tuffs at the main stage boundaries in the Upper Cretaceous. The samples derive from the Kotanbetsu, Shumarinai, Tiomiuchi and the Hakkin river sections, spanning the time from the Albian-Cenomanian up until the Campanian-Santonian boundaries, and were dated using 40Ar/39Ar, K/Ar and U-Pb techniques. Recent age constraints in the Hokkaido counterparts (Kotanbetsu sections) show good coherence between radiometric chronometers on the various Upper Cretaceous stage boundaries. These additional ages together with our isotope ages from the different sections around the Hokkaido basin are well linked by the various faunal assemblages and C-isotope curves. The combined radio isotope ages contribute to previous attempts (such as those focused in the Western Interior Basin) supporting the synchronicity of events such as global oceanic anoxic events. Finally, the ages obtained here also compliment the previous C-isotope and planktic foraminifera records allowing for a more precise climatic history of the Northwest Pacific during the Cretaceous. The research within the GTSnext project is funded by the European Community's Seventh

  17. Earth's early fossil record: Why not look for similar fossils on Mars?

    NASA Technical Reports Server (NTRS)

    Awramik, Stanley M.

    1989-01-01

    The oldest evidence of life on Earth is discussed with attention being given to the structure and formation of stromatolites and microfossils. Fossilization of microbes in calcium carbonate or chert media is discussed. In searching for fossil remains on Mars, some lessons learned from the study of Earth's earliest fossil record can be applied. Certain sedimentary rock types and sedimentary rock configurations should be targeted for investigation and returned by the Martian rover and ultimately by human explorers. Domical, columnar to wavy laminated stratiform sedimentary rocks that resemble stromatolites should be actively sought. Limestone, other carbonates, and chert are the favored lithology. Being macroscopic, stromatolites might be recognized by an intelligent unmanned rover. In addition, black, waxy chert with conchoidal fracture should be sought. Chert is by far the preferred lithology for the preservation of microbes and chemical fossils. Even under optimal geological conditions (little or no metamorphism or tectonic alteration, excellent outcrops, and good black chert) and using experienced field biogeologists, the chances of finding well preserved microbial remains in chert are very low.

  18. Long-Proboscid Flies as Pollinators of Cretaceous Gymnosperms.

    PubMed

    Peñalver, Enrique; Arillo, Antonio; Pérez-de la Fuente, Ricardo; Riccio, Mark L; Delclòs, Xavier; Barrón, Eduardo; Grimaldi, David A

    2015-07-20

    The great evolutionary success of angiosperms has traditionally been explained, in part, by the partnership of these plants with insect pollinators. The main approach to understanding the origins of this pervasive relationship has been study of the pollinators of living cycads, gnetaleans, and basal angiosperms. Among the most morphologically specialized living pollinators are diverse, long-proboscid flies. Early such flies include the brachyceran family Zhangsolvidae, previously known only as compression fossils from the Early Cretaceous of China and Brazil. It belongs to the infraorder Stratiomyomorpha, a group that includes the flower-visiting families Xylomyidae and Stratiomyidae. New zhangsolvid specimens in amber from Spain (ca. 105 mega-annum [Ma]) and Myanmar (100 Ma) reveal a detailed proboscis structure adapted to nectivory. Pollen clumped on a specimen from Spain is Exesipollenites, attributed to a Mesozoic gymnosperm, most likely the Bennettitales. Late Mesozoic scorpionflies with a long proboscis have been proposed as specialized pollinators of various extinct gymnosperms, but pollen has never been observed on or in their bodies. The new discovery is a very rare co-occurrence of pollen with its insect vector and provides substantiating evidence that other long-proboscid Mesozoic insects were gymnosperm pollinators. Evidence is thus now gathering that visitors and probable pollinators of early anthophytes, or seed plants, involved some insects with highly specialized morphological adaptations, which has consequences for interpreting the reproductive modes of Mesozoic gymnosperms and the significance of insect pollination in angiosperm success. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Diatom microfossils from cretaceous and eocene sediments contain native silica precipitating long-chain polyamines.

    PubMed

    Bridoux, M C; Ingalls, A E

    2013-05-01

    Organic molecules from known biological sources (biomarkers) that are preserved over geological time are critical tools in the study of past conditions and events on earth. Polar molecules are typically recycled rapidly in marine environments and do not survive burial within aquatic sediments in unambiguously recognizable form. As such, geological biomarkers are formed almost exclusively from precursor biomolecules that have been altered, limiting their utility as paleoproxies. Here, we report that nitrogen-rich aliphatic long-chain polyamines (LCPAs), biosynthesized by diatoms in species-specific assemblages for the precipitation of nanopatterned siliceous cell walls (frustules), are preserved unaltered in the oldest available diatom fossils dating to the Lower Cretaceous (early Albian, 115-110 Ma). We further show that the cumulative LCPA pool accounts for 60% of the total C and 80% of the total N preserved in the Cretaceous age sediments. We suggest that silica glass formation by diatoms constitutes an important preservation mechanism for source-specific, polar biomolecules, protecting them indefinitely by encapsulation within the silicified frustule. LCPAs are a unique, source-specific carbon and nitrogen archive of diatom biomass, offering a promising tool for reconstruction of global cycles of carbon and nitrogen over geological timescales. © 2013 Blackwell Publishing Ltd.

  20. Early Cretaceous paleomagnetic and geochronologic results from the Tethyan Himalaya: Insights into the Neotethyan paleogeography and the India-Asia collision

    NASA Astrophysics Data System (ADS)

    Ma, Yiming; Yang, Tianshui; Bian, Weiwei; Jin, Jingjie; Zhang, Shihong; Wu, Huaichun; Li, Haiyan

    2016-02-01

    To better understand the Neotethyan paleogeography, a paleomagnetic and geochronological study has been performed on the Early Cretaceous Sangxiu Formation lava flows, which were dated from ~135.1 Ma to ~124.4 Ma, in the Tethyan Himalaya. The tilt-corrected site-mean characteristic remanent magnetization (ChRM) direction for 26 sites is Ds = 296.1°, Is = -65.7°, ks = 51.7, α95 = 4.0°, corresponding to a paleopole at 5.9°S, 308.0°E with A95 = 6.1°. Positive fold and reversal tests prove that the ChRM directions are prefolding primary magnetizations. These results, together with reliable Cretaceous-Paleocene paleomagnetic data observed from the Tethyan Himalaya and the Lhasa terrane, as well as the paleolatitude evolution indicated by the apparent polar wander paths (APWPs) of India, reveal that the Tethyan Himalaya was a part of Greater India during the Early Cretaceous (135.1-124.4 Ma) when the Neotethyan Ocean was up to ~6900 km, it rifted from India sometime after ~130 Ma, and that the India-Asia collision should be a dual-collision process including the first Tethyan Himalaya-Lhasa terrane collision at ~54.9 Ma and the final India-Tethyan Himalaya collision at ~36.7 Ma.

  1. An evaluation of fossil tip-dating versus node-age calibrations in tetraodontiform fishes (Teleostei: Percomorphaceae).

    PubMed

    Arcila, Dahiana; Alexander Pyron, R; Tyler, James C; Ortí, Guillermo; Betancur-R, Ricardo

    2015-01-01

    Time-calibrated phylogenies based on molecular data provide a framework for comparative studies. Calibration methods to combine fossil information with molecular phylogenies are, however, under active development, often generating disagreement about the best way to incorporate paleontological data into these analyses. This study provides an empirical comparison of the most widely used approach based on node-dating priors for relaxed clocks implemented in the programs BEAST and MrBayes, with two recently proposed improvements: one using a new fossilized birth-death process model for node dating (implemented in the program DPPDiv), and the other using a total-evidence or tip-dating method (implemented in MrBayes and BEAST). These methods are applied herein to tetraodontiform fishes, a diverse group of living and extinct taxa that features one of the most extensive fossil records among teleosts. Previous estimates of time-calibrated phylogenies of tetraodontiforms using node-dating methods reported disparate estimates for their age of origin, ranging from the late Jurassic to the early Paleocene (ca. 150-59Ma). We analyzed a comprehensive dataset with 16 loci and 210 morphological characters, including 131 taxa (95 extant and 36 fossil species) representing all families of fossil and extant tetraodontiforms, under different molecular clock calibration approaches. Results from node-dating methods produced consistently younger ages than the tip-dating approaches. The older ages inferred by tip dating imply an unlikely early-late Jurassic (ca. 185-119Ma) origin for this order and the existence of extended ghost lineages in their fossil record. Node-based methods, by contrast, produce time estimates that are more consistent with the stratigraphic record, suggesting a late Cretaceous (ca. 86-96Ma) origin. We show that the precision of clade age estimates using tip dating increases with the number of fossils analyzed and with the proximity of fossil taxa to the node under

  2. A primitive protostegid from Australia and early sea turtle evolution

    PubMed Central

    Kear, Benjamin P; Lee, Michael S.Y

    2005-01-01

    Sea turtles (Chelonioidea) are a prominent group of modern marine reptiles whose early history is poorly understood. Analysis of exceptionally well preserved fossils of Bouliachelys suteri gen. et sp. nov., a large-bodied basal protostegid (primitive chelonioid) from the Early Cretaceous (Albian) of Australia, indicates that early sea turtles were both larger and more diverse than previously thought. The analysis implies at least five distinct sea turtle lineages existed around 100 million years ago. Currently, the postcranially primitive Ctenochelys and Toxochelys are interpreted as crown-group sea turtles closely related to living cheloniids (e.g. Chelonia); in contrast, the new phylogeny suggests that they are transitional (intermediate stem-taxa) between continental testudines and derived, pelagic chelonioids. PMID:17148342

  3. Seeking carotenoid pigments in amber-preserved fossil feathers.

    PubMed

    Thomas, Daniel B; Nascimbene, Paul C; Dove, Carla J; Grimaldi, David A; James, Helen F

    2014-06-09

    Plumage colours bestowed by carotenoid pigments can be important for visual communication and likely have a long evolutionary history within Aves. Discovering plumage carotenoids in fossil feathers could provide insight into the ecology of ancient birds and non-avian dinosaurs. With reference to a modern feather, we sought chemical evidence of carotenoids in six feathers preserved in amber (Miocene to mid-Cretaceous) and in a feather preserved as a compression fossil (Eocene). Evidence of melanin pigmentation and microstructure preservation was evaluated with scanning electron and light microscopies. We observed fine microstructural details including evidence for melanin pigmentation in the amber and compression fossils, but Raman spectral bands did not confirm the presence of carotenoids in them. Carotenoids may have been originally absent from these feathers or the pigments may have degraded during burial; the preservation of microstructure may suggest the former. Significantly, we show that carotenoid plumage pigments can be detected without sample destruction through an amber matrix using confocal Raman spectroscopy.

  4. Seeking carotenoid pigments in amber-preserved fossil feathers

    NASA Astrophysics Data System (ADS)

    Thomas, Daniel B.; Nascimbene, Paul C.; Dove, Carla J.; Grimaldi, David A.; James, Helen F.

    2014-06-01

    Plumage colours bestowed by carotenoid pigments can be important for visual communication and likely have a long evolutionary history within Aves. Discovering plumage carotenoids in fossil feathers could provide insight into the ecology of ancient birds and non-avian dinosaurs. With reference to a modern feather, we sought chemical evidence of carotenoids in six feathers preserved in amber (Miocene to mid-Cretaceous) and in a feather preserved as a compression fossil (Eocene). Evidence of melanin pigmentation and microstructure preservation was evaluated with scanning electron and light microscopies. We observed fine microstructural details including evidence for melanin pigmentation in the amber and compression fossils, but Raman spectral bands did not confirm the presence of carotenoids in them. Carotenoids may have been originally absent from these feathers or the pigments may have degraded during burial; the preservation of microstructure may suggest the former. Significantly, we show that carotenoid plumage pigments can be detected without sample destruction through an amber matrix using confocal Raman spectroscopy.

  5. A new Late Cretaceous iguanomorph from North America and the origin of New World Pleurodonta (Squamata, Iguania)

    PubMed Central

    Conrad, Jack L.; Head, Jason J.; Varricchio, David J.; Wilson, Gregory P.

    2017-01-01

    Iguanomorpha (stem + crown Iguania) is a diverse squamate clade with members that predominate many modern American lizard ecosystems. However, the temporal and palaeobiogeographic origins of its constituent crown clades (e.g. Pleurodonta (basilisks, iguanas, and their relatives)) are poorly constrained, mainly due to a meagre Mesozoic-age fossil record. Here, we report on two nearly complete skeletons from the Late Cretaceous (Campanian) of North America that represent a new and relatively large-bodied and possibly herbivorous iguanomorph that inhabited a semi-arid environment. The new taxon exhibits a mosaic of anatomical features traditionally used in diagnosing Iguania and non-iguanian squamates (i.e. Scleroglossa; e.g. parietal foramen at the frontoparietal suture, astragalocalcaneal notch in the tibia, respectively). Our cladistic analysis of Squamata revealed a phylogenetic link between Campanian-age North American and East Asian stem iguanomorphs (i.e. the new taxon + Temujiniidae). These results and our evaluation of the squamate fossil record suggest that crown pleurodontans were restricted to the low-latitude Neotropics prior to their early Palaeogene first appearances in the mid-latitudes of North America. PMID:28123087

  6. Terrestrial origin of viviparity in mesozoic marine reptiles indicated by early triassic embryonic fossils.

    PubMed

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction.

  7. Dinosaur trackways from the early Late Cretaceous of western Cameroon

    NASA Astrophysics Data System (ADS)

    Martin, Jeremy E.; Menkem, Elie Fosso; Djomeni, Adrien; Fowe, Paul Gustave; Ntamak-Nida, Marie-Joseph

    2017-10-01

    Dinosaur trackways have rarely been reported in Cretaceous strata across the African continent. To the exception of ichnological occurrences in Morocco, Tunisia, Niger and Cameroon, our knowledge on the composition of Cretaceous dinosaur faunas mostly relies on skeletal evidence. For the first time, we document several dinosaur trackways from the Cretaceous of the Mamfe Basin in western Cameroon. Small and medium-size tridactyl footprints as well as numerous large circular footprints are present on a single horizon showing mudcracks and ripple marks. The age of the locality is considered Cenomanian-Turonian and if confirmed, this ichnological assemblage could be younger than the dinosaur footprints reported from northern Cameroon, and coeval with or younger than skeletal remains reported from the Saharan region. These trackways were left in an adjacent subsiding basin along the southern shore of the Benue Trough during a time of high-sea stand when the Trans-Saharan Seaway was already disconnecting West Africa from the rest of the continent. We predict that other similar track sites may be occurring along the margin of the Benue Trough and may eventually permit to test hypotheses related to provincialism among African dinosaur faunas.

  8. Larval cases of caddisfly (Insecta: Trichoptera) affinity in Early Permian marine environments of Gondwana

    NASA Astrophysics Data System (ADS)

    Mouro, Lucas D.; Zatoń, Michał; Fernandes, Antonio C. S.; Waichel, Breno L.

    2016-01-01

    Caddisflies (Trichoptera) are small, cosmopolitan insects closely related to the Lepidoptera (moths and butterflies). Most caddisflies construct protective cases during their larval development. Although the earliest recognisable caddisflies date back to the early Mesozoic (Early and Middle Triassic), being particularly numerous and diverse during the Late Jurassic and Early Cretaceous, the first records of their larval case constructions are known exclusively from much younger, Early to Middle Jurassic non-marine deposits in the northern hemisphere. Here we present fossils from the Early Permian (Asselian-Sakmarian) marine deposits of Brazil which have strong morphological and compositional similarity to larval cases of caddisflies. If they are, which is very probable, these finds not only push back the fossil record of true caddisflies, but also indicate that their larvae constructed cases at the very beginning of their evolution in marine environments. Since modern caddisflies that construct larval cases in marine environments are only known from eastern Australia and New Zealand, we suggest that this marine ecology may have first evolved in western Gondwana during the Early Permian and later spread across southern Pangea.

  9. Larval cases of caddisfly (Insecta: Trichoptera) affinity in Early Permian marine environments of Gondwana

    PubMed Central

    Mouro, Lucas D.; Zatoń, Michał; Fernandes, Antonio C.S.; Waichel, Breno L.

    2016-01-01

    Caddisflies (Trichoptera) are small, cosmopolitan insects closely related to the Lepidoptera (moths and butterflies). Most caddisflies construct protective cases during their larval development. Although the earliest recognisable caddisflies date back to the early Mesozoic (Early and Middle Triassic), being particularly numerous and diverse during the Late Jurassic and Early Cretaceous, the first records of their larval case constructions are known exclusively from much younger, Early to Middle Jurassic non-marine deposits in the northern hemisphere. Here we present fossils from the Early Permian (Asselian–Sakmarian) marine deposits of Brazil which have strong morphological and compositional similarity to larval cases of caddisflies. If they are, which is very probable, these finds not only push back the fossil record of true caddisflies, but also indicate that their larvae constructed cases at the very beginning of their evolution in marine environments. Since modern caddisflies that construct larval cases in marine environments are only known from eastern Australia and New Zealand, we suggest that this marine ecology may have first evolved in western Gondwana during the Early Permian and later spread across southern Pangea. PMID:26765261

  10. Larval cases of caddisfly (Insecta: Trichoptera) affinity in Early Permian marine environments of Gondwana.

    PubMed

    Mouro, Lucas D; Zatoń, Michał; Fernandes, Antonio C S; Waichel, Breno L

    2016-01-14

    Caddisflies (Trichoptera) are small, cosmopolitan insects closely related to the Lepidoptera (moths and butterflies). Most caddisflies construct protective cases during their larval development. Although the earliest recognisable caddisflies date back to the early Mesozoic (Early and Middle Triassic), being particularly numerous and diverse during the Late Jurassic and Early Cretaceous, the first records of their larval case constructions are known exclusively from much younger, Early to Middle Jurassic non-marine deposits in the northern hemisphere. Here we present fossils from the Early Permian (Asselian-Sakmarian) marine deposits of Brazil which have strong morphological and compositional similarity to larval cases of caddisflies. If they are, which is very probable, these finds not only push back the fossil record of true caddisflies, but also indicate that their larvae constructed cases at the very beginning of their evolution in marine environments. Since modern caddisflies that construct larval cases in marine environments are only known from eastern Australia and New Zealand, we suggest that this marine ecology may have first evolved in western Gondwana during the Early Permian and later spread across southern Pangea.

  11. Community living long before man: fossil and living microbial mats and early life

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Lopez Baluja, L.; Awramik, S. M.; Sagan, D.

    1986-01-01

    Microbial mats are layered communities of bacteria that form cohesive structures, some of which are preserved in sedimentary rocks as stromatolites. Certain rocks, approximately three and a half thousand million years old and representing the oldest known fossils, are interpreted to derive from microbial mats and to contain fossils of microorganisms. Modern microbial mats (such as the one described here from Matanzas, Cuba) and their fossil counterparts are of great interest in the interpretation of early life on Earth. Since examination of microbial mats and stromatolites increases our understanding of long-term stability and change, within the global environment, such structures should be protected wherever possible as natural science preserves. Furthermore, since they have existed virtually from the time of life's origin, microbial mats have developed exemplary mechanisms of local community persistence and may even play roles in the larger global environment that we do not understand.

  12. Microbial trace fossils in Antarctica and the search for evidence of early life on Mars

    NASA Technical Reports Server (NTRS)

    Friedmann, E. Imre; Friedmann, Roseli O.

    1989-01-01

    It is possible to hypothesize that, if microbial life evolved on early Mars, fossil remnants of these organisms may be preserved on the surface. However, the cooling and drying of Mars probably resembled a cold desert and such an environment is not suitable for the process of fossilization. The frigid Ross Desert of Antarctica is probably the closest terrestrial analog to conditions that may have prevailed on the surface of the cooling and drying Mars. In this desert, cryptoendolithic microbial communities live in the airspaces of porous rocks, the last habitable niche in a hostile outside environment. The organisms produce characteristic chemical and physical changes in the rock substrate. Environmental changes (deterioration of conditions) may result in the death of the community. Although no cellular structures are fossilized, the conspicuous changes in the rock substrate are preserved as trace fossils. Likewise, microbial trace fossils (without cellular structures) may also be preserved on Mars: Discontinuities in structure or chemistry of the rock that are independent of physical or chemical gradients may be of biological origin. Ross Desert trace fossils can be used as a model for planning search strategies and for instrument design to find evidence of past Martian life.

  13. Fossil Leaves and Fossil Leaf n-Alkanes: Reconstructing the First Closed Canopied Rainforests

    NASA Astrophysics Data System (ADS)

    Graham, H. V.; Freeman, K. H.

    2013-12-01

    Although the age and location is disputed, the rise of the first closed-canopy forest is likely linked with the expansion of angiosperms in the late Cretacous or early Cenozoic. The carbon isotope 'canopy effect' reflects the extent of canopy closure, and is well documented in δ13C values of the leaves and leaf lipids in modern forests. To test the extent of canopy closure among the oldest documented angiosperm tropical forests, we analyzed isotopic characteristics of leaf fossils and leaf waxes from the Guaduas and Cerrejón Formations. The Guaduas Fm. (Maastrichtian) contains some of the earliest angiosperm fossils in the Neotropics, and both leaf morphology and pollen records at this site suggest an open-canopy structure. The Cerrejón Fm. (Paleocene) contains what are believed to be the first recorded fossil leaves from a closed-canopy forest. We analyzed the bulk carbon isotope content (δ13Cleaf) of 199 fossil leaves, as well as the n-alkane concentration and chain-length distribution, and δ13C of alkanes (δ13Clipid) of 73 fossil leaves and adjacent sediment samples. Fossil leaves are dominated by eudicots and include ten modern plant families (Apocynaceae, Bombaceae, Euphorbaceae, Fabaceae, Lauraceae, Malvaceae, Meliaceae, Menispermaceae, Moraceae, Sapotaceae). We interpreted extent of canopy coverage based on the range of δ13Cleaf values. The narrow range of δ13C values in leaves from the Guaduas Fm (2.7‰) is consistent with an open canopy. A significantly wider range in values (6.3‰) suggests a closed-canopy signature for site 0315 of the Cerrejón Fm,. In contrast, at Site 0318, a lacustrine deposit, leaves had a narrow range (3.3‰) in δ13C values, and this is not consistent with a closed-canopy, but is consistent with leaf assemblages from a forest edge. Leaves that accumulate in lake sediments tend to be biased toward plants living at the lake edge, which do not experience closed-canopy conditions, and do not express the isotopic

  14. Correlation of the Cretaceous formations of Greenland and Alaska

    USGS Publications Warehouse

    Imlay, Ralph Willard; Reeside, John B.

    1953-01-01

    This is Number 10d of a series of correlation charts prepared for the Committee on Stratigraphy of the National Research Council. It has been sponsored by the U.S. Geological Survey and has required about seven months' time of both authors gathering and compiling data and evaluating fossil evidence. As the two regions dealt with in the chart are widely separated, the lists of references are also given separately. The annotations dealing with Greenland are based entirely on published information. The annotations dealing with Alaska are based on a re-examination of nearly all the Cretaceous fossils from Alaska are based on a re-examination of nearly all the Cretaceous fossils from Alaska in the collections of the Geological Survey. This has resulted in many concepts not hitherto published and in some concepts that are completely at variance with those that have been published. Naturally for large areas undergoing active exploration, such as Alaska, a correlation chart is out of date in many particulars as soon as published. Nevertheless it is valuable to the field man whose activities are confined to small areas but who must interpret much of his data in terms of surrounding areas that he has not seen. It is valuable to the student and to the general geologist because it organizes scattered information in a manner that can be applied in their field problems, makes quite unnecessary the memorization of stratigraphic correlations are based on observation and reasoning and not on a vast memory. It is probably of greatest value to the specialist who makes the chart because he discovers what areas and problems are most in need of research and can thereby direct his efforts and those of his associates in a manner that will yield the greatest results.

  15. Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction

    PubMed Central

    Friedman, Matt

    2009-01-01

    Despite the attention focused on mass extinction events in the fossil record, patterns of extinction in the dominant group of marine vertebrates—fishes—remain largely unexplored. Here, I demonstrate ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction, based on a genus-level dataset that accounts for lineages predicted on the basis of phylogeny but not yet sampled in the fossil record. Two ecologically relevant anatomical features are considered: body size and jaw-closing lever ratio. Extinction intensity is higher for taxa with large body sizes and jaws consistent with speed (rather than force) transmission; resampling tests indicate that victims represent a nonrandom subset of taxa present in the final stage of the Cretaceous. Logistic regressions of the raw data reveal that this nonrandom distribution stems primarily from the larger body sizes of victims relative to survivors. Jaw mechanics are also a significant factor for most dataset partitions but are always less important than body size. When data are corrected for phylogenetic nonindependence, jaw mechanics show a significant correlation with extinction risk, but body size does not. Many modern large-bodied, predatory taxa currently suffering from overexploitation, such billfishes and tunas, first occur in the Paleocene, when they appear to have filled the functional space vacated by some extinction victims. PMID:19276106

  16. Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction.

    PubMed

    Friedman, Matt

    2009-03-31

    Despite the attention focused on mass extinction events in the fossil record, patterns of extinction in the dominant group of marine vertebrates-fishes-remain largely unexplored. Here, I demonstrate ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction, based on a genus-level dataset that accounts for lineages predicted on the basis of phylogeny but not yet sampled in the fossil record. Two ecologically relevant anatomical features are considered: body size and jaw-closing lever ratio. Extinction intensity is higher for taxa with large body sizes and jaws consistent with speed (rather than force) transmission; resampling tests indicate that victims represent a nonrandom subset of taxa present in the final stage of the Cretaceous. Logistic regressions of the raw data reveal that this nonrandom distribution stems primarily from the larger body sizes of victims relative to survivors. Jaw mechanics are also a significant factor for most dataset partitions but are always less important than body size. When data are corrected for phylogenetic nonindependence, jaw mechanics show a significant correlation with extinction risk, but body size does not. Many modern large-bodied, predatory taxa currently suffering from overexploitation, such billfishes and tunas, first occur in the Paleocene, when they appear to have filled the functional space vacated by some extinction victims.

  17. Trace fossils as environment indicators in the Rocky Mountains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepard, B.

    Throughout time, organisms have left various types of traces while engaged in different activities. The two major types of lebensspuren were made by suspension feeders found in turbulent water where organic matter is held in suspension, and by deposit feeders whose habitat is found in quiet, deeper waters where large quantities of organic matter settle from suspension. The different activities which occur in these two environments are the cause of the traces found in sediments. These include escape structures resulting from degradation or aggradation of sediments, feeding structures, dwelling structures, grazing traces, crawling traces, and resting traces. The use ofmore » trace fossils in hydrocarbon exploration is especially helpful in the Cretaceous sandstones of the Rocky Mountains because of the relative abundance of outcrops and the scarcity of body fossils. By combining the interpretation of physical processes with the biological traces, one more tool is made available in the determination of rock environments as an aid in hydrocarbon exploration. Materials exhibited include 8 x 10 color prints of different Cretaceous lebensspuren, hand-drawn cartoons of the six different trace activities, and a regional cross section of the Eagle sandstone illustrated by photographs of different traces near each location, as well as a variety of rock samples.« less

  18. Fruits and wood of Parinari from the early Miocene of Panama and the fossil record of Chrysobalanaceae.

    PubMed

    Jud, Nathan A; Nelson, Chris W; Herrera, Fabiany

    2016-02-01

    Chrysobalanaceae are woody plants with over 500 species in 20 genera. They are among the most common trees in tropical forests, but a sparse fossil record has limited our ability to test evolutionary and biogeographic hypotheses, and several previous reports of Chrysobalanaceae megafossils are doubtful. We prepared fossil endocarps and wood collected from the lower Miocene beds along the Panama Canal using the cellulose acetate peel technique and examined them using light microscopy. We compared the fossil endocarps with previously published fossils and with fruits from herbarium specimens. We compared the fossil wood with photographs and descriptions of extant species. Parinari endocarps can be distinguished from other genera within Chrysobalanaceae by a suite of features, i.e., thick wall, a secondary septum, seminal cavities lined with dense, woolly trichomes, and two ovate to lingulate basal germination plugs. Fossil endocarps from the Cucaracha, Culebra, and La Boca Formations confirm that Parinari was present in the neotropics by the early Miocene. The earliest unequivocal evidence of crown-group Chrysobalanaceae is late Oligocene-early Miocene, and the genus Parinari was distinct by at least 19 million years ago. Parinari and other Chrysobalanaceae likely reached the neotropics via long-distance dispersal rather than vicariance. The presence of Parinari in the Cucaracha flora supports the interpretation of a riparian, moist tropical forest environment. Parinari was probably a canopy-dominant tree in the Cucaracha forest and took advantage of the local megafauna for seed dispersal. © 2016 Botanical Society of America.

  19. Predation upon Hatchling Dinosaurs by a New Snake from the Late Cretaceous of India

    PubMed Central

    Wilson, Jeffrey A.; Mohabey, Dhananjay M.; Peters, Shanan E.; Head, Jason J.

    2010-01-01

    Derived large-mouthed snakes (macrostomatans) possess numerous specializations in their skull and lower jaws that allow them to consume large vertebrate prey. In contrast, basal snakes lack these adaptations and feed primarily on small prey items. The sequence of osteological and behavioral modifications involved in the evolution of the macrostomatan condition has remained an open question because of disagreement about the origin and interrelationships of snakes, the paucity of well-preserved early snake fossils on many continental landmasses, and the lack of information about the feeding ecology of early snakes. We report on a partial skeleton of a new 3.5-m-long snake, Sanajeh indicus gen. et sp. nov., recovered from Upper Cretaceous rocks of western India. S. indicus was fossilized in association with a sauropod dinosaur egg clutch, coiled around an egg and adjacent to the remains of a ca. 0.5-m-long hatchling. Multiple snake-egg associations at the site strongly suggest that S. indicus frequented nesting grounds and preyed on hatchling sauropods. We interpret this pattern as “ethofossil” preservation of feeding behavior. S. indicus lacks specializations of modern egg-eaters and of macrostomatans, and skull and vertebral synapomorphies place it in an intermediate position in snake phylogeny. Sanajeh and its large-bodied madtsoiid sister taxa Yurlunggur camfieldensis and Wonambi naracoortensis from the Neogene of Australia show specializations for intraoral prey transport but lack the adaptations for wide gape that characterize living macrostomatan snakes. The Dholi Dungri fossils are the second definitive association between sauropod eggs and embryonic or hatchling remains. New fossils from western India provide direct evidence of feeding ecology in a Mesozoic snake and demonstrate predation risks for hatchling sauropod dinosaurs. Our results suggest that large body size and jaw mobility afforded some non-macrostomatan snakes a greater diversity of prey

  20. Maturation experiments reveal bias in the fossil record of feathers

    NASA Astrophysics Data System (ADS)

    McNamara, Maria; Field, Daniel

    2016-04-01

    The evolutionary history of birds and feathers is a major focus in palaeobiology and evolutionary biology. Diverse exceptionally preserved birds and feathered dinosaurs from Jurassic and Cretaceous biotas in China have provided pivotal evidence of early feathers and feather-like integumentary features, but the true nature of many of these fossil soft tissues is still debated. Interpretations of feathers at intermediate developmental stages (i.e. Stages II, III and IV) and of simple quill-like (Stage I) feathers are particularly controversial. This reflects key uncertainties relating to the preservation potential of feathers at different evolutionary-developmental stages, and to the relative preservation potential of diagnostic features of Stage I feathers and hair. To resolve these issues, we used high pressure-high temperature autoclave experiments to simulate the effects of burial on modern feathers from the Black Coucal (Centropus grilii) and Common Starling (Sturnus vulgaris), and on human hair. Our results reveal profound differences in the recalcitrance of feathers of different types during maturation: Stage I and Stage V feathers retain diagnostic morphological and ultrastructural details following maturation, whereas other feather types do not. Further, the morphology and arrangement of certain ultrastructural features diagnostic of Stages III and IV, e.g. barbules, are preferentially lost during maturation. These results indicate a pervasive bias in the fossil record of feathers, whereby preservation of feathers at Stages I and V is favored. Critical stages in the evolution of feathers, i.e. Stages II, III and IV, are less likely to be preserved and more likely to be misinterpreted as feathers at earlier developmental stages. Our discovery has major implications for our understanding of the fidelity of the fossil record of feathers and provides a framework for testing the significance of putative examples of fossil feathers at different developmental

  1. Terrestrial Origin of Viviparity in Mesozoic Marine Reptiles Indicated by Early Triassic Embryonic Fossils

    PubMed Central

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction. PMID:24533127

  2. Organic molecules as chemical fossils - The molecular fossil record

    NASA Technical Reports Server (NTRS)

    Eglinton, G.

    1983-01-01

    The study of biochemical clues to the early earth and the origin of life is discussed. The methods used in such investigation are described, including the extraction, fractionation, and analysis of geolipids and the analysis of kerogen. The occurrence of molecular fossils in the geological record is examined, discussing proposed precursor-product relationships and the molecular assessment of deep sea sediments, ancient sediments, and crude petroleums. Alterations in the molecular record due to diagenesis and catagenesis are considered, and the use of microbial lipids as molecular fossils is discussed. The results of searches for molecular fossils in Precambrian sediments are assessed.

  3. Cretaceous origin of the unique prey-capture apparatus in mega-diverse genus: stem lineage of Steninae rove beetles discovered in Burmese amber

    PubMed Central

    Żyła, Dagmara; Yamamoto, Shûhei; Wolf-Schwenninger, Karin; Solodovnikov, Alexey

    2017-01-01

    Stenus is the largest genus of rove beetles and the second largest among animals. Its evolutionary success was associated with the adhesive labial prey-capture apparatus, a unique apomorphy of that genus. Definite Stenus with prey-capture apparatus are known from the Cenozoic fossils, while the age and early evolution of Steninae was hardly ever hypothesized. Our study of several Cretaceous Burmese amber inclusions revealed a stem lineage of Steninae that possibly possesses the Stenus-like prey-capture apparatus. Phylogenetic analysis of extinct and extant taxa of Steninae and putatively allied subfamilies of Staphylinidae with parsimony and Bayesian approaches resolved the Burmese amber lineage as a member of Steninae. It justified the description of a new extinct stenine genus Festenus with two new species, F. robustus and F. gracilis. The Late Cretaceous age of Festenus suggests an early origin of prey-capture apparatus in Steninae that, perhaps, drove the evolution towards the crown Stenus. Our analysis confirmed the well-established sister relationships between Steninae and Euaesthetinae and resolved Scydmaeninae as their next closest relative, the latter having no stable position in recent phylogenetic studies of rove beetles. Close affiliation of Megalopsidiinae, a subfamily often considered as a sister group to Euaesthetinae + Steninae clade, is rejected. PMID:28397786

  4. Late Jurassic-Early Cretaceous episodic development of the Bangong Meso-Tethyan subduction: Evidence from elemental and Sr-Nd isotopic geochemistry of arc magmatic rocks, Gaize region, central Tibet, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Xiu; Li, Zhi-Wu; Yang, Wen-Guang; Zhu, Li-Dong; Jin, Xin; Zhou, Xiao-Yao; Tao, Gang; Zhang, Kai-Jun

    2017-03-01

    The Bangong Meso-Tethys plays a critical role in the development of the Tethyan realm and the initial elevation of the Tibetan Plateau. However, its precise subduction polarity, and history still remain unclear. In this study, we synthesize a report for the Late Jurassic-Early Cretaceous two-phase magmatic rocks in the Gaize region at the southern margin of the Qiangtang block located in central Tibet. These rocks formed during the Late Jurassic-earliest Cretaceous (161-142 Ma) and Early Cretaceous (128-106 Ma), peaking at 146 Ma and 118 Ma, respectively. The presence of inherited zircons indicates that an Archean component exists in sediments in the shallow Qiangtang crust, and has a complex tectonomagmatic history. Geochemical and Sr-Nd isotopic data show that the two-phase magmatic rocks exhibit characteristics of arc magmatism, which are rich in large-ion incompatible elements (LIIEs), but are strongly depleted in high field strength elements (HFSEs). The Late Jurassic-earliest Cretaceous magmatic rocks mixed and mingled among mantle-derived mafic magmas, subduction-related sediments, or crustally-derived felsic melts and fluids, formed by a northward and steep subduction of the Bangong Meso-Tethys ocean crust. The magmatic gap at 142-128 Ma marks a flat subduction of the Meso-Tethys. The Early Cretaceous magmatism experienced a magma MASH (melting, assimilation, storage, and homogenization) process among mantle-derived mafic magmas, or crustally-derived felsic melts and fluids, as a result of the Meso-Tethys oceanic slab roll-back, which triggered simultaneous back-arc rifting along the southern Qiangtang block margin.

  5. Composition, Age, and Origin of Cretaceous Granitic Magmatism on the Eastern Chukchi Peninsula

    NASA Astrophysics Data System (ADS)

    Luchitskaya, M. V.; Sokolov, S. D.; Pease, V.; Miller, E.; Belyatsky, B. V.

    2018-05-01

    New geochronological and isotopic geochemical data are given, which make it possible to recognize two types of granitic rocks on the eastern Chukchi Peninsula. Early Cretaceous Tkachen and Dolina granitic plutons with zircon ages (U-Pb SIMS) of 119-122 and 131-136 Ma are related to the first type. They cut through Devonian-Lower Carboniferous basement rocks and are overlain by the Aptian-Albian Etelkuyum Formation. Basal units of the latter contain fragments of granitic rocks. Late Cretaceous Provideniya and Rumilet granitic plutons, which contain zircons with ages of 94 and 85 Ma (U-Pb SIMS), respectively, belong to the second type. They cut through volcanic-sedimentary rocks of the Etelkuyum and Leurvaam formations pertaining to the Okhotsk-Chukotka Volcanic Belt. In petrographic and geochemical features, the Early Cretaceous granitic rocks of the Tkachen Pluton are commensurable with I-type granites, while Late Cretaceous granite of the Rumilet Pluton is comparable to A2-type granite. The Sr-Nd isotopic data provide evidence that from the Early Cretaceous Tkachen and Dolina plutons to the Late Cretaceous Provideniya and Rumilet plutons, the degree of crustal assimilation of suprasubduction mantle-derived melts increases up to partial melting of heterogeneous continental crust enriched in rubidium. An unconformity and various degrees of secondary alteration of volcanic-sedimentary rocks have been established in the Okhotsk-Chukotka Volcanic Belt, and this was apparently caused by transition of the tectonic setting from suprasubduction to a transform margin with local extension.

  6. A new clade of Asian late Cretaceous long-snouted tyrannosaurids.

    PubMed

    Lü, Junchang; Yi, Laiping; Brusatte, Stephen L; Yang, Ling; Li, Hua; Chen, Liu

    2014-05-07

    The iconic tyrannosaurids were top predators in Asia and North America during the latest Cretaceous, and most species had deep skulls that allowed them to generate extreme bite forces. Two unusual specimens of Alioramus from Mongolia seem to indicate a divergent long-snouted body plan among some derived tyrannosaurids, but the rarity and juvenile nature of these fossils leaves many questions unanswered. Here, we describe a remarkable new species of long-snouted tyrannosaurid from the Maastrichtian of southeastern China, Qianzhousaurus sinensis. Phylogenetic analysis places Qianzhousaurus with both species of Alioramus in a novel longirostrine clade, which was geographically widespread across latest Cretaceous Asia and formed an important component of terrestrial ecosystems during this time. The new specimen is approximately twice the size as both Alioramus individuals, showing that the long-snouted morphology was not a transient juvenile condition of deep-snouted species, but a characteristic of a major tyrannosaurid subgroup.

  7. Late Cretaceous and early Tertiary plutonism and deformation in the Skagit Gneiss Complex, north Cascade Range, Washington and British Columbia

    USGS Publications Warehouse

    Haugerud, R.A.; Van Der Heyden, P.; Tabor, R.W.; Stacey, J.S.; Zartman, R.E.

    1991-01-01

    The Skagit Gneiss Complex forms a more-or-less continuous terrane within the North Cascade Range. The complex comprises abundant plutons intruded at mid-crustal depths into a variety of metamorphosed supracrustal rocks of both oceanic and volcanic-arc origin. U-Pb zircon ages from gneissis plutons within and near the Skagit Gneiss Complex indicate magmatic crystallziations between 75 and 60 Ma. Deformation, recrystallization, and migmatization in part postdate intrusion of the 75-60 Ma plutons. This latest Cretaceous and earliest Tertiary plutonism and migmatization may reflect thermal relaxation following early Late Cretaceous orogeny. The complex was ductilely extended northwest-southeast shortly after intrusion of granite dikes at ~45 Ma, but before emplacement of the earliest (~34 Ma) plutons of the Cascade arc. -from Authors

  8. Reinvestigating an enigmatic Late Cretaceous monocot: morphology, taxonomy, and biogeography of Viracarpon

    PubMed Central

    Manchester, Steven R.; Ramteke, Deepak; Villarraga-Gómez, Herminso

    2018-01-01

    Angiosperm-dominated floras of the Late Cretaceous are essential for understanding the evolutionary, ecological, and geographic radiation of flowering plants. The Late Cretaceous–early Paleogene Deccan Intertrappean Beds of India contain angiosperm-dominated plant fossil assemblages known from multiple localities in central India. Numerous monocots have been documented from these assemblages, providing a window into an important but poorly understood time in their diversification. One component of the Deccan monocot diversity is the genus Viracarpon, known from anatomically preserved infructescences. Viracarpon was first collected over a century ago and has been the subject of numerous studies. However, resolution of its three-dimensional (3D) morphology and anatomy, as well as its taxonomic affinities, has remained elusive. In this study we investigated the morphology and taxonomy of genus Viracarpon, combining traditional paleobotanical techniques and X-ray micro-computed tomography (μCT). Re-examination of type and figured specimens, 3D reconstructions of fruits, and characterization of structures in multiple planes of section using μCT data allowed us to resolve conflicting interpretations of fruit morphology and identify additional characters useful in refining potential taxonomic affinities. Among the four Viracarpon species previously recognized, we consider two to be valid (Viracarpon hexaspermum and Viracarpon elongatum), and the other two to be synonyms of these. Furthermore, we found that permineralized infructescences of Coahuilocarpon phytolaccoides from the late Campanian of Mexico correspond closely in morphology to V. hexaspermum. We argue that Viracarpon and Coahuilocarpon are congeneric and provide the new combination, Viracarpon phytolaccoides (Cevallos-Ferriz, Estrada-Ruiz & Perez-Hernandez) Matsunaga, S.Y. Smith, & Manchester comb. nov. The significant geographic disjunction between these two occurrences indicates that the genus Viracarpon

  9. Oxidation state inherited from the magma source and implications for mineralization: Late Jurassic to Early Cretaceous granitoids, Central Lhasa subterrane, Tibet

    NASA Astrophysics Data System (ADS)

    Cao, MingJian; Qin, KeZhang; Li, GuangMing; Evans, Noreen J.; McInnes, Brent I. A.; Li, JinXiang; Zhao, JunXing

    2018-03-01

    Arc magmas are more oxidized than mid-ocean ridge basalts; however, there is continuing debate as to whether this higher oxidation state is inherited from the source magma or developed during late-stage magmatic differentiation processes. Well-constrained Late Jurassic to Early Cretaceous arc-related intermediate to felsic rocks derived from distinct magma sources provide us with a good opportunity to resolve this enigma. A series of granitoids from the western Central Lhasa subterrane were analyzed for whole-rock magnetic susceptibility, Fe2O3/FeO ratios, and trace elements in zircon. Compared to Late Jurassic samples (1.8 ± 2.0 × 10-4 emu g-1 oe-1, Fe3+/Fetotal = 0.32 ± 0.07, zircon Ce4+/Ce3+* = 15.0 ± 13.4), Early Cretaceous rocks show higher whole-rock magnetic susceptibility (5.8 ± 2.5 × 10-4 emu g-1 oe-1), Fe3+/Fetotal ratios (0.43 ± 0.04), and zircon Ce4+/Ce3+* values (23.9 ± 22.3). In addition, positive correlations among whole-rock magnetic susceptibility, Fe3+/Fetotal ratios, and zircon Ce4+/Ce3+* reveal a slight increase in oxidation state from fO2 = QFM to NNO in the Late Jurassic to fO2 = ˜NNO in the Early Cretaceous. Obvious linear correlation between oxidation indices (whole-rock magnetic susceptibility, zircon Ce4+/Ce3+*) and source signatures (zircon ɛHf(t), TDM C ages) indicates that the oxidation state was predominantly inherited from the source with only a minor contribution from magmatic differentiation. Thus, the sources for both the Late Jurassic and Early Cretaceous rocks were probably influenced by mantle wedge-derived magma, contributing to the increased fO2. Compared to ore-forming rocks at giant porphyry Cu deposits, the relatively low oxidation state (QFM to NNO) and negative ɛHf(t) (-16 to 0) of the studied granitoids implies relative infertility. However, this study demonstrates two potential fast and effective indices ( fO2 and ɛHf(t)) to evaluate the fertility of granitoids for porphyry-style mineralization. In an

  10. Vertebrate paleontological exploration of the Upper Cretaceous succession in the Dakhla and Kharga Oases, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Sallam, Hesham M.; O'Connor, Patrick M.; Kora, Mahmoud; Sertich, Joseph J. W.; Seiffert, Erik R.; Faris, Mahmoud; Ouda, Khaled; El-Dawoudi, Iman; Saber, Sara; El-Sayed, Sanaa

    2016-05-01

    The Campanian and Maastrichtian stages are very poorly documented time intervals in Africa's record of terrestrial vertebrate evolution. Upper Cretaceous deposits exposed in southern Egypt, near the Dakhla and Kharga Oases in the Western Desert, preserve abundant vertebrate fossils in nearshore marine environments, but have not yet been the focus of intensive collection and description. Our recent paleontological work in these areas has resulted in the discovery of numerous new vertebrate fossil-bearing localities within the middle Campanian Qusier Formation and the upper Campanian-lower Maastrichtian Duwi Formation. Fossil remains recovered from the Campanian-aged Quseir Formation include sharks, rays, actinopterygian and sarcopterygian fishes, turtles, and rare terrestrial archosaurians, including some of the only dinosaurs known from this interval on continental Africa. The upper Campanian/lower Maastrichtian Duwi Formation preserves sharks, sawfish, actinopterygians, and marine reptiles (mosasaurs and plesiosaurs). Notably absent from these collections are representatives of Mammalia and Avialae, both of which remain effectively undocumented in the Upper Cretaceous rocks of Africa and Arabia. New age constraints on the examined rock units is provided by 23 nannofossil taxa, some of which are reported from the Duwi Formation for the first time. Fossil discoveries from rock units of this age are essential for characterizing the degree of endemism that may have developed as the continent became increasingly tectonically isolated from the rest of Gondwana, not to mention for fully evaluating origin and diversification hypotheses of major modern groups of vertebrates (e.g., crown birds, placental mammals).

  11. New type of kinematic indicator in bed-parallel veins, Late Jurassic-Early Cretaceous Vaca Muerta Formation, Argentina: E-W shortening during Late Cretaceous vein opening

    NASA Astrophysics Data System (ADS)

    Ukar, Estibalitz; Lopez, Ramiro G.; Gale, Julia F. W.; Laubach, Stephen E.; Manceda, Rene

    2017-11-01

    In the Late Jurassic-Early Cretaceous Vaca Muerta Formation, previously unrecognized yet abundant structures constituting a new category of kinematic indicator occur within bed-parallel fibrous calcite veins (BPVs) in shale. Domal shapes result from localized shortening and thickening of BPVs and the intercalation of centimeter-thick, host-rock shale inclusions within fibrous calcite beef, forming thrust fault-bounded pop-up structures. Ellipsoidal and rounded structures show consistent orientations, lineaments of interlayered shale and fibrous calcite, and local centimeter-scale offset thrust faults that at least in some cases cut across the median line of the BPV and indicate E-W shortening. Continuity of crystal fibers shows the domal structures are contemporaneous with BPV formation and help establish timing of fibrous vein growth in the Late Cretaceous, when shortening directions were oriented E-W. Differences in the number of opening stages and the deformational style of the different BPVs indicate they may have opened at different times. The new domal kinematic indicators described in this study are small enough to be captured in core. When present in the subsurface, domal structures can be used to either infer paleostress orientation during the formation of BPVs or to orient core in cases where the paleostress is independently known.

  12. Tectonic setting of Cretaceous basins on the NE Tibetan Plateau: Insights from the Jungong basin

    USGS Publications Warehouse

    Craddock, W.H.; Kirby, E.; Dewen, Z.; Jianhui, L.

    2012-01-01

    Quantifying the Cenozoic growth of high topography in the Indo-Asian collision zone remains challenging, due in part to significant shortening that occurred within Eurasia before collision. A growing body of evidence suggests that regions far removed from the suture zone experienced deformation before and during the early phases of Himalayan orogenesis. In the present-day north-eastern Tibetan Plateau, widespread deposits of Cretaceous sediment attest to significant basin formation; however, the tectonic setting of these basins remains enigmatic. We present a study of a regionally extensive network of sedimentary basins that are spatially associated with a system of SE-vergent thrust faults and are now exposed in the high ranges of the north-eastern corner of the Tibetan Plateau. We focus on a particularly well-exposed basin, located ~20km north of the Kunlun fault in the Anyemaqen Shan. The basin is filled by ~900m of alluvial sediments that become finer-grained away from the basin-bounding fault. Additionally, beds in the proximal footwall of the basin-bounding fault exhibit progressive, up-section shallowing and several intraformational unconformities which can be traced into correlative conformities in the distal part of the basin. The observations show sediment accumulated in the basin during fault motion. Regional constraints on the timing of sediment deposition are provided by both fossil assemblages from the Early Cretaceous, and by K-Ar dating of volcanic rocks that floor and cross-cut sedimentary fill. We argue that during the Cretaceous, the interior NE Tibetan Plateau experienced NW-SE contractional deformation similar to that documented throughout the Qinling-Dabie orogen to the east. The Songpan-Ganzi terrane apparently marked the southern limit of this deformation, such that it may have been a relatively rigid block in the Tibetan lithosphere, separating regions experiencing deformation north of the convergent Tethyan margin from regions deforming

  13. Lead isotope compositions of Late Cretaceous and early Tertiary igneous rocks and sulfide minerals in Arizona: Implications for the sources of plutons and metals in porphyry copper deposits

    USGS Publications Warehouse

    Bouse, R.M.; Ruiz, J.; Titley, S.R.; Tosdal, R.M.; Wooden, J.L.

    1999-01-01

    Porphyry copper deposits in Arizona are genetically associated with Late Cretaceous and early Tertiary igneous complexes that consist of older intermediate volcanic rocks and younger intermediate to felsic intrusions. The igneous complexes and their associated porphyry copper deposits were emplaced into an Early Proterozoic basement characterized by different rocks, geologic histories, and isotopic compositions. Lead isotope compositions of the Proterozoic basement rocks define, from northwest to southeast, the Mojave, central Arizona, and southeastern Arizona provinces. Porphyry copper deposits are present in each Pb isotope province. Lead isotope compositions of Late Cretaceous and early Tertiary plutons, together with those of sulfide minerals in porphyry copper deposits and of Proterozoic country rocks, place important constraints on genesis of the magmatic suites and the porphyry copper deposits themselves. The range of age-corrected Pb isotope compositions of plutons in 12 Late Cretaceous and early Tertiary igneous complexes is 206Pb/204Pb = 17.34 to 22.66, 207Pb/204Pb = 15.43 to 15.96, and 208Pb/204Pb = 37.19 to 40.33. These Pb isotope compositions and calculated model Th/U are similar to those of the Proterozoic rocks in which the plutons were emplaced, thereby indicating that Pb in the younger rocks and ore deposits was inherited from the basement rocks and their sources. No Pb isotope differences distinguish Late Cretaceous and early Tertiary igneous complexes that contain large economic porphyry copper deposits from less rich or smaller deposits that have not been considered economic for mining. Lead isotope compositions of Late Cretaceous and early Tertiary plutons and sulfide minerals from 30 metallic mineral districts, furthermore, require that the southeastern Arizona Pb province be divided into two subprovinces. The northern subprovince has generally lower 206Pb/204Pb and higher model Th/U, and the southern subprovince has higher 206Pb/204Pb and

  14. Cretaceous gastropods: contrasts between tethys and the temperate provinces.

    USGS Publications Warehouse

    Sohl, N.F.

    1987-01-01

    During the Cretaceous Period, gastropod faunas show considerable differences in their evolution between the Tethyan Realm (tropical) and the Temperate Realms to the north and south. Like Holocene faunas, prosobranch, gastropods constitute the dominant part of Cretaceous marine snail faunas. Entomotaeneata and opisthobranchs usually form all of the remainder. In Tethyan faunas the Archaeogastropoda form a consistent high proportion of total taxa but less than the Mesogastropoda throughout the period. In contrast, the Temperate faunas beginning in Albian times show a decline in percentages of archaeogastropod taxa and a significant increase in the Neogastropoda, until they constitute over 50 percent of the taxa in some faunas. The neogastropods never attain high diversity in the Cretaceous of the Tethyan Realm and are judged to be of Temperate Realm origin. Cretaceous Tethyan gastropod faunas are closely allied to those of the 'corallien facies' of the Jurassic and begin the period evolutionarily mature and well diversified. Three categories of Tethyan gastropods are analyzed. The first group consists of those of Jurassic ancestry. The second group orginates mainly during the Barremian and Aptian, reaches a climax in diversification during middle Cretaceous time, and usually declines during the latest Cretaceous. The third group originates late in the Cretaceous and consists of taxa that manage to either survive the Cretaceous-Tertiary crisis or give rise to forms of prominence among Tertiary warm water faunas. Temperate Realm gastropod faunas are less diverse than those of Tethys during the Early Cretaceous. They show a steady increase in diversity, primarily among the Mesogastropoda and Neogastropoda. This trend culminates in latest Cretaceous times when the gastropod assemblages of the clastic provinces of the inner shelf contain an abundance of taxa outstripping that of any other part of the Cretaceous of either realm. Extinction at the Cretaceous

  15. Plesiosaur-bearing rocks from the Late Cretaceous Tahora Fm, Mangahouanga, New Zealand - a palaeoenvironmental study

    NASA Astrophysics Data System (ADS)

    Vajda, Vivi; Raine, J. Ian

    2010-05-01

    Mangahouanga Stream, Hawkes Bay, New Zealand is world-famous for its high southern latitude vertebrate fossils including plesiosaurs, mosasaurs and more rarely, dinosaurs. The fossils are preserved in the conglomeratic facies of the Maungataniwha Sandstone Member of the Tahora Formation. A palynological investigation of sediments from the boulders hosting vertebrate fossils reveals well-preserved palynological assemblages dominated by pollen and spores from land plants but also including marine dinoflagellate cysts in one sample. The palynofacies is strongly dominated by wood fragments including charcoal, and the sample taken from a boulder hosting plesiosaur vertebrae is entirely terrestrially derived, suggesting a fresh-water habitat for at least some of these plesiosaurs. The key-pollen taxa Nothofagidites senectus and Tricolpites lilliei, together with the dinocyst Isabelidinium pellucidum and the megaspore Grapnelispora evansii, strongly indicate an early Maastrichtian age for the host rock. The terrestrial palynoflora reflects a mixed vegetation dominated by podocarp conifers and angiosperms with a significant tree-fern subcanopy component. The presence of taxa with modern temperate distributions such as Nothofagus (southern beech), Proteaceae and Cyatheaceae (tree-ferns), indicates a mild-temperate climate and lack of severe winter freezing during the latest Cretaceous, providing an ecosystem which most probably made it possible for polar dinosaurs to overwinter. The paper is dedicated to Mrs Joan Wiffen who with her great persistence, enthusiasm and courage put Mangahouanga on the world map, becoming a role model for many young scientists.

  16. Crustaceans from bitumen clast in Carboniferous glacial diamictite extend fossil record of copepods.

    PubMed

    Selden, Paul A; Huys, Rony; Stephenson, Michael H; Heward, Alan P; Taylor, Paul N

    2010-08-10

    Copepod crustaceans are extremely abundant but, because of their small size and fragility, they fossilize poorly. Their fossil record consists of one Cretaceous (c. 115 Ma) parasite and a few Miocene (c. 14 Ma) fossils. In this paper, we describe abundant crustacean fragments, including copepods, from a single bitumen clast in a glacial diamictite of late Carboniferous age (c. 303 Ma) from eastern Oman. Geochemistry identifies the source of the bitumen as an oilfield some 100-300 km to the southwest, which is consistent with an ice flow direction from glacial striae. The bitumen likely originated as an oil seep into a subglacial lake. This find extends the fossil record of copepods by some 188 Ma, and of free-living forms by 289 Ma. The copepods include evidence of the extant family Canthocamptidae, believed to have colonized fresh water in Pangaea during Carboniferous times.

  17. Early and middle(?) Cambrian metazoan and protistan fossils from West Africa

    USGS Publications Warehouse

    Culver, S.J.; Repetski, J.E.; Pojeta, J.; Hunt, D.

    1996-01-01

    Supposed Upper Proterozoic strata in the southwest Taoudeni Basin, Guinea and Senegal, and from the Mauritanide fold belt, Mauritania, have yielded mostly poorly preserved small skeletal fossils of metazoan and protistan origin. Problematic, but possible echinoderm material and spicules of the heteractinid sponge Eiffelia dominate the Taoudeni Basin assemblage. The age of the material is not certain but the paleontologic data suggest an Early Cambrian age for the stratigraphically lowest faunas, and a Middle Cambrian age is possible for the stratigraphically highest collections.

  18. Cerium anomaly at microscale in fossils.

    PubMed

    Gueriau, Pierre; Mocuta, Cristian; Bertrand, Loïc

    2015-09-01

    Patterns in rare earth element (REE) concentrations are essential instruments to assess geochemical processes in Earth and environmental sciences. Excursions in the "cerium anomaly" are widely used to inform on past redox conditions in sediments. This proxy resources to the specificity of cerium to adopt both the +III and +IV oxidation states, while most rare earths are purely trivalent and share very similar reactivity and transport properties. In practical terms, the level of cerium anomaly is established through elemental point quantification and profiling. All these models rely on a supposed homogeneity of the cerium oxidation state within the samples. However, this has never been demonstrated, whereas the cerium concentration can significantly vary within a sample, as shown for fossils, which would vastly complicate interpretation of REE patterns. Here, we report direct micrometric mapping of Ce speciation through synchrotron X-ray absorption spectroscopy and production of local rare earth patterns in paleontological fossil tissues through X-ray fluorescence mapping. The sensitivity of the approach is demonstrated on well-preserved fishes and crustaceans from the Late Cretaceous (ca. 95 million years (Myr) old). The presence of Ce under the +IV form within the fossil tissues is attributed to slightly oxidative local conditions of burial and agrees well with the limited negative cerium anomaly observed in REE patterns. The [Ce(IV)]/[Ce(tot)] ratio appears remarkably stable at the microscale within each fossil and is similar between fossils from the locality. Speciation maps were obtained from an original combination of synchrotron microbeam X-ray fluorescence, absorption spectroscopy, and diffraction, together with light and electron microscopy. This work also highlights the need for more systematic studies of cerium geochemistry at the microscale in paleontological contexts, in particular across fossil histologies.

  19. Fossil Scenedesmus (Chlorococcales) from the Raton Formation, Colorado and New Mexico, U.S.A.

    USGS Publications Warehouse

    Farley, Fleming R.

    1989-01-01

    Fossilized coenobia of the alga Scenedesmus (Chlorococcales) were recovered in palynomorph assemblages from a lower Paleocene mudstone in the Upper Cretaceous and Paleocene Raton Formation of Colorado and New Mexico. This is the first description of fossil Scenedesmus from Tertiary rocks. Two species, Scenedesmus tschudyi sp. nov. and Scenedesmus hanleyi sp. nov., are present in the assemblages. Coenobia of S. tschudyi sp. nov. are characterized by lunate terminal cells and fusiform median cells. As in species of modern Scenedesmus, coenobia of S. tschudyi sp. nov. occur with four or eight cells. Coenobia of S. hanleyi sp. nov. have four oval cells and are smaller than coenobia of S. tschudyi sp. nov. Fossil coenobia of Scenedesmus co-occur with the fossil alga Pediastrum in Raton Formation mudstones. Because these genera co-occur in modern lakes and ponds, the co-occurrence of fossil Scenedesmus and Pediastrum in ancient nonmarine rocks is interpreted to indicate deposition of sediment in freshwater lakes and ponds. ?? 1989.

  20. Palaeomagnetic time and space constraints of the Early Cretaceous Rhenodanubian Flysch zone (Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Dallanave, Edoardo; Kirscher, Uwe; Hauck, Jürgen; Hesse, Reinhard; Bachtadse, Valerian; Wortmann, Ulrich Georg

    2018-06-01

    The Rhenodanubian Flysch zone (RDF) is a Lower Cretaceous-lower Palaeocene turbidite succession extending for ˜500 km from the Danube at Vienna to the Rhine Valley (Eastern Alps). It consists of calcareous and siliciclastic turbidite systems deposited in a trench abyssal plain. The age of deposition has been estimated through micropalaeontologic dating. However, palaeomagnetic studies constraining the age and the palaeolatitude of deposition of the RDF are still missing. Here, we present palaeomagnetic data from the Early Cretaceous Tristel and Rehbreingraben Formations of the RDF from two localities in the Bavarian Alps (Rehbrein Creek and Lainbach Valley, southern Germany), and from the stratigraphic equivalent of the Falknis Nappe (Liechtenstein). The quality of the palaeomagnetic signal has been assessed by either fold test (FT) or reversal test (RT). Sediments from the Falknis Nappe are characterized by a pervasive syntectonic magnetic overprint as tested by negative FT, and are thus excluded from the study. The sediments of the Rehbreingraben Formation at Rehbrein Creek, with positive RT, straddle magnetic polarity Chron M0r and the younger M΄-1r΄ reverse event, with an age of ˜127-123 Ma (late Barremian-early Aptian). At Lainbach Valley, no polarity reversals have been observed, but a positive FT gives confidence on the reliability of the data. The primary palaeomagnetic directions, after correction for inclination shallowing, allow to precisely constrain the depositional palaeolatitude of the Tristel and Rehbreingraben Formations around ˜28°N. In a palaeogeographic reconstruction of the Alpine Tethys at the Barremian/Aptian boundary, the RDF is located on the western margin of the Briançonnais terrain, which was separated from the European continent by the narrow Valais Ocean.

  1. The first Loranthaceae fossils from Africa

    PubMed Central

    2018-01-01

    Abstract An ongoing re-investigation of the early Miocene Saldanha Bay (South Africa) palynoflora, using combined light and scanning electron microscopy (single grain method), is revealing several pollen types new to the African fossil record. One of the elements identified is Loranthaceae pollen. These grains represent the first and only fossil record of Loranthaceae in Africa. The fossil pollen grains resemble those produced by the core Lorantheae and are comparable to recent Asian as well as some African taxa/lineages. Molecular and fossil signals indicate that Loranthaceae dispersed into Africa via Asia sometime during the Eocene. The present host range of African Loranthaceae and the composition of the palynoflora suggest that the fossil had a range of potential host taxa to parasitise during the early Miocene in the Saldanha Bay region. PMID:29780299

  2. Lower Cretaceous smarl turbidites of the Argo Abyssal Plain, Indian Ocean

    USGS Publications Warehouse

    Dumoulin, Julie A.; Stewart, Sondra K.; Kennett, Diana; Mazzullo, Elsa K.

    1992-01-01

    Sediments recovered during Ocean Drilling Program (ODP) Leg 123 from the Argo Abyssal Plain (AAP) consist largely of turbidites derived from the adjacent Australian continental margin. The oldest abundant turbidites are Valanginian-Aptian in age and have a mixed (smarl) composition; they contain subequal amounts of calcareous and siliceous biogenic components, as well as clay and lesser quartz. Most are thin-bedded, fine sand to mud-sized, and best described by Stow and Piper's model (1984) for fine-grained biogenic turbidites. Thicker (to 3 m), coarser-grained (medium-to-coarse sand-sized) turbidites fit Bouma's model (1962) for sandy turbidites; these generally are base-cut-out (BCDE, BDE) sequences, with B-division parallel lamination as the dominant structure. Parallel laminae most commonly concentrate quartz and/or calcispheres vs. lithic clasts or clay, but distinctive millimeter to centimeter-thick, radiolarian-rich laminae occur in both fine and coarse-grained Valanginian-Hauterivian turbidites.AAP turbidites were derived from relatively deep parts of the continental margin (outer shelf, slope, or rise) that lay below the photic zone, but above the calcite compensation depth (CCD). Biogenic components are largely pelagic (calcispheres, foraminifers, radiolarians, nannofossils); lesser benthic foraminifers are characteristic of deep-water (abyssal to bathyal) environments. Abundant nonbiogenic components are mostly clay and clay clasts; smectite is the dominant clay species, and indicates a volcanogenic provenance, most likely the Triassic-Jurassic volcanic suite exposed along the northern Exmouth Plateau.Lower Cretaceous smarl turbidites were generated during eustatic lowstands and may have reached the abyssal plain via Swan Canyon, a submarine canyon thought to have formed during the Late Jurassic. In contrast to younger AAP turbidites, however, Lower Cretaceous turbidites are relatively fine-grained and do not contain notably older reworked fossils. Early

  3. High Arctic paleoenvironmental and Paleoclimatic changes in the Mid-Cretaceous

    NASA Astrophysics Data System (ADS)

    Herrle, Jens; Schröder-Adams, Claudia; Selby, David; Du Vivier, Alice; Flögel, Sascha; McAnena, Alison; Davis, William; Pugh, Adam; Galloway, Jennifer; Hofmann, Peter; Wagner, Thomas

    2014-05-01

    the OAE2 period which shades a new light on temperature gradients during different climate states of the Cretaceous. In contrast, to the Late Cenomanian to Early Turonian the distinct occurrence of several widespread glendonite beds in the Late Aptian to Early Albian support cool bottom waters of about 0°C in the Arctic Sverdrup Basin, consistent with much lower TEX86-SST ~28°C, McAnena et al., 2013) and bottom water temperatures (6°C, Huber et al., 2011) in the low latitude North Atlantic. This supports the global character of the proposed Late Aptian cold snap (Kemper, 1987; Herrle & Mutterlose, 2003; Mutterlose et al. 2009; McAnena et al. 2013) and perhaps a northern hemisphere high-latitude intermediate bottom water source. References Du Vivier, A.C.D., Selby, D., Sageman, B.B., Jarvis, I., Gröcke, D.R., Voigt, S., 2014. Marine 187Os/188Os isotope stratigraphy reveals the interaction of volcanism and ocean circulation during Oceanic Anoxic Event 2. EPSL 389, 23-33. Föllmi, K.B., 2012. Early Cretaceous life, climate and anoxia. Cretaceous Research 35, 230-257. Hay, W.W., 2008. Evolving ideas about the Cretaceous climate and ocean circulation. Cretaceous Research 29, 725-753. Hay, W.W., 2011. Can humans force a return to a "Cretaceous" climate? Sedimentary Geology 235, 5-26. Herrle, J.O. , Mutterlose, J., 2003. Calcareous nannofossils from the Aptian - early Albian of SE France: Paleoecological and biostratigraphic implications. Cretaceous Research 24, 1-22. Huber, B.T., MacLeod, K.G., Gröcke, D.R., Kucera, M., 2011. Paleotemperature and paleosalinity inferences and chemostratigraphy across the Aptian/Albian boundary in the subtropical North Atlantic. Paleoceanography 26, PA4221 doi:10.1029/2011PA002178. McAnena, A., Flögel, S., Hofmann, P., Herrle, J.O., Griesand, A., Pross, J., Talbot, H.M., Rethemeyer, J., Wallmann, K., Wagner, T., 2013. Atlantic cooling associated with a marine biotic crisis during the mid-Cretaceous period. Nature Geoscience 6, 558

  4. Spider crabs of the Western Atlantic with special reference to fossil and some modern Mithracidae

    PubMed Central

    Portell, Roger W.; Klier, Aaron T.; Prueter, Vanessa; Tucker, Alyssa L.

    2015-01-01

    Spider crabs (Majoidea) are well-known from modern oceans and are also common in the western part of the Atlantic Ocean. When spider crabs appeared in the Western Atlantic in deep time, and when they became diverse, hinges on their fossil record. By reviewing their fossil record, we show that (1) spider crabs first appeared in the Western Atlantic in the Late Cretaceous, (2) they became common since the Miocene, and (3) most species and genera are found in the Caribbean region from the Miocene onwards. Furthermore, taxonomic work on some modern and fossil Mithracidae, a family that might have originated in the Western Atlantic, was conducted. Specifically, Maguimithrax gen. nov. is erected to accommodate the extant species Damithrax spinosissimus, while Damithrax cf. pleuracanthus is recognized for the first time from the fossil record (late Pliocene–early Pleistocene, Florida, USA). Furthermore, two new species are described from the lower Miocene coral-associated limestones of Jamaica (Mithrax arawakum sp. nov. and Nemausa windsorae sp. nov.). Spurred by a recent revision of the subfamily, two known species from the same deposits are refigured and transferred to new genera: Mithrax donovani to Nemausa, and Mithrax unguis to Damithrax. The diverse assemblage of decapods from these coral-associated limestones underlines the importance of reefs for the abundance and diversity of decapods in deep time. Finally, we quantitatively show that these crabs possess allometric growth in that length/width ratios drop as specimens grow, a factor that is not always taken into account while describing and comparing among taxa. PMID:26557432

  5. Early cretaceous platform-margin configuration and evolution in the central Oman mountains, Arabian peninsula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, B.R.; Smewing, J.D.

    1993-02-01

    The Hajar Supergroup (Middle Permian-Lower Cretaceous) of northeastern Oman records rifting and development of a passive margin along the edge of the Arabian platform facing Neo-Tethys. The Jurassic and Lower Cretaceous part, comprising the Sahtan, Kahmah, and Wasia groups, was deposited during the maximum extent of the broad epicontinental sea landward of this margin. These limestone units reach a total of 1500 m in thickness and correlate with the hydrocarbon reservoirs of the Arabian Peninsula. The trace of the Jurassic and Cretaceous margin in northeastern Oman followed a zigzag series of rift segments, resulting in promontories and reentrants that changedmore » in position through time in response to the configuration and differential motion of underlying rift blocks. Synsedimentary normal faulting occurred locally in the Middle Jurassic, whereas in the Late Jurassic, the margin was eroded from variable uplift of up to 300 m before subsiding to below storm wave base. This uplift may have been caused by compression from oceanic crust that obducted along the southeastern side of the platform. The Lower Cretaceous succession in the central Oman Mountains and adjacent subsurface began with regional drowning around the Jurassic-Cretaceous boundary. The succession in the east (Saih Hatat) records a single regressive sequence, ending in the progradation of the shallow-water carbonate platform by the Cenomanian. However, the succession in the west (Jebel Akhdar and interior) is dominated by shallow-water carbonate facies, but punctuated by a second regional drowning in the late Aptian. A third, Late Cretaceous drowning terminated deposition of the Wasia Group in the Turonian and was caused by convergence of oceanic crust and foreland basic formation. The record of tectonic behavior of carbonate platforms has important implications for the development of hydrocarbon source rocks and porosity. 68 refs., 11 figs., 1 tab.« less

  6. Aluminum-26 in the early solar system - Fossil or fuel

    NASA Technical Reports Server (NTRS)

    Lee, T.; Papanastassiou, D. A.; Wasserburg, G. J.

    1977-01-01

    The isotopic composition of Mg was measured in different phases of a Ca-Al-rich inclusion in the Allende meteorite. Large excesses of Mg-26 of up to 10% were found. These excesses correlate strictly with the Al-27/Mg-24 ratio for four coexisting phases with distinctive chemical compositions. Models of in situ decay of Al-26 within the solar system and of mixing of interstellar dust grains containing fossil Al-26 with normal solar system material are presented. The observed correlation provides definitive evidence for the presence of Al-26 in the early solar system. This requires either injection of freshly synthesized nucleosynthetic material into the solar system immediately before condensation and planet formation, or local production within the solar system by intense activity of the early sun. Planets promptly produced from material with the inferred Al-26/Al-27 would melt within about 300,000 years.

  7. Early Eocene fossils suggest that the mammalian order Perissodactyla originated in India.

    PubMed

    Rose, Kenneth D; Holbrook, Luke T; Rana, Rajendra S; Kumar, Kishor; Jones, Katrina E; Ahrens, Heather E; Missiaen, Pieter; Sahni, Ashok; Smith, Thierry

    2014-11-20

    Cambaytheres (Cambaytherium, Nakusia and Kalitherium) are recently discovered early Eocene placental mammals from the Indo-Pakistan region. They have been assigned to either Perissodactyla (the clade including horses, tapirs and rhinos, which is a member of the superorder Laurasiatheria) or Anthracobunidae, an obscure family that has been variously considered artiodactyls or perissodactyls, but most recently placed at the base of Proboscidea or of Tethytheria (Proboscidea+Sirenia, superorder Afrotheria). Here we report new dental, cranial and postcranial fossils of Cambaytherium, from the Cambay Shale Formation, Gujarat, India (~54.5 Myr). These fossils demonstrate that cambaytheres occupy a pivotal position as the sister taxon of Perissodactyla, thereby providing insight on the phylogenetic and biogeographic origin of Perissodactyla. The presence of the sister group of perissodactyls in western India near or before the time of collision suggests that Perissodactyla may have originated on the Indian Plate during its final drift toward Asia.

  8. Giving the early fossil record of sponges a squeeze.

    PubMed

    Antcliffe, Jonathan B; Callow, Richard H T; Brasier, Martin D

    2014-11-01

    Twenty candidate fossils with claim to be the oldest representative of the Phylum Porifera have been re-analysed. Three criteria are used to assess each candidate: (i) the diagnostic criteria needed to categorize sponges in the fossil record; (ii) the presence, or absence, of such diagnostic features in the putative poriferan fossils; and (iii) the age constraints for the candidate fossils. All three criteria are critical to the correct interpretation of any fossil and its placement within an evolutionary context. Our analysis shows that no Precambrian fossil candidate yet satisfies all three of these criteria to be a reliable sponge fossil. The oldest widely accepted candidate, Mongolian silica hexacts from c. 545 million years ago (Ma), are here shown to be cruciform arsenopyrite crystals. The oldest reliable sponge remains are siliceous spicules from the basal Cambrian (Protohertzina anabarica Zone) Soltanieh Formation, Iran, which are described and analysed here in detail for the first time. Extensive archaeocyathan sponge reefs emerge and radiate as late as the middle of the Fortunian Stage of the Cambrian and demonstrate a gradual assembly of their skeletal structure through this time coincident with the evolution of other metazoan groups. Since the Porifera are basal in the Metazoa, their presence within the late Proterozoic has been widely anticipated. Molecular clock calibration for the earliest Porifera and Metazoa should now be based on the Iranian hexactinellid material dated to c. 535 Ma. The earliest convincing fossil sponge remains appeared at around the time of the Precambrian-Cambrian boundary, associated with the great radiation events of that interval. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  9. Insect-damaged fossil leaves record food web response to ancient climate change and extinction.

    PubMed

    Wilf, P

    2008-01-01

    Plants and herbivorous insects have dominated terrestrial ecosystems for over 300 million years. Uniquely in the fossil record, foliage with well-preserved insect damage offers abundant and diverse information both about producers and about ecological and sometimes taxonomic groups of consumers. These data are ideally suited to investigate food web response to environmental perturbations, and they represent an invaluable deep-time complement to neoecological studies of global change. Correlations between feeding diversity and temperature, between herbivory and leaf traits that are modulated by climate, and between insect diversity and plant diversity can all be investigated in deep time. To illustrate, I emphasize recent work on the time interval from the latest Cretaceous through the middle Eocene (67-47 million years ago (Ma)), including two significant events that affected life: the end-Cretaceous mass extinction (65.5 Ma) and its ensuing recovery; and globally warming temperatures across the Paleocene-Eocene boundary (55.8 Ma). Climatic effects predicted from neoecology generally hold true in these deep-time settings. Rising temperature is associated with increased herbivory in multiple studies, a result with major predictive importance for current global warming. Diverse floras are usually associated with diverse insect damage; however, recovery from the end-Cretaceous extinction reveals uncorrelated plant and insect diversity as food webs rebuilt chaotically from a drastically simplified state. Calibration studies from living forests are needed to improve interpretation of the fossil data.

  10. The first reported ceratopsid dinosaur from eastern North America (Owl Creek Formation, Upper Cretaceous, Mississippi, USA)

    PubMed Central

    2017-01-01

    Ceratopsids (“horned dinosaurs”) are known from western North America and Asia, a distribution reflecting an inferred subaerial link between the two landmasses during the Late Cretaceous. However, this clade was previously unknown from eastern North America, presumably due to limited outcrop of the appropriate age and depositional environment as well as the separation of eastern and western North America by the Western Interior Seaway during much of the Late Cretaceous. A dentary tooth from the Owl Creek Formation (late Maastrichtian) of Union County, Mississippi, represents the first reported occurrence of Ceratopsidae from eastern North America. This tooth shows a combination of features typical of Ceratopsidae, including a double root and a prominent, blade-like carina. Based on the age of the fossil, we hypothesize that it is consistent with a dispersal of ceratopsids into eastern North America during the very latest Cretaceous, presumably after the two halves of North America were reunited following the retreat of the Western Interior Seaway. PMID:28560100

  11. The first reported ceratopsid dinosaur from eastern North America (Owl Creek Formation, Upper Cretaceous, Mississippi, USA).

    PubMed

    Farke, Andrew A; Phillips, George E

    2017-01-01

    Ceratopsids ("horned dinosaurs") are known from western North America and Asia, a distribution reflecting an inferred subaerial link between the two landmasses during the Late Cretaceous. However, this clade was previously unknown from eastern North America, presumably due to limited outcrop of the appropriate age and depositional environment as well as the separation of eastern and western North America by the Western Interior Seaway during much of the Late Cretaceous. A dentary tooth from the Owl Creek Formation (late Maastrichtian) of Union County, Mississippi, represents the first reported occurrence of Ceratopsidae from eastern North America. This tooth shows a combination of features typical of Ceratopsidae, including a double root and a prominent, blade-like carina. Based on the age of the fossil, we hypothesize that it is consistent with a dispersal of ceratopsids into eastern North America during the very latest Cretaceous, presumably after the two halves of North America were reunited following the retreat of the Western Interior Seaway.

  12. A molecular genetic time scale demonstrates Cretaceous origins and multiple diversification rate shifts within the order Galliformes (Aves).

    PubMed

    Stein, R Will; Brown, Joseph W; Mooers, Arne Ø

    2015-11-01

    The phylogeny of Galliformes (landfowl) has been studied extensively; however, the associated chronologies have been criticized recently due to misplaced or misidentified fossil calibrations. As a consequence, it is unclear whether any crown-group lineages arose in the Cretaceous and survived the Cretaceous-Paleogene (K-Pg; 65.5 Ma) mass extinction. Using Bayesian phylogenetic inference on an alignment spanning 14,539 bp of mitochondrial and nuclear DNA sequence data, four fossil calibrations, and a combination of uncorrelated lognormally distributed relaxed-clock and strict-clock models, we inferred a time-calibrated molecular phylogeny for 225 of the 291 extant Galliform taxa. These analyses suggest that crown Galliformes diversified in the Cretaceous and that three-stem lineages survived the K-Pg mass extinction. Ideally, characterizing the tempo and mode of diversification involves a taxonomically complete phylogenetic hypothesis. We used simple constraint structures to incorporate 66 data-deficient taxa and inferred the first taxon-complete phylogenetic hypothesis for the Galliformes. Diversification analyses conducted on 10,000 timetrees sampled from the posterior distribution of candidate trees show that the evolutionary history of the Galliformes is best explained by a rate-shift model including 1-3 clade-specific increases in diversification rate. We further show that the tempo and mode of diversification in the Galliformes conforms to a three-pulse model, with three-stem lineages arising in the Cretaceous and inter and intrafamilial diversification occurring after the K-Pg mass extinction, in the Paleocene-Eocene (65.5-33.9 Ma) or in association with the Eocene-Oligocene transition (33.9 Ma). Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Life in a temperate Polar sea: a unique taphonomic window on the structure of a Late Cretaceous Arctic marine ecosystem

    PubMed Central

    Chin, Karen; Bloch, John; Sweet, Arthur; Tweet, Justin; Eberle, Jaelyn; Cumbaa, Stephen; Witkowski, Jakub; Harwood, David

    2008-01-01

    As the earth faces a warming climate, the rock record reminds us that comparable climatic scenarios have occurred before. In the Late Cretaceous, Arctic marine organisms were not subject to frigid temperatures but still contended with seasonal extremes in photoperiod. Here, we describe an unusual fossil assemblage from Devon Island, Arctic Canada, that offers a snapshot of a ca 75 Myr ago marine palaeoecosystem adapted to such conditions. Thick siliceous biogenic sediments and glaucony sands reveal remarkably persistent high primary productivity along a high-latitude Late Cretaceous coastline. Abundant fossil faeces demonstrate that this planktonic bounty supported benthic invertebrates and large, possibly seasonal, vertebrates in short food chains. These ancient organisms filled trophic roles comparable to those of extant Arctic species, but there were fundamental differences in resource dynamics. Whereas most of the modern Arctic is oligotrophic and structured by resources from melting sea ice, we suggest that forested terrestrial landscapes helped support the ancient marine community through high levels of terrigenous organic input. PMID:18713718

  14. Late Cretaceous paleosols as paleoclimate proxies of high-latitude Southern Hemisphere: Mata Amarilla Formation, Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Varela, Augusto N.; Raigemborn, M. Sol; Richiano, Sebastián; White, Tim; Poiré, Daniel G.; Lizzoli, Sabrina

    2018-01-01

    Although there is general consensus that a global greenhouse climate characterized the mid-Cretaceous, details of the climate state of the mid-Cretaceous Southern Hemisphere are less clearly understood. In particular, continental paleoclimate reconstructions are scarce and exclusively derived from paleontological records. Using paleosol-derived climofunction studies of the mid- to Upper Cretaceous Mata Amarilla Formation, southern Patagonia, Argentina, we present a reconstruction of the mid-Cretaceous climate of southern South America. Our results indicate that at 60° south paleolatitude during the Cenomanian-Santonian stages, the climate was subtropical temperate-warm (12 °C ± 2.1 °C) and humid (1404 ± 108 mm/yr) with marked rainfall seasonality. These results are consistent with both previous estimations from the fossil floras of the Mata Amarilla Formation and other units of the Southern Hemisphere, and with the previous observations of the displacement of tropical and subtropical floras towards the poles in both hemispheres. The data presented here show a more marked seasonality and slightly lower mean annual precipitation and mean annual temperature values than those recorded at the same paleolatitudes in the Northern Hemisphere.

  15. Late Cretaceous- Cenozoic history of deciduousness and the terminal Cretaceous event.

    USGS Publications Warehouse

    Wolfe, J.A.

    1987-01-01

    Deciduousness in mesic, broad-leaved plants occurred in disturbed, middle-latitude environments during the Late Cretaceous. Only in polar environments in the Late Cretaceous was the deciduous element dominant, although of low diversity. The terminal Cretaceous event resulted in wide-spread selection for plants of deciduous habit and diversification of deciduous taxa, thus leaving a lasting imprint on Northern Hemisphere vegetation. Various environmental factors have played important roles in subsequent diversification of mesic, broad-leaved deciduous taxa and in origination and decline of broad-leaved deciduous forests. Low diversity and rarity of mesic deciduous plants in the post-Cretaceous of the Southern Hemisphere indicate that the inferred 'impact winter' of the terminal Cretaceous event had little effect on Southern Hemisphere vegetation and climate. -Author

  16. The Jurassic-early Cretaceous Ilo batholith of southern coastal Peru: geology, geochronology and geochemistry

    NASA Astrophysics Data System (ADS)

    Boekhout, Flora; Sempere, Thierry; Spikings, Richard; Schaltegger, Urs

    2010-05-01

    The Ilo batholith (17°00 - 18°30 S) crops out in an area of about 20 by 100 km, along the coast of southern Peru. This batholith is emplaced into the ‘Chocolate‘ Formation of late Permian to middle Jurassic age, which consists of more than 1000 m of basaltic and andesitic lavas, with interbedded volcanic agglomerates and breccias. The Ilo Batholith is considered to be a rarely exposed fragment of the Jurassic arc in Peru. Our aim is to reconstruct the magmatic evolution of this batholith, and place it within the context of long-lasting magma genesis along the active Andean margin since the Paleozoic. Sampling for dating and geochemical analyses was carried out along several cross sections through the batholith that were exposed by post-intrusion eastward tilting of 20-30°. Sparse previous work postulates early to middle Jurassic and partially early Cretaceous emplacement, on the basis of conventional K/Ar and 40Ar/39Ar dating methods in the Ilo area. Twenty new U-Pb zircon ages (LA-ICP-MS and CA-ID-TIMS) accompanied by geochemical data suggests the Ilo batholith formed via the amalgamation of middle Jurassic and early Cretaceous, subduction-related plutons. Preliminary Hf isotope studies reveal a primitive mantle source for middle Jurassic intrusions. Additional Sr, Nd and Hf isotope analyses are planned to further resolve the source regions of different pulses of plutonic activity. We strongly suggest that batholith emplacement was at least partly coeval with the emplacement of the late Permian to middle Jurassic Chocolate Formation, which was deposited in an extensional tectonic regime. Our age results and geochemical signature fit into the scheme of episodic emplacement of huge amounts of subduction related magmatism that is observed throughout the whole Andean event, particularly during the middle Jurassic onset of the first Andean cycle (southern Peru, northern Chile and southern Argentina). Although the exact geodynamic setting remains to be precisely

  17. The earliest direct evidence of frogs in wet tropical forests from Cretaceous Burmese amber.

    PubMed

    Xing, Lida; Stanley, Edward L; Bai, Ming; Blackburn, David C

    2018-06-14

    Frogs are a familiar and diverse component of tropical forests around the world. Yet there is little direct evidence from the fossil record for the antiquity of this association. We describe four fossil frog specimens from mid-Cretaceous (~99 mya) amber deposits from Kachin State, Myanmar for which the associated fauna provides rich paleoenvironmental context. Microcomputed tomographic analysis provides detailed three-dimensional anatomy for these small frogs, which is generally unavailable for articulated anurans in the Mesozoic. These crown-group anuran specimens provide the earliest direct evidence for anurans in a wet tropical forest. Based on a distinct combination of skeletal characters, at least one specimen has clear similarities to living alytoid frogs as well as several Mesozoic taxa known from the Jehol Biota in China. Whereas many Mesozoic frogs are from seasonal and mesic paleoenvironments, these fossils provide the earliest direct evidence of anurans in wet tropical forests.

  18. Elemental and Sr-Nd isotopic geochemistry of Cretaceous to Early Paleogene granites and volcanic rocks in the Sikhote-Alin Orogenic Belt (Russian Far East): implications for the regional tectonic evolution

    NASA Astrophysics Data System (ADS)

    Zhao, Pan; Jahn, Bor-ming; Xu, Bei

    2017-09-01

    The Sikhote-Alin Orogenic Belt in Russian Far East is an important Late Mesozoic to Early Cenozoic accretionary orogen related to the subduction of the Paleo-Pacific Plate. This belt was generated by successive accretion of terranes made of accretionary prisms, turbidite basins and island arcs to the continental margin of northeastern Asia (represented by the Bureya-Jiamusi-Khanka Block) from Jurassic to Late Cretaceous. In order to study the tectonic and crustal evolution of this orogenic belt, we carried out zircon U-Pb dating, and whole-rock elemental and Sr-Nd isotopic analyses on granites and volcanic rocks from the Primorye region of southern Sikhote-Alin. Zircon dating revealed three episodes of granitoid emplacement: Permian, Early Cretaceous and Late Cretaceous to Early Paleogene. Felsic volcanic rocks (mainly rhyolite, dacite and ignimbrite) that overlay all tectonostratigraphic terranes were erupted during 80-57 Ma, postdating the accretionary process in the Sikhote-Alin belt. The Cretaceous-Paleogene magmatism represents the most intense tectonothermal event in the Sikhote-Alin belt. Whole-rock major and trace elemental data show arc-like affinity for granitoids and volcanic rocks, indicating that they were likely generated in a supra-subduction setting. Their initial 87Sr/86Sr ratios range from 0.7048 to 0.7114, and εNd(t) values vary from +1.7 to -3.8 (mostly < 0). Thus, the elemental and Sr-Nd isotopic data suggest that the felsic magmas were generated by partial melting of source rocks comprising mantle-derived juvenile component and recycled crustal component. In addition to the occurrence in the Sikhote-Alin orogenic belt, Cretaceous to Early Paleogene magmatic rocks are also widespread in NE China, southern Korean peninsula, Japanese islands and other areas of Russian Far East, particularly along the coastal regions of the Okhotsk and Bering Seas. These rocks constitute an extended magmatic belt along the continental margin of NE Asia. The

  19. Tectonics and Volcanism During the Cretaceous Normal Superchron Seafloor in the Western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    O'Brien, E.

    2017-12-01

    We have conducted an integration study on the origin and evolution of the tectonics and volcanism of seafloor in the Western Pacific Ocean that took place during the Cretaceous Normal Superchron (CNS) where sparse data has so far precluded detailed investigation. We have compiled the latest satellite-based gravity, gravity gradient, and magnetic grids (EMAG2 v.3) for this region. These crustal-scale high-resolution grids suggest that the CNS seafloor contains fossilized lithospheric morphology possibly attributed to the interaction between Cretaceous supervolcanism activity and Mid-Cretaceous Pacific mid ocean ridge systems that have continuously expanded the Pacific Plate. We recognize previously identified fossilized microplates west of the Magellan Rise, short-lived abandoned propagating rifts and fracture zones, all of which show significant rotation of seafloor fabric. In addition to these large scale observations, we have also compiled marine geological information from previously drilled cores and new data from a Kongsberg Topas PS18 Parametric Sub-Bottom Profiler collected on a transect from Honolulu, Hawaii to Apra, Guam acquired during research cruise SKQ2014S2. In particular, the narrow beam and high bandwidth signal of the Topas PS18 sub-bottom profiler provides sonar data of the seabed with a resolution and depth penetration that is unprecedented compared with previously available surveys in the region. A preliminary assessment of this high resolution Topas data allows us to better characterize sub-seafloor sediment properties and identify features, including the Upper Transparent Layer with identifiable pelagic clay and porcelanite-chert reflectors as well as tectonic features such as the westernmost tip of the Waghenaer Fracture Zone.

  20. Patterns of metal distribution in hypersaline microbialites during early diagenesis: Implications for the fossil record.

    PubMed

    Sforna, M C; Daye, M; Philippot, P; Somogyi, A; van Zuilen, M A; Medjoubi, K; Gérard, E; Jamme, F; Dupraz, C; Braissant, O; Glunk, C; Visscher, P T

    2017-03-01

    The use of metals as biosignatures in the fossil stromatolite record requires understanding of the processes controlling the initial metal(loid) incorporation and diagenetic preservation in living microbialites. Here, we report the distribution of metals and the organic fraction within the lithifying microbialite of the hypersaline Big Pond Lake (Bahamas). Using synchrotron-based X-ray microfluorescence, confocal, and biphoton microscopies at different scales (cm-μm) in combination with traditional geochemical analyses, we show that the initial cation sorption at the surface of an active microbialite is governed by passive binding to the organic matrix, resulting in a homogeneous metal distribution. During early diagenesis, the metabolic activity in deeper microbialite layers slows down and the distribution of the metals becomes progressively heterogeneous, resulting from remobilization and concentration as metal(loid)-enriched sulfides, which are aligned with the lamination of the microbialite. In addition, we were able to identify globules containing significant Mn, Cu, Zn, and As enrichments potentially produced through microbial activity. The similarity of the metal(loid) distributions observed in the Big Pond microbialite to those observed in the Archean stromatolites of Tumbiana provides the foundation for a conceptual model of the evolution of the metal distribution through initial growth, early diagenesis, and fossilization of a microbialite, with a potential application to the fossil record. © 2016 John Wiley & Sons Ltd.

  1. Evolution of volcanically-induced palaeoenvironmental changes leading to the onset of OAE1a (early Aptian, Cretaceous)

    NASA Astrophysics Data System (ADS)

    Keller, Christina E.; Hochuli, Peter A.; Giorgioni, Martino; Garcia, Therese I.; Bernasconi, Stefano M.; Weissert, Helmut

    2010-05-01

    During the Cretaceous, several major volcanic events occurred that initiated climate warming, altered marine circulation and increased marine productivity, which in turn often resulted in the widespread black shale deposits of the Oceanic Anoxic Events (OAE). In the sediments underlying the early Aptian OAE1a black shales, a prominent negative carbon isotope excursion is recorded. Its origin had long been controversial (e.g. Arthur, 2000; Jahren et al., 2001) before recent studies attributed it to the Ontong Java volcanism (Méhay et al., 2009; Tejada et al., 2009). Therefore the negative C-isotope excursion covers the interval between the time, when volcanic activity became important enough to be recorded in the C-isotope composition of the oceans to the onset of widespread anoxic conditions (OAE1a). We chose this interval at the locality of Pusiano (N-Italy) to study the effect of a volcanically-induced increase in pCO2 on the marine palaeoenvironment and to observe the evolving palaeoenvironmental conditions that finally led to OAE1a. The Pusiano section (Maiolica Formation) was deposited at the southern continental margin of the alpine Tethys Ocean and has been bio- and magnetostratigraphically dated by Channell et al. (1995). We selected 18 samples from 12 black shale horizons for palynofacies analyses. Palynofacies assemblages consist of several types of particulate organic matter, providing information on the origin of the organic matter (terrestrial/marine) and conditions during deposition (oxic/anoxic). We then linked the palynofacies results to high-resolution inorganic and organic C-isotope values and total organic carbon content measurements. The pelagic Pusiano section consists of repeated limestone-black shale couplets, which are interpreted to be the result of changes in oxygenation of bottom waters. Towards the end of the negative C-isotope excursion we observe enhanced preservation of the fragile amorphous organic matter resulting in increased

  2. On the age of the Jurassic-Cretaceous boundary

    NASA Astrophysics Data System (ADS)

    Lena, Luis; Ramos, Victor; Pimentel, Marcio; Aguirre-Urreta, Beatriz; Naipauer, Maximiliano; Schaltegger, Urs

    2017-04-01

    Calibrating the geologic time is of utmost importance to understanding geological and biological processes throughout Earth history. The Jurassic-Cretaceous boundary has proven to be one of the most problematic boundaries to calibrate in the geologic time. The present definition of the Jurassic-Cretaceous boundary still remains contentious mainly because of the dominant endemic nature of the flora and fauna in stratigraphic sections, which hinders an agreement on a GSSP. Consequently, an absolute and precise age for the boundary is yet to meet an agreement among the community. Additionally, integrating chemical, paleomagnetic or astronomical proxies to aid the definition of the boundary has also proven to be difficult because the boundary lacks any abrupt geochemical changes or recognizable geological events. However, the traditional Berriasella jacobi Subzone is disregarded as a primary marker and the use of calpionellids has been gaining momentum for defining the boundary. The Jurassic Cretaceous boundary in the Vaca Muerta Fm. in the Nuequen Basin of the Andes is a potential candidate for the boundary stratotype because of its high density of ammonites, nannofossils and interbedded datable horizons. Consequently, the Jurassic-Cretaceous boundary is very well defined in the Vaca Muerta Fm. On the basis of both ammonites and nannofossils. Here we present new high-precision U-Pb age determinations from two volcanic ash beds that bracket the age of the Jurassic-Cretaceous boundary: 1) ash bed LLT_14_9, with a 206Pb/238U age of 139.7 Ma, which is 2 meters above Jurassic-Cretaceous boundary based on the Argetiniceras noduliferum (Early Berriasian ) and Substeueroceras Koeneni (Late Tithonian) ammonites zone; and 2) bed LLT_14_10, with an age of 140.1 Ma, located 3m below the J-K boundary based on last occurrence of the nannofossils N. kamptneri minor and N. steinmanni minor. Therefore, we propose that the age of the Jurassic-Cretaceous boundary should be close to 140

  3. New Age of Fishes initiated by the Cretaceous-Paleogene mass extinction

    NASA Astrophysics Data System (ADS)

    Sibert, Elizabeth C.; Norris, Richard D.

    2015-07-01

    Ray-finned fishes (Actinopterygii) comprise nearly half of all modern vertebrate diversity, and are an ecologically and numerically dominant megafauna in most aquatic environments. Crown teleost fishes diversified relatively recently, during the Late Cretaceous and early Paleogene, although the exact timing and cause of their radiation and rise to ecological dominance is poorly constrained. Here we use microfossil teeth and shark dermal scales (ichthyoliths) preserved in deep-sea sediments to study the changes in the pelagic fish community in the latest Cretaceous and early Paleogene. We find that the Cretaceous-Paleogene (K/Pg) extinction event marked a profound change in the structure of ichthyolith communities around the globe: Whereas shark denticles outnumber ray-finned fish teeth in Cretaceous deep-sea sediments around the world, there is a dramatic increase in the proportion of ray-finned fish teeth to shark denticles in the Paleocene. There is also an increase in size and numerical abundance of ray-finned fish teeth at the boundary. These changes are sustained through at least the first 24 million years of the Cenozoic. This new fish community structure began at the K/Pg mass extinction, suggesting the extinction event played an important role in initiating the modern "age of fishes."

  4. New Age of Fishes initiated by the Cretaceous-Paleogene mass extinction.

    PubMed

    Sibert, Elizabeth C; Norris, Richard D

    2015-07-14

    Ray-finned fishes (Actinopterygii) comprise nearly half of all modern vertebrate diversity, and are an ecologically and numerically dominant megafauna in most aquatic environments. Crown teleost fishes diversified relatively recently, during the Late Cretaceous and early Paleogene, although the exact timing and cause of their radiation and rise to ecological dominance is poorly constrained. Here we use microfossil teeth and shark dermal scales (ichthyoliths) preserved in deep-sea sediments to study the changes in the pelagic fish community in the latest Cretaceous and early Paleogene. We find that the Cretaceous-Paleogene (K/Pg) extinction event marked a profound change in the structure of ichthyolith communities around the globe: Whereas shark denticles outnumber ray-finned fish teeth in Cretaceous deep-sea sediments around the world, there is a dramatic increase in the proportion of ray-finned fish teeth to shark denticles in the Paleocene. There is also an increase in size and numerical abundance of ray-finned fish teeth at the boundary. These changes are sustained through at least the first 24 million years of the Cenozoic. This new fish community structure began at the K/Pg mass extinction, suggesting the extinction event played an important role in initiating the modern "age of fishes."

  5. First identifiable Mesozoic harvestman (Opiliones: Dyspnoi) from Cretaceous Burmese amber

    PubMed Central

    Giribet, Gonzalo; Dunlop, Jason A

    2005-01-01

    Two inclusions in a piece of Upper Cretaceous (Albian) Burmese amber from Myanmar are described as a harvestman (Arachnida: Opiliones), Halitherses grimaldii new genus and species. The first Mesozoic harvestman to be named can be referred to the suborder Dyspnoi for the following reasons: prosoma divided into two regions, the posterior formed by the fusion of the meso- and metapeltidium; palp lacking a terminal claw, with clavate setae, and tarsus considerably shorter than the tibia. The bilobed, anteriorly projecting ocular tubercle is reminiscent of that of ortholasmatine nemastomatids. The status of other Mesozoic fossils referred to Opiliones is briefly reviewed. PMID:16024358

  6. High resolution chronology of late Cretaceous-early Tertiary events determined from 21,000 yr orbital-climatic cycles in marine sediments

    NASA Technical Reports Server (NTRS)

    Herbert, Timothy D.; Dhondt, Steven

    1988-01-01

    A number of South Atlantic sites cored by the Deep Sea Drilling Project (DSDP) recovered late Cretaceous and early Tertiary sediments with alternating light-dark, high-low carbonate content. The sedimentary oscillations were turned into time series by digitizing color photographs of core segments at a resolution of about 5 points/cm. Spectral analysis of these records indicates prominent periodicity at 25 to 35 cm in the Cretaceous intervals, and about 15 cm in the early Tertiary sediments. The absolute period of the cycles that is determined from paleomagnetic calibration at two sites is 20,000 to 25,000 yr, and almost certainly corresponds to the period of the earth's precessional cycle. These sequences therefore contain an internal chronometer to measure events across the K/T extinction boundary at this scale of resolution. The orbital metronome was used to address several related questions: the position of the K/T boundary within magnetic chron 29R, the fluxes of biogenic and detrital material to the deep sea immediately before and after the K/T event, the duration of the Sr anomaly, and the level of background climatic variability in the latest Cretaceous time. The carbonate/color cycles that were analyzed contain primary records of ocean carbonate productivity and chemistry, as evidenced by bioturbational mixing of adjacent beds and the weak lithification of the rhythmic sequences. It was concluded that sedimentary sequences that contain orbital cyclicity are capable of providing resolution of dramatic events in earth history with much greater precision than obtainable through radiometric methods. The data show no evidence for a gradual climatic deterioration prior to the K/T extinction event, and argue for a geologically rapid revolution at this horizon.

  7. Two waves of colonization straddling the K-Pg boundary formed the modern reef fish fauna.

    PubMed

    Price, S A; Schmitz, L; Oufiero, C E; Eytan, R I; Dornburg, A; Smith, W L; Friedman, M; Near, T J; Wainwright, P C

    2014-05-22

    Living reef fishes are one of the most diverse vertebrate assemblages on Earth. Despite its prominence and ecological importance, the origins and assembly of the reef fish fauna is poorly described. A patchy fossil record suggests that the major colonization of reef habitats must have occurred in the Late Cretaceous and early Palaeogene, with the earliest known modern fossil coral reef fish assemblage dated to 50 Ma. Using a phylogenetic approach, we analysed the early evolutionary dynamics of modern reef fishes. We find that reef lineages successively colonized reef habitats throughout the Late Cretaceous and early Palaeogene. Two waves of invasion were accompanied by increasing morphological convergence: one in the Late Cretaceous from 90 to 72 Ma and the other immediately following the end-Cretaceous mass extinction. The surge in reef invasions after the Cretaceous-Palaeogene boundary continued for 10 Myr, after which the pace of transitions to reef habitats slowed. Combined, these patterns match a classic niche-filling scenario: early transitions to reefs were made rapidly by morphologically distinct lineages and were followed by a decrease in the rate of invasions and eventual saturation of morphospace. Major alterations in reef composition, distribution and abundance, along with shifts in climate and oceanic currents, occurred during the Late Cretaceous and early Palaeogene interval. A causal mechanism between these changes and concurrent episodes of reef invasion remains obscure, but what is clear is that the broad framework of the modern reef fish fauna was in place within 10 Myr of the end-Cretaceous extinction.

  8. Quantification of a greenhouse hydrologic cycle from equatorial to polar latitudes: The mid-Cretaceous water bearer revisited

    USGS Publications Warehouse

    Suarez, M.B.; Gonzalez, Luis A.; Ludvigson, Greg A.

    2011-01-01

    This study aims to investigate the global hydrologic cycle during the mid-Cretaceous greenhouse by utilizing the oxygen isotopic composition of pedogenic carbonates (calcite and siderite) as proxies for the oxygen isotopic composition of precipitation. The data set builds on the Aptian-Albian sphaerosiderite ??18O data set presented by Ufnar et al. (2002) by incorporating additional low latitude data including pedogenic and early meteoric diagenetic calcite ??18O. Ufnar et al. (2002) used the proxy data derived from the North American Cretaceous Western Interior Basin (KWIB) in a mass balance model to estimate precipitation-evaporation fluxes. We have revised this mass balance model to handle sphaerosiderite and calcite proxies, and to account for longitudinal travel by tropical air masses. We use empirical and general circulation model (GCM) temperature gradients for the mid-Cretaceous, and the empirically derived ??18O composition of groundwater as constraints in our mass balance model. Precipitation flux, evaporation flux, relative humidity, seawater composition, and continental feedback are adjusted to generate model calculated groundwater ??18O compositions (proxy for precipitation ??18O) that match the empirically-derived groundwater ??18O compositions to within ??0.5???. The model is calibrated against modern precipitation data sets.Four different Cretaceous temperature estimates were used: the leaf physiognomy estimates of Wolfe and Upchurch (1987) and Spicer and Corfield (1992), the coolest and warmest Cretaceous estimates compiled by Barron (1983) and model outputs from the GENESIS-MOM GCM by Zhou et al. (2008). Precipitation and evaporation fluxes for all the Cretaceous temperature gradients utilized in the model are greater than modern precipitation and evaporation fluxes. Balancing the model also requires relative humidity in the subtropical dry belt to be significantly reduced. As expected calculated precipitation rates are all greater than modern

  9. Ecological impact of the end-Cretaceous extinction on lamniform sharks.

    PubMed

    Belben, Rachel A; Underwood, Charlie J; Johanson, Zerina; Twitchett, Richard J

    2017-01-01

    Lamniform sharks are apex marine predators undergoing dramatic local and regional decline worldwide, with consequences for marine ecosystems that are difficult to predict. Through their long history, lamniform sharks have faced widespread extinction, and understanding those 'natural experiments' may help constrain predictions, placing the current crisis in evolutionary context. Here we show, using novel morphometric analyses of fossil shark teeth, that the end-Cretaceous extinction of many sharks had major ecological consequences. Post-extinction ecosystems supported lower diversity and disparity of lamniforms, and were dominated by significantly smaller sharks with slimmer, smoother and less robust teeth. Tooth shape is intimately associated with ecology, feeding and prey type, and by integrating data from extant sharks we show that latest Cretaceous sharks occupied similar niches to modern lamniforms, implying similar ecosystem structure and function. By comparison, species in the depauperate post-extinction community occupied niches most similar to those of juvenile sand tigers (Carcharias taurus). Our data show that quantitative tooth morphometrics can distinguish lamniform sharks due to dietary differences, providing critical insights into ecological consequences of past extinction episodes.

  10. Ecological impact of the end-Cretaceous extinction on lamniform sharks

    PubMed Central

    Belben, Rachel A.; Underwood, Charlie J.; Johanson, Zerina; Twitchett, Richard J.

    2017-01-01

    Lamniform sharks are apex marine predators undergoing dramatic local and regional decline worldwide, with consequences for marine ecosystems that are difficult to predict. Through their long history, lamniform sharks have faced widespread extinction, and understanding those ‘natural experiments’ may help constrain predictions, placing the current crisis in evolutionary context. Here we show, using novel morphometric analyses of fossil shark teeth, that the end-Cretaceous extinction of many sharks had major ecological consequences. Post-extinction ecosystems supported lower diversity and disparity of lamniforms, and were dominated by significantly smaller sharks with slimmer, smoother and less robust teeth. Tooth shape is intimately associated with ecology, feeding and prey type, and by integrating data from extant sharks we show that latest Cretaceous sharks occupied similar niches to modern lamniforms, implying similar ecosystem structure and function. By comparison, species in the depauperate post-extinction community occupied niches most similar to those of juvenile sand tigers (Carcharias taurus). Our data show that quantitative tooth morphometrics can distinguish lamniform sharks due to dietary differences, providing critical insights into ecological consequences of past extinction episodes. PMID:28591222

  11. Multi-stage metamorphism in the South Armenian Block during the Late Jurassic to Early Cretaceous: Tectonics over south-dipping subduction of Northern branch of Neotethys

    NASA Astrophysics Data System (ADS)

    Hässig, M.; Rolland, Y.; Sahakyan, L.; Sosson, M.; Galoyan, G.; Avagyan, A.; Bosch, D.; Müller, C.

    2015-04-01

    The geologic evolution of the South Armenian Block (SAB) in the Mesozoic is reconstructed from a structural, metamorphic, and geochronologic study including U-Pb and 40Ar/39Ar dating. The South Armenian Block Crystalline Basement (SABCB) outcrops solely in a narrow tectonic window, NW of Yerevan. The study of this zone provides key and unprecedented information concerning closing of the Northern Neotethys oceanic domain north of the Taurides-Anatolides platform from the Middle Jurassic to the Early Cretaceous. The basement comprises of presumed Proterozoic orthogneiss overlain by metamorphosed pelites as well as intrusions of granodiorite and leucogranite during the Late Jurassic and Early Cretaceous. Structural, geochronological and petrological observations show a multiphased evolution of the northern margin of the SAB during the Late Jurassic and Early Cretaceous. A south-dipping subduction under the East Anatolian Platform-South Armenian Block (EAP-SAB) is proposed in order to suit recent findings pertaining emplacement of relatively hot subduction related granodiorite as well as the metamorphic evolution of the crystalline basement in the Lesser Caucasus area. The metamorphism is interpreted as evidencing: (1) M1 Barrovian MP-MT conditions (staurolite-kyanite) at c. 157-160 Ma and intrusion of dioritic magmas at c. 150-156 Ma, (2) near-adiabatic decompression is featured by partial melting and production of leucogranites at c. 153 Ma, followed by M2 HT-LP conditions (andalusite-K-feldspar). A phase of shearing and recrystallization is ascribed to doming at c. 130-150 Ma and cooling at 400 °C by c. 123 Ma (M3). Structural observations show (1) top to the north shearing during M1 and (2) radial extension during M2. The extensional event ends by emplacement of a thick detrital series along radial S, E and W-dipping normal faults. Further, the crystalline basement is unconformably covered by Upper Cretaceous-Paleocene series dated by nannofossils, evolving from

  12. Dating placentalia: Morphological clocks fail to close the molecular fossil gap.

    PubMed

    Puttick, Mark N; Thomas, Gavin H; Benton, Michael J

    2016-04-01

    Dating the origin of Placentalia has been a contentious issue for biologists and paleontologists. Although it is likely that crown-group placentals originated in the Late Cretaceous, nearly all molecular clock estimates point to a deeper Cretaceous origin. An approach with the potential to reconcile this discrepancy could be the application of a morphological clock. This would permit the direct incorporation of fossil data in node dating, and would break long internal branches of the tree, so leading to improved estimates of node ages. Here, we use a large morphological dataset and the tip-calibration approach of MrBayes. We find that the estimated date for the origin of crown mammals is much older, ∼130-145 million years ago (Ma), than fossil and molecular clock data (∼80-90 Ma). Our results suggest that tip calibration may result in estimated dates that are more ancient than those obtained from other sources of data. This can be partially overcome by constraining the ages of internal nodes on the tree; however, when this was applied to our dataset, the estimated dates were still substantially more ancient than expected. We recommend that results obtained using tip calibration, and possibly morphological dating more generally, should be treated with caution. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  13. Evolution of Cupido and Coahuila carbonate platforms, early Cretaceous, northeastern Mexico

    USGS Publications Warehouse

    Lehmann, Christoph; Osleger, David A.; Montañez, Isabel P.; Sliter, William V.; Arnaud Vanneau, Annie; Banner, Jay L.

    1999-01-01

    middle Albian time. Restriction of the platform interior dissipated by middle to late Albian time with the deposition of peloidal, miliolid-rich packstones and grainstones of the Aurora Formation. The Coahuila platform was drowned during latest Albian to early Cenomanian time, and the deep-water laminites of the Cuesta del Cura Formation were deposited.This study fills in a substantial gap in the Cretaceous paleogeography of the eastern Gulf of Mexico coast, improving regional correlations with adjacent hydrocarbon-rich platforms. The enhanced temporal relations and chronology of events recorded in the Cupido and Coahuila platforms significantly improve global correlations with coeval, economically important platforms worldwide, perhaps contributing to the determination of global versus regional controls on carbonate platform evolution during middle Cretaceous time.

  14. Trace Elemental Imaging of Rare Earth Elements Discriminates Tissues at Microscale in Flat Fossils

    PubMed Central

    Gueriau, Pierre; Mocuta, Cristian; Dutheil, Didier B.; Cohen, Serge X.; Thiaudière, Dominique; Charbonnier, Sylvain; Clément, Gaël; Bertrand, Loïc

    2014-01-01

    The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies. PMID:24489809

  15. Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils.

    PubMed

    Gueriau, Pierre; Mocuta, Cristian; Dutheil, Didier B; Cohen, Serge X; Thiaudière, Dominique; Charbonnier, Sylvain; Clément, Gaël; Bertrand, Loïc

    2014-01-01

    The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies.

  16. Early organisms in the fossil record: paleontological aspects, evolutionary and ecological impacts

    NASA Astrophysics Data System (ADS)

    Sabbatini, Anna; Negri, Alessandra; Morigi, Caterina; Bartolini, Annachiara; Lipps, Jere

    2017-04-01

    With this abstract we introduce our session whose aim is twofold: 1) to gather information on the earliest foraminifera (single- organic and agglutinated taxa) which so far are sparse and uncoordinated in order to understand their evolution and their relationship with modern single-chambered taxa, contextualizing scientific current results in the geo-biological field. 2) to explore also every other early organism trace fossils or so far overlooked organisms coated with fine sediment (i.e., bacteria, testate amoebae) to understand how and if this coating might help these creatures to fossilize. For this reason, this session will integrate many disciplines, from genomics to palaeo-environmental modelling to palaeontology and geochemistry. Our experience starts from Foraminifera which are an ecologically important group of modern heterotrophic amoeboid eukaryotes whose naked and testate ancestors are thought to have evolved 1 Ga ago. However, the single-chambered agglutinated test of these protists is hypothesized to appear in the fossil record in the Neoproterozoic, before the rise of complex animals. In addition, the difficulty of recognizing unambiguously ancestral monothalamous foraminifera in the fossil record represents the main challenge and might be related to a combination of factors, such as preservation in the sediments, adverse palaeo-environmental conditions and the absence of clear morphological characters distinguishing them from other morphologically simple testate organisms. However, recent publications have evidenced the finding of such organisms in several sedimentary successions tracing back to the Neoproterozoic. An integrate approach will result in profound insights about life—past, present, future— representing a new frontier in the palaeobiological studies. Therefore, aim of this session is to bring together specialists across all these disciplines to provide a uniquely rich and fertile intellectual environment for the pursuit of this

  17. A detailed taxonomy of Upper Cretaceous and lower Tertiary Crassatellidae in the Eastern United States; an example of the nature of extinction at the boundary

    USGS Publications Warehouse

    Wingard, G. Lynn

    1993-01-01

    Current theories on the causes of extinction at the CretaceousTertiary boundary have been based on previously published data; however, few workers have stopped to ask the question, 'How good is the basic data set?' To test the accuracy of the published record, a quantitative and qualitative analysis of the Crassatellidae (Mollusca, Bivalvia) of the Gulf and Mid-Atlantic Coastal Plains of the United States for the Upper Cretaceous and lower Tertiary was conducted. Thirty-eight species names and four generic names are used in publications for the Crassatellidae within the geographic and stratigraphic constraints of this analysis. Fourteen of the 38 species names are represented by statistically valid numbers of specimens and were tested by using canonical discriminant analysis. All 38 names, with the exception of 1 invalid name and 4 names for which no representative specimen could be located, were evaluated qualitatively. The results show that the published fossil record is highly inaccurate. Only 8 valid, recognizable species exist in the Crassatellidae within the limits of this study, 14 names are synonymized, and 11 names are represented by indeterminate molds or poorly preserved specimens. Three of the four genera are well founded; the fourth is based on the juvenile of another genus and therefore synonymized. This detailed taxonomic analysis of the Crassatellidae illustrates that the published fossil record is not reliable. Calculations of evolutionary and paleobiologic significance based on poorly defined, overly split fossil groups, such as the Crassatellidae, are biased in the following ways: Rates of evolution and extinction are higher, Faunal turnover at mass extinctions appears more catastrophic, Species diversity is high, Average species durations are shortened, and Geographic ranges are restricted. The data on the taxonomically standardized Crassatellidae show evolutionary rates one-quarter to one-half that of the published fossil record; faunal change

  18. A new squamate lizard from the Upper Cretaceous Adamantina Formation (Bauru Group), São Paulo State, Brazil.

    PubMed

    Nava, William R; Martinelli, Agustín G

    2011-03-01

    The record of non-mosasaur squamates (Reptilia, Squamata) is sparse in the Cretaceus fossil record of Brazil and include six putative reports, three from the Aptian-Albian of the Araripe Basin (Tijubina pontei Bonfim-Júnior and Marques, Olindalacerta brasiliensis Evans and Yabumoto, and a lizard indet.) and three from the Upper Cretaceous of the Bauru Group (Pristiguana brasiliensis Estes and Price, Anilioidae gen. et sp. indet., and Squamata gen. et sp. indet.). In this contribution, a new genus and species of lizard, Brasiliguana prudentis gen. et sp. nov., is described based on an isolated left maxilla with teeth. The material was discovered in an outcrop of the Upper Cretaceous Adamantina Formation (Bauru Group) located in the proximity of Presidente Prudente Municipality, São Paulo State, Brazil. The new taxon is considered a basal non-Priscagamidae+Acrodonta iguanian based on the presence of a weakly inclined anterior margin of the maxillary nasal process and maxillary tooth shape and tooth implantation similar to that of iguanians rather than of other lizard groups (e.g. teiids). This finding significantly increases the squamate lizard diversity of South America, which is still poorly understood and sparsely represented in the fossil record.

  19. Stratigraphy and sedimentology of the Upper Cretaceous (Campanian) Anacacho Limestone, Texas, USA

    USGS Publications Warehouse

    Swezey, C.S.; Sullivan, E.C.

    2004-01-01

    The Upper Cretaceous Anacacho Limestone is exposed in outcrops between the cities of San Antonio and Del Rio, Texas. A detailed study of four outcrops (Blanco Creek section, Sabinal River section, Seco Creek section, Hondo Creek section) shows that the Anacacho Limestone rests on the Upson Clay (which contains fauna of early Campanian age) and is overlain by the Corsicana Marl (which contains fauna of early Maastrichtian age). An unconformity within the Anacacho Limestone is used herein to separate the limestone into a lower member and an upper member. The lower Anacacho member contains fauna of early Campanian age, whereas the upper Anacacho member contains fauna of middle Campanian age. The lower Anacacho member consists predominantly of wackestones to packstones, which are overlain by packstones to grainstones capped by the unconformity. This unconformity is interpreted as a marine flooding surface, delineating a transition from carbonate grainstones deposited in shallow water (<30 m depth) to a chalk deposited in deeper water. Above the unconformity, the upper Anacacho member is characterized by a chalk, overlain by wackestones and packstones. The uppermost section of the Anacacho Limestone consists of packstones and grainstones with abundant and diverse fossils. Most of the Anacacho Limestone developed in relatively shallow water (<50 m depth) leeward of a large carbonate build-up (possibly a rudistid reef) that now comprises the Anacacho Mountains. The environment, however, was open to marine water throughout deposition of the Anacacho Limestone. ?? 2004 Elsevier Ltd. All rights reserved.

  20. Preservation of large titanosaur sauropods in overbank fluvial facies: A case study in the Cretaceous of Argentina

    NASA Astrophysics Data System (ADS)

    González Riga, Bernardo J.; Astini, Ricardo A.

    2007-04-01

    Patagonia exhibits a particularly abundant record of Cretaceous dinosaurs with worldwide relevance. Although paleontological studies are relatively numerous, few include taphonomic information about these faunas. This contribution provides the first detailed sedimentological and taphonomical analyses of a dinosaur bone quarry from northern Neuquén Basin. At Arroyo Seco (Mendoza Province, Argentina), a large parautochthonous/autochthonous accumulation of articulated and disarticulated bones that represent several sauropod individuals has been discovered. The fossil remains, assigned to Mendozasaurus neguyelap González Riga, correspond to a large (18-27-m long) sauropod titanosaur collected in the strata of the Río Neuquén Subgroup (late Turoronian-late Coniacian). A taphonomic viewpoint recognizes a two-fold division into biostratinomic and fossil-diagenetic processes. Biostratinomic processes include (1) subaerial biodegradation of sauropod carcasses on well-drained floodplains, (2) partial or total skeletal disarticulation, (3) reorientation of bones by sporadic overbank flows, and (4) subaerial weathering. Fossil-diagenetic processes include (1) plastic deformation of bones, (2) initial permineralization with hematite, (3) fracturing and brittle deformation due to lithostatic pressure; (4) secondary permineralization with calcite in vascular canals and fractures, and (5) postfossilization bone weathering. This type of bone concentration, also present in Rincón de los Sauces (northern Patagonia), suggests that overbank facies tended to accumulate large titanosaur bones. This taphonomic mode, referred to as "overbank bone assemblages", outlines the potential of crevasse splay facies as important sources of paleontological data in Cretaceous meandering fluvial systems.

  1. The oldest micropepline beetle from Cretaceous Burmese amber and its phylogenetic implications (Coleoptera: Staphylinidae)

    NASA Astrophysics Data System (ADS)

    Cai, Chen-Yang; Huang, Di-Ying

    2014-10-01

    The staphylinid subfamily Micropeplinae includes small strongly sclerotized beetles with truncate elytra leaving the most part of abdomen exposed. Fossil micropeplines are rare and confined to Cenozoic representatives of extant genera. Here, we describe the oldest micropepline, Protopeplus cretaceus gen. and sp. n., from the Upper Cretaceous Burmese amber. Fluorescence microscope and confocal laser scanning microscopy (CLSM) were both used to reveal diagnostic features of Micropeplinae and some primitive traits that place Protopeplus very basally within Micropeplinae.

  2. Cretaceous Footprints Found on Goddard Campus

    NASA Image and Video Library

    2012-08-20

    About 110 million light years away, the bright, barred spiral galaxy NGC3259 was just forming stars in dark bands of dust and gas. On Earth, a plant-eating dinosaur left footprints in the Cretaceous mud of what would later become the grounds of NASA’s Goddard Space Flight Center in Greenbelt, Md. Local dinosaur hunter Ray Stanford reviews a fossil found at the site. To read more go to: www.nasa.gov/centers/goddard/news/features/2012/nodosaur.... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Reinterpreting the Early Cretaceous Sulfur Isotope Records: Implications for the Evolution of Seawater Chemistry

    NASA Astrophysics Data System (ADS)

    Mills, J. V.; Gomes, M. L.; Sageman, B. B.; Jacobson, A. D.; Hurtgen, M. T.

    2013-12-01

    The geologic record of the Cretaceous is punctuated by several periods of high organic carbon burial interpreted to represent global Ocean Anoxic Events (OAEs). In addition to the short-term (<1-Myr) changes in carbon (C) cycling associated with OAEs, evidence from a number of geochemical proxies has been interpreted to represent large-scale changes in ocean chemistry during the period. Specifically, the sulfur (S) isotope composition of early Cretaceous seawater sulfate as recorded in marine barite exhibits an ~5 permil shift in d34Ssulfate that persists for ~15Myr before returning to pre-excursion values. Superimposed upon this long-term shift in S-isotopes is OAE1a, the second major anoxic event recognized in the Cretaceous. Two hypotheses have been proposed to explain this S isotope perturbation: (1) massive evaporite deposition associated with rifting during the opening of the South Atlantic and a corresponding decrease in pyrite burial rates and (2) increased inputs of volcanic-derived S due to extensive LIP-volcanism. While there is geologic evidence for both evaporite deposition and enhanced hydrothermal activity, the relative influence of these potential driving factors remains largely unconstrained. Variation in the strontium (Sr) isotope composition of marine carbonates provides a tool for distinguishing between these influences. We examine the S isotope composition of carbonate-associated sulfate (CAS) spanning the Barremian through Aptian from Resolution Guyot (ODP Site 866) and compare the S isotope record to time equivalent records of carbon and strontium isotopes. Correlative changes in the C, S, and Sr cycles are observed: an ~5 permil shift in d34Ssulfate, which begins at the onset of OAE1a and continues after the positive d13Ccarb excursion, is accompanied by a contemporaneous, parallel shift in 87Sr/86Sr to unradiogenic values. The tight coupling observed between S and Sr throughout the interval is highly suggestive of a common driving mechanism

  4. Interactions between tectonics, climate and vegetation during the Cretaceous. A context for the diversification of Angiosperms.

    NASA Astrophysics Data System (ADS)

    Sepulchre, Pierre; Chaboureau, Anne-Claire; Donnadieu, Yannick; Franc, Alain; Ladant, Jean-Baptiste

    2017-04-01

    It has long been thought that the Angiosperms diversification occurred within a context of warmer-than-present and equable climate during the Cretaceous. However, during the last decade, the view of a uniformely warm Cretaceous climate has been challenged both by paleoclimate proxies and numerical simulations. Among the processes likely affecting climate during this time, atmospheric pCO2 and tectonics appear to be pivotal to drive temperature and precipitation changes, while the feedbacks from vegetation cover changes on the hydrological cycles remain to be explored. Here we attempt to provide a review of the main studies exploring climate-vegetation interactions during the Cretaceous. Then we present climate simulations aiming at quantifying the impact of landmasses redistribution on climate and vegetation distribution from 225 Ma to 70 Ma. In our simulations, the Pangea breakup triggers the decrease of arid belts from the Triassic to the Cretaceous and a subsequent onset of humid conditions during the late Cretaceous. Positioning angiosperm-bearing fossil sites on our paleo-bioclimatic maps confirm that the rise of flowering plants occured within a context of changing climate. With additional simulations in which we modified physiological parameterizations of the vegetation, we explore the combined impact of paleogeography and shift to angiosperms-dominated land surfaces on climate at the regional and global scales. This gives us the opportunity to test earlier ideas that the angiosperms takeover could have benefited from a positive feedback induced by their particular transpiration capacities.

  5. 6-carboxydihydroresveratrol 3-O-β-glucopyranoside--a novel natural product from the Cretaceous relict Metasequoia glyptostroboides.

    PubMed

    Nguyen, Xuan Hong Thy; Juvik, Ole Johan; Øvstedal, Dag Olav; Fossen, Torgils

    2014-06-01

    Metasequoia glyptostroboides, a tree native to China, is described as a living fossil and has existed for millions of years. The oldest fossils recorded have been dated to the late Cretaceous era. During the time of its existence, the molecular defence system of the tree has apparently resisted millions of generations of pathogens, which encouraged search for novel natural product from this source. Eight compounds have been characterised from needles of M. glyptostroboides, including the novel natural product 6-carboxydihydroresveratrol 3-O-β-glucopyranoside. The structure determinations were based on extensive use of 2D NMR spectroscopic techniques and high-resolution mass spectrometry. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Geochemical characteristics of Cretaceous carbonatites from Angola

    NASA Astrophysics Data System (ADS)

    Alberti, A.; Castorina, F.; Censi, P.; Comin-Chiaramonti, P.; Gomes, C. B.

    1999-12-01

    The Early Cretaceous (138-130 Ma) carbonatites and associated alkaline rocks of Angola belong to the Paraná-Angola-Etendeka Province and occur as ring complexes and other central-type intrusions along northeast trending tectonic lineaments, parallel to the trend of coeval Namibian alkaline complexes. Most of the Angolan carbonatite-alkaline bodies are located along the apical part of the Moçamedes Arch, a structure representing the African counterpart of the Ponta Grossa Arch in southern Brazil, where several alkaline-carbonatite complexes were also emplaced in the Early Cretaceous. Geochemical and isotopic (C, 0, Sr and Nd) characteristics determined for five carbonatitic occurrences indicate that: (1) the overall geochemical composition, including the OC isotopes, is within the range of the Early and Late Cretaceous Brazilian occurrences from the Paraná Basin; (2) the La versus {La}/{Yb} relationships are consistent with the exsolution of CO i2-rich melts from trachyphonolitic magmas; and (3) the {143Nd}/{144Nd} and {87Sr}/{86Sr} initial ratios are similar to the initial isotopic ratios (129 Ma) of alkaline complexes in northwest Namibia. In contrast, the Lupongola carbonatites have a distinctly different {143Nd}/{144Nd} initial ratio, suggesting a different source. The Angolan carbonatites have SrNd isotopic compositions ranging from bulk earth to time-integrated depleted sources. Since those from eastern Paraguay (at the western fringe of the Paraná-Angola-Etendeka Province) and Brazil appear to be related to mantle-derived melts with time-integrated enriched or B.E. isotopic characteristics, it is concluded that the carbonatites of the Paraná-Angola-Etendeka Province have compositionally distinct mantle sources. Such mantle heterogeneity is attributed to 'metasomatic processes', which would have occurred at ca 0.6-0.7 Ga (Angola, northwest Namibia and Brazil) and ca 1.8 Ga (eastern Paraguay), as suggested by Nd-model ages.

  7. Specimen-level phylogenetics in paleontology using the Fossilized Birth-Death model with sampled ancestors.

    PubMed

    Cau, Andrea

    2017-01-01

    Bayesian phylogenetic methods integrating simultaneously morphological and stratigraphic information have been applied increasingly among paleontologists. Most of these studies have used Bayesian methods as an alternative to the widely-used parsimony analysis, to infer macroevolutionary patterns and relationships among species-level or higher taxa. Among recently introduced Bayesian methodologies, the Fossilized Birth-Death (FBD) model allows incorporation of hypotheses on ancestor-descendant relationships in phylogenetic analyses including fossil taxa. Here, the FBD model is used to infer the relationships among an ingroup formed exclusively by fossil individuals, i.e., dipnoan tooth plates from four localities in the Ain el Guettar Formation of Tunisia. Previous analyses of this sample compared the results of phylogenetic analysis using parsimony with stratigraphic methods, inferred a high diversity (five or more genera) in the Ain el Guettar Formation, and interpreted it as an artifact inflated by depositional factors. In the analysis performed here, the uncertainty on the chronostratigraphic relationships among the specimens was included among the prior settings. The results of the analysis confirm the referral of most of the specimens to the taxa Asiatoceratodus , Equinoxiodus, Lavocatodus and Neoceratodus , but reject those to Ceratodus and Ferganoceratodus . The resulting phylogeny constrained the evolution of the Tunisian sample exclusively in the Early Cretaceous, contrasting with the previous scenario inferred by the stratigraphically-calibrated topology resulting from parsimony analysis. The phylogenetic framework also suggests that (1) the sampled localities are laterally equivalent, (2) but three localities are restricted to the youngest part of the section; both results are in agreement with previous stratigraphic analyses of these localities. The FBD model of specimen-level units provides a novel tool for phylogenetic inference among fossils but also

  8. Late Cretaceous Aquatic Plant World in Patagonia, Argentina

    PubMed Central

    Cúneo, N. Rubén; Gandolfo, María A.; Zamaloa, María C.; Hermsen, Elizabeth

    2014-01-01

    In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla) and a monocot (Araceae). Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae). Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form) and the eudicot angiosperm Nelumbo (Nelumbonaceae) are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae), ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America. PMID:25148081

  9. Unravelling the nature of Waiparaconus, a pennatulacean (Cnidaria: Octocorallia) from the Late Mesozoic-Early Cainozoic of the Southern Hemisphere.

    PubMed

    Buckeridge, John S; Campbell, Hamish J; Maurizot, Pierre

    2014-03-01

    Enigmatic calcareous conical fossils have been known from marine Paleocene-Eocene sequences of New Zealand since the early 1870s. More recently, similar fossils have been recorded from both Late Cretaceous marine sequences of Western Australia, New Caledonia and Antarctica, and possibly from the Eocene of South America. The present paper extends the record to the late Cretaceous of New Caledonia. These remains are unlike any living taxa, and have been variously interpreted as molluscs (rudistid bivalves), cirripedes (stalked barnacles), annelids and inorganic structures. Assignation to the Cirripedia has been refuted by Buckeridge (1983, 1993), who proposed that the material would be better placed within the Cnidaria. We investigate this hypothesis in light of the New Caledonian material and by comparison with living gorgonians and pennatulaceans, and demonstrate that Waiparaconus is best placed within the Pennatulacea. Waiparaconus zelandicus varies in form somewhat, with 3 morphotypes defined and reinforced by geography. Comment is provided on the imperative to fit organic remains into known groups, with reflection on what may happen if taxa are left in insertae sedis. © 2013 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  10. Identification of a New Hesperornithiform from the Cretaceous Niobrara Chalk and Implications for Ecologic Diversity among Early Diving Birds

    PubMed Central

    Bell, Alyssa; Chiappe, Luis M.

    2015-01-01

    The Smoky Hill Member of the Niobrara Chalk in Kansas (USA) has yielded the remains of numerous members of the Hesperornithiformes, toothed diving birds from the late Early to Late Cretaceous. This study presents a new taxon of hesperornithiform from the Smoky Hill Member, Fumicollis hoffmani, the holotype of which is among the more complete hesperornithiform skeletons. Fumicollis has a unique combination of primitive (e.g. proximal and distal ends of femur not expanded, elongate pre-acetabular ilium, small and pyramidal patella) and derived (e.g. dorsal ridge on metatarsal IV, plantarly-projected curve in the distal shaft of phalanx III:1) hesperornithiform characters, suggesting it was more specialized than small hesperornithiforms like Baptornis advenus but not as highly derived as the larger Hesperornis regalis. The identification of Fumicollis highlights once again the significant diversity of hesperornithiforms that existed in the Late Cretaceous Western Interior Seaway. This diversity points to the existence of a complex ecosystem, perhaps with a high degree of niche partitioning, as indicated by the varying degrees of diving specializations among these birds. PMID:26580402

  11. Identification of a New Hesperornithiform from the Cretaceous Niobrara Chalk and Implications for Ecologic Diversity among Early Diving Birds.

    PubMed

    Bell, Alyssa; Chiappe, Luis M

    2015-01-01

    The Smoky Hill Member of the Niobrara Chalk in Kansas (USA) has yielded the remains of numerous members of the Hesperornithiformes, toothed diving birds from the late Early to Late Cretaceous. This study presents a new taxon of hesperornithiform from the Smoky Hill Member, Fumicollis hoffmani, the holotype of which is among the more complete hesperornithiform skeletons. Fumicollis has a unique combination of primitive (e.g. proximal and distal ends of femur not expanded, elongate pre-acetabular ilium, small and pyramidal patella) and derived (e.g. dorsal ridge on metatarsal IV, plantarly-projected curve in the distal shaft of phalanx III:1) hesperornithiform characters, suggesting it was more specialized than small hesperornithiforms like Baptornis advenus but not as highly derived as the larger Hesperornis regalis. The identification of Fumicollis highlights once again the significant diversity of hesperornithiforms that existed in the Late Cretaceous Western Interior Seaway. This diversity points to the existence of a complex ecosystem, perhaps with a high degree of niche partitioning, as indicated by the varying degrees of diving specializations among these birds.

  12. New fossil insect order Permopsocida elucidates major radiation and evolution of suction feeding in hemimetabolous insects (Hexapoda: Acercaria)

    PubMed Central

    Huang, Di-Ying; Bechly, Günter; Nel, Patricia; Engel, Michael S.; Prokop, Jakub; Azar, Dany; Cai, Chen-Yang; van de Kamp, Thomas; Staniczek, Arnold H.; Garrouste, Romain; Krogmann, Lars; dos Santos Rolo, Tomy; Baumbach, Tilo; Ohlhoff, Rainer; Shmakov, Alexey S.; Bourgoin, Thierry; Nel, André

    2016-01-01

    With nearly 100,000 species, the Acercaria (lice, plant lices, thrips, bugs) including number of economically important species is one of the most successful insect lineages. However, its phylogeny and evolution of mouthparts among other issues remain debatable. Here new methods of preparation permitted the comprehensive anatomical description of insect inclusions from mid-Cretaceous Burmese amber in astonishing detail. These “missing links” fossils, attributed to a new order Permopsocida, provide crucial evidence for reconstructing the phylogenetic relationships in the Acercaria, supporting its monophyly, and questioning the position of Psocodea as sister group of holometabolans in the most recent phylogenomic study. Permopsocida resolves as sister group of Thripida + Hemiptera and represents an evolutionary link documenting the transition from chewing to piercing mouthparts in relation to suction feeding. Identification of gut contents as angiosperm pollen documents an ecological role of Permopsocida as early pollen feeders with relatively unspecialized mouthparts. This group existed for 185 million years, but has never been diverse and was superseded by new pollenivorous pollinators during the Cretaceous co-evolution of insects and flowers. The key innovation of suction feeding with piercing mouthparts is identified as main event that triggered the huge post-Carboniferous radiation of hemipterans, and facilitated the spreading of pathogenic vectors. PMID:26961785

  13. New fossil insect order Permopsocida elucidates major radiation and evolution of suction feeding in hemimetabolous insects (Hexapoda: Acercaria)

    NASA Astrophysics Data System (ADS)

    Huang, Di-Ying; Bechly, Günter; Nel, Patricia; Engel, Michael S.; Prokop, Jakub; Azar, Dany; Cai, Chen-Yang; van de Kamp, Thomas; Staniczek, Arnold H.; Garrouste, Romain; Krogmann, Lars; Dos Santos Rolo, Tomy; Baumbach, Tilo; Ohlhoff, Rainer; Shmakov, Alexey S.; Bourgoin, Thierry; Nel, André

    2016-03-01

    With nearly 100,000 species, the Acercaria (lice, plant lices, thrips, bugs) including number of economically important species is one of the most successful insect lineages. However, its phylogeny and evolution of mouthparts among other issues remain debatable. Here new methods of preparation permitted the comprehensive anatomical description of insect inclusions from mid-Cretaceous Burmese amber in astonishing detail. These “missing links” fossils, attributed to a new order Permopsocida, provide crucial evidence for reconstructing the phylogenetic relationships in the Acercaria, supporting its monophyly, and questioning the position of Psocodea as sister group of holometabolans in the most recent phylogenomic study. Permopsocida resolves as sister group of Thripida + Hemiptera and represents an evolutionary link documenting the transition from chewing to piercing mouthparts in relation to suction feeding. Identification of gut contents as angiosperm pollen documents an ecological role of Permopsocida as early pollen feeders with relatively unspecialized mouthparts. This group existed for 185 million years, but has never been diverse and was superseded by new pollenivorous pollinators during the Cretaceous co-evolution of insects and flowers. The key innovation of suction feeding with piercing mouthparts is identified as main event that triggered the huge post-Carboniferous radiation of hemipterans, and facilitated the spreading of pathogenic vectors.

  14. New fossil insect order Permopsocida elucidates major radiation and evolution of suction feeding in hemimetabolous insects (Hexapoda: Acercaria).

    PubMed

    Huang, Di-Ying; Bechly, Günter; Nel, Patricia; Engel, Michael S; Prokop, Jakub; Azar, Dany; Cai, Chen-Yang; van de Kamp, Thomas; Staniczek, Arnold H; Garrouste, Romain; Krogmann, Lars; Dos Santos Rolo, Tomy; Baumbach, Tilo; Ohlhoff, Rainer; Shmakov, Alexey S; Bourgoin, Thierry; Nel, André

    2016-03-10

    With nearly 100,000 species, the Acercaria (lice, plant lices, thrips, bugs) including number of economically important species is one of the most successful insect lineages. However, its phylogeny and evolution of mouthparts among other issues remain debatable. Here new methods of preparation permitted the comprehensive anatomical description of insect inclusions from mid-Cretaceous Burmese amber in astonishing detail. These "missing links" fossils, attributed to a new order Permopsocida, provide crucial evidence for reconstructing the phylogenetic relationships in the Acercaria, supporting its monophyly, and questioning the position of Psocodea as sister group of holometabolans in the most recent phylogenomic study. Permopsocida resolves as sister group of Thripida + Hemiptera and represents an evolutionary link documenting the transition from chewing to piercing mouthparts in relation to suction feeding. Identification of gut contents as angiosperm pollen documents an ecological role of Permopsocida as early pollen feeders with relatively unspecialized mouthparts. This group existed for 185 million years, but has never been diverse and was superseded by new pollenivorous pollinators during the Cretaceous co-evolution of insects and flowers. The key innovation of suction feeding with piercing mouthparts is identified as main event that triggered the huge post-Carboniferous radiation of hemipterans, and facilitated the spreading of pathogenic vectors.

  15. A new U-Pb zircon age and a volcanogenic model for the early Permian Chemnitz Fossil Forest

    NASA Astrophysics Data System (ADS)

    Luthardt, Ludwig; Hofmann, Mandy; Linnemann, Ulf; Gerdes, Axel; Marko, Linda; Rößler, Ronny

    2018-04-01

    The Chemnitz Fossil Forest depicts one of the most completely preserved forest ecosystems in late Paleozoic Northern Hemisphere of tropical Pangaea. Fossil biota was preserved as a T0 taphocoenosis resulting from the instantaneous entombment by volcanic ashes of the Zeisigwald Tuff. The eruption depicts one of the late magmatic events of post-variscan rhyolitic volcanism in Central Europe. This study represents a multi-method evaluation of the pyroclastic ejecta encompassing sedimentological and (isotope) geochemical approaches to shed light on magmatic and volcanic processes, and their role in preserving the fossil assemblage. The Zeisigwald Tuff pyroclastics (ZTP) reveal a radiometric age of 291 ± 2 Ma, pointing to a late Sakmarian/early Artinskian (early Permian) stratigraphic position for the Chemnitz Fossil Forest. The initial eruption was of phreatomagmatic style producing deposits of cool, wet ashes, which deposited from pyroclastic fall out and density currents. Culmination of the eruption is reflected by massive hot and dry ignimbrites. Whole-rock geochemistry and zircon grain analysis show that pyroclastic deposits originated from a felsic, highly specialised magma, which underwent advanced fractionation, and is probably related to post-Carboniferous magmatism in the Western Erzgebirge. The ascending magma recycled old cadomic crust of the Saxo-thuringian zone, likely induced by a mantle-derived heat flow during a phase of post-variscan crustal delamination. Geochemical trends within the succession of the basal pyroclastic horizons reflect inverse zonation of the magma chamber and provide evidence for the continuous eruption and thus a simultaneous burial of the diverse ecosystem.

  16. Late Jurassic - Early Cretaceous convergent margins of Northeastern Asia with Northwestern Pacific and Proto-Arctic oceans

    NASA Astrophysics Data System (ADS)

    Sokolov, Sergey; Luchitskaya, Marina; Tuchkova, Marianna; Moiseev, Artem; Ledneva, Galina

    2013-04-01

    Continental margin of Northeastern Asia includes many island arc terranes that differ in age and tectonic position. Two convergent margins are reconstructed for Late Jurassic - Early Cretaceous time: Uda-Murgal and Alazeya - Oloy island arc systems. A long tectonic zone composed of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks is recognized along the Asian continent margin from the Mongol-Okhotsk thrust-fold belt on the south to the Chukotka Peninsula on the north. This belt represents the Uda-Murgal arc, which was developed along the convergent margin between Northeastern Asia and Northwestern Meso-Pacific. Several segments are identified in this arc based upon the volcanic and sedimentary rock assemblages, their respective compositions and basement structures. The southern and central parts of the Uda-Murgal island arc system were a continental margin belt with heterogeneous basement represented by metamorphic rocks of the Siberian craton, the Verkhoyansk terrigenous complex of Siberian passive margin and the Koni-Taigonos late Paleozoic to early Mesozoic island arc with accreted oceanic terranes. At the present day latitude of the Pekulney and Chukotka segments there was an ensimatic island arc with relicts of the South Anyui oceanic basin in backarc basin. Alazeya-Oloy island arc systems consists of Paleozoic and Mesozoic complexes that belong to the convergent margin between Northeastern Asia and Proto-Artic Ocean. It separated structures of the North American and Siberian continents. The Siberian margin was active whereas the North American margin was passive. The Late Jurassic was characterized by termination of a spreading in the Proto-Arctic Ocean and transformation of the latter into the closing South Anyui turbidite basin. In the beginning the oceanic lithosphere and then the Chukotka microcontinent had been subducted beneath the Alazeya-Oloy volcanic belt

  17. Palaeogeographic evolution of the central segment of the South Atlantic during Early Cretaceous times: palaeotopographic and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Chaboureau, A. C.; Guillocheau, F.; Robin, C.; Rohais, S.; Moulin, M.; Aslanian, D.

    2012-04-01

    The tectonic and sedimentary evolution of the Early Cretaceous rift of the central segment of the South Atlantic Ocean is debated. Our objective is to better constraint the timing of its evolution by drawing palaeogeographic and deformation maps. Eight palaeogeographic and deformations maps were drawn from the Berriasian to the Middle-Late Aptian, based on a biostratigraphic (ostracodes and pollens) chart recalibrated on absolute ages (chemostratigraphy, interstratified volcanics, Re-Os dating of the organic matter). The central segment of the South Atlantic is composed of two domains that have a different history in terms of deformation and palaeogeography. The southern domain includes Namibe, Santos and Campos Basins. The northern domain extends from Espirito Santo and North Kwanza Basins, in the South, to Sergipe-Alagoas and North Gabon Basins to the North. Extension started in the northern domain during Late Berriasian (Congo-Camamu Basin to Sergipe-Alagoas-North Gabon Basins) and migrated southward. At that time, the southern domain was not a subsiding domain. This is time of emplacement of the Parana-Etendeka Trapp (Late Hauterivian-Early Barremian). Extension started in this southern domain during Early Barremian. The brittle extensional period is shorter in the South (5-6 Ma, Barremian to base Aptian) than in the North (19 to 20 Myr, Upper Berriasian to Base Aptian). From Late Berriasian to base Aptian, the northern domain evolves from a deep lake with lateral highs to a shallower one, organic-rich with no more highs. The lake migrates southward in two steps, until Valanginian at the border between the northern and southern domains, until Early Barremian, North of Walvis Ridge. The Sag phase is of Middle to Late Aptian age. In the southern domain, the transition between the brittle rift and the sag phase is continuous. In the northern domain, this transition corresponds to a hiatus of Early to Middle Aptian age, possible period of mantle exhumation. Marine

  18. Liverwort Mimesis in a Cretaceous Lacewing Larva.

    PubMed

    Liu, Xingyue; Shi, Gongle; Xia, Fangyuan; Lu, Xiumei; Wang, Bo; Engel, Michael S

    2018-05-07

    Camouflage and mimicry are staples among predator-prey interactions, and evolutionary novelties in behavior, anatomy, and physiology that permit such mimesis are rife throughout the biological world [1, 2]. These specializations allow for prey to better evade capture or permit predators to more easily approach their prey, or in some cases, the mimesis can serve both purposes. Despite the importance of mimesis and camouflage in predator-avoidance or hunting strategies, the long-term history of these traits is often obscured by an insufficient fossil record. Here, we report the discovery of Upper Cretaceous (approximately 100 million years old) green lacewing larvae (Chrysopoidea), preserved in amber from northern Myanmar, anatomically modified to mimic coeval liverworts. Chrysopidae are a diverse lineage of lacewings whose larvae usually camouflage themselves with a uniquely constructed packet of exogenous debris, conveying greater stealth upon them as they hunt prey such as aphids as well as evade their own predators [3, 4]. However, no lacewing larvae today mimic their surroundings. While the anatomy of Phyllochrysa huangi gen. et sp. nov. allowed it to avoid detection, the lack of setae or other anatomical elements for entangling debris as camouflage means its sole defense was its mimicry, and it could have been a stealthy hunter like living and other fossil Chrysopoidea or been an ambush predator aided by its disguise. The present fossils demonstrate a hitherto unknown life-history strategy among these "wolf in sheep's clothing" predators, one that apparently evolved from a camouflaging ancestor but did not persist within the lineage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Sea level regulated tetrapod diversity dynamics through the Jurassic/Cretaceous interval

    PubMed Central

    Tennant, Jonathan P.; Mannion, Philip D.; Upchurch, Paul

    2016-01-01

    Reconstructing deep time trends in biodiversity remains a central goal for palaeobiologists, but our understanding of the magnitude and tempo of extinctions and radiations is confounded by uneven sampling of the fossil record. In particular, the Jurassic/Cretaceous (J/K) boundary, 145 million years ago, remains poorly understood, despite an apparent minor extinction and the radiation of numerous important clades. Here we apply a rigorous subsampling approach to a comprehensive tetrapod fossil occurrence data set to assess the group's macroevolutionary dynamics through the J/K transition. Although much of the signal is exclusively European, almost every higher tetrapod group was affected by a substantial decline across the boundary, culminating in the extinction of several important clades and the ecological release and radiation of numerous modern tetrapod groups. Variation in eustatic sea level was the primary driver of these patterns, controlling biodiversity through availability of shallow marine environments and via allopatric speciation on land. PMID:27587285

  20. Hydrocarbons related to early Cretaceous source rocks, reservoirs and seals, trapped in northeastern Neuqun basin, Argentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulisano, C.; Minniti, S.; Rossi, G.

    1996-08-01

    The Jurassic-Cretaceous backarc Neuqun Basin, located in the west central part of Argentina, is currently the most prolific oil basin of the country. The primary objective of this study is to evaluate an Early Cretaceous to Tertiary petroleum system in the northeastern portion of the basin, where oil and gas occurrences (e.g., Puesto Hernandez, Chihuido de la Sierra Negra, El Trapial and Filo Morado oil fields, among others) provide 82 MMBO/yr comprising 67% of the basin oil production and 31% of Argentina. The source rocks are represented by two thick sections of basinal kerogen type I and II organic-rich shales,more » deposited during transgressive peaks (Agrio Formation), with TOC content up to 5.1%. Lowstand sandstones bodies, 10 to 100 m thick, are composed of eolian and fluvial facies with good reservoir conditions (Avil and Troncoso Sandstones). The seals are provided by the organic-rich shales resting sharply upon the Avil Sandstone and a widespread Aptian-Albian evaporitic event (Huitrin Formation) on top of the Troncoso reservoir. Tertiary structural traps (duplex anticlines) are developed in the outer foothills, whereas structural, combined and stratigraphic traps are present in the adjacent stable structural platform. Oil-to-source rock and oil-to-oil correlation by chromatographic and biomarker fingerprints, carbon isotopic composition and the geological evidences support the proposed oil system.« less

  1. Mesozoic units in SE Rhodope (Bulgaria): new structural and petrologic data and geodynamic implications for the Early Jurassic to Mid-Cretaceous evolution of the Vardar ocean basin

    NASA Astrophysics Data System (ADS)

    Bonev, N.; Stampfli, G.

    2003-04-01

    In the southeastern Rhodope, both in southern Bulgaria and northern Greece, Mesozoic low-grade to non-metamorphic units, together with similar units in the eastern Vardar zone, were designated as the Circum-Rhodope Belt (CRB) that fringes the Rhodope high-grade metamorphic complex. In the Bulgarian southeastern Rhodope, Mesozoic units show a complicated tectono-stratigraphy underlaid by amphibolite-facies basement units. The basement sequence includes a lower orthogneiss unit with eclogite and meta-ophiolite lenses overlain by an upper marble-schist unit, presumably along a SSW-directed detachment fault as indicated by shear sense indicators. The Mesozoic sequence starts with greenschist units at the base, overlaying the basement along the tectonic contact. Mineral assemblages such as actinolite-chlorite-white mica ± garnet in schists and phyllites indicate medium greenschist facies metamorphism. Kinematic indicators in the same unit demonstrate a top-to-the NNW and NNE shear deformation coeval with metamorphism, subparallel to NW-SE to NE-SW trending mineral elongation lineation and axis of NW vergent small-scale folds. The greenschist unit is overlain by tectonic or depositional contact of melange-like unit that consists of diabases with Lower Jurassic radiolarian chert interlayers, Upper Permian siliciclastics and Middle-Upper Triassic limestones found as blocks in olistostromic member, embedded in Jurassic-Lower Cretaceous turbiditic matrix. The uppermost sedimentary-volcanogenic unit is represented by andesito-basalt lavas and gabbro-diorites, interbedded with terrigeneous-marl and tufaceous sediments that yield Upper Cretaceous (Campanian) fossils, related to the Late Cretaceous back-arc magmatic activity to the north in Sredna Gora zone. Petrologic and geochemical data indicates sub-alkaline and tholeiitic character of the greenschists and ophiolitic basaltic lavas, and the latter are classified as low-K and very low-Ti basalts with some boninitic affinity

  2. A long-lived Late Cretaceous-early Eocene extensional province in Anatolia? Structural evidence from the Ivriz Detachment, southern central Turkey

    NASA Astrophysics Data System (ADS)

    Gürer, Derya; Plunder, Alexis; Kirst, Frederik; Corfu, Fernando; Schmid, Stefan M.; van Hinsbergen, Douwe J. J.

    2018-01-01

    Central Anatolia exposes previously buried and metamorphosed, continent-derived rocks - the Kırşehir and Afyon zones - now covering an area of ∼300 × 400 km. So far, the exhumation history of these rocks has been poorly constrained. We show for the first time that the major, >120 km long, top-NE 'Ivriz' Detachment controlled the exhumation of the HP/LT metamorphic Afyon Zone in southern Central Anatolia. We date its activity at between the latest Cretaceous and early Eocene times. Combined with previously documented isolated extensional detachments found in the Kırşehir Block, our results suggest that a major province governed by extensional exhumation was active throughout Central Anatolia between ∼80 and ∼48 Ma. Although similar in dimension to the Aegean extensional province to the east, the Central Anatolian extensional province is considerably older and was controlled by a different extension direction. From this, we infer that the African slab(s) that subducted below Anatolia must have rolled back relative to the Aegean slab since at least the latest Cretaceous, suggesting that these regions were underlain by a segmented slab. Whether or not these early segments already corresponded to the modern Aegean, Antalya, and Cyprus slab segments remains open for debate, but slab segmentation must have occurred much earlier than previously thought.

  3. The last dinosaurs of Brazil: The Bauru Group and its implications for the end-Cretaceous mass extinction.

    PubMed

    Brusatte, Stephen L; Candeiro, Carlos R A; Simbras, Felipe M

    2017-01-01

    The non-avian dinosaurs died out at the end of the Cretaceous, ~66 million years ago, after an asteroid impact. The prevailing hypothesis is that the effects of the impact suddenly killed the dinosaurs, but the poor fossil record of latest Cretaceous (Campanian-Maastrichtian) dinosaurs from outside Laurasia (and even more particularly, North America) makes it difficult to test specific extinction scenarios. Over the past few decades, a wealth of new discoveries from the Bauru Group of Brazil has revealed a unique window into the evolution of terminal Cretaceous dinosaurs from the southern continents. We review this record and demonstrate that there was a diversity of dinosaurs, of varying body sizes, diets, and ecological roles, that survived to the very end of the Cretaceous (Maastrichtian: 72-66 million years ago) in Brazil, including a core fauna of titanosaurian sauropods and abelisaurid and carcharodontosaurid theropods, along with a variety of small-to-mid-sized theropods. We argue that this pattern best fits the hypothesis that southern dinosaurs, like their northern counterparts, were still diversifying and occupying prominent roles in their ecosystems before the asteroid suddenly caused their extinction. However, this hypothesis remains to be tested with more refined paleontological and geochronological data, and we give suggestions for future work.

  4. Palaeomagnetism of lower cretaceous tuffs from Yukon-Kuskokwim delta region, western Alaska

    USGS Publications Warehouse

    Globerman, B.R.; Coe, R.S.; Hoare, J.M.; Decker, J.

    1983-01-01

    During the past decade, the prescient arguments1-3 for the allochthoneity of large portions of southern Alaska have been corroborated by detailed geological and palaeomagnetic studies in south-central Alaska 4-9 the Alaska Peninsula10, Kodiak Island11,12 and the Prince William Sound area13 (Fig. 1). These investigations have demonstrated sizeable northward displacements for rocks of late Palaeozoic, Mesozoic, and early Tertiary age in those regions, with northward motion at times culminating in collision of the allochthonous terranes against the backstop of 'nuclear' Alaska14,15. A fundamental question is which parts of Alaska underwent significantly less latitudinal translation relative to the 'stable' North American continent, thereby serving as the 'accretionary nucleus' into which the displaced 'microplates'16 were eventually incorporated17,18? Here we present new palaeomagnetic results from tuffs and associated volcaniclastic rocks of early Cretaceous age from the Yukon-Kuskokwin delta region in western Alaska. These rocks were probably overprinted during the Cretaceous long normal polarity interval, although a remagnetization event as recent as Palaeocene cannot be ruled out. This overprint direction is not appreciably discordant from the expected late Cretaceous direction for cratonal North America. The implied absence of appreciable northward displacement for this region is consistent with the general late Mesozoic-early Tertiary tectonic pattern for Alaska, based on more definitive studies: little to no poleward displacement for central Alaska, though substantially more northward drift for the 'southern Alaska terranes' (comprising Alaska Peninsula, Kodiak Island, Prince William Sound area, and Matunuska Valley) since late Cretaceous to Palaeocene time. ?? 1983 Nature Publishing Group.

  5. Two waves of colonization straddling the K–Pg boundary formed the modern reef fish fauna

    PubMed Central

    Price, S. A.; Schmitz, L.; Oufiero, C. E.; Eytan, R. I.; Dornburg, A.; Smith, W. L.; Friedman, M.; Near, T. J.; Wainwright, P. C.

    2014-01-01

    Living reef fishes are one of the most diverse vertebrate assemblages on Earth. Despite its prominence and ecological importance, the origins and assembly of the reef fish fauna is poorly described. A patchy fossil record suggests that the major colonization of reef habitats must have occurred in the Late Cretaceous and early Palaeogene, with the earliest known modern fossil coral reef fish assemblage dated to 50 Ma. Using a phylogenetic approach, we analysed the early evolutionary dynamics of modern reef fishes. We find that reef lineages successively colonized reef habitats throughout the Late Cretaceous and early Palaeogene. Two waves of invasion were accompanied by increasing morphological convergence: one in the Late Cretaceous from 90 to 72 Ma and the other immediately following the end-Cretaceous mass extinction. The surge in reef invasions after the Cretaceous–Palaeogene boundary continued for 10 Myr, after which the pace of transitions to reef habitats slowed. Combined, these patterns match a classic niche-filling scenario: early transitions to reefs were made rapidly by morphologically distinct lineages and were followed by a decrease in the rate of invasions and eventual saturation of morphospace. Major alterations in reef composition, distribution and abundance, along with shifts in climate and oceanic currents, occurred during the Late Cretaceous and early Palaeogene interval. A causal mechanism between these changes and concurrent episodes of reef invasion remains obscure, but what is clear is that the broad framework of the modern reef fish fauna was in place within 10 Myr of the end-Cretaceous extinction. PMID:24695431

  6. Osedax borings in fossil marine bird bones

    PubMed Central

    Kahl, Wolf-Achim; Goedert, James L.

    2010-01-01

    The bone-eating marine annelid Osedax consumes mainly whale bones on the deep-sea floor, but recent colonization experiments with cow bones and molecular age estimates suggesting a possible Cretaceous origin of Osedax indicate that this worm might be able grow on a wider range of substrates. The suggested Cretaceous origin was thought to imply that Osedax could colonize marine reptile or fish bones, but there is currently no evidence that Osedax consumes bones other than those of mammals. We provide the first evidence that Osedax was, and most likely still is, able to consume non-mammalian bones, namely bird bones. Borings resembling those produced by living Osedax were found in bones of early Oligocene marine flightless diving birds (family Plotopteridae). The species that produced these boreholes had a branching filiform root that grew to a length of at least 3 mm, and lived in densities of up to 40 individuals per square centimeter. The inclusion of bird bones into the diet of Osedax has interesting implications for the recent suggestion of a Cretaceous origin of this worm because marine birds have existed continuously since the Cretaceous. Bird bones could have enabled this worm to survive times in the Earth’s history when large marine vertebrates other than fish were rare, specifically after the disappearance of large marine reptiles at the end-Cretaceous mass extinction event and before the rise of whales in the Eocene. PMID:21103978

  7. Osedax borings in fossil marine bird bones.

    PubMed

    Kiel, Steffen; Kahl, Wolf-Achim; Goedert, James L

    2011-01-01

    The bone-eating marine annelid Osedax consumes mainly whale bones on the deep-sea floor, but recent colonization experiments with cow bones and molecular age estimates suggesting a possible Cretaceous origin of Osedax indicate that this worm might be able grow on a wider range of substrates. The suggested Cretaceous origin was thought to imply that Osedax could colonize marine reptile or fish bones, but there is currently no evidence that Osedax consumes bones other than those of mammals. We provide the first evidence that Osedax was, and most likely still is, able to consume non-mammalian bones, namely bird bones. Borings resembling those produced by living Osedax were found in bones of early Oligocene marine flightless diving birds (family Plotopteridae). The species that produced these boreholes had a branching filiform root that grew to a length of at least 3 mm, and lived in densities of up to 40 individuals per square centimeter. The inclusion of bird bones into the diet of Osedax has interesting implications for the recent suggestion of a Cretaceous origin of this worm because marine birds have existed continuously since the Cretaceous. Bird bones could have enabled this worm to survive times in the Earth's history when large marine vertebrates other than fish were rare, specifically after the disappearance of large marine reptiles at the end-Cretaceous mass extinction event and before the rise of whales in the Eocene.

  8. Osedax borings in fossil marine bird bones

    NASA Astrophysics Data System (ADS)

    Kiel, Steffen; Kahl, Wolf-Achim; Goedert, James L.

    2011-01-01

    The bone-eating marine annelid Osedax consumes mainly whale bones on the deep-sea floor, but recent colonization experiments with cow bones and molecular age estimates suggesting a possible Cretaceous origin of Osedax indicate that this worm might be able grow on a wider range of substrates. The suggested Cretaceous origin was thought to imply that Osedax could colonize marine reptile or fish bones, but there is currently no evidence that Osedax consumes bones other than those of mammals. We provide the first evidence that Osedax was, and most likely still is, able to consume non-mammalian bones, namely bird bones. Borings resembling those produced by living Osedax were found in bones of early Oligocene marine flightless diving birds (family Plotopteridae). The species that produced these boreholes had a branching filiform root that grew to a length of at least 3 mm, and lived in densities of up to 40 individuals per square centimeter. The inclusion of bird bones into the diet of Osedax has interesting implications for the recent suggestion of a Cretaceous origin of this worm because marine birds have existed continuously since the Cretaceous. Bird bones could have enabled this worm to survive times in the Earth's history when large marine vertebrates other than fish were rare, specifically after the disappearance of large marine reptiles at the end-Cretaceous mass extinction event and before the rise of whales in the Eocene.

  9. Fossilization of feathers

    NASA Astrophysics Data System (ADS)

    Davis, Paul G.; Briggs, Derek E. G.

    1995-09-01

    Scanning electron microscopy of feathers has revealed evidence that a bacterial glycocalyx (a network of exocellular polysaccharide fibers) played a role in promoting their fossilization in some cases. This mode of preservation has not been reported in other soft tissues. The majority of fossil feathers are preserved as carbonized traces. More rarely, bacteria on the surface are replicated by authigenic minerals (bacterial autolithification). The feathers of Archaeopteryx are preserved mainly by imprintation following early lithification of the substrate and decay of the feather. Lacustrine settings provide the most important taphonomic window for feather preservation. Preservation in terrestrial and normal-marine settings involves very different processes (in amber and in authigenically mineralized coprolites, respectively). Therefore, there may be a significant bias in the avian fossil record in favor of inland water habitats.

  10. Upper Cretaceous molluscan record along a transect from Virden, New Mexico, to Del Rio, Texas

    USGS Publications Warehouse

    Cobban, W.A.; Hook, S.C.; McKinney, K.C.

    2008-01-01

    Updated age assignments and new collections of molluscan fossils from lower Cenomanian through upper Campanian strata in Texas permit a much refined biostratigraphic correlation with the rocks of New Mexico and the Western Interior. Generic names of many Late Cretaceous ammonites and inoceramid bivalves from Texas are updated to permit this correlation. Strata correlated in the west-to-east transect include the lower Cenomanian Beartooth Quartzite and Sarten Sandstone of southwest New Mexico, and the Eagle Mountains Formation, Del Rio Clay, Buda Limestone, and. basal beds of the Chispa Summit, Ojinaga, and Boquillas Formations of the Texas-Mexico border area. Middle Cenomanian strata are lacking in southwestern New Mexico but are present in the lower parts of the Chispa Summit and Boquillas Formations in southwest Texas. Upper Cenomanian and lower Turonian rocks are present at many localities in New Mexico and Texas in the Mancos Shale and Chispa Summit, Ojinaga, and Boquillas Formations. Middle Turonian and younger rocks seem to be entirely nonmarine in southwestern New Mexico, but they are marine in the Rio Grande area in the Chispa. Summit, Ojinaga, and Boquillas Formations. The upper part of the Chispa Summit and Boquillas contain late Turonian fossils. Rocks of Coniacian and Santonian age are present high in the Chispa Summit, Ojinaga, and Boquillas Formations, and in the lower part of the Austin. The San Carlos, Aguja, Pen, and Austin Formations contain fossils of Campanian age. Fossils representing at least 38 Upper Cretaceous ammonite zones are present along the transect. Collections made in recent years in southwestern New Mexico and at Sierra de Cristo Rey just west of downtown El Paso, Texas, have been well treated and do not need revision. Taxonomic names and zonations published in the pre-1970 literature on the Rio Grande area of Texas have been updated. New fossil collections from the Big Bend National Park, Texas, allow for a much refined correlation

  11. New hominid fossils from Woranso-Mille (Central Afar, Ethiopia) and taxonomy of early Australopithecus.

    PubMed

    Haile-Selassie, Yohannes; Saylor, Beverly Z; Deino, Alan; Alene, Mulugeta; Latimer, Bruce M

    2010-03-01

    The phylogenetic relationship between Australopithecus anamensis and Australopithecus afarensis has been hypothesized as ancestor-descendant. However, the weakest part of this hypothesis has been the absence of fossil samples between 3.6 and 3.9 million years ago. Here we describe new fossil specimens from the Woranso-Mille site in Ethiopia that are directly relevant to this issue. They derive from sediments chronometrically dated to 3.57-3.8 million years ago. The new fossil specimens are largely isolated teeth, partial mandibles, and maxillae, and some postcranial fragments. However, they shed some light on the relationships between Au. anamensis and Au. afarensis. The dental morphology shows closer affinity with Au. anamensis from Allia Bay/Kanapoi (Kenya) and Asa Issie (Ethiopia) than with Au. afarensis from Hadar (Ethiopia). However, they are intermediate in dental and mandibular morphology between Au. anamensis and the older Au. afarensis material from Laetoli. The new fossils lend strong support to the hypothesized ancestor-descendant relationship between these two early Australopithecus species. The Woranso-Mille hominids cannot be unequivocally assigned to either taxon due to their dental morphological intermediacy. This could be an indication that the Kanapoi, Allia Bay, and Asa Issie Au. anamensis is the primitive form of Au. afarensis at Hadar with the Laetoli and Woranso-Mille populations sampling a mosaic of morphological features from both ends. It is particularly difficult to draw a line between Au. anamensis and Au. afarensis in light of the new discoveries from Woranso-Mille. The morphology provides no evidence that Au. afarensis and Au. anamensis represent distinct taxa.

  12. Changes to the Fossil Record of Insects through Fifteen Years of Discovery

    PubMed Central

    Nicholson, David B.; Mayhew, Peter J.; Ross, Andrew J.

    2015-01-01

    The first and last occurrences of hexapod families in the fossil record are compiled from publications up to end-2009. The major features of these data are compared with those of previous datasets (1993 and 1994). About a third of families (>400) are new to the fossil record since 1994, over half of the earlier, existing families have experienced changes in their known stratigraphic range and only about ten percent have unchanged ranges. Despite these significant additions to knowledge, the broad pattern of described richness through time remains similar, with described richness increasing steadily through geological history and a shift in dominant taxa, from Palaeoptera and Polyneoptera to Paraneoptera and Holometabola, after the Palaeozoic. However, after detrending, described richness is not well correlated with the earlier datasets, indicating significant changes in shorter-term patterns. There is reduced Palaeozoic richness, peaking at a different time, and a less pronounced Permian decline. A pronounced Triassic peak and decline is shown, and the plateau from the mid Early Cretaceous to the end of the period remains, albeit at substantially higher richness compared to earlier datasets. Origination and extinction rates are broadly similar to before, with a broad decline in both through time but episodic peaks, including end-Permian turnover. Origination more consistently exceeds extinction compared to previous datasets and exceptions are mainly in the Palaeozoic. These changes suggest that some inferences about causal mechanisms in insect macroevolution are likely to differ as well. PMID:26176667

  13. Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest

    PubMed Central

    Wing, Scott L.; Herrera, Fabiany; Jaramillo, Carlos A.; Gómez-Navarro, Carolina; Wilf, Peter; Labandeira, Conrad C.

    2009-01-01

    Neotropical rainforests have a very poor fossil record, making hypotheses concerning their origins difficult to evaluate. Nevertheless, some of their most important characteristics can be preserved in the fossil record: high plant diversity, dominance by a distinctive combination of angiosperm families, a preponderance of plant species with large, smooth-margined leaves, and evidence for a high diversity of herbivorous insects. Here, we report on an ≈58-my-old flora from the Cerrejón Formation of Colombia (paleolatitude ≈5 °N) that is the earliest megafossil record of Neotropical rainforest. The flora has abundant, diverse palms and legumes and similar family composition to extant Neotropical rainforest. Three-quarters of the leaf types are large and entire-margined, indicating rainfall >2,500 mm/year and mean annual temperature >25 °C. Despite modern family composition and tropical paleoclimate, the diversity of fossil pollen and leaf samples is 60–80% that of comparable samples from extant and Quaternary Neotropical rainforest from similar climates. Insect feeding damage on Cerrejón fossil leaves, representing primary consumers, is abundant, but also of low diversity, and overwhelmingly made by generalist feeders rather than specialized herbivores. Cerrejón megafossils provide strong evidence that the same Neotropical rainforest families have characterized the biome since the Paleocene, maintaining their importance through climatic phases warmer and cooler than present. The low diversity of both plants and herbivorous insects in this Paleocene Neotropical rainforest may reflect an early stage in the diversification of the lineages that inhabit this biome, and/or a long recovery period from the terminal Cretaceous extinction. PMID:19833876

  14. Seasonal Equability in Late Cretaceous Central-Eastern Iberia? Inferences from Isotopic Data on Vertebrates

    NASA Astrophysics Data System (ADS)

    Domingo, L.; Barroso-Barcenilla, F.; Cambra-Moo, O.

    2013-12-01

    After the mid-Cretaceous thermal maximum, the latest Cretaceous witnessed a long-term cooling trend (Santonian-Maastrichtian). It has been proposed that seasonal equability (low mean annual range of temperatures) accompanied the mid-Cretaceous greenhouse period, but was it also a climatic feature of the colder latest Cretaceous? Terrestrial proxies have proven useful in understanding past seasonality and in this vein, we performed oxygen isotope analyses of the phosphate (δ18OPO4) on the rich and exceptionally well preserved late Campanian-early Maastrichtian vertebrate assemblage of 'Lo Hueco' fossil site (Cuenca, Spain). We analysed theropod and crocodilian tooth enamel, turtle shell, and gar ganoine with the aim of evaluating paleoclimatic conditions existing in the western area of the Tethys realm. The 'Lo Hueco' locality was situated at a paleo-latitude of 31°N and sedimentological and paleontological studies point to a coastal environment with distributary channels and sporadic sabkhas. Samples were collected from two different levels: G1 (proximal muddy floodplain) and G2 (distal muddy floodplain), with G1 being older. δ18OH2O values were calculated from theropod, crocodilian and turtle δ18OPO4 values using established equations and in all cases they are in good agreement with precipitation water from subtropical latest Cretaceous and modern settings. Theropods recorded consistently slightly lower δ18OH2O values (G1: -4.1×1.4‰, G2: -3.5×0.5‰) than crocodilians (G1: -3.6×0.6‰, G2: -2.7×0.6‰) and turtles (G1: -3.8×0.6‰, G2: -2.9×0.5‰). This may be due to terrestrial endothermic taxa, such as theropods, recording ingested water year round, meanwhile semiaquatic ectothermic taxa, such as crocodilians and turtles, would record δ18OH2O values representing local meteoric waters over the warm season, when conditions are favorable for apatite synthesis. With these δ18OH2O values, we used gar ganoine δ18OPO4 values as an independent proxy to

  15. The phylogeny of fossil whip spiders.

    PubMed

    Garwood, Russell J; Dunlop, Jason A; Knecht, Brian J; Hegna, Thomas A

    2017-04-21

    Arachnids are a highly successful group of land-dwelling arthropods. They are major contributors to modern terrestrial ecosystems, and have a deep evolutionary history. Whip spiders (Arachnida, Amblypygi), are one of the smaller arachnid orders with ca. 190 living species. Here we restudy one of the oldest fossil representatives of the group, Graeophonus anglicus Pocock, 1911 from the Late Carboniferous (Duckmantian, ca. 315 Ma) British Middle Coal Measures of the West Midlands, UK. Using X-ray microtomography, our principal aim was to resolve details of the limbs and mouthparts which would allow us to test whether this fossil belongs in the extant, relict family Paracharontidae; represented today by a single, blind species Paracharon caecus Hansen, 1921. Tomography reveals several novel and significant character states for G. anglicus; most notably in the chelicerae, pedipalps and walking legs. These allowed it to be scored into a phylogenetic analysis together with the recently described Paracharonopsis cambayensis Engel & Grimaldi, 2014 from the Eocene (ca. 52 Ma) Cambay amber, and Kronocharon prendinii Engel & Grimaldi, 2014 from Cretaceous (ca. 99 Ma) Burmese amber. We recovered relationships of the form ((Graeophonus (Paracharonopsis + Paracharon)) + (Charinus (Stygophrynus (Kronocharon (Charon (Musicodamon + Paraphrynus)))))). This tree largely reflects Peter Weygoldt's 1996 classification with its basic split into Paleoamblypygi and Euamblypygi lineages; we were able to score several of his characters for the first time in fossils. Our analysis draws into question the monophyly of the family Charontidae. Our data suggest that Graeophonus is a crown group amblypygid, and falls within a monophyletic Paleoamblypgi clade, but outside the family Paracharontidae (= Paracharonopsis + Paracharon). Our results also suggest a new placement for the Burmese amber genus Kronocharon, a node further down from its original position. Overall, we offer a

  16. Cosmic Genes in the Cretaceous-Tertiary transition

    NASA Astrophysics Data System (ADS)

    Wallis, M. K.

    2003-07-01

    It is proposed that genes coding for Aib-polypeptides arose early on in the K/T transition, presumed from the Earth's accretion of interplanetary (comet) dust. Aib-fungi flourished because of the evolutionary advantage of novel antibiotics. The stress on Cretaceous biology led directly and indirectly to mass species extinctions, including many dinosaur species, in the epoch preceding the Chicxulub impact.

  17. Early dolomitization in the Lower Cretaceous shallow-water carbonates of Southern Apennines (Italy): Clues about palaeoclimatic fluctuations in western Tethys

    NASA Astrophysics Data System (ADS)

    Vinci, Francesco; Iannace, Alessandro; Parente, Mariano; Pirmez, Carlos; Torrieri, Stefano; Giorgioni, Maurizio

    2017-12-01

    A multidisciplinary study of the dolomitized bodies present in the Lower Cretaceous platform carbonates of Mt. Faito (Southern Apennines - Italy) was carried out in order to explore the connection between early dolomite formation and fluctuating climate conditions. The Berriasian-Aptian investigated succession is 466 m thick and mainly consists of shallow-water lagoonal limestones with frequent dolomite caps. The dolomitization intensity varies along the succession and reaches its peak in the upper Hauterivian-lower Barremian interval, where it is present a completely dolomitized interval about 100-m-thick. Field relations, petrography, mineralogy, and geochemistry of the analyzed dolomite bodies allowed identifying two populations of early dolomites, a fine-medium crystalline (FMdol) and a coarse crystalline dolomite (Cdol), both interpreted as the product of mesohaline water reflux. According to our interpretation, FMdol precipitated from concentrated brines in the very early stage of the reflux process, producing typical sedimentary features as dolomite caps. In the successive step of the process, the basin-ward 'latent' reflux precipitated Cdol from less concentrated brines. A peculiar feature of the studied succession is the great consistency between stratigraphic distribution of dolomite bodies and their geochemical signature. The completely dolomitized Hauterivian-Barremian interval, in fact, is characterized by geochemical values suggesting an origin from distinctly saltier brines. Considering that the observed near-surface dolomitization process is controlled by physical and chemical parameters reflecting the paleoenvironmental and paleoclimatic conditions during dolomite formation, we propose that the stratigraphically controlled dolomitization intensity reflects periodic fluctuations in the salinity of dolomitizing fluid, in turn controlled by long-term climate oscillations. The present work highlights that the stratigraphic distribution of early

  18. Early Cretaceous to Paleocene North American Drainage Reorganization and Sediment Routing from Detrital Zircons: Significance to the Alberta Oil Sands and Gulf of Mexico Petroleum Provinces

    NASA Astrophysics Data System (ADS)

    Blum, M. D.

    2014-12-01

    Detrital zircons (DZs) represent a powerful tool for reconstructing continental paleodrainage. This paper uses new DZ data from Lower Cretaceous strata of the Alberta foreland basin, and Upper Cretaceous and Cenozoic strata of the Gulf of Mexico passive margin, to reconstruct paleodrainage and sediment routing, and illustrate significance to giant hydrocarbon systems. DZ populations from the Lower Cretaceous Mannville Group of Alberta and Saskatchewan infer a continental-scale river system that routed sediment from the eastern 2/3rds of North America to the Boreal Sea. Aptian McMurray Formation fluvial sands were derived from a drainage sourced in the Appalachians that was similar in scale to the modern Amazon. Albian fluvial sandstones of the Clearwater and Grand Rapids Formations were derived from the same Appalachian-sourced drainage area, which had expanded to include tributaries from the Cordilleran arc of the northwest US and southwest Canada. DZ populations from the Gulf of Mexico coastal plain complement this view, showing that only the southern US and Appalachian-Ouachita cordillera was integrated with the Gulf through the Late Cretaceous. However, by the Paleocene, drainage from the US Western Cordillera to the Appalachians had been routed to the Gulf of Mexico, establishing the template for sediment routing that persists today. The paleodrainage reorganization and changes in sediment routing described above played key roles in establishment of the Alberta oil sands and Gulf of Mexico as giant petroleum provinces. Early Cretaceous routing of a continental-scale fluvial system to the Alberta foreland provided large and contiguous fluvial point-bar sand bodies that became economically viable reservoirs, whereas mid- to late Cretaceous drainage reorganization routed greatly increased sediment loads to the Gulf of Mexico, which loaded the shelf, matured source rocks, and drove the gravitational and salt tectonics that helped establish the working hydrocarbon

  19. New transitional fossil snakeflies from China illuminate the early evolution of Raphidioptera.

    PubMed

    Liu, Xingyue; Ren, Dong; Yang, Ding

    2014-04-18

    Raphidioptera (snakeflies) is a holometabolous order of the superorder Neuropterida characterized by the narrowly elongate adult prothorax and the long female ovipositor. Mesozoic snakeflies were markedly more diverse than the modern ones are. However, the evolutionary history of Raphidioptera is largely unexplored, as a result of the poorly studied phylogeny among fossil and extant lineages within the order. In this paper, we report a new snakefly family, Juroraphidiidae fam. nov., based on exquisitely preserved fossils, attributed to a new species Juroraphidia longicollumgen. et sp. nov., from the Jiulongshan Formation (Middle Jurassic) in Inner Mongolia, China. The new family is characterized by an unexpected combination of plesiomorphic and apomorphic characters of Raphidioptera. Based on our phylogenetic analysis, Juroraphidiidae fam. nov. together with Raphidiomorpha form a monophyletic clade, which is the sister to Priscaenigmatomorpha. The snakefly affinity of Priscaenigmatomorpha is confirmed and another new family, Chrysoraphidiidae fam. nov., is erected in this suborder. Juroraphidiidae fam. nov. is determined to be a transitional lineage between Priscaenigmatomorpha and Raphidiomorpha. Diversification of higher snakefly taxa had occurred by the Early Jurassic, suggesting that these insects had already had a long but undocumented history by this time.

  20. New Mesozoic and Cenozoic fossils from Ecuador: Invertebrates, vertebrates, plants, and microfossils

    NASA Astrophysics Data System (ADS)

    Cadena, Edwin A.; Mejia-Molina, Alejandra; Brito, Carla M.; Peñafiel, Sofia; Sanmartin, Kleber J.; Sarmiento, Luis B.

    2018-04-01

    Ecuador is well known for its extensive extant biodiversity, however, its paleobiodiversity is still poorly explored. Here we report seven new Mesozoic and Cenozoic fossil localities from the Pacific coast, inter-Andean depression and Napo basin of Ecuador, including vertebrates, invertebrates, plants, and microfossils. The first of these localities is called El Refugio, located near the small town of Chota, Imbabura Province, from where we report several morphotypes of fossil leaves and a mycetopodid freshwater mussel of the Upper Miocene Chota Formation. A second site is also located near the town of Chota, corresponding to potentially Pleistocene to Holocene lake deposits from which we report the occurrence of leaves and fossil diatoms. A third locality is at the Pacific coast of the country, near Rocafuerte, a town in Esmeraldas Province, from which we report a late Miocene palm leaf. We also report the first partially articulated skull with teeth from a Miocene scombridid (Mackerels) fish from El Cruce locality, and completely preserved seeds from La Pila locality, both sites from Manabí Province. Two late Cretaceous fossil sites from the Napo Province, one near Puerto Napo showing a good record of fossil shrimps and a second near the town of Loreto shows the occurrence of granular amber and small gymnosperms seeds and cuticles. All these new sites and fossils show the high potential of the sedimentary sequences and basins of Ecuador for paleontological studies and for a better understanding of the fossil record of the country and northern South America.

  1. Disc-shaped fossils resembling porpitids or eldonids from the early Cambrian (Series 2: Stage 4) of western USA

    PubMed Central

    Kurkewicz, Richard; Shinogle, Heather; Kimmig, Julien; MacGabhann, Breandán Anraoi

    2017-01-01

    The morphology and affinities of newly discovered disc-shaped, soft-bodied fossils from the early Cambrian (Series 2: Stage 4, Dyeran) Carrara Formation are discussed. These specimens show some similarity to the Ordovician Discophyllum Hall, 1847; traditionally this taxon had been treated as a fossil porpitid. However, recently it has instead been referred to as another clade, the eldonids, which includes the enigmatic Eldonia Walcott, 1911 that was originally described from the Cambrian Burgess Shale. The status of various Proterozoic and Phanerozoic taxa previously referred to porpitids and eldonids is also briefly considered. To help ascertain that the specimens were not dubio- or pseudofossils, elemental mapping using energy dispersive X-ray spectroscopy (EDS) was conducted. This, in conjunction with the morphology of the specimens, indicated that the fossils were not hematite, iron sulfide, pyrolusite, or other abiologic mineral precipitates. Instead, their status as biologic structures and thus actual fossils is supported. Enrichment in the element carbon, and also possibly to some extent the elements magnesium and iron, seems to be playing some role in the preservation process. PMID:28603667

  2. Disc-shaped fossils resembling porpitids or eldonids from the early Cambrian (Series 2: Stage 4) of western USA.

    PubMed

    Lieberman, Bruce S; Kurkewicz, Richard; Shinogle, Heather; Kimmig, Julien; MacGabhann, Breandán Anraoi

    2017-01-01

    The morphology and affinities of newly discovered disc-shaped, soft-bodied fossils from the early Cambrian (Series 2: Stage 4, Dyeran) Carrara Formation are discussed. These specimens show some similarity to the Ordovician Discophyllum Hall, 1847; traditionally this taxon had been treated as a fossil porpitid. However, recently it has instead been referred to as another clade, the eldonids, which includes the enigmatic Eldonia Walcott, 1911 that was originally described from the Cambrian Burgess Shale. The status of various Proterozoic and Phanerozoic taxa previously referred to porpitids and eldonids is also briefly considered. To help ascertain that the specimens were not dubio- or pseudofossils, elemental mapping using energy dispersive X-ray spectroscopy (EDS) was conducted. This, in conjunction with the morphology of the specimens, indicated that the fossils were not hematite, iron sulfide, pyrolusite, or other abiologic mineral precipitates. Instead, their status as biologic structures and thus actual fossils is supported. Enrichment in the element carbon, and also possibly to some extent the elements magnesium and iron, seems to be playing some role in the preservation process.

  3. Macrofossil extinction patterns at Bay of Biscay Cretaceous-Tertiary boundary sections

    NASA Technical Reports Server (NTRS)

    Ward, Peter D.; Macleod, Kenneth

    1988-01-01

    Researchers examined several K-T boundary cores at Deep Sea Drilling Project (DSDP) core repositories to document biostratigraphic ranges of inoceramid shell fragments and prisms. As in land-based sections, prisms in the deep sea cores disappear well before the K-T boundary. Ammonites show a very different extinction pattern than do the inoceramids. A minimum of seven ammonite species have been collected from the last meter of Cretaceous strata in the Bay of Biscay basin. In three of the sections there is no marked drop in either species numbers or abundance prior to the K-T boundary Cretaceous strata; at the Zumaya section, however, both species richness and abundance drop in the last 20 m of the Cretaceous, with only a single ammonite specimen recovered to date from the uppermost 12 m of Cretaceous strata in this section. Researchers conclude that inoceramid bivalves and ammonites showed two different times and patterns of extinction, at least in the Bay of Biscay region. The inoceramids disappeared gradually during the Early Maestrichtian, and survived only into the earliest Late Maestrichtian. Ammonites, on the other hand, maintained relatively high species richness throughout the Maestrichtian, and then disappeared suddenly, either coincident with, or immediately before the microfossil extinction event marking the very end of the Cretaceous.

  4. Invertebrate ichnofossils and rhizoliths associated with rhizomorphs from the Marília Formation (Echaporã Member), Bauru Group, Upper Cretaceous, Brazil

    NASA Astrophysics Data System (ADS)

    Mineiro, Adriano Santos; Santucci, Rodrigo Miloni; da Rocha, Dulce Maria Sucena; de Andrade, Marco Brandalise; Nava, William Roberto

    2017-12-01

    The Marília Formation (Bauru Group, Upper Cretaceous, Brazil) has furnished a large array of vertebrate fossils. However, its ichnological and botanical contents are poorly explored to date. Here we report findings of invertebrate trace fossils (Beaconites isp., Skolithos isp., and Taenidium barretti), rhizoliths associated with rhizomorphs with preserved hyphae, and fossil roots from the Echaporã Member, Marília Formation, São Paulo State, Brazil. The association of trace fossils suggest they can be regarded to the Scoyenia Ichnofacies. The rhizoliths indicate that at least two types of herbaceous/arbustive plants inhabited the area, one of them living in the vadose zone and the other one with roots closer to the water table, under arid/semiarid conditions. Sedimentological analyses suggest the studied outcrop comprises fluvial deposits, with predominance of sand bars that underwent different and relatively long periods of subaerial exposure.

  5. Petrogenesis and tectonic implications of Early Cretaceous volcanic rocks from Lingshan Island in the Sulu Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Meng, Yuanku; Santosh, M.; Li, Rihui; Xu, Yang; Hou, Fanghui

    2018-07-01

    The Dabie-Sulu orogenic belt in eastern China marks the boundary between the Yangtze Block and the North China Block. Here we investigate a suite of volcanic rocks from Lingshan Island in the Sulu belt comprising rhyolite, trachyte, trachyandesite and basaltic trachyandesite. We present petrological, geochemical and zircon Usbnd Pb ages and Hfsbnd O isotope data with a view to gain insights on the petrogenesis and tectonic implications. SHRIMP II analyses of zircon grains from the rhyolite yield 206Pb/238U age of 127.6 ± 1.3 Ma and LA-MC-ICP-MS dating show 126.3 ± 1.2 Ma and 127.3 ± 1.1 Ma, together constraining the eruption time as Early Cretaceous. LA-MC-ICP-MS analyses of zircon grains from the andesitic rocks yield 206Pb/238U ages of 129.0 ± 1.6 Ma, 129.8 ± 1.5 Ma and 130.9 ± 1.0 Ma. Geochemically, the rhyolite shows shoshonitic features with low MgO and Cr, but high Na2O + K2O. The zircon grains from these rocks yield negative εHf(t) values and low δ18O values, and these together with the presence of Neoproterozoic inherited zircons suggest that the magma source involved melting of the Yangtze crust. The andesitic rocks, including basaltic trachyandesite, trachyandesite and trachyte, show a wide range of SiO2, Mg# values, and Cr, enriched in LILE and LREE, depleted in HFSE (Nb, Ta and Ti), and have significantly negative zircon εHf(t) values, suggesting derivation from subcontinental lithosphere mantle that was metasomatized by felsic melts. Our results, integrated with those from previous studies suggest heterogeneous magma involving the mixing of mantle and crustal sources within an extensional setting in the Early Cretaceous.

  6. Evolution of Lower Brachyceran Flies (Diptera) and Their Adaptive Radiation with Angiosperms

    PubMed Central

    Zhang, Qingqing; Wang, Bo

    2017-01-01

    The Diptera (true flies) is one of the most species-abundant orders of Insecta, and it is also among the most important flower-visiting insects. Dipteran fossils are abundant in the Mesozoic, especially in the Late Jurassic and Early Cretaceous. Here, we review the fossil record and early evolution of some Mesozoic lower brachyceran flies together with new records in Burmese amber, including Tabanidae, Nemestrinidae, Bombyliidae, Eremochaetidae, and Zhangsolvidae. The fossil records reveal that some flower-visiting groups had diversified during the mid-Cretaceous, consistent with the rise of angiosperms to widespread floristic dominance. These brachyceran groups played an important role in the origin of co-evolutionary relationships with basal angiosperms. Moreover, the rise of angiosperms not only improved the diversity of flower-visiting flies, but also advanced the turnover and evolution of other specialized flies. PMID:28484485

  7. Evolution of Lower Brachyceran Flies (Diptera) and Their Adaptive Radiation with Angiosperms.

    PubMed

    Zhang, Qingqing; Wang, Bo

    2017-01-01

    The Diptera (true flies) is one of the most species-abundant orders of Insecta, and it is also among the most important flower-visiting insects. Dipteran fossils are abundant in the Mesozoic, especially in the Late Jurassic and Early Cretaceous. Here, we review the fossil record and early evolution of some Mesozoic lower brachyceran flies together with new records in Burmese amber, including Tabanidae, Nemestrinidae, Bombyliidae, Eremochaetidae, and Zhangsolvidae. The fossil records reveal that some flower-visiting groups had diversified during the mid-Cretaceous, consistent with the rise of angiosperms to widespread floristic dominance. These brachyceran groups played an important role in the origin of co-evolutionary relationships with basal angiosperms. Moreover, the rise of angiosperms not only improved the diversity of flower-visiting flies, but also advanced the turnover and evolution of other specialized flies.

  8. Late Maastrichtian pterosaurs from North Africa and mass extinction of Pterosauria at the Cretaceous-Paleogene boundary

    PubMed Central

    Martill, David M.; Andres, Brian

    2018-01-01

    Pterosaurs were the first vertebrates to evolve powered flight and the largest animals to ever take wing. The pterosaurs persisted for over 150 million years before disappearing at the end of the Cretaceous, but the patterns of and processes driving their extinction remain unclear. Only a single family, Azhdarchidae, is definitively known from the late Maastrichtian, suggesting a gradual decline in diversity in the Late Cretaceous, with the Cretaceous–Paleogene (K-Pg) extinction eliminating a few late-surviving species. However, this apparent pattern may simply reflect poor sampling of fossils. Here, we describe a diverse pterosaur assemblage from the late Maastrichtian of Morocco that includes not only Azhdarchidae but the youngest known Pteranodontidae and Nyctosauridae. With 3 families and at least 7 species present, the assemblage represents the most diverse known Late Cretaceous pterosaur assemblage and dramatically increases the diversity of Maastrichtian pterosaurs. At least 3 families—Pteranodontidae, Nyctosauridae, and Azhdarchidae—persisted into the late Maastrichtian. Late Maastrichtian pterosaurs show increased niche occupation relative to earlier, Santonian-Campanian faunas and successfully outcompeted birds at large sizes. These patterns suggest an abrupt mass extinction of pterosaurs at the K-Pg boundary. PMID:29534059

  9. The chronostratigraphic framework of the South-Pyrenean Maastrichtian succession reappraised: Implications for basin development and end-Cretaceous dinosaur faunal turnover

    NASA Astrophysics Data System (ADS)

    Fondevilla, Víctor; Dinarès-Turell, Jaume; Oms, Oriol

    2016-05-01

    The evolution of the end-Cretaceous terrestrial ecosystems and faunas outside of North America is largely restricted to the European Archipelago. The information scattered in this last area can only be integrated in a chronostratigraphic framework on the basis of robust age constraints and stratigraphy. Therefore, we have revisited the puzzling age calibration of the sedimentary infilling from the Isona sector in the Tremp syncline (South-Central Pyrenees), an area renowned for its rich Maastrichtian dinosaur fossil record. Aiming to shed light to existing controversial age determinations, we carried out a new magnetostratigraphic study along the ~ 420 m long Orcau and Nerets sections of that area. Our results reveal that most of the succession correlates to the early Maastrichtian (mostly chron C31r) in accordance to ages proposed by recent planktonic foraminifera biostratigraphy. The resulting chronostratigraphic framework of the entire Maastrichtian basin recorded in the Tremp syncline shows that a significant sedimentary hiatus of about 3 My characterizes most of the late Maastrichtian in the study area. This hiatus, related to an abrupt migration of the basin depocenter, is temporally close to similar hiatuses, decreases in sedimentary rates and facies shifts recorded in other southwestern European areas. The present chronologic framework sets the basis for a thorough assessment of end-Cretaceous terrestrial faunal turnover and extinction patterns, and the establishment of a more rigorous Pyrenean basin evolution analysis.

  10. Global research on the Cretaceous

    NASA Astrophysics Data System (ADS)

    Ginsburg, Robert N.

    Cretaceous Resources, Events and Rhythms, a new international research effort on the global aspects of Cretaceous sedimentary geology, is underway. This Global Sedimentary Geology Project (GSGP) is organized by the Commission on Global Sedimentary Geology of the International Union of Geological Sciences (IUGS). The GSGP secretariat is at the University of Miami, Florida (Fisher Island, Miami Beach, FL 33139, tel. 305-672-1840, RNGINSBURG/KOSMOS).Cretaceous time was selected for this pilot research project because Cretaceous sea levels and climates can provide a vision of Earth in its “greenhouse state,” because there is an established geochronology for the era's wide-spread deposits, and because there are extensive resources of hydrocarbons, coal, bauxite and other minerals in Cretaceous rocks.

  11. Significance of the giant Lower Cretaceous paleoweathering event

    NASA Astrophysics Data System (ADS)

    Thiry, Médard; Ricordel-Prognon, Caroline; Schmitt, Jean-Michel

    2010-05-01

    Weathering profiles typically develop at the interface with the atmosphere, and thus, record the fluctuations in the paleoatmosphere's chemistry and climatic conditions. Consequently they are one of the main archives to upgrade our understanding on paleoclimate and the Earth's environmental history. In this presentation, we will focus on the linking between paleoatmosphere compositions, weathering rates, and their impact on the subsequent sedimentary records. Distribution of the Lower Cretaceous lateritic weathering facies. During the Early Cretaceous, sea level drops and wide exondations lead to development of deep "lateritic" weathering profiles. Thick kaolinitic weathering profiles occured on the Hercynian basements and diverse kaolinitic and ferruginous weathering products covered the Jurassic limestone platforms. This major lateritic event is not restricted to Europe but also well know in North-America (up to Canada), South-America (down to Argentina), and in Australia. Moreover, recent paleomagnetic and radiometric datations revealed that numerous kaolinitic and ferruginous formations, which classically were ascribed to Tertiary ages, date back to the Lower Cretaceous period (Thiry et al., 2006). Additionally, the Bonherz iron ore deposits in the paleokarsts of the Jurassic limestone plateform of the Paris Basin also have to be reconsidered as of Cretaceous age, probably as well as the Tertiary age of the Swiss and Bavarian Jura Bonherz. Paleoclimatic interpretation. During a long time, the interpretation of these paleoweathering features has been a major palaeoclimatic argument. The spreading out of deep kaolinitic weathering profiles (from the Scandinavian and Canadian shields to southern Argentina and Australia, which was still situated close to Antarctica at that time) has lead to considerations, that during this period a warm and wet climate prevailed globally, with very little latitudinal differentiation. These paleoclimatic interpretations stand in

  12. Cretaceous Footprints Found on Goddard Campus

    NASA Image and Video Library

    2012-08-20

    About 110 million light years away, the bright, barred spiral galaxy NGC3259 was just forming stars in dark bands of dust and gas. On Earth, a plant-eating dinosaur left footprints in the Cretaceous mud of what would later become the grounds of NASA’s Goddard Space Flight Center in Greenbelt, Md. A model of a Nodosaur dinosaur sits inside what is believed to be the fossil of a Nodosaur footprint. The footprint was found by Ray Stanford a local dinosaur hunter. To read more go to: www.nasa.gov/centers/goddard/news/features/2012/nodosaur.... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Short Polarity Albian Events in the Cretaceous Normal Superchron - Magnetostratigraphy of the Morelos and Tlayua Formations (Mexico)

    NASA Astrophysics Data System (ADS)

    Benammi, M.; Urrutia-Fucugauchi, J.

    2007-12-01

    Interest in the long period of normal polarity in the Cretaceous has continued to increase since the early study of Helsley and Steiner (1969), who suspected that it corresponded to vast stretches of relatively low amplitude behaviour in the sea-floor magnetic anomaly profiles known informally as the "Cretaceous quiet zone". Since these first studies, paleomagnetists have continued to explore what is now known as the Cretaceous Normal Superchron, an interval of prolonged normal polarity from 118 to 84 Ma. Paleomagnetic data from sediment cores from the DSDP Holes 369, 386, and 364, were interpreted as brief reverse intervals (Keating and Helsley, 1978, 1979). Relatively fewer studies have been reported for land-based sections of pelagic and platform limestones; reports include studies in northern and central Italy (Vandenberg et al., 1978; Tarduno et al., 1992; Tarduno, 1990; Cronin et al., 2001) and Mexico (Urrutia-Fucugauchi, 1988; Benammi et al., 2006). We present here new magnetostratigraphic data for limestone sequences in central and southern Mexico from the Cretaceous Morelos and Tlayua Formations, which record short intervals of reversed polarity during the K normal superchron. The Morelos Formation has been revisited in Guerrero, southern Mexico, where the sequence of platform limestones with almost horizontal thick beds is well-exposed. The magnetostratigraphy shows dominant normal polarity for the sampled sections, with the occurrence of three short reverse polarity intervals corresponding to the Albian, which have been re-sampled and studied in additional detail for magnetic mineralogy and remanent acquisition. The Tlayua Formation is sampled in Tepeji de Rodriguez area, which is known for its rich and well-preserved fossil contents. Age control has mainly been provided from studies on ammonites, belemnites and benthic foraminifera (Cantu, 1987; Seibertz and Buitron, 1987; Kashiyama et al., 2003). Nine polarity intervals are documented in the Tlayua

  14. Evidence of cretaceous to recent West African intertropical vegetation from continental sediment spore-pollen analysis

    NASA Astrophysics Data System (ADS)

    Salard-Cheboldaeff, M.; Dejax, J.

    The succession of spore-pollen assemblages during the Cretaceous and Tertiary, as defined in each of the basin from Senegal to Angola, gives the possibility to consider the intertropical African flora evolution for the past 120 M.a. During the Early Cretaceous, xeric-adapted gymnosperms and various ferns were predominant the flora which nevertheless comprises previously unknown early angiosperm pollen. During the Middle Cretaceous, gymnospers were gradually replaced by angiosperms; these became more and more abundant, along with the diversification of new genera and species. During the Paleocene, the radiation of the monocotyledons (mainly that of the palm-trees) as well as a greater diversification among the dicotyledons and ferms are noteworthy. Since gymnosperms had almost disappeared by the Eocene, the diversification of the dicotyledons went on until the neogene, when all extinct pollen types are already present. These important modifications of the vegetation reflect evolutionary trends as well as climatic changes during the Cretaceous: the climate, firstly hot, dry and perhaps arid, did probably induced salt deposition, and later became gradually more humid under oceanic influences which arose in connection with the Gondwana break-up.

  15. Europatitan eastwoodi, a new sauropod from the lower Cretaceous of Iberia in the initial radiation of somphospondylans in Laurasia

    PubMed Central

    2017-01-01

    The sauropod of El Oterillo II is a specimen that was excavated from the Castrillo de la Reina Formation (Burgos, Spain), late Barremian–early Aptian, in the 2000s but initially remained undescribed. A tooth and elements of the axial skeleton, and the scapular and pelvic girdle, represent it. It is one of the most complete titanosauriform sauropods from the Early Cretaceous of Europe and presents an opportunity to deepen our understanding of the radiation of this clade in the Early Cretaceous and study the paleobiogeographical relationships of Iberia with Gondwana and with other parts of Laurasia. The late Barremian–early Aptian is the time interval in the Cretaceous with the greatest diversity of sauropod taxa described in Iberia: two titanosauriforms, Tastavinsaurus and Europatitan; and a rebbachisaurid, Demandasaurus. The new sauropod Europatitan eastwoodi n. gen. n. sp. presents a series of autapomorphic characters in the presacral vertebrae and scapula that distinguish it from the other sauropods of the Early Cretaceous of Iberia. Our phylogenetic study locates Europatitan as the basalmost member of the Somphospondyli, clearly differentiated from other clades such as Brachiosauridae and Titanosauria, and distantly related to the contemporaneous Tastavinsaurus. Europatitan could be a representative of a Eurogondwanan fauna like Demandasaurus, the other sauropod described from the Castrillo de la Reina Formation. The presence of a sauropod fauna with marked Gondwananan affinities in the Aptian of Iberia reinforces the idea of faunal exchanges between this continental masses during the Early Cretaceous. Further specimens and more detailed analysis are needed to elucidate if this Aptian fauna is caused by the presence of previously unnoticed Aptian land bridges, or it represents a relict fauna from an earlier dispersal event. PMID:28674644

  16. First record of live birth in Cretaceous ichthyosaurs: closing an 80 million year gap.

    PubMed

    Maxwell, Erin E; Caldwell, Michael W

    2003-08-07

    New fossils of embryonic ichthyosaurs are both the geologically youngest and the physically smallest known ichthyosaur embryos. The embryos are articulated, though only partially preserved, and are located within the body cavity of an adult, presumably the mother. The embryos and adult were found in association with several other individuals of differing size classes, all of which appear to be a new taxon of Cretaceous ichthyosaur. The material was collected from units of the Loon River Formation, Hay River, Northwest Territories, Canada. The implications of this new material to ichthyosaurian reproductive biology are discussed.

  17. Leaf Assemblages across the Cretaceous-Tertiary Boundary in the Raton Basin, New Mexico and Colorado

    NASA Astrophysics Data System (ADS)

    Wolfe, Jack A.; Upchurch, Garland R., Jr.

    1987-08-01

    Analyses of leaf megafossil and dispersed leaf cuticle assemblages indicate that major ecologic disruption and high rates of extinction occurred in plant communities at the Cretaceous-Tertiary boundary in the Raton Basin. In diversity increase, the early Paleocene vegetational sequence mimics normal short-term ecologic succession, but on a far longer time scale. No difference can be detected between latest Cretaceous and early Paleocene temperatures, but precipitation markedly increased at the boundary. Higher survival rate of deciduous versus evergreen taxa supports occurrence of a brief cold interval (<1 year), as predicted in models of an “impact winter.”

  18. Morphometric analysis of chameleon fossil fragments from the Early Pliocene of South Africa: a new piece of the chamaeleonid history.

    PubMed

    Dollion, Alexis Y; Cornette, Raphaël; Tolley, Krystal A; Boistel, Renaud; Euriat, Adelaïde; Boller, Elodie; Fernandez, Vincent; Stynder, Deano; Herrel, Anthony

    2015-02-01

    The evolutionary history of chameleons has been predominantly studied through phylogenetic approaches as the fossil register of chameleons is limited and fragmented. The poor state of preservation of these fossils has moreover led to the origin of numerous nomen dubia, and the identification of many chameleon fossils remains uncertain. We here examine chameleon fossil fragments from the Early Pliocene Varswater formation, exposed at the locality of Langebaanweg "E" Quarry along the southwestern coast of South Africa. Our aim was to explore whether these fossil fragments could be assigned to extant genera. To do so, we used geometric morphometric approaches based on microtomographic imaging of extant chameleons as well as the fossil fragments themselves. Our study suggests that the fossils from this deposit most likely represent at least two different forms that may belong to different genera. Most fragments are phenotypically dissimilar from the South African endemic genus Bradypodion and are more similar to other chameleon genera such as Trioceros or Kinyongia. However, close phenetic similarities between some of the fragments and the Seychelles endemic Archaius or the Madagascan genus Furcifer suggest that some of these fragments may not contain enough genus-specific information to allow correct identification. Other fragments such as the parietal fragments appear to contain more genus-specific information, however. Although our data suggest that the fossil diversity of chameleons in South Africa was potentially greater than it is today, this remains to be verified based on other and more complete fragments.

  19. Morphometric analysis of chameleon fossil fragments from the Early Pliocene of South Africa: a new piece of the chamaeleonid history

    NASA Astrophysics Data System (ADS)

    Dollion, Alexis Y.; Cornette, Raphaël; Tolley, Krystal A.; Boistel, Renaud; Euriat, Adelaïde; Boller, Elodie; Fernandez, Vincent; Stynder, Deano; Herrel, Anthony

    2015-02-01

    The evolutionary history of chameleons has been predominantly studied through phylogenetic approaches as the fossil register of chameleons is limited and fragmented. The poor state of preservation of these fossils has moreover led to the origin of numerous nomen dubia, and the identification of many chameleon fossils remains uncertain. We here examine chameleon fossil fragments from the Early Pliocene Varswater formation, exposed at the locality of Langebaanweg "E" Quarry along the southwestern coast of South Africa. Our aim was to explore whether these fossil fragments could be assigned to extant genera. To do so, we used geometric morphometric approaches based on microtomographic imaging of extant chameleons as well as the fossil fragments themselves. Our study suggests that the fossils from this deposit most likely represent at least two different forms that may belong to different genera. Most fragments are phenotypically dissimilar from the South African endemic genus Bradypodion and are more similar to other chameleon genera such as Trioceros or Kinyongia. However, close phenetic similarities between some of the fragments and the Seychelles endemic Archaius or the Madagascan genus Furcifer suggest that some of these fragments may not contain enough genus-specific information to allow correct identification. Other fragments such as the parietal fragments appear to contain more genus-specific information, however. Although our data suggest that the fossil diversity of chameleons in South Africa was potentially greater than it is today, this remains to be verified based on other and more complete fragments.

  20. Isotopic composition of low-latitude paleoprecipitation during the Early Cretaceous

    USGS Publications Warehouse

    Suarez, M.B.; Gonzalez, Luis A.; Ludvigson, Greg A.; Vega, F.J.; Alvarado-Ortega, J.

    2009-01-01

    The response of the hydrologic cycle in global greenhouse conditions is important to our understanding of future climate change and to the calibration of global climate models. Past greenhouse conditions, such as those of the Cretaceous, can be used to provide empirical data with which to evaluate climate models. Recent empirical studies have utilized pedogenic carbonates to estimate the isotopic composition of meteoric waters and calculate precipitation rates for the AptianAlbian. These studies were limited to data from mid(35??N) to high (75??N) paleolatitudes, and thus future improvements in accuracy will require more estimates of meteoric water compositions from numerous localities around the globe. This study provides data for tropical latitudes (18.5??N paleolatitude) from the Tlayua Formation, Puebla, Mexico. In addition, the study confirms a shallow nearshore depositional environment for the Tlayua Formation. Petrographic observations of fenestral fabrics, gypsum crystal molds, stromatolitic structures, and pedogenic matrix birefringence fabric support the interpretation that the strata represent deposition in a tidal flat environment. Carbonate isotopic data from limestones of the Tlayua Formation provide evidence of early meteoric diagenesis in the form of meteoric calcite lines. These trends in ??18O versus ??13C were used to calculate the mean ??18O value of meteoric water, which is estimated at -5.46 ?? 0.56??? (Vienna Standard Mean Ocean Water [VSMOW]). Positive linear covariant trends in oxygen and carbon isotopic values from some horizons were used to estimate evaporative losses of vadose groundwater from tropical exposure surfaces during the Albian, and the resulting values range from 8% to 12%. However, the presence of evaporative mineral molds indicates more extensive evaporation. The added tropical data improve latitudinal coverage of paleoprecipitation ??18O estimates. The data presented here imply that earlier isotope mass balance models most

  1. First discovery of colobine fossils from the Late Miocene/Early Pliocene in central Myanmar.

    PubMed

    Takai, Masanaru; Thaung-Htike; Zin-Maung-Maung-Thein; Soe, Aung Naing; Maung, Maung; Tsubamoto, Takehisa; Egi, Naoko; Nishimura, Takeshi D; Nishioka, Yuichiro

    2015-07-01

    Here we report two kinds of colobine fossils discovered from the latest Miocene/Early Pliocene Irrawaddy sediments of the Chaingzauk area, central Myanmar. A left mandibular corpus fragment preserving M1-3 is named as a new genus and species, Myanmarcolobus yawensis. Isolated upper (M(1)?) and lower (M2) molars are tentatively identified as Colobinae gen. et sp. indet. Although both forms are medium-sized colobines, they are quite different from each other in M2 morphology. The isolated teeth of the latter show typical colobine-type features, so it is difficult to identify their taxonomic position, whereas lower molars of Myanmarcolobus have unique features, such as a trapezoid-shaped long median lingual notch, a deeply concave median buccal cleft, a strongly developed mesiobuccal notch, and rather obliquely running transverse lophids. Compared with fossil and living Eurasian colobine genera, Myanmarcolobus is most similar in lower molar morphology to the Pliocene Dolichopithecus of Europe rather than to any Asian forms. In Dolichopithecus, however, the tooth size is much larger and the median lingual notch is mesiodistally much shorter than that of Myanmarcolobus. The discovery of Myanmarcolobus in central Myanmar is the oldest fossil record in Southeast Asia not only of colobine but also of cercopithecid monkeys and raises many questions regarding the evolutionary history of Asian colobine monkeys. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Hadrosauroid Dinosaurs from the Late Cretaceous of the Sultanate of Oman.

    PubMed

    Buffetaut, Eric; Hartman, Axel-Frans; Al-Kindi, Mohammed; Schulp, Anne S

    2015-01-01

    Fragmentary post-cranial remains (femora, tibia, vertebrae) of ornithischian dinosaurs from the Late Cretaceous of the Sultanate of Oman are described and referred to hadrosauroids. The specimens come from the Al-Khod Conglomerate, of latest Campanian to Maastrichtian age, in the north-eastern part of the country. Although the fragmentary condition of the fossils precludes a precise identification, various characters, including the shape of the fourth trochanter of the femur and the morphology of its distal end, support an attribution to hadrosauroids. With the possible exception of a possible phalanx from Angola, this group of ornithopod dinosaurs, which apparently originated in Laurasia, was hitherto unreported from the Afro-Arabian plate. From a paleobiogeographical point of view, the presence of hadrosauroids in Oman in all likelihood is a result of trans-Tethys dispersal from Asia or Europe, probably by way of islands in the Tethys shown on all recent paleogeographical maps of that area. Whether hadrosauroids were widespread on the Afro-Arabian landmass in the latest Cretaceous, or where restricted to the « Oman island » shown on some paleogeographical maps, remains to be determined.

  3. Hadrosauroid Dinosaurs from the Late Cretaceous of the Sultanate of Oman

    PubMed Central

    Buffetaut, Eric; Hartman, Axel-Frans; Al-Kindi, Mohammed; Schulp, Anne S.

    2015-01-01

    Fragmentary post-cranial remains (femora, tibia, vertebrae) of ornithischian dinosaurs from the Late Cretaceous of the Sultanate of Oman are described and referred to hadrosauroids. The specimens come from the Al-Khod Conglomerate, of latest Campanian to Maastrichtian age, in the north-eastern part of the country. Although the fragmentary condition of the fossils precludes a precise identification, various characters, including the shape of the fourth trochanter of the femur and the morphology of its distal end, support an attribution to hadrosauroids. With the possible exception of a possible phalanx from Angola, this group of ornithopod dinosaurs, which apparently originated in Laurasia, was hitherto unreported from the Afro-Arabian plate. From a paleobiogeographical point of view, the presence of hadrosauroids in Oman in all likelihood is a result of trans-Tethys dispersal from Asia or Europe, probably by way of islands in the Tethys shown on all recent paleogeographical maps of that area. Whether hadrosauroids were widespread on the Afro-Arabian landmass in the latest Cretaceous, or where restricted to the « Oman island » shown on some paleogeographical maps, remains to be determined. PMID:26562674

  4. 118-115 Ma magmatism in the Tethyan Himalaya igneous province: Constraints on Early Cretaceous rifting of the northern margin of Greater India

    NASA Astrophysics Data System (ADS)

    Chen, Sheng-Sheng; Fan, Wei-Ming; Shi, Ren-Deng; Liu, Xiao-Han; Zhou, Xue-Jun

    2018-06-01

    Understanding the dynamics of Large Igneous Provinces (LIPs) is critical to deciphering processes associated with rupturing continental lithosphere. Microcontinental calving, the rifting of microcontinents from mature continental rifted margins, is particularly poorly understood. Here we present new insights into these processes from geochronological and geochemical analyses of igneous rocks from the Tethyan Himalaya. Early Cretaceous mafic dikes are widely exposed in the eastern and western Tethyan Himalaya, but no such rocks have been reported from the central Tethyan Himalaya. Here we present an analysis of petrological, geochronological, geochemical, and Sr-Nd-Hf-Os isotopic data for bimodal magmatic rocks from the center-east Tethyan Himalaya. Zircon U-Pb dating yields six weighted-mean concordant 206Pb/238U ages of 118 ± 1.2 to 115 ± 1.3 Ma. Mafic rocks display MORB-like compositions with flat to depleted LREE trends, and positive εNd(t) (+2.76 to +5.39) and εHf(t) (+8.0 to +11.9) values. The negative Nb anomalies and relatively high 187Os/188Os ratios (0.15-0.19) of these rocks are related to variable degrees (up to 10%) of crustal contamination. Geochemical characteristics indicate that mafic rocks were generated by variable degrees (2-20%) of partial melting of spinel lherzolites in shallow depleted mantle. Felsic rocks are enriched in Th and LREE, with negative Nb anomalies and decoupling of Nd (εNd(t) = -13.39 to -12.78) and Hf (εHf(t) = -4.8 to -2.0), suggesting that they were derived mainly from garnet-bearing lower continental crust. The geochemical characteristics of the bimodal magmatic associations are comparable to those of associations that form in a continental rift setting. Results indicate that Early Cretaceous magmatism occurred across the whole Tethyan Himalaya, named here as the "Tethyan Himalaya igneous province". Separation of the Tethyan Himalaya from the Indian craton may have occurred during ongoing Early Cretaceous extension

  5. The first iguanian lizard from the Mesozoic of Africa

    NASA Astrophysics Data System (ADS)

    Apesteguía, Sebastián; Daza, Juan D.; Simões, Tiago R.; Rage, Jean Claude

    2016-09-01

    The fossil record shows that iguanian lizards were widely distributed during the Late Cretaceous. However, the biogeographic history and early evolution of one of its most diverse and peculiar clades (acrodontans) remain poorly known. Here, we present the first Mesozoic acrodontan from Africa, which also represents the oldest iguanian lizard from that continent. The new taxon comes from the Kem Kem Beds in Morocco (Cenomanian, Late Cretaceous) and is based on a partial lower jaw. The new taxon presents a number of features that are found only among acrodontan lizards and shares greatest similarities with uromastycines, specifically. In a combined evidence phylogenetic dataset comprehensive of all major acrodontan lineages using multiple tree inference methods (traditional and implied weighting maximum-parsimony, and Bayesian inference), we found support for the placement of the new species within uromastycines, along with Gueragama sulamericana (Late Cretaceous of Brazil). The new fossil supports the previously hypothesized widespread geographical distribution of acrodontans in Gondwana during the Mesozoic. Additionally, it provides the first fossil evidence of uromastycines in the Cretaceous, and the ancestry of acrodontan iguanians in Africa.

  6. Sedimentary features of the Blackhawk formation (Cretaceous) at Sunnyside, Carbon County, Utah

    USGS Publications Warehouse

    Maberry, John O.

    1968-01-01

    The Blackhawk Formation at Sunnyside, Utah, was deposited along the western margin of the Western Interior Cretaceous sea during southeastward withdrawal of the sea. Sand was the dominant type of land-derived sediment deposited in the Sunnyside district during the regressive phases. Sand bodies prograded seaward in response to changing sediment supply from a source west of Sunnyside. Where conditions were favorable for the accumulation of vegetable material, peat deposits formed and were later changed to bituminous Coal by diagenesis. Studies of the coal bed show that the coals were formed from accumulation of small, low-growing plants and plant debris that was transported into the area of accumulation. Remains of large plants in the coals are rare. Trace fossils, which are tracks, trails and burrows formed by organisms and preserved in the rock, are extremely abundant in the Blackhawk rocks. These biogenic sedimentary structures are common in Cretaceous deposits throughout the western United States. Trace fossil distribution in the rocks is controlled by the depositional environment preferred by their creators. A study of the trace fossils of a. locality allows a more precise determination of the conditions during deposition of the sediments. Water depth, bottom conditions, salinity, current velocity and amount of suspended nutrients in the water are some of the environmental factors that may be reconstructed by studying trace fossils. The Blackhawk Formation at Sunnyside comprises the members, the Kenilworth Member and the Sunnyside Member. Field studies show that the formation may be further subdivided in the Sunnyside district., according to the precepts of units of mappable thickness and similar lithologic characteristics. The Blackhawk pinches out eastward and north. ward into the Mancos Shale, and names for submembers become meaningless. Names are of value in the region of interest, however, because of the prominence of the named units. Coal mining is the

  7. Altered carbon cycling and coupled changes in Early Cretaceous weathering patterns: Evidence from integrated carbon isotope and sandstone records of the western Tethys

    NASA Astrophysics Data System (ADS)

    Wortmann, Ulrich Georg; Herrle, Jens Olaf; Weissert, Helmut

    2004-03-01

    In this study we investigate if a major perturbation of the Early Cretaceous carbon cycle was accompanied by altered weathering and erosion rates. The large Aptian carbon isotope anomaly records the response of the biosphere to widespread volcanic activity and probably resulting changes in atmospheric pCO2 levels. Elevated pCO2 levels should also result in an accelerated hydrological cycle and increased silicate weathering, creating a negative feedback loop removing CO2 from the atmosphere. We propose to interpret the widespread occurrence of quartz sandstones in the Tethys-Atlantic seaway as a result of altered weathering and erosion rates in the wake of the Aptian carbon cycle excursion. We challenge the traditional notion that these are 'flysch' deposits associated with Early Cretaceous orogenic movements in the western Tethys. We propose that these sandstones were most likely part of a large conveyor belt system, acting along the Iberian and European margin of the Tethys seaway. Using chemostratigraphic correlations, we show that the activity of this system was only short-lived and coeval with changes in coastal ecology and the Aptian carbon cycle perturbations. We tentatively relate the existence of this system to a transient climate regime, characterized by fluctuating pCO2 levels.

  8. Assessing the duration of drowning episodes during the Early Cretaceous

    NASA Astrophysics Data System (ADS)

    Godet, A.; Föllmi, K. B.

    2013-12-01

    Drowning unconformities are stratigraphic key surfaces in the history of carbonate platforms. They mostly consist in the deposition of deep marine facies on top of shallow marine limestones. Although large-scale depositional geometries mimic lowstand systems track architecture, these sedimentary turnovers are developed in relation with major sea level rise, inducing an increase in the rate of creation of accommodation space that outpaces the capacity of carbonate to keep up. This so-called paradox of carbonate platform drowning implies that other parameters than purely eustatic fluctuations are involved in the demise of shallow marine ecosystems. Worldwide and at different time during Earth history, in-depth studies of drowning unconformities revealed that changes in nutrient input, clastic delivery, temperature, or a combination of them may be responsible for a decrease in light penetration in the water column and the progressive suffocation and poisoning of photosynthetic carbonate producers. The examination of such case examples from various stratigraphic intervals and palaeogeographical settings thus helps in identifying and hierarchizing potential triggering mechanisms for drowning unconformities. This is complemented by new data from Early Cretaceous successions from the Helvetic Alps. During this time period, the Helvetic carbonate platform developed along the northern Tethyan margin using both photozoan and heterozoan communities. Phases of healthy production were interrupted by several drowning episodes. The latter are marked in the sedimentary record by condensation and associated phosphogenesis and glauconitisation. From the earliest Valanginian to the early to late Barremian, three drowning unconformities reflect the intermittent installation of a more humid climate and subsequent enhanced trophic conditions, which first induced a switch from photozoan to heterozoan communities and then to long-lasting drowning phases. The latter encompass several sea

  9. Reworking of Cretaceous dinosaurs into Paleocene channel deposits, upper Hell Creek Formation, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lofgren, D.L.; Hotton, C.L.; Runkel, A.C.

    1990-09-01

    Dinosaur teeth from Paleocene channel fills have been interpreted as indicating dinosaur survival into the Paleocene. However, enormous potential for reworking exists because these records are restricted to large channel fills that are deeply incised into Cretaceous strata. Identification of reworked fossils is usually equivocal. This problem is illustrated by the Black Spring Coulee channel fill, a dinosaur-bearing Paleocene deposit in the upper Hell Creek Formation of eastern Montana. In this example, the reworked nature of well-preserved dinosaur bones is apparent only after detailed sedimentological and palynological analysis. Because of the potential for reworking, dinosaur remains derived from Paleocene fluvialmore » deposits should not be assigned a Paleocene age unless the (1) are found in floodplain deposits, (2) are articulated, (3) are in channels that do not incise Cretaceous strata, or (4) are demonstrably reworked from Paleocene deposits. To date, reports of Paleocene dinosaurs do not fulfill any of these criteria. Thus, the proposal that dinosaurs persisted into the Paleocene remains unsubstantiated.« less

  10. Structural Extremes in a Cretaceous Dinosaur

    PubMed Central

    Sereno, Paul C.; Wilson, Jeffrey A.; Witmer, Lawrence M.; Whitlock, John A.; Maga, Abdoulaye; Ide, Oumarou; Rowe, Timothy A.

    2007-01-01

    Fossils of the Early Cretaceous dinosaur, Nigersaurus taqueti, document for the first time the cranial anatomy of a rebbachisaurid sauropod. Its extreme adaptations for herbivory at ground-level challenge current hypotheses regarding feeding function and feeding strategy among diplodocoids, the larger clade of sauropods that includes Nigersaurus. We used high resolution computed tomography, stereolithography, and standard molding and casting techniques to reassemble the extremely fragile skull. Computed tomography also allowed us to render the first endocast for a sauropod preserving portions of the olfactory bulbs, cerebrum and inner ear, the latter permitting us to establish habitual head posture. To elucidate evidence of tooth wear and tooth replacement rate, we used photographic-casting techniques and crown thin sections, respectively. To reconstruct its 9-meter postcranial skeleton, we combined and size-adjusted multiple partial skeletons. Finally, we used maximum parsimony algorithms on character data to obtain the best estimate of phylogenetic relationships among diplodocoid sauropods. Nigersaurus taqueti shows extreme adaptations for a dinosaurian herbivore including a skull of extremely light construction, tooth batteries located at the distal end of the jaws, tooth replacement as fast as one per month, an expanded muzzle that faces directly toward the ground, and hollow presacral vertebral centra with more air sac space than bone by volume. A cranial endocast provides the first reasonably complete view of a sauropod brain including its small olfactory bulbs and cerebrum. Skeletal and dental evidence suggests that Nigersaurus was a ground-level herbivore that gathered and sliced relatively soft vegetation, the culmination of a low-browsing feeding strategy first established among diplodocoids during the Jurassic. PMID:18030355

  11. Ferns diversified in the shadow of angiosperms.

    PubMed

    Schneider, Harald; Schuettpelz, Eric; Pryer, Kathleen M; Cranfill, Raymond; Magallón, Susana; Lupia, Richard

    2004-04-01

    The rise of angiosperms during the Cretaceous period is often portrayed as coincident with a dramatic drop in the diversity and abundance of many seed-free vascular plant lineages, including ferns. This has led to the widespread belief that ferns, once a principal component of terrestrial ecosystems, succumbed to the ecological predominance of angiosperms and are mostly evolutionary holdovers from the late Palaeozoic/early Mesozoic era. The first appearance of many modern fern genera in the early Tertiary fossil record implies another evolutionary scenario; that is, that the majority of living ferns resulted from a more recent diversification. But a full understanding of trends in fern diversification and evolution using only palaeobotanical evidence is hindered by the poor taxonomic resolution of the fern fossil record in the Cretaceous. Here we report divergence time estimates for ferns and angiosperms based on molecular data, with constraints from a reassessment of the fossil record. We show that polypod ferns (> 80% of living fern species) diversified in the Cretaceous, after angiosperms, suggesting perhaps an ecological opportunistic response to the diversification of angiosperms, as angiosperms came to dominate terrestrial ecosystems.

  12. At the feet of the dinosaurs: the early history and radiation of lizards.

    PubMed

    Evans, Susan E

    2003-11-01

    Lizards, snakes and amphisbaenians together constitute the Squamata, the largest and most diverse group of living reptiles. Despite their current success, the early squamate fossil record is extremely patchy. The last major survey of squamate palaeontology and evolution was published 20 years ago. Since then, there have been major changes in systematic theory and methodology, as well as a steady trickle of new fossil finds. This review examines our current understanding of the first 150 million years of squamate evolution in the light of the new data and changing ideas. Contrary to previous reports, no squamate fossils are currently documented before the Jurassic. Nonetheless, indirect evidence predicts that squamates had evolved by at least the middle Triassic, and had diversified into existing major lineages before the end of this period. There is thus a major gap in the squamate record at a time when key morphological features were evolving. With the exception of fragmentary remains from Africa and India, Jurassic squamates are known only from localities in northern continents (Laurasia). The situation improves in the Early Cretaceous, but the southern (Gondwanan) record remains extremely poor. This constrains palaeobiogeographic discussion and makes it difficult to predict centres of origin for major squamate clades on the basis of fossil evidence alone. Preliminary mapping of morphological characters onto a consensus tree demonstrates stages in the sequence of acquisition for some characters of the skull and postcranial skeleton, but many crucial stages--most notably those relating to the acquisition of squamate skull kinesis--remain unclear.

  13. Geological duration of ammonoids controlled their geographical range of fossil distribution.

    PubMed

    Wani, Ryoji

    2017-01-01

    The latitudinal distributions in Devonian-Cretaceous ammonoids were analyzed at the genus level, and were compared with the hatchling sizes (i.e., ammonitella diameters) and the geological durations. The results show that (1) length of temporal ranges of ammonoids effected broader ranges of fossil distribution and paleobiogeography of ammonoids, and (2) the hatchling size was not related to the geographical range of fossil distribution of ammonoids. Reducing the influence of geological duration in this analysis implies that hatchling size was one of the controlling factors that determined the distribution of ammonoid habitats at any given period in time: ammonoids with smaller hatchling sizes tended to have broader ammonoid habitat ranges. These relationships were somewhat blurred in the Devonian, Carboniferous, Triassic, and Jurassic, which is possibly due to (1) the course of development of a reproductive strategy with smaller hatchling sizes in the Devonian and (2) the high origination rates after the mass extinction events.

  14. Siderite concretions: indicators of early diagenesis in the Gammon shale (Cretaceous).

    USGS Publications Warehouse

    Gautier, D.L.

    1982-01-01

    The Gammon member of the Pierre shale of the northern Great Plains, USA, contains abundant siderite concretions. The relative depth and time of siderite precipitation can be inferred from the structure, mineralogy and isotopic composition of these concretions. Concretions that formed at shallow depths, early in the history of the sediment, contain a high percentage (75-85%) of carbonate, preserve uncompacted structures and have oxygen isotopic ratios similar to that of sea-water. In contrast, concretions that formed later and/or at greater depths have lower carbonate content and lower 18O/16O ratios. Concretions in rapidly deposited sediments formed at shallow depths (<10 m), and those in sediments that accumulated slowly formed at greater depths. These differences agree with the fossil evidence. Siderite did not form until nearly all the dissolved sulphur had been reduced and precipitated as pyrite; the excess organic matter produced methane at about the same time.-H.R.B.

  15. Facies architecture and paleohydrology of a synrift succession in the Early Cretaceous Choyr Basin, southeastern Mongolia

    USGS Publications Warehouse

    Ito, M.; Matsukawa, M.; Saito, T.; Nichols, D.J.

    2006-01-01

    The Choyr Basin is one of several Early Cretaceous rift basins in southwestern Mongolia that developed in specific regions between north-south trending fold-and-thrust belts. The eastern margin of the basin is defined by high-angle normal and/or strike-slip faults that trend north-to-south and northeast-to-southwest and by the overall geometry of the basin, which is interpreted to be a half graben. The sedimentary succession of the Choyr Basin documents one of the various types of tectono-sedimentary processes that were active in the rift basins of East Asia during Early Cretaceous time. The sedimentary infill of the Choyr Basin is newly defined as the Khalzan Uul and Khuren Dukh formations based on detailed mapping of lateral and vertical variations in component lithofacies assemblages. These two formations are heterotopic deposits and constitute a third-order fluvio-lacustrine sequence that can be divided into transgressive and highstand systems tracts. The lower part of the transgressive systems tract (TST) is characterized by sandy alluvial-fan and braided-river systems on the hanging wall along the western basin margin, and by a gravelly alluvial-fan system on the footwall along the eastern basin margin. The alluvial-fan and braided-river deposits along the western basin margin are fossiliferous and are interpreted to have developed in association with a perennial fluvial system. In contrast, alluvial-fan deposits along the eastern basin margin do not contain any distinct faunas or floras and are interpreted to have been influenced by a high-discharge ephemeral fluvial system associated with fluctuations in wetting and drying paleohydrologic processes. The lower part of the TST deposit fines upward to siltstone-dominated flood-plain and ephemeral-lake deposits that constitute the upper part of the TST and the lower part of the highstand systems tract (HST). These mudstone deposits eventually reduced the topographic irregularities typical of the early stage of

  16. Preliminary study on the L ate Cretaceous ostracods from continental scientific drilling SK1 in the Songliao Basin, NE China

    NASA Astrophysics Data System (ADS)

    Xi, Dangpeng; Qu, Haiying; Shi, Zhongye; Wan, Xiaoqiao

    2017-04-01

    Songliao Basin is one of the biggest lacustrine systems in Asia during Cretaceous age. Widespread deposits in the basin are mainly composed of clastic sediments which contain abundant fossils including gastropod, bivalves, ostracods, vertebrates and others. These well preserved ostracod fossils provide us valuable information about past climate changes and biotic responses in a greenhouse environment.The Cretaceous Continental Scientific Drilling in the Songliao Basin (SK1) offers a rare opportunity to study Late Cretaceous non-marine ostracod. The SK1 was drilled separately in two boreholes: the lower 959.55-meter-thick south core (SK1(s)), and the upper 1636.72-meter-thick north core (SK1 (n)), containing the Upper Quantou, Qingshankou, Yaojia, Nenjiang Formation, Sifangtai, Mingshui and lower Taikang formations. Here we establish high-resolution non-marine ostracod biostratigraphy based on SK1. 80 species belonging to 12 genera in the SK1(S) and 45 species assigned to 20 genera in the SK1(n) have been recovered. Nineteen ostracod assemblage zones have been recognized: 1. Mongolocypris longicaudata-Cypridea Assemblage Zone, 2.Triangulicypris torsuosus-Triangulicypris torsuosus. nota Assemblage Zone, 3. Cypridea dekhoinensis-Cypridea gibbosa Assemblage Zone, 4.Cypridea nota-Sunliavia tumida Assemblage Zone, 5.Cypridea edentula-Lycopterocypris grandis Assemblage Zone, 6.Cypridea fuyuensis-Triangulicypris symmetrica Assemblage Zone, 7.Triangulicypris vestilus-Triangulicypris fusiformis-Triangulicypris pumilis Assemblage Zone, 8.Cypridea panda-Mongolocypris obscura Assemblage Zone, 9. Cypridea exornata-Cypridea dongfangensis Assemblage Zone, 10.Cypridea favosa-Mongolocypris tabulata Assemblage Zone, 11.Cypridea formosa-Cypridea sunghuajiangensis Assemblage Zone, 12. Cypridea anonyma-Candona fabiforma Assemblage Zone, 13.Cypridea gracila-Cypridea gunsulinensis Assemblage Zone, 14.Mongolocypris magna-Mongolocypris heiluntszianensis Assemblage Zone, 15.Cypridea

  17. Revised nomenclature, definitions, and correlations for the Cretaceous formations in USGS-Clubhouse Crossroads #1, Dorchester County, South Carolina

    USGS Publications Warehouse

    Gohn, Gregory S.

    1992-01-01

    and definitions of the Cape Fear, Middendorf, Black Creek, and Peedee Formations originally used for the core by Gohn and others and Hazel and others are substantially changed herein. In addition, the Black Creek Formation of the core is raised in rank to become the Black Creek Group, which consists of two newly defined formations (Cane Acre and Coachman) and two newly recognized formations previously described in outcrop (Bladen and Donoho Creek). Four subsurface formations that are not known in outcrop are newly defined in the core (Beech Hill, Clubhouse, Shepherd Grove, and Caddin). The revised stratigraphy of the Cretaceous section in the Clubhouse Crossroads #1 core, from base to top, is as follows: Beech Hill Formation (Cenomanian?), Clubhouse Formation (late Cenomanian? and Turonian), Cape Fear Formation (late Turonian? to early Santonian), Middendorf Formation (middle Santonian), Shepherd Grove Formation (late Santonian and early Campanian), Caddin Formation (early Campanian), Cane Acre Formation (middle Campanian, Black Creek Group), Coachman Formation (middle to late Campanian, Black Creek Group), Bladen Formation (late Campanian, Black Creek Group), Donoho Creek Formation (early Maastrichtian, Black Creek Group), and Peedee Formation (late early Maastrichtian to middle or late Maastrichtian).

  18. Petrogenesis of the late Early Cretaceous granodiorite - Quartz diorite from eastern Guangdong, SE China: Implications for tectono-magmatic evolution and porphyry Cu-Au-Mo mineralization

    NASA Astrophysics Data System (ADS)

    Jia, Lihui; Mao, Jingwen; Liu, Peng; Li, Yang

    2018-04-01

    Comprehensive petrological, zircon U-Pb dating, Hf-O isotopes, whole rock geochemistry and Sr-Nd isotopes data are presented for the Xinwei and Sanrao intrusions in the eastern Guangdong Province, Southeast (SE) China, with an aim to constrain the petrogenesis, tectono-magmatic evolution and evaluate the implication for porphyry Cu-Au-Mo mineralization. The Xinwei intrusion is composed of granodiorite and quartz diorite, whilst the Sanrao intrusion consists of granodiorite. Zircon U-Pb ages show that both intrusions were emplaced at ca. 106-102 Ma. All rocks are metaluminous to weakly peraluminous, high-K calc-alkaline in composition, and they are characterized by LREEs enrichment, depletion in Nb, Ta, P, and Ti, and strongly fractionated LREEs to HREEs. The initial 87Sr/86Sr ratios range from 0.7055 to 0.7059, and εNd(t) values range from -3.9 to -3.0. Together with the relatively high εHf(t) values (-3.2 to 3.3) and low δ18O values (4.9‰ to 6.6‰), these data suggest that the Xinwei and Sanrao intrusions were derived from a mixed source: including the mantle-derived mafic magmas and lower continental crustal magmas. Fractional crystallization played an important role in the magmatic evolution of the Xinwei and Sanrao intrusions. The elemental and isotopic compositions of the Xinwei and Sanrao intrusions, as well as the high water content and oxidation state of their parental magmas, are similar to those of the ore-bearing granodiorites of the Luoboling porphyry Cu-Mo deposit in the Fujian Province, neighbouring east to the Guangdong Province, indicating that the late Early Cretaceous granodioritic intrusions in the eastern Guangdong Province may also have Cu-Au-Mo mineralization potential. The late Early Cretaceous magmatic event is firstly reported in eastern Guangdong, and represents a positive response of large-scale lithosphere extension and thinning, triggered by the changing subduction direction of the Paleo-Pacific plate from oblique subduction to

  19. Neodymium isotope evolution of NW Tethyan upper ocean waters throughout the Cretaceous

    NASA Astrophysics Data System (ADS)

    Pucéat, Emmanuelle; Lécuyer, Christophe; Reisberg, Laurie

    2005-08-01

    Neodymium isotope compositions of twenty-four fish teeth, nineteen from the NW Tethys and five from different locations within the Tethys, are interpreted to reflect the evolution of Tethyan upper ocean water composition during the Cretaceous and used to track changes in erosional inputs to the NW Tethys and in oceanic circulation throughout the Cretaceous. The rather high ɛNd (up to - 7.6) of the NW Tethyan upper ocean waters recorded from the Late Berriasian to the Early Aptian and the absence of negative excursions during this interval support the presence of a permanent westward flowing Tethys Circumglobal Current (TCC). This implies that temperature variations during this time period, inferred from the oxygen isotope analysis of fish tooth enamel, were not driven by changes in surface oceanic currents, but rather by global climatic changes. The results presented here represent a significant advance over previously published Cretaceous seawater Nd isotope records. Our newly acquired data now allow the identification of two stages of low ɛNd values in the NW Tethys, during the Early Albian-Middle Albian interval (down to - 10) and the Santonian-Early Campanian (down to - 11.4), which alternate with two stages of higher ɛNd values (up to - 9) during the Late Albian-Turonian interval and the Maastrichtian. Used in conjunction with the oxygen isotope record, the fluctuations of ɛNd values can be related to major climatic, oceanographic, and tectonic events that appeared in the western Tethyan domain.

  20. A Late Cretaceous diversification of Asian oviraptorid dinosaurs: evidence from a new species preserved in an unusual posture.

    PubMed

    Lü, Junchang; Chen, Rongjun; Brusatte, Stephen L; Zhu, Yangxiao; Shen, Caizhi

    2016-11-10

    Oviraptorosaurs are a bizarre group of bird-like theropod dinosaurs, the derived forms of which have shortened, toothless skulls, and which diverged from close relatives by developing peculiar feeding adaptations. Although once among the most mysterious of dinosaurs, oviraptorosaurs are becoming better understood with the discovery of many new fossils in Asia and North America. The Ganzhou area of southern China is emerging as a hotspot of oviraptorosaur discoveries, as over the past half decade five new monotypic genera have been found in the latest Cretaceous (Maastrichtian) deposits of this region. We here report a sixth diagnostic oviraptorosaur from Ganzhou, Tongtianlong limosus gen. et sp. nov., represented by a remarkably well-preserved specimen in an unusual splayed-limb and raised-head posture. Tongtianlong is a derived oviraptorid oviraptorosaur, differentiated from other species by its unique dome-like skull roof, highly convex premaxilla, and other features of the skull. The large number of oviraptorosaurs from Ganzhou, which often differ in cranial morphologies related to feeding, document an evolutionary radiation of these dinosaurs during the very latest Cretaceous of Asia, which helped establish one of the last diverse dinosaur faunas before the end-Cretaceous extinction.

  1. A Late Cretaceous diversification of Asian oviraptorid dinosaurs: evidence from a new species preserved in an unusual posture

    NASA Astrophysics Data System (ADS)

    Lü, Junchang; Chen, Rongjun; Brusatte, Stephen L.; Zhu, Yangxiao; Shen, Caizhi

    2016-11-01

    Oviraptorosaurs are a bizarre group of bird-like theropod dinosaurs, the derived forms of which have shortened, toothless skulls, and which diverged from close relatives by developing peculiar feeding adaptations. Although once among the most mysterious of dinosaurs, oviraptorosaurs are becoming better understood with the discovery of many new fossils in Asia and North America. The Ganzhou area of southern China is emerging as a hotspot of oviraptorosaur discoveries, as over the past half decade five new monotypic genera have been found in the latest Cretaceous (Maastrichtian) deposits of this region. We here report a sixth diagnostic oviraptorosaur from Ganzhou, Tongtianlong limosus gen. et sp. nov., represented by a remarkably well-preserved specimen in an unusual splayed-limb and raised-head posture. Tongtianlong is a derived oviraptorid oviraptorosaur, differentiated from other species by its unique dome-like skull roof, highly convex premaxilla, and other features of the skull. The large number of oviraptorosaurs from Ganzhou, which often differ in cranial morphologies related to feeding, document an evolutionary radiation of these dinosaurs during the very latest Cretaceous of Asia, which helped establish one of the last diverse dinosaur faunas before the end-Cretaceous extinction.

  2. A Late Cretaceous diversification of Asian oviraptorid dinosaurs: evidence from a new species preserved in an unusual posture

    PubMed Central

    Lü, Junchang; Chen, Rongjun; Brusatte, Stephen L.; Zhu, Yangxiao; Shen, Caizhi

    2016-01-01

    Oviraptorosaurs are a bizarre group of bird-like theropod dinosaurs, the derived forms of which have shortened, toothless skulls, and which diverged from close relatives by developing peculiar feeding adaptations. Although once among the most mysterious of dinosaurs, oviraptorosaurs are becoming better understood with the discovery of many new fossils in Asia and North America. The Ganzhou area of southern China is emerging as a hotspot of oviraptorosaur discoveries, as over the past half decade five new monotypic genera have been found in the latest Cretaceous (Maastrichtian) deposits of this region. We here report a sixth diagnostic oviraptorosaur from Ganzhou, Tongtianlong limosus gen. et sp. nov., represented by a remarkably well-preserved specimen in an unusual splayed-limb and raised-head posture. Tongtianlong is a derived oviraptorid oviraptorosaur, differentiated from other species by its unique dome-like skull roof, highly convex premaxilla, and other features of the skull. The large number of oviraptorosaurs from Ganzhou, which often differ in cranial morphologies related to feeding, document an evolutionary radiation of these dinosaurs during the very latest Cretaceous of Asia, which helped establish one of the last diverse dinosaur faunas before the end-Cretaceous extinction. PMID:27831542

  3. Une nouvelle famille de scorpions du Crétacé inférieur du Brésil

    NASA Astrophysics Data System (ADS)

    de Carvalho, Maria da Gloria P.; Lourenço, Wilson R.

    2001-06-01

    A new family, new genus and species of fossil scorpions are described from the Early Cretaceous of Brazil, Santana formation, Crato area in the state of Ceará. These fossils can be classified together with extant families within the Scorpionoidea. This suggests that these modern scorpions belong to lineages present at least for 110 Myr.

  4. Shallow magnetic inclinations in the Cretaceous Valle Group, Baja California: remagnetization, compaction, or terrane translation?

    NASA Astrophysics Data System (ADS)

    Smith, Douglas P.; Busby, Cathy J.

    1993-10-01

    Paleomagnetic data from Albian to Turonian sedimentary rocks on Cedros Island, Mexico (28.2° N, 115.2° W) support the interpretation that Cretaceous rocks of western Baja California have moved farther northward than the 3° of latitude assignable to Neogene oblique rifting in the Gulf of California. Averaged Cretaceous paleomagnetic results from Cedros Island support 20 ± 10° of northward displacement and 14 ± 7° of clockwise rotation with respect to cratonic North America. Positive field stability tests from the Vizcaino terrane substantiate a mid-Cretaceous age for the high-temperature characteristic remanent magnetization in mid-Cretaceous strata. Therefore coincidence of characteristic magnetization directions and the expected Quaternary axial dipole direction is not due to post mid-Cretaceous remagnetization. A slump test performed on internally coherent, intrabasinal slump blocks within a paleontologically dated olistostrome demonstrates a mid-Cretaceous age of magnetization in the Valle Group. The in situ high-temperature natural remanent magnetization directions markedly diverge from the expected Quaternary axial dipole, indicating that the characteristic, high-temperature magnetization was acquired prior to intrabasinal slumping. Early acquisition of the characteristic magnetization is also supported by a regional attitude test involving three localities in coherent mid-Cretaceous Valle Group strata. Paleomagnetic inclinations in mudstone are not different from those in sandstone, indicating that burial compaction did not bias the results toward shallow inclinations in the Vizcaino terrane.

  5. Extended Late-Cretaceous Magnetostratigraphy of the James Ross Basin Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Chaffee, T. M.; Mitchell, R.; Slotznick, S. P.; Buz, J.; Biasi, J.; O'Rourke, J.; Sousa, F.; Flannery, D.; Fu, R. R.; Kirschvink, J. L.

    2017-12-01

    Sediments in the James Ross Island Basin (JRB) in the West Antarctic Peninsula contain one of the world's highest-resolution records of the late Cretaceous period, including the end-Cretaceous (K-Pg) mass extinction event. However, the geological record of this region has been poorly studied, limited in the past only to the relative dating of local fossils. Recent studies of this region have provided only low-resolution data, with gaps of greater than 0.5 million years between samples where no data was collected. A high-resolution magnetostratigraphic sampling and analysis is necessary in order to accurately determine the age of the JRB sediments and connect them to the global time record. During the 2016 field season in Antarctica, our team collected nearly 1,300 sample cores from JRB sediments using a diamond-tipped, gasoline powered coring drill. Drill sites were densely clustered across bedding in order to obtain a high-resolution record of magnetostratigraphy, permitting the recognition of distinct, high-resolution units of time (<50 thousand years) present in local stratigraphy Our current results come from thermal demagnetization of the characteristic remanance (ChRM) of a group of over 300 of these samples from the Brandy Bay area which constrain the end of the Cretaceous Superchron (C34N) and the C34N/C34R reversal and allow us to investigate the presence of geomagnetic excursions before the end of superchron. These samples span in age from the top of C34N to the mid-Maastrichtian. We also test the Late Cretaceous True Polar Wander (TPW) hypothesis. Current theories on the global extent of TPW are not substantiated by any data sets that confirm the presence and similarity of the effect across multiple continents. Evidence of a rapid TPW oscillation in Antarctica can be correlated with other samples from the North American continent currently under study to provide evidence for the theory of global, short-timescale TPW.

  6. Fossil moonseeds from the Paleogene of West Gondwana (Patagonia, Argentina).

    PubMed

    Jud, Nathan A; Iglesias, Ari; Wilf, Peter; Gandolfo, Maria A

    2018-06-08

    The fossil record is critical for testing biogeographic hypotheses. Menispermaceae (moonseeds) are a widespread family with a rich fossil record and alternative hypotheses related to their origin and diversification. The family is well-represented in Cenozoic deposits of the northern hemisphere, but the record in the southern hemisphere is sparse. Filling in the southern record of moonseeds will improve our ability to evaluate alternative biogeographic hypotheses. Fossils were collected from the Salamanca (early Paleocene, Danian) and the Huitrera (early Eocene, Ypresian) formations in Chubut Province, Argentina. We photographed them using light microscopy, epifluorescence, and scanning electron microscopy and compared the fossils with similar extant and fossil Menispermaceae using herbarium specimens and published literature. We describe fossil leaves and endocarps attributed to Menispermaceae from Argentinean Patagonia. The leaves are identified to the family, and the endocarps are further identified to the tribe Cissampelideae. The Salamancan endocarp is assigned to the extant genus Stephania. These fossils significantly expand the known range of Menispermaceae in South America, and they include the oldest (ca. 64 Ma) unequivocal evidence of the family worldwide. Our findings highlight the importance of West Gondwana in the evolution of Menispermaceae during the Paleogene. Currently, the fossil record does not discern between a Laurasian or Gondwanan origin; however, it does demonstrate that Menispermaceae grew well outside the tropics by the early Paleocene. The endocarps' affinity with Cissampelideae suggests that diversification of the family was well underway by the earliest Paleocene. © 2018 The Authors. American Journal of Botany is published by Wiley Periodicals, Inc. on behalf of the Botanical Society of America.

  7. Fossil Atherospermataceae from lower Eocene sediments of Austria: Laurelia Juss. from the EECO section at Krappfeld in Carinthia

    NASA Astrophysics Data System (ADS)

    Hofmann, Christa-Ch.; Egger, Hans

    2015-04-01

    Laurelia Juss. (Atherospermataceae R. Br.) today is a disjunct genus in the southern hemisphere that inhabit temperate moist forests of South America and New Zealand. Unequivocal Atherospermataceae fossils are still rare and are known since the Upper Cretaceous from the southern hemisphere. Here, we present the first findings of Laurelia pollen in the northern hemisphere, preserved in EECO (Early Eocene Climate Optimum) sediments in southern Austria. The sediments of the Paleogene Holzer Formation rest with an erosional unconformity on Campanian rocks, is 8 m-thick and composed of soft red and green claystone, and coaly lenses rich in terrestrial palynomorphs. The pollen and spores were examined with LM and SEM and assigned to botanical families and genera. Overall, three different palynomorph-rich facies were identified: The first, at the base of the Holzer Formation, is characterized by abundant and diverse fern spores, various Arecaceae, Myricaceae, and Juglandaceae. The second is from the black transgressive shale and characterized by the co-occurrence of marine dinoflagellates and Normapolles, Nypa, palm pollen, and Avicennia. The third facies is dominated by wind pollinated triporate taxa (e.g., Normapolles, Myricaceae, Juglandaceae), monosulcate palm taxa and numerous fern spores. The Atherospermataceae pollen, which resembles most closely the genus Laurelia Juss., were encountered in low numbers in all three facies of the Holzer Formation, but previously misidentified. The reason lies in the aperture type: Atherospermataceae pollen are composed of two hemispherical halves that are separated by a complete ring-like aperture or an incomplete a ring-like aperture that acts as a zone of weakness so that the deposited fossil pollen, tend to fall apart. Most fossil Laurelia pollen in the Krappfeld are preserved as rolled up individual halves and look like boat-shaped sulcate pollen grains of monocots or basal angiosperms; preservation of complete grains is rare

  8. Early Tertiary mammals from North Africa reinforce the molecular Afrotheria clade

    PubMed Central

    Tabuce, Rodolphe; Marivaux, Laurent; Adaci, Mohammed; Bensalah, Mustapha; Hartenberger, Jean-Louis; Mahboubi, Mohammed; Mebrouk, Fateh; Tafforeau, Paul; Jaeger, Jean-Jacques

    2007-01-01

    The phylogenetic pattern and timing of the radiation of mammals, especially the geographical origins of major crown clades, are areas of controversy among molecular biologists, morphologists and palaeontologists. Molecular phylogeneticists have identified an Afrotheria clade, which includes several taxa as different as tenrecs (Tenrecidae), golden moles (Chrysochloridae), elephant-shrews (Macroscelididae), aardvarks (Tubulidentata) and paenungulates (elephants, sea cows and hyracoids). Molecular data also suggest a Cretaceous African origin for Afrotheria within Placentalia followed by a long period of endemic evolution on the Afro-Arabian continent after the mid-Cretaceous Gondwanan breakup (approx. 105–25 Myr ago). However, there was no morphological support for such a natural grouping so far. Here, we report new dental and postcranial evidence of Eocene stem hyrax and macroscelidid from North Africa that, for the first time, provides a congruent phylogenetic view with the molecular Afrotheria clade. These new fossils imply, however, substantial changes regarding the historical biogeography of afrotheres. Their long period of isolation in Africa, as assumed by molecular inferences, is now to be reconsidered inasmuch as Eocene paenungulates and elephant-shrews are here found to be related to some Early Tertiary Euramerican ‘hyopsodontid condylarths’ (archaic hoofed mammals). As a result, stem members of afrotherian clades are not strictly African but also include some Early Paleogene Holarctic mammals. PMID:17329227

  9. Progress in Late Cretaceous planktonic foraminiferal stable isotope paleoecology and implications for paleoceanographic reconstructions

    NASA Astrophysics Data System (ADS)

    Petrizzo, Maria Rose; Falzoni, Francesca; Huber, Brian T.; MacLeod, Kenneth G.

    2015-04-01

    Paleoecological preferences proposed for Cretaceous planktonic foraminiferal taxa have traditionally been based on morphological analogies with depth-stratified modern species, on biofacies comparison in continental margin and deepwater settings, and limited oxygen and carbon stable isotope data. These studies concluded that large-sized, keeled and heavily calcified planktonic foraminifera generally lived at deeper levels in the surface waters than small-sized, thinner-walled non-keeled species. Stable isotope data have been used to infer information on paleotemperature, paleoceanography and paleoproductivity of ancient oceans and constrain biological paleo-activities (i.e. photosymbiosis and respiration) of fossil species. These studies have suggested that the depth-distribution model based on analogy with modern taxa might not be fully applicable for Cretaceous species, and found particularly 13C-enriched values in some Maastrichtian multiserial taxa that have been related to the activity of photosymbionts. We have collected about 1500 δ18O and δ13C species-specific analyses on glassy preserved planktonic foraminifera from Tanzania (Tanzania Drilling Project TDP sites 23, 28 and 32) and well-preserved planktonic foraminifera from other mid-low latitude localities (Shatsky Rise, northwestern Pacific Ocean, ODP Leg 198 Hole 1210B; Exmouth Plateau, eastern Indian Ocean, ODP Leg 122, Hole 762C; Eratosthenes Seamount, eastern Mediterranean, ODP Leg 160, Hole 967E; Blake Nose, central Atlantic Ocean, ODP Leg 171B, holes 1050C and 1052E) to investigate Late Cretaceous species paleoecological preferences, life strategies and depth distribution in the surface water column. Our results indicates that several large-sized (> 500 μm) double-keeled species belonging to the genera Dicarinella, Marginotruncana and Contusotruncana, generally interpreted as deep to thermocline dwellers, instead occupied shallow/warm layers of the water column, whilst not all biserial species

  10. Protist-like inclusions in amber, as evidenced by Charentes amber.

    PubMed

    Girard, Vincent; Néraudeau, Didier; Adl, Sina M; Breton, Gérard

    2011-05-01

    The mid-Cretaceous amber of France contains thousands of protist-like inclusions similar in shape to some ciliates, flagellates and amoebae. The sheer abundance of these inclusions and their size variation within a single amber piece are not concordant with true fossil protists. French amber is coniferous in origin, which generally does not preserve well protists without cell walls. Thus, it would be surprising if French Cretaceous amber had preserved millions of protists. Here, we present a survey of the protist-like inclusions from French amber and attempt to elucidate their origins. Diverse Cretaceous ambers (from Spain, Germany and Lebanon), also derived from conifer resins, contain thousands of protist-like inclusions. In contrast, Tertiary ambers and modern resins are poor in protist-like fossils. This suggests these inclusions originated from early Cretaceous plant resins, probably secreted with the resin by trees that did not survive after the Cretaceous (such as the Cheirolepidiaceae). A review of the recent literature on amber microfossils indicates several protist-like inclusions that are unlikely to have a biological origin have already been described as real fossil protists. This is problematic in that it will bias our understanding of protist evolution. Copyright © 2011 Elsevier GmbH. All rights reserved.

  11. Post Cretaceous cooling trend documented in the gastropods (Turritella Sp.) from the Cenozoic startigraphic successions of India

    NASA Astrophysics Data System (ADS)

    Banerjee, Y.; Ghosh, P.; Halder, K.; Malarkodi, N.; Pathak, P.

    2017-12-01

    The aftermath of the Himalyan orogeny and subsequent cooling is documented in the deep sea sedimentary record from the Oceanic realm (1). Here we attempt to reconstruct the temperature pattern based on marine gastropods i.e. Turritella sp. which became abundant during the post Cretaceous period and have successfully been used for the reconstruction of climate by measuring the stable isotopic composition (2,3,4). Well preserved specimens of Cretaceous Turritella from the Rajamundry Infratrappean beds and those from the Miocene, Holocene succession of Kutch, western India were analysed along with specimen from the modern time scale (also from Kutch). The Cretaceous, early to mid Miocene, early Holocene and modern shells recorded δ13C variability from 0.36 to 4.94‰, -1.83 to -4.83‰, -3.26 to 0.40‰, -1.47 to -4.70‰ respectively suggesting drop in the productivity during mid Miocene and subsequent period of rapid growth. The Variability in terms of δ18O ranges from -2.28 to -4.99‰, -2.66 to -7.06‰, -2.86 to 0.96‰, -1.05 to -3.23‰ for the Cretaceous, early to mid Miocene, early Holocene and modern shells respectively. Corbula sp. collected from the same strata with that of the early to mid Holocene Turritella showed a similar δ13C and δ18O values denoting similar environmental condition during deposition. Absence of any significant correlation between δ13C vs δ18O support equilibrium precipitation of shell growth bands. We used Epstein oxygen isotope thermometry to derive temperature from the oxygen isotope of carbonate and adopted water isotopic composition (1‰ for the Cretaceous and -0.7‰ for the Miocene) from the literature. Our observation captured an overall cooling trend from the Cretaceous to the Holocene time period (especially in between mid Miocene to Holocene) and a subsequent warming trend in modern time. Validation with other thermometry method will be displayed at the time of presentation. References: [1] Zachos et al., 2001

  12. An estimation of Central Iberian Peninsula atmospheric δ13C and water δD in the Upper Cretaceous using pyrolysis compound specific isotopic analysis (Py-CSIA) of a fossil conifer.

    NASA Astrophysics Data System (ADS)

    González-Pérez, José A.; Jiménez-Morillo, Nicasio T.; De la Rosa, José M.; Almendros, Gonzalo; González-Vila, Francisco J.

    2015-04-01

    Frenelopsis is a frequently found genus of the Cretaceous floras adapted to dry, saline and in general to environmental conditions marked by severe water stress [1]. Stable isotope analysis of fossil organic materials can be used to infer palaeoenvironmental variables helpful to reconstruct plant paleohabitats [2]. In this study stable isotope analysis of organic fossil remains (FR) and humic fractions (FA, HA and humin) of Frenelopsis oligiostomata are studied in bulk (C, H, O, N IRMS) and in specific compounds released by pyrolysis (C, H, Py-CSIA). Well preserved F. oligiostomata fossils were handpicked from a limestone included in compacted marls from Upper Cretaceous (Senonian c. 72 Mya) in Guadalix de la Sierra (Madrid, Spain) [3]. The fossils were decarbonated with 6M HCl. Humic substances were extracted from finely ground fossil remains (FR) by successive treatments with 0.1M Na4P2O7 + NaOH [4]. The extract was acidified resulting into insoluble HA and soluble FA fractions. The HA and FA were purified as in [5] and [6] respectively. Bulk stable isotopic analysis (δ13C, δD, δ18O, δ15N IRMS) was done in an elemental micro-analyser coupled to a continuous flow Delta V Advantage isotope ratio mass spectrometer (IRMS). Pyrolysis compound specific isotopic analysis Py-CSIA (δ13C, δD): was done by coupling a double-shot pyrolyzer to a chromatograph connected to an IRMS. Structural features of specific peaks were inferred by comparing/matching mass spectra from conventional Py-GC/MS (data not shown) with Py-GC/IRMS chromatograms obtained using the same chromatographic conditions. Bulk C isotopic signature found for FR (-20.5±0.02 ‰) was in accordance with previous studies [2, 7-9]. This heavy isotopic δ13C signature indicates a depleted stomatal conductance and paleoenvironmental growth conditions of water and salt stress. This is in line with the morphological and depositional characteristics [3] confirming that F. oligostomata was adapted to highly xeric

  13. Geoligical outline of the Lower Cretaceous Bahia Supergroup, Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca, J.I.

    1966-01-01

    The report area encompasses about 41,200 sq km covered by over 6,000 m of Lower Cretaceous sediments deposited in fresh to brackish water environment. These sediments, the Bahia Supergroup, represent most of the sedimentary section of the Almada, Reconcavo, Tucano and Jatoba basins. The Reconcavo basin is a half-graben filled with Lower Cretaceous rocks which tilt regionally to the SE. The sediments deposited in this basin were distorted by 2 major periods of deformation. As the result of the application of these systems of tensional forces, the sediments were broken into a complicated system of normal faults. Most of themore » oil production in Brazil, about 91,000 bpd, comes from the Reconcavo basin. During a great part of the Early Cretaceous the Reconcavo and Almada basins probably were connected with the Alagoas-Sergipe basin by the continental shelf. The continental drift theory may explain the presence of these fresh water sediments in the coast line and in the continental shelf of the Bahia and Alagoas-Sergipe states. This offshore area is very prospective and may contribute, in the future, with substantial quantities of hydrocarbons. (14 refs.)« less

  14. Right-handed fossil humans.

    PubMed

    Lozano, Marina; Estalrrich, Almudena; Bondioli, Luca; Fiore, Ivana; Bermúdez de Castro, José-Maria; Arsuaga, Juan Luis; Carbonell, Eudald; Rosas, Antonio; Frayer, David W

    2017-11-01

    Fossil hominids often processed material held between their upper and lower teeth. Pulling with one hand and cutting with the other, they occasionally left impact cut marks on the lip (labial) surface of their incisors and canines. From these actions, it possible to determine the dominant hand used. The frequency of these oblique striations in an array of fossil hominins documents the typically modern pattern of 9 right- to 1 left-hander. This ratio among living Homo sapiens differs from that among chimpanzees and bonobos and more distant primate relatives. Together, all studies of living people affirm that dominant right-handedness is a uniquely modern human trait. The same pattern extends deep into our past. Thus far, the majority of inferred right-handed fossils come from Europe, but a single maxilla from a Homo habilis, OH-65, shows a predominance of right oblique scratches, thus extending right-handedness into the early Pleistocene of Africa. Other studies show right-handedness in more recent African, Chinese, and Levantine fossils, but the sample compiled for non-European fossil specimens remains small. Fossil specimens from Sima del los Huesos and a variety of European Neandertal sites are predominately right-handed. We argue the 9:1 handedness ratio in Neandertals and the earlier inhabitants of Europe constitutes evidence for a modern pattern of handedness well before the appearance of modern Homo sapiens. © 2017 Wiley Periodicals, Inc.

  15. The Sredne-Amursky basin: A migrating cretaceous depocenter for the Amur river, eastern Siberia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Light, M.; Maslanyj, M.; Davidson, K.

    1993-09-01

    Recently acquired seismic, well, and regional geological data imply favorable conditions for the accumulation of oil and gas in the 20,000 km[sup 2] Sredne-Amursky basin. Major graben and northeast-trending sinistral wrench-fault systems are recognized in the basin. Lower and Upper Cretaceous sediments are up to 9000 and 3000 m thick, respectively. Paleogeographic reconstructions imply that during the Late Triassic-Early Cretaceous the Sredne-Amursky basin was part of a narrow marine embayment (back-arc basin), which was open to the north. During the Cretaceous, the region was part of a foreland basin complicated by strike-slip, which produced subsidence related to transtension during obliquemore » collision of the Sikhote-Alin arc with Eurasian margin. Contemporaneous uplift also related to this collision migrated from south to north and may have sourced northward-directed deltas and alluvial fans, which fed northward into the closing back-arc basin between 130 and 85 Ma. The progradational clastic succession of the Berriasian-Albian and the Late Cretaceous fluvial, brackish water and paralic sediments within the basin may be analogous to the highly productive late Tertiary clastics of the Amur River delta in the northeast Sakhalin basin. Cretaceous-Tertiary lacustrine-deltaic sapropelic shales provide significant source and seal potential and potential reservoirs occur in the Cretaceous and Tertiary. Structural plays were developed during Cretaceous rifting and subsequent strike-slip deformation. If the full hydrocarbon potential of the Sredne-Amursky basin is to be realized, the regional appraisal suggests that exploration should be focused toward the identification of plays related to prograding Cretaceous deltaic depositional systems.« less

  16. Stratigraphy and depositional environments of Fox Hills Formation (Late Cretaceous), Williston basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, D.J.

    The Fox Hills Formation (Late Cretaceous, Maestrichtian) was investigated where it crops out along the southern flank of the Williston basin and in the subsurface over the central portion of the basin, using 300 well logs. The formation is conformable and gradational with the underlying Pierre formation and can be either conformable or unconformable with the overlying Hell Creek Formation. The Fox Hills Formation is younger, thicker, and stratigraphically more complex to the east and is comprised of marginal marine sediments deposited during the final Cretaceous regression. To the west, the Fox Hills Formation is an upward-coarsening unit generally 30more » to 45 m thick and usually contains three members: from the base, Trail City, Timber Lake, and Colgate. The lower Fox Hills (Trail City, Timber Lake) is generally dominated by hummocky bedding and contains a variety of trace fossils, most notably Ophiomorpha. The upper Fox Hills (Colgate), where present, is characterized by cross-bedding. To the east, including the type area, the section is generally 80 to 100 m thick and contains four members: from the base, Trail City, Timber Lake, Iron Lightning (Colgate and Bullhead lithofacies), and Linton. In contrast to the section in the west, this section is as much as three times thicker, contains abundant body fossils, generally lacks hummocky bedding, and contains the Bullhead and Linton strata. In the west, the strata represent lower shoreface deposits, predominantly of storm origin (lower Fox Hills), overlain by upper shoreface and fluvial deposits (upper Fox Hills). In the east, the lower Fox Hills contains deposits of the lower shoreface (Trail City) and a barrier bar complex (Timber Lake), overlain by the deltaic deposits of the upper Fox Hills (Iron Lightning, Linton).« less

  17. Stratigraphy of mid-Cretaceous formations at drilling sites in Weston and Johnson counties, northeastern Wyoming

    USGS Publications Warehouse

    Mereweather, E.A.

    1980-01-01

    The sedimentary rocks of early Late Cretaceous age in Weston County, Wyo., on the east flank of the Powder River Basin, are assigned, in ascending order, to the Belle Fourche Shale, Greenhorn Formation, and Carlile Shale. In Johnson County, on the west flank of the basin, the lower Upper Cretaceous strata are included in the Frontier Formation and the overlying Cody Shale. The Frontier Formation and some of the laterally equivalent strata in the Rocky Mountain region contain major resources of oil and gas. These rocks also include commercial deposits of bentonite. Outcrop sections, borehole logs, and core studies of the lower Upper Cretaceous rocks near Osage, in Weston County, and Kaycee, in Johnson County, supplement comparative studies of the fossils in the formations. Fossils of Cenomanian, Turonian, and Coniacian Age are abundant at these localities and form sequences of species which can be used for the zonation and correlation of strata throughout the region. The Belle Fourche Shale near Osage is about 115 m (meters) thick and consists mainly of noncalcareous shale, which was deposited in offshore-marine environments during Cenomanian time. These strata are overlain by calcareous shale and limestone of the Greenhorn Formation. In this area, the Greenhorn is about 85 m thick and accumulated in offshore, open-marine environments during the Cenomanian and early Turonian. The Carlile Shale overlies the Greenhorn and is composed of, from oldest to youngest, the Pool Creek Member, Turner Sandy Member, and Sage Breaks Member. In boreholes, the Pool Creek Member is about 23 m thick and consists largely of shale. The member was deposited in offshoremarine environments in Turonian time. These rocks are disconformably overlain by the Turner Sandy Member, a sequence about 50 m thick of interstratified shale, siltstone, and sandstone. The Turner accumulated during the Turonian in several shallow-marine environments. Conformably overlying the Turner is the slightly

  18. 40Ar/39Ar ages for the fossil-bearing Gyeongsang Supergroup in South Korea

    NASA Astrophysics Data System (ADS)

    Chang, S. C.; Hemming, S. R.

    2016-12-01

    Since the 1970s, abundant vertebrate fossils have been documented from the Cretaceous Gyeongsang Supergroup in the Gyeongsang Basin and some small nearby basins of the Korean Peninsula, including dinosaurs, pterosaurs, crocodilians, turtles and fish. In addition to body fossils, well-preserved dinosaur, bird and pterosaur tracks have been found from these formations. Well-preserved and extensive vertebrate ichnofaunas from the Gyeongsang Supergroup represent the largest known concentration of Cretaceous vertebrate track sites reported from the Asian continent. Determining the age of the Gyeongsang Supergroup is critical to understanding several fundamental questions related to evolution and paleo-biogeography. However, limited radioisotopic studies for the Gyeongsang Supergroup have been previously reported. Additionally, the large uncertainties of previous data and the incomplete stratigraphic description of the samples limit their value for high-resolution chronostratigraphy. In this study, we aim to establish high-precision 40Ar/39Ar ages for two well-known tuffs from the middle and the upper part of the Gyeongsang Supergroup, and one rhyolite from the uppermost Gyeongsang Supergroup. Our preliminary 40Ar/39Ar data for the Kusandong Tuff indicates that the middle part of the Gyeongsang Supergroup is 78-82 Ma. This is consistent with the hypothesized extension of the Jehol biota into Korea and the preliminary results suggest that refinement of the time scale for these strata is a practical goal. The Gyeongsang Supergroup sample has great potential for substantially increasing our knowledge of Mesozoic terrestrial ecosystems.

  19. The evolution of armadillos, anteaters and sloths depicted by nuclear and mitochondrial phylogenies: implications for the status of the enigmatic fossil Eurotamandua.

    PubMed

    Delsuc, F; Catzeflis, F M; Stanhope, M J; Douzery, E J

    2001-08-07

    The mammalian order Xenarthra (armadillos, anteaters and sloths) is one of the four major clades of placentals, but it remains poorly studied from the molecular phylogenetics perspective. We present here a study encompassing most of the order's diversity in order to establish xenarthrans' intra-ordinal relationships, discuss the evolution of their morphological characters, search for their extant sister group and specify the timing of their radiation with special emphasis on the status of the controversial fossil Eurotamandua. Sequences of three genes (nuclear exon 28 of the Von Willebrand factor and mitochondrial 12S and 16S rRNAs) are compared for eight of the 13 living genera. Phylogenetic analyses confirm the order's monophyly and that of its three major lineages: armadillos (Cingulata), anteaters (Vermilingua) and sloths ('Tardigrada', renamed in 'Folivora'), and our results strongly support the grouping of hairy xenarthrans (anteaters and sloths) into Pilosa. Within placentals, Afrotheria might be the first lineage to branch off, followed by Xenarthra. The morphological adaptative convergence between New World xenarthrans and Old World pangolins is confirmed. Molecular datings place the early emergence of armadillos around the Cretaceous/Tertiary boundary, followed by the divergence between anteaters and sloths in the Early Eocene era. These Tertiary dates contradict the concept of a very ancient origin of modern xenarthran lineages. They also question the placement of the purported fossil anteater (Eurotamandua) from the Middle Eocene period of Europe with the Vermilingua and instead suggest the independent and convergent evolution of this enigmatic taxon.

  20. Lu-Hf isotope systematics of fossil biogenic apatite and their effects on geochronology

    NASA Astrophysics Data System (ADS)

    Herwartz, Daniel; Münker, Carsten; Tütken, Thomas; Hoffmann, J. Elis; Wittke, Andreas; Barbier, Bruno

    2013-01-01

    matrices with low permeability (oil shale of Messel, Germany; Posidonienschiefer of Holzmaden, Germany). Materials analysed from these localities include bones, teeth, conodonts, as well as coproliths and diagenetic minerals (siderite, montgomeryite and messelite). Near-depositional Lu-Hf ages were obtained for a bony fish sample (Notelops brama) encapsulated in an early diagenetic carbonate concretion from the Early Cretaceous Santana Formation, Brazil and for conodonts from a Middle Devonian carbonate from the Eifel, Germany. Low 176Lu/177Hf ratios in all materials from the Middle Eocene Messel oil shale (e.g., bones, fish scales, sediment, siderite) result in poor age precision and an age that is near-depositional due to this large analytical error. In agreement with previous results, all other ages determined here for both bones and teeth are by far younger than respective chronostratigraphic ages. A model illustrating the behaviour of Lu and Hf over time, with respect to the fossilisation process is presented, which accounts both for the formation of a late diagenetic radiogenic Zr(Hf) phase and long term open system behaviour. The continuous Lu-Hf element exchange between the fossils and the embedding sediment is probably related to the nm-scale crystal size of fossil bones, dentine and also of enamel that generate large surface areas facilitating sorption/desorption processes and open system behaviour.