Sample records for early cretaceous intra-oceanic

  1. Warm Middle Jurassic-Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Jenkyns, H. C.; Schouten-Huibers, L.; Schouten, S.; Sinninghe Damsté, J. S.

    2012-02-01

    Although a division of the Phanerozoic climatic modes of the Earth into "greenhouse" and "icehouse" phases is widely accepted, whether or not polar ice developed during the relatively warm Jurassic and Cretaceous Periods is still under debate. In particular, there is a range of isotopic and biotic evidence that favours the concept of discrete "cold snaps", marked particularly by migration of certain biota towards lower latitudes. Extension of the use of the palaeotemperature proxy TEX86 back to the Middle Jurassic indicates that relatively warm sea-surface conditions (26-30 °C) existed from this interval (∼160 Ma) to the Early Cretaceous (∼115 Ma) in the Southern Ocean, with a general warming trend through the Late Jurassic followed by a general cooling trend through the Early Cretaceous. The lowest sea-surface temperatures are recorded from around the Callovian-Oxfordian boundary, an interval identified in Europe as relatively cool, but do not fall below 25 °C. The early Aptian Oceanic Anoxic Event, identified on the basis of published biostratigraphy, total organic carbon and carbon-isotope stratigraphy, records an interval with the lowest, albeit fluctuating Early Cretaceous palaeotemperatures (∼26 °C), recalling similar phenomena recorded from Europe and the tropical Pacific Ocean. Extant belemnite δ18O data, assuming an isotopic composition of waters inhabited by these fossils of -1‰ SMOW, give palaeotemperatures throughout the Upper Jurassic-Lower Cretaceous interval that are consistently lower by ∼14 °C than does TEX86 and the molluscs likely record conditions below the thermocline. The long-term, warm climatic conditions indicated by the TEX86 data would only be compatible with the existence of continental ice if appreciable areas of high altitude existed on Antarctica, and/or in other polar regions, during the Mesozoic Era.

  2. An extraterrestrial trigger for the Early Cretaceous massive volcanism? Evidence from the paleo-Tethys Ocean.

    PubMed

    Tejada, M L G; Ravizza, G; Suzuki, K; Paquay, F S

    2012-01-01

    The Early Cretaceous Greater Ontong Java Event in the Pacific Ocean may have covered ca. 1% of the Earth's surface with volcanism. It has puzzled scientists trying to explain its origin by several mechanisms possible on Earth, leading others to propose an extraterrestrial trigger to explain this event. A large oceanic extraterrestrial impact causing such voluminous volcanism may have traces of its distal ejecta in sedimentary rocks around the basin, including the paleo-Tethys Ocean which was then contiguous with the Pacific Ocean. The contemporaneous marine sequence at central Italy, containing the sedimentary expression of a global oceanic anoxic event (OAE1a), may have recorded such ocurrence as indicated by two stratigraphic intervals with (187)Os/(188)Os indicative of meteoritic influence. Here we show, for the first time, that platinum group element abundances and inter-element ratios in this paleo-Tethyan marine sequence provide no evidence for an extraterrestrial trigger for the Early Cretaceous massive volcanism.

  3. An extraterrestrial trigger for the Early Cretaceous massive volcanism? Evidence from the paleo-Tethys Ocean

    PubMed Central

    Tejada, M. L. G.; Ravizza, G.; Suzuki, K.; Paquay, F. S.

    2012-01-01

    The Early Cretaceous Greater Ontong Java Event in the Pacific Ocean may have covered ca. 1% of the Earth's surface with volcanism. It has puzzled scientists trying to explain its origin by several mechanisms possible on Earth, leading others to propose an extraterrestrial trigger to explain this event. A large oceanic extraterrestrial impact causing such voluminous volcanism may have traces of its distal ejecta in sedimentary rocks around the basin, including the paleo-Tethys Ocean which was then contiguous with the Pacific Ocean. The contemporaneous marine sequence at central Italy, containing the sedimentary expression of a global oceanic anoxic event (OAE1a), may have recorded such ocurrence as indicated by two stratigraphic intervals with 187Os/188Os indicative of meteoritic influence. Here we show, for the first time, that platinum group element abundances and inter-element ratios in this paleo-Tethyan marine sequence provide no evidence for an extraterrestrial trigger for the Early Cretaceous massive volcanism. PMID:22355780

  4. Paleomagnetic tests for tectonic reconstructions of the Late Jurassic-Early Cretaceous Woyla Group, Sumatra

    NASA Astrophysics Data System (ADS)

    Advokaat, Eldert; Bongers, Mayke; van Hinsbergen, Douwe; Rudyawan, Alfend; Marshal, Edo

    2017-04-01

    SE Asia consists of multiple continental blocks, volcanic arcs and suture zones representing remnants of closing ocean basins. The core of this mainland is called Sundaland, and was formed by accretion of continental and arc fragments during the Paleozoic and Mesozoic. The former positions of these blocks are still uncertain but reconstructions based on tectonostratigraphic, palaeobiogeographic, geological and palaeomagnetic studies indicate the continental terranes separated from the eastern margin of Gondwana. During the mid-Cretaceous, more continental and arc fragments accreted to Sundaland, including the intra-oceanic Woyla Arc now exposed on Sumatra. These continental fragments were derived from Australia, but the former position of the Woyla Arc is unconstrained. Interpretations on the former position of the Woyla Arc fall in two end-member groups. The first group interprets the Woyla Arc to be separated from West Sumatra by a small back-arc basin. This back arc basin opened in the Late Jurassic, and closed mid-Cretaceous, when the Woyla Arc collided with West Sumatra. The other group interprets the Woyla Arc to be derived from Gondwana, at a position close to the northern margin of Greater India in the Late Jurassic. Subsequently the Woyla Arc moved northwards and collided with West Sumatra in the mid-Cretaceous. Since these scenarios predict very different plate kinematic evolutions for the Neotethyan realm, we here aim to place paleomagnetic constraints on paleolatitudinal evolution of the Woyla Arc. The Woyla Arc consists mainly of basaltic to andesitic volcanics and dykes, and volcaniclastic shales and sandstones. Associated limestones with volcanic debris are interpreted as fringing reefs. This assemblage is interpreted as remnants of an Early Cretaceous intra-oceanic arc. West Sumatra exposes granites, surrounded by quartz sandstones, shales and volcanic tuffs. These sediments are in part metamorphosed. This assemblage is interpreted as a Jurassic-Early

  5. Closure of the Mongol-Okhotsk Ocean as Constrained by Late Permian to Early Cretaceous Paleomagnetic Data from the Suture Zone

    NASA Astrophysics Data System (ADS)

    Cogne, J.; Kravchinsky, V.; Gilder, S.; Hankard, F.

    2005-12-01

    The Paleozoic Mongol-Okhotsk Ocean separated the Siberian craton to the north from a landmass composed of Amuria, Tarim, Qaidam, Tibet and the North and South China blocks to the south. Based on a comparison of paleomagnetic data from the NCB with the Eurasian apparent polar wander path, this ocean closed by the beginning of the Cretaceous. We present here a review of recent paleomagnetic studies of Late Permian to Early Cretaceous formations from the Transbaikal area of south Siberia, coming from localities situated on both sides of the Mongol-Okhotsk suture zone. The main conclusions that we draw from these studies are as follows. (1) A Late Permian ~4500 km latitude difference indeed existed between Amuria and the Siberia blocks at 110°E longitude. (2) In Middle-Late Jurassic times, a 1700 to 2700 km paleolatitudinal gap still existed between the two blocks. This contradicts geological interpretations of a Middle Jurassic closure of the ocean at this longitude. (3) Consistency of Early Cretaceous paleolatitudes from both sides of the suture demonstrates the closure of the ocean at that time. Altogether, these suggest a quite fast closure between the Middle Jurassic and the Early Cretaceous, at about 15±11 cm/yr. Finally, all pre-Late Cretaceous paleomagnetic poles appear to be distributed along small-circles centered on site localities. We think this is due to continued deformation acting in the Mongol-Okhotsk suture region related to suturing. Conversely, the post-Early Cretaceous rotations may be related to Tertiary deformation under the effect of the India-Asia collision.

  6. Late Cretaceous infant intra-oceanic arc volcanism, the Central Pontides, Turkey: Petrogenetic and tectonic implications

    NASA Astrophysics Data System (ADS)

    Aygül, Mesut; Okay, Aral I.; Oberhänsli, Roland; Schmidt, Alexander; Sudo, Masafumi

    2015-11-01

    A tectonic slice of an arc sequence consisting of low-grade metavolcanic rocks and overlying metasedimentary succession is exposed in the Central Pontides north of the İzmir-Ankara-Erzincan suture separating Laurasia from Gondwana-derived terranes. The metavolcanic rocks mainly consist of basaltic andesite/andesite and mafic cognate xenolith-bearing rhyolite with their pyroclastic equivalents, which are interbedded with recrystallized pelagic limestone and chert. The metasedimentary succession comprises recrystallized micritic limestone with rare volcanogenic metaclastic rocks and stratigraphically overlies the metavolcanic rocks. The geochemistry of the metavolcanic rocks indicates an arc setting evidenced by depletion of HFSE (Ti, P and Nb) and enrichment of fluid mobile LILE. Identical trace and rare earth elements compositions of basaltic andesites/andesites and rhyolites suggest that they are cogenetic and derived from a common parental magma. The arc sequence crops out between an Albian-Turonian subduction-accretionary complex representing the Laurasian active margin and an ophiolitic mélange. Absence of continent derived detritus in the arc sequence and its tectonic setting in a wide Cretaceous accretionary complex suggest that the Kösdağ Arc was intra-oceanic. Zircons from two metarhyolite samples give Late Cretaceous (93.8 ± 1.9 and 94.4 ± 1.9 Ma) U/Pb ages. These ages are the same as the age of the supra-subduction ophiolites in western Turkey, which implies that that the Kösdağ Arc may represent part of the incipient arc formed during the generation of the supra-subduction ophiolites. The low-grade regional metamorphism in the Kösdağ Arc is constrained to 69.9 ± 0.4 Ma by 40Ar/39Ar muscovite dating indicating that the arc sequence became part of a wide Tethyan Cretaceous accretionary complex by the latest Cretaceous. Non-collisional cessation of the arc volcanism is possibly associated with southward migration of the magmatism as in the Izu

  7. Early Cretaceous MORB-type basalt and A-type rhyolite in northern Tibet: Evidence for ridge subduction in the Bangong-Nujiang Tethyan Ocean

    NASA Astrophysics Data System (ADS)

    Fan, Jian-Jun; Li, Cai; Sun, Zhen-Ming; Xu, Wei; Wang, Ming; Xie, Chao-Ming

    2018-04-01

    New zircon U-Pb ages, major- and trace-element data, and Hf isotopic compositions are presented for bimodal volcanic rocks of the Zhaga Formation (ZF) in the western-middle segment of the Bangong-Nujiang suture zone (BNSZ), northern Tibet. The genesis of these rocks is described, and implications for late-stage evolution of the Bangong-Nujiang Tethyan Ocean (BNTO) are considered. Detailed studies show that the ZF bimodal rocks, which occur as layers within a typical bathyal to abyssal flysch deposit, comprise MORB-type basalt that formed at a mid-ocean ridge, and low-K calc-alkaline A-type rhyolite derived from juvenile crust. The combination of MORB-type basalt, calc-alkaline A-type rhyolite, and bathyal to abyssal flysch deposits in the ZF leads us to propose that they formed as a result of ridge subduction. The A-type ZF rhyolites yield LA-ICP-MS zircon U-Pb ages of 118-112 Ma, indicating formation during the Early Cretaceous. Data from the present study, combined with regional geological data, indicate that the BNTO underwent conversion from ocean opening to ocean closure during the Late Jurassic-Early Cretaceous. The eastern segment of the BNTO closed during this period, while the western and western-middle segments were still at least partially open and active during the Early Cretaceous, accompanied by ridge subduction within the Bangong-Nujiang Tethyan Ocean.

  8. Late Cretaceous-Early Eocene Climate Change Linked to Tectonic Eevolution of Neo-Tethyan Subduction Systems

    NASA Astrophysics Data System (ADS)

    Jagoutz, O. E.; Royden, L.; Macdonald, F. A.

    2015-12-01

    In this presentation we demonstrate that the two tectonic events in the late Cretaceous-Early Tertiary triggered the two distinct cooling events that followed the Cretaceous Thermal Maximum (CTM). During much of the Cretaceous time, the northern Neo Tethyan ocean was dominated by two east-west striking subduction system. Subduction underneath Eurasia formed a continental arc on the southern margin of Eurasia and intra oceanic subduction in the equatorial region of the Neo Tethys formed and intra oceanic arc. Beginning at ~85-90 Ma the western part of the TTSS collided southward with the Afro-Arabian continental margin, terminating subduction. This resulted in southward obduction of the peri-Arabian ophiolite belt, which extends for ~4000 km along strike and includes the Cypus, Semail and Zagros ophiolites. At the same time also the eastern part of the TTS collided northwards wit Eurasia. After this collisional event, only the central part of the subduction system remained active until it collided with the northern margin of the Indian continent at ~50-55 Ma. The collision of the arc with the Indian margin, over a length of ~3000 km, also resulted in the obduction of arc material and ophiolitic rocks. Remnants of these rocks are preserved today as the Kohistan-Ladakh arc and ophiolites of the Indus-Tsangpo suture zone of the Himalayas. Both of these collision events occurred in the equatorial region, near or within the ITCZ, where chemical weathering rates are high and are contemporaneous with the onset of the global cooling events that mark the end of the CTM and the EECO. The tectonic collision events resulted in a shut down of subduction zone magmatism, a major CO2 source and emplacement of highly weatherable basaltic rocks within the ITCZ (CO2 sink). In order to explore the effect of the events in the TTSS on atmospheric CO2, we model the potential contribution of subduction zone volcanism (source) and ophiolite obduction (sink) to the global atmospheric CO2

  9. Late Jurassic - Early Cretaceous convergent margins of Northeastern Asia with Northwestern Pacific and Proto-Arctic oceans

    NASA Astrophysics Data System (ADS)

    Sokolov, Sergey; Luchitskaya, Marina; Tuchkova, Marianna; Moiseev, Artem; Ledneva, Galina

    2013-04-01

    Continental margin of Northeastern Asia includes many island arc terranes that differ in age and tectonic position. Two convergent margins are reconstructed for Late Jurassic - Early Cretaceous time: Uda-Murgal and Alazeya - Oloy island arc systems. A long tectonic zone composed of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks is recognized along the Asian continent margin from the Mongol-Okhotsk thrust-fold belt on the south to the Chukotka Peninsula on the north. This belt represents the Uda-Murgal arc, which was developed along the convergent margin between Northeastern Asia and Northwestern Meso-Pacific. Several segments are identified in this arc based upon the volcanic and sedimentary rock assemblages, their respective compositions and basement structures. The southern and central parts of the Uda-Murgal island arc system were a continental margin belt with heterogeneous basement represented by metamorphic rocks of the Siberian craton, the Verkhoyansk terrigenous complex of Siberian passive margin and the Koni-Taigonos late Paleozoic to early Mesozoic island arc with accreted oceanic terranes. At the present day latitude of the Pekulney and Chukotka segments there was an ensimatic island arc with relicts of the South Anyui oceanic basin in backarc basin. Alazeya-Oloy island arc systems consists of Paleozoic and Mesozoic complexes that belong to the convergent margin between Northeastern Asia and Proto-Artic Ocean. It separated structures of the North American and Siberian continents. The Siberian margin was active whereas the North American margin was passive. The Late Jurassic was characterized by termination of a spreading in the Proto-Arctic Ocean and transformation of the latter into the closing South Anyui turbidite basin. In the beginning the oceanic lithosphere and then the Chukotka microcontinent had been subducted beneath the Alazeya-Oloy volcanic belt

  10. Neodymium isotope evolution of NW Tethyan upper ocean waters throughout the Cretaceous

    NASA Astrophysics Data System (ADS)

    Pucéat, Emmanuelle; Lécuyer, Christophe; Reisberg, Laurie

    2005-08-01

    Neodymium isotope compositions of twenty-four fish teeth, nineteen from the NW Tethys and five from different locations within the Tethys, are interpreted to reflect the evolution of Tethyan upper ocean water composition during the Cretaceous and used to track changes in erosional inputs to the NW Tethys and in oceanic circulation throughout the Cretaceous. The rather high ɛNd (up to - 7.6) of the NW Tethyan upper ocean waters recorded from the Late Berriasian to the Early Aptian and the absence of negative excursions during this interval support the presence of a permanent westward flowing Tethys Circumglobal Current (TCC). This implies that temperature variations during this time period, inferred from the oxygen isotope analysis of fish tooth enamel, were not driven by changes in surface oceanic currents, but rather by global climatic changes. The results presented here represent a significant advance over previously published Cretaceous seawater Nd isotope records. Our newly acquired data now allow the identification of two stages of low ɛNd values in the NW Tethys, during the Early Albian-Middle Albian interval (down to - 10) and the Santonian-Early Campanian (down to - 11.4), which alternate with two stages of higher ɛNd values (up to - 9) during the Late Albian-Turonian interval and the Maastrichtian. Used in conjunction with the oxygen isotope record, the fluctuations of ɛNd values can be related to major climatic, oceanographic, and tectonic events that appeared in the western Tethyan domain.

  11. Paleoenvironments of the Jurassic and Cretaceous Oceans: Selected Highlights

    NASA Astrophysics Data System (ADS)

    Ogg, J. G.

    2007-12-01

    There are many themes contributing to the sedimentation history of the Mesozoic oceans. This overview briefly examines the roles of the carbonate compensation depth (CCD) and the associated levels of atmospheric carbon dioxide, of the evolution of marine calcareous microplankton, of major transgressive and regressive trends, and of super-plume eruptions. Initiation of Atlantic seafloor spreading in the Middle Jurassic coincided with an elevated carbonate compensation depth (CCD) in the Pacific-Tethys mega-ocean. Organic-rich sediments that would become the oil wealth of regions from Saudi Arabia to the North Sea were deposited during a continued rise in CCD during the Oxfordian-early Kimmeridgian, which suggests a possible increase in carbon dioxide release by oceanic volcanic activity. Deep-sea deposits in near-equatorial settings are dominated by siliceous shales or cherts, which reflect the productivity of siliceous microfossils in the tropical surface waters. The end-Jurassic explosion in productivity by calcareous microplankton contributed to the lowering of the CCD and onset of the chalk ("creta") deposits that characterize the Tithonian and lower Cretaceous in all ocean basins. During the mid-Cretaceous, the eruption of enormous Pacific igneous provinces (Ontong Java Plateau and coeval edifices) increased carbon dioxide levels. The resulting rise in CCD terminated chalk deposition in the deep sea. The excess carbon was progressively removed in widespread black-shale deposits in the Atlantic basins and other regions - another major episode of oil source rock. A major long-term transgression during middle and late Cretaceous was accompanied by extensive chalk deposition on continental shelves and seaways while the oceanic CCD remained elevated. Pacific guyots document major oscillations (sequences) of global sea level superimposed on this broad highstand. The Cretaceous closed with a progressive sea-level regression and lowering of the CCD that again enabled

  12. Petrogenesis of the Majiari ophiolite (western Tibet, China): Implications for intra-oceanic subduction in the Bangong-Nujiang Tethys

    NASA Astrophysics Data System (ADS)

    Huang, Qiang-tai; Liu, Wei-liang; Xia, Bin; Cai, Zhou-rong; Chen, Wei-yan; Li, Jian-feng; Yin, Zheng-xin

    2017-09-01

    The Majiari ophiolite lies in the western Bangong-Nujiang Suture Zone, which separates the Qiangtang and Lhasa blocks in central Tibet. The ophiolite consists of peridotite, gabbro/diabase and basalt. Zircon U-Pb dating yielded an age of 170.5 ± 1.7 Ma for the gabbro, whereas 40Ar/39Ar dating of plagioclase from the same gabbro yielded ages of 108.4 ± 2.6 Ma (plateau age) and 112 ± 2 Ma (isochron age), indicating that the ophiolite was formed during the Middle Jurassic and was probably emplaced during the Early Cretaceous. Zircons from the gabbro have εHf(t) values ranging from +6.9 to +10.6 and f(Lu/Hf) values ranging from -0.92 to -0.98. Mafic lavas plot in the tholeiitic basalt field but are depleted in Nb, Ta and Ti and enriched in Rb, Ba and Th in the N-MORB-normalized trace element spider diagram. These lavas have whole-rock εNd(t) values of +5.9 to +6.6, suggesting that they were derived from a depleted mantle source, which was probably modified by subducted materials. The Majiari ophiolite probably formed in a typical back-arc basin above a supra-subduction zone (SSZ) mantle wedge. Intra-oceanic subduction occurred during the Middle Jurassic and collision of the Lhasa and South Qiangtang terranes likely occurred in the Early Cretaceous. Thus, closure of the Bangong-Nujiang Tethys Ocean likely occurred before the Early Cretaceous.

  13. Cretaceous evolution of the Indian Plate and consequences for the formation, deformation and obduction of adjacent oceanic crust

    NASA Astrophysics Data System (ADS)

    Gaina, C.; Van Hinsbergen, D. J.; Spakman, W.

    2012-12-01

    As part of the gradual Gondwana dispersion that started in the Jurassic, the Indian tectonic block was rifted away from the Antarctica-Australian margins, probably in the Early-Mid Cretaceous and started its long journey to the north until it collided with Eurasia in the Tertiary. In this contribution first we will revise geophysical and geological evidences for the formation of oceanic crust between India and Antarctica, India and Madagascar, and India and Somali/Arabian margins. This information and possible oceanic basin age interpretation are placed into regional kinematic models. Three important compressional events NW and W of the Indian plate are the result of the opening of the Enderby Basin from 132 to 124 Ma, the first phase of seafloor spreading in the Mascarene basin approximately from 84 to 80 Ma, and the incipient opening of the Arabian Sea and the Seychelles microplate formation around 65 to 60 Ma. Based on retrodeformation of the Afghan-Pakistan part of the India-Asia collision zone and the eastern Oman margin, the ages of regional ophiolite emplacement and crystallization of its oceanic crust, as well as the plate tectonic setting of these ophiolites inferred from its geochemistry, we evaluate possible scenarios for the formation of intra-oceanic subduction zones and their evolution until ophiolite emplacement time. Our kinematic scenarios are constructed for several regional models and are discussed in the light of global tomographic models that may image some of the subducted Cretaceous oceanic lithosphere.

  14. Early-mid-Cretaceous evolution in Tethyan reef communities and sea level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, R.W.

    1988-01-01

    The replacement of corals by rudists in Early Cretaceous reefal communities spanned a 30-m.y. period when sea level rose and drowned continental shelves. During this time corals formed communities in the deeper parts of reefs and rudists occupied the shallow, high-energy habitats. By Aptian time rudists dominated reefs that fringed interior shelf basins and corals formed reefs with rudists on the outer shelf margins. By late Albian coral communities had virtually disappeared, presumably because of complex environmental changes and cycles of organic productivity. Two important events of eustatic sea level rise are represented by unconformities separating carbonate depositional sequences onmore » the Arabian platform that correlate with sequence boundaries on the Gulf Coast platform. Graphic correlation techniques test the synchroneity of these events. A composite standard time scale dates these sea level rises at 115.8 Ma and 94.6 Ma; a third, intra-Albian event at 104.3 Ma is present in many places and may also be eustatic. Associated with these sea level rises were apparent changes in ocean water chemistry as evidenced by changes in isotopes and trace elements, where diagenetic effects can be discounted. During this time the climate became more humid and atmospheric CO/sub 2/ increased. The concomitant environmental changes in the oceanic conditions presumably stressed the deeper coral communities on reefs. The emergence of rudists as reef contributors had a profound effect on Late Cretaceous depositional conditions and the development of hydrocarbon reservoirs.« less

  15. Early-mid-Cretaceous evolution in Tethyan reef communities and sea level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, R.W.

    1988-02-01

    The replacement of corals by rudists in Early Cretaceous reefal communities spanned a 30-m.y. period when sea level rose and drowned continental shelves. During this time corals formed communities in the deeper parts of reefs and rudists occupied the shallow, high-energy habitats. By Aptian time rudists dominated reefs that fringed interior shelf basins and corals formed reefs with rudists on the outer shelf margins. By late Albian coral communities had virtually disappeared, presumably because of complex environmental changes and cycles of organic productivity. Two important events of eustatic sea level rise are represented by unconformities separating carbonate depositional sequences onmore » the Arabian platform that correlate with sequence boundaries on the Gulf Coast platform. Graphic correlation techniques test the synchroneity of these events. A composite standard time scale dates these sea level rises at 115.8 Ma and 94.6 Ma; a third, intra-Albian event at 104.3 Ma is present in many places and may also be eustatic. Associated with these sea level rises were apparent changes in ocean water chemistry as evidenced by changes in isotopes and trace elements, where diagenetic effects can be discounted. During this time the climate became more humid and atmospheric CO/sub 2/ increased. The concomitant environmental changes in the oceanic conditions presumably stressed the deeper coral communities on reefs. The emergence of rudists as reef contributors had a profound effect on Late Cretaceous depositional conditions and the development of hydrocarbon reservoirs.« less

  16. Late Cretaceous seasonal ocean variability from the Arctic.

    PubMed

    Davies, Andrew; Kemp, Alan E S; Pike, Jennifer

    2009-07-09

    The modern Arctic Ocean is regarded as a barometer of global change and amplifier of global warming and therefore records of past Arctic change are critical for palaeoclimate reconstruction. Little is known of the state of the Arctic Ocean in the greenhouse period of the Late Cretaceous epoch (65-99 million years ago), yet records from such times may yield important clues to Arctic Ocean behaviour in near-future warmer climates. Here we present a seasonally resolved Cretaceous sedimentary record from the Alpha ridge of the Arctic Ocean. This palaeo-sediment trap provides new insight into the workings of the Cretaceous marine biological carbon pump. Seasonal primary production was dominated by diatom algae but was not related to upwelling as was previously hypothesized. Rather, production occurred within a stratified water column, involving specially adapted species in blooms resembling those of the modern North Pacific subtropical gyre, or those indicated for the Mediterranean sapropels. With increased CO(2) levels and warming currently driving increased stratification in the global ocean, this style of production that is adapted to stratification may become more widespread. Our evidence for seasonal diatom production and flux testify to an ice-free summer, but thin accumulations of terrigenous sediment within the diatom ooze are consistent with the presence of intermittent sea ice in the winter, supporting a wide body of evidence for low temperatures in the Late Cretaceous Arctic Ocean, rather than recent suggestions of a 15 degrees C mean annual temperature at this time.

  17. Mid-Cretaceous carbon cycle perturbations and Oceanic Anoxic Events recorded in southern Tibet

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolin; Chen, Kefan; Hu, Dongping; Sha, Jingeng

    2016-12-01

    The organic carbon isotope (δ13Corg) curve for ~1.7-km-thick mid-Cretaceous strata of the Chaqiela section in Gamba area, southern Tibet is presented in this study. C-isotopic chemostratigraphic correlation combined with biostratigraphic constraints show that the Chaqiela section spans early Aptian through early Campanian period, and that almost all of the carbon cycle perturbations and Oceanic Anoxic Events during the mid-Cretaceous period are well recorded in the continental margin area of the southeastern Tethys Ocean. Significantly, two levels of methane-derived authigenic carbonates were identified at the onset of OAE1b near the Aptian-Albian boundary. We suggest that an increase in methane release from gas hydrates, potentially driven by sea-level fall and bottom water temperature increase, may have contributed to the large negative δ13Corg excursions and global warming during OAE1b.

  18. Early Carboniferous adakite-like and I-type granites in central Qiangtang, northern Tibet: Implications for intra-oceanic subduction and back-arc basin formation within the Paleo-Tethys Ocean

    NASA Astrophysics Data System (ADS)

    Liu, Jin-Heng; Xie, Chao-Ming; Li, Cai; Wang, Ming; Wu, Hao; Li, Xing-Kui; Liu, Yi-Ming; Zhang, Tian-Yu

    2018-01-01

    Recent studies have proposed that the Late Devonian ophiolites in the central Qiangtang region of northern Tibet were formed in an oceanic back-arc basin setting, which has led to controversy over the subduction setting of the Longmucuo-Shuanghu-Lancangjiang Suture Zone (LSLSZ) during the Late Devonian to Early Carboniferous. In this paper we present new data about a suite of granite plutons that intrude into ophiolite in central Qiangtang. Our aim was to identify the type of subduction and to clarify the existence of an intra-oceanic back-arc basin in the LSLSZ during the Late Devonian to Early Carboniferous. The suite of granites consists of monzogranites, syenogranites, and granodiorites. Our laser ablation-inductively coupled plasma-mass spectrometry zircon U-Pb data yielded Early Carboniferous crystallization ages of 357.2 Ma, 357.4 Ma and 351.1 Ma. We subsequently investigated the petrogenesis and tectonic setting of these granites based on their geochemical and Hf isotopic characteristics. First, we divided the granites into high Sr/Y (HSG) and low Sr/Y granites (LSG). The HSG group contains monzogranites and granodiorites that have similar geochemical characteristics to adakites (i.e., high Sr/Y and La/Yb ratios, low MgO, Y, and Yb contents, and no pronounced negative Eu anomaly), although they have slightly lower Sr and Al2O3 contents, caused by crystal fractionation during late magmatic evolution. Therefore, we define the HSG group as adakite-like granites. The study of the HSG shows that they are adakite-like granites formed by partial melting of oceanic crust and experience fractional crystallization process during late evolution. However, some differences between the monzogranites and granodiorites indicate that there are varying degree contributions of subducted sediments during diagenesis. The LSG group contains syenogranites that have distinct negative correlations between their P2O5 and SiO2 contents, and Y and Th contents have significant positive

  19. Late Cretaceous-Early Palaeogene tectonic development of SE Asia

    NASA Astrophysics Data System (ADS)

    Morley, C. K.

    2012-10-01

    The Late Cretaceous-Early Palaeogene history of the continental core of SE Asia (Sundaland) marks the time prior to collision of India with Asia when SE Asia, from the Tethys in the west to the Palaeo-Pacific in the east, lay in the upper plate of subduction zones. In Myanmar and Sumatra, subduction was interrupted in the Aptian-Albian by a phase of arc accretion (Woyla and Mawgyi arcs) and in Java, eastern Borneo and Western Sulawesi by collision of continental fragments rifted from northern Australia. Subsequent resumption of subduction in the Myanmar-Thailand sector explains: 1) early creation of oceanic crust in the Andaman Sea in a supra-subduction zone setting ~ 95 Ma, 2) the belt of granite plutons of Late Cretaceous-Early Palaeogene age (starting ~ 88 Ma) in western Thailand and central Myanmar, and 3) amphibolite grade metamorphism between 70 and 80 Ma seen in gneissic outcrops in western and central Thailand, and 4) accretionary prism development in the Western Belt of Myanmar, until glancing collision with the NE corner of Greater India promoted ophiolite obduction, deformation and exhumation of marine sediments in the early Palaeogene. The Ranong strike-slip fault and other less well documented faults, were episodically active during the Late Cretaceous-Palaeogene time. N to NW directed subduction of the Palaeo-Pacific ocean below Southern China, Vietnam and Borneo created a major magmatic arc, associated with rift basins, metamorphic core complexes and strike-slip deformation which continued into the Late Cretaceous. The origin and timing of termination of subduction has recently been explained by collision of a large Luconia continental fragment either during the Late Cretaceous or Palaeogene. Evidence for such a collision is absent from the South China Sea well and seismic reflection record and here collision is discounted. Instead relocation of the subducting margin further west, possibly in response of back-arc extension (which created the Proto

  20. Global Ocean Circulation During Cretaceous Time

    NASA Astrophysics Data System (ADS)

    Haupt, B. J.; Seidov, D.

    2001-12-01

    Present--day global thermohaline ocean circulation (TOC) is usually associated with high--latitude deep-water formation due to surface cooling. In this understanding of the TOC driven by the deep--water production, the warm deep ocean during Mesozoic--Cenozoic time is a challenge. It may be questioned whether warm deep--ocean water, which is direct geologic evidence, does reflect warm polar surface--ocean regions. For the warm Cretaceous, it is difficult to maintain strong poleward heat transport in the case of reduced oceanic thermal contrasts. Usually, atmospheric feedbacks, in conjunction with the increase of atmospheric concentrations of greenhouse gases, are employed in order to explain the warm equable Cretaceous--Eocene climate. However, there is no feasible physical mechanism that could maintain warm subpolar surface oceans in both hemispheres, an assumption often used in atmospheric modeling. Our numerical experiments indicate that having a relatively cool but saltier high--latitude sea surface in at least one hemisphere is sufficient for driving a strong meridional overturning. Thus freshwater impacts in the high latitudes may be responsible for a vigorous conveyor capable of maintaining sufficient poleward oceanic heat transport needed to keep the polar oceans ice--free. These results imply that evaporation-precipitation patterns during warm climates are especially important climatic factors that can redistribute freshwater to create hemispheric asymmetry of sea surface conditions capable of generating a sufficiently strong TOC, otherwise impossible in warm climates.

  1. Impact of CO2 and continental configuration on Late Cretaceous ocean dynamics

    NASA Astrophysics Data System (ADS)

    Puceat, Emmanuelle; Donnadieu, Yannick; Moiroud, Mathieu; Guillocheau, François; Deconinck, Jean-François

    2014-05-01

    The Late Cretaceous period is characterized by a long-term climatic cooling (Huber et al., 1995; Pucéat et al., 2003; Friedrich et al., 2012) and by major changes in continental configuration with the widening of the Atlantic Ocean, the initiation of the Tethyan ocean closure, and the deepening of the Central Atlantic Gateway. The Late Cretaceous also marks the end of the occurrence of Oceanic Anoxic Events (OAEs), that are associated to enhanced organic carbon burial, to major crises of calcifying organisms, and to possible ocean acidification (Jenkyns, 2010). It has been suggested that the evolution in continental configuration and climate occurring during the Late Cretaceous could have induced a reorganization in the oceanic circulation, that may have impacted the oxygenation state of the oceanic basins and contributed to the disappearance of OAEs (Robinson et al., 2010; Robinson and Vance, 2012). Yet there is no consensus existing on the oceanic circulation modes and on their possible evolution during the Late Cretaceous, despite recent improvement of the spatial and temporal coverage of neodymium isotopic data (ɛNd), a proxy of oceanic circulation (MacLeod et al., 2008; Robinson et al., 2010; Murphy and Thomas, 2012; Robinson and Vance, 2012; Martin et al., 2012; Moiroud et al., 2012). Using the fully coupled ocean-atmosphere General Circulation Model FOAM, we explore in this work the impact on oceanic circulation of changes in continental configuration between the mid- and latest Cretaceous. Two paleogeography published by Sewall et al. (2007) were used, for the Cenomanian/Turonian boundary and for the Maastrichtian. For each paleogeography, 3 simulations have been realized, at 2x, 4x, and 8x the pre-industrial atmospheric CO2 level, in order to test the sensitivity of the modelled circulation to CO2. Our results show for both continental configurations a bipolar mode for the oceanic circulation displayed by FOAM. Using the Cenomanian/Turonian land-sea mask

  2. Isotopic evaluation of ocean circulation in the Late Cretaceous North American seaway

    NASA Astrophysics Data System (ADS)

    Coulson, Alan B.; Kohn, Matthew J.; Barrick, Reese E.

    2011-12-01

    During the mid- and Late Cretaceous period, North America was split by the north-south oriented Western Interior Seaway. Its role in creating and maintaining Late Cretaceous global greenhouse conditions remains unclear. Different palaeoceanographic reconstructions portray diverse circulation patterns. The southward extent of relatively cool, low-salinity, low-δ18O surface waters critically distinguishes among these models, but past studies of invertebrates could not independently assess water temperature and isotopic compositions. Here we present oxygen isotopes in biophosphate from coeval marine turtle and fish fossils from western Kansas, representing the east central seaway, and from the Mississippi embayment, representing the marginal Tethys Ocean. Our analyses yield precise seawater isotopic values and geographic temperature differences during the main transition from the Coniacian to the early Campanian age (87-82 Myr), and indicate that the seaway oxygen isotope value and salinity were 2‰ and 3‰ lower, respectively, than in the marginal Tethys Ocean. We infer that the influence of northern freshwater probably reached as far south as Kansas. Our revised values imply relatively large temperature differences between the Mississippi embayment and central seaway, explain the documented regional latitudinal palaeobiogeographic zonation and support models with relatively little inflow of surface waters from the Tethys Ocean to the Western Interior Seaway.

  3. Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria

    NASA Astrophysics Data System (ADS)

    Maffione, Marco; van Hinsbergen, Douwe J. J.; de Gelder, Giovanni I. N. O.; van der Goes, Freek C.; Morris, Antony

    2017-05-01

    Formation of new subduction zones represents one of the cornerstones of plate tectonics, yet both the kinematics and geodynamics governing this process remain enigmatic. A major subduction initiation event occurred in the Late Cretaceous, within the Neo-Tethys Ocean between Gondwana and Eurasia. Suprasubduction zone ophiolites (i.e., emerged fragments of ancient oceanic lithosphere formed at suprasubduction spreading centers) were generated during this subduction event and are today distributed in the eastern Mediterranean region along three E-W trending ophiolitic belts. Several models have been proposed to explain the formation of these ophiolites and the evolution of the associated intra-Neo-Tethyan subduction zone. Here we present new paleospreading directions from six Upper Cretaceous ophiolites of Turkey, Cyprus, and Syria, calculated by using new and published paleomagnetic data from sheeted dyke complexes. Our results show that NNE-SSW subduction zones were formed within the Neo-Tethys during the Late Cretaceous, which we propose were part of a major step-shaped subduction system composed of NNE-SSW and WNW-ESE segments. We infer that this subduction system developed within old (Triassic?) lithosphere, along fracture zones and perpendicular weakness zones, since the Neo-Tethyan spreading ridge formed during Gondwana fragmentation would have already been subducted at the Pontides subduction zone by the Late Cretaceous. Our new results provide an alternative kinematic model of Cretaceous Neo-Tethyan subduction initiation and call for future research on the mechanisms of subduction inception within old (and cold) lithosphere and the formation of metamorphic soles below suprasubduction zone ophiolites in the absence of nearby spreading ridges.

  4. Oceanic Remnants In The Caribbean Plate: Origin And Loss Of Related LIPs.

    NASA Astrophysics Data System (ADS)

    Giunta, G.

    2005-12-01

    The modern Caribbean Plate is an independent lithospheric entity, occupying more than 4 Mkm2 and consisting of the remnants of little deformed Cretaceous oceanic plateau of the Colombia and Venezuela Basins (almost 1 Mkm2) and the Palaeozoic-Mesozoic Chortis continental block (about 700,000 km2), both bounded by deformed marginal belts. The northern (Guatemala and Greater Antilles) and the southern (northern Venezuela) plate margins are marked by collisional zones, whereas the western (Central America Isthmus) and the eastern (Lesser Antilles) margins are represented by convergent boundaries and their magmatic arcs, all involving ophiolitic terranes. The evolutionary history of the Caribbean Plate since the Jurassic-Early Cretaceous encompasses plume, accretionary, and collisional tectonics, the evidence of which has been recorded in the oceanic remnants of lost LIPs, as revealed in: i) the MORB to OIB thickened crust of the oceanic plateau, including its un-deformed or little deformed main portion, and scattered deformed tectonic units; ii) ophiolitic tectonic units of MORB affinity and the rock blocks in ophiolitic melanges; iii) intra-oceanic, supra subduction magmatic sequences with IAT and CA affinities. The Mesozoic oceanic LIPs, from which the remnants of the Caribbean Plate have been derived, have been poorly preserved during various episodes of the intra-oceanic convergence, either those related to the original proto-Caribbean oceanic realm or those connected with two eo-Caribbean stages of subduction. The trapped oceanic plateau of the Colombia and Venezuela Basins is likely to be an unknown portion of a bigger crustal element of a LIP, similar to the Ontong-Java plateau. The Jurassic-Early Cretaceous proto-Caribbean oceanic domain consists of oceanic crust generated at multiple spreading centres; during the Cretaceous, part of this crust was thickened to form an oceanic plateau with MORB and OIB affinities. At the same time, both South and North American

  5. Tribosphenic mammal from the North American Early Cretaceous.

    PubMed

    Cifelli, R L

    1999-09-23

    The main groups of living mammals, marsupials and eutherians, are presumed to have diverged in the Early Cretaceous, but their early history and biogeography are poorly understood. Dental remains have suggested that the eutherians may have originated in Asia, spreading to North America in the Late Cretaceous, where an endemic radiation of marsupials was already well underway. Here I describe a new tribosphenic mammal (a mammal with lower molar heels that are three-cusped and basined) from the Early Cretaceous of North America, based on an unusually complete specimen. The new taxon bears characteristics (molarized last premolar, reduction to three molars) otherwise known only for Eutheria among the tribosphenic mammals. Morphometric analysis and character comparisons show, however, that its molar structure is primitive (and thus phylogenetically uninformative), emphasizing the need for caution in interpretation of isolated teeth. The new mammal is approximately contemporaneous with the oldest known Eutheria from Asia. If it is a eutherian, as is indicated by the available evidence, then this group was far more widely distributed in the Early Cretaceous than previously appreciated. An early presence of Eutheria in North America offers a potential source for the continent's Late Cretaceous radiations, which have, in part, proven difficult to relate to contemporary taxa in Asia.

  6. Evidence For Volcanic Initiation Of Cretaceous Ocean Anoxic Events (Invited)

    NASA Astrophysics Data System (ADS)

    Sageman, B. B.; Hurtgen, M. T.; McElwain, J.; Adams, D.; Barclay, R. S.; Joo, Y.

    2010-12-01

    Increasing evidence from studies of Cretaceous ocean anoxic events (OAE’s) has suggested that major changes in volcanic activity may have played a significant role in their genesis. Numerous specific mechanisms of have been proposed, including increases in atmospheric CO2 and surface temperature, leading to enhanced chemical weathering and terrestrial nutrient release, or increases in reduced trace metal fluxes, leading to oxygen depletion and possibly providing micronutrients for enhanced primary production. An additional pathway by which the byproducts of enhanced volcanic activity may have contributed to OAE genesis involves relationships between the biogeochemical cycles sulfur, iron, and phosphorus. Recent analysis of S-isotope data from carbonate-associated sulfate and pyrite collected across the Cenomanian-Turonian OAE2 in the Western Interior basin suggest that increases in sulfate to an initially sulfate-depleted ocean preceded onset of the event. Modern lake data support the idea that increases in sulfate concentration drive microbial sulfate reduction, leading to more efficient regeneration of P from sedimentary organic matter. If the early Cretaceous opening of the South Atlantic was accompanied by evaporite deposition sufficient to draw down global marine sulfate levels, and widespread anoxia leading to elevated pyrite burial helped maintain these low levels for the succeeding 30 myr, during which most Cretaceous OAE’s are found, perhaps pulses of volcanism that rapidly introduced large volumes of sulfate may have played a key role in OAE initiation. The eventually burial of S in the form of pyrite may have returned sulfate levels to a low background, thus providing a mechanism to terminate the anoxic events. This talk will review the evidence for volcanic initiation of OAE’s in the context of the sulfate-phosphorus regeneration model.

  7. Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria

    NASA Astrophysics Data System (ADS)

    Maffione, Marco; van Hinsbergen, Douwe; de Gelder, Giovanni; van der Goes, Freek; Morris, Antony

    2017-04-01

    Formation of new subduction zones represents one of the cornerstones of plate tectonics, yet both the kinematics and geodynamics governing this process remain enigmatic. A major subduction initiation event occurred in the Late Cretaceous, within the Neo-Tethys Ocean between Gondwana and Eurasia. Supra-subduction zone (SSZ) ophiolites (i.e., emerged fragments of ancient oceanic lithosphere accreted at supra-subduction spreading centers) were generated during this subduction event, and are today distributed in the eastern Mediterranean region along three E-W trending ophiolitic belts. Current models associate these ophiolite belts to simultaneous initiation of multiple, E-W trending subduction zones at 95 Ma. Here we report paleospreading direction data obtained from paleomagnetic analysis of sheeted dyke sections from seven Neo-Tethyan ophiolites of Turkey, Cyprus, and Syria, demonstrating that these ophiolites formed at NNE-SSW striking ridges parallel to the newly formed subduction zones. This subduction system was step-shaped and composed of NNE-SSW and ESE-WNW segments. The eastern subduction segment invaded the SW Mediterranean, leading to a radial obduction pattern similar to the Banda arc. Emplacement age constraints indicate that this subduction system formed close to the Triassic passive and paleo-transform margins of the Anatolide-Tauride continental block. Because the original Triassic-Jurassic Neo-Tethyan spreading ridge must have already subducted below the Pontides before the Late Cretaceous, we infer that the Late Cretaceous Neo-Tethyan subduction system started within ancient lithosphere, along NNE-SSW oriented fracture zones and faults parallel to the E-W trending passive margins. This challenges current concepts suggesting that subduction initiation occurs along active intra-oceanic plate boundaries.

  8. Paleomagnetism of Cretaceous Oceanic Red Beds (CORBs) from Gyangze, northern Tethys Himalaya: Evidence for Intra-oceanic Subduction System and Southern Paleolatitute Limit for the Lhasa Block

    NASA Astrophysics Data System (ADS)

    Tan, Xiaodong

    2016-04-01

    indicate a paleolatitude of 10±2 degree north, ~2000 km distance from the southern Tethys Himalaya. Therefore, the formation is not deposited near the greater Indian continental margins. Based on recent plate tectonic reconstruction, the CORBs are very likely formed within a back-arc basin between the equatorial intra-oceanic subduction system and the Asian continental margin. Due to coeval development of abundant red beds in the Lhasa block, the characteristic pigments of hematite born in the CORBs are likely of terrestrial origin. In addition, the new data indicate that the Lhasa block is unlikely to be at low paleolatitude in the Late Cretaceous and Tertiary as some of the paleomagnetic results show.

  9. Intra-Trackway Morphological Variations Due to Substrate Consistency: The El Frontal Dinosaur Tracksite (Lower Cretaceous, Spain)

    PubMed Central

    Razzolini, Novella L.; Vila, Bernat; Castanera, Diego; Falkingham, Peter L.; Barco, José Luis; Canudo, José Ignacio; Manning, Phillip L.; Galobart, Àngel

    2014-01-01

    An ichnological and sedimentological study of the El Frontal dinosaur tracksite (Early Cretaceous, Cameros basin, Soria, Spain) highlights the pronounced intra-trackway variation found in track morphologies of four theropod trackways. Photogrammetric 3D digital models revealed various and distinct intra-trackway morphotypes, which reflect changes in footprint parameters such as the pace length, the track length, depth, and height of displacement rims. Sedimentological analyses suggest that the original substrate was non-homogenous due to lateral changes in adjoining microfacies. Multidata analyses indicate that morphological differences in these deep and shallow tracks represent a part of a continuum of track morphologies and geometries produced by a gradient of substrate consistencies across the site. This implies that the large range of track morphologies at this site resulted from similar trackmakers crossing variable facies. The trackways at the El Frontal site present an exemplary case of how track morphology, and consequently potential ichnotaxa, can vary, even when produced by a single trackmaker. PMID:24699696

  10. Can increased poleward oceanic heat flux explain the warm Cretaceous climate?

    NASA Astrophysics Data System (ADS)

    Schmidt, Gavin A.; Mysak, Lawrence A.

    1996-10-01

    The poleward transport of heat in the mid-Cretaceous (100 Ma) is examined using an idealized coupled ocean-atmosphere model. The oceanic component consists of two zonally averaged basins representing the proto-Pacific and proto-Indian oceans and models the dynamics of the meridional thermohaline circulation. The atmospheric component is a simple energy and moisture balance model which includes the diffusive meridional transport of sensible heat and moisture. The ocean model is spun up with a variety of plausible Cretaceous surface temperature and salinity profiles, and a consistent atmosphere is objectively derived based on the resultant sea surface temperature and the surface heat and freshwater fluxes. The coupled model does not exhibit climate drift. Multiple equilibria of the coupled model are found that break the initial symmetry of the ocean circulation; several of these equilibria have one-cell (northern or southern sinking) thermohaline circulation patterns. Two main classes of circulation are found: circulations where the densest water is relatively cool and is formed at the polar latitudes and circulations where the densest water is warm, but quite saline, and the strongest sinking occurs at the tropics. In all cases, significant amounts of warm, saline bottom water are formed in the proto-Indian basin which modify the deepwater characteristics in the larger (proto-Pacific) basin. Temperatures in the deep ocean are warm, 10°-17°C, in agreement with benthic foraminiferal oxygen isotope data. The poleward transport of heat in the modeled Cretaceous oceans is larger than in some comparable models of the present day thermohaline circulation and significantly larger than estimates of similar processes in the present-day ocean. It is consistently larger in the polar sinking cases when compared with that seen in the tropical sinking cases, but this represents an increase of only 10%. The largest increase over present-day model transports is in the atmospheric

  11. A New Hadrosauroid Dinosaur from the Early Late Cretaceous of Shanxi Province, China

    PubMed Central

    Wang, Run-Fu; You, Hai-Lu; Xu, Shi-Chao; Wang, Suo-Zhu; Yi, Jian; Xie, Li-Juan; Jia, Lei; Li, Ya-Xian

    2013-01-01

    Background The origin of hadrosaurid dinosaurs is far from clear, mainly due to the paucity of their early Late Cretaceous close relatives. Compared to numerous Early Cretaceous basal hadrosauroids, which are mainly from Eastern Asia, only six early Late Cretaceous (pre-Campanian) basal hadrosauroids have been found: three from Asia and three from North America. Methodology/Principal Findings Here we describe a new hadrosauroid dinosaur, Yunganglong datongensis gen. et sp. nov., from the early Late Cretaceous Zhumapu Formation of Shanxi Province in northern China. The new taxon is represented by an associated but disarticulated partial adult skeleton including the caudodorsal part of the skull. Cladistic analysis and comparative studies show that Yunganglong represents one of the most basal Late Cretaceous hadrosauroids and is diagnosed by a unique combination of features in its skull and femur. Conclusions/Significance The discovery of Yunganglong adds another record of basal Hadrosauroidea in the early Late Cretaceous, and helps to elucidate the origin and evolution of Hadrosauridae. PMID:24204734

  12. A new hadrosauroid dinosaur from the early late cretaceous of Shanxi Province, China.

    PubMed

    Wang, Run-Fu; You, Hai-Lu; Xu, Shi-Chao; Wang, Suo-Zhu; Yi, Jian; Xie, Li-Juan; Jia, Lei; Li, Ya-Xian

    2013-01-01

    The origin of hadrosaurid dinosaurs is far from clear, mainly due to the paucity of their early Late Cretaceous close relatives. Compared to numerous Early Cretaceous basal hadrosauroids, which are mainly from Eastern Asia, only six early Late Cretaceous (pre-Campanian) basal hadrosauroids have been found: three from Asia and three from North America. Here we describe a new hadrosauroid dinosaur, Yunganglong datongensis gen. et sp. nov., from the early Late Cretaceous Zhumapu Formation of Shanxi Province in northern China. The new taxon is represented by an associated but disarticulated partial adult skeleton including the caudodorsal part of the skull. Cladistic analysis and comparative studies show that Yunganglong represents one of the most basal Late Cretaceous hadrosauroids and is diagnosed by a unique combination of features in its skull and femur. The discovery of Yunganglong adds another record of basal Hadrosauroidea in the early Late Cretaceous, and helps to elucidate the origin and evolution of Hadrosauridae.

  13. The intra-oceanic Cretaceous (~ 108 Ma) Kata-Rash arc fragment in the Kurdistan segment of Iraqi Zagros suture zone: Implications for Neotethys evolution and closure

    NASA Astrophysics Data System (ADS)

    Ali, Sarmad A.; Ismail, Sabah A.; Nutman, Allen P.; Bennett, Vickie C.; Jones, Brian G.; Buckman, Solomon

    2016-09-01

    The Kata-Rash arc fragment is an allochthonous thrust-bound body situated near Penjween, 100 km northeast of Sulymannia city, Kurdistan Region, within the Iraqi portion of the Zagros suture zone. It forms part of the suprasubduction zone 'Upper Allochthon' terranes (designated as the Gimo-Qandil Group), which is dominated by calc-alkaline andesite and basaltic-andesite, rhyodacite to rhyolite, crosscut by granitic, granodioritic, and dioritic dykes. Previously, rocks of the Kata-Rash arc fragment were interpreted as a part of the Eocene Walash volcanic group. However, SHRIMP zircon U-Pb dates on them of 108.1 ± 2.9 Ma (Harbar volcanic rocks) and 107.7 ± 1.9 Ma (Aulan intrusion) indicate an Albian-Cenomanian age, which is interpreted as the time of igneous crystallisation. The Aulan intrusion zircons have initial εHf values of + 8.6 ± 0.2. On a Nb/Yb-Th/Yb diagram, all Kata-Rash samples fall within the compositional field of arc-related rocks, i.e. above the mid-ocean-ridge basalt (MORB)-ocean island basalt (OIB) mantle array. Primitive-mantle-normalised trace-element patterns for the Kata-Rash samples show enrichment in the large ion lithophile elements and depletion in the high-field-strength elements supporting their subduction-related character. Low Ba/La coupled with low La/Yb and Hf/Hf* < 1 for the Aulan sample with initial εHf of + 8.6 ± 0.2 is interpreted as the magma dominated by contributions from fluid fluxing of the mantle wedge and lesser contributions of low temperature melt from subducted slab sediment, in an oceanic setting. This mechanism can explain the sub-DM initial εHf value, without the need to invoke melting of significantly older (continental) crust in an Andean setting. We interpret the Kata-Rash igneous rocks as a fragment of the Late Cretaceous suprasubduction zone system (named here the Kata-Rash arc) that most likely developed within the Neotethys Ocean rather than at a continental margin. Subsequently during the latest Cretaceous

  14. A paleolatitude reconstruction of the South Armenian Block (Lesser Caucasus) for the Late Cretaceous: Constraints on the Tethyan realm

    NASA Astrophysics Data System (ADS)

    Meijers, Maud J. M.; Smith, Brigitte; Kirscher, Uwe; Mensink, Marily; Sosson, Marc; Rolland, Yann; Grigoryan, Araik; Sahakyan, Lilit; Avagyan, Ara; Langereis, Cor; Müller, Carla

    2015-03-01

    The continental South Armenian Block - part of the Anatolide-Tauride South Armenian microplate - of Gondwana origin rifted from the African margin after the Triassic and collided with the Eurasian margin after the Late Cretaceous. During the Late Cretaceous, two northward dipping subduction zones were simultaneously active in the northern Neo-Tethys between the South Armenian Block in the south and the Eurasian margin in the north: oceanic subduction took place below the continental Eurasian margin and intra-oceanic subduction resulted in ophiolite obduction onto the South Armenian Block in the Late Cretaceous. The paleolatitude position of the South Armenian Block before its collision with Eurasia within paleogeographic reconstructions is poorly determined and limited to one study. This earlier study places the South Armenian Block at the African margin in the Early Jurassic. To reconstruct the paleolatitude history of the South Armenian Block, we sampled Upper Devonian-Permian and Cretaceous sedimentary rocks in Armenia. The sampled Paleozoic rocks have likely been remagnetized. Results from two out of three sites sampled in Upper Cretaceous strata pass fold tests and probably all three carry a primary paleomagnetic signal. The sampled sedimentary rocks were potentially affected by inclination shallowing. Therefore, two sites that consist of a large number of samples (> 100) were corrected for inclination shallowing using the elongation/inclination method. These are the first paleomagnetic data that quantify the South Armenian Block's position in the Tethys ocean between post-Triassic rifting from the African margin and post-Cretaceous collision with Eurasia. A locality sampled in Lower Campanian Eurasian margin sedimentary rocks and corrected for inclination shallowing, confirms that the corresponding paleolatitude falls on the Eurasian paleolatitude curve. The north-south distance between the South Armenian Block and the Eurasian margin just after Coniacian

  15. Severity of ocean acidification following the end-Cretaceous asteroid impact

    PubMed Central

    Tyrrell, Toby; Armstrong McKay, David Ian

    2015-01-01

    Most paleo-episodes of ocean acidification (OA) were either too slow or too small to be instructive in predicting near-future impacts. The end-Cretaceous event (66 Mya) is intriguing in this regard, both because of its rapid onset and also because many pelagic calcifying species (including 100% of ammonites and more than 90% of calcareous nannoplankton and foraminifera) went extinct at this time. Here we evaluate whether extinction-level OA could feasibly have been produced by the asteroid impact. Carbon cycle box models were used to estimate OA consequences of (i) vaporization of up to 60 × 1015 mol of sulfur from gypsum rocks at the point of impact; (ii) generation of up to 5 × 1015 mol of NOx by the impact pressure wave and other sources; (iii) release of up to 6,500 Pg C as CO2 from vaporization of carbonate rocks, wildfires, and soil carbon decay; and (iv) ocean overturn bringing high-CO2 water to the surface. We find that the acidification produced by most processes is too weak to explain calcifier extinctions. Sulfuric acid additions could have made the surface ocean extremely undersaturated (Ωcalcite <0.5), but only if they reached the ocean very rapidly (over a few days) and if the quantity added was at the top end of literature estimates. We therefore conclude that severe ocean acidification might have been, but most likely was not, responsible for the great extinctions of planktonic calcifiers and ammonites at the end of the Cretaceous. PMID:25964350

  16. Severity of ocean acidification following the end-Cretaceous asteroid impact.

    PubMed

    Tyrrell, Toby; Merico, Agostino; Armstrong McKay, David Ian

    2015-05-26

    Most paleo-episodes of ocean acidification (OA) were either too slow or too small to be instructive in predicting near-future impacts. The end-Cretaceous event (66 Mya) is intriguing in this regard, both because of its rapid onset and also because many pelagic calcifying species (including 100% of ammonites and more than 90% of calcareous nannoplankton and foraminifera) went extinct at this time. Here we evaluate whether extinction-level OA could feasibly have been produced by the asteroid impact. Carbon cycle box models were used to estimate OA consequences of (i) vaporization of up to 60 × 10(15) mol of sulfur from gypsum rocks at the point of impact; (ii) generation of up to 5 × 10(15) mol of NOx by the impact pressure wave and other sources; (iii) release of up to 6,500 Pg C as CO2 from vaporization of carbonate rocks, wildfires, and soil carbon decay; and (iv) ocean overturn bringing high-CO2 water to the surface. We find that the acidification produced by most processes is too weak to explain calcifier extinctions. Sulfuric acid additions could have made the surface ocean extremely undersaturated (Ωcalcite <0.5), but only if they reached the ocean very rapidly (over a few days) and if the quantity added was at the top end of literature estimates. We therefore conclude that severe ocean acidification might have been, but most likely was not, responsible for the great extinctions of planktonic calcifiers and ammonites at the end of the Cretaceous.

  17. Characterizing Cretaceous Glaciation Events: K-Ar Ages of Southern Ocean Sediments

    NASA Astrophysics Data System (ADS)

    Wright, M. A.; Hemming, S. R.; Barbeau, D. L.; Torfstein, A.; Pierce, E. L.; Williams, T.; McManus, J. F.; Gombiner, J.

    2012-12-01

    Evidence from paleosols and carbonate weathering models suggest that the Late Cretaceous had a supergreenhouse climate due to atmospheric CO2 concentrations two to four times greater than modern levels, tropical sea surface temperatures exceeding 35°C, and high-latitude temperatures exceeding 20°C. Despite this warmth, the Late Cretaceous was apparently punctuated by large (>25 m) and rapid (<<1 million year) sea-level changes, as recorded by marginal marine stratigraphic architectures and pelagic stable isotope compositions. The magnitude and tempo of these changes suggest a glacio-eustatic control, presumably from the growth and decay of continental ice sheets on Antarctica. Because continental glaciation tends to increase the weathering of bedrock and production of sediment delivered to the oceans, circum-Antarctic marine sediment flux would be expected to increase during periods of glaciation. In order to identify a Late Cretaceous glaciation signal from such marine records, we must first constrain the compositional signal of continental detritus in marine sediments. Here we report the results of downcore K-Ar analysis of the terrigenous sediments of Quaternary Weddell Sea cores PS1170-1 and PS1388-3 in order to identify the compositional signature of continent-derived detritus deposited in the Weddell Sea during a known glacial period. Further, we use our K-Ar analyses of circum-Antarctic Quaternary sediment cores to pinpoint potential sediment source areas. Having constrained this glaciation signal, we also present preliminary K-Ar and Sm-Nd analysis of the Campanian-Maastrictian boundary event (69 Ma) at Ocean Drilling Project site 690C to assess the controversial hypothesis of Late Cretaceous glaciation of Antarctica.

  18. Early Cretaceous bimodal volcanic rocks in the southern Lhasa terrane, south Tibet: Age, petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Ding, Lin; Liu, Zhi-Chao; Zhang, Li-Yun; Yue, Ya-Hui

    2017-01-01

    Limited geochronological and geochemical data from Early Cretaceous igneous rocks of the Gangdese Belt have resulted in a dispute regarding the subduction history of Neo-Tethyan Ocean. To approach this issue, we performed detailed in-situ zircon U-Pb and Hf isotopic, whole-rock elemental and Sr-Nd isotopic analyses on Late Mesozoic volcanic rocks exposed in the Liqiongda area, southern Lhasa terrane. These volcanic rocks are calc-alkaline series, dominated by basalts, basaltic andesites, and subordinate rhyolites, with a bimodal suite. The LA-ICPMS zircon U-Pb dating results of the basaltic andesites and rhyolites indicate that these volcanic rocks erupted during the Early Cretaceous (137-130 Ma). The basaltic rocks are high-alumina (average > 17 wt.%), enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), and depleted in high field strength elements (HFSEs), showing subduction-related characteristics. They display highly positive zircon εHf(t) values (+ 10.0 to + 16.3) and whole-rock εNd(t) values (+ 5.38 to + 7.47). The silicic suite is characterized by low Al2O3 (< 15.4 wt.%), Mg# (< 40), and TiO2 (< 0.3 wt.%) abundances; enriched and variable concentrations of LILEs and REEs; and strongly negative Eu anomalies (Eu/Eu* = 0.08-0.19), as well as depleted Hf isotopic compositions (εHf(t) = + 4.9 to + 16.4) and Nd isotopic compositions (εNd(t) = + 5.26 to + 6.71). Consequently, we envision a process of basaltic magmas similar to that of MORB extracted from a source metasomatized by slab-derived components for the petrogenesis of mafic rocks, whereas the subsequent mafic magma underplating triggered partial melting of the juvenile crust to generate acidic magma. Our results confirm the presence of Early Cretaceous volcanism in the southern Lhasa terrane. Combined with the distribution of the contemporary magmatism, deformation style, and sedimentary characteristics in the Lhasa terrane, we favor the suggestion that the Neo

  19. Jurassic-Paleogene intra-oceanic magmatic evolution of the Ankara Mélange, North-Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Sarifakioglu, E.; Dilek, Y.; Sevin, M.

    2013-11-01

    Oceanic rocks in the Ankara Mélange along the Izmir-Ankara-Erzincan suture zone (IAESZ) in North-Central Anatolia include locally coherent ophiolite complexes (~179 Ma and ~80 Ma), seamount or oceanic plateau volcanic units with pelagic and reefal limestones (96.6 ± 1.8 Ma), metamorphic rocks with ages of 187.4 ± 3.7 Ma, 158.4 ± 4.2 Ma, and 83.5 ± 1.2 Ma, and subalkaline to alkaline volcanic and plutonic rocks of an island arc origin (~67-63 Ma). All but the arc rocks occur in a shaly-graywacke and/or serpentinite matrix, and are deformed by south-vergent thrust faults and folds that developed in the Middle to Late Eocene due to continental collisions in the region. Ophiolitic volcanic rocks have mid-ocean ridge (MORB) and island arc tholeiite (IAT) affinities showing moderate to significant LILE enrichment and depletion in Nb, Hf, Ti, Y and Yb, which indicate the influence of subduction-derived fluids in their melt evolution. Seamount/oceanic plateau basalts show ocean island basalt (OIB) affinities. The arc-related volcanic rocks, lamprophyric dikes and syeno-dioritic plutons exhibit high-K shoshonitic to medium-to high-K calc-alkaline compositions with strong enrichment in LILE, REE and Pb, and initial ϵNd values between +1.3 and +1.7. Subalkaline arc volcanic units occur in the northern part of the mélange, whereas the younger alkaline volcanic rocks and intrusions (lamprophyre dikes and syeno-dioritic plutons) in the southern part. The Early to Late Jurassic and Late Cretaceous epidote-actinolite, epidote-chlorite and epidote-glaucophane schists represent the metamorphic units formed in a subduction channel in the Northern Neotethys. The Middle to Upper Triassic neritic limestones spatially associated with the seamount volcanic rocks indicate that the Northern Neotethys was an open ocean with its MORB-type oceanic lithosphere by the Early Triassic. The Latest Cretaceous-Early Paleocene island arc volcanic, dike and plutonic rocks with

  20. Mesozoic units in SE Rhodope (Bulgaria): new structural and petrologic data and geodynamic implications for the Early Jurassic to Mid-Cretaceous evolution of the Vardar ocean basin

    NASA Astrophysics Data System (ADS)

    Bonev, N.; Stampfli, G.

    2003-04-01

    . Immobile trace element discrimination of both rock types constrains the volcanic (oceanic)-arc origin. They generally show low total REE concentrations (LREE>HREE) with enrichment of LIL elements relative to the HFS elements, and also very low Nb and relatively high Ce content consistent with an island-arc tectonic setting. We consider that the Meliata-Maliac ocean northern passive margin could be the source provenance for the Upper Permian clastics and Middle-Upper Triassic limestone blocks within the olistostromic melange-like unit, whereas turbidites and magmatic blocks may originate in an island arc-accretionary complex that relates to the southward subduction of the Maliac ocean under the supra-subduction back-arc Vardar ocean/island arc system. These new structural and petrologic data allow to precise the tectonic setting of the Mesozoic units and their geodynamic context in the frame of the Early Jurassic to Late Cretaceous evolution of the Vardar ocean.

  1. The origin and early evolution of metatherian mammals: the Cretaceous record.

    PubMed

    Williamson, Thomas E; Brusatte, Stephen L; Wilson, Gregory P

    2014-01-01

    Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg) boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary.

  2. Accumulation of organic matter in Cretaceous oxygen-deficient depositional environments in the central Pacific Ocean

    USGS Publications Warehouse

    Dean, W.E.; Claypool, G.E.; Thide, J.

    1984-01-01

    Complete records of organic-carbon-rich Cretaceous strata were continuouslycored on the flanks of the Mid-Pacific Mountains and southern Hess Rise in the central North Pacific Ocean during DSDP Leg 62. Organic-carbon-rich laminated silicified limestones were deposited in the western Mid-Pacific Mountains during the early Aptian, a time when that region was south of the equator and considerably shallower than at present. Organic-carbon-rich, laminated limestone on southern Hess Rise overlies volcanic basement and includes 136 m of stratigraphic section of late Albian to early Cenomanian age. This limestone unit was deposited rapidly as Hess Rise was passing under the equatorial high-productivity zone and was subsiding from shallow to intermediate depths. The association of volcanogenic components with organic-carbon-rich strata on Hess Rise in the Mid-Pacific Mountains is striking and suggests that there was a coincidence of mid-plate volcanic activity and the production and accumulation of organic matter at intermediate water depths in the tropical Pacific Ocean during the middle Cretaceous. Pyrolysis assays and analyses of extractable hydrocarbons indicate that the organic matter in the limestone on Hess Rise is composed mainly of lipid-rich kerogen derived from aquatic marine organisms and bacteria. Limestones from the Mid-Pacific Mountains generally contain low ratios of pyrolytic hydrocarbons to organic carbon and low hydrogen indices, suggesting that the organic matter may contain a significant proportion of land-derived material, possibly derived from numerous volcanic islands that must have existed before the area subsided. The organic carbon in all samples analyzed is isotopically light (??13C - 24 to - 29 per mil) relative to most modern rine organic carbon, and the lightest carbon is also the most lipid-rich. There is a positive linear correlation between sulfur and organic carbon in samples from Hess Rise and from the Mid-Pacific Mountains. The slopes

  3. A primitive therizinosauroid dinosaur from the Early Cretaceous of Utah

    USGS Publications Warehouse

    Kirkland, J.I.; Zanno, L.E.; Sampson, S.D.; Clark, J.M.; DeBlieux, D.D.

    2005-01-01

    Therizinosauroids are an enigmatic group of dinosaurs known mostly from the Cretaceous period of Asia, whose derived members are characterized by elongate necks, laterally expanded pelves, small, leaf-shaped teeth, edentulous rostra and mandibular symphyses that probably bore keratinized beaks. Although more than a dozen therizinosauroid taxa are known, their relationships within Dinosauria have remained controversial because of fragmentary remains and an unusual suite of characters. The recently discovered 'feathered' therizinosauroid Beipiaosaurus from the Early Cretaceous of China helped to clarify the theropod affinities of the group. However, Beipiaosaurus is also poorly represented. Here we describe a new, primitive therizinosauroid from an extensive paucispecific bonebed at the base of the Cedar Mountain Formation (Early Cretaceous) of east-central Utah. This new taxon represents the most complete and most basal therizinosauroid yet discovered. Phylogenetic analysis of coelurosaurian theropods incorporating this taxon places it at the base of the clade Therizinosauroiden, indicating that this species documents the earliest known stage in the poorly understood transition from carnivory to herbivory within Therizinosauroidea. The taxon provides the first documentation, to our knowledge, of therizinosauroids in North America during the Early Cretaceous.

  4. The origin and early evolution of metatherian mammals: the Cretaceous record

    PubMed Central

    Williamson, Thomas E.; Brusatte, Stephen L.; Wilson, Gregory P.

    2014-01-01

    Abstract Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg) boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary. PMID:25589872

  5. Evolution and Production of Calcareous Nannoplankton During the Cretaceous as Proxies of LIP-induced Oceanic Fertilization, Acidification and Anoxia

    NASA Astrophysics Data System (ADS)

    Erba, E.; Bottini, C.; Tiraboschi, D.

    2008-12-01

    Through the Phanerozoic, biota have been intimately linked to Earth's degassing inducing major changes in composition and structure of the ocean-atmosphere system. Emplacement of large igneous provinces (LIPs) has been the primary natural source of atmCO2 with dramatic consequences on climate and ecosystems. During the mid-Cretaceous the Ontong Java-Manihiki and Caribbean Plateaus LIPs are recognized as responsible of pCO2 as high as 2000 ppm. Coeval biocalcification crises occurred in pelagic and neritic settings, suggesting a causal link between high concentrations of carbon dioxide and drops in benthic and planktonic calcifiers' efficiency. Within the oceanic biosphere, calcareous nannoplankton play a key-role as: (1) is widespread and consists of cosmopolitan and endemic taxa; (2) has a 220 My-long evolutionary history; (3) is one the most effective calcite producers; (4) is relevant for the C cycle; (5) is extremely sensitive to environmental variations. Diversity pulses of Cretaceous calcareous nannoplankton are grossly coeval with LIP construction, climate and sea-level changes, variations in ocean structure and composition, suggesting that evolutionary patterns are closely linked to environmental modifications. We explored time-intervals of LIP formation marked by nannoplankton adaptation/evolution, quantifying evolutionary rates, species richness, abundance, calcite production and morphometry. High-resolution investigations of the initial phase of both early Aptian oceanic anoxic event (OAE) 1a and latest Cenomanian OAE 2 pointed out major evolutionary changes, decreases in heavily calcified nannoliths and occurrence of dwarf coccoliths. Nannoplankton calcification crises and dwarfism is here interpreted as forced by rapidly increasing pCO2 during formation of the Ontong Java-Maniniki and Caribbean Plateaus. Alternatively or concurrently, calcification crash and dwarfism might result from enhanced fertility associated to OAE1a and OAE2 regardless of ocean

  6. Constraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2: ~94 Ma)

    PubMed Central

    Ostrander, Chadlin M.; Owens, Jeremy D.; Nielsen, Sune G.

    2017-01-01

    The rates of marine deoxygenation leading to Cretaceous Oceanic Anoxic Events are poorly recognized and constrained. If increases in primary productivity are the primary driver of these episodes, progressive oxygen loss from global waters should predate enhanced carbon burial in underlying sediments—the diagnostic Oceanic Anoxic Event relic. Thallium isotope analysis of organic-rich black shales from Demerara Rise across Oceanic Anoxic Event 2 reveals evidence of expanded sediment-water interface deoxygenation ~43 ± 11 thousand years before the globally recognized carbon cycle perturbation. This evidence for rapid oxygen loss leading to an extreme ancient climatic event has timely implications for the modern ocean, which is already experiencing large-scale deoxygenation. PMID:28808684

  7. A new Early Cretaceous eutherian mammal from the Sasayama Group, Hyogo, Japan

    PubMed Central

    Kusuhashi, Nao; Tsutsumi, Yukiyasu; Saegusa, Haruo; Horie, Kenji; Ikeda, Tadahiro; Yokoyama, Kazumi; Shiraishi, Kazuyuki

    2013-01-01

    We here describe a new Early Cretaceous (early Albian) eutherian mammal, Sasayamamylos kawaii gen. et sp. nov., from the ‘Lower Formation’ of the Sasayama Group, Hyogo Prefecture, Japan. Sasayamamylos kawaii is characterized by a robust dentary, a distinct angle on the ventral margin of the dentary at the posterior end of the mandibular symphysis, a lower dental formula of 3–4 : 1 : 4 : 3, a robust lower canine, a non-molariform lower ultimate premolar, and a secondarily reduced entoconid on the molars. To date, S. kawaii is the earliest known eutherian mammal possessing only four premolars, which demonstrates that the reduction in the premolar count in eutherians started in the late Early Cretaceous. The occurrence of S. kawaii implies that the relatively rapid diversification of eutherians in the mid-Cretaceous had already started by the early Albian. PMID:23536594

  8. A new Early Cretaceous eutherian mammal from the Sasayama Group, Hyogo, Japan.

    PubMed

    Kusuhashi, Nao; Tsutsumi, Yukiyasu; Saegusa, Haruo; Horie, Kenji; Ikeda, Tadahiro; Yokoyama, Kazumi; Shiraishi, Kazuyuki

    2013-05-22

    We here describe a new Early Cretaceous (early Albian) eutherian mammal, Sasayamamylos kawaii gen. et sp. nov., from the 'Lower Formation' of the Sasayama Group, Hyogo Prefecture, Japan. Sasayamamylos kawaii is characterized by a robust dentary, a distinct angle on the ventral margin of the dentary at the posterior end of the mandibular symphysis, a lower dental formula of 3-4 : 1 : 4 : 3, a robust lower canine, a non-molariform lower ultimate premolar, and a secondarily reduced entoconid on the molars. To date, S. kawaii is the earliest known eutherian mammal possessing only four premolars, which demonstrates that the reduction in the premolar count in eutherians started in the late Early Cretaceous. The occurrence of S. kawaii implies that the relatively rapid diversification of eutherians in the mid-Cretaceous had already started by the early Albian.

  9. Late Jurassic-Early Cretaceous episodic development of the Bangong Meso-Tethyan subduction: Evidence from elemental and Sr-Nd isotopic geochemistry of arc magmatic rocks, Gaize region, central Tibet, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Xiu; Li, Zhi-Wu; Yang, Wen-Guang; Zhu, Li-Dong; Jin, Xin; Zhou, Xiao-Yao; Tao, Gang; Zhang, Kai-Jun

    2017-03-01

    The Bangong Meso-Tethys plays a critical role in the development of the Tethyan realm and the initial elevation of the Tibetan Plateau. However, its precise subduction polarity, and history still remain unclear. In this study, we synthesize a report for the Late Jurassic-Early Cretaceous two-phase magmatic rocks in the Gaize region at the southern margin of the Qiangtang block located in central Tibet. These rocks formed during the Late Jurassic-earliest Cretaceous (161-142 Ma) and Early Cretaceous (128-106 Ma), peaking at 146 Ma and 118 Ma, respectively. The presence of inherited zircons indicates that an Archean component exists in sediments in the shallow Qiangtang crust, and has a complex tectonomagmatic history. Geochemical and Sr-Nd isotopic data show that the two-phase magmatic rocks exhibit characteristics of arc magmatism, which are rich in large-ion incompatible elements (LIIEs), but are strongly depleted in high field strength elements (HFSEs). The Late Jurassic-earliest Cretaceous magmatic rocks mixed and mingled among mantle-derived mafic magmas, subduction-related sediments, or crustally-derived felsic melts and fluids, formed by a northward and steep subduction of the Bangong Meso-Tethys ocean crust. The magmatic gap at 142-128 Ma marks a flat subduction of the Meso-Tethys. The Early Cretaceous magmatism experienced a magma MASH (melting, assimilation, storage, and homogenization) process among mantle-derived mafic magmas, or crustally-derived felsic melts and fluids, as a result of the Meso-Tethys oceanic slab roll-back, which triggered simultaneous back-arc rifting along the southern Qiangtang block margin.

  10. Evolution of volcanically-induced palaeoenvironmental changes leading to the onset of OAE1a (early Aptian, Cretaceous)

    NASA Astrophysics Data System (ADS)

    Keller, Christina E.; Hochuli, Peter A.; Giorgioni, Martino; Garcia, Therese I.; Bernasconi, Stefano M.; Weissert, Helmut

    2010-05-01

    During the Cretaceous, several major volcanic events occurred that initiated climate warming, altered marine circulation and increased marine productivity, which in turn often resulted in the widespread black shale deposits of the Oceanic Anoxic Events (OAE). In the sediments underlying the early Aptian OAE1a black shales, a prominent negative carbon isotope excursion is recorded. Its origin had long been controversial (e.g. Arthur, 2000; Jahren et al., 2001) before recent studies attributed it to the Ontong Java volcanism (Méhay et al., 2009; Tejada et al., 2009). Therefore the negative C-isotope excursion covers the interval between the time, when volcanic activity became important enough to be recorded in the C-isotope composition of the oceans to the onset of widespread anoxic conditions (OAE1a). We chose this interval at the locality of Pusiano (N-Italy) to study the effect of a volcanically-induced increase in pCO2 on the marine palaeoenvironment and to observe the evolving palaeoenvironmental conditions that finally led to OAE1a. The Pusiano section (Maiolica Formation) was deposited at the southern continental margin of the alpine Tethys Ocean and has been bio- and magnetostratigraphically dated by Channell et al. (1995). We selected 18 samples from 12 black shale horizons for palynofacies analyses. Palynofacies assemblages consist of several types of particulate organic matter, providing information on the origin of the organic matter (terrestrial/marine) and conditions during deposition (oxic/anoxic). We then linked the palynofacies results to high-resolution inorganic and organic C-isotope values and total organic carbon content measurements. The pelagic Pusiano section consists of repeated limestone-black shale couplets, which are interpreted to be the result of changes in oxygenation of bottom waters. Towards the end of the negative C-isotope excursion we observe enhanced preservation of the fragile amorphous organic matter resulting in increased

  11. Reconstructing in space and time the closure of the middle and western segments of the Bangong-Nujiang Tethyan Ocean in the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Fan, Jian-Jun; Li, Cai; Wang, Ming; Xie, Chao-Ming

    2018-01-01

    When and how the Bangong-Nujiang Tethyan Ocean closed is a highly controversial subject. In this paper, we present a detailed study and review of the Cretaceous ophiolites, ocean islands, and flysch deposits in the middle and western segments of the Bangong-Nujiang suture zone (BNSZ), and the Cretaceous volcanic rocks, late Mesozoic sediments, and unconformities within the BNSZ and surrounding areas. Our aim was to reconstruct the spatial-temporal patterns of the closing of the middle and western segments of the Bangong-Nujiang Tethyan Ocean. Our conclusion is that the closure of the ocean started during the Late Jurassic and was mainly complete by the end of the Early Cretaceous. The closure of the ocean involved both "longitudinal diachronous closure" from north to south and "transverse diachronous closure" from east to west. The spatial-temporal patterns of the closure process can be summarized as follows: the development of the Bangong-Nujiang Tethyan oceanic lithosphere and its subduction started before the Late Jurassic; after the Late Jurassic, the ocean began to close because of the compressional regime surrounding the BNSZ; along the northern margin of the Bangong-Nujiang Tethyan Ocean, collisions involving the arcs, back-arc basins, and marginal basins of a multi-arc basin system first took place during the Late Jurassic-early Early Cretaceous, resulting in regional uplift and the regional unconformity along the northern margin of the ocean and in the Southern Qiangtang Terrane on the northern side of the ocean. However, the closure of the Bangong-Nujiang Tethyan Ocean cannot be attributed to these arc-arc and arc-continent collisions, because subduction and the development of the Bangong-Nujiang Tethyan oceanic lithosphere continued until the late Early Cretaceous. The gradual closure of the middle and western segments of Bangong-Nujiang Tethyan Ocean was diachronous from east to west, starting in the east in the middle Early Cretaceous, and being mainly

  12. Early Cretaceous greenhouse pumped higher taxa diversification in spiders.

    PubMed

    Shao, Lili; Li, Shuqiang

    2018-05-24

    The Cretaceous experienced one of the most remarkable greenhouse periods in geological history. During this time, ecosystem reorganizations significantly impacted the diversification of many groups of organisms. The rise of angiosperms marked a major biome turnover. Notwithstanding, relatively little remains known about how the Cretaceous global ecosystem impacted the evolution of spiders, which constitute one of the most abundant groups of predators. Herein, we evaluate the transcriptomes of 91 taxa representing more than half of the spider families. We add 23 newly sequenced taxa to the existing database to obtain a robust phylogenomic assessment. Phylogenetic reconstructions using different datasets and methods obtain novel placements of some groups, especially in the Synspermiata and the group having a retrolateral tibial apophysis (RTA). Molecular analyses indicate an expansion of the RTA clade at the Early Cretaceous with a hunting predatory strategy shift. Fossil analyses show a 7-fold increase of diversification rate at the same period, but this likely owes to the first occurrences spider in amber deposits. Additional analyses of fossil abundance show an accumulation of spider lineages in the Early Cretaceous. We speculate that the establishment of a warm greenhouse climate pumped the diversification of spiders, in particular among webless forms tracking the abundance of insect prey. Our study offers a new pathway for future investigations of spider phylogeny and diversification. Copyright © 2018. Published by Elsevier Inc.

  13. Mantle heterogeneities beneath the Northeast Indian Ocean as sampled by intra-plate volcanism at Christmas Island

    NASA Astrophysics Data System (ADS)

    Taneja, Rajat; Rushmer, Tracy; Blichert-Toft, Janne; Turner, Simon; O'Neill, Craig

    2016-10-01

    The intra-plate region of the Northeast Indian Ocean, located between the Ninetyeast Ridge and the North West Shelf of Australia, contains numerous submerged seamounts and two sub-aerially exposed volcanic island groups. While the Cocos (Keeling) Archipelago is a coral atoll, Christmas Island is the only sub-aerially exposed volcanic island and contains Late Cretaceous, Eocene and Pliocene lavas. The lavas are predominantly basaltic in composition, except for one sampled flow that is trachytic. Although the evolution of the western margin of Australia, and the seismicity in the intra-plate region, has received considerable attention, the origin of the seamount province in the Northeast Indian Ocean is still a matter of debate. In order to constrain the origin of volcanism on Christmas Island and the associated Seamount Province we analysed 14 Christmas Island samples for major and trace element abundances and 12 of these for Nd, Hf and Pb isotope compositions. The trace element patterns of the lavas are similar to many ocean island basalts, while high 208Pb/204Pb and 207Pb/204Pb at a given 206Pb/204Pb suggest affiliation with the DUPAL anomaly. The reconstructed position of Christmas Island during the Eocene (44-37 Ma) places the island in close proximity to the (present-day) upper mantle low-seismic velocity anomalies. Moreover, an enriched mantle (EM-2) type component in addition to the DUPAL anomaly is observed in the Eocene volcanic phase. The younger Pliocene ( 4 Ma) sequences at Christmas Island are inferred to be the product of partial melting of existing material induced by lithospheric flexure.

  14. Lower Cretaceous smarl turbidites of the Argo Abyssal Plain, Indian Ocean

    USGS Publications Warehouse

    Dumoulin, Julie A.; Stewart, Sondra K.; Kennett, Diana; Mazzullo, Elsa K.

    1992-01-01

    Sediments recovered during Ocean Drilling Program (ODP) Leg 123 from the Argo Abyssal Plain (AAP) consist largely of turbidites derived from the adjacent Australian continental margin. The oldest abundant turbidites are Valanginian-Aptian in age and have a mixed (smarl) composition; they contain subequal amounts of calcareous and siliceous biogenic components, as well as clay and lesser quartz. Most are thin-bedded, fine sand to mud-sized, and best described by Stow and Piper's model (1984) for fine-grained biogenic turbidites. Thicker (to 3 m), coarser-grained (medium-to-coarse sand-sized) turbidites fit Bouma's model (1962) for sandy turbidites; these generally are base-cut-out (BCDE, BDE) sequences, with B-division parallel lamination as the dominant structure. Parallel laminae most commonly concentrate quartz and/or calcispheres vs. lithic clasts or clay, but distinctive millimeter to centimeter-thick, radiolarian-rich laminae occur in both fine and coarse-grained Valanginian-Hauterivian turbidites.AAP turbidites were derived from relatively deep parts of the continental margin (outer shelf, slope, or rise) that lay below the photic zone, but above the calcite compensation depth (CCD). Biogenic components are largely pelagic (calcispheres, foraminifers, radiolarians, nannofossils); lesser benthic foraminifers are characteristic of deep-water (abyssal to bathyal) environments. Abundant nonbiogenic components are mostly clay and clay clasts; smectite is the dominant clay species, and indicates a volcanogenic provenance, most likely the Triassic-Jurassic volcanic suite exposed along the northern Exmouth Plateau.Lower Cretaceous smarl turbidites were generated during eustatic lowstands and may have reached the abyssal plain via Swan Canyon, a submarine canyon thought to have formed during the Late Jurassic. In contrast to younger AAP turbidites, however, Lower Cretaceous turbidites are relatively fine-grained and do not contain notably older reworked fossils. Early

  15. High Arctic paleoenvironmental and Paleoclimatic changes in the Mid-Cretaceous

    NASA Astrophysics Data System (ADS)

    Herrle, Jens; Schröder-Adams, Claudia; Selby, David; Du Vivier, Alice; Flögel, Sascha; McAnena, Alison; Davis, William; Pugh, Adam; Galloway, Jennifer; Hofmann, Peter; Wagner, Thomas

    2014-05-01

    the OAE2 period which shades a new light on temperature gradients during different climate states of the Cretaceous. In contrast, to the Late Cenomanian to Early Turonian the distinct occurrence of several widespread glendonite beds in the Late Aptian to Early Albian support cool bottom waters of about 0°C in the Arctic Sverdrup Basin, consistent with much lower TEX86-SST ~28°C, McAnena et al., 2013) and bottom water temperatures (6°C, Huber et al., 2011) in the low latitude North Atlantic. This supports the global character of the proposed Late Aptian cold snap (Kemper, 1987; Herrle & Mutterlose, 2003; Mutterlose et al. 2009; McAnena et al. 2013) and perhaps a northern hemisphere high-latitude intermediate bottom water source. References Du Vivier, A.C.D., Selby, D., Sageman, B.B., Jarvis, I., Gröcke, D.R., Voigt, S., 2014. Marine 187Os/188Os isotope stratigraphy reveals the interaction of volcanism and ocean circulation during Oceanic Anoxic Event 2. EPSL 389, 23-33. Föllmi, K.B., 2012. Early Cretaceous life, climate and anoxia. Cretaceous Research 35, 230-257. Hay, W.W., 2008. Evolving ideas about the Cretaceous climate and ocean circulation. Cretaceous Research 29, 725-753. Hay, W.W., 2011. Can humans force a return to a "Cretaceous" climate? Sedimentary Geology 235, 5-26. Herrle, J.O. , Mutterlose, J., 2003. Calcareous nannofossils from the Aptian - early Albian of SE France: Paleoecological and biostratigraphic implications. Cretaceous Research 24, 1-22. Huber, B.T., MacLeod, K.G., Gröcke, D.R., Kucera, M., 2011. Paleotemperature and paleosalinity inferences and chemostratigraphy across the Aptian/Albian boundary in the subtropical North Atlantic. Paleoceanography 26, PA4221 doi:10.1029/2011PA002178. McAnena, A., Flögel, S., Hofmann, P., Herrle, J.O., Griesand, A., Pross, J., Talbot, H.M., Rethemeyer, J., Wallmann, K., Wagner, T., 2013. Atlantic cooling associated with a marine biotic crisis during the mid-Cretaceous period. Nature Geoscience 6, 558

  16. Sulu-Celebes-Banda basins: a trapped piece of Cretaceous to Eocene oceanic crust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, R.J.; Hilde, T.W.; Cole, J.T.

    1986-07-01

    The Sulu-Celebes-Banda basin is composed of three poorly understood marginal basins located between northwest Australia and southeast Asia. Recent studies have proposed that these three basins are remnants of once-continuous ocean basin. The on-land geology of this region is complicated. However, numerous stratigraphic and paleomagnetic studies on pre-Oligocene rocks are consistent with the interpretation that older landmasses presently dissecting the basin were translated into their present position during the middle to late Tertiary. Paleomagnetic data from the Philippines suggest that the Philippine arc is a composite of Early Cretaceous to Holocene arcs that were translated clockwise and from the southeast.more » Paleomagnetic and stratigraphic data from Kalimantan and Sulawesi suggest that these landmasses share a common origin and that Sulawesi was rifted eastward off of Borneo during the late Tertiary. Stratigraphic studies from the Sula microcontinent, Buru, Ceram, and Timor show close correlation to the stratigraphy of northwest Australia or New Guinea. In addition, paleomagnetic studies from Timor suggest that a portion of the island was part of Australia since the early Mesozoic.« less

  17. Fossil evidence of avian crops from the Early Cretaceous of China

    PubMed Central

    Zheng, Xiaoting; Martin, Larry D.; Zhou, Zhonghe; Burnham, David A.; Zhang, Fucheng; Miao, Desui

    2011-01-01

    The crop is characteristic of seed-eating birds today, yet little is known about its early history despite remarkable discoveries of many Mesozoic seed-eating birds in the past decade. Here we report the discovery of some early fossil evidence for the presence of a crop in birds. Two Early Cretaceous birds, the basal ornithurine Hongshanornis and a basal avian Sapeornis, demonstrate that an essentially modern avian digestive system formed early in avian evolution. The discovery of a crop in two phylogenetically remote lineages of Early Cretaceous birds and its absence in most intervening forms indicates that it was independently acquired as a specialized seed-eating adaptation. Finally, the reduction or loss of teeth in the forms showing seed-filled crops suggests that granivory was possibly one of the factors that resulted in the reduction of teeth in early birds. PMID:21896733

  18. Molybdenum drawdown during Cretaceous Oceanic Anoxic Event 2

    NASA Astrophysics Data System (ADS)

    Goldberg, Tatiana; Poulton, Simon W.; Wagner, Thomas; Kolonic, Sadat F.; Rehkämper, Mark

    2016-04-01

    During the Cretaceous greenhouse, episodes of widespread ocean deoxygenation were associated with globally occurring events of black shale deposition. Possibly the most pronounced of these oceanic anoxic events (OAE's) was the Cenomanian-Turonian OAE2 (∼94 Ma). However, although certain redox sensitive trace metals tend to be preferentially sequestered in sediments deposited under anoxic conditions, with Mo drawdown being specifically prone to euxinic settings, these elements are generally somewhat depleted in sediments deposited during OAE2. To understand the driving factors responsible for this depleted trace metal drawdown, we have studied a low latitude section from the proto-North Atlantic Ocean (Tarfaya S57), where existing biomarker and iron-sulphur data point to a dominantly euxinic water column, with periodic transitions to ferruginous (Fe-rich) water column conditions. We utilise a variety of redox proxies (Fe-speciation, redox sensitive trace metals and Mo isotopes), which, in combination, allows us to evaluate the detailed nature of ocean redox conditions and hence controls on trace metal drawdown. The results suggest that seawater δ98Mo values may have ranged between ∼0.6 and 1.1‰ during OAE2, likely connected to changes in the local Mo reservoir as a consequence of low and probably heterogeneous concentrations of Mo in the ocean. The very low Mo/TOC ratios at Tarfaya and elsewhere in the proto-North Atlantic may support a model in which deep-water circulation was partially restricted within and between the North Atlantic and other ocean basins. We propose that the combination of a low and possibly heterogeneous δ98Mo of seawater Mo, together with low Mo/TOC ratios, points to a large decrease in the global oceanic Mo reservoir during OAE2, reflecting a major global scale increase in Mo drawdown under persistent euxinic conditions.

  19. Late Jurassic-Early Cretaceous continental convergence and intracontinental orogenesis in East Asia: A synthesis of the Yanshan Revolution

    NASA Astrophysics Data System (ADS)

    Dong, Shuwen; Zhang, Yueqiao; Zhang, Fuqin; Cui, Jianjun; Chen, Xuanhua; Zhang, Shuanhong; Miao, Laicheng; Li, Jianhua; Shi, Wei; Li, Zhenhong; Huang, Shiqi; Li, Hailong

    2015-12-01

    The basic tectonic framework of continental East Asia was produced by a series of nearly contemporaneous orogenic events in the late Middle Jurassic to Early Cretaceous. Commonly, the Late Mesozoic orogenic processes were characterized by continent-continent collision, large-scale thrusting, strike-slip faulting and intense crustal shortening, crustal thickening, regional anatexis and metamorphism, followed by large-scale lithospheric extension, rifting and magmatism. To better understand the geological processes, this paper reviews and synthesizes existing multi-disciplinary geologic data related to sedimentation, tectonics, magmatism, metamorphism and geochemistry, and proposes a two-stage tectono-thermal evolutionary history of East Asia during the late Middle Jurassic to Early Cretaceous (ca. 170-120 Ma). In the first stage, three orogenic belts along the continental margins were formed coevally at ca. 170-135 Ma, i.e., the north Mongol-Okhotsk orogen, the east paleo-Pacific coastal orogen, and the west Bangong-Nujiang orogen. Tectonism related to the coastal orogen caused extensive intracontinental folding and thrusting that resulted in a depositional hiatus in the Late Jurassic, as well as crustal anatexis that generated syn-kinematic granites, adakites and migmatites. The lithosphere of the East Asian continent was thickened, reaching a maximum during the latest Jurassic or the earliest Cretaceous. In the second stage (ca. 135-120 Ma), delamination of the thickened lithosphere resulted in a remarkable (>120 km) lithospheric thinning and the development of mantle-derived magmatism, mineralization, metamorphic core complexes and rift basins. The Middle Jurassic-Early Cretaceous subduction of oceanic plates (paleo-Pacific, meso-Tethys, and Mongol-Okhotsk) and continent-continent collision (e.g. Lhasa and Qiangtang) along the East Asian continental margins produced broad coastal and intracontinental orogens. These significant tectonic activities, marked by

  20. Late Cretaceous and early Tertiary plutonism and deformation in the Skagit Gneiss Complex, north Cascade Range, Washington and British Columbia

    USGS Publications Warehouse

    Haugerud, R.A.; Van Der Heyden, P.; Tabor, R.W.; Stacey, J.S.; Zartman, R.E.

    1991-01-01

    The Skagit Gneiss Complex forms a more-or-less continuous terrane within the North Cascade Range. The complex comprises abundant plutons intruded at mid-crustal depths into a variety of metamorphosed supracrustal rocks of both oceanic and volcanic-arc origin. U-Pb zircon ages from gneissis plutons within and near the Skagit Gneiss Complex indicate magmatic crystallziations between 75 and 60 Ma. Deformation, recrystallization, and migmatization in part postdate intrusion of the 75-60 Ma plutons. This latest Cretaceous and earliest Tertiary plutonism and migmatization may reflect thermal relaxation following early Late Cretaceous orogeny. The complex was ductilely extended northwest-southeast shortly after intrusion of granite dikes at ~45 Ma, but before emplacement of the earliest (~34 Ma) plutons of the Cascade arc. -from Authors

  1. Early Cretaceous paleomagnetic and geochronologic results from the Tethyan Himalaya: Insights into the Neotethyan paleogeography and the India-Asia collision.

    PubMed

    Ma, Yiming; Yang, Tianshui; Bian, Weiwei; Jin, Jingjie; Zhang, Shihong; Wu, Huaichun; Li, Haiyan

    2016-02-17

    To better understand the Neotethyan paleogeography, a paleomagnetic and geochronological study has been performed on the Early Cretaceous Sangxiu Formation lava flows, which were dated from ~135.1 Ma to ~124.4 Ma, in the Tethyan Himalaya. The tilt-corrected site-mean characteristic remanent magnetization (ChRM) direction for 26 sites is Ds = 296.1°, Is = -65.7°, ks = 51.7, α95 = 4.0°, corresponding to a paleopole at 5.9°S, 308.0°E with A95 = 6.1°. Positive fold and reversal tests prove that the ChRM directions are prefolding primary magnetizations. These results, together with reliable Cretaceous-Paleocene paleomagnetic data observed from the Tethyan Himalaya and the Lhasa terrane, as well as the paleolatitude evolution indicated by the apparent polar wander paths (APWPs) of India, reveal that the Tethyan Himalaya was a part of Greater India during the Early Cretaceous (135.1-124.4 Ma) when the Neotethyan Ocean was up to ~6900 km, it rifted from India sometime after ~130 Ma, and that the India-Asia collision should be a dual-collision process including the first Tethyan Himalaya-Lhasa terrane collision at ~54.9 Ma and the final India-Tethyan Himalaya collision at ~36.7 Ma.

  2. Early cretaceous platform-margin configuration and evolution in the central Oman mountains, Arabian peninsula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, B.R.; Smewing, J.D.

    1993-02-01

    The Hajar Supergroup (Middle Permian-Lower Cretaceous) of northeastern Oman records rifting and development of a passive margin along the edge of the Arabian platform facing Neo-Tethys. The Jurassic and Lower Cretaceous part, comprising the Sahtan, Kahmah, and Wasia groups, was deposited during the maximum extent of the broad epicontinental sea landward of this margin. These limestone units reach a total of 1500 m in thickness and correlate with the hydrocarbon reservoirs of the Arabian Peninsula. The trace of the Jurassic and Cretaceous margin in northeastern Oman followed a zigzag series of rift segments, resulting in promontories and reentrants that changedmore » in position through time in response to the configuration and differential motion of underlying rift blocks. Synsedimentary normal faulting occurred locally in the Middle Jurassic, whereas in the Late Jurassic, the margin was eroded from variable uplift of up to 300 m before subsiding to below storm wave base. This uplift may have been caused by compression from oceanic crust that obducted along the southeastern side of the platform. The Lower Cretaceous succession in the central Oman Mountains and adjacent subsurface began with regional drowning around the Jurassic-Cretaceous boundary. The succession in the east (Saih Hatat) records a single regressive sequence, ending in the progradation of the shallow-water carbonate platform by the Cenomanian. However, the succession in the west (Jebel Akhdar and interior) is dominated by shallow-water carbonate facies, but punctuated by a second regional drowning in the late Aptian. A third, Late Cretaceous drowning terminated deposition of the Wasia Group in the Turonian and was caused by convergence of oceanic crust and foreland basic formation. The record of tectonic behavior of carbonate platforms has important implications for the development of hydrocarbon source rocks and porosity. 68 refs., 11 figs., 1 tab.« less

  3. Relative sea level changes during the Cretaceous in Israel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flexer, A.; Rosenfeld, A.; Lipson-Benitah, S.

    1986-11-01

    Detailed lithologic, microfaunal, and biometric investigations, using relative abundances, diversity indexes, and duration charts of ostracods and foraminifera, allowed the recognition of sea level changes during the Cretaceous of Israel. Three major transgressive-regressive sedimentation cycles occur on the northwest margins of the Arabian craton. These cycles are the Neocomian-Aptian, which is mostly terrigenous sediments; the Albian-Turonian, which is basin marls and platform carbonates; and the Senonian, which is uniform marly chalks. The cycles are separated by two major regional unconformities, the Aptian-Albian and Turonian-Coniacian boundaries. The sedimentary cycles are related to regional tectonic and volcanic events and eustatic changes. Themore » paleodepth curve illustrates the gradual sea level rise, reaching its maximum during the Late Cretaceous, with conspicuous advances during the late Aptian, late Albian-Cenomanian, early Turonian, early Santonian, and early Campanian. Major lowstands occur at the Aptian-Albian, Cenomanian-Turonian, Turonian-Coniacian, and Campanian-Maastrichtian boundaries. This model for Israel agrees well with other regional and global sea level fluctuations. Four anoxic events (black shales) accompanying transgressions correspond to the Cretaceous oceanic record. They hypothesize the presence of mature oil shales in the present-day eastern Mediterranean basin close to allochthonous reef blocks detached from the Cretaceous platform. 11 figures.« less

  4. The Early Cretaceous Sulfur Isotope Record: New Data, Revised Ages, and Updated Modeling

    NASA Astrophysics Data System (ADS)

    Kristall, B.; Hurtgen, M.; Sageman, B. B.; Jacobson, A. D.

    2015-12-01

    The Early Cretaceous is a time of significant transformation with the continued break-up of Pangea, the emplacement of several LIPs, and a climatic shift from a cool greenhouse to a warm greenhouse. The timing of these major events and their relationship to seawater geochemistry (as recorded in isotope records) is critical for understanding changes in global biogeochemical cycles during this time. Within this context, recent revisions to the Cretaceous portion of the geologic timescale necessitate a reevaluation of the Cretaceous S isotope record as recorded in marine barite (Paytan et al., 2004). We present a revised Early Cretaceous S isotope record and present new δ34Sbarite data that extend the record further back in time and provide more detail during two major S isotope shifts of the Early Cretaceous. The new data maintain the major ~5‰ negative shift but raise questions on the timing and structure of this perturbation. Furthermore, recently updated estimates for global rates of marine microbial sulfate reduction (MSR) (Bowles et al., 2014) and sulfate burial during the Phanerozoic (Halevy et al., 2012) require notable revisions in the fluxes and isotopic values used to model the global S cycle. We present a revised global S cycle box model and reconstruct the evolution of the Early Cretaceous S isotope record primarily through perturbations in volcanic and hydrothermal fluxes (e.g., submarine LIPs). Changes to the weathering and pyrite burial fluxes and the global integrated fractionation factor for MSR are also used to modulate, balance, and smooth the LIP-driven perturbation. The massive evaporite burial during the Late Aptian post dates the major -5‰ shift and has little affect on the modeled S isotope composition of seawater sulfate, despite causing a major drop in sulfate concentration. The S cycle box model is coupled to a Sr cycle box model to provide additional constraints on the magnitude and timing of perturbations within the S isotope record.

  5. The Wandering Indian Plate and Its Changing Biogeography During the Late Cretaceous-Early Tertiary Period

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sankar; Scotese, Christopher

    Palaeobiogeographic analysis of Indian tetrapods during the Late Cretaceous-Early Tertiary time has recognized that both vicariance and geodispersal have played important roles in producing biogeographic congruence. The biogeographic patterns show oscillating cycles of geodispersal (Late Cretaceous), followed by congruent episodes of vicariance and geodispersal (Early Eocene), followed by another geodispersal event (Middle Eocene). New biogeographic synthesis suggests that the Late Cretaceous Indian tetrapod fauna is cosmopolitan with both Gondwanan and Laurasian elements. Throughout most of the Cretaceous, India was separated from the rest of Gondwana, but in the latest Cretaceous it reestablished contact with Africa through Kohistan-Dras (K-D) volcanic arc, and maintained biotic link with South America via Ninetyeast Ridge-Kerguelen-Antarctica corridor. These two geodispersal routes allowed exchanges of "pan-Gondwana" terrestrial tetrapods from Africa, South America, and Madagascar. During that time India also maintained biotic connections with Laurasia across the Neotethys via Kohistan-Dras Arc and Africa. During the Palaeocene, India, welded to the K-D Arc, rafted like a "Noah's Ark" as an island continent and underwent rapid cladogenesis because of allopatric speciation. Although the Palaeocene fossil record is blank, Early Eocene tetrapods contain both endemic and cosmopolitan elements, but Middle Eocene faunas have strong Asian character. India collided with Asia in Early and Middle Eocene time and established a new northeast corridor for faunal migration to facilitate the bidirectional "Great Asian Interchange" dispersals.

  6. Early Cretaceous adakitic magmatism in central eastern China controlled by ridge subduction

    NASA Astrophysics Data System (ADS)

    Ling, M.; Luo, Z.; Sun, W.

    2017-12-01

    Early Cretaceous adakites are widely distributed in central eastern China, e.g., Lower Yangtze River Belt (LYRB), Dabie orogen and south Tan-Lu Fault (STLF) area. Adakite from the LYRB is closely associated with mineralization, while adakites from Dabie orogen and STLF are ore barren. Their origins, however, remain controversial. Detailed geochemical comparison between these adakites indicates that the LYRB adakite are formed by partial melting of oceanic crust, i.e., slab melting, whereas those from Dabie orogen and STLF (e.g., Guandian pluton) have origin of lower continental crust (LCC) 1,2. Base on the distribution of igneous rocks, e.g., adakite, A-type granite and Nb-enriched basalts, as well as other lines of evidence, ridge subduction of the Pacific and Izanagi plates was proposed to explain the genesis of Cretaceous magmatism and associated mineralization in the LYRB 1. Ridge subduction is a special plate tectonic process that can provide both physical erosion and thermal erosion 3. Flat subduction of a spreading ridge will result in strong physical subduction-related erosion, and trigger destruction (e.g., in the Dabie orogen) or delamination (e.g., in the STLF) of the thickened LCC. Subsequently, ridge subduction, accompanied by opening of a slab window, will facilitate partial melting of the LCC by thermal erosion. References: 1. Ling, M. X. et al. Cretaceous ridge subduction along the Lower Yangtze river belt, eastern China. Econ. Geol. 104, 303-321, doi:10.2113/gsecongeo.104.2.303 (2009). 2. Ling, M. X., Wang, F. Y., Ding, X., Zhou, J. B. & Sun, W. D. Different origins of adakites from the Dabie Mountains and the Lower Yangtze River Belt, eastern China: Geochemical constraints. International Geology Review 53, 727-740 (2011). 3. Ling, M. X. et al. Destruction of the North China Craton Induced by Ridge Subductions. Journal of Geology 121, 197-213 (2013).

  7. Early Cretaceous paleomagnetic and geochronologic results from the Tethyan Himalaya: Insights into the Neotethyan paleogeography and the India-Asia collision

    NASA Astrophysics Data System (ADS)

    Ma, Yiming; Yang, Tianshui; Bian, Weiwei; Jin, Jingjie; Zhang, Shihong; Wu, Huaichun; Li, Haiyan

    2016-02-01

    To better understand the Neotethyan paleogeography, a paleomagnetic and geochronological study has been performed on the Early Cretaceous Sangxiu Formation lava flows, which were dated from ~135.1 Ma to ~124.4 Ma, in the Tethyan Himalaya. The tilt-corrected site-mean characteristic remanent magnetization (ChRM) direction for 26 sites is Ds = 296.1°, Is = -65.7°, ks = 51.7, α95 = 4.0°, corresponding to a paleopole at 5.9°S, 308.0°E with A95 = 6.1°. Positive fold and reversal tests prove that the ChRM directions are prefolding primary magnetizations. These results, together with reliable Cretaceous-Paleocene paleomagnetic data observed from the Tethyan Himalaya and the Lhasa terrane, as well as the paleolatitude evolution indicated by the apparent polar wander paths (APWPs) of India, reveal that the Tethyan Himalaya was a part of Greater India during the Early Cretaceous (135.1-124.4 Ma) when the Neotethyan Ocean was up to ~6900 km, it rifted from India sometime after ~130 Ma, and that the India-Asia collision should be a dual-collision process including the first Tethyan Himalaya-Lhasa terrane collision at ~54.9 Ma and the final India-Tethyan Himalaya collision at ~36.7 Ma.

  8. Fossil evidence for a herbaceous diversification of early eudicot angiosperms during the Early Cretaceous

    PubMed Central

    Jud, Nathan A.

    2015-01-01

    Eudicot flowering plants comprise roughly 70% of land plant species diversity today, but their early evolution is not well understood. Fossil evidence has been largely restricted to their distinctive tricolpate pollen grains and this has limited our understanding of the ecological strategies that characterized their primary radiation. I describe megafossils of an Early Cretaceous eudicot from the Potomac Group in Maryland and Virginia, USA that are complete enough to allow reconstruction of important life-history traits. I draw on quantitative and qualitative analysis of functional traits, phylogenetic analysis and sedimentological evidence to reconstruct the biology of this extinct species. These plants were small and locally rare but widespread, fast-growing herbs. They had complex leaves and they were colonizers of bright, wet, disturbance-prone habitats. Other early eudicot megafossils appear to be herbaceous rather than woody, suggesting that this habit was characteristic of their primary radiation. A mostly herbaceous initial diversification of eudicots could simultaneously explain the heretofore sparse megafossil record as well as their rapid diversification during the Early Cretaceous because the angiosperm capacity for fast reproduction and fast evolution is best expressed in herbs. PMID:26336172

  9. Fossil evidence for a herbaceous diversification of early eudicot angiosperms during the Early Cretaceous.

    PubMed

    Jud, Nathan A

    2015-09-07

    Eudicot flowering plants comprise roughly 70% of land plant species diversity today, but their early evolution is not well understood. Fossil evidence has been largely restricted to their distinctive tricolpate pollen grains and this has limited our understanding of the ecological strategies that characterized their primary radiation. I describe megafossils of an Early Cretaceous eudicot from the Potomac Group in Maryland and Virginia, USA that are complete enough to allow reconstruction of important life-history traits. I draw on quantitative and qualitative analysis of functional traits, phylogenetic analysis and sedimentological evidence to reconstruct the biology of this extinct species. These plants were small and locally rare but widespread, fast-growing herbs. They had complex leaves and they were colonizers of bright, wet, disturbance-prone habitats. Other early eudicot megafossils appear to be herbaceous rather than woody, suggesting that this habit was characteristic of their primary radiation. A mostly herbaceous initial diversification of eudicots could simultaneously explain the heretofore sparse megafossil record as well as their rapid diversification during the Early Cretaceous because the angiosperm capacity for fast reproduction and fast evolution is best expressed in herbs. © 2015 The Author(s).

  10. Major transgression during Late Cretaceous constrained by basin sediments in northern Africa: implication for global rise in sea level

    NASA Astrophysics Data System (ADS)

    An, Kaixuan; Chen, Hanlin; Lin, Xiubin; Wang, Fang; Yang, Shufeng; Wen, Zhixin; Wang, Zhaoming; Zhang, Guangya; Tong, Xiaoguang

    2017-12-01

    The global rise in sea level during the Late Cretaceous has been an issue under discussion by the international geological community. Despite the significance, its impact on the deposition of continental basins is not well known. This paper presents the systematic review on stratigraphy and sedimentary facies compiled from 22 continental basins in northern Africa. The results indicate that the region was dominated by sediments of continental facies during Early Cretaceous, which were replaced by deposits of marine facies in Late Cretaceous. The spatio-temporal distribution of sedimentary facies suggests marine facies deposition reached as far south as Taoudeni-Iullemmeden-Chad-Al Kufra-Upper Egypt basins during Turonian to Campanian. These results indicate that northern Africa underwent significant transgression during Late Cretaceous reaching its peak during Turonian to Coniacian. This significant transgression has been attributed to the global high sea-level during this time. Previous studies show that global rise in sea level in Late Cretaceous may have been driven by an increase in the volume of ocean water (attributed to high CO2 concentration and subsequently warm climate) and a decrease in the volume of the ocean basin (attributed to rapid production of oceanic crust and seamounts). Tectonic mechanism of rapid production of oceanic crust and seamounts could play a fundamental role in driving the global rise in sea level and subsequent transgression in northern Africa during Late Cretaceous.

  11. CRETACEOUS CLIMATE SENSITIVITY STUDY USING DINOSAUR & PLANT PALEOBIOGEOGRAPHY

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Main, D. J.; Noto, C. R.; Moore, T. L.; Scotese, C.

    2009-12-01

    The Early Cretaceous was characterized by cool poles and moderate global temperatures (~16° C). During the mid and late Cretaceous, long-term global warming (~20° - 22° C) was driven by increasing levels of CO2, rising sea level (lowering albedo) and the continuing breakup of Pangea. Paleoclimatic reconstructions for four time intervals during the Cretaceous: Middle Campanian (80 Ma), Cenomanian/Turonian (90 Ma), Early Albian (110 Ma) and Barremian-Hauterivian (130Ma) are presented here. These paleoclimate simulations were prepared using the Fast Ocean and Atmosphere Model (FOAM). The simulated results show the pattern of the pole-to-Equator temperature gradients, rainfall, surface run-off, the location of major rivers and deltas. In order to investigate the effect of potential dispersal routes on paleobiogeographic patterns, a time-slice series of maps from Early - Late Cretaceous were produced showing plots of dinosaur and plant fossil distributions. These Maps were created utilizing: 1) plant fossil localities from the GEON and Paleobiology (PBDB) databases; and 2) dinosaur fossil localities from an updated version of the Dinosauria (Weishampel, 2004) database. These results are compared to two different types of datasets, 1) Paleotemperature database for the Cretaceous and 2) locality data obtained from GEON, PBDB and Dinosauria database. Global latitudinal mean temperatures from both the model and the paelotemperature database were plotted on a series of latitudinal graphs along with the distributions of fossil plants and dinosaurs. It was found that most dinosaur localities through the Cretaceous tend to cluster within specific climate belts, or envelopes. Also, these Cretaceous maps show variance in biogeographic zonation of both plants and dinosaurs that is commensurate with reconstructed climate patterns and geography. These data are particularly useful for understanding the response of late Mesozoic ecosystems to geographic and climatic conditions that

  12. North American nonmarine climates and vegetation during the Late Cretaceous

    USGS Publications Warehouse

    Wolfe, J.A.; Upchurch, G.R.

    1987-01-01

    Analyses of physiognomy of Late Cretaceous leaf assemblages and of structural adaptations of Late Cretaceous dicotyledonous woods indicate that megathermal vegetation was an open-canopy, broad-leaved evergreen woodland that existed under low to moderate amounts of rainfall evenly distributed through the year, with a moderate increase at about 40-45??N. Many dicotyledons were probably large, massive trees, but the tallest trees were evergreen conifers. Megathermal climate extended up to paleolatitude 45-50??N. Mesothermal vegetation was at least partially an open, broad-leaved evergreen woodland (perhaps a mosaic of woodland and forest), but the evapotranspirational stress was less than in megathermal climate. Some dicotyledons were large trees, but most were shrubs or small trees; evergreen conifers were the major tree element. Some mild seasonality is evidenced in mesothermal woods; precipitational levels probably varied markedly from year to year. Northward of approximately paleolatitude 65??N, evergreen vegetation was replaced by predominantly deciduous vegetation. This replacement is presumably related primarily to seasonality of light. The southern part of the deciduous vegetation probably existed under mesothermal climate. Comparisons to leaf and wood assemblages from other continents are generally consistent with the vegetational-climatic patterns suggested from North American data. Limited data from equatorial regions suggest low rainfall. Late Cretaceous climates, except probably those of the Cenomanian, had only moderate change through time. Temperatures generally appear to have warmed into the Santonian, cooled slightly into the Campanian and more markedly into the Maastrichtian, and then returned to Santonian values by the late Maastrichtian. The early Eocene was probably warmer than any period of the Late Cretaceous. Latitudinal temperature gradients were lower than at present. For the Campanian and Maastrichtian, a gradient of about 0.3??C/1

  13. Morphologically Specialized Termite Castes and Advanced Sociality in the Early Cretaceous.

    PubMed

    Engel, Michael S; Barden, Phillip; Riccio, Mark L; Grimaldi, David A

    2016-02-22

    A hallmark of animals that are eusocial, or those with advanced sociality, is reproductive specialization into worker and queen castes. In the most derived societies, these divisions are essentially fixed and in some arthropods, include further specialization--a tripartite system with a soldier caste that defends the colony. Eusociality has originated numerous times among insects but is believed to have appeared first in the termites (Isoptera), in the Early Cretaceous. However, all termites known from the Cretaceous have, until now, only been winged reproductives (alates and dealates); the earliest soldiers and definitive workers were known from just the Miocene (ca. 17-20 million years ago [mya]). Here, we report six termite species preserved in Early Cretaceous (ca. 100 mya) amber from Myanmar, one described as Krishnatermes yoddha gen. et sp. nov., comprising the worker/pseudergate, winged reproductive, and soldier, and a second species, Gigantotermes rex gen. et sp. nov., based on one of the largest soldier termites yet known. Phylogenetic analysis indicates that Krishnatermes are in the basal "Meiatermes-grade" of Cretaceous termites. Workers/pseudergates of another four species are briefly described, but not named. One of these workers/pseudergates reveals that ants--the most serious enemies of modern termites--lived in close proximity to termites in the Burmese paleofauna. These discoveries demonstrate the Mesozoic antiquity of specialized termite caste systems and corroborate that among all social species, termites probably had the original societies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Impact-driven ocean acidification as a mechanism of the Cretaceous-Palaeogene mass extinction

    NASA Astrophysics Data System (ADS)

    Ohno, S.; Kadono, T.; Kurosawa, K.; Hamura, T.; Sakaiya, T.; Shigemori, K.; Hironaka, Y.; Sano, T.; Watari, T.; Otani, K.; Matsui, T.; Sugita, S.

    2014-12-01

    The Cretaceous-Paleogene (K-Pg) mass extinction event at 66 Ma triggered by a meteorite impact is one of the most drastic events in the history of life on the Earth. Many hypotheses have been proposed as killing mechanisms induced by the impact, including global darkness due to high concentrations of atmospheric silicate dust particles, global wildfires, greenhouse warming due to CO2 release, and global acid rain. However, the actual mechanism of extinction remains highly controversial. One of the most important clues for understanding the extinction mechanism is the marine plankton record, which indicates that plankton foraminifera, living in the near-surface ocean, suffered very severe extinction in contrast to the high survival ratio of benthic foraminifera. No proposed extinction mechanism can account for this globally observed marine extinction pattern. Here, we show that SO3-rich impact vapor was released in the K-Pg impact and resulted in the occurrence of global acid rain and sudden severe ocean acidification at the end of the Cretaceous, based on the new results of impact experiments at velocities much higher than previous works (> 10 km/s) and theoretical calculations on aerosol coagulation processes. Sudden severe ocean acidification can account for many of the features of various geologic records at the K?Pg boundary, including severe extinction of plankton foraminifera. This extinction mechanism requires impact degassing of SO3-rich vapor, which is not necessarily found at impact sites other than Chicxulub, suggesting that the degree of mass extinction was controlled greatly by target lithology.

  15. Cretaceous polar climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziegler, A.M.; Horrell, M.A.; Lottes, A.L.

    1988-02-01

    The Cretaceous, like most Phanerozoic periods, was characterized by ice-free poles. Some still argue that the glaciers and sea ice were there, and that the tillites, etc, have been eroded or remain undiscovered. However, diverse floras, dense forests, and coal-forming cypress swamps, and dinosaurs, crocodilians, and lungfish are known from areas that were certainly at 75/degree/-80/degree/ north and south paleolatitude in the Cretaceous, implying that the coastal basins did not experience hard freezes. No deep marine connections to the North Pole existed in the Cretaceous, so oceanic polar heat transport can be discounted. However, the five north-south trending epeiric ormore » rift-related seaways that connected or nearly connected the Tethys to the Arctic would have dampened the seasonal temperature cycle, bring maritime climates deep into the North American and Eurasian continents and, more importantly, would have served as an energy source and channel for winter storms, much as the Gulf Stream does today. Cyclones have a natural tendency to move poleward, because of the increase in the Coriolis Parameter, and they transport both sensible and latent heat. The coastal regions of the relatively warm polar ocean in the Cretaceous would have received continuous precipitation during the winter because cyclones would be entering from as many as five directions. Coastal rainfall would also have been abundant in the summer but for a different reason; the land-sea temperature profile would reverse, with the warm land surface drawing in moisture, while clear ice-free conditions over the ocean would allow for solar warming.« less

  16. Cretaceous polar climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziegler, A.M.; Horrell, M.A.; Lottes, A.L.

    1988-01-01

    The Cretaceous, like most Phanerozooic periods, was characterized by ice-free poles. Some still argue that the glacier and sea ice were there, and that the tillites, etc, have been eroded or remain undiscovered. However, diverse floras, dense forests, coal-forming cypress swamps, and dinosaurs, crocodilians, and lungfish are known from areas that were certainly at 75/sup 0/-80/sup 0/ north and south paleolatitude in the Cretaceous, implying that the coastal basins did not experience hard freezes. No deep marine connections to the North Pole existed in the Cretaceous, so oceanic polar heat transport can be discounted. However, the five north-south trending epeiricmore » or rift-related seaways that connected or nearly connected the Tethys to the Arctic would have dampened the seasonal temperature cycle, bringing maritime climates deep into the North American and Eurasian continents and, more importantly, would have served as an energy source and channel for winter storms, much as the Gulf Stream does today. Cyclones have a natural tendency to move poleward, because of the increase in the Coriolis Paramteter, and they transport both sensible and latent heat. The coastal regions of the relatively warm polar ocean in the Cretaceous would have received continuous precipitation during the winter because cyclones would be entering from as many as five directions. Coastal rainfall would also have been abundant in the summer but for a different reason; the land-sea temperature profile would reverse, with the warm land surface drawing in moisture, while clear ice-free conditions over the ocean would allow for solar warming.« less

  17. The contribution of the young Cretaceous Caribbean Oceanic Plateau to the genesis of late Cretaceous arc magmatism in the Cordillera Occidental of Ecuador

    NASA Astrophysics Data System (ADS)

    Allibon, J.; Monjoie, P.; Lapierre, H.; Jaillard, E.; Bussy, F.; Bosch, D.; Senebier, F.

    2008-12-01

    The eastern part of the Cordillera Occidental of Ecuador comprises thick buoyant oceanic plateaus associated with island-arc tholeiites and subduction-related calc-alkaline series, accreted to the Ecuadorian Continental Margin from Late Cretaceous to Eocene times. One of these plateau sequences, the Guaranda Oceanic Plateau is considered as remnant of the Caribbean-Colombian Oceanic Province (CCOP) accreted to the Ecuadorian Margin in the Maastrichtien. Samples studied in this paper were taken from four cross-sections through two arc-sequences in the northern part of the Cordillera Occidental of Ecuador, dated as (Río Cala) or ascribed to (Macuchi) the Late Cretaceous and one arc-like sequence in the Chogòn-Colonche Cordillera (Las Orquídeas). These three island-arcs can clearly be identified and rest conformably on the CCOP. In all four localities, basalts with abundant large clinopyroxene phenocrysts can be found, mimicking a picritic or ankaramitic facies. This mineralogical particularity, although not uncommon in island arc lavas, hints at a contribution of the CCOP in the genesis of these island arc rocks. The complete petrological and geochemical study of these rocks reveals that some have a primitive island-arc nature (MgO values range from 6 to 11 wt.%). Studied samples display marked Nb, Ta and Ti negative anomalies relative to the adjacent elements in the spidergrams characteristic of subduction-related magmatism. These rocks are LREE-enriched and their clinopyroxenes show a tholeiitic affinity (FeO T-TiO 2 enrichment and CaO depletion from core to rim within a single crystal). The four sampled cross-sections through the island-arc sequences display homogeneous initial Nd, and Pb isotope ratios that suggest a unique mantellic source for these rocks resulting from the mixing of three components: an East-Pacific MORB end-member, an enriched pelagic sediment component, and a HIMU component carried by the CCOP. Indeed, the ankaramite and Mg

  18. Proxy Constraints on a Warm, Fresh Late Cretaceous Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Super, J. R.; Li, H.; Pagani, M.; Chin, K.

    2015-12-01

    The warm Late Cretaceous is thought to have been characterized by open Arctic Ocean temperatures upwards of 15°C (Jenkyns et al., 2004). The high temperatures and low equator-to-pole temperature gradient have proven difficult to reproduce in paleoclimate models, with the role of the atmospheric hydrologic cycle in heat transport being particularly uncertain. Here, sediments, coprolites and fish teeth of Santonian-Campanian age from two high-latitude mixed terrestrial and marine sections on Devon Island in the Canadian High Arctic (Chin et al., 2008) were analyzed using a suite of organic and inorganic proxies to evaluate the temperature and salinity of Arctic seawater. Surface temperature estimates were derived from TEX86 estimates of near-shore, shallow (~100 meters depth) marine sediments (Witkowski et al., 2011) and MBT-CBT estimates from terrestrial intervals and both suggest mean annual temperatures of ~20°C, consistent with previous estimates considering the more southerly location of Devon Island. The oxygen isotope composition of non-diagenetic phosphate from vertebrate coprolites and bony fish teeth were then measured, giving values ranging from +13‰ to +19‰. Assuming the TEX86 temperatures are valid and using the temperature calibration of Puceat 2010, the δ18O values of coprolites imply Arctic Ocean seawater δ18O values between -4‰ and -10‰, implying very fresh conditions. Lastly, the δD of precipitation will be estimated from the hydrogen isotope composition of higher plant leaf waxes (C-25, C-27, C-29 and C-31 n-alkanes) from both terrestrial and marine intervals. Data are used to model the salinity of seawater and the meteoric relationship between δD and δ18O, thereby helping to evaluate the northern high-latitude meteoric water line of the Late Cretaceous.

  19. Tectonics and Volcanism During the Cretaceous Normal Superchron Seafloor in the Western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    O'Brien, E.

    2017-12-01

    We have conducted an integration study on the origin and evolution of the tectonics and volcanism of seafloor in the Western Pacific Ocean that took place during the Cretaceous Normal Superchron (CNS) where sparse data has so far precluded detailed investigation. We have compiled the latest satellite-based gravity, gravity gradient, and magnetic grids (EMAG2 v.3) for this region. These crustal-scale high-resolution grids suggest that the CNS seafloor contains fossilized lithospheric morphology possibly attributed to the interaction between Cretaceous supervolcanism activity and Mid-Cretaceous Pacific mid ocean ridge systems that have continuously expanded the Pacific Plate. We recognize previously identified fossilized microplates west of the Magellan Rise, short-lived abandoned propagating rifts and fracture zones, all of which show significant rotation of seafloor fabric. In addition to these large scale observations, we have also compiled marine geological information from previously drilled cores and new data from a Kongsberg Topas PS18 Parametric Sub-Bottom Profiler collected on a transect from Honolulu, Hawaii to Apra, Guam acquired during research cruise SKQ2014S2. In particular, the narrow beam and high bandwidth signal of the Topas PS18 sub-bottom profiler provides sonar data of the seabed with a resolution and depth penetration that is unprecedented compared with previously available surveys in the region. A preliminary assessment of this high resolution Topas data allows us to better characterize sub-seafloor sediment properties and identify features, including the Upper Transparent Layer with identifiable pelagic clay and porcelanite-chert reflectors as well as tectonic features such as the westernmost tip of the Waghenaer Fracture Zone.

  20. Reinterpreting the Early Cretaceous Sulfur Isotope Records: Implications for the Evolution of Seawater Chemistry

    NASA Astrophysics Data System (ADS)

    Mills, J. V.; Gomes, M. L.; Sageman, B. B.; Jacobson, A. D.; Hurtgen, M. T.

    2013-12-01

    The geologic record of the Cretaceous is punctuated by several periods of high organic carbon burial interpreted to represent global Ocean Anoxic Events (OAEs). In addition to the short-term (<1-Myr) changes in carbon (C) cycling associated with OAEs, evidence from a number of geochemical proxies has been interpreted to represent large-scale changes in ocean chemistry during the period. Specifically, the sulfur (S) isotope composition of early Cretaceous seawater sulfate as recorded in marine barite exhibits an ~5 permil shift in d34Ssulfate that persists for ~15Myr before returning to pre-excursion values. Superimposed upon this long-term shift in S-isotopes is OAE1a, the second major anoxic event recognized in the Cretaceous. Two hypotheses have been proposed to explain this S isotope perturbation: (1) massive evaporite deposition associated with rifting during the opening of the South Atlantic and a corresponding decrease in pyrite burial rates and (2) increased inputs of volcanic-derived S due to extensive LIP-volcanism. While there is geologic evidence for both evaporite deposition and enhanced hydrothermal activity, the relative influence of these potential driving factors remains largely unconstrained. Variation in the strontium (Sr) isotope composition of marine carbonates provides a tool for distinguishing between these influences. We examine the S isotope composition of carbonate-associated sulfate (CAS) spanning the Barremian through Aptian from Resolution Guyot (ODP Site 866) and compare the S isotope record to time equivalent records of carbon and strontium isotopes. Correlative changes in the C, S, and Sr cycles are observed: an ~5 permil shift in d34Ssulfate, which begins at the onset of OAE1a and continues after the positive d13Ccarb excursion, is accompanied by a contemporaneous, parallel shift in 87Sr/86Sr to unradiogenic values. The tight coupling observed between S and Sr throughout the interval is highly suggestive of a common driving mechanism

  1. Sculpting the Philippine archipelago since the Cretaceous through rifting, oceanic spreading, subduction, obduction, collision and strike-slip faulting: Contribution to IGMA5000

    NASA Astrophysics Data System (ADS)

    Aurelio, Mario A.; Peña, Rolando E.; Taguibao, Kristine Joy L.

    2013-08-01

    The Philippine archipelago resulted from a complex series of geologic events that involved continental rifting, oceanic spreading, subduction, ophiolite obduction, arc-continent collision, intra-arc basin formation and strike-slip faulting. It can be divided into two tectono-stratigraphic blocks, namely; the Palawan-Mindoro Continental Block (PCB) and the Philippine Mobile Belt (PMB). The PCB was originally a part of the Asian mainland that was rifted away during the Mesozoic and drifted in the course of the opening of the South China Sea (SCS) during Late Paleogene. On the other hand, the PMB developed mainly from island arcs and ophiolite terranes that started to form during the Cretaceous. At present, the PMB collides with the PCB in the Visayas in the central-western Philippines. This paper discusses recent updates on Philippine geology and tectonics as contribution to the establishment of the International Geologic Map of Asia at 1:5 M scale (IGMA5000).

  2. A complete skull of an early cretaceous sauropod and the evolution of advanced titanosaurians.

    PubMed

    Zaher, Hussam; Pol, Diego; Carvalho, Alberto B; Nascimento, Paulo M; Riccomini, Claudio; Larson, Peter; Juarez-Valieri, Rubén; Pires-Domingues, Ricardo; da Silva, Nelson Jorge; Campos, Diógenes de Almeida

    2011-02-07

    Advanced titanosaurian sauropods, such as nemegtosaurids and saltasaurids, were diverse and one of the most important groups of herbivores in the terrestrial biotas of the Late Cretaceous. However, little is known about their rise and diversification prior to the Late Cretaceous. Furthermore, the evolution of their highly-modified skull anatomy has been largely hindered by the scarcity of well-preserved cranial remains. A new sauropod dinosaur from the Early Cretaceous of Brazil represents the earliest advanced titanosaurian known to date, demonstrating that the initial diversification of advanced titanosaurians was well under way at least 30 million years before their known radiation in the latest Cretaceous. The new taxon also preserves the most complete skull among titanosaurians, further revealing that their low and elongated diplodocid-like skull morphology appeared much earlier than previously thought.

  3. Shyok Suture Zone, N Pakistan: late Mesozoic Tertiary evolution of a critical suture separating the oceanic Ladakh Arc from the Asian continental margin

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair H. F.; Collins, Alan S.

    2002-02-01

    The Shyok Suture Zone (Northern Suture) of North Pakistan is an important Cretaceous-Tertiary suture separating the Asian continent (Karakoram) from the Cretaceous Kohistan-Ladakh oceanic arc to the south. In previously published interpretations, the Shyok Suture Zone marks either the site of subduction of a wide Tethyan ocean, or represents an Early Cretaceous intra-continental marginal basin along the southern margin of Asia. To shed light on alternative hypotheses, a sedimentological, structural and igneous geochemical study was made of a well-exposed traverse in North Pakistan, in the Skardu area (Baltistan). To the south of the Shyok Suture Zone in this area is the Ladakh Arc and its Late Cretaceous, mainly volcanogenic, sedimentary cover (Burje-La Formation). The Shyok Suture Zone extends northwards (ca. 30 km) to the late Tertiary Main Karakoram Thrust that transported Asian, mainly high-grade metamorphic rocks southwards over the suture zone. The Shyok Suture Zone is dominated by four contrasting units separated by thrusts, as follows: (1). The lowermost, Askore amphibolite, is mainly amphibolite facies meta-basites and turbiditic meta-sediments interpreted as early marginal basin rift products, or trapped Tethyan oceanic crust, metamorphosed during later arc rifting. (2). The overlying Pakora Formation is a very thick (ca. 7 km in outcrop) succession of greenschist facies volcaniclastic sandstones, redeposited limestones and subordinate basaltic-andesitic extrusives and flow breccias of at least partly Early Cretaceous age. The Pakora Formation lacks terrigenous continental detritus and is interpreted as a proximal base-of-slope apron related to rifting of the oceanic Ladakh Arc; (3). The Tectonic Melange (<300 m thick) includes serpentinised ultramafic rocks, near mid-ocean ridge-type volcanics and recrystallised radiolarian cherts, interpreted as accreted oceanic crust. (4). The Bauma-Harel Group (structurally highest) is a thick succession (several km

  4. Palaeogeographic evolution of the central segment of the South Atlantic during Early Cretaceous times: palaeotopographic and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Chaboureau, A. C.; Guillocheau, F.; Robin, C.; Rohais, S.; Moulin, M.; Aslanian, D.

    2012-04-01

    The tectonic and sedimentary evolution of the Early Cretaceous rift of the central segment of the South Atlantic Ocean is debated. Our objective is to better constraint the timing of its evolution by drawing palaeogeographic and deformation maps. Eight palaeogeographic and deformations maps were drawn from the Berriasian to the Middle-Late Aptian, based on a biostratigraphic (ostracodes and pollens) chart recalibrated on absolute ages (chemostratigraphy, interstratified volcanics, Re-Os dating of the organic matter). The central segment of the South Atlantic is composed of two domains that have a different history in terms of deformation and palaeogeography. The southern domain includes Namibe, Santos and Campos Basins. The northern domain extends from Espirito Santo and North Kwanza Basins, in the South, to Sergipe-Alagoas and North Gabon Basins to the North. Extension started in the northern domain during Late Berriasian (Congo-Camamu Basin to Sergipe-Alagoas-North Gabon Basins) and migrated southward. At that time, the southern domain was not a subsiding domain. This is time of emplacement of the Parana-Etendeka Trapp (Late Hauterivian-Early Barremian). Extension started in this southern domain during Early Barremian. The brittle extensional period is shorter in the South (5-6 Ma, Barremian to base Aptian) than in the North (19 to 20 Myr, Upper Berriasian to Base Aptian). From Late Berriasian to base Aptian, the northern domain evolves from a deep lake with lateral highs to a shallower one, organic-rich with no more highs. The lake migrates southward in two steps, until Valanginian at the border between the northern and southern domains, until Early Barremian, North of Walvis Ridge. The Sag phase is of Middle to Late Aptian age. In the southern domain, the transition between the brittle rift and the sag phase is continuous. In the northern domain, this transition corresponds to a hiatus of Early to Middle Aptian age, possible period of mantle exhumation. Marine

  5. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period.

    PubMed

    Wilson, P A; Norris, R D

    2001-07-26

    The middle of the Cretaceous period (about 120 to 80 Myr ago) was a time of unusually warm polar temperatures, repeated reef-drowning in the tropics and a series of oceanic anoxic events (OAEs) that promoted both the widespread deposition of organic-carbon-rich marine sediments and high biological turnover. The cause of the warm temperatures is unproven but widely attributed to high levels of atmospheric greenhouse gases such as carbon dioxide. In contrast, there is no consensus on the climatic causes and effects of the OAEs, with both high biological productivity and ocean 'stagnation' being invoked as the cause of ocean anoxia. Here we show, using stable isotope records from multiple species of well-preserved foraminifera, that the thermal structure of surface waters in the western tropical Atlantic Ocean underwent pronounced variability about 100 Myr ago, with maximum sea surface temperatures 3-5 degrees C warmer than today. This variability culminated in a collapse of upper-ocean stratification during OAE-1d (the 'Breistroffer' event), a globally significant period of organic-carbon burial that we show to have fundamental, stratigraphically valuable, geochemical similarities to the main OAEs of the Mesozoic era. Our records are consistent with greenhouse forcing being responsible for the warm temperatures, but are inconsistent both with explanations for OAEs based on ocean stagnation, and with the traditional view (reviewed in ref. 12) that past warm periods were more stable than today's climate.

  6. Early cretaceous dinosaurs from the sahara.

    PubMed

    Sereno, P C; Wilson, J A; Larsson, H C; Dutheil, D B; Sues, H D

    1994-10-14

    A major question in Mesozoic biogeography is how the land-based dinosaurian radiation responded to fragmentation of Pangaea. A rich fossil record has been uncovered on northern continents that spans the Cretaceous, when continental isolation reached its peak. In contrast, dinosaur remains on southern continents are scarce. The discovery of dinosaurian skeletons from Lower Cretaceous beds in the southern Sahara shows that several lineages of tetanuran theropods and broad-toothed sauropods had a cosmopolitan distribution across Pangaea before the onset of continental fragmentation. The distinct dinosaurian faunas of Africa, South America, and Asiamerica arose during the Cretaceous by differential survival of once widespread lineages on land masses that were becoming increasingly isolated from one another.

  7. A New Sail-Backed Styracosternan (Dinosauria: Ornithopoda) from the Early Cretaceous of Morella, Spain.

    PubMed

    Gasulla, José Miguel; Escaso, Fernando; Narváez, Iván; Ortega, Francisco; Sanz, José Luis

    2015-01-01

    A new styracosternan ornithopod genus and species is here described based on a partial postcranial skeleton and an associated dentary tooth of a single specimen from the Arcillas de Morella Formation (Early Cretaceous, late Barremian) at the Morella locality, (Castellón, Spain). Morelladon beltrani gen. et sp. nov. is diagnosed by eight autapomorphic features. The set of autapomorphies includes: very elongated and vertical neural spines of the dorsal vertebrae, midline keel on ventral surface of the second to fourth sacral vertebrae restricted to the anterior half of the centrum, a posterodorsally inclined medial ridge on the postacetabular process of the ilium that meets its dorsal margin and distal end of the straight ischial shaft laterally expanded, among others. Phylogenetic analyses reveal that the new Iberian form is more closely related to its synchronic and sympatric contemporary European taxa Iguanodon bernissartensis and Mantellisaurus atherfieldensis, known from Western Europe, than to other Early Cretaceous Iberian styracosternans (Delapparentia turolensis and Proa valdearinnoensis). The recognition of Morelladon beltrani gen. et sp. nov. indicates that the Iberian Peninsula was home to a highly diverse medium to large bodied styracosternan assemblage during the Early Cretaceous.

  8. Precious metals associated with Late Cretaceous-early Tertiary igneous rocks of southwestern Alaska

    USGS Publications Warehouse

    Bundtzen, Thomas K.; Miller, Marti L.; Goldfarb, Richard J.; Miller, Lance D.

    1997-01-01

    Placer gold and precious metal-bearing lode deposits of southwestern Alaska lie within a region 550 by 350 km, herein referred to as the Kuskokwim mineral belt. This mineral belt has yielded 100,240 kg (3.22 Moz) of gold, 12, 813 kg (412,000 oz) of silver, 1,377,412 kg (39,960 flasks) of mercury, and modest amounts of antimony and tungsten derived primarily from the late Cretaceous-early Tertiary igneous complexes of four major types: (1) alkali-calcic, comagmatic volcanic-plutonic complexes and isolated plutons, (2) calc-alkaline, meta-aluminous reduced plutons, (3) peraluminous alaskite or granite-porphyry sills and dike swarms, and (4) andesite-rhyolite subaerial volcanic rocks.About 80 percent of the 77 to 52 Ma intrusive and volcanic rocks intrude or overlie the middle to Upper Cretaceous Kuskokwim Group sedimentary and volcanic rocks, as well as the Paleozoic-Mesozoic rocks of the Nixon Fork, Innoko, Goodnews, and Ruby preaccretionary terranes.The major precious metal-bearing deposit types related to Late Cretaceous-early Tertiary igneous complexes of the Kuskokwim mineral belt are subdivided as follows: (1) plutonic-hosted copper-gold polymetallic stockwork, skarn, and vein deposits, (2) peraluminous granite-porphory-hosted gold polymetallic deposits, (3) plutonic-related, boron-enriched silver-tin polymetallic breccia pipes and replacement deposits, (4) gold and silver mineralization in epithermal systems, and (5) gold polymetallic heavy mineral placer deposits. Ten deposits genetically related to Late Cretaceous-early Tertiary intrusions contain minimum, inferred reserves amounting to 162,572 kg (5.23 Moz) of gold, 201,015 kg (6.46 Moz) silver, 12,160 metric tons (t) of tin, and 28,088 t of copper.The lodes occur in veins, stockworks, breccia pipes, and replacement deposits that formed in epithermal to mesothermal temperature-pressure conditions. Fluid inclusion, isotopic age, mineral assemblage, alteration assemblage, and structural data indicate that

  9. A synthesis of Jurassic and Early Cretaceous crustal evolution along the southern margin of the Arctic Alaska–Chukotka microplate and implications for defining tectonic boundaries active during opening of Arctic Ocean basins

    USGS Publications Warehouse

    Till, Alison B.

    2016-01-01

    result of the rotation of Arctic Alaska into central and western Chukotka. In northeastern Chukotka, the thickened rocks are separated from the relatively little thickened continental crust of the remainder of Chukotka by the oceanic rocks of the Kolyuchin-Mechigmen zone. The zone is a candidate for an Early Cretaceous suture that separated most of Chukotka from northeast Chukotka and Alaska. Albian patterns of magmatism, metamorphism, and deformation in Chukotka and the Seward Peninsula may represent an example of escape tectonics that developed in response to final amalgamation of Chukotka with Eurasia.

  10. The origin of oceanic crust and metabasic rocks protolith, the Luk Ulo Mélange Complex, Indonesia

    NASA Astrophysics Data System (ADS)

    Permana, H.; Munasri; Mukti, Maruf M.; Nurhidayati, A. U.; Aribowo, S.

    2018-02-01

    The Luk Ulo Mélange Complex (LUMC) is composed of tectonic slices of rocks that surrounded by scaly clay matrix. These rocks consist of serpentinite, gabbro, diabase, and basalt, eclogite, blueschist, amphibolite, schist, gneiss, phylite and slate, granite, chert, red limestone, claystone and sandstone. The LUMC was formed since Paleocene to Eocene, gradually uplifted of HP-UHP metabasic-metapelite (P: 20-27kbar; T: 410-628°C) to near surface mixed with hemipelagic sedimentary rocks. The metamorphic rocks were formed during 101-125 Ma (Early Cretaceous) within 70 to 100 km depth and ∼6°C/km thermal gradient. It took about 50-57 Myr for these rocks to reach the near surface during Paleocene-Eocene, with an uplift rate at ∼1.4-1.8 km/year to form the mélange complex. The low thermal gradient was due to subduction of old and cold oceanic crust. The subducted oceanic crust (MORB) as protolith of Cretaceous metabasic rocks must be older than Cretaceous. The data show that the basalt of oceanic crust is Cretaceous (130-81 Ma) comparable to the age of the cherts (Early to Late Cretaceous). Therefore, we consider that neither oceanic crust exposed in LUMC nor all of part of the old oceanic crust is the protolith of LUMC metabasic subducted beneath the Eurasian Plate. These oceanic rocks possibly originated or part of the edge of micro-continental that merged as a part of the LUMC during the collision with the Eurasian margin.

  11. Isotopic evidence for continental ice sheet in mid-latitude region in the supergreenhouse Early Cretaceous

    PubMed Central

    Yang, Wu-Bin; Niu, He-Cai; Sun, Wei-Dong; Shan, Qiang; Zheng, Yong-Fei; Li, Ning-Bo; Li, Cong-Ying; Arndt, Nicholas T.; Xu, Xing; Jiang, Yu-Hang; Yu, Xue-Yuan

    2013-01-01

    Cretaceous represents one of the hottest greenhouse periods in the Earth's history, but some recent studies suggest that small ice caps might be present in non-polar regions during certain periods in the Early Cretaceous. Here we report extremely negative δ18O values of −18.12‰ to −13.19‰ for early Aptian hydrothermal zircon from an A-type granite at Baerzhe in northeastern China. Given that A-type granite is anhydrous and that magmatic zircon of the Baerzhe granite has δ18O value close to mantle values, the extremely negative δ18O values for hydrothermal zircon are attributed to addition of meteoric water with extremely low δ18O, mostly likely transported by glaciers. Considering the paleoaltitude of the region, continental glaciation is suggested to occur in the early Aptian, indicating much larger temperature fluctuations than previously thought during the supergreenhouse Cretaceous. This may have impact on the evolution of major organism in the Jehol Group during this period. PMID:24061068

  12. Lower Cretaceous Puez key-section in the Dolomites - towards the mid-Cretaceous super-greenhouse

    NASA Astrophysics Data System (ADS)

    Lukeneder, A.; Halásová, E.; Rehákova, D.; Józsa, Š.; Soták, J.; Kroh, A.; Jovane, L.; Florindo, F.; Sprovieri, M.; Giorgioni, M.; Lukeneder, S.

    2012-04-01

    Investigations on different fossil groups in addition to isotopic, paleomagnetic and geochemical analysis are combined to extract the Early Cretaceous history of environmental changes, as displayed by the sea level and climate changes. Results on biostratigraphy are integrated with other dating methods as magnetostraigraphy, correlation and cyclostratigraphy. The main investigation topics of the submitted project within the above-described framework are the biostratigraphic (Lukeneder and Aspmair, 2006, 2012), palaeoecological (Lukeneder, 2008, 2012), palaeobiogeographic, lithostratigraphic (Lukeneder, 2010, 2011), cyclostratigraphic and magnetostratigraphic development of the Early Cretaceous in the Puez area. The main sections occur in expanded outcrops located on the southern margin of the Puez Plateau, within the area of the Puez-Geisler Natural Park, in the northern part of the Dolomites (South Tyrol, North Italy). The cephalopod, microfossil and nannofossil faunas and floras from the marly limestones to marls here indicates Hauterivian to Albian/Cenomanian age. Oxygen isotope values from the Lower Cretaceous Puez Formation show a decreasing trend throughout the log, from -1.5‰ in the Hauterivian to -4.5‰ in the Albian/Cenomanian. The decreasing values mirror an increasing trend in palaeotemperatures from ~ 15-18°C in the Hauterivian up to ~25-30 °C in the Albian/Cenomanian. The trend probably indicates the positive shift in temperature induced by the well known Mid Cretaceous Ocean warming (e.g., Super-Greenhouse). The cooperative project (FWF project P20018-N10; 22 international scientists): An integrative high resolution project. Macro- and microfossils, isotopes, litho-, cyclo-, magneto-and biostratigraphy as tools for investigating the Lower Cretaceous within the Dolomites (Southern Alps, Northern Italy) -The Puez area as a new key region of the Tethyan Realm), is on the way since 2008 by the Natural History Museum in Vienna and the 'Naturmuseum S

  13. A nearly modern amphibious bird from the Early Cretaceous of northwestern China.

    PubMed

    You, Hai-Lu; Lamanna, Matthew C; Harris, Jerald D; Chiappe, Luis M; O'connor, Jingmai; Ji, Shu-An; Lü, Jun-Chang; Yuan, Chong-Xi; Li, Da-Qing; Zhang, Xing; Lacovara, Kenneth J; Dodson, Peter; Ji, Qiang

    2006-06-16

    Three-dimensional specimens of the volant fossil bird Gansus yumenensis from the Early Cretaceous Xiagou Formation of northwestern China demonstrate that this taxon possesses advanced anatomical features previously known only in Late Cretaceous and Cenozoic ornithuran birds. Phylogenetic analysis recovers Gansus within the Ornithurae, making it the oldest known member of the clade. The Xiagou Formation preserves the oldest known ornithuromorph-dominated avian assemblage. The anatomy of Gansus, like that of other non-neornithean (nonmodern) ornithuran birds, indicates specialization for an amphibious life-style, supporting the hypothesis that modern birds originated in aquatic or littoral niches.

  14. Mid-Cretaceous aeolian desert systems in the Yunlong area of the Lanping Basin, China: Implications for palaeoatmosphere dynamics and paleoclimatic change in East Asia

    NASA Astrophysics Data System (ADS)

    Li, Gaojie; Wu, Chihua; Rodríguez-López, Juan Pedro; Yi, Haisheng; Xia, Guoqing; Wagreich, Michael

    2018-02-01

    The mid-Cretaceous constitutes a period of worldwide atmospheric and oceanic change associated with slower thermohaline circulation and ocean anoxic events, possible polar glaciations and by a changing climate pattern becoming controlled by a zonal planetary wind system and an equatorial humid belt. During the mid-Cretaceous, the subtropical high-pressure arid climate belt of the planetary wind system controlled the palaeolatitude distribution of humid belts in Asia as well as the spatial distribution of rain belts over the massive continental blocks at mid-low latitudes in the southern and northern hemispheres. Additionally, the orographic effect of the Andean-type active continental margin in East Asia hindered the transportation of ocean moisture to inland regions. With rising temperatures and palaeoatmospheric conditions dominated by high pressure systems, desert climate environments expanded at the inland areas of East Asia including those accumulated in the mid-Cretaceous of the Simao Basin, the Sichuan Basin, and the Thailand's Khorat Basin, and leading the Late Cretaceous erg systems in the Xinjiang Basin and Jianghan Basin. This manuscript presents evidences that allow to reinterpret previously considered water-laid sediments to be accumulated as windblown deposits forming part of extensive erg (sandy desert) systems. Using a multidisciplinary approach including petrological, sedimentological and architectural observations, the mid-Cretaceous (Albian-Turonian) Nanxin Formation from the Yunlong region of Lanping Basin, formerly considered to aqueous deposits is here interpreted as representing aeolian deposits, showing local aeolian-fluvial interaction deposits. The palaeowind directions obtained from the analysis of aeolian dune cross-beddings indicates that inland deserts were compatible with a high-pressure cell (HPC) existing in the mid-low latitudes of East Asia during the mid-Cretaceous. Compared with the Early Cretaceous, the mid-Cretaceous had

  15. Low ecological disparity in Early Cretaceous birds

    PubMed Central

    Mitchell, Jonathan S.; Makovicky, Peter J.

    2014-01-01

    Ecological divergence is thought to be coupled with evolutionary radiations, yet the strength of this coupling is unclear. When birds diversified ecologically has received much less attention than their hotly debated crown divergence time. Here, we quantify how accurately skeletal morphology can predict ecology in living and extinct birds, and show that the earliest known assemblage of birds (= pygostylians) from the Jehol Biota (≈ 125 Ma) was substantially impoverished ecologically. The Jehol avifauna has few representatives of highly preservable ecomorphs (e.g. aquatic forms) and a notable lack of ecomorphological overlap with the pterosaur assemblage (e.g. no large or aerially foraging pygostylians). Comparisons of the Jehol functional diversity with modern and subfossil avian assemblages show that taphonomic bias alone cannot explain the ecomorphological impoverishment. However, evolutionary simulations suggest that the constrained ecological diversity of the Early Cretaceous pygostylians is consistent with what is expected from a relatively young radiation. Regardless of the proximate biological explanation, the anomalously low functional diversity of the Jehol birds is evidence both for ecological vacancies in Cretaceous ecosystems, which were subsequently filled by the radiation of crown Aves, and for discordance between taxonomic richness and ecological diversity in the best-known Mesozoic ecosystem. PMID:24870044

  16. Palaeomagnetic time and space constraints of the Early Cretaceous Rhenodanubian Flysch zone (Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Dallanave, Edoardo; Kirscher, Uwe; Hauck, Jürgen; Hesse, Reinhard; Bachtadse, Valerian; Wortmann, Ulrich Georg

    2018-06-01

    The Rhenodanubian Flysch zone (RDF) is a Lower Cretaceous-lower Palaeocene turbidite succession extending for ˜500 km from the Danube at Vienna to the Rhine Valley (Eastern Alps). It consists of calcareous and siliciclastic turbidite systems deposited in a trench abyssal plain. The age of deposition has been estimated through micropalaeontologic dating. However, palaeomagnetic studies constraining the age and the palaeolatitude of deposition of the RDF are still missing. Here, we present palaeomagnetic data from the Early Cretaceous Tristel and Rehbreingraben Formations of the RDF from two localities in the Bavarian Alps (Rehbrein Creek and Lainbach Valley, southern Germany), and from the stratigraphic equivalent of the Falknis Nappe (Liechtenstein). The quality of the palaeomagnetic signal has been assessed by either fold test (FT) or reversal test (RT). Sediments from the Falknis Nappe are characterized by a pervasive syntectonic magnetic overprint as tested by negative FT, and are thus excluded from the study. The sediments of the Rehbreingraben Formation at Rehbrein Creek, with positive RT, straddle magnetic polarity Chron M0r and the younger M΄-1r΄ reverse event, with an age of ˜127-123 Ma (late Barremian-early Aptian). At Lainbach Valley, no polarity reversals have been observed, but a positive FT gives confidence on the reliability of the data. The primary palaeomagnetic directions, after correction for inclination shallowing, allow to precisely constrain the depositional palaeolatitude of the Tristel and Rehbreingraben Formations around ˜28°N. In a palaeogeographic reconstruction of the Alpine Tethys at the Barremian/Aptian boundary, the RDF is located on the western margin of the Briançonnais terrain, which was separated from the European continent by the narrow Valais Ocean.

  17. A newly found fragment of Cretaceous oceanic Lip derived from Pacific superplume; an example from the Sanbagawa eclogite-peridotite mass in Shikoku, Japan

    NASA Astrophysics Data System (ADS)

    Ota, T.; Terabayashi, M.; Kaneko, Y.; Yamamoto, H.; Okamoto, K.; Katayama, I.; Komiya, T.

    2001-12-01

    It is well-known that the Pacific superplume has been episodically active to form a number of oceanic Lips in the Pacific. During the middle Cretaceous time, it has formed Ontong-Jawa, Caribbean plateau, Mid-Pacific seamount chains and others. Moreover, several accreted fragments of those equivalents have been recently recognized as accreted fragments in accretionary orogens around the Pacific rims. Here, we list up a possible candidate which appears as a small piece now but it must have been a huge one equivalent to Ontong-Java size. The Cretaceous Sanbagawa belt in SW Japan is an accretionary complex metamorphosed at high-P/T conditions from 300-900° C and 0.5-2.6 GPa. We have recently completed a new lithotectonic map at 1:5000 scale for the highest grade areas, central Shikoku, with special attention on duplex structure and protolith occurrences. The mapped area consists of pelitic, basic and quartz schists with epidote-amphibolite facies grade, which enclose the Iratsu- and Higashi-Akaishi eclogite-peridotite masses. The eclogite-peridotite masses are composed of ultramafic rocks, eclogitic metabasites with basalt and gabbro origin, metacarbonate, metachert and pelitic gneiss (trench turbidite) in ascending order, and are divided into 4 horses consisting of those lithologies. These are separated on the top by the roof thrust and on the bottom by the floor thrust, indicating duplex. Based on duplex occurrences of oceanic materials within trench turbidite and reconstructed oceanic plate stratigraphy, we reconstruct the subduction polarity as always northwards, and directional change with time. The reconstructed oceanic plate stratigraphy suggests their origin of oceanic plateau covered by pelagic limestone with minor cherts on their flank before the arrival time at trench. The petrological thickness of plateau may exceed 30km, because high-pressure granulite facies assemblage remained in metagabbro in the Iratsu eclogite mass (Yokoyama, 1980), indicating huge

  18. A total petroleum system of the Browse Basin, Australia; Late Jurassic, Early Cretaceous-Mesozoic

    USGS Publications Warehouse

    Bishop, M.G.

    1999-01-01

    The Browse Basin Province 3913, offshore northern Australia, contains one important petroleum system, Late Jurassic, Early Cretaceous-Mesozoic. It is comprised of Late Jurassic through Early Cretaceous source rocks deposited in restricted marine environments and various Mesozoic reservoir rocks deposited in deep-water fan to fluvial settings. Jurassic age intraformational shales and claystones and Cretaceous regional claystones seal the reservoirs. Since 1967, when exploration began in this 105,000 km2 area, fewer than 40 wells have been drilled and only one recent oil discovery is considered potentially commercial. Prior to the most recent oil discovery, on the eastern side of the basin, a giant gas field was discovered in 1971, under a modern reef on the west side of the basin. Several additional oil and gas discoveries and shows were made elsewhere. A portion of the Vulcan sub-basin lies within Province 3913 where a small field, confirmed in 1987, produced 18.8 million barrels of oil (MMBO) up to 1995 and has since been shut in.

  19. EVOLUTION. A four-legged snake from the Early Cretaceous of Gondwana.

    PubMed

    Martill, David M; Tischlinger, Helmut; Longrich, Nicholas R

    2015-07-24

    Snakes are a remarkably diverse and successful group today, but their evolutionary origins are obscure. The discovery of snakes with two legs has shed light on the transition from lizards to snakes, but no snake has been described with four limbs, and the ecology of early snakes is poorly known. We describe a four-limbed snake from the Early Cretaceous (Aptian) Crato Formation of Brazil. The snake has a serpentiform body plan with an elongate trunk, short tail, and large ventral scales suggesting characteristic serpentine locomotion, yet retains small prehensile limbs. Skull and body proportions as well as reduced neural spines indicate fossorial adaptation, suggesting that snakes evolved from burrowing rather than marine ancestors. Hooked teeth, an intramandibular joint, a flexible spine capable of constricting prey, and the presence of vertebrate remains in the guts indicate that this species preyed on vertebrates and that snakes made the transition to carnivory early in their history. The structure of the limbs suggests that they were adapted for grasping, either to seize prey or as claspers during mating. Together with a diverse fauna of basal snakes from the Cretaceous of South America, Africa, and India, this snake suggests that crown Serpentes originated in Gondwana. Copyright © 2015, American Association for the Advancement of Science.

  20. New Crocodyliform specimens from Recôncavo-Tucano Basin (Early Cretaceous) of Bahia, Brazil.

    PubMed

    Souza, Rafael G DE; Campos, Diogenes A

    2018-04-16

    In 1940, L.I. Price and A. Oliveira recovered four crocodyliform specimens from the Early Cretaceous Bahia Supergroup (Recôncavo-Tucano Basin). In the present work, we describe four different fossil specimens: an osteoderm, a fibula, a tibia, and some autopodial bones. No further identification besides Mesoeucrocodylia was made due to their fragmentary nature and the reduced number of recognized synapomorphies for more inclusive clades. With exception of the fibula, all other specimens have at least one particular feature, which with new specimens could represent new species. The new specimens described here increase the known diversity of Early Cretaceous crocodyliforms from Brazil. This work highlights the great fossiliferous potential of Recôncavo-Tucano Basin with regard to crocodyliform remains.

  1. Changes to Cretaceous surface fire behaviour influenced the spread of the early angiosperms.

    PubMed

    Belcher, Claire M; Hudspith, Victoria A

    2017-02-01

    Angiosperms evolved and diversified during the Cretaceous period. Early angiosperms were short-stature weedy plants thought to have increased fire frequency and mortality in gymnosperm forest, aiding their own expansion. However, no explorations have considered whether the range of novel fuel types that diversified throughout the Cretaceous also altered fire behaviour, which should link more strongly to mortality than fire frequency alone. We measured ignitability and heat of combustion in analogue Cretaceous understorey fuels (conifer litter, ferns, weedy and shrubby angiosperms) and used these data to model palaeofire behaviour. Variations in ignition, driven by weedy angiosperms alone, were found to have been a less important feedback to changes in Cretaceous fire activity than previously estimated. Our model estimates suggest that fires in shrub and fern understories had significantly greater fireline intensities than those fuelled by conifer litter or weedy angiosperms, and whilst fern understories supported the most rapid fire spread, angiosperm shrubs delivered the largest amount of heat per unit area. The higher fireline intensities predicted by the models led to estimates of enhanced scorch of the gymnosperm canopy and a greater chance of transitioning to crown fires. Therefore, changes in fire behaviour driven by the addition of new Cretaceous fuel groups may have assisted the angiosperm expansion. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  2. Modern mammal origins: evolutionary grades in the Early Cretaceous of North America.

    PubMed

    Jacobs, L L; Winkler, D A; Murry, P A

    1989-07-01

    Major groups of modern mammals have their origins in the Mesozoic Era, yet the mammalian fossil record is generally poor for that time interval. Fundamental morphological changes that led to modern mammals are often represented by small samples of isolated teeth. Fortunately, functional wear facets on teeth allow prediction of the morphology of occluding teeth that may be unrepresented by fossils. A major step in mammalian evolution occurred in the Early Cretaceous with the evolution of tribosphenic molars, which characterize marsupials and placentals, the two most abundant and diverse extant groups of mammals. A tooth from the Early Cretaceous (110 million years before present) of Texas tests previous predictions (based on lower molars) of the morphology of upper molars in early tribosphenic dentitions. The lingual cusp (protocone) is primitively without shear facets, as expected, but the cheek side of the tooth is derived (advanced) in having distinctive cusps along the margin. The tooth, although distressingly inadequate to define many features of the organism, demonstrates unexpected morphological diversity at a strategic stage of mammalian evolution and falsifies previous claims of the earliest occurrence of true marsupials.

  3. Modern mammal origins: evolutionary grades in the Early Cretaceous of North America.

    PubMed Central

    Jacobs, L L; Winkler, D A; Murry, P A

    1989-01-01

    Major groups of modern mammals have their origins in the Mesozoic Era, yet the mammalian fossil record is generally poor for that time interval. Fundamental morphological changes that led to modern mammals are often represented by small samples of isolated teeth. Fortunately, functional wear facets on teeth allow prediction of the morphology of occluding teeth that may be unrepresented by fossils. A major step in mammalian evolution occurred in the Early Cretaceous with the evolution of tribosphenic molars, which characterize marsupials and placentals, the two most abundant and diverse extant groups of mammals. A tooth from the Early Cretaceous (110 million years before present) of Texas tests previous predictions (based on lower molars) of the morphology of upper molars in early tribosphenic dentitions. The lingual cusp (protocone) is primitively without shear facets, as expected, but the cheek side of the tooth is derived (advanced) in having distinctive cusps along the margin. The tooth, although distressingly inadequate to define many features of the organism, demonstrates unexpected morphological diversity at a strategic stage of mammalian evolution and falsifies previous claims of the earliest occurrence of true marsupials. Images PMID:2740336

  4. Evidence of cretaceous to recent West African intertropical vegetation from continental sediment spore-pollen analysis

    NASA Astrophysics Data System (ADS)

    Salard-Cheboldaeff, M.; Dejax, J.

    The succession of spore-pollen assemblages during the Cretaceous and Tertiary, as defined in each of the basin from Senegal to Angola, gives the possibility to consider the intertropical African flora evolution for the past 120 M.a. During the Early Cretaceous, xeric-adapted gymnosperms and various ferns were predominant the flora which nevertheless comprises previously unknown early angiosperm pollen. During the Middle Cretaceous, gymnospers were gradually replaced by angiosperms; these became more and more abundant, along with the diversification of new genera and species. During the Paleocene, the radiation of the monocotyledons (mainly that of the palm-trees) as well as a greater diversification among the dicotyledons and ferms are noteworthy. Since gymnosperms had almost disappeared by the Eocene, the diversification of the dicotyledons went on until the neogene, when all extinct pollen types are already present. These important modifications of the vegetation reflect evolutionary trends as well as climatic changes during the Cretaceous: the climate, firstly hot, dry and perhaps arid, did probably induced salt deposition, and later became gradually more humid under oceanic influences which arose in connection with the Gondwana break-up.

  5. A Diplodocid Sauropod Survivor from the Early Cretaceous of South America

    PubMed Central

    Gallina, Pablo A.; Apesteguía, Sebastián; Haluza, Alejandro; Canale, Juan I.

    2014-01-01

    Diplodocids are by far the most emblematic sauropod dinosaurs. They are part of Diplodocoidea, a vast clade whose other members are well-known from Jurassic and Cretaceous strata in Africa, Europe, North and South America. However, Diplodocids were never certainly recognized from the Cretaceous or in any other southern land mass besides Africa. Here we report a new sauropod, Leikupal laticauda gen. et sp. nov., from the early Lower Cretaceous (Bajada Colorada Formation) of Neuquén Province, Patagonia, Argentina. This taxon differs from any other sauropod by the presence of anterior caudal transverse process extremely developed with lateroventral expansions reinforced by robust dorsal and ventral bars, very robust centroprezygapophyseal lamina in anterior caudal vertebra and paired pneumatic fossae on the postzygapophyses in anterior-most caudal vertebra. The phylogenetic analyses support its position not only within Diplodocidae but also as a member of Diplodocinae, clustering together with the African form Tornieria, pushing the origin of Diplodocoidea to the Middle Jurassic or even earlier. The new discovery represents the first record of a diplodocid for South America and the stratigraphically youngest record of this clade anywhere. PMID:24828328

  6. A diplodocid sauropod survivor from the early cretaceous of South America.

    PubMed

    Gallina, Pablo A; Apesteguía, Sebastián; Haluza, Alejandro; Canale, Juan I

    2014-01-01

    Diplodocids are by far the most emblematic sauropod dinosaurs. They are part of Diplodocoidea, a vast clade whose other members are well-known from Jurassic and Cretaceous strata in Africa, Europe, North and South America. However, Diplodocids were never certainly recognized from the Cretaceous or in any other southern land mass besides Africa. Here we report a new sauropod, Leikupal laticauda gen. et sp. nov., from the early Lower Cretaceous (Bajada Colorada Formation) of Neuquén Province, Patagonia, Argentina. This taxon differs from any other sauropod by the presence of anterior caudal transverse process extremely developed with lateroventral expansions reinforced by robust dorsal and ventral bars, very robust centroprezygapophyseal lamina in anterior caudal vertebra and paired pneumatic fossae on the postzygapophyses in anterior-most caudal vertebra. The phylogenetic analyses support its position not only within Diplodocidae but also as a member of Diplodocinae, clustering together with the African form Tornieria, pushing the origin of Diplodocoidea to the Middle Jurassic or even earlier. The new discovery represents the first record of a diplodocid for South America and the stratigraphically youngest record of this clade anywhere.

  7. Oxidation state inherited from the magma source and implications for mineralization: Late Jurassic to Early Cretaceous granitoids, Central Lhasa subterrane, Tibet

    NASA Astrophysics Data System (ADS)

    Cao, MingJian; Qin, KeZhang; Li, GuangMing; Evans, Noreen J.; McInnes, Brent I. A.; Li, JinXiang; Zhao, JunXing

    2018-03-01

    Arc magmas are more oxidized than mid-ocean ridge basalts; however, there is continuing debate as to whether this higher oxidation state is inherited from the source magma or developed during late-stage magmatic differentiation processes. Well-constrained Late Jurassic to Early Cretaceous arc-related intermediate to felsic rocks derived from distinct magma sources provide us with a good opportunity to resolve this enigma. A series of granitoids from the western Central Lhasa subterrane were analyzed for whole-rock magnetic susceptibility, Fe2O3/FeO ratios, and trace elements in zircon. Compared to Late Jurassic samples (1.8 ± 2.0 × 10-4 emu g-1 oe-1, Fe3+/Fetotal = 0.32 ± 0.07, zircon Ce4+/Ce3+* = 15.0 ± 13.4), Early Cretaceous rocks show higher whole-rock magnetic susceptibility (5.8 ± 2.5 × 10-4 emu g-1 oe-1), Fe3+/Fetotal ratios (0.43 ± 0.04), and zircon Ce4+/Ce3+* values (23.9 ± 22.3). In addition, positive correlations among whole-rock magnetic susceptibility, Fe3+/Fetotal ratios, and zircon Ce4+/Ce3+* reveal a slight increase in oxidation state from fO2 = QFM to NNO in the Late Jurassic to fO2 = ˜NNO in the Early Cretaceous. Obvious linear correlation between oxidation indices (whole-rock magnetic susceptibility, zircon Ce4+/Ce3+*) and source signatures (zircon ɛHf(t), TDM C ages) indicates that the oxidation state was predominantly inherited from the source with only a minor contribution from magmatic differentiation. Thus, the sources for both the Late Jurassic and Early Cretaceous rocks were probably influenced by mantle wedge-derived magma, contributing to the increased fO2. Compared to ore-forming rocks at giant porphyry Cu deposits, the relatively low oxidation state (QFM to NNO) and negative ɛHf(t) (-16 to 0) of the studied granitoids implies relative infertility. However, this study demonstrates two potential fast and effective indices ( fO2 and ɛHf(t)) to evaluate the fertility of granitoids for porphyry-style mineralization. In an

  8. Dinoflagellate cyst biostratigraphy of the Upper Cretaceous succession in the sub-Arctic region

    NASA Astrophysics Data System (ADS)

    Radmacher, Wiesława; Tyszka, Jarosław; Mangerud, Gunn; Pearce, Martin

    2017-04-01

    The study provides a solid basis for the first palynostratigraphic zonation of the Upper Cretaceous sub-Arctic succession. Dinoflagellate cysts from the unique composite section, combining samples from the shallow stratigraphic core 6711/4-U-1 and core-samples from well 6707/10-1 in the Norwegian Sea, were studied and compared to palynological data from the south-western Barents Sea, wells 7119/12-1, 7119/9-1, 7120/7-3, 7120/5-1 and 7121/5-1. Dinoflagellate cysts diagnostic for late Maastrichtian that are missing in the Barents Sea are recorded in both sections in the Norwegian Sea. This adds new valuable data from the time interval often represented by a significant regional hiatus in the area. Seven new and three previously recognised zones are identified, based on top and base occurrence of selected age diagnostic taxa. In addition, one Abundance Subzone is introduced. The biostratigraphic zonation includes: the intra late Albian to intra early Cenomanian Subtilisphaera kalaalliti Interval Zone sensu Nøhr-Hansen (1993); the intra early Cenomanian to intra late Cenomanian Palaeohystrichophora infusorioides-Palaeohystrichophora palaeoinfusa Interval Zone sensu Radmacher et al. (2014); the intra Turonian to ?intra early Coniacian Heterosphaeridium difficile Interval Zone sensu Nøhr-Hansen (2012); the ?intra early Coniacian to late Santonian Dinopterygium alatum Interval Zone sensu Radmacher et al. (2014); the ?early Campanian Palaeoglenodinium cretaceum Interval Zone sensu Radmacher et al. (2014); the intra Campanian Hystrichosphaeridium dowlingii-Heterosphaeridium spp. Interval Zone sensu Radmacher et al. (2015); the intra late Campanian Chatangiella bondarenkoi Interval Zone sensu Radmacher et al. (2014) encompassing the Heterosphaeridium bellii Abundance Subzone; the early Maastrichtian Cerodinium diebelii Interval Zone sensu Nøhr-Hansen (1996) and the intra late Maastrichtian Wodehouseia spinata Range Zone sensu Nøhr-Hansen (1996). The Heterosphaeridium

  9. High resolution chronology of late Cretaceous-early Tertiary events determined from 21,000 yr orbital-climatic cycles in marine sediments

    NASA Technical Reports Server (NTRS)

    Herbert, Timothy D.; Dhondt, Steven

    1988-01-01

    A number of South Atlantic sites cored by the Deep Sea Drilling Project (DSDP) recovered late Cretaceous and early Tertiary sediments with alternating light-dark, high-low carbonate content. The sedimentary oscillations were turned into time series by digitizing color photographs of core segments at a resolution of about 5 points/cm. Spectral analysis of these records indicates prominent periodicity at 25 to 35 cm in the Cretaceous intervals, and about 15 cm in the early Tertiary sediments. The absolute period of the cycles that is determined from paleomagnetic calibration at two sites is 20,000 to 25,000 yr, and almost certainly corresponds to the period of the earth's precessional cycle. These sequences therefore contain an internal chronometer to measure events across the K/T extinction boundary at this scale of resolution. The orbital metronome was used to address several related questions: the position of the K/T boundary within magnetic chron 29R, the fluxes of biogenic and detrital material to the deep sea immediately before and after the K/T event, the duration of the Sr anomaly, and the level of background climatic variability in the latest Cretaceous time. The carbonate/color cycles that were analyzed contain primary records of ocean carbonate productivity and chemistry, as evidenced by bioturbational mixing of adjacent beds and the weak lithification of the rhythmic sequences. It was concluded that sedimentary sequences that contain orbital cyclicity are capable of providing resolution of dramatic events in earth history with much greater precision than obtainable through radiometric methods. The data show no evidence for a gradual climatic deterioration prior to the K/T extinction event, and argue for a geologically rapid revolution at this horizon.

  10. Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis.

    PubMed

    Pan, Yanhong; Zheng, Wenxia; Moyer, Alison E; O'Connor, Jingmai K; Wang, Min; Zheng, Xiaoting; Wang, Xiaoli; Schroeter, Elena R; Zhou, Zhonghe; Schweitzer, Mary H

    2016-12-06

    Microbodies associated with feathers of both nonavian dinosaurs and early birds were first identified as bacteria but have been reinterpreted as melanosomes. Whereas melanosomes in modern feathers are always surrounded by and embedded in keratin, melanosomes embedded in keratin in fossils has not been demonstrated. Here we provide multiple independent molecular analyses of both microbodies and the associated matrix recovered from feathers of a new specimen of the basal bird Eoconfuciusornis from the Early Cretaceous Jehol Biota of China. Our work represents the oldest ultrastructural and immunological recognition of avian beta-keratin from an Early Cretaceous (∼130-Ma) bird. We apply immunogold to identify protein epitopes at high resolution, by localizing antibody-antigen complexes to specific fossil ultrastructures. Retention of original keratinous proteins in the matrix surrounding electron-opaque microbodies supports their assignment as melanosomes and adds to the criteria employable to distinguish melanosomes from microbial bodies. Our work sheds new light on molecular preservation within normally labile tissues preserved in fossils.

  11. Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis

    PubMed Central

    Pan, Yanhong; Zheng, Wenxia; Moyer, Alison E.; O’Connor, Jingmai K.; Zheng, Xiaoting; Wang, Xiaoli; Schroeter, Elena R.; Zhou, Zhonghe; Schweitzer, Mary H.

    2016-01-01

    Microbodies associated with feathers of both nonavian dinosaurs and early birds were first identified as bacteria but have been reinterpreted as melanosomes. Whereas melanosomes in modern feathers are always surrounded by and embedded in keratin, melanosomes embedded in keratin in fossils has not been demonstrated. Here we provide multiple independent molecular analyses of both microbodies and the associated matrix recovered from feathers of a new specimen of the basal bird Eoconfuciusornis from the Early Cretaceous Jehol Biota of China. Our work represents the oldest ultrastructural and immunological recognition of avian beta-keratin from an Early Cretaceous (∼130-Ma) bird. We apply immunogold to identify protein epitopes at high resolution, by localizing antibody–antigen complexes to specific fossil ultrastructures. Retention of original keratinous proteins in the matrix surrounding electron-opaque microbodies supports their assignment as melanosomes and adds to the criteria employable to distinguish melanosomes from microbial bodies. Our work sheds new light on molecular preservation within normally labile tissues preserved in fossils. PMID:27872291

  12. Dolomitization in Late Jurassic-Early Cretaceous Platform Carbonates (Berdiga Formation), Ayralaksa Yayla (Trabzon), NE Turkey

    NASA Astrophysics Data System (ADS)

    Yıldız, Merve; Ziya Kırmacı, Mehmet; Kandemir, Raif

    2017-04-01

    ABSTRACT Pontides constitute an E-W trending orogenic mountain belt that extends about 1100 km along the northern side of Turkey from the immediate east of Istanbul to the Georgian border at the east. Tectono-stratigraphically, the Pontides are divided into three different parts: Eastern, Central, and Western Pontides. The Eastern Pontides, including the studied area, comprise an area of 500 km in length and 100 km in width, extending along the southeast coast of the Black Sea from the Kizilirmak and Yesilirmak Rivers in the vicinity of Samsun to the Little Caucasus. This area is bordered by the Eastern Black Sea basin to the north and the Ankara-Erzincan Neotethyan suture zone to the south. The Late Jurassic-Early Cretaceous platform carbonates are widely exposed in E-W direction in the Eastern Pontides (NE Turkey). The Platform carbonates shows varying lithofacies changing from supratidal to platform margin reef laterally and vertically, and was buried until the end of Late Cretaceous. The studied Ayralaksa Yayla (Trabzon, NE Turkey) area comprises one of the best typical exposures of formation in northern zone of Eastern Pontides. In this area, the lower parts of the formation are pervasively dolomitized by fabric-destructive and fabric-preserving replacement dolomite which are Ca-rich and nonstoichiometric (Ca56-66Mg34-44). Replacement dolomites (Rd) are represented by D18O values of -19.0 to -4.2 (VPDB), D13C values of 4.4 to 2.1 \\permil (VPDB) and 87Sr/86Sr ratios of 0.70889 to 0.70636. Petrographic and geochemical data indicate that Rd dolomites are formed prior to compaction at shallow-moderate burial depths from Late Jurassic-Early Cretaceous seawater and/or partly modified seawater as a result of water/rock interaction and they were recrystallized at elevated temperatures during subsequent burial. In the subsequent diagenetic process during the Late Cretaceous when the region became a magmatic arc, as a result of interaction with Early Jurassic volcanic

  13. Early cretaceous topographic growth of the Lhasaplano, Tibetan plateau: Constraints from the Damxung conglomerate

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Gang; Hu, Xiumian; Garzanti, Eduardo; Ji, Wei-Qiang; Liu, Zhi-Chao; Liu, Xiao-Chi; Wu, Fu-Yuan

    2017-07-01

    Constraining the timing of early topographic growth on the Tibetan plateau is critical for any models of India-Asia collision, Himalayan orogeny and subsequent plateau development in the Cenozoic. Stratigraphic, sedimentological and provenance analysis of the Lower Cretaceous red-beds of the Damxung Conglomerate provide new key information to reconstruct the paleogeography and the tectonic evolution of the Lhasa terrane at the time. The over 700-m-thick Damxung Conglomerate documents distal alluvial fan to braidplain sedimentation passing upward to proximal alluvial fan sedimentation. Deposition began near sea level, as documented by limestone beds occurring at the base of the unit. Zircon U-Pb dating of interbedded tuff layers constrain deposition age at ca. 111 Ma. Abundance of volcanic clasts, Cretaceous U-Pb ages and Hf isotopes of detrital zircons yielding mainly negative ɛHf(t) values together with paleocurrent data indicate an active volcanic source located in the North Lhasa subterrane. Pre-Mesozoic-aged zircon, recycled quartz and (meta) sedimentary rock fragments increase up-section, indicating progressive erosional exhumation of the Paleozoic sedimentary/metasedimentary basement. The Damxung Conglomerate thus records a significant uplift and unroofing stage in the source region, implying initial topographic growth on the Lhasa terrane at early Albian time. Early Cretaceous topographic growth on the Lhasa terrane is supported by the stratigraphic record in the Linzhou basin, the Xigaze forearc basin and the southern Nima basin. In contrast, marine strata in the central-western Lhasa terrane lasted until the early Cenomanian (ca. 96 Ma), indicating diachronous marine regression on the Lhasa terrane from east to west.

  14. Middle Jurassic - Early Cretaceous rifting on the Chortis Block in Honduras: Implications for proto-Caribbean opening (Invited)

    NASA Astrophysics Data System (ADS)

    Rogers, R. D.; Emmet, P. A.

    2009-12-01

    Regional mapping integrated with facies analysis, age constraints and airborne geophysical data reveal WNW and NE trends of Middle Jurassic to Early Cretaceous basins which intersect in southeast Honduras that we interpret as the result of rifting associated with the breakup of the Americas and opening of the proto-Caribbean seaway. The WNW-trending rift is 250 km long by 90 km wide and defined by a basal 200 to 800 m thick sequence of Middle to Late Jurassic fluvial channel and overbank deposits overlain by transgressive clastic shelf strata. At least three sub-basins are apparent. Flanking the WNW trending rift basins are fault bounded exposures of the pre-Jurassic continental basement of the Chortis block which is the source of the conglomeratic channel facies that delineate the axes of the rifts. Cretaceous terrigenous strata mantle the exposed basement-cored rift flanks. Lower Cretaceous clastic strata and shallow marine limestone strata are dominant along this trend indicating that post-rift related subsidence continued through the Early Cretaceous. The rifts coincide with a regional high in the total magnetic intensity data. We interpret these trends to reflect NNE-WSW extension active from the Middle Jurassic through Early Cretaceous. These rifts were inverted during Late Cretaceous shortening oriented normal to the rift axes. To the east and at a 120 degree angle to the WNW trending rift is the 300 km long NE trending Guayape fault system that forms the western shoulder of the Late Jurassic Agua Fria rift basin filled by > 2 km thickness of clastic marine shelf and slope strata. This NE trending basin coincides with the eastern extent of the surface exposure of continental basement rocks and a northeast-trending fabric of the Jurassic (?) metasedimentary basement rocks. We have previously interpreted the eastern basin to be the Jurassic rifted margin of the Chortis block with the Guayape originating as a normal fault system. These two rifts basin intersect

  15. Extent and impact of Cretaceous magmatism on the formation and evolution of Jurassic oceanic crust in the western Pacific

    NASA Astrophysics Data System (ADS)

    Feng, H.; Lizarralde, D.; Tominaga, M.; Hart, L.; Tivey, M.; Swift, S. A.

    2015-12-01

    Multi-channel seismic (MCS) images and wide-angle sonobuoy data acquired during a 2011 cruise on the R/V Thomas G. Thompson (TN272) show widespread emplacement of igneous sills and broadly thickened oceanic Layer 2 through hundreds of kilometers of oceanic crust in one of the oldest ocean basins in the western Pacific, a region known as the Jurassic Quiet Zone (JQZ). Oceanic crust from the JQZ has grown through at least two main magmatic phases: It was formed by mid-ocean ridge processes in the Jurassic (at ~170 Ma), and then it was added to by a substantial Cretaceous magmatic event (at ~75-125 Ma). The scale of Cretaceous magmatism is exemplified by massive seafloor features such as the Ontong Java Plateau, Mid-Pacific Mountains, Marshall-Gilbert Islands, Marcus-Wake Seamount Chain, and numerous guyots, seamounts, and volcaniclastic flows observed throughout the region. We use seismic data to image heavily intruded and modified oceanic crust along an 800-km-long transect through the JQZ in order to examine how processes of secondary crustal growth - including magmatic emplacement, transport, and distribution - are expressed in the structure of modified oceanic crust. We also model gravity anomalies to constrain crustal thickness and depth to the Moho. Our observations suggest that western Pacific crust was modified via the following modes of emplacement: (a) extrusive seafloor flows that may or may not have grown into seamounts, (b) seamounts formed through intrusive diking that pushed older sediments aside during their formation, and (c) igneous sills that intruded sediments at varying depths. Emplacement modes (a) and (b) tend to imply a focused, pipe-like mechanism for melt transport through the lithosphere. Such a mechanism does not explain the observed broadly distributed intrusive emplacement of mode (c) however, which may entail successive sill emplacement between igneous basement and sediments thickening oceanic Layer 2 along ~400 km of our seismic line

  16. Multi-stage metamorphism in the South Armenian Block during the Late Jurassic to Early Cretaceous: Tectonics over south-dipping subduction of Northern branch of Neotethys

    NASA Astrophysics Data System (ADS)

    Hässig, M.; Rolland, Y.; Sahakyan, L.; Sosson, M.; Galoyan, G.; Avagyan, A.; Bosch, D.; Müller, C.

    2015-04-01

    The geologic evolution of the South Armenian Block (SAB) in the Mesozoic is reconstructed from a structural, metamorphic, and geochronologic study including U-Pb and 40Ar/39Ar dating. The South Armenian Block Crystalline Basement (SABCB) outcrops solely in a narrow tectonic window, NW of Yerevan. The study of this zone provides key and unprecedented information concerning closing of the Northern Neotethys oceanic domain north of the Taurides-Anatolides platform from the Middle Jurassic to the Early Cretaceous. The basement comprises of presumed Proterozoic orthogneiss overlain by metamorphosed pelites as well as intrusions of granodiorite and leucogranite during the Late Jurassic and Early Cretaceous. Structural, geochronological and petrological observations show a multiphased evolution of the northern margin of the SAB during the Late Jurassic and Early Cretaceous. A south-dipping subduction under the East Anatolian Platform-South Armenian Block (EAP-SAB) is proposed in order to suit recent findings pertaining emplacement of relatively hot subduction related granodiorite as well as the metamorphic evolution of the crystalline basement in the Lesser Caucasus area. The metamorphism is interpreted as evidencing: (1) M1 Barrovian MP-MT conditions (staurolite-kyanite) at c. 157-160 Ma and intrusion of dioritic magmas at c. 150-156 Ma, (2) near-adiabatic decompression is featured by partial melting and production of leucogranites at c. 153 Ma, followed by M2 HT-LP conditions (andalusite-K-feldspar). A phase of shearing and recrystallization is ascribed to doming at c. 130-150 Ma and cooling at 400 °C by c. 123 Ma (M3). Structural observations show (1) top to the north shearing during M1 and (2) radial extension during M2. The extensional event ends by emplacement of a thick detrital series along radial S, E and W-dipping normal faults. Further, the crystalline basement is unconformably covered by Upper Cretaceous-Paleocene series dated by nannofossils, evolving from

  17. Sedimentologic Expression of the Cretaceous OAEs in a Tropical Epicontinental Sea

    NASA Astrophysics Data System (ADS)

    Silva-Tamayo, J. C.; Eisenhauer, A.

    2015-12-01

    The acidification and deoxygention of modern oceans are major environmental concerns to the international community. The effects of ocean acidification and deoxigention in the biogeochemical cycles of modern tropical oceans are poorly constrained mainly due to the lack of empirical and quantitative data. The Cretaceous World witnessed several period of potential ocean acidification and deoxygenation, which resulted from the rapid additions of volcanic derived CO2 to the atmosphere. The effects of ocean acidification and deoxygenation on the Cretaceous biogeochemical cycles are evidenced mainly by major global C-isotope anomalies. These anomalies parallel the occurrence of organic rich black shales as well as major decreases in the deposition of shallow marine carbonates worldwide. Here we use detailed C- and Sr- chemostratigraphy as well as published bioestratigraphic information and volcanic zircon U-Pb ages to precisely constrain the geochemical and sedimentologic expression of the Cretaceous OAES along a tropical epicontinental sea, the La Luna Sea. Our multi-pronged approach allows identifying the occurrence of several of the Cretaceous Oceanic Anoxic Events (OAEs) in carbonate units paleogeographically located along the northern most part of the La Luna Sea, i.e. Weissert-OAE-(Palanz and Rosablanca Formations), Faraoni-(Rosablanca Formation), AOE1a-(Paja and Fomeque Formations, Cogollo Group), OAE1c-(Cogollo Group), OAE2-(Cogollo Group), OAE3-(La Luna Formation). These events are preserved in highly euxinic - organic rich "black shales" successions deposited along the deepest part of the seaway at the Middle Magdalena Valley and Cundinamarca Basin; Weiser-OAE-(Lutitas de Macanal Formation), OAE1a-(Paja Formation, Fomeque Formation), OAE1C-(San Gil Formation). Regional changes in depositional settings and sedimentary facies preserving the different Cretaceous OAEs were likely the result of the combined action of regional changes in paleogeography and tectonic

  18. Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period.

    PubMed

    Erbacher, J; Huber, B T; Norris, R D; Markey, M

    2001-01-18

    Ocean anoxic events were periods of high carbon burial that led to drawdown of atmospheric carbon dioxide, lowering of bottom-water oxygen concentrations and, in many cases, significant biological extinction. Most ocean anoxic events are thought to be caused by high productivity and export of carbon from surface waters which is then preserved in organic-rich sediments, known as black shales. But the factors that triggered some of these events remain uncertain. Here we present stable isotope data from a mid-Cretaceous ocean anoxic event that occurred 112 Myr ago, and that point to increased thermohaline stratification as the probable cause. Ocean anoxic event 1b is associated with an increase in surface-water temperatures and runoff that led to decreased bottom-water formation and elevated carbon burial in the restricted basins of the western Tethys and North Atlantic. This event is in many ways similar to that which led to the more recent Plio-Pleistocene Mediterranean sapropels, but the greater geographical extent and longer duration (approximately 46 kyr) of ocean anoxic event 1b suggest that processes leading to such ocean anoxic events in the North Atlantic and western Tethys were able to act over a much larger region, and sequester far more carbon, than any of the Quaternary sapropels.

  19. Inversion of the Erlian Basin (NE China) in the early Late Cretaceous: Implications for the collision of the Okhotomorsk Block with East Asia

    NASA Astrophysics Data System (ADS)

    Guo, Zhi-Xin; Shi, Yuan-Peng; Yang, Yong-Tai; Jiang, Shuan-Qi; Li, Lin-Bo; Zhao, Zhi-Gang

    2018-04-01

    A significant transition in tectonic regime from extension to compression occurred throughout East Asia during the mid-Cretaceous and has stimulated much attention. However, the timing and driving mechanisms of the transition remain disputed. The Erlian Basin, a giant late Mesozoic intracontinental petroliferous basin located in the Inner Mongolia, Northeast China, contains important sedimentary and structural records related to the mid-Cretaceous compressional event. The stratigraphical, sedimentological and structural analyses reveal that a NW-SE compressional inversion occurred in the Erlian Basin between the depositions of the Lower Cretaceous Saihan and Upper Cretaceous Erlian formations, causing intense folding of the Saihan Formation and underlying strata, and the northwestward migration of the depocenters of the Erlian Formation. Based on the newly obtained detrital zircon U-Pb data and previously published paleomagnetism- and fossil-based ages, the Saihan and Erlian formations are suggested as latest Aptian-Albian and post-early Cenomanian in age, respectively, implying that the inversion in the Erlian Basin occurred in the early Late Cretaceous (Cenomanian time). Apatite fission-track thermochronological data record an early Late Cretaceous cooling/exhuming event in the basin, corresponding well with the aforementioned sedimentary, structural and chronological analyses. Combining with the tectono-sedimentary evolutions of the neighboring basins of the Erlian Basin, we suggest that the early Late Cretaceous inversional event in the Erlian Basin and the large scale tectonic transition in East Asia shared the common driving mechanism, probably resulting from the Okhotomorsk Block-East Asia collisional event at about 100-89 Ma.

  20. Early Cretaceous Archaeamphora is not a carnivorous angiosperm

    PubMed Central

    Wong, William Oki; Dilcher, David Leonard; Labandeira, Conrad C.; Sun, Ge; Fleischmann, Andreas

    2015-01-01

    Archaeamphora longicervia H. Q. Li was described as an herbaceous, Sarraceniaceae-like pitcher plant from the mid Early Cretaceous Yixian Formation of Liaoning Province, northeastern China. Here, a re-investigation of A. longicervia specimens from the Yixian Formation provides new insights into its identity and the morphology of pitcher plants claimed by Li. We demonstrate that putative pitchers of Archaeamphora are insect-induced leaf galls that consist of three components: (1) an innermost larval chamber; (2) an intermediate zone of nutritive tissue; and (3) an outermost wall of sclerenchyma. Archaeamphora is not a carnivorous, Sarraceniaceae-like angiosperm, but represents insect-galled leaves of the previously reported gymnosperm Liaoningocladus boii G. Sun et al. from the Yixian Formation. PMID:25999978

  1. Early Cretaceous Umkomasia from Mongolia: implications for homology of corystosperm cupules.

    PubMed

    Shi, Gongle; Leslie, Andrew B; Herendeen, Patrick S; Herrera, Fabiany; Ichinnorov, Niiden; Takahashi, Masamichi; Knopf, Patrick; Crane, Peter R

    2016-06-01

    Corystosperms, a key extinct group of Late Permian to Early Cretaceous plants, are important for understanding seed plant phylogeny, including the evolution of the angiosperm carpel and anatropous bitegmic ovule. Here, we describe a new species of corystosperm seed-bearing organ, Umkomasia mongolica sp. nov., based on hundreds of three-dimensionally preserved mesofossils from the Early Cretaceous of Mongolia. Individual seed-bearing units of U. mongolica consist of a bract subtending an axis that bifurcates, with each fork (cupule stalk) bearing a cupule near the tip. Each cupule is formed by the strongly reflexed cupule stalk and two lateral flaps that partially enclose an erect seed. The seed is borne at, or close to, the tip of the reflexed cupule stalk, with the micropyle oriented towards the stalk base. The corystosperm cupule is generally interpreted as a modified leaf that bears a seed on its abaxial surface. However, U. mongolica suggests that an earlier interpretation, in which the seed is borne directly on an axis (shoot), is equally likely. The 'axial' interpretation suggests a possible relationship of corystosperms to Ginkgo. It also suggests that the cupules of corystosperms may be less distinct from those of Caytonia than has previously been supposed. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  2. Are oceanic plateaus sites of komatiite formation?

    NASA Astrophysics Data System (ADS)

    Storey, M.; Mahoney, J. J.; Kroenke, L. W.; Saunders, A. D.

    1991-04-01

    During Cretaceous and Tertiary time a series of oceanic terranes were accreted onto the Pacific continental margin of Colombia. The island of Gorgona is thought to represent part of the most recent, early Eocene, terrane-forming event. Gorgona is remarkable for the occurrence of komatiites of middle Cretaceous age, having MgO contents up to 24%. The geochemistry of spatially and temporally associated tholeiites suggests that Gorgona is an obducted fragment of the oceanic Caribbean Plateau, postulated by Duncan and Hargraves (1984) to have formed at 100 to 75 Ma over the Galapagos hotspot. Further examples of high-MgO oceanic lavas that may represent fragments of the Caribbean Plateau occur in allochthonous terranes on the island of Curaçao in the Netherlands Antilles and in the Romeral zone ophiolites in the southwestern Colombian Andes. These and other examples suggest that the formation of high-MgO liquids may be a feature of oceanic-plateau settings. The association of Phanerozoic komatiites with oceanic plateaus, coupled with thermal considerations, provides a plausible analogue for the origin of some komatiite-tholeiite sequences in Archean greenstone belts.

  3. Warm mid-Cretaceous high-latitude sea-surface temperatures from the southern Tethys Ocean and cool high-latitude sea-surface temperatures from the Arctic Ocean: asymmetric worldwide distribution of dinoflagellates

    NASA Astrophysics Data System (ADS)

    Masure, Edwige; Desmares, Delphine; Vrielynck, Bruno

    2014-05-01

    Dealing with 87 articles and using a Geographical Information System, Masure and Vrielynck (2009) have mapped worldwide biogeography of 38 Late Albian dinoflagellate cysts and have demonstrated Cretaceous oceanic bioclimatic belts. For comparison 30 Aptian species derived from 49 studies (Masure et al., 2013) and 49 Cenomanian species recorded from 33 articles have been encountered. Tropical, Subtropical, Boreal, Austral, bipolar and cosmopolitan species have been identified and Cretaceous dinoflagellate biomes are introduced. Asymmetric distribution of Aptian and Late Albian/Cenomanian subtropical Tethyan species, from 40°N to 70°S, demonstrates asymmetric Aptian and Late Albian/Cenomanian Sea Surface Temperature (SST) gradients with warm water masses in high latitudes of Southern Ocean. The SST gradients were stronger in the Northern Hemisphere than in the Southern Hemisphere. We note that Aptian and Late Albian/Cenomanian dinoflagellates restricted to subtropical and subpolar latitudes met and mixed at 35-40°N, while they mixed from 30°S to 70°S and from 50°S to 70°S respectively in the Southern Hemisphere. Mixing belts extend on 5° in the Northern Hemisphere and along 40° (Aptian) and 20° (Late Albian/Cenomanian) in the Southern one. The board southern mixing belt of Tethyan and Austral dinoflagellates suggest co-occurrence of warm and cold currents. We record climatic changes such as the Early Aptian cooler period and Late Aptian and Albian warming through the poleward migration of species constrained to cool water masses. These species sensitive to temperature migrated from 35°N to 55°N through the shallow Greenland-Norwergian Seaway connecting the Central Atlantic and the Arctic Ocean. While Tethyan species did not migrate staying at 40°N. We suggest that the Greenland-Norwergian Seaway might has been a barrier until Late Albian/Cenomanian for oceanic Tethyan dinoflagellates stopped either by the shallow water column or temperature and salinity

  4. North-South Gradients in Carbon Isotopic Compositions of Atlantic Ocean Black Shales: Evidence for Paleohydrologic Influences on Mid-Cretaceous Black Shale Deposition

    NASA Astrophysics Data System (ADS)

    Meyers, P. A.

    2013-12-01

    Organic del13C values of organic-carbon-rich Albian-Cenomanian-Turonian black shales from a north-south transect of the Atlantic Ocean have been compiled to explore for possible existence of latitudinal patterns. Black shales at equatorial sites have mean del13C values of -28 per mil, whereas black shales at mid-latitude sites have mean del13C values around -25 per mil. The mid-Cretaceous del13C values are routinely lower than those of modern marine sediments. The more negative Cretaceous del13C values generally reflect concentrations of atmospheric CO2 that were four to six times higher than today, but the geographic differences imply a regional overprint on this global feature. Latitudinal differences in oceanic temperature might be a factor, but a low thermal gradient from the poles to the equator during the mid-Cretaceous makes this factor not likely to be significant. Instead, a correspondence between the geographic differences in the organic del13C values of black shales with the modern latitudinal precipitation pattern suggests that differences in precipitation are a more likely factor. Establishment of a strongly salinity-stratified near-surface ocean and magnified delivery of land-derived phosphorus by continental runoff during this time of a magnified hydrologic cycle were evidently significant to deposition of marine black shales. A likely scenario is that the stratification resulted in blooms of nitrogen-fixing bacteria that become the dominant photoautotrophs and thereby stimulated primary production of organic matter. Regional differences in precipitation resulted in different amounts of runoff, consequent stratification, enhancement of primary production, and therefore the different carbon isotopic compositions of the black shales.

  5. Tracing Carbon Cycling in the Atmosphere and Oceans During the Cretaceous Ocean Anoxic Event 2 (OAE2, 94Ma)

    NASA Astrophysics Data System (ADS)

    Moran, S. A. M.; Boudinot, F. G.; Dildar, N.; Sepúlveda, J.

    2017-12-01

    We present a high-resolution record of compound-specific stable carbon isotope data from short-chain—aquatic algae—and long-chain n-alkanes—terrestrial plants—preserved in sedimentary sequences from the Smokey Hollow #1 (SH1) core in the Grand Staircase Escalante National Monument in southern Utah. The study area covered by SH1 core was situated at the western margin of the Western Interior Seaway during the Cretaceous Ocean Anoxic Event (OAE2, 94Ma.), and was characterized by high sedimentation rates and enhanced preservation of both marine and terrestrial organic matter. Short- and long-chain n-alkanes were isolated and purified from branched and cyclic aliphatic hydrocarbons using an optimized urea adduction protocol, and δ13Cn-alkane was measured using a Thermo MAT253 GC-C-IR-MS. We use the δ13Cn-alkane from aquatic and terrestrial sources to better understand carbon cycle interactions in the oceanic and atmospheric carbon pools across this event. Our results indicate that the δ13C of terrestrial plants experienced a faster and more pronounced positive carbon isotope excursion compared to marine sources. We will discuss how these results can inform models of carbon cycle interactions between the ocean and the atmosphere during greenhouse climates, and how they can be used to trace possible sources of CO2.

  6. Vertebrate assemblages from the early Late Cretaceous of southeastern Morocco: An overview

    NASA Astrophysics Data System (ADS)

    Cavin, L.; Tong, H.; Boudad, L.; Meister, C.; Piuz, A.; Tabouelle, J.; Aarab, M.; Amiot, R.; Buffetaut, E.; Dyke, G.; Hua, S.; Le Loeuff, J.

    2010-07-01

    Fossils of vertebrates have been found in great abundance in the continental and marine early Late Cretaceous sediments of Southeastern Morocco for more than 50 years. About 80 vertebrate taxa have so far been recorded from this region, many of which were recognised and diagnosed for the first time based on specimens recovered from these sediments. In this paper, we use published data together with new field data to present an updated overview of Moroccan early Late Cretaceous vertebrate assemblages. The Cretaceous series we have studied encompasses three Formations, the Ifezouane and Aoufous Formations, which are continental and deltaic in origin and are often grouped under the name "Kem Kem beds", and the Akrabou Formation which is marine in origin. New field observations allow us to place four recognised vertebrate clusters, corresponding to one compound assemblage and three assemblages, within a general temporal framework. In particular, two ammonite bioevents characterise the lower part of the Upper Cenomanian ( Calycoceras guerangeri Zone) at the base of the Akrabou Formation and the upper part of the Lower Turonian ( Mammites nodosoides Zone), that may extend into the Middle Turonian within the Akrabou Formation, and allow for more accurate dating of the marine sequence in the study area. We are not yet able to distinguish a specific assemblage that characterises the Ifezouane Formation when compared to the similar Aoufous Formation, and as a result we regard the oldest of the four vertebrate "assemblages" in this region to be the compound assemblage of the "Kem Kem beds". This well-known vertebrate assemblage comprises a mixture of terrestrial (and aerial), freshwater and brackish vertebrates. The archosaur component of this fauna appears to show an intriguingly high proportion of large-bodied carnivorous taxa, which may indicate a peculiar trophic chain, although collecting biases alter this palaeontological signal. A small and restricted assemblage, the

  7. Post-early cretaceous landform evolution along the western margin of the banca~nnia trough, western nsw

    USGS Publications Warehouse

    Gibson, D.L.

    2000-01-01

    Previously undated post-Devonian sediments outcropping north of Fowlers Gap station near the western margin of the Bancannia Trough are shown by plant macro- and microfossil determinations to be of Early Cretaceous (most likely Neocomian and/or Aptian) age, and thus part of the Eromanga Basin. They are assigned to the previously defined Telephone Creek Formation. Study of the structural configuration of this unit and the unconformably underlying Devonian rocks suggests that the gross landscape architecture of the area results from post-Early Cretaceous monoclinal folding along blind faults at the western margin of the trough, combined with the effects of differential erosion. This study shows that, while landscape evolution in the area has been dynamic, the major changes that have occurred are on a geological rather than human timescale.

  8. Evidence for high salinity of Early Cretaceous sea water from the Chesapeake Bay crater.

    PubMed

    Sanford, Ward E; Doughten, Michael W; Coplen, Tyler B; Hunt, Andrew G; Bullen, Thomas D

    2013-11-14

    High-salinity groundwater more than 1,000 metres deep in the Atlantic coastal plain of the USA has been documented in several locations, most recently within the 35-million-year-old Chesapeake Bay impact crater. Suggestions for the origin of increased salinity in the crater have included evaporite dissolution, osmosis and evaporation from heating associated with the bolide impact. Here we present chemical, isotopic and physical evidence that together indicate that groundwater in the Chesapeake crater is remnant Early Cretaceous North Atlantic (ECNA) sea water. We find that the sea water is probably 100-145 million years old and that it has an average salinity of about 70 per mil, which is twice that of modern sea water and consistent with the nearly closed ECNA basin. Previous evidence for temperature and salinity levels of ancient oceans have been estimated indirectly from geochemical, isotopic and palaeontological analyses of solid materials in deep sediment cores. In contrast, our study identifies ancient sea water in situ and provides a direct estimate of its age and salinity. Moreover, we suggest that it is likely that remnants of ECNA sea water persist in deep sediments at many locations along the Atlantic margin.

  9. Marine vs. local control on seawater Nd-isotope ratios at the northwest coast of Africa during the late Cretaceous-early Eocene

    NASA Astrophysics Data System (ADS)

    Kocsis, L.; Gheerbrant, E.; Mouflih, M.; Cappetta, H.; Ulianov, A.; Chiaradia, M.

    2013-12-01

    At the northwest corner of Africa excellent conditions existed for phosphate formation (i.e., stable upwelling system) during the late Cretaceous-early Eocene. This is probably in relation to stable tectonic evolution of shallow epicontinental basins at a passive continental margin and to their paleogeographic situation between the Atlantic and Tethys marine realms. To better comprehend paleoceanic conditions in this area, radiogenic isotope ratios (87Sr/86Sr and 143Nd/144Nd) and trace element compositions of fossil biogenic apatite are investigated from Maastrichtian to Ypresian shallow marine phosphorite deposits in Morocco (Ouled Abdoun and Ganntour Basins). Rare earth elements (REE) distributions in the fossils are compatible with early diagenetic marine pore fluid represented by negative Ce-anomaly and heavy REE enrichment. An overall shift in Ce-anomaly is apparent with gradually lower values in younger fossils along three distinct assemblages that correspond to Maastrichtian, Danian-Thanetian and Ypresian periods. The temporal change can be interpreted as presence of gradually more oxygenated seawater in the basins. Strontium isotopic ratios of the fossils follow the global Sr-evolution curve. However, the latest Cretaceous and the oldest Paleocene fossils yielded slightly higher ratios than the global ocean, which could reflect minor diagenetic alteration. Neodymium isotopic ratios are quite even along the phosphate series with ɛNd(t) values ranges from -6.8 to -5.8. These values are higher than those reported for average North Atlantic deep water and Tethyan seawater (e.g., Stille et al., 1996; Thomas et al., 2003). For the origin of the stable, high 143Nd/144Nd we propose three main hypotheses: (1) contribution of continental Nd-source, (2) locally controlled deep water Nd-isotope ratios near the coast from where upwelling originated in the area and (3) possible surface marine water contribution from the Pacific across the Atlantic. Stille, P., Steinmann

  10. Magmatic record of Late Devonian arc-continent collision in the northern Qiangtang, Tibet: Implications for the early evolution of East Paleo-Tethys Ocean

    NASA Astrophysics Data System (ADS)

    Dan, Wei; Wang, Qiang; Zhang, Xiu-Zheng; Zhang, Chunfu; Tang, Gong-Jian; Wang, Jun; Ou, Quan; Hao, Lu-Lu; Qi, Yue

    2018-05-01

    Recognizing the early-developed intra-oceanic arc is important in revealing the early evolution of East Paleo-Tethys Ocean. In this study, new SIMS zircon U-Pb dating, O-Hf isotopes, and whole-rock geochemical data are reported for the newly-discovered Late Devonian-Early Carboniferous arc in Qiangtang, central Tibet. New dating results reveal that the eastern Riwanchaka volcanic rocks were formed at 370-365 Ma and were intruded by the 360 Ma Gangma Co alkali feldspar granites. The volcanic rocks consist of basalts, andesites, dacites, and rhyodacites, whose geochemistry is similar to that typical of subduction-related volcanism. The basalts and andesites were generated by partial melting of the fluid and sediment-melt metasomatized mantle, respectively. The rhyodacites and dacites were probably derived from the fractional crystallization of andesites and from partial melting of the juvenile underplated mafic rocks, respectively. The Gangma Co alkali feldspar granites are A-type granites, and were possibly derived by partial melting of juvenile underplated mafic rocks in a post-collisional setting. The 370-365 Ma volcanic arc was characterized by basalts with oceanic arc-like Ce/Yb ratios and by rhyodacites with mantle-like or slightly higher zircon δ18O values, and it was associated with the contemporary ophiolites. Thus, we propose that it is the earliest intra-oceanic arc in the East Paleo-Tethys Ocean, and was accreted to the Northern Qiangtang Terrane during 365-360 Ma.

  11. Polyphase exhumation in the western Qinling Mountains, China: Rapid Early Cretaceous cooling along a lithospheric-scale tear fault and pulsed Cenozoic uplift

    PubMed Central

    Heberer, Bianca; Anzenbacher, Thomas; Neubauer, Franz; Genser, Johann; Dong, Yunpeng; Dunkl, István

    2014-01-01

    The western sector of the Qinling–Dabie orogenic belt plays a key role in both Late Jurassic to Early Cretaceous “Yanshanian” intracontinental tectonics and Cenozoic lateral escape triggered by India–Asia collision. The Taibai granite in the northern Qinling Mountains is located at the westernmost tip of a Yanshanian granite belt. It consists of multiple intrusions, constrained by new Late Jurassic and Early Cretaceous U–Pb zircon ages (156 ± 3 Ma and 124 ± 1 Ma). Applying various geochronometers (40Ar/39Ar on hornblende, biotite and K-feldspar, apatite fission-track, apatite [U–Th–Sm]/He) along a vertical profile of the Taibai Mountain refines the cooling and exhumation history. The new age constraints record the prolonged pre-Cenozoic intracontinental deformation as well as the cooling history mostly related to India–Asia collision. We detected rapid cooling for the Taibai granite from ca. 800 to 100 °C during Early Cretaceous (ca. 123 to 100 Ma) followed by a period of slow cooling from ca. 100 Ma to ca. 25 Ma, and pulsed exhumation of the low-relief Cretaceous peneplain during Cenozoic times. We interpret the Early Cretaceous rapid cooling and exhumation as a result from activity along the southern sinistral lithospheric scale tear fault of the recently postulated intracontinental subduction of the Archean/Palaeoproterozoic North China Block beneath the Alashan Block. A Late Oligocene to Early Miocene cooling phase might be triggered either by the lateral motion during India–Asia collision and/or the Pacific subduction zone. Late Miocene intensified cooling is ascribed to uplift of the Tibetan Plateau. PMID:27065503

  12. Reanalysis of Wupus agilis (Early Cretaceous) of Chongqing, China as a Large Avian Trace: Differentiating between Large Bird and Small Non-Avian Theropod Tracks

    PubMed Central

    Xing, Lida; Buckley, Lisa G.; McCrea, Richard T.; Lockley, Martin G.; Zhang, Jianping; Piñuela, Laura; Klein, Hendrik; Wang, Fengping

    2015-01-01

    Trace fossils provide the only records of Early Cretaceous birds from many parts of the world. The identification of traces from large avian track-makers is made difficult given their overall similarity in size and tridactyly in comparison with traces of small non-avian theropods. Reanalysis of Wupus agilis from the Early Cretaceous (Aptian-Albian) Jiaguan Formation, one of a small but growing number of known avian-pterosaur track assemblages, of southeast China determines that these are the traces of a large avian track-maker, analogous to extant herons. Wupus, originally identified as the trace of a small non-avian theropod track-maker, is therefore similar in both footprint and trackway characteristics to the Early Cretaceous (Albian) large avian trace Limiavipes curriei from western Canada, and Wupus is reassigned to the ichnofamily Limiavipedidae. The reanalysis of Wupus reveals that it and Limiavipes are distinct from similar traces of small to medium-sized non-avian theropods (Irenichnites, Columbosauripus, Magnoavipes) based on their relatively large footprint length to pace length ratio and higher mean footprint splay, and that Wupus shares enough characters with Limiavipes to be reassigned to the ichnofamily Limiavipedidae. The ability to discern traces of large avians from those of small non-avian theropods provides more data on the diversity of Early Cretaceous birds. This analysis reveals that, despite the current lack of body fossils, large wading birds were globally distributed in both Laurasia and Gondwana during the Early Cretaceous. PMID:25993285

  13. Mesozoic strike-slip movement of the Dunhua-Mishan Fault Zone in NE China: A response to oceanic plate subduction

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Zhu, Guang; Zhang, Shuai; Gu, Chengchuan; Li, Yunjian; Su, Nan; Xiao, Shiye

    2018-01-01

    The NE-striking Dunhua-Mishan Fault Zone (DMFZ) is one of two branches of the continental-scale sinistral Tan-Lu Fault Zone in NE China. The field data presented here indicate that the ca. 1000 km long DMFZ records two phases of sinistral faulting. The structures produced by these two phases of faulting include NE-SW-striking ductile shear belts and brittle faults, respectively. Mylonite-hosted microstructures and quartz c-axis fabrics suggest deformation temperatures of 450 °C-500 °C for the ductile shear belts. Combining new zircon U-Pb dates for 14 igneous rock samples analyzed during this study with the geology of this region indicates these shear belts formed during the earliest Early Cretaceous. This phase of sinistral displacement represents the initial formation of the DMFZ in response to the northward propagation of the Tan-Lu Fault Zone into NE China. A phase of Early Cretaceous rifting was followed by a second phase of sinistral faulting at 102-96 Ma, as evidenced by our new U-Pb ages for associated igneous rocks. Combining our new data with the results of previous research indicates that the DFMZ records a four-stage Cretaceous evolutionary history, where initial sinistral faulting at the beginning of the Early Cretaceous gave way to rifting during the rest of the Early Cretaceous. This was followed by a second phase of sinistral faulting at the beginning of the Late Cretaceous and a second phase of local rifting during the rest of the Late Cretaceous. The Cretaceous evolution of the DMFZ records the synchronous tectonic evolution of the NE China continent bordering the Pacific Ocean. Two phases of regional N-S compression generated the two phases of sinistral faulting within the DMFZ, whereas two-stage regional extension generated the two phases of rifting. The two compressive events were the result of the rapid low-angle subduction of the Izanagi and Pacific plates, whereas the two-stage extension was caused by the roll-back of these respective

  14. Ontong Java volcanism initiated long-term climate warming that caused substantial changes in terrestrial vegetation several tens of thousand years before the onset of OAE1a (Early Aptian, Cretaceous)

    NASA Astrophysics Data System (ADS)

    Keller, Christina E.; Hochuli, Peter A.; Giorgioni, Martino; Garcia, Therese I.; Bernasconi, Stefano M.; Weissert, Helmut

    2010-05-01

    During Cretaceous times, several intense volcanic episodes are proposed as trigger for episodic climate warming, for changes in marine circulation patterns and for elevated marine productivity, which resulted in the widespread black shale deposits of the Oceanic Anoxic Events (OAE). In the sediments underlying the early Aptian OAE1a black shales, a prominent negative carbon isotope excursion is recorded. Its origin had long been controversial (e.g. Arthur, 2000; Jahren et al., 2001) before recent studies attributed it to the Ontong Java volcanism (Méhay et al., 2009; Tejada et al., 2009). Volcanic outgassing results in an increased pCO2 and should lead to a rise in global temperatures. We therefore investigated if the volcanically-induced increase in pCO2 at the onset of OAE1a in the early Aptian led to a temperature rise that was sufficient to affect terrestrial vegetation assemblages. In order to analyse changes in terrestrial palynomorph assemblages, we examined 15 samples from 12 black shale horizons throughout the early Aptian negative C-isotope spike interval of the Pusiano section (Maiolica Formation; N-Italy). These sediments were deposited at the southern continental margin of the alpine Tethys Ocean and have been bio- and magnetostratigraphically dated by Channell et al. (1995). In order to obtain a continuous palynological record of the negative C-isotope spike interval and the base of OAE1a, we combined this pre-OAE1a interval of Pusiano with the OAE1a interval of the nearby Cismon section (Hochuli et al., 1999). The sporomorph assemblages at the base of this composite succession feature abundant bisaccate pollen, which reflects a warm-temperate climate. Rather arid conditions are inferred from low trilete spore percentages. Several tens of thousand years before the onset of OAE1a, C-isotope values started to decrease. Some thousand years later, bisaccate pollen began to decrease, whereas an increase of Classopollis spp. and Araucariacites spp

  15. Tyrant dinosaur evolution tracks the rise and fall of Late Cretaceous oceans.

    PubMed

    Loewen, Mark A; Irmis, Randall B; Sertich, Joseph J W; Currie, Philip J; Sampson, Scott D

    2013-01-01

    The Late Cretaceous (∼95-66 million years ago) western North American landmass of Laramidia displayed heightened non-marine vertebrate diversity and intracontinental regionalism relative to other latest Cretaceous Laurasian ecosystems. Processes generating these patterns during this interval remain poorly understood despite their presumed role in the diversification of many clades. Tyrannosauridae, a clade of large-bodied theropod dinosaurs restricted to the Late Cretaceous of Laramidia and Asia, represents an ideal group for investigating Laramidian patterns of evolution. We use new tyrannosaurid discoveries from Utah--including a new taxon which represents the geologically oldest member of the clade--to investigate the evolution and biogeography of Tyrannosauridae. These data suggest a Laramidian origin for Tyrannosauridae, and implicate sea-level related controls in the isolation, diversification, and dispersal of this and many other Late Cretaceous vertebrate clades.

  16. Tyrant Dinosaur Evolution Tracks the Rise and Fall of Late Cretaceous Oceans

    PubMed Central

    Loewen, Mark A.; Irmis, Randall B.; Sertich, Joseph J. W.; Currie, Philip J.; Sampson, Scott D.

    2013-01-01

    The Late Cretaceous (∼95–66 million years ago) western North American landmass of Laramidia displayed heightened non-marine vertebrate diversity and intracontinental regionalism relative to other latest Cretaceous Laurasian ecosystems. Processes generating these patterns during this interval remain poorly understood despite their presumed role in the diversification of many clades. Tyrannosauridae, a clade of large-bodied theropod dinosaurs restricted to the Late Cretaceous of Laramidia and Asia, represents an ideal group for investigating Laramidian patterns of evolution. We use new tyrannosaurid discoveries from Utah—including a new taxon which represents the geologically oldest member of the clade—to investigate the evolution and biogeography of Tyrannosauridae. These data suggest a Laramidian origin for Tyrannosauridae, and implicate sea-level related controls in the isolation, diversification, and dispersal of this and many other Late Cretaceous vertebrate clades. PMID:24223179

  17. Geological history of the Cretaceous ophiolitic complexes of northwestern South America (Colombian Andes)

    NASA Astrophysics Data System (ADS)

    Bourgois, Jacques; Toussaint, Jean-François; Gonzalez, Humberto; Azema, Jacques; Calle, Bernardo; Desmet, Alain; Murcia, Luis A.; Acevedo, Alvaro P.; Parra, Eduardo; Tournon, Jean

    1987-12-01

    The Western Cordillera of Colombia was formed by intense alpine-type nappe-forming folding and thrusting. The Cretaceous (80-120 Ma B.P.) tholeiitic material of the Western Cordilleran nappes has been obducted onto the Paleozoic and Precambrian polymetamorphic micaschists and gneiss of the Central Cordillera. Near Yarumal, the Antioquia batholith (60-80 Ma B.P.) intrudes both obducted Cretaceous oceanic material and the polymetamorphic basement rock of the Central Cordillera. Therefore, nappe emplacement and obduction onto the Central Cordillera occurred during Late Senonian to Early Paleocene. The nappes travelled from northwest to southeast so that the highest unit, the Rio Calima nappe therefore has the most northwestern source, whereas the lowest units originated from a more southeastward direction. Sedimentological analysis of the volcanoclastic and sandy turbidite material from each unit suggests a marginal marine environment. During Cretaceous times the opening of this marginal sea, from now on called the "Colombia marginal basin", probably originated by detachment of a block from the South American continent related to the Farallon-South America plate convergence. In the Popayan area (southern Colombia), the Central Cordilleran basement exhibits glaucophane schist facies metamorphism. This high pressure low temperature metamorphism is of Early Cretaceous (125 Ma B.P.) age and is related to an undated metaophiolitic complex. The ophiolitic material originating from the Western Cordilleran is thrust over both the blueschist belt and the metaophiolitic complex. These data suggest that the "Occidente Colombiano" suffered at least two phases of ophiolitic obduction during Mesozoic time.

  18. Final results on the Jurassic-Cretaceous boundary in the Gresten Klippenbelt (Austria): Macro-, micro-, nannofossils, isotopes, geochemistry, susceptibility, gamma-log and palaeomagnetic data as environmental proxies of the early Penninic Ocean history

    NASA Astrophysics Data System (ADS)

    Lukeneder, A.; Halásová, E.; Kroh, A.; Mayrhofer, S.; Pruner, P.; Reháková, D.; Schnabl, P.; Sprovieri, M.

    2009-04-01

    Jurassic to Lower Cretaceous pelagic sediments are well known to form a major element of the northernmost tectonic units of the Gresten Klippenbelt (Lower Austria). The Penninic Ocean was a side tract of the Central Atlantic Oceanic System intercalated between the European and the Austroalpine plates. Its opening started during the Mid Jurrasic, as rifting of the of the oceanic crust between the European and the Austroalpine plates. The turnover of the deposition on the European shelf (Helvetic Zone) from deep-water siliciclastics into pelagic carbonates is correlated with the deepening of this newly arising ocean. Within the Gresten Klippenbelt Unit, this transition is reflected by the lithostratigraphic boundary between the Tithonian marl-limestone succession and the Berriasian limestones of the Blassenstein Formation. This boundary is well exposed in a newly discovered site at Nutzhof, in the heart of Lower Austria (Kroh and Lukeneder 2009, Lukeneder 2009, Pruner, Schnabl, and Lukeneder 2009, Reháková, Halásová and Lukeneder 2009). Biostratigraphy. According to microfossil (calcareous dinoflagellates, calpionellids) and palaeomagnetic data, the association indicates that the cephalopod-bearing beds of the Nutzhof section belong to the Carpistomiosphaera tithonica-Zone of the Early Tithonian up to the Calpionella Zone of the Middle Berriasian. This interval corresponds to the ammonoid zones from the Early Tithonian Hybonoticeras hybonotum-Zone up to the Middle Berriasian Subthurmannia occitanica-Zone. Ammonoids. Late Jurassic to Early Cretaceous ammonoids were collected at the Nutzhof locality in the eastern part of the Gresten Klippenbelt in Lower Austria. The cephalopod fauna from the Blassenstein Formation, correlated with micro- and nannofossil data from the marly unit and the limestone unit, indicates Early Tithonian to Middle Berriasian age (Hybonoticeras hybonotum Zone up to the Subthurmannia occitanica Zone). According to the correlation of the fossil

  19. The eastern Black Sea-Caucasus region during the Cretaceous: New evidence to constrain its tectonic evolution

    NASA Astrophysics Data System (ADS)

    Sosson, Marc; Stephenson, Randell; Sheremet, Yevgeniya; Rolland, Yann; Adamia, Shota; Melkonian, Rafael; Kangarli, Talat; Yegorova, Tamara; Avagyan, Ara; Galoyan, Ghazar; Danelian, Taniel; Hässig, Marc; Meijers, Maud; Müller, Carla; Sahakyan, Lilit; Sadradze, Nino; Alania, Victor; Enukidze, Onice; Mosar, Jon

    2016-01-01

    We report new observations in the eastern Black Sea-Caucasus region that allow reconstructing the evolution of the Neotethys in the Cretaceous. At that time, the Neotethys oceanic plate was subducting northward below the continental Eurasia plate. Based on the analysis of the obducted ophiolites that crop out throughout Lesser Caucasus and East Anatolides, we show that a spreading center (AESA basin) existed within the Neotethys, between Middle Jurassic and Early Cretaceous. Later, the spreading center was carried into the subduction with the Neotethys plate. We argue that the subduction of the spreading center opened a slab window that allowed asthenospheric material to move upward, in effect thermally and mechanically weakening the otherwise strong Eurasia upper plate. The local weakness zone favored the opening of the Black Sea back-arc basins. Later, in the Late Cretaceous, the AESA basin obducted onto the Taurides-Anatolides-South Armenia Microplate (TASAM), which then collided with Eurasia along a single suture zone (AESA suture).

  20. New Evidence for opening of the Black Sea; U-Pb analysis of detrital zircons and paleocurrent measurements of the Early Cretaceous turbidites

    NASA Astrophysics Data System (ADS)

    Akdoğan, Remziye; Okay, Aral I.; Sunal, Gürsel; Tari, Gabor; Kylander-Clark, Andrew R. C.

    2015-04-01

    Shelf to submarine turbidite fan deposits of the Early Cretaceous crop out over a large area along the southern coast of the Black Sea. Early Cretaceous turbidites have a thickness of over 2000 meters in the Central Pontides. The shelf of this turbidite basin, represented by shallow marine clastics and carbonates, crops out along the Black Sea coast between Zonguldak and Amasra. Paleocurrent directions in the Lower Cretaceous turbidites were measured in 90 localities using mostly flute and groove casts and to a lesser extend cross-beds. At the eastern part of the basin, the paleocurrents were from north to south. It is scattered in the west of the basin, however, the main paleocurrent directions were from the north. Detrital zircons were analyzed using LA-ICP-MS in eleven samples from the turbiditic sandstones and two samples from the shelf sandstones. Four samples are from the western part (two samples from shelf sediments), four samples from the central part and five samples from the eastern part of the Lower Cretaceous basin. 1085 of 1348 zircon analyses are concordant with rates of 95-105% and the zircon ages range between 141 ± 4 Ma (Berriasian) and 3469 ± 8 Ma (Paleoarchean). 22% of the detrital zircon ages are Paleoproterozoic, 20% Archean, 16% Carboniferous, 13% Neoproterozoic, 8% Permian, 6% Triassic, 5% Mesoproterozoic and 11% other ages. In the western part of the basin the Carboniferous zircons constitute the main population with a less dominant peak at Ordovician, Cambrian and Late Neoproterozoic. The zircons from the center of the basin show scattered distribution with dominant populations in the Triassic, Permian, Carboniferous, Silurian, Paleoproterozoic, Early Neoproterozoic-Late Mesoproterozoic, and minor peak at Late Neoarchean. On the other hand, zircons from the eastern most part of the basin, show dominant peaks in the Paleoproterozoic, Mesoarchean and Permian with minor peaks in Triassic, Carboniferous and Silurian. Anatolia and the Balkans

  1. Pinaceae-like reproductive morphology in Schizolepidopsis canicularis sp. nov. from the Early Cretaceous (Aptian-Albian) of Mongolia.

    PubMed

    Leslie, Andrew B; Glasspool, Ian; Herendeen, Patrick S; Ichinnorov, Niiden; Knopf, Patrick; Takahashi, Masamichi; Crane, Peter R

    2013-12-01

    Seed cone scales assigned to the genus Schizolepidopsis are widespread in Late Triassic to Cretaceous Eurasian deposits. They have been linked to the conifer family Pinaceae based on associated vegetative remains, but their exact affinities are uncertain. Recently discovered material from the Early Cretaceous of Mongolia reveals important new information concerning Schizolepidopsis cone scales and seeds, and provides support for a relationship between the genus and extant Pinaceae. Specimens were collected from Early Cretaceous (probable Aptian-Albian) lignite deposits in central Mongolia. Lignite samples were disaggregated, cleaned in hydrofluoric acid, and washed in water. Specimens were selected for further study using light and electron microscopy. Schizolepidopsis canicularis seed cones consist of loosely arranged, bilobed ovulate scales subtended by a small bract. A single inverted seed with an elongate micropyle is borne on each lobe of the ovulate scale. Each seed has a wing formed by the separation of the adaxial surface of the ovulate scale. Schizolepidopsis canicularis produced winged seeds that formed in a manner that is unique to Pinaceae among extant conifers. We do not definitively place this species in Pinaceae pending more complete information concerning its pollen cones and vegetative remains. Nevertheless, this material suggests that Schizolepidopsis may be important for understanding the early evolution of Pinaceae, and may potentially help reconcile the appearance of the family in the fossil record with results based on phylogenetic analyses of molecular data.

  2. Evidence for high salinity of Early Cretaceous sea water from the Chesapeake Bay crater

    USGS Publications Warehouse

    Sanford, Ward E.; Doughten, Michael W.; Coplen, Tyler B.; Hunt, Andrew G.; Bullen, Thomas D.

    2013-01-01

    High salinity groundwater more than 1000 metres deep in the Atlantic Coastal Plain of the United States has been documented in several locations1,2, most recently within the 35 million-year-old Chesapeake Bay impact crater3,4,5. Suggestions for the origin of increased salinity in the crater have included evaporite dissolution6, osmosis6, and evaporation from heating7 associated with the bolide impact. Here we present chemical, isotopic and physical evidence that together indicate that groundwater in the Chesapeake crater is remnant Early Cretaceous North Atlantic (ECNA) seawater. We find that the seawater is likely 100-145 million years old and that it has an average salinity of about 70 per mil, which is twice that of modern seawater and consistent with the nearly closed ECNA basin8. Previous evidence for temperature and salinity levels of ancient oceans have been estimated indirectly from geochemical, isotopic and paleontological analyses of solid materials in deep sediment cores. In contrast, our study identifies ancient seawater in situ and provides a direct estimate of its age and salinity. Moreover, we suggest that it is likely that remnants of ECNA seawater persist in deep sediments at many locations along the Atlantic margin.

  3. Sensitivity of the North Atlantic Basin to cyclic climatic forcing during the early Cretaceous

    USGS Publications Warehouse

    Dean, W.E.; Arthur, M.A.

    1999-01-01

    Striking cyclic interbeds of laminated dark-olive to black marlstone and bioturbated white to light-gray limestone of Neocomian (Early Cretaceous) age have been recovered at Deep Sea Drilling Project (DSDP) and Ocean Drilling Project (ODP) sites in the North Atlantic. These Neocomian sequences are equivalent to the Maiolica Formation that outcrops in the Tethyan regions of the Mediterranean and to thick limestone sequences of the Vocontian Trough of France. This lithologic unit marks the widespread deposition of biogenic carbonate over much of the North Atlantic and Tethyan seafloor during a time of overall low sealevel and a deep carbonate compensation depth. The dark clay-rich interbeds typically are rich in organic carbon (OC) with up to 5.5% OC in sequences in the eastern North Atlantic. These eastern North Atlantic sequences off northwest Africa, contain more abundant and better preserved hydrogen-rich, algal organic matter (type II kerogen) relative to the western North Atlantic, probably in response to coastal upwelling induced by an eastern boundary current in the young North Atlantic Ocean. The more abundant algal organic matter in sequences in the eastern North Atlantic is also expressed in the isotopic composition of the carbon in that organic matter. In contrast, organic matter in Neocomian sequences in the western North Atlantic along the continental margin of North America has geochemical and optical characteristics of herbaceous, woody, hydrogen-poor, humic, type III kerogen. The inorganic geochemical characteristics of the dark clay-rich (80% CaCO3) interbeds in both the eastern and western basins of the North Atlantic suggest that they contain minor amounts of relatively unweathered eolian dust derived from northwest Africa during dry intervals.

  4. Peculiar macrophagous adaptations in a new Cretaceous pliosaurid

    PubMed Central

    Arkhangelsky, Maxim S.; Stenshin, Ilya M.; Uspensky, Gleb N.; Zverkov, Nikolay G.

    2015-01-01

    During the Middle and Late Jurassic, pliosaurid plesiosaurs evolved gigantic body size and a series of craniodental adaptations that have been linked to the occupation of an apex predator niche. Cretaceous pliosaurids (i.e. Brachaucheninae) depart from this morphology, being slightly smaller and lacking the macrophagous adaptations seen in earlier forms. However, the fossil record of Early Cretaceous pliosaurids is poor, concealing the evolution and ecological diversity of the group. Here, we report a new pliosaurid from the Late Hauterivian (Early Cretaceous) of Russia. Phylogenetic analyses using reduced consensus methods recover it as the basalmost brachauchenine. This pliosaurid is smaller than other derived pliosaurids, has tooth alveoli clustered in pairs and possesses trihedral teeth with complex serrated carinae. Maximum-likelihood ancestral state reconstruction suggests early brachauchenines retained trihedral teeth from their ancestors, but modified this feature in a unique way, convergent with macrophagous archosaurs or sphenacodontoids. Our findings indicate that Early Cretaceous marine reptile teeth with serrated carinae cannot be unequivocally assigned to metriorhynchoid crocodylomorphs. Furthermore, they extend the known diversity of dental adaptations seen in Sauropterygia, the longest lived clade of marine tetrapods. PMID:27019740

  5. Modeling the Impact of Forest and Peat Fires on Carbon-Isotopic Compositions of Cretaceous Atmosphere and Vegetation

    NASA Astrophysics Data System (ADS)

    Finkelstein, D. B.; Pratt, L. M.

    2004-12-01

    Prevalence of wildfires or peat fires associated with seasonally dry conditions in the Cretaceous is supported by recent studies documenting the widespread presence of pyrolytic polycyclic aromatic hydrocarbons and fusinite. Potential roles of CO2 emissions from fire have been overlooked in many discussions of Cretaceous carbon-isotope excursions (excluding K-P boundary discussions). Enhanced atmospheric CO2 levels could increase fire frequency through elevated lightning activity. When biomass or peat is combusted, emissions of CO2 are more negative than atmospheric CO2. Five reservoirs (atmosphere, vegetation, soil, and shallow and deep oceans), and five fluxes (productivity, respiration, litter fall, atmosphere-ocean exchange, and surface-deep ocean exchange) were modeled as a closed system. The size of the Cretaceous peat reservoir was estimated by compilation of published early Cretaceous coal resources. Initial pCO2 was assumed to be 2x pre-industrial atmospheric levels (P.A.L.). Critical variables in the model are burning efficiency and post-fire growth rates. Assuming 1% of standing terrestrial biomass is consumed by wildfires each year for ten years (without combustion of peat), an increase of atmospheric CO2 (from 2.0 to 2.2x P.A.L.) and a negative carbon isotope excursion (-1.2 ‰ ) are recorded by both atmosphere and new growth. Net primary productivity linked to the residence time of the vegetation and soil reservoirs results in a negative isotope shift followed by a broad positive isotope excursion. Decreasing the rate of re-growth dampens this trailing positive shift and increases the duration of the excursion. Post-fire pCO2 and new growth returned to initial values after 72 years. Both negative and positive isotope excursions are recorded in the model in surface ocean waters. Exchange of CO2 with the surface- and deep-ocean dampens the isotopic shift of the atmosphere. Excursions are first recorded in the atmosphere (and new growth), followed by

  6. 15N/14N variations in Cretaceous Atlantic sedimentary sequences: implication for past changes in marine nitrogen biogeochemistry

    USGS Publications Warehouse

    Rau, G.H.; Arthur, M.A.; Dean, W.E.

    1987-01-01

    At two locations in the Atlantic Ocean (DSDP Sites 367 and 530) early to middle Cretaceous organic-carbon-rich beds ("black shales") were found to have significantly lower ??15N values (lower 15N/14N ratios) than adjacent organic-carbon-poor beds (white limestones or green claystones). While these lithologies are of marine origin, the black strata in particular have ??15N values that are significantly lower than those previously found in the marine sediment record and most contemporary marine nitrogen pools. In contrast, black, organic-carbon-rich beds at a third site (DSDP Site 603) contain predominantly terrestrial organic matter and have C- and N-isotopic compositions similar to organic matter of modern terrestrial origin. The recurring 15N depletion in the marine-derived Cretaceous sequences prove that the nitrogen they contain is the end result of an episodic and atypical biogeochemistry. Existing isotopic and other data indicate that the low 15N relative abundance is the consequence of pelagic rather than post-depositional processes. Reduced ocean circulation, increased denitrification, and, hence, reduced euphotic zone nitrate availability may have led to Cretaceous phytoplankton assemblages that were periodically dominated by N2-fixing blue-green algae, a possible source of this sediment 15N-depletion. Lack of parallel isotopic shifts in Cretaceous terrestrially-derived nitrogen (Site 603) argues that the above change in nitrogen cycling during this period did not extend beyond the marine environment. ?? 1987.

  7. A temporary pond in the Early Cretaceous of southern England: palaeoclimatic implications of nonmarine "Purbeck-Wealden" ostracod faunas

    NASA Astrophysics Data System (ADS)

    Horne, D. J.

    2009-04-01

    Excavation of the partial skeleton of an Iguanodon from the Upper Weald Clay (Barremian, Early Cretaceous) at Smokejacks Brickworks near Ockley, Surrey, UK included detailed sampling for micropalaeontological and palynological and studies (Nye et al., 2008). Rich and well-preserved non-marine assemblages of pollen and spores include early angiosperms as well as freshwater green algae. Taphonomic analyses show the ostracod assemblages to be autochthonous thanatocoenoses, indicative of local environment at the time of deposition. Using a palaeobiological approach, the ostracods and palynomorphs demonstrate temporary / ephemeral freshwater conditions at the time when the Iguanodon died and the carcase was buried. Ostracod "faunicycles" in "Purbeck-Wealden" deposits may represent salinity variations in non-marine water-bodies, influenced by the balance between precipitation and evaporation, and/or the relative abundance of permanent and temporary waterbodies in the landscape; many assemblages resulted from post-mortem mixing, perhaps during flood events (Horne, 2002). Faunal alternations may therefore reflect shifts of the boundary between warm temperate and paratropical climate in the Early Cretaceous of NW Europe. The previously rejected suggestion that such assemblage variations record Milankovitch cyclicity deserves to be reconsidered, as does the possibility that they reflect changes on sub-Milankovitch timescales. Climate variability may have influenced the differential evolutionary success of sexual, mixed and parthenogenetic reproductive strategies in nonmarine ostracods. Latitudinally restricted distribution patterns and wind dispersal of resting eggs offer potential for inferring global climate patterns from ostracod palaeobiogeography, although dispersal by large animals (e.g., crocodiles, pterosaurs) is likely to have confused any aeolian transport patterns. References Horne, D. J. 2002. Ostracod biostratigraphy and palaeoecology of the Purbeck Limestone

  8. Late Cretaceous - Paleogene forearc sedimentation and accretion of oceanic plateaus and seamounts along the Middle American convergent margin (Costa Rica)

    NASA Astrophysics Data System (ADS)

    Baumgartner, Peter O.; Baumgartner-Mora, Claudia; Andjic, Goran

    2016-04-01

    The Late Cretaceous-Paleogene sedimentation pattern in space and time along the Middle American convergent margin was controlled by the accretion of Pacific plateaus and seamounts. The accretion of more voluminous plateaus must have caused the temporary extinction of the arc and tectonic uplift, resulting in short lived episodes of both pelagic and neritic biogenic sedimentation. By the Late Eocene, shallow carbonate environments became widespread on a supposed mature arc edifice, that is so far only documented in arc-derived sediments. In northern Costa Rica forearc sedimentation started during the Coniacian-Santonian on the Aptian-Turonian basement of the Manzanillo Terrane. The arrival and collision of the Nicoya Terrane (a CLIP-like, 139-83 Ma Pacific plateau) and the Santa Elena Terrane caused the extinction of the arc during late Campanian- Early Maastrichtian times, indicated by the change to pelagic limestone sedimentation (Piedras Blancas Formation) in deeper areas and shallow-water rudistid - Larger Benthic Foraminfera limestone on tectonically uplifted areas of all terranes. Arc-derived turbidite sedimentation resumed in the Late Maastrichtian and was again interrupted during the Late Paleocene - Early Eocene, perhaps due to the underplating of a yet unknown large seamount. The extinction of the arc resulted in the deposition of the siliceous pelagic Buenavista Formation, as well as the principally Thanetian Barra Honda carbonate platform on a deeply eroded structural high in the Tempisque area. In southern Costa Rica the basement is thought to be the western edge of the CLIP. It is Santonian-Campanian in age and is only exposed in the southwestern corner of Herradura. Cretaceous arc-forearc sequences are unknown, except for the Maastrichtian-Paleocene Golfito Terrane in southeastern Costa Rica. The distribution and age of shallow/pelagic carbonates vs. arc-derived detrital sediments is controlled by the history of accretion of Galápagos hot spot

  9. A gravid lizard from the Cretaceous of China and the early history of squamate viviparity

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Evans, Susan E.

    2011-09-01

    Although viviparity is most often associated with mammals, roughly one fifth of extant squamate reptiles give birth to live young. Phylogenetic analyses indicate that the trait evolved more than 100 times within Squamata, a frequency greater than that of all other vertebrate clades combined. However, there is debate as to the antiquity of the trait and, until now, the only direct fossil evidence of squamate viviparity was in Late Cretaceous mosasauroids, specialised marine lizards without modern equivalents. Here, we document viviparity in a specimen of a more generalised lizard, Yabeinosaurus, from the Early Cretaceous of China. The gravid female contains more than 15 young at a level of skeletal development corresponding to that of late embryos of living viviparous lizards. This specimen documents the first occurrence of viviparity in a fossil reptile that was largely terrestrial in life, and extends the temporal distribution of the trait in squamates by at least 30 Ma. As Yabeinosaurus occupies a relatively basal position within crown-group squamates, it suggests that the anatomical and physiological preconditions for viviparity arose early within Squamata.

  10. The conchostracan subgenus Orthestheria (Migransia) from the Tacuarembó Formation (Late Jurassic-?Early Cretaceous, Uruguay) with notes on its geological age

    NASA Astrophysics Data System (ADS)

    Yanbin, Shen; Gallego, Oscar F.; Martínez, Sergio

    2004-04-01

    Conchostracans from the Tacuarembó Formation s.s. of Uruguay are reassigned to the subgenus Orthestheria (Migransia) Chen and Shen. They show more similarities to genera of Late Jurassic age in the Congo Basin and China than to those of Early Cretaceous age. On the basis of the character of the conchostracans, we suggest that the Tacuarembó Formation is unlikely to be older than Late Jurassic. It is probably Kimmeridgian, but an Early Cretaceous age cannot be excluded. This finding is consistent with isotopic dating of the overlying basalts, as well as the age range of recently described fossil freshwater sharks.

  11. Paleomagnetic results from the Early Cretaceous Lakang Formation lavas: Constraints on the paleolatitude of the Tethyan Himalaya and the India-Asia collision

    NASA Astrophysics Data System (ADS)

    Yang, Tianshui; Ma, Yiming; Bian, Weiwei; Jin, Jingjie; Zhang, Shihong; Wu, Huaichun; Li, Haiyan; Yang, Zhenyu; Ding, Jikai

    2015-10-01

    To better constrain the Early Cretaceous paleogeographic position of the Tethyan Himalaya and the India-Asia collision process, a paleomagnetic study was performed on the Lakang Formation lava flows in the Cuona area in the southeastern Tethyan Himalaya. Stepwise thermal and alternating field demagnetizations successfully isolated reliable characteristic remanent magnetization (ChRM) directions that include antipodal dual polarities and pass positive fold tests at the 99% confidence level and reversal tests at 95% confidence level, indicating prefolding primary magnetizations. The distribution patterns of ChRM directions from the Lakang Formation lava flows are consistent with young lava flows at similar latitudes, suggesting that secular variation has likely been averaged out. The tilt-corrected site-mean direction for 31 sites is D = 261.6 °, I = - 68.5 ° with α95 = 3.6 °, which provides a paleopole at 26.8°S, 315.2°E (A95 = 5.7 °), corresponding to a paleolatitude of 52.2 ° ± 5.7 °S for the study area. Comparison of the paleolatitude observed from the Lakang Formation lava flows with that expected from the apparent polar wander paths of India at 130 Ma show a paleolatitude difference of ∼2.1° (∼230 km), indicating that neither a great north-south continental crustal shortening occurred between the Indian craton and the Tethyan Himalaya after 130 Ma, nor that a wide ocean separated them at that time. Comparison with reliable Cretaceous-Paleocene paleomagnetic results observed from the Tethyan Himalaya and the Lhasa terrane indicates that the latitudinal width of the Neo-Tethyan Ocean could have been up to ∼7000 km at 134-130 Ma and an extension should have existed between the Indian craton and the Tethyan Himalaya during the Late Cretaceous and Paleocene. Furthermore, reliable paleomagnetic results suggest that the India-Asia collision was a dual-collision process, consisting of a first collision of the Tethyan Himalaya with the Lhasa terrane

  12. Isotopic composition of low-latitude paleoprecipitation during the Early Cretaceous

    USGS Publications Warehouse

    Suarez, M.B.; Gonzalez, Luis A.; Ludvigson, Greg A.; Vega, F.J.; Alvarado-Ortega, J.

    2009-01-01

    The response of the hydrologic cycle in global greenhouse conditions is important to our understanding of future climate change and to the calibration of global climate models. Past greenhouse conditions, such as those of the Cretaceous, can be used to provide empirical data with which to evaluate climate models. Recent empirical studies have utilized pedogenic carbonates to estimate the isotopic composition of meteoric waters and calculate precipitation rates for the AptianAlbian. These studies were limited to data from mid(35??N) to high (75??N) paleolatitudes, and thus future improvements in accuracy will require more estimates of meteoric water compositions from numerous localities around the globe. This study provides data for tropical latitudes (18.5??N paleolatitude) from the Tlayua Formation, Puebla, Mexico. In addition, the study confirms a shallow nearshore depositional environment for the Tlayua Formation. Petrographic observations of fenestral fabrics, gypsum crystal molds, stromatolitic structures, and pedogenic matrix birefringence fabric support the interpretation that the strata represent deposition in a tidal flat environment. Carbonate isotopic data from limestones of the Tlayua Formation provide evidence of early meteoric diagenesis in the form of meteoric calcite lines. These trends in ??18O versus ??13C were used to calculate the mean ??18O value of meteoric water, which is estimated at -5.46 ?? 0.56??? (Vienna Standard Mean Ocean Water [VSMOW]). Positive linear covariant trends in oxygen and carbon isotopic values from some horizons were used to estimate evaporative losses of vadose groundwater from tropical exposure surfaces during the Albian, and the resulting values range from 8% to 12%. However, the presence of evaporative mineral molds indicates more extensive evaporation. The added tropical data improve latitudinal coverage of paleoprecipitation ??18O estimates. The data presented here imply that earlier isotope mass balance models most

  13. Late Cretaceous vicariance in Gondwanan amphibians.

    PubMed

    Van Bocxlaer, Ines; Roelants, Kim; Biju, S D; Nagaraju, J; Bossuyt, Franky

    2006-12-20

    Overseas dispersals are often invoked when Southern Hemisphere terrestrial and freshwater organism phylogenies do not fit the sequence or timing of Gondwana fragmentation. We used dispersal-vicariance analyses and molecular timetrees to show that two species-rich frog groups, Microhylidae and Natatanura, display congruent patterns of spatial and temporal diversification among Gondwanan plates in the Late Cretaceous, long after the presumed major tectonic break-up events. Because amphibians are notoriously salt-intolerant, these analogies are best explained by simultaneous vicariance, rather than by oceanic dispersal. Hence our results imply Late Cretaceous connections between most adjacent Gondwanan landmasses, an essential concept for biogeographic and palaeomap reconstructions.

  14. A basal thunnosaurian from Iraq reveals disparate phylogenetic origins for Cretaceous ichthyosaurs

    PubMed Central

    Fischer, Valentin; Appleby, Robert M.; Naish, Darren; Liston, Jeff; Riding, James B.; Brindley, Stephen; Godefroit, Pascal

    2013-01-01

    Cretaceous ichthyosaurs have typically been considered a small, homogeneous assemblage sharing a common Late Jurassic ancestor. Their low diversity and disparity have been interpreted as indicative of a decline leading to their Cenomanian extinction. We describe the first post-Triassic ichthyosaur from the Middle East, Malawania anachronus gen. et sp. nov. from the Early Cretaceous of Iraq, and re-evaluate the evolutionary history of parvipelvian ichthyosaurs via phylogenetic and cladogenesis rate analyses. Malawania represents a basal grade in thunnosaurian evolution that arose during a major Late Triassic radiation event and was previously thought to have gone extinct during the Early Jurassic. Its pectoral morphology appears surprisingly archaic, retaining a forefin architecture similar to that of its Early Jurassic relatives. After the initial latest Triassic radiation of early thunnosaurians, two subsequent large radiations produced lineages with Cretaceous representatives, but the radiation events themselves are pre-Cretaceous. Cretaceous ichthyosaurs therefore include distantly related lineages, with contrasting evolutionary histories, and appear more diverse and disparate than previously supposed. PMID:23676653

  15. Composition and depositional environment of concretionary strata of early Cenomanian (early Late Cretaceous) age, Johnson County, Wyoming

    USGS Publications Warehouse

    Merewether, E.A.; Gautier, Donald L.

    2000-01-01

    Unusual, concretion-bearing mudrocks of early Late Cretaceous age, which were deposited in an early Cenomanian epeiric sea, have been recognized at outcrops in eastern Wyoming and in adjoining areas of Montana, South Dakota, Nebraska, and Colorado. In Johnson County, Wyo., on the western flank of the Powder River Basin, these strata are in the lower part of the Belle Fourche Member of the Frontier Formation. At a core hole in south-central Johnson County, they are informally named Unit 2. These strata are about 34 m (110 ft) thick and consist mainly of medium- to dark-gray, noncalcareous, silty shale and clayey or sandy siltstone; and light-gray to grayish-red bentonite. The shale and siltstone are either bioturbated or interlaminated; the laminae are discontinuous, parallel, and even or wavy. Several ichnogenera of deposit feeders are common in the unit but filter feeders are sparse. The unit also contains marine and continental palynomorphs and, near the top, a few arenaceous foraminifers. No invertebrate macrofossils have been found in these rocks. Unit 2 conformably overlies lower Cenomanian shale in the lowermost Belle Fourche Member, informally named Unit 3, and is conformably overlain by lower and middle Cenomanian shale, siltstone, and sandstone within the member, which are informally named Unit 1. The mineral and chemical composition of the three Cenomanian units is comparable and similar to that of shale and siltstone in the Upper Cretaceous Pierre Shale, except that these units contain more SiO2 and less CaO, carbonate carbon, and manganese. Silica is generally more abundant and CaO is generally less abundant in river water than in seawater. The composition of Unit 2 contrasts significantly with that of the underlying and overlying units. Unit 2 contains no pyrite and dolomite and much less sulfur than Units 1 and 3. Sulfate is generally less abundant in river water than in seawater. Unit 2 also includes sideritic and calcitic concretions, whereas Units

  16. Nannofossil carbonate fluxes during the Early Cretaceous: Phytoplankton response to nutrification episodes, atmospheric CO2, and anoxia

    NASA Astrophysics Data System (ADS)

    Erba, Elisabetta; Tremolada, Fabrizio

    2004-03-01

    Greenhouse episodes during the Valanginian and Aptian correlate with major perturbations in the C cycle and in marine ecosystems, carbonate crises, and widespread deposition of Corg-rich black shales. Quantitative analyses of nannofossil micrite were conducted on continuous pelagic sections from the Southern Alps (northern Italy), where high-resolution integrated stratigraphy allows precise dating of Early Cretaceous geological events. Rock-forming calcareous nannofloras were quantified in smear slides and thin sections to obtain relative and absolute abundances and paleofluxes that are interpreted as the response of calcareous phytoplankton to global changes in the ocean-atmosphere system. Increased rates of volcanism during the formation of Ontong Java and Manihiki Plateaus and the Paranà-Etendeka large igneous province (LIP) are proposed to have caused the geological responses associated with early Aptian oceanic anoxic event (OAE) 1a and the Valanginian event, respectively. Calcareous nannofloras reacted to the new conditions of higher pCO2 and fertility by drastically reducing calcification. The Valanginian event is marked by a 65% reduction in nannofossil paleofluxes that would correspond to a 2-3 times increase in pCO2 during formation of the Paranà-Endenteka LIP. A 90% reduction in nannofossil paleofluxes, which occurred in a 1.5 myr-long interval leading into OAE1a, is interpreted as the result of a 3-6 times increase in pCO2 produced by emplacement of the giant Ontong Java and Manihiki Plateaus. High pCO2 was balanced back by an accelerated biological pump during the Valanginian episode, but not during OAE1a, suggesting persisting high levels of pCO2 in the late Aptian and/or the inability of calcareous phytoplankton to absorb excess pCO2 above threshold values.

  17. Volcanic ash as a driver of enhanced organic carbon burial in the Cretaceous.

    PubMed

    Lee, Cin-Ty A; Jiang, Hehe; Ronay, Elli; Minisini, Daniel; Stiles, Jackson; Neal, Matthew

    2018-03-08

    On greater than million year timescales, carbon in the ocean-atmosphere-biosphere system is controlled by geologic inputs of CO 2 through volcanic and metamorphic degassing. High atmospheric CO 2 and warm climates in the Cretaceous have been attributed to enhanced volcanic emissions of CO 2 through more rapid spreading at mid-ocean ridges and, in particular, to a global flare-up in continental arc volcanism. Here, we show that global flare-ups in continental arc magmatism also enhance the global flux of nutrients into the ocean through production of windblown ash. We show that up to 75% of Si, Fe and P is leached from windblown ash during and shortly after deposition, with soluble Si, Fe and P inputs from ash alone in the Cretaceous being higher than the combined input of dust and rivers today. Ash-derived nutrient inputs may have increased the efficiency of biological productivity and organic carbon preservation in the Cretaceous, possibly explaining why the carbon isotopic signature of Cretaceous seawater was high. Variations in volcanic activity, particularly continental arcs, have the potential of profoundly altering carbon cycling at the Earth's surface by increasing inputs of CO 2 and ash-borne nutrients, which together enhance biological productivity and burial of organic carbon, generating an abundance of hydrocarbon source rocks.

  18. The emergence of modern type rain forests and mangroves and their traces in the palaeobotanical record during the Late Cretaceous and early Tertiary

    NASA Astrophysics Data System (ADS)

    Mohr, Barbara; Coiffard, Clément

    2014-05-01

    The origin of modern rain forests is still very poorly known. This ecosystem could have potentially fully evolved only after the development of relatively high numbers of flowering plant families adapted to rain forest conditions. During the early phase of angiosperm evolution in the early Cretaceous the palaeo-equatorial region was located in a seasonally dry climatic belt, so that during this phase, flowering plants often show adaptations to drought, rather than to continuously wet climate conditions. Therefore it is not surprising that except for the Nymphaeales, the most basal members of extant angiosperm families have members that do not necessarily occur in the continuously wet tropics today. However, during the late Early Cretaceous several clades emerged that later would give rise to families that are typically found today mostly in (shady) moist places in warmer regions. This is especially seen among the monocotyledons, a group of the mesangiosperms, that developed in many cases large leaves often with very specific venation patterns that make these leaves very unique and well recognizable. Especially members of three groups are here of interest: the arum family (Araceae), the palms (Arecaceae) and the Ginger and allies (Zingiberales). The earliest fossil of Araceae are restricted to low latitudes during the lower Cretaceous. Arecaceae and Zingiberales do not appear in the fossil record before the early late Cretaceous and occur at mid latitudes. During the Late Cretaceous, Araceae are represented at mid latitudes by non-tropical early diverging members and at low latitudes by derived rainforest members. Palms became widespread during the Late Cretataceous and also Nypa, a typical element of tropical to subtropical mangrove environments evolved during this time period. During the Paleocene Arecaceae appear to be restricted to lower latitudes as well as Zingiberales. All three groups are again widespread during the Eocene, reaching higher latitudes and

  19. New Australian sauropods shed light on Cretaceous dinosaur palaeobiogeography

    PubMed Central

    Poropat, Stephen F.; Mannion, Philip D.; Upchurch, Paul; Hocknull, Scott A.; Kear, Benjamin P.; Kundrát, Martin; Tischler, Travis R.; Sloan, Trish; Sinapius, George H. K.; Elliott, Judy A.; Elliott, David A.

    2016-01-01

    Australian dinosaurs have played a rare but controversial role in the debate surrounding the effect of Gondwanan break-up on Cretaceous dinosaur distribution. Major spatiotemporal gaps in the Gondwanan Cretaceous fossil record, coupled with taxon incompleteness, have hindered research on this effect, especially in Australia. Here we report on two new sauropod specimens from the early Late Cretaceous of Queensland, Australia, that have important implications for Cretaceous dinosaur palaeobiogeography. Savannasaurus elliottorum gen. et sp. nov. comprises one of the most complete Cretaceous sauropod skeletons ever found in Australia, whereas a new specimen of Diamantinasaurus matildae includes the first ever cranial remains of an Australian sauropod. The results of a new phylogenetic analysis, in which both Savannasaurus and Diamantinasaurus are recovered within Titanosauria, were used as the basis for a quantitative palaeobiogeographical analysis of macronarian sauropods. Titanosaurs achieved a worldwide distribution by at least 125 million years ago, suggesting that mid-Cretaceous Australian sauropods represent remnants of clades which were widespread during the Early Cretaceous. These lineages would have entered Australasia via dispersal from South America, presumably across Antarctica. High latitude sauropod dispersal might have been facilitated by Albian–Turonian warming that lifted a palaeoclimatic dispersal barrier between Antarctica and South America. PMID:27763598

  20. New Australian sauropods shed light on Cretaceous dinosaur palaeobiogeography.

    PubMed

    Poropat, Stephen F; Mannion, Philip D; Upchurch, Paul; Hocknull, Scott A; Kear, Benjamin P; Kundrát, Martin; Tischler, Travis R; Sloan, Trish; Sinapius, George H K; Elliott, Judy A; Elliott, David A

    2016-10-20

    Australian dinosaurs have played a rare but controversial role in the debate surrounding the effect of Gondwanan break-up on Cretaceous dinosaur distribution. Major spatiotemporal gaps in the Gondwanan Cretaceous fossil record, coupled with taxon incompleteness, have hindered research on this effect, especially in Australia. Here we report on two new sauropod specimens from the early Late Cretaceous of Queensland, Australia, that have important implications for Cretaceous dinosaur palaeobiogeography. Savannasaurus elliottorum gen. et sp. nov. comprises one of the most complete Cretaceous sauropod skeletons ever found in Australia, whereas a new specimen of Diamantinasaurus matildae includes the first ever cranial remains of an Australian sauropod. The results of a new phylogenetic analysis, in which both Savannasaurus and Diamantinasaurus are recovered within Titanosauria, were used as the basis for a quantitative palaeobiogeographical analysis of macronarian sauropods. Titanosaurs achieved a worldwide distribution by at least 125 million years ago, suggesting that mid-Cretaceous Australian sauropods represent remnants of clades which were widespread during the Early Cretaceous. These lineages would have entered Australasia via dispersal from South America, presumably across Antarctica. High latitude sauropod dispersal might have been facilitated by Albian-Turonian warming that lifted a palaeoclimatic dispersal barrier between Antarctica and South America.

  1. Mid-ocean ridge serpentinite in the Puerto Rico Trench: Accretion, alteration, and subduction of Cretaceous seafloor in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Klein, F.; Marschall, H.; Bowring, S. A.; Horning, G.

    2016-12-01

    Serpentinite is believed to be one of the main carriers of water and fluid mobile elements into subduction zones, but direct evidence for serpentinite subduction has been elusive. The Antilles island arc is one of only two subduction zones worldwide that recycles slow-spreading oceanic lithosphere where descending serpentinite is both exposed by faulting and directly accessible on the seafloor. Here we examined serpentinized peridotites dredged from the North Wall of the Puerto Rico Trench (NWPRT) to assess their formation and alteration history and discuss geological ramifications resulting from their emplacement and subduction. Lithospheric accretion and serpentinization occurred, as indicated by U-Pb geochronology of hydrothermally altered zircon, at the Cretaceous Mid-Atlantic Ridge (CMAR). In addition to lizardite-rich serpentinites with pseudomorphic textures after olivine and pyroxene typical for static serpentinization at slow spreading mid-ocean ridges, recovered samples include non-pseudomorphic antigorite-rich serpentinites that are otherwise typically associated with peridotite at convergent plate boundaries. Antigorite-serpentinites have considerably lower Fe(III)/Fetot and lower magnetic susceptibilities than lizardite-serpentinites with comparable Fetot contents. Rare earth element (REE) contents of lizardite-serpentinites decrease linearly with increasing Fe(III)/Fetot of whole rock samples, suggesting that oxidation during seafloor weathering of serpentinite releases REEs to seawater. Serpentinized peridotites recorded multifaceted igneous and high- to low-temperature hydrothermal processes that involved extensive chemical, physical, and mineralogical modifications of their peridotite precursors with strong implications for our understanding of the accretion, alteration, and subduction of slow-spreading oceanic lithosphere.

  2. Post Cretaceous cooling trend documented in the gastropods (Turritella Sp.) from the Cenozoic startigraphic successions of India

    NASA Astrophysics Data System (ADS)

    Banerjee, Y.; Ghosh, P.; Halder, K.; Malarkodi, N.; Pathak, P.

    2017-12-01

    The aftermath of the Himalyan orogeny and subsequent cooling is documented in the deep sea sedimentary record from the Oceanic realm (1). Here we attempt to reconstruct the temperature pattern based on marine gastropods i.e. Turritella sp. which became abundant during the post Cretaceous period and have successfully been used for the reconstruction of climate by measuring the stable isotopic composition (2,3,4). Well preserved specimens of Cretaceous Turritella from the Rajamundry Infratrappean beds and those from the Miocene, Holocene succession of Kutch, western India were analysed along with specimen from the modern time scale (also from Kutch). The Cretaceous, early to mid Miocene, early Holocene and modern shells recorded δ13C variability from 0.36 to 4.94‰, -1.83 to -4.83‰, -3.26 to 0.40‰, -1.47 to -4.70‰ respectively suggesting drop in the productivity during mid Miocene and subsequent period of rapid growth. The Variability in terms of δ18O ranges from -2.28 to -4.99‰, -2.66 to -7.06‰, -2.86 to 0.96‰, -1.05 to -3.23‰ for the Cretaceous, early to mid Miocene, early Holocene and modern shells respectively. Corbula sp. collected from the same strata with that of the early to mid Holocene Turritella showed a similar δ13C and δ18O values denoting similar environmental condition during deposition. Absence of any significant correlation between δ13C vs δ18O support equilibrium precipitation of shell growth bands. We used Epstein oxygen isotope thermometry to derive temperature from the oxygen isotope of carbonate and adopted water isotopic composition (1‰ for the Cretaceous and -0.7‰ for the Miocene) from the literature. Our observation captured an overall cooling trend from the Cretaceous to the Holocene time period (especially in between mid Miocene to Holocene) and a subsequent warming trend in modern time. Validation with other thermometry method will be displayed at the time of presentation. References: [1] Zachos et al., 2001

  3. Circum-Pacific accretion of oceanic terranes to continental blocks: accretion of the Early Permian Dun Mountain ophiolite to the E Gondwana continental margin, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair

    2016-04-01

    Accretionary orogens, in part, grow as a result of the accretion of oceanic terranes to pre-existing continental blocks, as in the circum-Pacific and central Asian regions. However, the accretionary processes involved remain poorly understood. Here, we consider settings in which oceanic crust formed in a supra-subduction zone setting and later accreted to continental terranes (some, themselves of accretionary origin). Good examples include some Late Cretaceous ophiolites in SE Turkey, the Jurassic Coast Range ophiolite, W USA and the Early Permian Dun Mountain ophiolite of South Island, New Zealand. In the last two cases, the ophiolites are depositionally overlain by coarse clastic sedimentary rocks (e.g. Permian Upukerora Formation of South Island, NZ) that then pass upwards into very thick continental margin fore-arc basin sequences (Great Valley sequence, California; Matai sequence, South Island, NZ). Field observations, together with petrographical and geochemical studies in South Island, NZ, summarised here, provide evidence of terrane accretion processes. In a proposed tectonic model, the Early Permian Dun Mountain ophiolite was created by supra-subduction zone spreading above a W-dipping subduction zone (comparable to the present-day Izu-Bonin arc and fore arc, W Pacific). The SSZ oceanic crust in the New Zealand example is inferred to have included an intra-oceanic magmatic arc, which is no longer exposed (other than within a melange unit in Southland), but which is documented by petrographic and geochemical evidence. An additional subduction zone is likely to have dipped westwards beneath the E Gondwana margin during the Permian. As a result, relatively buoyant Early Permian supra-subduction zone oceanic crust was able to dock with the E Gondwana continental margin, terminating intra-oceanic subduction (although the exact timing is debatable). The amalgamation ('soft collision') was accompanied by crustal extension of the newly accreted oceanic slab, and

  4. Basement and crustal structure of the Davis Sea region (East Antarctica): implications for tectonic setting and continent to oceanic boundary definition

    USGS Publications Warehouse

    Guseva, Y.B.; Leitchenkov, G.L.; Gandyukhin, V.V.; Ivanov, S.V.

    2007-01-01

    This study is based on about 8400 km of MCS, magnetic and gravity data as well as 20 sonobuoys collected by the Russian Antarctic Expedition during 2003 and 2004 in the Davis Sea and adjacent areas between 80°E and 102°E. Major tectonic provinces and features are identified and mapped in the study region including: 1) A marginal rift with a the extended continental crust ranging 130 to more than 200 km in width; 2) The marginal volcanic plateau of the Bruce Bank consisting of the Early Cretaceous igneous rocks; 3) The Early Cretaceous and Late Cretaceous−Paleogene oceanic basins; and 4) The Early Cretaceous igneous province of the Kerguelen Plateau. Four major horizons identified in the sedimentary cover of the Davis Sea region are attributed to main tectonic events and/or paleoenvironmental changes.

  5. The early evolution of feathers: fossil evidence from Cretaceous amber of France

    PubMed Central

    Perrichot, Vincent; Marion, Loïc; Néraudeau, Didier; Vullo, Romain; Tafforeau, Paul

    2008-01-01

    The developmental stages of feathers are of major importance in the evolution of body covering and the origin of avian flight. Until now, there were significant gaps in knowledge of early morphologies in theoretical stages of feathers as well as in palaeontological material. Here we report fossil evidence of an intermediate and critical stage in the incremental evolution of feathers which has been predicted by developmental theories but hitherto undocumented by evidence from both the recent and the fossil records. Seven feathers have been found in an Early Cretaceous (Late Albian, ca 100 Myr) amber of western France, which display a flattened shaft composed by the still distinct and incompletely fused bases of the barbs forming two irregular vanes. Considering their remarkably primitive features, and since recent discoveries have yielded feathers of modern type in some derived theropod dinosaurs, the Albian feathers from France might have been derived either from an early bird or from a non-avian dinosaur. PMID:18285280

  6. Immature intra-oceanic arc-type volcanism on the Izanagi Plate revealed by the geochemistry of the Daimaruyama greenstones in the Hiroo Complex, southern Hidaka Belt, central Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Yamasaki, Toru; Nanayama, Futoshi

    2018-03-01

    The Izanagi Plate is assumed to have underlain the western Panthalassa Ocean to the east of Eurasia, and to have been subducting under the Eurasian continent. Although the Izanagi Plate has been lost to subduction, the subduction complexes of the circum-Panthalassa continental margins provide evidence that subduction-related volcanism occurred within the Panthalassa Ocean, and not just along its margins. The Daimaruyama mass is a kilometer-sized allochthonous greenstone body in the Hiroo Complex in the southeastern part of the Nakanogawa Group in the southern Hidaka Belt, northern Japan. The Hiroo Complex is a subduction complex that formed within the Paleo-Kuril arc-trench system at 57-48 Ma. The Daimaruyama greenstones consist mainly of coarse volcaniclastic rocks with lesser amount of lava. Red bedded chert, red shale, and micritic limestone are also observed as blocks associated with the greenstones. The presence of Early Cretaceous (Aptian-Albian) radiolaria in red bedded cherts within the greenstones indicates that the Daimaruyama greenstones formed after this time. An integrated major and trace element geochemical dataset for whole-rocks and clinopyroxenes of the greenstones indicates a calc-alkaline magmatic trend with low TiO2 contents and increases in SiO2 and decreases in FeO* with increasing differentiation. Negative anomalies of Nb, Ta, and Ti in normal mid-ocean-ridge basalt type normalized patterns are interpreted as "arc-signatures". Using "rhyolite-MELTS", we conducted a numerical simulation of magmatic differentiation under conditions of 1.5 kbar and H2O = 3 wt% to reproduce the liquid line of descent of the Daimaruyama greenstones. Back-calculations of the equilibrium melt compositions from the trace element chemistry of the clinopyroxenes generally agree with the whole-rock rare earth element compositions of the Daimaruyama greenstones, therefore providing support for the conditions used for the rhyolite-MELTS calculations as well as the actual

  7. Amino Acid Stability in the Early Oceans

    NASA Technical Reports Server (NTRS)

    Parker, E. T.; Brinton, K. L.; Burton, A. S.; Glavin, D. P.; Dworkin, J. P.; Bada, J. L.

    2015-01-01

    It is likely that a variety of amino acids existed in the early oceans of the Earth at the time of the origin and early evolution of life. "Primordial soup", hydrothermal vent, and meteorite based processes could have contributed to such an inventory. Several "protein" amino acids were likely present, however, based on prebiotic synthesis experiments and carbonaceous meteorite studies, non-protein amino acids, which are rare on Earth today, were likely the most abundant. An important uncertainty is the length of time these amino acids could have persisted before their destruction by abiotic and biotic processes. Prior to life, amino acid concentrations in the oceans were likely regulated by circulation through hydro-thermal vents. Today, the entire ocean circulates through vent systems every 10(exp 7) years. On the early Earth, this value was likely smaller due to higher heat flow and thus marine amino acid life-time would have been shorter. After life, amino acids in the oceans could have been assimilated by primitive organisms.

  8. Parallel Extension Tectonics (PET): Early Cretaceous tectonic extension of the Eastern Eurasian continent

    NASA Astrophysics Data System (ADS)

    Liu, Junlai; Ji, Mo; Ni, Jinlong; Guan, Huimei; Shen, Liang

    2017-04-01

    The present study reports progress of our recent studies on the extensional structures in eastern North China craton and contiguous areas. We focus on characterizing and timing the formation/exhumation of the extensional structures, the Liaonan metamorphic core complex (mcc) and the Dayingzi basin from the Liaodong peninsula, the Queshan mcc, the Wulian mcc and the Zhucheng basin from the Jiaodong peninsula, and the Dashan magmatic dome within the Sulu orogenic belt. Magmatic rocks (either volcanic or plutonic) are ubiquitous in association with the tectonic extension (both syn- and post-kinematic). Evidence for crustal-mantle magma mixing are popular in many syn-kinematic intrusions. Geochemical analysis reveals that basaltic, andesitic to rhyolitic magmas were generated during the tectonic extension. Sr-Nd isotopes of the syn-kinematic magmatic rocks suggest that they were dominantly originated from ancient or juvenile crust partly with mantle signatures. Post-kinematic mafic intrusions with ages from ca. 121 Ma to Cenozoic, however, are of characteristic oceanic island basalts (OIB)-like trace element distribution patterns and relatively depleted radiogenic Sr-Nd isotope compositions. Integrated studies on the extensional structures, geochemical signatures of syn-kinematic magmatic rocks (mostly of granitic) and the tectono-magmatic relationships suggest that extension of the crust and the mantle lithosphere triggered the magmatisms from both the crust and the mantle. The Early Cretaceous tectono-magmatic evolution of the eastern Eurasian continent is governed by the PET in which the tectonic processes is subdivided into two stages, i.e. an early stage of tectonic extension, and a late stage of collapse of the extended lithosphere and transformation of lithospheric mantle. During the early stage, tectonic extension of the lithosphere led to detachment faulting in both the crust and mantle, resulted in the loss of some of the subcontinental roots, gave rise to

  9. Possible role of oceanic heat transport in early Eocene climate

    NASA Technical Reports Server (NTRS)

    Sloan, L. C.; Walker, J. C.; Moore, T. C. Jr

    1995-01-01

    Increased oceanic heat transport has often been cited as a means of maintaining warm high-latitude surface temperatures in many intervals of the geologic past, including the early Eocene. Although the excess amount of oceanic heat transport required by warm high latitude sea surface temperatures can be calculated empirically, determining how additional oceanic heat transport would take place has yet to be accomplished. That the mechanisms of enhanced poleward oceanic heat transport remain undefined in paleoclimate reconstructions is an important point that is often overlooked. Using early Eocene climate as an example, we consider various ways to produce enhanced poleward heat transport and latitudinal energy redistribution of the sign and magnitude required by interpreted early Eocene conditions. Our interpolation of early Eocene paleotemperature data indicate that an approximately 30% increase in poleward heat transport would be required to maintain Eocene high-latitude temperatures. This increased heat transport appears difficult to accomplish by any means of ocean circulation if we use present ocean circulation characteristics to evaluate early Eocene rates. Either oceanic processes were very different from those of the present to produce the early Eocene climate conditions or oceanic heat transport was not the primary cause of that climate. We believe that atmospheric processes, with contributions from other factors, such as clouds, were the most likely primary cause of early Eocene climate.

  10. Linkages Between Cretaceous Forearc and Retroarc Basin Development in Southern Tibet

    NASA Astrophysics Data System (ADS)

    Orme, D. A.; Laskowski, A. K.

    2015-12-01

    Integrated provenance and subsidence analysis of forearc and retroarc foreland basin strata were used to reconstruct the evolution of the southern margin of Eurasia during the Early to Late Cretaceous. The Cretaceous-Eocene Xigaze forearc basin, preserved along ~600 km of the southern Lhasa terrane, formed between the Gangdese magmatic arc and accretionary complex as subduction of Neo-Tethyan oceanic lithosphere accommodated the northward motion and subsequent collision of the Indian plate. Petrographic similarities between Xigaze forearc basin strata and Cretaceous-Eocene sedimentary rocks of the northern Lhasa terrane, interpreted as a retroarc foreland basin, were previously interpreted to record N-S trending river systems connecting the retro- and forearc regions during Cretaceous time. New sandstone petrographic and U-Pb detrital zircon provenance analysis of Xigaze forearc basin strata support this hypothesis. Qualitative and statistical provenance analysis using cumulative distribution functions and Kolmogorov-Smirnov (K-S) tests show that the forearc basin was derived from either the same source region as or recycled from the foreland basin. Quartz-rich sandstones with abundant carbonate sedimentary lithic grains and rounded, cobble limestone clasts suggests a more distal source than the proximal Gangdese arc. Therefore, we interpret that the northern Lhasa terrane was a significant source of Xigaze forearc detritus and track spatial and temporal variability in the connection between the retro- and forearc basin systems during the Late Cretaceous. A tectonic subsidence curve for the Xigaze forearc basin shows a steep and "kinked" shape similar to other ancient and active forearc basins. Initial subsidence was likely driven by thermal relaxation of the forearc ophiolite after emplacement while additional periods of rapid subsidence likely result from periods of high flux magmatism in the Gangdese arc and changes in plate convergence rate. Comparison of the

  11. Ocean alkalinity and the Cretaceous/Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Caldeira, K. G.; Rampino, Michael R.

    1988-01-01

    A biogeochemical cycle model resolving ocean carbon and alkalinity content is applied to the Maestrichtian and Danian. The model computes oceanic concentrations and distributions of Ca(2+), Mg(2+), and Sigma-CO2. From these values an atmospheric pCO2 value is calculated, which is used to estimate rates of terrestrial weathering of calcite, dolomite, and calcium and magnesium silicates. Metamorphism of carbonate rocks and the subsequent outgassing of CO2 to the atmosphere are parameterized in terms of carbonate rock reservoir sizes, total land area, and a measure of overall tectonic activity, the sea-floor generation rate. The ocean carbon reservoir computed by the model is used with Deep Sea Drilling Project (DSDP) C-13 data to estimate organic detrital fluxes under a variety of ocean mixing rate assumptions. Using Redfield ratios, the biogenic detrital flux estimate is used to partition the ocean carbon and alkalinity reservoirs between the mixed layer and deep ocean. The calcite flux estimate and carbonate ion concentrations are used to determine the rate of biologically mediated CaCO3 titration. Oceanic productivity was severely limited for approximately 500 kyr following the K/T boundary resulting in significant increases in total ocean alkalinity. As productivity returned to the ocean, excess carbon and alkalinity was removed from the ocean as CaCO3. Model runs indicate that this resulted in a transient imbalance in the other direction. Ocean chemistry returned to near-equilibrium by about 64 mybp.

  12. Impact of intra-seasonal oscillations of Indian summer monsoon on biogeochemical constituents of North Indian Ocean

    NASA Astrophysics Data System (ADS)

    Das, D.; Chakrabarty, M.; Goswami, S.; Basu, D.; Chaudhuri, S.

    2018-05-01

    The intra-seasonal perturbations in the atmospheric weather are closely related to the variability in the ocean circulation. NASA Ocean Biogeochemical Model (NOBM) couples the oceanic general circulation and the radiative forcing. The NOBM model products of nitrate, total chlorophyll, and mixed layer depth (MLD) collected during the period from 1998 to 2007 as well as the sea surface temperature (SST), precipitation, outgoing long wave radiation (OLR), and wind are considered in this study to identify the influence of intra-seasonal oscillation (ISO) of Indian summer monsoon (ISM) on the biogeochemical constituents of Bay of Bengal (BOB) (6°-22° N; 80°-100° E) and Arabian Sea (AS) (3°-17° N; 55°-73.5° E) of North Indian Ocean (NIO). The active and break phases are the most significant components of ISO during ISM. The result of the study reveals that the upper ocean biology and chemistry significantly vary during the said phases of ISM. The nitrate, total chlorophyll, and MLD are observed to be strongly correlated with the ISO of ISM. The result shows that, during ISO of ISM, the concentration of nitrate and chlorophyll is strongly and positively correlated both in BOB and AS. However, the correlation is more in AS, endorsing that the Arabian Sea is more nutrient reach than Bay of Bengal. Nitrate and MLD, on the other hand, are strongly but negatively correlated in the said basins of North Indian Ocean (NIO). The forcing behind the variability of the biogeochemical constituents of BOB and AS during active and break phases of ISM is identified through the analyses of SST, precipitation, OLR, and wind.

  13. Toward an orbital chronology for the early Aptian Oceanic Anoxic Event (OAE1a, ~ 120 Ma)

    NASA Astrophysics Data System (ADS)

    Li, Yong-Xiang; Bralower, Timothy J.; Montañez, Isabel P.; Osleger, David A.; Arthur, Michael A.; Bice, David M.; Herbert, Timothy D.; Erba, Elisabetta; Premoli Silva, Isabella

    2008-07-01

    The early Aptian Oceanic Anoxic Event (OAE1a, 120 Ma) represents a geologically brief time interval in the mid-Cretaceous greenhouse world that is characterized by increased organic carbon accumulation in marine sediments, sudden biotic changes, and abrupt carbon-isotope excursions indicative of significant perturbations to global carbon cycling. The brevity of these drastic environmental changes (< 10 6 year) and the typically 10 6 year temporal resolution of the available chronologies, however, represent a critical gap in our knowledge of OAE1a. We have conducted a high-resolution investigation of three widely distributed sections, including the Cismon APTICORE in Italy, Santa Rosa Canyon in northeastern Mexico, and Deep Sea Drilling Project (DSDP) Site 398 off the Iberian margin in the North Atlantic Ocean, which represent a range of depositional environments where condensed and moderately expanded OAE1a intervals are recorded. The objectives of this study are to establish orbital chronologies for these sections and to construct a common, high-resolution timescale for OAE1a. Spectral analyses of the closely-spaced (corresponding to ~ 5 to 10 kyr) measurements of calcium carbonate content of the APTICORE, magnetic susceptibility (MS) and anhysteretic remanent magnetization (ARM) of the Santa Rosa samples, and MS, ARM and ARM/IRM, where IRM is isothermal remanent magnetization, of Site 398 samples reveal statistically significant cycles. These cycles exhibit periodicity ratios and modulation patterns similar to those of the mid-Cretaceous orbital cycles, suggesting that orbital variations may have modulated depositional processes. Orbital control allows us to estimate the duration of unique, globally identifiable stages of OAE1a. Although OAE1a had a duration of ~ 1.0 to 1.3 Myr, the initial perturbation represented by the negative carbon-isotope excursion was rapid, lasting for ~ 27-44 kyr. This estimate could serve as a basis for constraining triggering

  14. Early environmental effects of the terminal Cretaceous impact

    NASA Technical Reports Server (NTRS)

    Gilmour, Iain; Wolbach, Wendy S.; Anders, Edward

    1988-01-01

    The environmental aftereffects of the terminal Cretaceous impact are examined on the basis of the carbon and nitrogen geochemistry in the basal layer of the K-T boundary clay at Woodside Creek, New Zealand. It is shown that organic carbon and nitrogen at this level are enriched by 15 and 20 times Cretaceous values, respectively. Also, it is found that the N abundances and, to a lesser extent, the organic C abundances are closely correlated with the Ir abundances. The changes in carbon and nitrogen content through the basal layer are outlined, focusing on the possible environmental conditions which could have caused enrichment. In addition, consideration is given to the soot and pyrotoxin content. Possible scenarios for the K-T event and the importance of selective extinction are discussed.

  15. Petrogenesis of Late Cretaceous lava flows from a Ceno-Tethyan island arc: The Raskoh arc, Balochistan, Pakistan

    NASA Astrophysics Data System (ADS)

    Siddiqui, Rehanul Haq; Qasim Jan, M.; Asif Khan, M.

    2012-10-01

    consistent with oceanic island arcs rather than continental margin arcs. It is suggested that the Raskoh arc is an oceanic island arc which formed due to the intra-oceanic convergence in the Ceno-Tethys during the Late Cretaceous rather than constructed on the southern continental margin of the Afghan block, as claimed by previous workers. It is further suggested that the Semail, Zagros, Chagai-Raskoh, Muslim Bagh, and Waziristan island arcs were developed in a single but segmented Cretaceous Ceno-Tethyan convergence zone.

  16. Diversity and Variability of Geoporphyrins and Chlorins During Cretaceous Oceanic Anoxic Event II.

    NASA Astrophysics Data System (ADS)

    Junium, C. K.; Mawson, D. H.; Arthur, M. A.; Keely, B. J.

    2005-12-01

    Geoporphyrins and chlorins are biomarkers that result from the transformation of tetrapyrroles including chlorophylls, bacteriochlorophylls and haems. The transformation reactions are initiated in the water column and sediments during early diagenesis and are dependent on a range of variables including, but not limited to water column redox state, burial conditions, and time. Geoporphyrins and chlorins can retain structural characteristics that allow unambiguous assignment of precursor structures and source organisms making their utility in paleoenvironmental studies extraordinary where such information is preserved. Black shales from Oceanic Anoxic Event II (OAE II, Cenomanian-Turonian Boundary) of ODP Leg 207 present a unique opportunity for investigating the variations in the tetrapyrrole record in very well preserved sediments across a globally significant biogeochemcal event. Identification and structural assignment of tetrapyrroles in this study were achieved by a combination of high-performance-liquid-chromatography (HPLC)/diode-array-detection (DAD) and liquid chromatography-mass spectrometry (LC-MSn) on acetone extracts. Stratigraphic variations in geoporphyrin compounds occur through OAE II. The relative proportions of metallated vs. free-base (metal free) porphyrins vary throughout the sequence, favoring free-base porphyrins during the height of the anoxic event. The greater proportion of free-base porphyrins associated with more extensive reducing conditions is consistent with metal ion limitation during euxinia. For example, vanadyl porphyrins become much less abundant during the peak of the event suggesting that the oceanic inventory of V was sequestered in black shales and unavailable. Preliminary characterization of the tetrapyrroles through OAE II of ODP Leg 207, Demerara Rise, reveals a wide range of geoporphyrins and chlorins. Notably, positive identification of chlorins, the geologically unstable intermediates between highly reactive

  17. Early Cretaceous ice rafting and climate zonation in Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frakes, L.A.; Alley, N.F.; Deynoux, M.

    1995-07-01

    Lower Cretaceous (Valanginian to Albian) strata of the southwestern Eromanga and Carpentaria basins of central and northern Australia, respectively, provide evidence of strongly seasonal climates at high paleolatitudes. These include dispersed clasts (lonestones) in fine sediments and pseudomorphs of calcite after ikaite (glendonites), the latter being known to form only at temperatures below about 7{degrees}C. Rafting is regarded as the transport mechanism for clasts up to boulder size (lonestones) enclosed within dark mudrocks; this interpretation rests on rare occurrences of penetration by clasts into substrate layers. Driftwood and large floating algae are eliminated as possible rafts because fossil wood ismore » found mainly concentrated in nearshore areas of the basins and large algal masses have not been observed. Rafting by icebergs is considered unlikely in view of the global lack of tillites and related glacial deposits of this age. Our interpretation is that seasonal ice, formed in winter along stream courses and strandlines, incorporated clasts which, during the melt season, were dropped into muddy sediments in both basins. Eromanga fine-sediment and concentrations of large clasts and associated sand lenses, both lying above local erosion surfaces. In the Carpentaria Basin, local dumping of sediment from raft surfaces resulted in accumulation of pods of small clasts. Three zones can be identified for the Early Cretaceous climate of eastern Australia: (1) a very cold southern region, at latitudes above about 72{degrees} S, characterized by meteoric waters possibly originating as Antarctic glacial meltwaters; (2) a zone of strongly seasonal climates, with freezing winters and warm summers, between about 72{degrees} and 53{degrees} S.Lat.; and (3) a mid-latitude zone (below about 50{degrees} S. Lat.), where freezing temperatures were not common. 60 refs., 7 figs.« less

  18. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution.

    PubMed

    Feild, Taylor S; Brodribb, Timothy J; Iglesias, Ari; Chatelet, David S; Baresch, Andres; Upchurch, Garland R; Gomez, Bernard; Mohr, Barbara A R; Coiffard, Clement; Kvacek, Jiri; Jaramillo, Carlos

    2011-05-17

    The flowering plants that dominate modern vegetation possess leaf gas exchange potentials that far exceed those of all other living or extinct plants. The great divide in maximal ability to exchange CO(2) for water between leaves of nonangiosperms and angiosperms forms the mechanistic foundation for speculation about how angiosperms drove sweeping ecological and biogeochemical change during the Cretaceous. However, there is no empirical evidence that angiosperms evolved highly photosynthetically active leaves during the Cretaceous. Using vein density (D(V)) measurements of fossil angiosperm leaves, we show that the leaf hydraulic capacities of angiosperms escalated several-fold during the Cretaceous. During the first 30 million years of angiosperm leaf evolution, angiosperm leaves exhibited uniformly low vein D(V) that overlapped the D(V) range of dominant Early Cretaceous ferns and gymnosperms. Fossil angiosperm vein densities reveal a subsequent biphasic increase in D(V). During the first mid-Cretaceous surge, angiosperm D(V) first surpassed the upper bound of D(V) limits for nonangiosperms. However, the upper limits of D(V) typical of modern megathermal rainforest trees first appear during a second wave of increased D(V) during the Cretaceous-Tertiary transition. Thus, our findings provide fossil evidence for the hypothesis that significant ecosystem change brought about by angiosperms lagged behind the Early Cretaceous taxonomic diversification of angiosperms.

  19. The Cretaceous/Paleogene Transition on the East Tasman Plateau, Southwestern Pacific

    NASA Technical Reports Server (NTRS)

    Schellenberg, Stephen A.; Brinkhuis, Henk; Stickley, Catherine E.; Fuller, Michael; Kyte, Frank T.; Williams, Graham L.

    2004-01-01

    Ocean Drilling Program Leg 189 recovered a potentially complete shallow marine record of the Cretaceous-Paleogene boundary (KPB) at Site 1172 on the East Tasman Plateau. Here we present high-resolution (cm-scale) data from micropaleontology, geochemistry, sedimentology, and paleomagnetism that provide no evidence for a complete KPB, but instead suggest a boundary-spanning hiatus of at least 0.8 Ma. We interpret this hiatus to represent the sequence boundary between the uppermost Maastrichtian Tal.1 and lowermost Danian Ta1.2/ Da- 1 3rd-order sequence stratigraphic cycles. Microfloral assemblages indicate generally shallow paleodepths, restricted circulation, and eutrophic conditions through the section. Paleodepths progressively shallow through the late Maastrichtian, while more oceanic and warmer conditions dominate the early Danian. The Site 1172 KPB section is broadly comparable to other southern highlatitude sections in Antarctica and New Zealand, but appears to record a shallower and more restricted environment that permitted a eustatically-driven hiatus across the KPB mass extinction event.

  20. Early to mid Cretaceous vegetation of northern Gondwana - the onset of angiosperm radiation and climatic implications

    NASA Astrophysics Data System (ADS)

    Coiffard, Clément; Mohr, Barbara

    2014-05-01

    Early Cretaceous Northern Gondwana seems to be the cradle of many early flowering plants, especially mesangiosperms that include magnoliids and monocots and basal eudicots. So far our knowledge was based mostly on dispersed pollen and small flowering structures. New fossil finds from Brazil include more complete plants with attached roots, leaves and flowers. Taxonomic studies show that these fossils belonged to clades which are, based on macroscopic characters and molecular data, also considered to be rather basal, such as several members of Nymphaeales, Piperales, Laurales, Magnoliales, monocots (Araliaceae) and Ranunculales. Various parameters can be used in order to understand the physiology and habitat of these plants. Adaptations to climate and habitat are partly mirrored in their root anatomy (evidence of tap roots), leaf size and shape, leaf anatomy including presence of glands, and distribution of stomata. An important ecophysiolocical parameter is vein density as an indicator for the plants' cabability to pump water, and the stomatal pore index, representing the proportion of stomatal pore area on the leaf surface, which is related to the water vapor resistance of the leaf epidermis. During the mid-Cretaceous leaf vein density started to surpass that of gymnosperms, one factor that made angiosperms very successful in conquering many kinds of new environments. Using data on these parameters we deduce that during the late Early to mid Cretaceous angiosperms were already diverse, being represented as both herbs, with aquatic members, such as Nymphaeles, helophytes (e.g. some monocots) and plants that may have grown in shady locations. Other life forms included shrubs and perhaps already small trees (e.g. Magnoliales). These flowering plants occupied various habitats, ranging from xeric (e.g. some Magnoliales) to mesic and shady (e.g. Piperales) or aquatic (e.g. Araceae, Nymphaeales). Overall, it seems that several of these plants clearly exhibited some

  1. Reconstruction of early Cambrian ocean chemistry from Mo isotopes

    NASA Astrophysics Data System (ADS)

    Wen, Hanjie; Fan, Haifeng; Zhang, Yuxu; Cloquet, Christophe; Carignan, Jean

    2015-09-01

    The Neoproterozoic-Cambrian transition was a key time interval in the history of the Earth, especially for variations in oceanic and atmospheric chemical composition. However, two conflicting views exist concerning the nature of ocean chemistry across the Precambrian-Cambrian boundary. Abundant geochemical evidence suggests that oceanic basins were fully oxygenated by the late Ediacaran, while other studies provide seemingly conflicting evidence for anoxic deep waters, with ferruginous conditions [Fe(II)-enriched] persisting into the Cambrian. Here, two early Cambrian sedimentary platform and shelf-slope sections in South China were investigated to trace early Cambrian ocean chemistry from Mo isotopes. The results reveal that early Cambrian sediments deposited under oxic to anoxic/euxinic conditions have δ98/95Mo values ranging from -0.28‰ to 2.29‰, which suggests that early Cambrian seawater may have had δ98/95Mo values of at least 2.29‰, similar to modern oceans. The heaviest and relatively homogeneous δ98/95Mo values were recorded in siltstone samples formed under completely oxic conditions, which is considered that Mn oxide-free shuttling was responsible for such heavy δ98/95Mo value. Further, combined with Fe species data and the accumulation extent of Mo and U, the variation of δ98/95Mo values in the two studied sections demonstrate a redox-stratified ocean with completely oxic shallow water and predominantly anoxic (even euxinic) deeper water having developed early on, which eventually became completely oxygenated. This suggests that oceanic circulation at the time became reorganized, and such changes in oceanic chemistry may have been responsible for triggering the "Cambrian Explosion" of biological diversity.

  2. Novel Insect Leaf-Mining after the End-Cretaceous Extinction and the Demise of Cretaceous Leaf Miners, Great Plains, USA

    PubMed Central

    Donovan, Michael P.; Wilf, Peter; Labandeira, Conrad C.; Johnson, Kirk R.; Peppe, Daniel J.

    2014-01-01

    Plant and associated insect-damage diversity in the western U.S.A. decreased significantly at the Cretaceous-Paleogene (K-Pg) boundary and remained low until the late Paleocene. However, the Mexican Hat locality (ca. 65 Ma) in southeastern Montana, with a typical, low-diversity flora, uniquely exhibits high damage diversity on nearly all its host plants, when compared to all known local and regional early Paleocene sites. The same plant species show minimal damage elsewhere during the early Paleocene. We asked whether the high insect damage diversity at Mexican Hat was more likely related to the survival of Cretaceous insects from refugia or to an influx of novel Paleocene taxa. We compared damage on 1073 leaf fossils from Mexican Hat to over 9000 terminal Cretaceous leaf fossils from the Hell Creek Formation of nearby southwestern North Dakota and to over 9000 Paleocene leaf fossils from the Fort Union Formation in North Dakota, Montana, and Wyoming. We described the entire insect-feeding ichnofauna at Mexican Hat and focused our analysis on leaf mines because they are typically host-specialized and preserve a number of diagnostic morphological characters. Nine mine damage types attributable to three of the four orders of leaf-mining insects are found at Mexican Hat, six of them so far unique to the site. We found no evidence linking any of the diverse Hell Creek mines with those found at Mexican Hat, nor for the survival of any Cretaceous leaf miners over the K-Pg boundary regionally, even on well-sampled, surviving plant families. Overall, our results strongly relate the high damage diversity on the depauperate Mexican Hat flora to an influx of novel insect herbivores during the early Paleocene, possibly caused by a transient warming event and range expansion, and indicate drastic extinction rather than survivorship of Cretaceous insect taxa from refugia. PMID:25058404

  3. Carbonate sedimentation in an extensional active margin: Cretaceous history of the Haymana region, Pontides

    NASA Astrophysics Data System (ADS)

    Okay, Aral I.; Altiner, Demir

    2016-10-01

    The Haymana region in Central Anatolia is located in the southern part of the Pontides close to the İzmir-Ankara suture. During the Cretaceous, the region formed part of the south-facing active margin of the Eurasia. The area preserves a nearly complete record of the Cretaceous system. Shallow marine carbonates of earliest Cretaceous age are overlain by a 700-m-thick Cretaceous sequence, dominated by deep marine limestones. Three unconformity-bounded pelagic carbonate sequences of Berriasian, Albian-Cenomanian and Turonian-Santonian ages are recognized: Each depositional sequence is preceded by a period of tilting and submarine erosion during the Berriasian, early Albian and late Cenomanian, which corresponds to phases of local extension in the active continental margin. Carbonate breccias mark the base of the sequences and each carbonate sequence steps down on older units. The deep marine carbonate deposition ended in the late Santonian followed by tilting, erosion and folding during the Campanian. Deposition of thick siliciclastic turbidites started in the late Campanian and continued into the Tertiary. Unlike most forearc basins, the Haymana region was a site of deep marine carbonate deposition until the Campanian. This was because the Pontide arc was extensional and the volcanic detritus was trapped in the intra-arc basins and did not reach the forearc or the trench. The extensional nature of the arc is also shown by the opening of the Black Sea as a backarc basin in the Turonian-Santonian. The carbonate sedimentation in an active margin is characterized by synsedimentary vertical displacements, which results in submarine erosion, carbonate breccias and in the lateral discontinuity of the sequences, and differs from blanket like carbonate deposition in the passive margins.

  4. Similarity and Differences of Cretaceous Magmatism in the Arctic Region

    NASA Astrophysics Data System (ADS)

    Peyve, A. A.

    2018-03-01

    The paper considers Cretaceous magmatism at the continental margin of the Arctic Region. It is shown that Cretaceous igneous rocks of this region are rather heterogeneous in age, composition, and geodynamic formation setting. This differentiates them from rocks of typical large igneous provinces (LIPs). Local areas of magmatic activity, their substantial remoteness them from one another, and significant distinctions in age, composition of rocks, and formation conditions prevent us from unreservedly combining all occurrences of Cretaceous magmatism at the continental margin of the Arctic Region into a common igneous province. The stage of tholeiitic magmatism in the Svalbard Archipelago, Franz Josef Land, Arctic Canada, and the Alpha-Mendeleev Rise, which can be considered an LIP, began in the Early Cretaceous and continued for a long time, at least until the Campanian. The magmatism apparently had a plume source and was caused by extension during opening of the Canada Basin. Tholeiitic magmatism gave way to the alkaline magmatism stage from the Campanian to the onset of the Paleocene, related to continental rifting at the initial stage of formation of Eurasian Basin in the Arctic Region. No convincing evidence for a genetic link between Early Cretaceous tholeiitic and Late Cretaceous alkaline magmatism is known at present, nor for the alkaline magmatism belonging to a plume source.

  5. Chemical Remagnetization of Jurassic Carbonates and a Primary Paleolatitude of Lower Cretaceous Volcaniclastic Rocks of the Tibetan Himalaya

    NASA Astrophysics Data System (ADS)

    Huang, W.; Van Hinsbergen, D. J. J.; Dekkers, M. J.; Garzanti, E.; Dupont Nivet, G.; Lippert, P. C.; Li, X.; Maffione, M.; Langereis, C. G.; Hu, X.; Guo, Z.; Kapp, P. A.

    2014-12-01

    Paleolatitudes for the Tibetan Himalaya Zone based on paleomagnetic inclinations provide kinematic constraints of the passive northern Indian margin and the extent of 'Greater India' before the India-Asia collision. Here, we present a paleomagnetic investigation of the Jurassic (carbonates) to Lower Cretaceous (volcaniclastic rocks) Wölong section of the Tibetan Himalaya in the Everest region. The carbonates yield positive fold tests, suggesting that the remanent magnetizations have a pre-folding origin. However, detailed paleomagnetic analyses, rock magnetic tests, end-member modeling of acquisition curves of isothermal remanent magnetization, and petrographic studies reveal that the magnetic carrier of the Jurassic carbonates is authigenic magnetite, whereas the dominant magnetic carrier of the Lower Cretaceous volcaniclastic rocks is detrital magnetite. We conclude that the Jurassic carbonates were remagnetized, whereas the Lower Cretaceous volcaniclastics retain a primary remanence. We hypothesize that remagnetization of the Jurassic carbonates was probably caused by the oxidation of early diagenetic pyrite to magnetite within the time interval at ~86-84 Ma during the latest Cretaceous Normal Superchron and earliest deposition of Cretaceous oceanic red beds in the Tibetan Himalaya. The remagnetization of the limestones prevents determining the size of 'Greater India' during Jurassic time. Instead, a paleolatitude of the Tibetan Himalaya of 23.8±2.1° S at ~86-84 Ma is suggested. This value is lower than the expected paleolatitude of India from apparent polar wander path (APWP). The volcaniclastic rocks with the primary remanence, however, yielded a Lower Cretaceous paleolatitude of Tibetan Himalaya of 55.5±3° S, fitting well with the APWP of India.

  6. Plant-arthropod interaction in the Early Cretaceous (Berriasian) of the Araripe Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Pires, Etiene Fabbrin; Sommer, Margot Guerra

    2009-02-01

    Plant-arthropod interactions provide the first relevant data for addressing evidence of phytophagy for an assemblage of coniferous silicified woods from the pre-rift phase in the Araripe Basin, Brazil. A complex system of borings, sometimes filled with small, oval to hexagonal coprolites, allow inferences to be made about the activities of termites (Isoptera). Previous dendrological data indicated that the climate during the Early Cretaceous on the landmasses of the northern Afro-Brazilian Depression was dry and savanna like, where termite borings were common. Features of wood preservation demonstrate that the damage was probably caused by herbivores, not detritivores.

  7. Accreted fragments of the Late Cretaceous Caribbean Colombian Plateau in Ecuador

    NASA Astrophysics Data System (ADS)

    Mamberti, Marc; Lapierre, Henriette; Bosch, Delphine; Jaillard, Etienne; Ethien, Raynald; Hernandez, Jean; Polvé, Mireille

    2003-02-01

    The eastern part of the Western Cordillera of Ecuador includes fragments of an Early Cretaceous (≈123 Ma) oceanic plateau accreted around 85-80 Ma (San Juan-unit). West of this unit and in fault contact with it, another oceanic plateau sequence (Guaranda unit) is marked by the occurrence of picrites, ankaramites, basalts, dolerites and shallow level gabbros. A comparable unit is also exposed in northwestern coastal Ecuador (Pedernales unit). Picrites have LREE-depleted patterns, high ɛNd i and very low Pb isotopic ratios, suggesting that they were derived from an extremely depleted source. In contrast, the ankaramites and Mg-rich basalts are LREE-enriched and have radiogenic Pb isotopic compositions similar to the Galápagos HIMU component; their ɛNd i are slightly lower than those of the picrites. Basalts, dolerites and gabbros differ from the picrites and ankaramites by flat rare earth element (REE) patterns and lower ɛNd; their Pb isotopic compositions are intermediate between those of the picrites and ankaramites. The ankaramites, Mg-rich basalts, and picrites differ from the lavas from the San Juan-Multitud Unit by higher Pb ratios and lower ɛNd i. The Ecuadorian and Gorgona 88-86 Ma picrites are geochemically similar. The Ecuadorian ankaramites and Mg-rich basalts share with the 92-86 Ma Mg-rich basalts of the Caribbean-Colombian Oceanic Plateau (CCOP) similar trace element and Nd and Pb isotopic chemistry. This suggests that the Pedernales and Guaranda units belong to the Late Cretaceous CCOP. The geochemical diversity of the Guaranda and Pedernales rocks illustrates the heterogeneity of the CCOP plume source and suggests a multi-stage model for the emplacement of these rocks. Stratigraphic and geological relations strongly suggest that the Guaranda unit was accreted in the late Maastrichtian (≈68-65 Ma).

  8. Exploring Early Angiosperm Fire Feedbacks using Coupled Experiments and Modelling Approaches to Estimate Cretaceous Palaeofire Behaviour

    NASA Astrophysics Data System (ADS)

    Belcher, Claire; Hudpsith, Victoria

    2016-04-01

    Using the fossil record we are typically limited to exploring linkages between palaeoecological changes and palaeofire activity by assessing the abundance of charcoals preserved in sediments. However, it is the behaviour of fires that primarily governs their ecological effects. Therefore, the ability to estimate variations in aspects of palaeofire behaviour such as palaeofire intensity and rate of spread would be of key benefit toward understanding the coupled evolutionary history of ecosystems and fire. The Cretaceous Period saw major diversification in land plants. Previously, conifers (gymnosperms) and ferns (pteridophytes) dominated Earth's ecosystems until flowering plants (angiosperms) appear in the fossil record of the Early Cretaceous (~135Ma). We have created surface fire behaviour estimates for a variety of angiosperm invasion scenarios and explored the influence of Cretaceous superambient atmospheric oxygen levels on the fire behaviour occurring in these new Cretaceous ecosystems. These estimates are then used to explore the hypothesis that the early spread of the angiosperms was promoted by the novel fire regimes that they created. In order to achieve this we tested the flammability of Mesozoic analogue fuel types in controlled laboratory experiments using an iCone calorimeter, which measured the ignitability as well as the effective heat of combustion of the fuels. We then used the BehavePlus fire behaviour modelling system to scale up our laboratory results to the ecosystem scale. Our results suggest that fire-angiosperm feedbacks may have occurred in two phases: The first phase being a result of weedy angiosperms providing an additional easily ignitable fuel that enhanced both the seasonality and frequency of surface fires. In the second phase, the addition of shrubby understory fuels likely expanded the number of ecosystems experiencing more intense surface fires, resulting in enhanced mortality and suppressed post-fire recruitment of gymnosperms

  9. Phylogenetic diversification of Early Cretaceous seed plants: The compound seed cone of Doylea tetrahedrasperma.

    PubMed

    Rothwell, Gar W; Stockey, Ruth A

    2016-05-01

    Discovery of cupulate ovules of Doylea tetrahedrasperma within a compact, compound seed cone highlights the rich diversity of fructification morphologies, pollination biologies, postpollination enclosure of seeds, and systematic diversity of Early Cretaceous gymnosperms. Specimens were studied using the cellulose acetate peel technique, three-dimensional reconstructions (in AVIZO), and morphological phylogenetic analyses (in TNT). Doylea tetrahedrasperma has bract/fertile short shoot complexes helically arranged within a compact, compound seed cone. Complexes diverge from the axis as a single unit and separate distally into a free bract tip and two sporophylls. Each sporophyll bears a single, abaxial seed, recurved toward the cone axis, that is enveloped after pollinaton by sporophyll tissue, forming a closed cupule. Ovules are pollinated by bisaccate grains captured by micropylar pollination horns. The unique combination of characters shown by D. tetrahedrasperma includes the presence of cupulate seeds borne in conifer-like compound seed cones, an ovuliferous scale analogue structurally equivalent to the ovulate stalk of Ginkgo biloba, gymnospermous pollination, and nearly complete enclosure of mature seeds. These features characterize the Doyleales ord. nov., clearly distinguish it from the seed fern order Corystospermales, and allow for recognition of another recently described Early Cretaceous seed plant as a second species in genus Doylea. A morphological phylogenetic analysis highlights systematic relationships of the Doyleales ord. nov. and emphasizes the explosive phylogenetic diversification of gymnosperms that was underway at the time when flowering plants may have originated and/or first began to radiate. © 2016 Botanical Society of America.

  10. Extreme adaptations for probable visual courtship behaviour in a Cretaceous dancing damselfly.

    PubMed

    Zheng, Daran; Nel, André; Jarzembowski, Edmund A; Chang, Su-Chin; Zhang, Haichun; Xia, Fangyuan; Liu, Haoying; Wang, Bo

    2017-03-20

    Courtship behaviours, frequent among modern insects, have left extremely rare fossil traces. None are known previously for fossil odonatans. Fossil traces of such behaviours are better known among the vertebrates, e.g. the hypertelic antlers of the Pleistocene giant deer Megaloceros giganteus. Here we describe spectacular extremely expanded, pod-like tibiae in males of a platycnemidid damselfly from mid-Cretaceous Burmese amber. Such structures in modern damselflies, help to fend off other suitors as well as attract mating females, increasing the chances of successful mating. Modern Platycnemidinae and Chlorocyphidae convergently acquired similar but less developed structures. The new findings provide suggestive evidence of damselfly courtship behaviour as far back as the mid-Cretaceous. These data show an unexpected morphological disparity in dancing damselfly leg structure, and shed new light on mechanisms of sexual selection involving intra- and intersex reproductive competition during the Cretaceous.

  11. Volcanic rocks cored on hess rise, Western Pacific Ocean

    USGS Publications Warehouse

    Vallier, T.L.; Windom, K.E.; Seifert, K.E.; Thiede, Jorn

    1980-01-01

    Large aseismic rises and plateaus in the western Pacific include the Ontong-Java Plateau, Magellan Rise, Shatsky Rise, Mid-Pacific Mountains, and Hess Rise. These are relatively old features that rise above surrounding sea floors as bathymetric highs. Thick sequences of carbonate sediments overlie, what are believed to be, Upper Jurassic and Lower Cretaceous volcanic pedestals. We discuss here petrological and tectonic implications of data from volcanic rocks cored on Hess Rise. The data suggest that Hess Rise originated at a spreading centre in the late early Cretaceous (Aptian-Albian stages). Subsequent off-ridge volcanism in the late Albian-early Cenomanian stages built a large archipelago of oceanic islands and seamounts composed, at least in part, of alkalic rocks. The volcanic platform subsided during its northward passage through the mid-Cretaceousequatorial zone. Faulting and uplift, and possibly volcanism, occurred in the latest Cretaceous (Campanian-Maastrichtian stages). Since then, Hess Rise continued its northward movement and subsidence. Volcanic rocks from holes drilled on Hess Rise during IPOD Leg 62 (Fig. 1) are briefly described here and we relate the petrological data to the origin and evolution of that rise. These are the first volcanic rocks reported from Hess Rise. ?? 1980 Nature Publishing Group.

  12. A revised checklist of Nepticulidae fossils (Lepidoptera) indicates an Early Cretaceous origin.

    PubMed

    Doorenweerd, Camiel; Nieukerken, Erik J Van; Sohn, Jae-Cheon; Labandeira, Conrad C

    2015-05-27

    With phylogenetic knowledge of Lepidoptera rapidly increasing, catalysed by increasingly powerful molecular techniques, the demand for fossil calibration points to estimate an evolutionary timeframe for the order is becoming an increasingly pressing issue. The family Nepticulidae is a species rich, basal branch within the phylogeny of the Lepidoptera, characterized by larval leaf-mining habits, and thereby represents a potentially important lineage whose evolutionary history can be established more thoroughly with the potential use of fossil calibration points. Using our experience with extant global Nepticulidae, we discuss a list of characters that may be used to assign fossil leaf mines to Nepticulidae, and suggest useful methods for classifying relevant fossil material. We present a checklist of 79 records of Nepticulidae representing adult and leaf-mine fossils mentioned in literature, often with multiple exemplars constituting a single record. We provide our interpretation of these fossils. Two species now are included in the collective generic name Stigmellites: Stigmellites resupinata (Krassilov, 2008) comb. nov. (from Ophiheliconoma) and Stigmellites almeidae (Martins-Neto, 1989) comb. nov. (from Nepticula). Eleven records are for the first time attributed to Nepticulidae. After discarding several dubious records, including one possibly placing the family at a latest Jurassic position, we conclude that the oldest fossils likely attributable to Nepticulidae are several exemplars representing a variety of species from the Dakota Formation (USA). The relevant strata containing these earliest fossils are now dated at 102 Ma (million years ago) in age, corresponding to the latest Albian Stage of the Early Cretaceous. Integration of all records in the checklist shows that a continuous presence of nepticulid-like leaf mines preserved as compression-impression fossils and by amber entombment of adults have a fossil record extending to the latest Early Cretaceous.

  13. Provenance of a large Lower Cretaceous turbidite submarine fan complex on the active Laurasian margin: Central Pontides, northern Turkey

    NASA Astrophysics Data System (ADS)

    Akdoğan, Remziye; Okay, Aral I.; Sunal, Gürsel; Tari, Gabor; Meinhold, Guido; Kylander-Clark, Andrew R. C.

    2017-02-01

    The Pontides formed the southern active margin of Laurasia during the Mesozoic. They became separated from mainland Laurasia during the Late Cretaceous, with the opening of the Black Sea as an oceanic back-arc basin. During the Early Cretaceous, a large submarine turbidite fan complex developed in the Central Pontides. The turbidites cover an area of 400 km by 90 km with a thickness of more than 2 km. We have investigated the provenance of these turbidites-the Çağlayan Formation-using paleocurrent measurements, U-Pb detrital zircon ages, REE abundances of dated zircons and geochemistry of detrital rutile grains. 1924 paleocurrent measurements from 96 outcrop stations indicate flow direction from northwest to southeast in the eastern part of the Çağlayan Basin and from north-northeast to west-southwest in the western part. 1194 detrital zircon ages from 13 Lower Cretaceous sandstone samples show different patterns in the eastern, central and western parts of the basin. The majority of the U-Pb detrital zircon ages in the eastern part of the basin are Archean and Paleoproterozoic (61% of all zircon ages, 337 grains); rocks of these ages are absent in the Pontides and present in the Ukrainian Shield, which indicates a source north of the Black Sea. In the western part of the basin the majority of the zircons are Carboniferous and Neoproterozoic (68%, 246 grains) implying more local sources within the Pontides. The detrital zircons from the central part show an age spectrum as mixture of zircons from western and eastern parts. Significantly, Jurassic and Early Cretaceous zircons make up less than 2% of the total zircon population, which implies lack of a coeval magmatic arc in the region. This is compatible with the absence of the Lower Cretaceous granites in the Pontides. Thus, although the Çağlayan Basin occupied a fore-arc position above the subduction zone, the arc was missing, probably due to flat subduction, and the basin was largely fed from the Ukrainian

  14. Early Cretaceous Shallow-Water Platform Carbonates of the Bolkar Mountains, Central Taurides - South Turkey: Facies Analysis and Depositional Environments

    NASA Astrophysics Data System (ADS)

    Solak, Cemile; Taslı, Kemal; Koç, Hayati

    2016-10-01

    The study area comprises southern non-metamorphic part of the Bolkar Mountains which are situated in southern Turkey, eastern part of the Central Taurides. The studied five outcrops form geologically parts of the tectonostratigraphic units called as allochthonous Aladag Unit and autochthonous Geyikdagi Unit. The aim of this study is to describe microfacies and depositional environments of the Bolkar Mountains Early Cretaceous shallow- water platform carbonates. The Lower Cretaceous is represented by continuous thick- bedded to massive dolomite sequence ranging from 100 to 150 meters thick, which only contains locally laminated limestone intercalations in the Yüğlük section and thick to very thick-bedded uniform limestones ranging from approximately 50 to 120 meters, consist of mainly laminated- fenestral mudstone, peloidal-intraclastic grainstone-packstone, bioclastic packstone- wackestone, benthic foraminiferal-intraclastic grainstone-packstone, ostracod-fenestral wackestone-mudstone, dasycladacean algal packstone-wackestone and ooidal grainstone microfacies. Based on a combination sedimantological data, facies/microfacies and micropaleontological (predominantly dasycladacean algae and diverse benthic foraminifera) analysis, it is concluded that Early Cretaceous platform carbonates of the Bolkar Mountains reflect a tidally affected tidal-flat and restricted lagoon settings. During the Berriasian- Valanginian unfavourable facies for benthic foraminifera and dolomitization were predominate. In the Hauterivian-early Aptian, the effect of dolomitization largely disappeared and inner platform conditions still prevailed showing alternations of peritidal and lagoon facies, going from peritidal plains (representing various sub-environments including supratidal, intertidal area, tidal-intertidal ponds and ooid bars) dominated by ostracod and miliolids, to dasycladacean algae-rich restricted lagoons-subtidal. These environments show a transition in the vertical and

  15. Recycling of Amazonian detrital zircons in the Mixteco terrane, southern Mexico: Paleogeographic implications during Jurassic-Early Cretaceous and Paleogene times

    NASA Astrophysics Data System (ADS)

    Silva-Romo, Gilberto; Mendoza-Rosales, Claudia Cristina; Campos-Madrigal, Emiliano; Morales-Yáñez, Axél; de la Torre-González, Alam Israel; Nápoles-Valenzuela, Juan Ivan

    2018-04-01

    In the northeastern Mixteco terrane of southern Mexico, in the Ixcaquixtla-Atzumba region, the recycling of Amazonian detrital zircons records the paleogeography during the Mesozoic period in the context of the breakup of Pangea, a phenomenon that disarticulated the Sanozama-La Mora paleo-river. The clastic units of southern Mexico in the Ayuquila, Otlaltepec and Zapotitlán Mesozoic basins, as well as in the Atzumba Cenozoic basin, are characterized by detrital zircon contents with ages specific to the Amazonian craton, ranging between 3040 and 1278 Ma. The presence of zircons of Amazonian affinity suggests a provenance by recycling from carrier units such as the La Mora Formation or the Ayú Complex. In the area, the Ayú and Acatlán complexes form the Cosoltepec block, a paleogeographic element that during Early Cretaceous time acted as the divide between the slopes of the paleo-Gulf of Mexico and the paleo-Pacific Ocean. The sedimentological characteristics of the Jurassic-Cenozoic clastic successions in the Ixcaquixtla-Atzumba region denote relatively short transport in braided fluvial systems and alluvial fans. In this way, several basins are recognized around the Cosoltepec block. At the southeastern edge of the Cosoltepec block, the Ayuquila and Tecomazúchil formations accumulated in the Ayuquila continental basin on the paleo-Pacific Ocean slope. On the other hand, within the paleo-Gulf of Mexico slope, in the Otlaltepec continental basin, the Piedra Hueca and the Otlaltepec formations accumulated. The upper member of the Santa Lucía Formation accumulated in a transitional environment on the southwestern shoulder of the Zapotitlán basin, as well as on the paleo-Gulf of Mexico slope. In the Ayuquila basin, a marine transgression is recognized that advanced from south to north during the Late Jurassic. At the northeastern edge of the Cosoltepec block, we propose that the Santa Lucía formation attests to a transgression from the paleo-Gulf of Mexico

  16. An enigmatic crocodyliform tooth from the bauxites of western Hungary suggests hidden mesoeucrocodylian diversity in the Early Cretaceous European archipelago

    PubMed Central

    Rabi, Márton; Makádi, László

    2015-01-01

    Background. The Cretaceous of southern Europe was characterized by an archipelago setting with faunas of mixed composition of endemic, Laurasian and Gondwanan elements. However, little is known about the relative timing of these faunal influences. The Lower Cretaceous of East-Central Europe holds a great promise for understanding the biogeographic history of Cretaceous European biotas because of the former proximity of the area to Gondwana (as part of the Apulian microcontinent). However, East-Central European vertebrates are typically poorly known from this time period. Here, we report on a ziphodont crocodyliform tooth discovered in the Lower Cretaceous (Albian) Alsópere Bauxite Formation of Olaszfalu, western Hungary. Methods. The morphology of the tooth is described and compared with that of other similar Cretaceous crocodyliforms. Results. Based on the triangular, slightly distally curved, constricted and labiolingually flattened crown, the small, subequal-sized true serrations on the carinae mesially and distally, the longitudinal fluting labially, and the extended shelves along the carinae lingually the tooth is most similar to some peirosaurid, non-baurusuchian sebecosuchian, and uruguaysuchid notosuchians. In addition, the paralligatorid Wannchampsus also possesses similar anterior teeth, thus the Hungarian tooth is referred here to Mesoeucrocodylia indet. Discussion. Supposing a notosuchian affinity, this tooth is the earliest occurrence of the group in Europe and one of the earliest in Laurasia. In case of a paralligatorid relationship the Hungarian tooth would represent their first European record, further expanding their cosmopolitan distribution. In any case, the ziphodont tooth from the Albian bauxite deposit of western Hungary belongs to a group still unknown from the Early Cretaceous European archipelago and therefore implies a hidden diversity of crocodyliforms in the area. PMID:26339542

  17. Tectonostratigraphic reconstruction Cretaceous volcano-sedimentary in the northwestern Andes: from extensional tectonics to arc accretion.

    NASA Astrophysics Data System (ADS)

    Zapata, S.; Patino, A. M.; Cardona, A.; Mejia, D.; Leon, S.; Jaramillo, J. S.; Valencia, V.; Parra, M.; Hincapie, S.

    2014-12-01

    Active continental margins characterized by continuous convergence experienced overimposed tectonic configurations that allowed the formation of volcanic arcs, back arc basins, transtensional divergent tectonics or the accretion of exotic volcanic terranes. Such record, particularly the extensional phases, can be partially destroyed and obscure by multiple deformational events, the accretion of exotic terranes and strike slip fragmentation along the margin. The tectonic evolution of the northern Andes during the Mesozoic is the result of post Pangea extension followed by the installation of a long-lived Jurassic volcanic arc (209 - 136 ma) that apparently stops between 136 Ma and 110 Ma. The Quebradagrande Complex has been define as a single Lower Cretaceous volcano-sedimentary unit exposed in the western flank of the Central Cordillera of the Colombian Andes that growth after the Late Jurassic to Early Cretaceous magmatic hiatus. The origin of this unit have been related either to an oceanic volcanic arc or a marginal basin environment. The existence of such contrasting models reflect the regional perspective followed in published studies and the paucity of detail analysis of the volcano-sedimentary sequences.We integrate multiple approaches including structural mapping, stratigraphy, geochemistry, U-Pb provenance and geochronology to improve the understanding of this unit and track the earlier phases of accumulation that are mask on the overimposed tectonic history. Our preliminary results suggest the existence of different volcano-sedimentary units that accumulated between 100 Ma and 82 Ma.The older Lower Cretaceous sequences was deposited over Triassic metamorphic continental crust and include a upward basin deepening record characterized by thick fan delta conglomerates, followed by distal turbidites and a syn-sedimentary volcanic record at 100 ma. The other sequence include a 85 - 82 Ma fringing arc that was also formed close to the continental margin or

  18. On a grain of sand - a microhabitat for the opportunistic agglutinated foraminifera Hemisphaerammina apta n. sp., from the early Eocene Arctic Ocean

    NASA Astrophysics Data System (ADS)

    McNeil, David H.; Neville, Lisa A.

    2018-02-01

    Hemisphaerammina apta n. sp. is an attached monothalamous agglutinated foraminifera discovered in shelf sediments of the early Eocene Arctic Ocean. It is a simple yet distinctive component of the endemic agglutinated foraminiferal assemblage that colonized the Arctic Ocean after the microfaunal turnover caused by the Paleocene-Eocene Thermal Maximum. Associated foraminifera are characterized by a high percentage of monothalamous species (up to 60 %) and are entirely agglutinated indicating a brackish (mesohaline) early Eocene Arctic Ocean. Hemisphaerammina apta occurs exclusively as individuals attached to fine detrital grains (0.2 to 1.8 mm) of sediment. It is a small species (0.06 to 0.2 mm in diameter), fine-grained, with a low hemispherical profile, no floor across the attachment area, no substantive marginal flange, no internal structures, and no aperture. Lacking an aperture, it apparently propagated and fed through minute (micrometre-sized) interstitial pores in the test wall. Attachment surfaces vary from concave to convex and rough to smooth. Grains for attachment are diverse in shape and type but are predominantly of quartz and chert. The presence of H. apta in the early Eocene was an opportunistic response to an environment with an active hydrological system (storm events). Attachment to grains of sand would provide a more stable base on a sea floor winnowed by storm-generated currents. Active transport is indicated by the relative abundance of reworked foraminifera mixed with in situ species. Contemporaneous reworking and colonization by H. apta is suggested by its attachment to a reworked specimen of Cretaceous foraminifera.

  19. New paleomagnetic results from Upper Cretaceous arc-type rocks from the northern and southern branches of the Neotethys ocean in Anatolia

    NASA Astrophysics Data System (ADS)

    Cengiz Cinku, Mualla; Heller, Friedrich; Ustaömer, Timur

    2017-10-01

    A paleomagnetic study of Cretaceous arc type rocks in the Central-Eastern Pontides and in the Southeastern Taurides investigates the tectonic and paleolatitudinal evolution of three volcanic belts in Anatolia, namely the Northern and Southern Volcanic Belts in the Pontides and the SE Taurides volcanic belt. The paleomagnetic data indicate that magnetizations were acquired prior to folding at most sampling localities/sites, except for those in the Erzincan area in the Eastern Pontides. The Southern Volcanic Belt was magnetized at a paleolatitude between 23.8_{-3.8}^{+4.2}°N and 20.2_{-1.2}^{+1.3}°N. Hisarlı (J Geodyn 52:114-128, 2011) reported a more northerly paleolatitude (26.6_{-4.6}^{+5.1}°N) for the Northern Volcanic Belt. The comparison of the new paleomagnetic results with previous ones in Anatolia allows to conclude that the Southern Volcanic Belt in the Central-Eastern Pontides was emplaced after the Northern Volcanic Belt as a result of slab-roll back of the Northern Neotethys ocean in the Late Cretaceous. In the Southeast Taurides, Upper Cretaceous arc-related sandstones were at a paleolatitude of 16.8_{-3.8}^{+4.2} . The Late Cretaceous paleomagnetic rotations in the Central Pontides exhibit a counterclockwise rotation of R± Δ R=-37.1° ± 5.8° (Group 1; Çankırı, Yaylaçayı Formation) while Maastrichtian arc type rocks in the Yozgat area (Group 2) show clockwise rotations R + Δ R = 33.7° ± 8.4° and R + Δ R = 29.3° ± 6.0°. In the SE Taurides counterclockwise and clockwise rotations of R± Δ R=-48.6° ± 5.2° and R± Δ R=+34.1° ± 15.1° are obtained (Group 4; Elazığ Magmatic Complex). The Late Cretaceous paleomagnetic rotations in the Pontides follow a general trend in concordance with the shape of the suture zone after the collision between the Pontides and the Kırşehir block. The affect of the westwards excursion of the Anatolian plate and the associated fault bounded block rotations in Miocene are observed in the east of the

  20. Early Cretaceous bimodal volcanism in the Duolong Cu mining district, western Tibet: Record of slab breakoff that triggered ca. 108-113 Ma magmatism in the western Qiangtang terrane

    NASA Astrophysics Data System (ADS)

    Wei, Shao-gang; Tang, Ju-xing; Song, Yang; Liu, Zhi-bo; Feng, Jun; Li, Yan-bo

    2017-05-01

    derived from mantle enriched by the metasomatism of subducted fluids, whereas the rhyolite could have been derived by partial melting of mafic juvenile crust that originated from an older and more depleted mantle. In light of the geochemical characteristics and field relationships, we propose that breakoff of the Bangong-Nujiang oceanic lithosphere was responsible for the generation and emplacement of the MF bimodal volcanic rocks. The fact that the MF bimodal volcanic arc magmatism was active at ca. 108-113 Ma indicates that it was associated with closure of the Bangong-Nujiang Ocean via an arc-arc "soft" collision during the Early Cretaceous.

  1. Modelling the interactions between vegetation and climate from the Cretaceous to the Eocene

    NASA Astrophysics Data System (ADS)

    Loptson, Claire; Lunt, Dan; Francis, Jane

    2013-04-01

    The climates during the Cretaceous (~144 to 66 Ma) and the early Eocene (~56 to 48 Ma) were much warmer than the present day. Atmospheric CO2 levels for these past climates have a large uncertainty associated with them, but were possibly as high as 2000 to 3000 ppm for the early Eocene (Beerling and Royer, 2011; Lowenstein and Demicco, 2006) and maximum values are thought to range from 800 to 1800 ppm during the Cretaceous (Royer et al., 2012). Current modelling efforts have had great difficulty in replicating the shallow latitudinal temperature gradient indicated by proxy data for these time periods (e.g. Heinemann et al., 2009; Winguth et al., 2010; Shellito et al., 2009). Mechanisms that can result in such a low temperature gradient have not been found (Winguth et al., 2010; Beerling et al., 2011; Sloan and Morrill, 1998), but a contributing factor could be that not all climate feedbacks are included in these models. Vegetation feedbacks have been shown to be especially important (e.g. Otto-Bliesner and Upchurch, 1997; Bonan, 2008) so by including a more accurate representation of vegetation in the climate model, the model-data discrepancies may be reduced. A fully coupled atmosphere-ocean GCM, HadCM3L, coupled to a dynamic global vegetation model (TRIFFID), was used to simulate the climate and the predicted vegetation distributions for and the early Eocene and 12 different time slices representing different ages throughout the Cretaceous at 4x pre-industrial CO2. The only difference in the way these simulations were set up are different boundary conditions that are specific to that time period, e.g. different solar constants and paleogeographies. This allows a direct comparison between the time slices. We present the changes in climate, and therefore vegetation, during the Cretaceous due to changes in these boundary conditions alone, with a focus on Antarctica. Additional Eocene simulations were also carried out with a) fixed globally-uniform vegetation and b

  2. Paleomagnetism of Jurassic and Cretaceous rocks in central Patagonia: a key to constrain the timing of rotations during the breakup of southwestern Gondwana?

    NASA Astrophysics Data System (ADS)

    Geuna, Silvana E.; Somoza, Rubén; Vizán, Haroldo; Figari, Eduardo G.; Rinaldi, Carlos A.

    2000-08-01

    A paleomagnetic study in Jurassic and Cretaceous rocks from the Cañadón Asfalto basin, central Patagonia, indicates the occurrence of about 25-30° clockwise rotation in Upper Jurassic-lowermost Cretaceous rocks, whereas the overlying mid-Cretaceous rocks do not show evidence of rotation. This constrains the tectonic rotation to be related to a major regional unconformity in Patagonia, which in turn seems to be close in time with the early opening of the South Atlantic Ocean. The sense and probably the timing of this rotation are similar to those of other paleomagnetically detected rotations in different areas of southwestern Gondwana, suggesting a possible relationship between these and major tectonic processes related with fragmentation of the supercontinent. On the other hand, the mid-Cretaceous rocks in the region yield a paleopole located at Lat. 87° South, Long. 159° East, A95=3.8°. This pole position is consistent with coeval high-quality paleopoles of other plates when transferred to South American coordinates, implying it is an accurate determination of the Aptian (circa 116 Ma) geomagnetic field in South America.

  3. Dinosaur trackways from the early Late Cretaceous of western Cameroon

    NASA Astrophysics Data System (ADS)

    Martin, Jeremy E.; Menkem, Elie Fosso; Djomeni, Adrien; Fowe, Paul Gustave; Ntamak-Nida, Marie-Joseph

    2017-10-01

    Dinosaur trackways have rarely been reported in Cretaceous strata across the African continent. To the exception of ichnological occurrences in Morocco, Tunisia, Niger and Cameroon, our knowledge on the composition of Cretaceous dinosaur faunas mostly relies on skeletal evidence. For the first time, we document several dinosaur trackways from the Cretaceous of the Mamfe Basin in western Cameroon. Small and medium-size tridactyl footprints as well as numerous large circular footprints are present on a single horizon showing mudcracks and ripple marks. The age of the locality is considered Cenomanian-Turonian and if confirmed, this ichnological assemblage could be younger than the dinosaur footprints reported from northern Cameroon, and coeval with or younger than skeletal remains reported from the Saharan region. These trackways were left in an adjacent subsiding basin along the southern shore of the Benue Trough during a time of high-sea stand when the Trans-Saharan Seaway was already disconnecting West Africa from the rest of the continent. We predict that other similar track sites may be occurring along the margin of the Benue Trough and may eventually permit to test hypotheses related to provincialism among African dinosaur faunas.

  4. Ultraviolet radiation and the photobiology of earth's early oceans.

    PubMed

    Cockell, C S

    2000-10-01

    During the Archean era (3.9-2.5 Ga ago) the earth was dominated by an oceanic lithosphere. Thus, understanding how life arose and persisted in the Archean oceans constitutes a major challenge in understanding early life on earth. Using a radiative transfer model of the late Archean oceans, the photobiological environment of the photic zone and the surface microlayer is explored at the time before the formation of a significant ozone column. DNA damage rates might have been approximately three orders of magnitude higher in the surface layer of the Archean oceans than on the present-day oceans, but at 30 m depth, damage may have been similar to the surface of the present-day oceans. However at this depth the risk of being transported to surface waters in the mixed layer was high. The mixed layer may have been inhabited by a low diversity UV-resistant biota. But it could have been numerically abundant. Repair capabilities similar to Deinococcus radiodurans would be sufficient to survive in the mixed layer. Diversity may have been greater in the region below the mixed layer and above the light compensation point corresponding to today's 'deep chlorophyll maximum'. During much of the Archean the air-water interface was probably an uninhabitable extreme environment for neuston. The habitability of some regions of the photic zone is consistent with the evidence embodied in the geologic record, which suggests an oxygenated upper layer in the Archean oceans. During the early Proterozoic, as ozone concentrations increased to a column abundance above 1 x 10(17) cm-2, UV stress would have been reduced and possibly a greater diversity of organisms could have inhabited the mixed layer. However, nutrient upwelling from newly emergent continental crusts may have been more significant in increasing total planktonic abundance in the open oceans and coastal regions than photobiological factors. The phohobiological environment of the Archean oceans has implications for the potential

  5. Litho- and biofacies of Early Cretaceous rudist-bearing carbonate sediments in northeastern Japan

    NASA Astrophysics Data System (ADS)

    Sano, Shin-ichi

    1995-11-01

    Carbonate blocks of late Aptian (Lower Cretaceous) age occur in the Lower Yezo Group of central Hokkaido in northeast Japan. The shallow-water carbonates were emplaced by gravity sliding and rock fall into a deep-water flysch basin. Various lithofacies can be distinguished within the blocks including massive wackestone, bedded packstone and micro-oncoid grainstone, containing corals, rudists, an oyster, gastropods, calcareous algae and an orbitolinid foraminifer. Facies and palaeoecological analyses suggest deposition of low-energy biostromes and sand banks in open lagoonal and restricted environments with local higher-energy shoals and beaches. The presence of calcareous sandstones and abundant insoluble residues in limestones suggest deposition in an attached carbonate platform close to a supply of terrigenous material, rather than deposition upon seamounts within an oceanic setting. A narrow rimmed shelf in tropical-subtropical conditions would have been the depositional environment for these carbonates, which were subsequently deformed into blocks and transported into deep water as a result of the tectonic collapse of the platform.

  6. One hundred million year old ergot: psychotropic compounds in the Cretaceous?

    USDA-ARS?s Scientific Manuscript database

    A fungal sclerotium similar to sclerotia of the genus Claviceps, commonly known as ergot, was found infecting a grass kernel in Early Cretaceous Myanmar amber. This represents the first fossil record of ergot dating as far back as the Cretaceous period. The fungus, described as Palaeoclaviceps para...

  7. Intra-annual seasonal variability of surface zooplankton distribution patterns along a 110°E transect of the Southern Ocean in the austral summer of 2011/12

    NASA Astrophysics Data System (ADS)

    Takahashi, Kunio T.; Hosie, Graham W.; Odate, Tsuneo

    2017-06-01

    Seasonal cycles can provide insight into the interactions between zooplankton and the environment. However, few intra-annual seasonal studies have been undertaken in the Southern Ocean. We investigated the composition, distribution, and abundance of micro- and meso-zooplankton along the 110°E meridian with three transects in December 2011, January and March 2012 using a Continuous Plankton Recorder. High zooplankton abundance was recorded in the Polar Frontal Zone (PFZ) and the Antarctic Zone (AZ) in both day and night at all transects with 179.0-300.9 ind. m-3. The small copepods Oithona similis, Ctenocalanus citer, and copepodites indet (copepod indeterminable) were dominant in the PFZ and AZ communities. Total zooplankton abundance was comparatively consistent among transects. Nighttime abundance levels remained high in the AZ in March with high abundance of copepodites indet. This seasonal fluctuation appeared to be influenced by recruitment of new populations. Most core species/taxa, except for O. similis, C. citer, and foraminiferans in the AZ area in early January, exhibited a diel decrease in abundance. A multi-ship intra-annual seasonal survey will help detect their various regional and/or seasonal distribution patterns, and the impacts of environmental change on Southern Ocean pelagic ecosystems.

  8. A Ceratopsian Dinosaur from the Lower Cretaceous of Western North America, and the Biogeography of Neoceratopsia

    PubMed Central

    Farke, Andrew A.; Maxwell, W. Desmond; Cifelli, Richard L.; Wedel, Mathew J.

    2014-01-01

    The fossil record for neoceratopsian (horned) dinosaurs in the Lower Cretaceous of North America primarily comprises isolated teeth and postcrania of limited taxonomic resolution, hampering previous efforts to reconstruct the early evolution of this group in North America. An associated cranium and lower jaw from the Cloverly Formation (?middle–late Albian, between 104 and 109 million years old) of southern Montana is designated as the holotype for Aquilops americanus gen. et sp. nov. Aquilops americanus is distinguished by several autapomorphies, including a strongly hooked rostral bone with a midline boss and an elongate and sharply pointed antorbital fossa. The skull in the only known specimen is comparatively small, measuring 84 mm between the tips of the rostral and jugal. The taxon is interpreted as a basal neoceratopsian closely related to Early Cretaceous Asian taxa, such as Liaoceratops and Auroraceratops. Biogeographically, A. americanus probably originated via a dispersal from Asia into North America; the exact route of this dispersal is ambiguous, although a Beringian rather than European route seems more likely in light of the absence of ceratopsians in the Early Cretaceous of Europe. Other amniote clades show similar biogeographic patterns, supporting an intercontinental migratory event between Asia and North America during the late Early Cretaceous. The temporal and geographic distribution of Upper Cretaceous neoceratopsians (leptoceratopsids and ceratopsoids) suggests at least intermittent connections between North America and Asia through the early Late Cretaceous, likely followed by an interval of isolation and finally reconnection during the latest Cretaceous. PMID:25494182

  9. Tectonics of the Qinling (Central China): Tectonostratigraphy, geochronology, and deformation history

    USGS Publications Warehouse

    Ratschbacher, L.; Hacker, B.R.; Calvert, A.; Webb, L.E.; Grimmer, J.C.; McWilliams, M.O.; Ireland, T.; Dong, S.; Hu, Jiawen

    2003-01-01

    The Qinling orogen preserves a record of late mid-Proterozoic to Cenozoic tectonism in central China. High-pressure metamorphism and ophiolite emplacement (Songshugou ophiolite) assembled the Yangtze craton, including the lower Qinling unit, into Rodinia during the ~1.0 Ga Grenvillian orogeny. The lower Qinling unit then rifted from the Yangtze craton at ~0.7 Ga. Subsequent intra-oceanic arc formation at ~470-490 Ma was followed by accretion of the lower Qinling unit first to the intra-oceanic arc and then to the Sino-Korea craton. Subduction then imprinted a ~400 Ma Andean-type magmatic arc onto all units north of the northern Liuling unit. Oblique subduction created Silurian-Devonian WNW-trending, sinistral transpressive wrench zones (e.g., Lo-Nan, Shang-Dan), and Late Permian-Early Triassic subduction reactivated them in dextral transpression (Lo-Nan, Shang-Xiang, Shang-Dan) and subducted the northern edge of the Yangtze craton. Exhumation of the cratonal edge formed the Wudang metamorphic core complex during dominantly pure shear crustal extension at ~230-235 Ma. Post-collisional south-directed shortening continued through the Early Jurassic. Cretaceous reactivation of the Qinling orogen started with NW-SE sinistral transtension, coeval with large-scale Early Cretaceous crustal extension and sinistral transtension in the northern Dabie Shan; it presumably resulted from the combined effects of the Siberia-Mongolia-Sino-Korean and Lhasa-West Burma-Qiangtang-Indochina collisions and Pacific subduction. Regional dextral wrenching was active within a NE-SW extensional regime between ~60 and 100 Ma. An Early Cretaceous Andean-type continental magmatic arc, with widespread Early Cretaceous magmatism and back-arc extension, was overprinted by shortening related to the collision of Yangtze-Indochina Block with the West Philippines Block. Strike-slip and normal faults associated with Eocene half-graben basins record Paleogene NNE-SSW contraction and WNW-ESE extension

  10. Seismic tomographic constraints on plate-tectonic reconstructions of Nazca subduction under South America since late Cretaceous (˜80 Ma)

    NASA Astrophysics Data System (ADS)

    Chen, Y. W.; Wu, J.; Suppe, J.

    2017-12-01

    Global seismic tomography has provided new and increasingly higher resolution constraints on subducted lithospheric remnants in terms of their position, depth, and volumes. In this study we aim to link tomographic slab anomalies in the mantle under South America to Andean geology using methods to unfold (i.e. structurally restore) slabs back to earth surface and input them to globally consistent plate reconstructions (Wu et al., 2016). The Andean margin of South America has long been interpreted as a classic example of a continuous subduction system since early Jurassic or later. However, significant gaps in Andean plate tectonic reconstructions exist due to missing or incomplete geology from extensive Nazca-South America plate convergence (i.e. >5000 km since 80 Ma). We mapped and unfolded the Nazca slab from global seismic tomography to produce a quantitative plate reconstruction of the Andes back to the late Cretaceous 80 Ma. Our plate model predicts the latest phase of Nazca subduction began in the late Cretaceous subduction after a 100 to 80 Ma plate reorganization, which is supported by Andean geology that indicates a margin-wide compressional event at the mid-late Cretaceous (Tunik et al., 2010). Our Andean plate tectonic reconstructions predict the Andean margin experienced periods of strike-slip/transtensional and even divergent plate tectonics between 80 to 55 Ma. This prediction is roughly consistent with the arc magmatism from northern Chile between 20 to 36°S that resumed at 80 Ma after a magmatic gap. Our model indicates the Andean margin only became fully convergent after 55 Ma. We provide additional constraints on pre-subduction Nazca plate paleogeography by extracting P-wave velocity perturbations within our mapped slab surfaces following Wu et al. (2016). We identified localized slow anomalies within our mapped Nazca slab that apparently show the size and position of the subducted Nazca ridge, Carnegie ridge and the hypothesized Inca plateau

  11. Intracontinental mantle plume and its implications for the Cretaceous tectonic history of East Asia

    NASA Astrophysics Data System (ADS)

    Ryu, In-Chang; Lee, Changyeol

    2017-12-01

    A-type granitoids, high-Mg basalts (e.g., picrites), adakitic rocks, basin-and-range-type fault basins, thinning of the North China Craton (NCC), and southwest-to-northeast migration of the adakites and I-type granitoids in southern Korea and southwestern Japan during the Cretaceous are attributed to the passive upwelling of deep asthenospheric mantle or ridge subduction. However, the genesis of these features remains controversial. Furthermore, the lack of ridge subduction during the Cretaceous in recently suggested plate reconstruction models poses a problem because the Cretaceous adakites in southern Korea and southwestern Japan could not have been generated by the subduction of the old Izanagi oceanic plate. Here, we speculate that plume-continent (intracontinental plume-China continent) and subsequent plume-slab (intracontinental plume-subducted Izanagi oceanic plate) interactions generated the various intracontinental magmatic and tectonic activities in eastern China, Korea, and southwestern Japan. We support our proposal using three-dimensional numerical models: 1) An intracontinental mantle plume is dragged into the mantle wedge by corner flow of the mantle wedge, and 2) the resultant channel-like flow of the mantle plume in the mantle wedge apparently migrated from southwest to northeast because of the northeast-to-southwest migration of the East Asian continental blocks with respect to the Izanagi oceanic plate. Our model calculations show that adakites and I-type granitoids can be generated by increased slab-surface temperatures because of the channel-like flow of the mantle plume in the mantle wedge. We also show that the southwest-to-northeast migration of the adakites and I-type granitoids in southern Korea and southwestern Japan can be attributable to the opposite migration of the East Asian continental blocks with respect to the Izanagi oceanic plate. This correlation implies that an intracontinental mantle plume existed in eastern China during the

  12. Proximal Cretaceous-Tertiary boundary impact deposits in the Caribbean

    NASA Technical Reports Server (NTRS)

    Hildebrand, Alan R.; Boynton, Willam V.

    1990-01-01

    Trace element, isotopic, and mineralogic studies indicate that the proposed impact at the Cretaceous-Tertiary boundary occurred in an ocean basin, although a minor component of continental material is required. The size and abundance of shocked minerals and the restricted geographic occurrence of the ejecta layer and impact-wave deposits suggest an impact between the Americas. Coarse boundary sediments at sites 151 and 153 in the Colombian Basin and 5- to 450-meter-thick boundary sediments in Cuba may be deposits of a giant wave produced by a nearby oceanic impact.

  13. Biotic and environmental dynamics through the Late Jurassic-Early Cretaceous transition: evidence for protracted faunal and ecological turnover.

    PubMed

    Tennant, Jonathan P; Mannion, Philip D; Upchurch, Paul; Sutton, Mark D; Price, Gregory D

    2017-05-01

    The Late Jurassic to Early Cretaceous interval represents a time of environmental upheaval and cataclysmic events, combined with disruptions to terrestrial and marine ecosystems. Historically, the Jurassic/Cretaceous (J/K) boundary was classified as one of eight mass extinctions. However, more recent research has largely overturned this view, revealing a much more complex pattern of biotic and abiotic dynamics than has previously been appreciated. Here, we present a synthesis of our current knowledge of Late Jurassic-Early Cretaceous events, focusing particularly on events closest to the J/K boundary. We find evidence for a combination of short-term catastrophic events, large-scale tectonic processes and environmental perturbations, and major clade interactions that led to a seemingly dramatic faunal and ecological turnover in both the marine and terrestrial realms. This is coupled with a great reduction in global biodiversity which might in part be explained by poor sampling. Very few groups appear to have been entirely resilient to this J/K boundary 'event', which hints at a 'cascade model' of ecosystem changes driving faunal dynamics. Within terrestrial ecosystems, larger, more-specialised organisms, such as saurischian dinosaurs, appear to have suffered the most. Medium-sized tetanuran theropods declined, and were replaced by larger-bodied groups, and basal eusauropods were replaced by neosauropod faunas. The ascent of paravian theropods is emphasised by escalated competition with contemporary pterosaur groups, culminating in the explosive radiation of birds, although the timing of this is obfuscated by biases in sampling. Smaller, more ecologically diverse terrestrial non-archosaurs, such as lissamphibians and mammaliaforms, were comparatively resilient to extinctions, instead documenting the origination of many extant groups around the J/K boundary. In the marine realm, extinctions were focused on low-latitude, shallow marine shelf-dwelling faunas

  14. The origin of Cretaceous black shales: a change in the surface ocean ecosystem and its triggers

    PubMed Central

    OHKOUCHI, Naohiko; KURODA, Junichiro; TAIRA, Asahiko

    2015-01-01

    Black shale is dark-colored, organic-rich sediment, and there have been many episodes of black shale deposition over the history of the Earth. Black shales are source rocks for petroleum and natural gas, and thus are both geologically and economically important. Here, we review our recent progress in understanding of the surface ocean ecosystem during periods of carbonaceous sediment deposition, and the factors triggering black shale deposition. The stable nitrogen isotopic composition of geoporphyrins (geological derivatives of chlorophylls) strongly suggests that N2-fixation was a major process for nourishing the photoautotrophs. A symbiotic association between diatoms and cyanobacteria may have been a major primary producer during episodes of black shale deposition. The timing of black shale formation in the Cretaceous is strongly correlated with the emplacement of large igneous provinces such as the Ontong Java Plateau, suggesting that black shale deposition was ultimately induced by massive volcanic events. However, the process that connects these events remains to be solved. PMID:26194853

  15. Depositional environment and distribution of Late Cretaceous [open quotes]source rocks[close quotes] from Costa Rica to West Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erlich, R.N.; Sofer, Z.; Pratt, L.M.

    1993-02-01

    Late Cretaceous [open quotes]source rocks[close quotes] from Costa Rica, western and eastern Venezuela, and Trinidad were studied using organic and inorganic geochemistry, biostratigraphy, and sedimentology in order to determine their depositional environments. Bulk mineralogy and major element geochemistry for 304 samples were combined with Rock Eval data and extract biomaker analysis to infer the types and distributions of the various Late Cretaceous productivity systems represented in the dataset. When data from this study are combined with published and proprietary data from offshore West Africa, Guyana/Suriname, and the central Caribbean, they show that these Late Cretaceous units can be correlated bymore » their biogeochemical characteristics to establish their temporal and spatial relationships. Paleogeographic maps constructed for the early to late Cenomanian, Turonian, Coniacian to middle Santonian, and late Santonian to latest Campanian show that upwelling and excessive fluvial runoff were probably the dominant sources of nutrient supply to the coastal productivity systems. The late Santonian to Maastrichtian rocks examined in this study indicate that organic material was poorly preserved after deposition, even though biologic productivity remained constant or changed only slightly. A rapid influx of oxygenated bottom water may have occurred following the opening of a deep water connection between the North and South Atlantic oceans, and/or separation of India from Africa and the establishment of an Antarctic oceanic connection. This study suggests that the most important factors that controlled source rock quality in northern South America were productivity, preservation, degree of clastic dilution, and subsurface diagenesis.« less

  16. Composition, Age, and Origin of Cretaceous Granitic Magmatism on the Eastern Chukchi Peninsula

    NASA Astrophysics Data System (ADS)

    Luchitskaya, M. V.; Sokolov, S. D.; Pease, V.; Miller, E.; Belyatsky, B. V.

    2018-05-01

    New geochronological and isotopic geochemical data are given, which make it possible to recognize two types of granitic rocks on the eastern Chukchi Peninsula. Early Cretaceous Tkachen and Dolina granitic plutons with zircon ages (U-Pb SIMS) of 119-122 and 131-136 Ma are related to the first type. They cut through Devonian-Lower Carboniferous basement rocks and are overlain by the Aptian-Albian Etelkuyum Formation. Basal units of the latter contain fragments of granitic rocks. Late Cretaceous Provideniya and Rumilet granitic plutons, which contain zircons with ages of 94 and 85 Ma (U-Pb SIMS), respectively, belong to the second type. They cut through volcanic-sedimentary rocks of the Etelkuyum and Leurvaam formations pertaining to the Okhotsk-Chukotka Volcanic Belt. In petrographic and geochemical features, the Early Cretaceous granitic rocks of the Tkachen Pluton are commensurable with I-type granites, while Late Cretaceous granite of the Rumilet Pluton is comparable to A2-type granite. The Sr-Nd isotopic data provide evidence that from the Early Cretaceous Tkachen and Dolina plutons to the Late Cretaceous Provideniya and Rumilet plutons, the degree of crustal assimilation of suprasubduction mantle-derived melts increases up to partial melting of heterogeneous continental crust enriched in rubidium. An unconformity and various degrees of secondary alteration of volcanic-sedimentary rocks have been established in the Okhotsk-Chukotka Volcanic Belt, and this was apparently caused by transition of the tectonic setting from suprasubduction to a transform margin with local extension.

  17. An Experimental Real-Time Ocean Nowcast/Forecast System for Intra America Seas

    NASA Astrophysics Data System (ADS)

    Ko, D. S.; Preller, R. H.; Martin, P. J.

    2003-04-01

    An experimental real-time Ocean Nowcast/Forecast System has been developed for the Intra America Seas (IASNFS). The area of coverage includes the Caribbean Sea, the Gulf of Mexico and the Straits of Florida. The system produces nowcast and up to 72 hours forecast the sea level variation, 3D ocean current, temperature and salinity fields. IASNFS consists an 1/24 degree (~5 km), 41-level sigma-z data-assimilating ocean model based on NCOM. For daily nowcast/forecast the model is restarted from previous nowcast. Once model is restarted it continuously assimilates the synthetic temperature/salinity profiles generated by a data analysis model called MODAS to produce nowcast. Real-time data come from satellite altimeter (GFO, TOPEX/Poseidon, ERS-2) sea surface height anomaly and AVHRR sea surface temperature. Three hourly surface heat fluxes, including solar radiation, wind stresses and sea level air pressure from NOGAPS/FNMOC are applied for surface forcing. Forecasts are produced with available NOGAPS forecasts. Once the nowcast/forecast are produced they are distributed through the Internet via the updated web pages. The open boundary conditions including sea surface elevation, transport, temperature, salinity and currents are provided by the NRL 1/8 degree Global NCOM which is operated daily. An one way coupling scheme is used to ingest those boundary conditions into the IAS model. There are 41 rivers with monthly discharges included in the IASNFS.

  18. Middle Cretaceous to Oligocene rise of the Middle American landbridge - documented by south-eastwards younging shallow water carbonates

    NASA Astrophysics Data System (ADS)

    Baumgartner-Mora, Claudia; Baumgartner, Peter O.; Barat, Flore

    2013-04-01

    Basements of Southern Central America are oceanic in origin, including the southern half of the classical "Chortis Block" formed by subduction/accretion mélanges named Mesquito Composite Oceanic Terrane (MCOT). The rise of these oceanic basements into the photic zone and eventual emergence was controlled by convergent, collision tectonics, and/or arc development. In this context, shallow carbonate palaeo-environments were short-lived and formed not only on uplifted basements and arcs, but also on (now accreted) volcanic edifices of Pacific oceanic seamounts. From Northern Nicaragua (NW) to Eastern Panama (SE) we observe a systematic younging of the first shallow water carbonate facies encroaching on basements and/or older deep-water formations: In the Siuna area (NE-Nicaragua) Aptian-Albian shallow water limestones dated by rudists and Orbitolina texana rest unconformably on the Jurassic/Early Cretaceous Siuna Serpentinite Mélange, part of the MCOT. In N-Costa Rica, the assembly of several terranes (Santa Elena Ultramafic Unit, Nicoya Complex s. s., Matambu and Manzanillo Terranes) is overlapped by Late Campanian-Maastrichtian shallow water facies dated by rudists and Larger Foraminifera, such as Pseudorbitoides rutteni, Pseudorbitoides israelski, Sulcoperculina sp. and Sulcoperculina globosa. Reworked Campanian-Maastrichtian shallow water material including Larger Foraminifera was found in the Herradura Promontory (central Pacific coast of Costa Rica). It could be derived from an accreted seamount. No shallow carbonates are known so far from the early Palaeocene. The Tempisque Basin (N-Costa Rica) hosts the Barra Honda carbonate Platform (originally >900 km2) dated as late Palaeocene (Thanetian) by planktonic Foraminifera, 87Sr / 86Sr ratios and Ranikothalia spp. Other late Palaeocene shallow carbonates documented in S-Costa Rica/W-Panama (Quepos, Burica) are interpreted as insular carbonate shoals (atolls?) on now accreted seamounts. To the SE of the S

  19. Reappraisal of Europe’s most complete Early Cretaceous plesiosaurian: Brancasaurus brancai Wegner, 1914 from the “Wealden facies” of Germany

    PubMed Central

    Hornung, Jahn J.; Kear, Benjamin P.

    2016-01-01

    The holotype of Brancasaurus brancai is one of the most historically famous and anatomically complete Early Cretaceous plesiosaurian fossils. It derived from the Gerdemann & Co. brickworks clay pit near Gronau (Westfalen) in North Rhine-Westphalia, northwestern Germany. Stratigraphically this locality formed part of the classic European “Wealden facies,” but is now more formally attributed to the upper-most strata of the Bückeberg Group (upper Berriasian). Since its initial description in 1914, the type skeleton of B. brancai has suffered damage both during, and after WWII. Sadly, these mishaps have resulted in the loss of substantial information, in particular many structures of the cranium and limb girdles, which are today only evidenced from published text and/or illustrations. This non-confirmable data has, however, proven crucial for determining the relationships of B. brancai within Plesiosauria: either as an early long-necked elasmosaurid, or a member of the controversial Early Cretaceous leptocleidid radiation. To evaluate these competing hypotheses and compile an updated osteological compendium, we undertook a comprehensive examination of the holotype as it is now preserved, and also assessed other Bückeberg Group plesiosaurian fossils to establish a morphological hypodigm. Phylogenetic simulations using the most species-rich datasets of Early Cretaceous plesiosaurians incorporating revised scores for B. brancai, together with a second recently named Bückeberg Group plesiosaurian Gronausaurus wegneri (Hampe, 2013), demonstrated that referral of these taxa to Leptocleididae was not unanimous, and that the topological stability of this clade is tenuous. In addition, the trait combinations manifested by B. brancai and G. wegneri were virtually identical. We therefore conclude that these monotypic individuals are ontogenetic morphs and G. wegneri is a junior synonym of B. brancai. Finally, anomalies detected in the diagnostic features for other

  20. Early Cretaceous terrestrial ecosystems in East Asia based on food-web and energy-flow models

    USGS Publications Warehouse

    Matsukawa, M.; Saiki, K.; Ito, M.; Obata, I.; Nichols, D.J.; Lockley, M.G.; Kukihara, R.; Shibata, K.

    2006-01-01

    In recent years, there has been global interest in the environments and ecosystems around the world. It is helpful to reconstruct past environments and ecosystems to help understand them in the present and the future. The present environments and ecosystems are an evolving continuum with those of the past and the future. This paper demonstrates the contribution of geology and paleontology to such continua. Using fossils, we can make an estimation of past population density as an ecosystem index based on food-web and energy-flow models. Late Mesozoic nonmarine deposits are distributed widely on the eastern Asian continent and contain various kinds of fossils such as fishes, amphibians, reptiles, dinosaurs, mammals, bivalves, gastropods, insects, ostracodes, conchostracans, terrestrial plants, and others. These fossil organisms are useful for late Mesozoic terrestrial ecosystem reconstruction using food-web and energy-flow models. We chose Early Cretaceous fluvio-lacustrine basins in the Choyr area, southeastern Mongolia, and the Tetori area, Japan, for these analyses and as a potential model for reconstruction of other similar basins in East Asia. The food-web models are restored based on taxa that occurred in these basins. They form four or five trophic levels in an energy pyramid consisting of rich primary producers at its base and smaller biotas higher in the food web. This is the general energy pyramid of a typical ecosystem. Concerning the population densities of vertebrate taxa in 1 km2 in these basins, some differences are recognized between Early Cretaceous and the present. For example, Cretaceous estimates suggest 2.3 to 4.8 times as many herbivores and 26.0 to 105.5 times the carnivore population. These differences are useful for the evaluation of past population densities of vertebrate taxa. Such differences may also be caused by the different metabolism of different taxa. Preservation may also be a factor, and we recognize that various problems occur in

  1. The mid-Cretaceous super plume, carbon dioxide, and global warming

    NASA Technical Reports Server (NTRS)

    Caldeira, Ken; Rampino, Michael R.

    1991-01-01

    Carbon-dioxide releases associated with a mid-Cretaceous super plume and the emplacement of the Ontong-Java Plateau have been suggested as a principal cause of the mid-Cretaceous global warming. A carbonate-silicate cycle model is developed to quantify the possible climatic effects of these CO2 releases, utilizing four different formulations for the rate of silicate-rock weathering as a function of atmospheric CO2. CO2 emissions resulting from super-plume tectonics could have produced atmospheric CO2 levels from 3.7 to 14.7 times the modern preindustrial value of 285 ppm. Based on the temperature sensitivity to CO2 increases used in the weathering-rate formulations, this would cause a global warming of from 2.8 to 7.7 C over today's glogal mean temperature. Altered continental positions and higher sea level may have been contributed about 4.8 C to mid-Cretaceous warming. Thus, the combined effects of paleogeographic changes and super-plume related CO2 emissions could be in the range of 7.6 to 12.5 C, within the 6 to 14 C range previously estimated for mid-Cretaceous warming. CO2 releases from oceanic plateaus alone are unlikely to have been directly responsible for more than 20 percent of the mid-Cretaceous increase in atmospheric CO2.

  2. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica.

    PubMed

    Barreda, Viviana D; Palazzesi, Luis; Tellería, Maria C; Olivero, Eduardo B; Raine, J Ian; Forest, Félix

    2015-09-01

    The Asteraceae (sunflowers and daisies) are the most diverse family of flowering plants. Despite their prominent role in extant terrestrial ecosystems, the early evolutionary history of this family remains poorly understood. Here we report the discovery of a number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back the timing of assumed origin of the family. Reliably dated to ∼76-66 Mya, these specimens are about 20 million years older than previously known records for the Asteraceae. Using a phylogenetic approach, we interpreted these fossil specimens as members of an extinct early diverging clade of the family, associated with subfamily Barnadesioideae. Based on a molecular phylogenetic tree calibrated using fossils, including the ones reported here, we estimated that the most recent common ancestor of the family lived at least 80 Mya in Gondwana, well before the thermal and biogeographical isolation of Antarctica. Most of the early diverging lineages of the family originated in a narrow time interval after the K/P boundary, 60-50 Mya, coinciding with a pronounced climatic warming during the Late Paleocene and Early Eocene, and the scene of a dramatic rise in flowering plant diversity. Our age estimates reduce earlier discrepancies between the age of the fossil record and previous molecular estimates for the origin of the family, bearing important implications in the evolution of flowering plants in general.

  3. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica

    PubMed Central

    Barreda, Viviana D.; Palazzesi, Luis; Tellería, Maria C.; Olivero, Eduardo B.; Raine, J. Ian; Forest, Félix

    2015-01-01

    The Asteraceae (sunflowers and daisies) are the most diverse family of flowering plants. Despite their prominent role in extant terrestrial ecosystems, the early evolutionary history of this family remains poorly understood. Here we report the discovery of a number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back the timing of assumed origin of the family. Reliably dated to ∼76–66 Mya, these specimens are about 20 million years older than previously known records for the Asteraceae. Using a phylogenetic approach, we interpreted these fossil specimens as members of an extinct early diverging clade of the family, associated with subfamily Barnadesioideae. Based on a molecular phylogenetic tree calibrated using fossils, including the ones reported here, we estimated that the most recent common ancestor of the family lived at least 80 Mya in Gondwana, well before the thermal and biogeographical isolation of Antarctica. Most of the early diverging lineages of the family originated in a narrow time interval after the K/P boundary, 60–50 Mya, coinciding with a pronounced climatic warming during the Late Paleocene and Early Eocene, and the scene of a dramatic rise in flowering plant diversity. Our age estimates reduce earlier discrepancies between the age of the fossil record and previous molecular estimates for the origin of the family, bearing important implications in the evolution of flowering plants in general. PMID:26261324

  4. Time scales of intra-oceanic arc magmatism from combined U-Th and (U-Th)/He zircon geochronology of Dominica, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Howe, T. M.; Schmitt, A. K.; Lindsay, J. M.; Shane, P.; Stockli, D. F.

    2015-02-01

    The island of Dominica, located in the intra-oceanic Lesser Antilles arc, has produced a series of intermediate (mostly andesitic) lava domes and ignimbrites since the early Pleistocene. (U-Th)/He eruption ages from centers across the island range from ˜3 to ˜770 ka, with at least 10 eruptions occurring in the last 80 ka. Three eruptions occurred near the southern tip of Dominica (Plat Pays Volcanic Complex) in the past 15 ka alone. Zircon U-Th ages from individual centers range from near-eruption to secular equilibrium implicating protracted storage and recycling of zircons within the crust. Overlapping zircon crystallization peaks within deposits from geographically separated vents (up to 40 km apart) indicate that magma associated with separate volcanic edifices crystallized zircon contemporaneously. Two lava domes from the southern sector of the island display exclusively young zircon rim ages (<50 ka) with narrow crystallization peaks consistent with the construction of a new magma reservoir. The younging of eruption and crystallization ages implies that the magmatic foci leading to the construction of this reservoir have migrated southward, arc-parallel over time. Overall, our data support geochemical models for the ongoing construction of a silicic intrusive complex, consisting of varying amounts of crystal mush, beneath the island. U-Pb zircon ages <1-2 Ma indicate that accumulation of this complex is entirely Quaternary in age. Together zircon U-Th and U-Pb ages for Dominica suggest that the magmatic processes and time scales operating in intra-oceanic arcs are similar to those documented for continental arcs. This article was corrected on 18 MAR 2015. See the end of the full text for details.

  5. Syn-convergence extension in the southern Lhasa terrane: Evidence from late Cretaceous adakitic granodiorite and coeval gabbroic-dioritic dykes

    NASA Astrophysics Data System (ADS)

    Ma, Xuxuan; Xu, Zhiqin; Meert, Joseph G.

    2017-10-01

    Late Cretaceous (∼100-80 Ma) magmatism in the Gangdese magmatic belt plays a pivotal role in understanding the evolutionary history and tectonic regime of the southern Lhasa terrane. The geodynamic process for the formation of the early Late Cretaceous magmatism has long been an issue of hot debates. Here, petrology, geochronology and geochemistry of early Late Cretaceous granodiorite and coeval gabbroic-dioritic dykes in the Caina region, southern Lhasa, were investigated in an effort to ascertain their petrogenesis, age of intrusion, magma mixing and tectonic setting. Zircon U-Pb dating of granodiorite yields 206Pb/238U ages of 85.8 ± 1.7 and 86.4 ± 1.1 Ma, whilst that of the E-W trending dykes yields ages of 82.7 ± 2.6 and 83.5 ± 3.5 Ma. Within error, the crystallization ages of the dykes and the granodiorite are indistinguishable. Field observations and mineralogical microstructures are suggestive of a magma mixing process during the formation of the dykes and the granodiorite. The granodiorite exhibits geochemical features that are in agreement with those of subduction-related high-SiO2 adakites. The granodiorite and dykes have relatively constant εNd(t) values of +2.2 to +4.9 and initial 87Sr/86Sr ratios (0.7045-0.7047). These similar characteristics are herein interpreted as an evolutionary series from the dykes to granodiorite, consistent with magma mixing process. Ti-in-zircon thermometer and Al-in-hornblende barometer indicate that the granodiorite and the dioritic dyke crystallized at temperatures of ca. 750 and 800 °C, depths of ca. 6-10 and 5-9 km, respectively. Taking into account the synchronous magmatic rocks in the Gangdese Belt and the coeval rifted basin within the Lhasa terrane, the granodiorite and dykes reveal an early Late Cretaceous syn-convergence extensional regime in the southern Lhasa terrane, triggered by slab rollback of the Neotethyan oceanic lithosphere.

  6. Diverse dinosaur-dominated ichnofaunas from the Potomac Group (Lower Cretaceous) Maryland

    USGS Publications Warehouse

    Stanford, Ray; Lockley, Martin G.; Weems, Robert E.

    2007-01-01

    Until recently fossil footprints were virtually unknown from the Cretaceous of the eastern United States. The discovery of about 300 footprints in iron-rich siliciclastic facies of the Patuxent Formation (Potomac Group) of Aptian age is undoubtedly one of the most significant Early Cretaceous track discoveries since the Paluxy track discoveries in Texas in the 1930s. The Patuxent tracks include theropod, sauropod, ankylosaur and ornithopod dinosaur footprints, pterosaur tracks, and miscellaneous mammal and other vertebrate ichnites that collectively suggest a diversity of about 14 morphotypes. This is about twice the previous maximum estimate for any known Early Cretaceous vertebrate ichnofauna. Among the more distinctive forms are excellent examples of hypsilophodontid tracks and a surprisingly large mammal footprint. A remarkable feature of the Patuxent track assemblage is the high proportion of small tracks indicative of hatchlings, independently verified by the discovery of a hatchling-sized dinosaur. Such evidence suggests the proximity of nest sites. The preservation of such small tracks is very rare in the Cretaceous track record, and indeed throughout most of the Mesozoic.This unusual preservation not only provides us with a window into a diverse Early Cretaceous ecosystem, but it also suggests the potential of such facies to provide ichnological bonanzas. A remarkable feature of the assemblage is that it consists largely of reworked nodules and clasts that may have previously been reworked within the Patuxent Formation. Such unusual contexts of preservation should provide intriguing research opportunities for sedimentologists interested in the diagenesis and taphonomy of a unique track-bearing facies.

  7. New type of kinematic indicator in bed-parallel veins, Late Jurassic-Early Cretaceous Vaca Muerta Formation, Argentina: E-W shortening during Late Cretaceous vein opening

    NASA Astrophysics Data System (ADS)

    Ukar, Estibalitz; Lopez, Ramiro G.; Gale, Julia F. W.; Laubach, Stephen E.; Manceda, Rene

    2017-11-01

    In the Late Jurassic-Early Cretaceous Vaca Muerta Formation, previously unrecognized yet abundant structures constituting a new category of kinematic indicator occur within bed-parallel fibrous calcite veins (BPVs) in shale. Domal shapes result from localized shortening and thickening of BPVs and the intercalation of centimeter-thick, host-rock shale inclusions within fibrous calcite beef, forming thrust fault-bounded pop-up structures. Ellipsoidal and rounded structures show consistent orientations, lineaments of interlayered shale and fibrous calcite, and local centimeter-scale offset thrust faults that at least in some cases cut across the median line of the BPV and indicate E-W shortening. Continuity of crystal fibers shows the domal structures are contemporaneous with BPV formation and help establish timing of fibrous vein growth in the Late Cretaceous, when shortening directions were oriented E-W. Differences in the number of opening stages and the deformational style of the different BPVs indicate they may have opened at different times. The new domal kinematic indicators described in this study are small enough to be captured in core. When present in the subsurface, domal structures can be used to either infer paleostress orientation during the formation of BPVs or to orient core in cases where the paleostress is independently known.

  8. Plate tectonic history of the Arctic

    NASA Technical Reports Server (NTRS)

    Burke, K.

    1984-01-01

    Tectonic development of the Arctic Ocean is outlined, and geological maps are provided for the Arctic during the mid-Cenozoic, later Cretaceous, late Jurassic, early Cretaceous, early Jurassic and late Devonian. It is concluded that Arctic basin history is moulded by the events of the following intervals: (1) continental collision and immediately subsequent rifting and ocean formation in the Devonian, and continental rifting ocean formation, rapid rotation of microcontinents, and another episode of collision in the latest Jurassic and Cretaceous. It is noted that Cenozoic Arctic basin formation is a smaller scale event superimposed on the late Mesozoic ocean basin.

  9. Paleoceanographic changes during the Albian-Cenomanian in the Tethys and North Atlantic and the onset of the Cretaceous chalk

    NASA Astrophysics Data System (ADS)

    Giorgioni, Martino; Weissert, Helmut; Bernasconi, Stefano M.; Hochuli, Peter A.; Keller, Christina E.; Coccioni, Rodolfo; Petrizzo, Maria Rose; Lukeneder, Alexander; Garcia, Therese I.

    2015-03-01

    During the mid-Cretaceous the Earth was characterized by peculiar climatic and oceanographic features, such as very high temperatures, smooth thermal meridional gradient, long-term rising sea level, and formation of oceanic gateways and seaways. At that time widespread deposition of micritic pelagic limestones, generally called chalk, occurred in deep pelagic settings as well as in epeiric seas, both at tropical and at high latitudes. The origin of such extensive chalk deposition in the mid-Cretaceous is a complex and still controversial issue, which involves the interaction of several different factors. In this work we address this topic from the paleoceanographic perspective, by investigating the contribution of major oceanic circulation changes. We characterize several stratigraphic sections from the Tethys and North Atlantic with litho-, bio-, and carbon isotope stratigraphy. Our data show a change between two different oceanic circulation modes happening in the Late Albian. The first is an unstable mode, with oceanographic conditions fluctuating frequently in response to rapid environmental and climatic changes, such as those driven by orbital forcing. The second mode is more stable, with better connection between the different oceanic basins, a more stable thermocline, more persistent current flow, better defined upwelling and downwelling areas, and a more balanced oceanic carbon reservoir. We propose that under the mid-Cretaceous paleogeographic and paleoclimatic conditions this change in oceanic circulation mode favored the beginning of chalk sedimentation in deep-water settings.

  10. Lead isotope compositions of Late Cretaceous and early Tertiary igneous rocks and sulfide minerals in Arizona: Implications for the sources of plutons and metals in porphyry copper deposits

    USGS Publications Warehouse

    Bouse, R.M.; Ruiz, J.; Titley, S.R.; Tosdal, R.M.; Wooden, J.L.

    1999-01-01

    Porphyry copper deposits in Arizona are genetically associated with Late Cretaceous and early Tertiary igneous complexes that consist of older intermediate volcanic rocks and younger intermediate to felsic intrusions. The igneous complexes and their associated porphyry copper deposits were emplaced into an Early Proterozoic basement characterized by different rocks, geologic histories, and isotopic compositions. Lead isotope compositions of the Proterozoic basement rocks define, from northwest to southeast, the Mojave, central Arizona, and southeastern Arizona provinces. Porphyry copper deposits are present in each Pb isotope province. Lead isotope compositions of Late Cretaceous and early Tertiary plutons, together with those of sulfide minerals in porphyry copper deposits and of Proterozoic country rocks, place important constraints on genesis of the magmatic suites and the porphyry copper deposits themselves. The range of age-corrected Pb isotope compositions of plutons in 12 Late Cretaceous and early Tertiary igneous complexes is 206Pb/204Pb = 17.34 to 22.66, 207Pb/204Pb = 15.43 to 15.96, and 208Pb/204Pb = 37.19 to 40.33. These Pb isotope compositions and calculated model Th/U are similar to those of the Proterozoic rocks in which the plutons were emplaced, thereby indicating that Pb in the younger rocks and ore deposits was inherited from the basement rocks and their sources. No Pb isotope differences distinguish Late Cretaceous and early Tertiary igneous complexes that contain large economic porphyry copper deposits from less rich or smaller deposits that have not been considered economic for mining. Lead isotope compositions of Late Cretaceous and early Tertiary plutons and sulfide minerals from 30 metallic mineral districts, furthermore, require that the southeastern Arizona Pb province be divided into two subprovinces. The northern subprovince has generally lower 206Pb/204Pb and higher model Th/U, and the southern subprovince has higher 206Pb/204Pb and

  11. Cretaceous gastropods: contrasts between tethys and the temperate provinces.

    USGS Publications Warehouse

    Sohl, N.F.

    1987-01-01

    During the Cretaceous Period, gastropod faunas show considerable differences in their evolution between the Tethyan Realm (tropical) and the Temperate Realms to the north and south. Like Holocene faunas, prosobranch, gastropods constitute the dominant part of Cretaceous marine snail faunas. Entomotaeneata and opisthobranchs usually form all of the remainder. In Tethyan faunas the Archaeogastropoda form a consistent high proportion of total taxa but less than the Mesogastropoda throughout the period. In contrast, the Temperate faunas beginning in Albian times show a decline in percentages of archaeogastropod taxa and a significant increase in the Neogastropoda, until they constitute over 50 percent of the taxa in some faunas. The neogastropods never attain high diversity in the Cretaceous of the Tethyan Realm and are judged to be of Temperate Realm origin. Cretaceous Tethyan gastropod faunas are closely allied to those of the 'corallien facies' of the Jurassic and begin the period evolutionarily mature and well diversified. Three categories of Tethyan gastropods are analyzed. The first group consists of those of Jurassic ancestry. The second group orginates mainly during the Barremian and Aptian, reaches a climax in diversification during middle Cretaceous time, and usually declines during the latest Cretaceous. The third group originates late in the Cretaceous and consists of taxa that manage to either survive the Cretaceous-Tertiary crisis or give rise to forms of prominence among Tertiary warm water faunas. Temperate Realm gastropod faunas are less diverse than those of Tethys during the Early Cretaceous. They show a steady increase in diversity, primarily among the Mesogastropoda and Neogastropoda. This trend culminates in latest Cretaceous times when the gastropod assemblages of the clastic provinces of the inner shelf contain an abundance of taxa outstripping that of any other part of the Cretaceous of either realm. Extinction at the Cretaceous

  12. Evidence for a Slow Spreading Ocean Ridge in the Southern Rockall Trough From Satellite Gravity Inversion and Seismic Data

    NASA Astrophysics Data System (ADS)

    Chappell, A. R.; Kusznir, N. J.

    2005-12-01

    The southern Rockall Trough, located to the west of Ireland and the UK in the NE Atlantic, has been interpreted as both a Mesozoic intra-continental rift basin (O'Reilly 1995) and a mid Cretaceous ocean basin (e.g. Roberts et al. 1980). The continental rift hypothesis (O'Reilly 1995) requires differential stretching of the upper and lower crust and syn-tectonic cooling to mechanically explain the formation of 5-6km thick continental crust and allow serpentinisation of the upper mantle. In this model serpentinisation of the upper mantle is needed to explain low upper mantle seismic velocities. The serpentinisation has also been required to fit gravity modelling of seismic transects to the observed gravity (e.g. Shannon 1999). We use satellite gravity inversion to map Moho depth and crustal thickness (Chappell & Kusznir 2005) for the Rockall Trough area. The satellite gravity inversion is a 3D spectral method incorporating a correction for the residual lithosphere thermal gravity anomaly present in continental rifted margin lithosphere and oceanic lithosphere. The gravity inversion predicts Moho depth and geometry in agreement with wide-angle seismic estimates without invoking the extensive serpentinisation of the upper-mantle needed by the intra-continental rift hypothesis (O'Reilly 1995). Recent seismic modelling (Morewood 2005) suggests that the thin crust in the southern Rockall Trough does not have the seismic layering associated with oceanic crust formed at intermediate or fast spreading rates. Also, wide-angle seismic data shows low upper mantle seismic velocities are present and spatially associated with the thin 5-6km crust (Shannon 1999). These observations are consistent with models and observations of oceanic crust formed at slow spreading ocean ridges (Cannat 1996, Jokat 2003). Such models are based on a proportion of melt being retained in the upper mantle, producing low seismic velocities, and a reduced supply of melt to the crust, resulting in thin

  13. Distribution and tectonic implications of Cretaceous-Quaternary sedimentary facies in Solomon Islands

    NASA Astrophysics Data System (ADS)

    Turner, C. C.; Hughes, G. W.

    1982-08-01

    Sedimentary rocks of the Solomon Islands-Bougainville Arc are described in terms of nine widespread facies. Four facies associations are recognised by grouping facies which developed in broadly similar sedimentary environments. A marine pelagic association of Early Cretaceous to Miocene rocks comprises three facies. Facies Al: Early Cretaceous siliceous mudstone, found only on Malaita, is interpreted as deep marine siliceous ooze. Facies A2: Early Cretaceous to Eocene limestone with chert, overlies the siliceous mudstone facies, and is widespread in the central and eastern Solomons. It represents lithified calcareous ooze. Facies A3: Oligocene to Miocene calcisiltite with thin tuffaceous beds, overlies Facies A2 in most areas, and also occurs in the western Solomons. This represents similar, but less lithified calcareous ooze, and the deposits of periodic andesitic volcanism. An open marine detrital association of Oligocene to Recent age occurs throughout the Solomons. This comprises two facies. Facies B1 is variably calcareous siltstone, of hemipelagic origin; and Facies B2 consists of volcanogenic clastic deposits, laid down from submarine mass flows. A third association, of shallow marine carbonates, ranges in age from Late Oligocene to Recent. Facies C1 is biohermal limestone, and Facies C2 is biostromal calcarenite. The fourth association comprises areally restricted Pliocene to Recent paralic detrital deposits. Facies D1 includes nearshore clastic sediments, and Facies D2 comprises alluvial sands and gravels. Pre-Oligocene pelagic sediments were deposited contemporaneously with, and subsequent to, the extrusion of oceanic tholeiite. Island arc volcanism commenced along the length of the Solomons during the Oligocene, and greatly influenced sedimentation. Thick volcaniclastic sequences were deposited from submarine mass flows, and shallow marine carbonates accumulated locally. Fine grained graded tuffaceous beds within the marine pelagic association are

  14. Recent advances in the cretaceous stratigraphy of Korea

    NASA Astrophysics Data System (ADS)

    Chang, Ki-Hong; Suzuki, Kazuhiro; Park, Sun-Ok; Ishida, Keisuke; Uno, Koji

    2003-06-01

    A subrounded, accidental, zircon grain from a rhyolite sample of the Oknyobong Formation has shown an U-Pb CHIME isochron age, 187 Ma, implying its derivation from a Jurassic felsic igneous rock. Such a lower limit of the geologic age of the Oknyobong Formation, combined with its pre-Kyongsang upper limit, constrains that the Oknyobong Formation belongs to the Jasong Synthem (Late Jurassic-early Early Cretaceous) typified in North Korea. The Jaeryonggang Movement terminated the deposition of the Jasong Synthem and caused a shift of the depocenter from North Korea to the Kyongsang Basin, Southeast Korea. The Cretaceous-Paleocene Kyongsang Supergroup of the Kyongsang Basin is the stratotype of the Kyongsang Synthem, an unconformity-bounded unit in the Korean Peninsula. The unconformity at the base of the Yuchon Volcanic Group is a local expression of the interregionally recognizable mid-Albian tectonism; it subdivides the Kyongsang Synthem into the Lower Kyongsang Subsynthem (Barremian-Early Albian) and the Upper Kyongsang Subsynthem (Late Albian-Paleocene). The latter is unconformably overlain by Eocene and younger strata. The Late Permian to Early Jurassic radiolarian fossils from the chert pebbles of the Kumidong and the Kisadong conglomerates of the Aptian-Early Albian Hayang Group of the Kyongsang Basin are equivalent with those of the cherts that constitute the Jurassic accretionary prisms in Japan, the provenance of the chert pebbles in the Kyongsang Basin. Bimodal volcanisms throughout the history of the Kyongsang Basin is exemplified by the felsic Kusandong Tuff erupted abruptly and briefly in the Late Aptian when semi-coeval volcanisms were of intermediate and mafic compositions. The mean paleomagnetic direction shown by the Kusandong Tuff is in good agreement with the Early Cretaceous directions known from North China, South China and Siberia Blocks.

  15. Diatom life cycles and ecology in the Cretaceous.

    PubMed

    Jewson, David H; Harwood, David M

    2017-06-01

    The earliest known diatom fossils with well-preserved siliceous frustules are from Lower Cretaceous neritic marine deposits in Antarctica. In this study, we analyzed the cell wall structure to establish whether their cell and life cycles were similar to modern forms. At least two filamentous species (Basilicostephanus ornatus and Archepyrgus melosiroides) had girdle band structures that functioned during cell division in a similar way to present day Aulacoseira species. Also, size analyses of cell diameter indicated that the cyclic process of size decline and size restoration used to time modern diatom life cycles was present in five species from the Lower Cretaceous (B. ornatus, A. melosiroides, Gladius antiquus, Ancylopyrgus reticulatus, Kreagra forfex) as well as two species from Upper Cretaceous deposits (Trinacria anissimowii and Eunotogramma fueloepi) from the Southwest Pacific. The results indicate that the "Diatom Sex Clock" was present from an early evolutionary stage. Other ecological adaptations included changes in mantle height and coiling. Overall, the results suggest that at least some of the species in these early assemblages are on a direct ancestral line to modern forms. © 2017 Phycological Society of America.

  16. Trace element and isotope geochemistry of Cretaceous-Tertiary boundary sediments: identification of extra-terrestrial and volcanic components

    NASA Technical Reports Server (NTRS)

    Margolis, S. V.; Doehne, E. F.

    1988-01-01

    Trace element and stable isotope analyses were performed on a series of sediment samples crossing the Cretaceous-Tertiary (K-T) boundary from critical sections at Aumaya and Sopelano, Spain. The aim is to possibly distinguish extraterrestrial vs. volcanic or authigenic concentration of platinum group and other elements in K-T boundary transitional sediments. These sediments also have been shown to contain evidence for step-wise extinction of several groups of marine invertebrates, associated with negative oxygen and carbon isotope excursions occurring during the last million years of the Cretaceous. These isotope excursions have been interpreted to indicate major changes in ocean thermal regime, circulation, and ecosystems that may be related to multiple events during latest Cretaceous time. Results to date on the petrographic and geochemical analyses of the Late Cretaceous and Early Paleocene sediments indicate that diagenesis has obviously affected the trace element geochemistry and stable isotope compositions at Zumaya. Mineralogical and geochemical analysis of K-T boundary sediments at Zumaya suggest that a substantial fraction of anomalous trace elements in the boundary marl are present in specific mineral phases. Platinum and nickel grains perhaps represent the first direct evidence of siderophile-rich minerals at the boundary. The presence of spinels and Ni-rich particles as inclusions in aluminosilicate spherules from Zumaya suggests an original, non-diagenetic origin for the spherules. Similar spherules from southern Spain (Caravaca), show a strong marine authigenic overprint. This research represents a new approach in trying to directly identify the sedimentary mineral components that are responsible for the trace element concentrations associated with the K-T boundary.

  17. Updating the Evidence for Oceans on Early Mars

    NASA Technical Reports Server (NTRS)

    Fairen, Alberto G.; Dohm, James M.; Oner, Tayfun; Ruiz, Javier; Rodriguez, Alexis P.; Schulze-Makuch, Dirk; Ormoe, Jens; McKay, Chris P.; Baker, Victor R.; Amils, Ricardo

    2004-01-01

    Different-sized bodies of water have been proposed to have occurred episodically in the lowlands of Mars throughout the planet's history, largely related to major stages of development of Tharsis and/or orbital obliquity. These water bodies range from large oceans in the Noachian-Early Hesperian, to a minor sea in the Late Hesperian, and dispersed lakes during the Amazonian. To evaluate the more recent discoveries regarding the oceanic possibility, here we perform a comprehensive analysis of the evolution of water on Mars, including: 1. Geological assessment of proposed shorelines; 2. A volumetric approximation to the plains-filing proposed oceans; 3. Geochemistry of the oceans and derived mineralogies; 4. Post-oceanic (i.e., Amazonian) evolution of the shorelines; and 5. Ultimate water evolution on Mars.

  18. Cretaceous-Eocene provenance connections between the Palawan Continental Terrane and the northern South China Sea margin

    NASA Astrophysics Data System (ADS)

    Shao, Lei; Cao, Licheng; Qiao, Peijun; Zhang, Xiangtao; Li, Qianyu; van Hinsbergen, Douwe J. J.

    2017-11-01

    The plate kinematic history of the South China Sea opening is key to reconstructing how the Mesozoic configuration of Panthalassa and Tethyan subduction systems evolved into today's complex Southeast Asian tectonic collage. The South China Sea is currently flanked by the Palawan Continental Terrane in the south and South China in the north and the two blocks have long been assumed to be conjugate margins. However, the paleogeographic history of the Palawan Continental Terrane remains an issue of uncertainty and controversy, especially regarding the questions of where and when it was separated from South China. Here we employ detrital zircon U-Pb geochronology and heavy mineral analysis on Cretaceous and Eocene strata from the northern South China Sea and Palawan to constrain the Late Mesozoic-Early Cenozoic provenance and paleogeographic evolution of the region testing possible connection between the Palawan Continental Terrane and the northern South China Sea margin. In addition to a revision of the regional stratigraphic framework using the youngest zircon U-Pb ages, these analyses show that while the Upper Cretaceous strata from the Palawan Continental Terrane are characterized by a dominance of zircon with crystallization ages clustering around the Cretaceous, the Eocene strata feature a large range of zircon ages and a new mineral group of rutile, anatase, and monazite. On the one hand, this change of sediment compositions seems to exclude the possibility of a latest Cretaceous drift of the Palawan Continental Terrane in response to the Proto-South China Sea opening as previously inferred. On the other hand, the zircon age signatures of the Cretaceous-Eocene strata from the Palawan Continental Terrane are largely comparable to those of contemporary samples from the northeastern South China Sea region, suggesting a possible conjugate relationship between the Palawan Continental Terrane and the eastern Pearl River Mouth Basin. Thus, the Palawan Continental

  19. Highly specialized mammalian skulls from the Late Cretaceous of South America.

    PubMed

    Rougier, Guillermo W; Apesteguía, Sebastián; Gaetano, Leandro C

    2011-11-02

    Dryolestoids are an extinct mammalian group belonging to the lineage leading to modern marsupials and placentals. Dryolestoids are known by teeth and jaws from the Jurassic period of North America and Europe, but they thrived in South America up to the end of the Mesozoic era and survived to the beginnings of the Cenozoic. Isolated teeth and jaws from the latest Cretaceous of South America provide mounting evidence that, at least in western Gondwana, dryolestoids developed into strongly endemic groups by the Late Cretaceous. However, the lack of pre-Late Cretaceous dryolestoid remains made study of their origin and early diversification intractable. Here we describe the first mammalian remains from the early Late Cretaceous of South America, including two partial skulls and jaws of a derived dryolestoid showing dental and cranial features unknown among any other group of Mesozoic mammals, such as single-rooted molars preceded by double-rooted premolars, combined with a very long muzzle, exceedingly long canines and evidence of highly specialized masticatory musculature. On one hand, the new mammal shares derived features of dryolestoids with forms from the Jurassic of Laurasia, whereas on the other hand, it is very specialized and highlights the endemic, diverse dryolestoid fauna from the Cretaceous of South America. Our specimens include only the second mammalian skull known for the Cretaceous of Gondwana, bridging a previous 60-million-year gap in the fossil record, and document the whole cranial morphology of a dryolestoid, revealing an unsuspected morphological and ecological diversity for non-tribosphenic mammals.

  20. Rainfall seasonality on the Indian subcontinent during the Cretaceous greenhouse.

    PubMed

    Ghosh, Prosenjit; Prasanna, K; Banerjee, Yogaraj; Williams, Ian S; Gagan, Michael K; Chaudhuri, Atanu; Suwas, Satyam

    2018-05-31

    The Cretaceous greenhouse climate was accompanied by major changes in Earth's hydrological cycle, but seasonally resolved hydroclimatic reconstructions for this anomalously warm period are rare. We measured the δ 18 O and CO 2 clumped isotope Δ 47 of the seasonal growth bands in carbonate shells of the mollusc Villorita cyprinoides (Black Clam) growing in the Cochin estuary, in southern India. These tandem records accurately reconstruct seasonal changes in sea surface temperature (SST) and seawater δ 18 O, allowing us to document freshwater discharge into the estuary, and make inferences about rainfall amount. The same analytical approach was applied to well-preserved fossil remains of the Cretaceous (Early Maastrichtian) mollusc Phygraea (Phygraea) vesicularis from the nearby Kallankuruchchi Formation in the Cauvery Basin of southern India. The palaeoenvironmental record shows that, unlike present-day India, where summer rainfall predominates, most rainfall in Cretaceous India occurred in winter. During the Early Maastrichtian, the Indian plate was positioned at ~30°S latitude, where present-day rainfall and storm activity is also concentrated in winter. The good match of the Cretaceous climate and present-day climate at ~30°S suggests that the large-scale atmospheric circulation and seasonal hydroclimate patterns were similar to, although probably more intense than, those at present.

  1. Iridium and trace element measurements from the Cretaceous-Tertiary boundary, site 752, Broken Ridge, Indian Ocean

    NASA Technical Reports Server (NTRS)

    Schuraytz, B. C.; O'Connell, S.; Sharpton, V. L.

    1991-01-01

    Fourteen samples spanning a 2.5 m interval that includes the Cretaceous-Tertiary (K/T) boundary from Hole 752B near the crest of Broken Ridge in the eastern Indian Ocean were studied in order to search for anomalous enrichments of iridium (Ir) and shock-metamorphosed quartz grains. No allogenic quartz grains larger than 10 microns were observed, hence the presence of quartz containing diagnostic evidence of shock-metamorphism could not be confirmed. Two Ir anomalies of 2.2 +/- 0.6 and 2.0 +/- 0.4 parts per billion (ppb) were measured in samples of dark green ash-bearing chalk at depths of 357.93 and 358.80 m below seafloor, respectively. These samples containing anomalous enrichments of Ir were taken from approximately 82 cm above and 5 cm below the extinction level of Globotruncanids. Our results are consistent with those of Michel et al., who observe elevated concentrations of Ir at these depths in addition to a larger Ir anomaly associated with the extinction level of Globotruncanids.

  2. Plume-induced subduction initiation at the Cretaceous India-Arabia transform plate boundary: paleomagnetic constraints from the Semail ophiolite, Oman

    NASA Astrophysics Data System (ADS)

    Van Hinsbergen, D. J. J.; Maffione, M.; Koornneef, L.; Guilmette, C.

    2016-12-01

    The Neotethyan realm hosts a prominent belt of Cretaceous supra-subduction zone ophiolites from Turkey and Cyprus in the west, to Oman in the east. Associated crustal and metamorphic sole ages tightly cluster at 95-90 Ma, interpreted to shortly post-date subduction initiation in an intra-oceanic setting along transform faults or ridge segments (or ridge-parallel oceanic detachments). This subduction episode ended when the Arabian-African continental lithosphere arrived in the trench in the late Cretaceous and the leading edge of the overriding oceanic lithosphere obducted as ophiolites, including the famous Semail ophiolite of Oman. This catastrophic subduction initiation phase is assumed to be as response to some far-field trigger. Here, we analyzed whether the Semail ophiolite was generated at an E-W trending Neotethyan ridge or at a N-S trending transform. Therefore we paleomagnetically analyzed 10 localities in sheeted dyke sections of the Semail ophiolite that trend parallel to the obduction front of the ophiolite taken to reflect the paleo-trench. We demonstrate that the sheeted dyke sections, and thus also the trench, had an initial N-S strike, indicating that subduction below the Semail ophiolite probably initiated along a N-S striking transform plate boundary between the Indian and Arabian plate rather than at a Neotethyan mid-ocean ridge. Sometime before 83 Ma, India broke away from Madagascar, and underwent a counterclockwise rotation relative to Africa/Arabia around an Euler pole just north of Madagascar, likely triggered by the arrival of the Morondova mantle plume, the associated large igneous province formed since at least 91 Ma. Numerical models have shown that plume push was a likely driver for the inception of India-Madagascar spreading and associated Indian rotation. North of the associated Euler pole, E-W convergence India-Arabia must have occurred during India-Madagascar break-up. This has already been related to 96-90 Ma subduction initiation

  3. Generations of spreading basins and stages of breakdown of Wegener's Pangea in the geodynamic evolution of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Shipilov, E. V.

    2008-03-01

    Chronological succession in the formation of spreading basins is considered in the context of reconstruction of breakdown of Wegener’s Pangea and the development of the geodynamic system of the Arctic Ocean. This study made it possible to indentify three temporally and spatially isolated generations of spreading basins: Late Jurassic-Early Cretaceous, Late Cretaceous-Early Cenozoic, and Cenozoic. The first generation is determined by the formation, evolution, and extinction of the spreading center in the Canada Basin as a tectonic element of the Amerasia Basin. The second generation is connected to the development of the Labrador-Baffin-Makarov spreading branch that ceased to function in the Eocene. The third generation pertains to the formation of the spreading system of interrelated ultraslow Mohna, Knipovich, and Gakkel mid-ocean ridges that has functioned until now in the Norwegian-Greenland and Eurasia basins. The interpretation of the available geological and geophysical data shows that after the formation of the Canada Basin, the Arctic region escaped the geodynamic influence of the Paleopacific, characterized by spreading, subduction, formation of backarc basins, collision-related processes, etc. The origination of the Makarov Basin marks the onset of the oceanic regime characteristic of the North Atlantic (intercontinental rifting, slow and ultraslow spreading, separation of continental blocks (microcontinents), extinction of spreading centers of primary basins, spreading jumps, formation of young spreading ridges and centers, etc., are typical) along with retention of northward propagation of spreading systems both from the Pacific and Atlantic sides. The aforesaid indicates that the Arctic Ocean is in fact a hybrid basin or, in other words, a composite heterogeneous ocean in respect to its architectonics. The Arctic Ocean was formed as a result of spatial juxtaposition of two geodynamic systems different in age and geodynamic style: the Paleopacific

  4. Flight aerodynamics in enantiornithines: Information from a new Chinese Early Cretaceous bird

    PubMed Central

    Liu, Di; Serrano, Francisco; Habib, Michael; Zhang, Yuguang; Meng, Qinjing

    2017-01-01

    We describe an exquisitely preserved new avian fossil (BMNHC-PH-919) from the Lower Cretaceous Yixian Formation of eastern Inner Mongolia, China. Although morphologically similar to Cathayornithidae and other small-sized enantiornithines from China’s Jehol Biota, many morphological features indicate that it represents a new species, here named Junornis houi. The new fossil displays most of its plumage including a pair of elongated, rachis-dominated tail feathers similarly present in a variety of other enantiornithines. BMNHC-PH-919 represents the first record of a Jehol enantiornithine from Inner Mongolia, thus extending the known distribution of these birds into the eastern portion of this region. Furthermore, its well-preserved skeleton and wing outline provide insight into the aerodynamic performance of enantiornithines, suggesting that these birds had evolved bounding flight—a flight mode common to passeriforms and other small living birds—as early as 125 million years ago. PMID:29020077

  5. Flight aerodynamics in enantiornithines: Information from a new Chinese Early Cretaceous bird.

    PubMed

    Liu, Di; Chiappe, Luis M; Serrano, Francisco; Habib, Michael; Zhang, Yuguang; Meng, Qinjing

    2017-01-01

    We describe an exquisitely preserved new avian fossil (BMNHC-PH-919) from the Lower Cretaceous Yixian Formation of eastern Inner Mongolia, China. Although morphologically similar to Cathayornithidae and other small-sized enantiornithines from China's Jehol Biota, many morphological features indicate that it represents a new species, here named Junornis houi. The new fossil displays most of its plumage including a pair of elongated, rachis-dominated tail feathers similarly present in a variety of other enantiornithines. BMNHC-PH-919 represents the first record of a Jehol enantiornithine from Inner Mongolia, thus extending the known distribution of these birds into the eastern portion of this region. Furthermore, its well-preserved skeleton and wing outline provide insight into the aerodynamic performance of enantiornithines, suggesting that these birds had evolved bounding flight-a flight mode common to passeriforms and other small living birds-as early as 125 million years ago.

  6. Late Cretaceous- Cenozoic history of deciduousness and the terminal Cretaceous event.

    USGS Publications Warehouse

    Wolfe, J.A.

    1987-01-01

    Deciduousness in mesic, broad-leaved plants occurred in disturbed, middle-latitude environments during the Late Cretaceous. Only in polar environments in the Late Cretaceous was the deciduous element dominant, although of low diversity. The terminal Cretaceous event resulted in wide-spread selection for plants of deciduous habit and diversification of deciduous taxa, thus leaving a lasting imprint on Northern Hemisphere vegetation. Various environmental factors have played important roles in subsequent diversification of mesic, broad-leaved deciduous taxa and in origination and decline of broad-leaved deciduous forests. Low diversity and rarity of mesic deciduous plants in the post-Cretaceous of the Southern Hemisphere indicate that the inferred 'impact winter' of the terminal Cretaceous event had little effect on Southern Hemisphere vegetation and climate. -Author

  7. The Jurassic-early Cretaceous Ilo batholith of southern coastal Peru: geology, geochronology and geochemistry

    NASA Astrophysics Data System (ADS)

    Boekhout, Flora; Sempere, Thierry; Spikings, Richard; Schaltegger, Urs

    2010-05-01

    The Ilo batholith (17°00 - 18°30 S) crops out in an area of about 20 by 100 km, along the coast of southern Peru. This batholith is emplaced into the ‘Chocolate‘ Formation of late Permian to middle Jurassic age, which consists of more than 1000 m of basaltic and andesitic lavas, with interbedded volcanic agglomerates and breccias. The Ilo Batholith is considered to be a rarely exposed fragment of the Jurassic arc in Peru. Our aim is to reconstruct the magmatic evolution of this batholith, and place it within the context of long-lasting magma genesis along the active Andean margin since the Paleozoic. Sampling for dating and geochemical analyses was carried out along several cross sections through the batholith that were exposed by post-intrusion eastward tilting of 20-30°. Sparse previous work postulates early to middle Jurassic and partially early Cretaceous emplacement, on the basis of conventional K/Ar and 40Ar/39Ar dating methods in the Ilo area. Twenty new U-Pb zircon ages (LA-ICP-MS and CA-ID-TIMS) accompanied by geochemical data suggests the Ilo batholith formed via the amalgamation of middle Jurassic and early Cretaceous, subduction-related plutons. Preliminary Hf isotope studies reveal a primitive mantle source for middle Jurassic intrusions. Additional Sr, Nd and Hf isotope analyses are planned to further resolve the source regions of different pulses of plutonic activity. We strongly suggest that batholith emplacement was at least partly coeval with the emplacement of the late Permian to middle Jurassic Chocolate Formation, which was deposited in an extensional tectonic regime. Our age results and geochemical signature fit into the scheme of episodic emplacement of huge amounts of subduction related magmatism that is observed throughout the whole Andean event, particularly during the middle Jurassic onset of the first Andean cycle (southern Peru, northern Chile and southern Argentina). Although the exact geodynamic setting remains to be precisely

  8. Deep-Sea Carbonate Accumulation and Surface Ocean Saturation State in the Aftermath of the Cretaceous-Paleogene extinction

    NASA Astrophysics Data System (ADS)

    Pruss, S. B.; Higgins, J. A.; Bush, A. M.; Leckie, R. M.; Deeg, C.; Getzin, B. L.

    2016-12-01

    The role of the K-Pg extinction on biogeochemical cycling has been intensively studied in recent years. However, it remains unknown how extinctions in marine pelagic calcifiers impacted carbon cycling in the ocean. Low accumulation rates of microfossils in the aftermath of the extinction have been attributed to lowered production, which triggered a reduction in carbonate delivery to the seafloor. Interestingly, although microfossil abundance is lower and foraminifera are significantly smaller than in the latest Cretaceous, carbonate accumulated on the seafloor in the earliest Paleogene even in areas that should have been below the CCD. One such deep-water site in the South Pacific (U1370) was cored during IODP Expedition 329 in November 2010. We examined 16 samples from an anomalous carbonate layer provisionally assigned to lower Paleocene planktonic foraminiferal Zones P1a and P1b that preserves benthic and planktonic foraminifera. Carbon isotope values of the benthic species Nuttalies orealis range from 1.45 to 1.95‰ VPDB in the 16 samples. The planktonic species Parasubbotina pseudobulloides was only abundant enough for analysis in 4 samples, and these values range from 1.41 to 1.91‰ VPDB. We note, as others have, that no carbon isotope gradient existed between the benthic and planktonic foraminifera during the deposition of this carbonate layer, perhaps due to reduced primary production and/or export of organic carbon. The presence of this carbonate layer in the deep ocean and its preservation of a collapsed isotopic gradient are both consistent with a reduction in the surface-to-deep water gradient in carbonate saturation state during the unusual oceanographic conditions that followed the extinction. We speculate that this was associated with a sustained reduction in surface ocean saturation state with adverse consequences for neritic carbonate producers in the aftermath of the K-T extinction.

  9. Elemental and Sr-Nd isotopic geochemistry of Cretaceous to Early Paleogene granites and volcanic rocks in the Sikhote-Alin Orogenic Belt (Russian Far East): implications for the regional tectonic evolution

    NASA Astrophysics Data System (ADS)

    Zhao, Pan; Jahn, Bor-ming; Xu, Bei

    2017-09-01

    The Sikhote-Alin Orogenic Belt in Russian Far East is an important Late Mesozoic to Early Cenozoic accretionary orogen related to the subduction of the Paleo-Pacific Plate. This belt was generated by successive accretion of terranes made of accretionary prisms, turbidite basins and island arcs to the continental margin of northeastern Asia (represented by the Bureya-Jiamusi-Khanka Block) from Jurassic to Late Cretaceous. In order to study the tectonic and crustal evolution of this orogenic belt, we carried out zircon U-Pb dating, and whole-rock elemental and Sr-Nd isotopic analyses on granites and volcanic rocks from the Primorye region of southern Sikhote-Alin. Zircon dating revealed three episodes of granitoid emplacement: Permian, Early Cretaceous and Late Cretaceous to Early Paleogene. Felsic volcanic rocks (mainly rhyolite, dacite and ignimbrite) that overlay all tectonostratigraphic terranes were erupted during 80-57 Ma, postdating the accretionary process in the Sikhote-Alin belt. The Cretaceous-Paleogene magmatism represents the most intense tectonothermal event in the Sikhote-Alin belt. Whole-rock major and trace elemental data show arc-like affinity for granitoids and volcanic rocks, indicating that they were likely generated in a supra-subduction setting. Their initial 87Sr/86Sr ratios range from 0.7048 to 0.7114, and εNd(t) values vary from +1.7 to -3.8 (mostly < 0). Thus, the elemental and Sr-Nd isotopic data suggest that the felsic magmas were generated by partial melting of source rocks comprising mantle-derived juvenile component and recycled crustal component. In addition to the occurrence in the Sikhote-Alin orogenic belt, Cretaceous to Early Paleogene magmatic rocks are also widespread in NE China, southern Korean peninsula, Japanese islands and other areas of Russian Far East, particularly along the coastal regions of the Okhotsk and Bering Seas. These rocks constitute an extended magmatic belt along the continental margin of NE Asia. The

  10. Paleomagnetic reconstruction of Late Cretaceous structures along the Midelt-Errachidia profile (Morocco). Tectonic implications.

    NASA Astrophysics Data System (ADS)

    Torres López, Sara; José Villalain, Juan; Casas, Antonio; El ouardi, Hmidou; Moussaid, Bennacer; Ruiz-Martínez, Vicente Carlos

    2017-04-01

    Remagnetization data are used in this work to obtain the palinspastic reconstruction at 100 (Ma) of one of the most studied profiles of the Central High Atlas: the Midelt-Errachidia cross-section (Morocco). Previous studies in the area on syn-rift sedimentary rocks of subsiding basins have revealed that the Mesozoic sediments of this region acquired a pervasive remagnetization at the end of the Early Cretaceous. Fifty-eight sites (470 samples) corresponding to black limestones, marly limestones and marls, Early to Middle Jurassic in age, have been studied. Sites are distributed along a 70 km transect cutting across the basin and perpendicular to the main structures. The magnetic properties of samples are very regular showing very high NRM. Thermal and AF demagnetization showed a single stable paleomagnetic component with unblocking temperatures and coercivities spectra of 300-475°C and 20-100 mT respectively. This characteristic remanent magnetization (ChRM) showed systematically normal polarity suggesting a widespread remagnetization. In spite of the good outcrops and the relatively well-constrained structure of the High Atlas, there are many tectonic problems still unsolved, as the controversial existence of intra-Mesozoic deformation episodes. The restoration of paleomagnetic vectors to the remagnetization acquisition stage (100 Ma) allows to determine the dip of the beds during this period and, thereby, to obtain a reconstruction of structures during that time. This reconstruction accounts for the relative contribution of Mesozoic transpressional/transtrenssional movements vs. Cenozoic compression to the present-day dip. The results obtained indicate that these structures have undergone different degrees of pre-late Cretaceous deformation and were re-activated during the Cenozoic compression to finally acquire their present-day geometry.

  11. New Mid-Cretaceous (Latest Albian) Dinosaurs from Winton, Queensland, Australia

    PubMed Central

    Hocknull, Scott A.; White, Matt A.; Tischler, Travis R.; Cook, Alex G.; Calleja, Naomi D.; Sloan, Trish; Elliott, David A.

    2009-01-01

    Background Australia's dinosaurian fossil record is exceptionally poor compared to that of other similar-sized continents. Most taxa are known from fragmentary isolated remains with uncertain taxonomic and phylogenetic placement. A better understanding of the Australian dinosaurian record is crucial to understanding the global palaeobiogeography of dinosaurian groups, including groups previously considered to have had Gondwanan origins, such as the titanosaurs and carcharodontosaurids. Methodology/Principal Findings We describe three new dinosaurs from the late Early Cretaceous (latest Albian) Winton Formation of eastern Australia, including; Wintonotitan wattsi gen. et sp. nov., a basal titanosauriform; Diamantinasaurus matildae gen. et sp. nov., a derived lithostrotian titanosaur; and Australovenator wintonensis gen. et sp. nov., an allosauroid. We compare an isolated astragalus from the Early Cretaceous of southern Australia; formerly identified as Allosaurus sp., and conclude that it most-likely represents Australovenator sp. Conclusion/Significance The occurrence of Australovenator from the Aptian to latest Albian confirms the presence in Australia of allosauroids basal to the Carcharodontosauridae. These new taxa, along with the fragmentary remains of other taxa, indicate a diverse Early Cretaceous sauropod and theropod fauna in Australia, including plesiomorphic forms (e.g. Wintonotitan and Australovenator) and more derived forms (e.g. Diamantinasaurus). PMID:19584929

  12. Changes in calcareous nannoplankton calcification during the latest Cenomanian Oceanic Anoxic Event 2 and similarity with other Cretaceous Oceanic Anoxic Events

    NASA Astrophysics Data System (ADS)

    Faucher, Giulia; Erba, Elisabetta; Bottini, Cinzia

    2016-04-01

    Caribbean Plateau. Alternatively, calcification crash might result from a global fertilization of sea surface water or supply of toxic metals, perhaps linked to LIP construction, that might have played a central role in coccolith secretion. The comparison of our morphometric data with those available for the early Aptian OAE 1a and Albian OAE 1d, pointed out that B. constans repeatedly underwent size reduction and temporary dwarfism implying that same paleoenvironmental factors might have controlled calcification during subsequent OAEs. The amplitude of B. constans coccolith reduction is different for OAE 1a and OAE 2, but similar minimum values were measured evoking the potential existence of a critical minimum size. Paleoceanographic reconstructions of OAE 1a and OAE 2 hint a correlation between reduced biocalcification and intervals of intense volcanism suggesting that mid-Cretaceous nannoplankton coccolith secretion was related to the amount of CO2 and/or toxic metal concentrations with a repetitive reduction in size during OAEs, while temperature and nutrient availability do not seem to have been crucial for coccolith calcification. Finally, during OAEs calcareous nannoplankton inability to properly calcify might have facilitated a transient spread of other phytoplankton groups more competitive than coccolithophores.

  13. Distinguishing base-level change and climate signals in a Cretaceous alluvial sequence

    USGS Publications Warehouse

    White, T.; Witzke, B.; Ludvigson, G. A.; Brenner, R.

    2005-01-01

    We present the results of oxygen isotope and electron-microprobe analyses of sphaerosiderites obtained from Cretaceous paleosols in Iowa. The sphaerosiderite ??18O values record Cretaceous meteoric groundwater chemistry and an overall waning of brackish groundwater inundation during alluvial-plain aggradation and soil genesis. We focus on horizons that precipitated from freshwater, in which ??18O values ranging from -3.30??? to -6.8??? relative to the Peedee belemnite standard are interpreted to record variations in the Cretaceous atmospheric hydrologic cycle. During relative sea-level highstands, moisture was derived from the Cretaceous Western Interior Seaway, whereas during lowstands, when the seaway narrowed and occasionally withdrew from the Midcontinent, the dominance of hemispheric-scale atmospheric moisture transport initiated in the tropical Tethys Ocean led to decreased precipitation rates. These processes did not operate like a switch, but rather as a continuum of competing moisture sources and mechanisms of transport between the nearby epicontinental sea and the distant tropics. The sphaerosiderite data demonstrate (1) temporal variation in the intensity of hemispheric-scale atmospheric moisture transport and (2) long-term amplification of the global hydrologic cycle marked by extreme 18O depletion at the Albian-Cenomanian boundary. ?? 2005 Geological Society of America.

  14. Terrestrial biota and climate during Cretaceous greenhouse in NE China

    NASA Astrophysics Data System (ADS)

    Wan, X.

    2016-12-01

    Northeast China offers a unique opportunity to perceive Cretaceous stratigraphy and climate of terrestrial settings. The sediments contain variegated clastic and volcanic rocks, diverse terrestrial fossils, and important coal and oil resources. Four Cretaceous biotas of Jehol, Fuxin, Songhuajiang and Jiayin occurred in ascending order. For scientific purpose, a coring program (SK1 & 2) provides significant material for Cretaceous research. The SK1 present a continuous section of Upper Cretaceous non-marine fossil, magnetochron successions and chronostratigraphic events. These chronostratigraphic events are integrated with marine events by an X/Y graphic plot between the core data and a global database of GSSP and key reference sections. More precisely, age interpolation based on CA-ID-TIMS U-Pb zircon dates and the calibrated cyclostratigraphy places the end of the Cretaceous Normal Superchon at 83.07 ±0.15Ma. This date also serves as an estimate for the Santonian-Campanian stage boundary. It also places the K/Pg boundary within the upper part of the Mingshui Formation. The terrestrial and marine life and the analysis of elemental composition, δ13Corg, biomarkers show that lake water salinity changed along with a Coniacian-Santonian marine incursion. High lake-level coincides with the sea transgression during the time. High salinity resulted in the development of periodic anoxic environments of the basin. One of these times of deposition of organic-rich mud correlates with the mangnetochron of C34N/C33R and Coniacian-Santonian planktic foraminifera. This marine flooding correlates with OAE 3 and it is possible that the global oceanic anoxic event may have influenced organic carbon burial in the Songliao Basin for this brief period. The evolution of 4 biotas corresponds to the Cretaceous climate change. We tentatively interpret the terrestrial record to reflect the changes in both global climate and regional basin evolution.

  15. On the age of the Jurassic-Cretaceous boundary

    NASA Astrophysics Data System (ADS)

    Lena, Luis; Ramos, Victor; Pimentel, Marcio; Aguirre-Urreta, Beatriz; Naipauer, Maximiliano; Schaltegger, Urs

    2017-04-01

    Calibrating the geologic time is of utmost importance to understanding geological and biological processes throughout Earth history. The Jurassic-Cretaceous boundary has proven to be one of the most problematic boundaries to calibrate in the geologic time. The present definition of the Jurassic-Cretaceous boundary still remains contentious mainly because of the dominant endemic nature of the flora and fauna in stratigraphic sections, which hinders an agreement on a GSSP. Consequently, an absolute and precise age for the boundary is yet to meet an agreement among the community. Additionally, integrating chemical, paleomagnetic or astronomical proxies to aid the definition of the boundary has also proven to be difficult because the boundary lacks any abrupt geochemical changes or recognizable geological events. However, the traditional Berriasella jacobi Subzone is disregarded as a primary marker and the use of calpionellids has been gaining momentum for defining the boundary. The Jurassic Cretaceous boundary in the Vaca Muerta Fm. in the Nuequen Basin of the Andes is a potential candidate for the boundary stratotype because of its high density of ammonites, nannofossils and interbedded datable horizons. Consequently, the Jurassic-Cretaceous boundary is very well defined in the Vaca Muerta Fm. On the basis of both ammonites and nannofossils. Here we present new high-precision U-Pb age determinations from two volcanic ash beds that bracket the age of the Jurassic-Cretaceous boundary: 1) ash bed LLT_14_9, with a 206Pb/238U age of 139.7 Ma, which is 2 meters above Jurassic-Cretaceous boundary based on the Argetiniceras noduliferum (Early Berriasian ) and Substeueroceras Koeneni (Late Tithonian) ammonites zone; and 2) bed LLT_14_10, with an age of 140.1 Ma, located 3m below the J-K boundary based on last occurrence of the nannofossils N. kamptneri minor and N. steinmanni minor. Therefore, we propose that the age of the Jurassic-Cretaceous boundary should be close to 140

  16. Mycophagous rove beetles highlight diverse mushrooms in the Cretaceous

    PubMed Central

    Cai, Chenyang; Leschen, Richard A. B.; Hibbett, David S; Xia, Fangyuan; Huang, Diying

    2017-01-01

    Agaricomycetes, or mushrooms, are familiar, conspicuous and morphologically diverse Fungi. Most Agaricomycete fruiting bodies are ephemeral, and their fossil record is limited. Here we report diverse gilled mushrooms (Agaricales) and mycophagous rove beetles (Staphylinidae) from mid-Cretaceous Burmese amber, the latter belonging to Oxyporinae, modern members of which exhibit an obligate association with soft-textured mushrooms. The discovery of four mushroom forms, most with a complete intact cap containing distinct gills and a stalk, suggests evolutionary stasis of body form for ∼99 Myr and highlights the palaeodiversity of Agaricomycetes. The mouthparts of early oxyporines, including enlarged mandibles and greatly enlarged apical labial palpomeres with dense specialized sensory organs, match those of modern taxa and suggest that they had a mushroom feeding biology. Diverse and morphologically specialized oxyporines from the Early Cretaceous suggests the existence of diverse Agaricomycetes and a specialized trophic interaction and ecological community structure by this early date. PMID:28300055

  17. New Age of Fishes initiated by the Cretaceous-Paleogene mass extinction

    NASA Astrophysics Data System (ADS)

    Sibert, Elizabeth C.; Norris, Richard D.

    2015-07-01

    Ray-finned fishes (Actinopterygii) comprise nearly half of all modern vertebrate diversity, and are an ecologically and numerically dominant megafauna in most aquatic environments. Crown teleost fishes diversified relatively recently, during the Late Cretaceous and early Paleogene, although the exact timing and cause of their radiation and rise to ecological dominance is poorly constrained. Here we use microfossil teeth and shark dermal scales (ichthyoliths) preserved in deep-sea sediments to study the changes in the pelagic fish community in the latest Cretaceous and early Paleogene. We find that the Cretaceous-Paleogene (K/Pg) extinction event marked a profound change in the structure of ichthyolith communities around the globe: Whereas shark denticles outnumber ray-finned fish teeth in Cretaceous deep-sea sediments around the world, there is a dramatic increase in the proportion of ray-finned fish teeth to shark denticles in the Paleocene. There is also an increase in size and numerical abundance of ray-finned fish teeth at the boundary. These changes are sustained through at least the first 24 million years of the Cenozoic. This new fish community structure began at the K/Pg mass extinction, suggesting the extinction event played an important role in initiating the modern "age of fishes."

  18. New Age of Fishes initiated by the Cretaceous-Paleogene mass extinction.

    PubMed

    Sibert, Elizabeth C; Norris, Richard D

    2015-07-14

    Ray-finned fishes (Actinopterygii) comprise nearly half of all modern vertebrate diversity, and are an ecologically and numerically dominant megafauna in most aquatic environments. Crown teleost fishes diversified relatively recently, during the Late Cretaceous and early Paleogene, although the exact timing and cause of their radiation and rise to ecological dominance is poorly constrained. Here we use microfossil teeth and shark dermal scales (ichthyoliths) preserved in deep-sea sediments to study the changes in the pelagic fish community in the latest Cretaceous and early Paleogene. We find that the Cretaceous-Paleogene (K/Pg) extinction event marked a profound change in the structure of ichthyolith communities around the globe: Whereas shark denticles outnumber ray-finned fish teeth in Cretaceous deep-sea sediments around the world, there is a dramatic increase in the proportion of ray-finned fish teeth to shark denticles in the Paleocene. There is also an increase in size and numerical abundance of ray-finned fish teeth at the boundary. These changes are sustained through at least the first 24 million years of the Cenozoic. This new fish community structure began at the K/Pg mass extinction, suggesting the extinction event played an important role in initiating the modern "age of fishes."

  19. 85 million years of pelagic ecosystem evolution: Pacific Ocean deep-sea ichthyolith records reveal fish community dynamics and a long-term decline in sharks

    NASA Astrophysics Data System (ADS)

    Sibert, E. C.; Norris, R. D.; Cuevas, J. M.; Graves, L. G.

    2015-12-01

    The structure and productivity of open ocean consumers has undergone major changes over the past 85 million years. Here, we present the first long-term detailed records of pelagic fish and sharks utilizing the record of ichthyoliths (teeth and dermal scales) from the deep Pacific Ocean. While the North and South Pacific Oceans show similar patterns throughout the 85 million year history, the North Pacific ichthyolith accumulation is significantly higher than the South Pacific, suggesting that the basin has been a more productive region for tens of millions of years. Fish and sharks were not abundant in the Pacific gyres until ~75 million years ago (Ma) suggesting that neither group was quantitatively important in oligotrophic pelagic food webs prior to the latest Cretaceous. Relative to ray-finned fish, sharks were common in the ancient ocean. Most ichthyolith assemblages have >50% shark dermal scales (denticles), but denticle abundance has been declining in both absolute and relative abundance since the Cretaceous-Paleogene (K/Pg) mass extinction. The accumulation rate of ichthyoliths of both sharks and ray-finned fish was highest in the Early Eocene, during the peak of the Cenozoic 'greenhouse' climate where production of shark dermal denticles and fish teeth increased almost five times over Paleocene production rates. Ichthyolith fluxes fell with cooler climates in the later Eocene and Oligocene, but fish production is almost always higher than in the Cretaceous and Paleocene reflecting the expanded ecological roles and importance of pelagic fish in marine ecosystems. Shark denticle production fell to less than half that of the Cretaceous by 20 Ma when it dropped abruptly to near-zero levels. Currently denticles make up <2% of the ichthyolith assemblages when present at all. Ecologically, pelagic sharks appear to be falling as major pelagic consumers over the Late Cretaceous and Cenozoic, and particularly over the past 20 Ma, perhaps reflecting demographic

  20. April 2012 intra-oceanic seismicity off Sumatra boosted by the Banda-Aceh megathrust.

    PubMed

    Delescluse, Matthias; Chamot-Rooke, Nicolas; Cattin, Rodolphe; Fleitout, Luce; Trubienko, Olga; Vigny, Christophe

    2012-10-11

    Large earthquakes nucleate at tectonic plate boundaries, and their occurrence within a plate's interior remains rare and poorly documented, especially offshore. The two large earthquakes that struck the northeastern Indian Ocean on 11 April 2012 are an exception: they are the largest strike-slip events reported in historical times and triggered large aftershocks worldwide. Yet they occurred within an intra-oceanic setting along the fossil fabric of the extinct Wharton basin, rather than on a discrete plate boundary. Here we show that the 11 April 2012 twin earthquakes are part of a continuing boost of the intraplate deformation between India and Australia that followed the Aceh 2004 and Nias 2005 megathrust earthquakes, subsequent to a stress transfer process recognized at other subduction zones. Using Coulomb stress change calculations, we show that the coseismic slips of the Aceh and Nias earthquakes can promote oceanic left-lateral strike-slip earthquakes on pre-existing meridian-aligned fault planes. We further show that persistent viscous relaxation in the asthenospheric mantle several years after the Aceh megathrust explains the time lag between the 2004 megathrust and the 2012 intraplate events. On a short timescale, the 2012 events provide new evidence for the interplay between megathrusts at the subduction interface and intraplate deformation offshore. On a longer geological timescale, the Australian plate, driven by slab-pull forces at the Sunda trench, is detaching from the Indian plate, which is subjected to resisting forces at the Himalayan front.

  1. Astrochronology of the Valanginian Stage (Early Cretaceous) : implications for the origin of the Weissert Event

    NASA Astrophysics Data System (ADS)

    Martinez, Mathieu; Deconinck, Jean-François; Pellenard, Pierre; Reboulet, Stéphane; Riquier, Laurent

    2013-04-01

    Due to the scarcity of available radioisotopic ages in the Lower Cretaceous, the Geologic Time Scale presents uncertainties that impact palaeoceanographic and palaeoclimatic reconstructions. Particularly, the chronological relationship between the Mid-Valanginian carbon-isotope excursion (namely the 'Weissert Event') and the activity of the Paraná-Etendeka Large Igneous Province is debated. To better constrain this relationship, an astrochronology of the Valanginian Stage is proposed based on high-resolution gamma-ray spectrometry measurements performed on five biostratigraphically well-constrained sections throughout the Vocontian Basin (SE France). The Valanginian sediments of the Vocontian Basin are composed of decimetric hemipelagic marl-limestone alternations. These lithologic cycles are attributed to orbital forcing because marls and limestones display significant differences within clay mineralogy, geochemistry and faunal assemblages and these marl-limestone alternations are correlated throughout the Western Tethys and the Atlantic Ocean. Among the analyzed sections, Vergol (GSSP candidate for the Berriasian-Valanginian boundary), La Charce (GSSP candidate for the Valanginian-Hauterivian boundary) and Angles (Valanginian Hypostratotype) are standard sections for the Valanginian Stage since all ammonite zones and subzones are precisely identified and bounded. Spectral analyses were performed using the multi-taper method and amplitude spectrograms on the gamma-ray signals. The comparison between sedimentary frequency ratios derived from the spectral analyses and orbital frequency ratios calculated from astronomical solutions allows the identification of a pervasive dominance of the precession and the 405 kyr-eccentricity cycles throughout the Valanginian Stage. A duration of 5.1 myr is proposed for the Valanginian Stage on the base of the recognition of the 405 kyr-eccentricity cycles. This duration is in agreement with the orbital calibration proposed from

  2. Preliminary magnetostratigraphy and environmental magnetism of the Lower Cretaceous from the Italian Dolomites

    NASA Astrophysics Data System (ADS)

    Savian, J. F.; Jovane, L.; Florindo, F.; Lukeneder, A.

    2011-12-01

    The Lower Cretaceous (~146 to 100 Ma) represents an enigmatic time interval for paleoclimatic, paleogeography and paleomagnetic evolution of the Earth's history. The climatic changes include global oceanic anoxic events (OAEs), biotic changes, global excursions of carbon and strontium isotopes, rises in eustatic sea level and paleotemperature. Paleoceanography was marked by a rapid rate of ocean spreading in the Atlantic. The opening of the Atlantic Ocean was wide enough to allow significant circulation of masses of waters across the equator. This period is furthermore important for the oceanographic events occurring at the base of the Aptian (Selli Level). This period also present one of the most intriguing geomagnetic events: the long normal Cretaceous superchron, lasted for almost 40 million years. We study here the lower Cretaceous deposits of the Puez section in the Dolomites (northern Italy) which represents a continuous section during this period. The samples collected represent marine sedimentary materials of the Biancone and Puez formations. The Puez section consists essentially of green-grey to red limestones and calcareous marls. We present preliminary results of integrated magnetostratigraphic analysis, including a detailed lithostratigraphy and environmental magnetism. We recognize magnetic behavior that are relative to normal polarity (the normal Cretaceous superchron), with a short reverse interval that might represent the M-1r event. We also recognize a series of normal and reverse polarities (below the normal Cretaceous superchron) which can be referred to the magnetozones M1/M5. The environmental magnetic data consists of magnetic susceptibility (χ), natural remanent magnetization (NRM), anhysteretic remanent magnetization (ARM), isothermal remanent magnetization (IRM) at 900 mT and backfield isothermal remanent magnetization (BIRM) at 100 mT and 300 mT. Derived parameters, such as S-ratio (S300=BIRM300/IRM900) and hard isothermal remanent

  3. Late Jurassic-Early Cretaceous radiolarian age constraints from the sedimentary cover of the Amasia ophiolite (NW Armenia), at the junction between the Izmir-Ankara-Erzinçan and Sevan-Hakari suture zones

    NASA Astrophysics Data System (ADS)

    Danelian, T.; Asatryan, G.; Galoyan, Gh.; Sahakyan, L.; Stepanyan, J.

    2016-01-01

    The Amasia ophiolite, situated at the northernmost corner of Armenia, is part of the Sevan-Hakari suture zone which links with the Izmir-Ankara-Erzinçan suture zone in northern Turkey. Three new radiolarian assemblages have been extracted from siliceous sedimentary rocks that accumulated on the Amasia ophiolite in an oceanic setting. Two of these assemblages were extracted from red-brownish bedded cherts overlying basaltic lavas; one of these is likely to be middle Oxfordian to early Kimmeridgian in age, while the second correlates with the Berriasian. Similar time-equivalent lava-chert sequences have been dated recently using radiolarians from the Stepanavan, Vedi and Sevan ophiolite units, where they are considered to relate to submarine volcanic activity in the back-arc marginal basin in which the Armenian ophiolites were formed. The third radiolarian assemblage, of late Barremian age, was extracted from a more than 15-m-thick volcaniclastic-chert sequence. The related volcanic activity is likely to have been subaerial and probably relates to the formation of an oceanic volcanic plateau; no Cretaceous subaerial volcanism has been previously recorded in the Lesser Caucasus area.

  4. Anoxia and high primary production in the Paleogene central Arctic Ocean: First detailed records from Lomonosov Ridge

    NASA Astrophysics Data System (ADS)

    Stein, Ruediger; Boucsein, Bettina; Meyer, Hanno

    2006-09-01

    Except for a few discontinuous fragments of the Late Cretaceous/Early Cenozoic climate history and depositional environment, the paleoenvironmental evolution of the pre-Neogene central Arctic Ocean was virtually unknown prior to the IODP Expedition 302 (Arctic Ocean Coring Expedition-ACEX) drilling campaign on Lomonosov Ridge in 2004. Here we present detailed organic carbon (OC) records from the entire ca. 200 m thick Paleogene OC-rich section of the ACEX drill sites. These records indicate euxinic "Black Sea-type" conditions favorable for the preservation of labile aquatic (marine algae-type) OC occur throughout the upper part of the early Eocene and the middle Eocene, explained by salinity stratification due to freshwater discharge. The superimposed short-term ("Milankovitch-type") variability in amount and composition of OC is related to changes in primary production and terrigenous input. Prominent early Eocene events of algae-type OC preservation coincide with global δ13C events such as the PETM and Elmo events. The Elmo δ13C Event has been identified in the Arctic Ocean for the first time.

  5. Evolution of Cupido and Coahuila carbonate platforms, early Cretaceous, northeastern Mexico

    USGS Publications Warehouse

    Lehmann, Christoph; Osleger, David A.; Montañez, Isabel P.; Sliter, William V.; Arnaud Vanneau, Annie; Banner, Jay L.

    1999-01-01

    middle Albian time. Restriction of the platform interior dissipated by middle to late Albian time with the deposition of peloidal, miliolid-rich packstones and grainstones of the Aurora Formation. The Coahuila platform was drowned during latest Albian to early Cenomanian time, and the deep-water laminites of the Cuesta del Cura Formation were deposited.This study fills in a substantial gap in the Cretaceous paleogeography of the eastern Gulf of Mexico coast, improving regional correlations with adjacent hydrocarbon-rich platforms. The enhanced temporal relations and chronology of events recorded in the Cupido and Coahuila platforms significantly improve global correlations with coeval, economically important platforms worldwide, perhaps contributing to the determination of global versus regional controls on carbonate platform evolution during middle Cretaceous time.

  6. Isotope composition and volume of Earth's early oceans.

    PubMed

    Pope, Emily C; Bird, Dennis K; Rosing, Minik T

    2012-03-20

    Oxygen and hydrogen isotope compositions of Earth's seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hydrogen's was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotope compositions of ancient seawater. Archaean oceans were depleted in deuterium [expressed as δD relative to Vienna standard mean ocean water (VSMOW)] by at most 25 ± 5‰, but oxygen isotope ratios were comparable to modern oceans. Mass balance of the global hydrogen budget constrains the contribution of continental growth and planetary hydrogen loss to the secular evolution of hydrogen isotope ratios in Earth's oceans. Our calculations predict that the oceans of early Earth were up to 26% more voluminous, and atmospheric CH(4) and CO(2) concentrations determined from limits on hydrogen escape to space are consistent with clement conditions on Archaean Earth.

  7. Shocked quartz in the cretaceous-tertiary boundary clays: Evidence for a global distribution

    USGS Publications Warehouse

    Bohor, B.F.; Modreski, P.J.; Foord, E.E.

    1987-01-01

    Shocked quartz grains displaying planar features were isolated from Cretaceous-Tertiary boundary days at five sites in Europe, a core from the north-central Pacific Ocean, and a site in New Zealand. At all of these sites, the planar features in the shocked quartz can be indexed to rational crystallographic planes of the quartz lattice. The grains display streaking indicative of shock in x-ray diffraction photographs and also show reduced refractive indices. These characteristic features of shocked quartz at several sites worldwide confirm that an impact event at the Cretaceous-Tertiary boundary distributed ejecta products in an earth-girdling dust cloud, as postulated by the Alvarez impact hypothesis.

  8. The impact of the Cretaceous-Paleogene (K-Pg) mass extinction event on the global sulfur cycle: Evidence from Seymour Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Witts, James D.; Newton, Robert J.; Mills, Benjamin J. W.; Wignall, Paul B.; Bottrell, Simon H.; Hall, Joanna L. O.; Francis, Jane E.; Alistair Crame, J.

    2018-06-01

    The Cretaceous-Paleogene (K-Pg) mass extinction event 66 million years ago led to large changes to the global carbon cycle, primarily via a decrease in primary or export productivity of the oceans. However, the effects of this event and longer-term environmental changes during the Late Cretaceous on the global sulfur cycle are not well understood. We report new carbonate associated sulfate (CAS) sulfur isotope data derived from marine macrofossil shell material from a highly expanded high latitude Maastrichtian to Danian (69-65.5 Ma) succession located on Seymour Island, Antarctica. These data represent the highest resolution seawater sulfate record ever generated for this time interval, and are broadly in agreement with previous low-resolution estimates for the latest Cretaceous and Paleocene. A vigorous assessment of CAS preservation using sulfate oxygen, carbonate carbon and oxygen isotopes and trace element data, suggests factors affecting preservation of primary seawater CAS isotopes in ancient biogenic samples are complex, and not necessarily linked to the preservation of original carbonate mineralogy or chemistry. Primary data indicate a generally stable sulfur cycle in the early-mid Maastrichtian (69 Ma), with some fluctuations that could be related to increased pyrite burial during the 'mid-Maastrichtian Event'. This is followed by an enigmatic +4‰ increase in δ34SCAS during the late Maastrichtian (68-66 Ma), culminating in a peak in values in the immediate aftermath of the K-Pg extinction which may be related to temporary development of oceanic anoxia in the aftermath of the Chicxulub bolide impact. There is no evidence of the direct influence of Deccan volcanism on the seawater sulfate isotopic record during the late Maastrichtian, nor of a direct influence by the Chicxulub impact itself. During the early Paleocene (magnetochron C29R) a prominent negative excursion in seawater δ34S of 3-4‰ suggests that a global decline in organic carbon burial

  9. Early ice retreat and ocean warming may induce copepod biogeographic boundary shifts in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Feng, Zhixuan; Ji, Rubao; Campbell, Robert G.; Ashjian, Carin J.; Zhang, Jinlun

    2016-08-01

    Early ice retreat and ocean warming are changing various facets of the Arctic marine ecosystem, including the biogeographic distribution of marine organisms. Here an endemic copepod species, Calanus glacialis, was used as a model organism, to understand how and why Arctic marine environmental changes may induce biogeographic boundary shifts. A copepod individual-based model was coupled to an ice-ocean-ecosystem model to simulate temperature- and food-dependent copepod life history development. Numerical experiments were conducted for two contrasting years: a relatively cold and normal sea ice year (2001) and a well-known warm year with early ice retreat (2007). Model results agreed with commonly known biogeographic distributions of C. glacialis, which is a shelf/slope species and cannot colonize the vast majority of the central Arctic basins. Individuals along the northern boundaries of this species' distribution were most susceptible to reproduction timing and early food availability (released sea ice algae). In the Beaufort, Chukchi, East Siberian, and Laptev Seas where severe ocean warming and loss of sea ice occurred in summer 2007, relatively early ice retreat, elevated ocean temperature (about 1-2°C higher than 2001), increased phytoplankton food, and prolonged growth season created favorable conditions for C. glacialis development and caused a remarkable poleward expansion of its distribution. From a pan-Arctic perspective, despite the great heterogeneity in the temperature and food regimes, common biogeographic zones were identified from model simulations, thus allowing a better characterization of habitats and prediction of potential future biogeographic boundary shifts.

  10. Snakefly diversity in Early Cretaceous amber from Spain (Neuropterida, Raphidioptera)

    PubMed Central

    la Fuente, Ricardo Pérez-de; Peñalver, Enrique; Delclòs, Xavier; Engel, Michael S.

    2012-01-01

    Abstract The Albian amber from Spain presently harbors the greatest number and diversity of amber adult fossil snakeflies (Raphidioptera). Within Baissopteridae, Baissoptera? cretaceoelectra sp. n., from the Peñacerrada I outcrop (Moraza, Burgos), is the first amber inclusion belonging to the family and described from western Eurasia, thus substantially expanding the paleogeographical range of the family formerly known from the Cretaceous of Brazil and eastern Asia. Within the family Mesoraphidiidae, Necroraphidia arcuata gen. et sp. n. and Amarantoraphidia ventolina gen. et sp. n. are described from the El Soplao outcrop (Rábago, Cantabria), whereas Styporaphidia? hispanica sp. n. and Alavaraphidia imperterrita gen. et sp. n. are describedfrom Peñacerrada I. In addition, three morphospecies are recognized from fragmentary remains. The following combinations are restored: Yanoraphidia gaoi Ren, 1995, stat. rest., Mesoraphidia durlstonensis Jepson, Coram and Jarzembowski, 2009, stat. rest., and Mesoraphidia heteroneura Ren, 1997, stat. rest. The singularity of this rich paleodiversity could be due to the paleogeographic isolation of the Iberian territory and also the prevalence of wildfires during the Cretaceous. PMID:22787417

  11. Geochemical characteristics of Cretaceous carbonatites from Angola

    NASA Astrophysics Data System (ADS)

    Alberti, A.; Castorina, F.; Censi, P.; Comin-Chiaramonti, P.; Gomes, C. B.

    1999-12-01

    The Early Cretaceous (138-130 Ma) carbonatites and associated alkaline rocks of Angola belong to the Paraná-Angola-Etendeka Province and occur as ring complexes and other central-type intrusions along northeast trending tectonic lineaments, parallel to the trend of coeval Namibian alkaline complexes. Most of the Angolan carbonatite-alkaline bodies are located along the apical part of the Moçamedes Arch, a structure representing the African counterpart of the Ponta Grossa Arch in southern Brazil, where several alkaline-carbonatite complexes were also emplaced in the Early Cretaceous. Geochemical and isotopic (C, 0, Sr and Nd) characteristics determined for five carbonatitic occurrences indicate that: (1) the overall geochemical composition, including the OC isotopes, is within the range of the Early and Late Cretaceous Brazilian occurrences from the Paraná Basin; (2) the La versus {La}/{Yb} relationships are consistent with the exsolution of CO i2-rich melts from trachyphonolitic magmas; and (3) the {143Nd}/{144Nd} and {87Sr}/{86Sr} initial ratios are similar to the initial isotopic ratios (129 Ma) of alkaline complexes in northwest Namibia. In contrast, the Lupongola carbonatites have a distinctly different {143Nd}/{144Nd} initial ratio, suggesting a different source. The Angolan carbonatites have SrNd isotopic compositions ranging from bulk earth to time-integrated depleted sources. Since those from eastern Paraguay (at the western fringe of the Paraná-Angola-Etendeka Province) and Brazil appear to be related to mantle-derived melts with time-integrated enriched or B.E. isotopic characteristics, it is concluded that the carbonatites of the Paraná-Angola-Etendeka Province have compositionally distinct mantle sources. Such mantle heterogeneity is attributed to 'metasomatic processes', which would have occurred at ca 0.6-0.7 Ga (Angola, northwest Namibia and Brazil) and ca 1.8 Ga (eastern Paraguay), as suggested by Nd-model ages.

  12. On the Enigmatic Birth of the Pacific Plate within the Panthalassa Ocean

    NASA Astrophysics Data System (ADS)

    Boschman, L.; Van Hinsbergen, D. J. J.

    2016-12-01

    The oceanic Pacific Plate started forming in Early Jurassic time within the vast Panthalassa Ocean that surrounded the supercontinent Pangea and contains the oldest lithosphere that can directly constrain the geodynamic history of the circum-Pangean Earth. Here, we show that the geometry of the oldest marine magnetic anomalies of the Pacific Plate attests of a unique plate kinematic event that sparked the plate's birth in virtually a point location, surrounded by the Izanagi, Farallon and Phoenix Plates. We reconstruct the unstable triple junction that caused the plate reorganization leading to the birth of the Pacific Plate and present a model of the plate tectonic configuration that preconditioned this event. We show that a stable, but migrating triple junction involving the gradual cessation of intra-oceanic Panthalassa subduction culminated in the formation of an unstable transform-transform-transform triple junction. The consequent plate boundary reorganization resulted in the formation of a stable triangular three-ridge system from which the nascent Pacific Plate expanded. We link the birth of the Pacific Plate to the regional termination of intra-Panthalassa subduction. Remnants thereof have been identified in the deep lower mantle of which the locations may provide paleolongitudinal control on the absolute location of the early Pacific Plate. Our results constitute an essential step in unraveling the plate tectonic evolution of `Thalassa Incognita' comprising the comprehensive Panthalassa Ocean surrounding Pangea.

  13. Identification of a New Hesperornithiform from the Cretaceous Niobrara Chalk and Implications for Ecologic Diversity among Early Diving Birds

    PubMed Central

    Bell, Alyssa; Chiappe, Luis M.

    2015-01-01

    The Smoky Hill Member of the Niobrara Chalk in Kansas (USA) has yielded the remains of numerous members of the Hesperornithiformes, toothed diving birds from the late Early to Late Cretaceous. This study presents a new taxon of hesperornithiform from the Smoky Hill Member, Fumicollis hoffmani, the holotype of which is among the more complete hesperornithiform skeletons. Fumicollis has a unique combination of primitive (e.g. proximal and distal ends of femur not expanded, elongate pre-acetabular ilium, small and pyramidal patella) and derived (e.g. dorsal ridge on metatarsal IV, plantarly-projected curve in the distal shaft of phalanx III:1) hesperornithiform characters, suggesting it was more specialized than small hesperornithiforms like Baptornis advenus but not as highly derived as the larger Hesperornis regalis. The identification of Fumicollis highlights once again the significant diversity of hesperornithiforms that existed in the Late Cretaceous Western Interior Seaway. This diversity points to the existence of a complex ecosystem, perhaps with a high degree of niche partitioning, as indicated by the varying degrees of diving specializations among these birds. PMID:26580402

  14. Identification of a New Hesperornithiform from the Cretaceous Niobrara Chalk and Implications for Ecologic Diversity among Early Diving Birds.

    PubMed

    Bell, Alyssa; Chiappe, Luis M

    2015-01-01

    The Smoky Hill Member of the Niobrara Chalk in Kansas (USA) has yielded the remains of numerous members of the Hesperornithiformes, toothed diving birds from the late Early to Late Cretaceous. This study presents a new taxon of hesperornithiform from the Smoky Hill Member, Fumicollis hoffmani, the holotype of which is among the more complete hesperornithiform skeletons. Fumicollis has a unique combination of primitive (e.g. proximal and distal ends of femur not expanded, elongate pre-acetabular ilium, small and pyramidal patella) and derived (e.g. dorsal ridge on metatarsal IV, plantarly-projected curve in the distal shaft of phalanx III:1) hesperornithiform characters, suggesting it was more specialized than small hesperornithiforms like Baptornis advenus but not as highly derived as the larger Hesperornis regalis. The identification of Fumicollis highlights once again the significant diversity of hesperornithiforms that existed in the Late Cretaceous Western Interior Seaway. This diversity points to the existence of a complex ecosystem, perhaps with a high degree of niche partitioning, as indicated by the varying degrees of diving specializations among these birds.

  15. Pliocene granodioritic knoll with continental crust affinities discovered in the intra-oceanic Izu-Bonin-Mariana Arc: Syntectonic granitic crust formation during back-arc rifting

    NASA Astrophysics Data System (ADS)

    Tani, Kenichiro; Dunkley, Daniel J.; Chang, Qing; Nichols, Alexander R. L.; Shukuno, Hiroshi; Hirahara, Yuka; Ishizuka, Osamu; Arima, Makoto; Tatsumi, Yoshiyuki

    2015-08-01

    A widely held hypothesis is that modern continental crust of an intermediate (i.e. andesitic) bulk composition forms at intra-oceanic arcs through subduction zone magmatism. However, there is a critical paradox in this hypothesis: to date, the dominant granitic rocks discovered in these arcs are tonalite, rocks that are significantly depleted in incompatible (i.e. magma-preferred) elements and do not geochemically and petrographically represent those of the continents. Here we describe the discovery of a submarine knoll, the Daisan-West Sumisu Knoll, situated in the rear-arc region of the intra-oceanic Izu-Bonin-Mariana Arc. Remotely-operated vehicle surveys reveal that this knoll is made up entirely of a 2.6 million year old porphyritic to equigranular granodiorite intrusion with a geochemical signature typical of continental crust. We present a model of granodiorite magma formation that involves partial remelting of enriched mafic rear-arc crust during the initial phase of back-arc rifting, which is supported by the preservation of relic cores inherited from initial rear-arc source rocks within magmatic zircon crystals. The strong extensional tectonic regime at the time of intrusion may have allowed the granodioritic magma to be emplaced at an extremely shallow level, with later erosion of sediment and volcanic covers exposing the internal plutonic body. These findings suggest that rear-arc regions could be the potential sites of continental crust formation in intra-oceanic convergent margins.

  16. Environmental change during the Late Berriasian - Early Valanginian: a prelude to the late Early Valanginian carbon-isotope event?

    NASA Astrophysics Data System (ADS)

    Morales, Chloé; Schnyder, Johann; Spangenberg, Jorge; Adatte, Thierry; Westermann, Stephane; Föllmi, Karl

    2010-05-01

    European basins show that the climate became more humid during the Late Berriasian (Hallam et al., 1991, Schnyder et al., 2009). The aim of this project is to precisely characterize and date paleoenvironmental and paleoclimatic change during the latest Berriasian-Early Valanginian time interval in order to decipher if they can be viewed as precursor events, linked with the late Early Valanginian δ13C event. Three key sections have been studied: Capriolo (N Italy), Montclus (SE France) and Musfallen (E Switzerland) located in the Lombardian and Vocontian basins and on the Helvetic platform, respectively. Phosphorus and stable-isotope analyses have been performed, in addition to clay-mineralogy and facies determinations. The three sections show similar and comparable trends: The phosphorus content (in ppm) is higher in Late Berriasian sediments (compared to Early Berriasian and Valanginian deposits) and this period is also characterised by a decrease in δ13C values. This is interpreted as the result of enhanced continental weathering, which would be coeval with a change to a more humid climate during the Late Berriasian (Schnyder et al., 2009). References: Bornemann, A. and Mutterlose, J. (2008). "Calcareous nannofossil and d13C records from the Early Cretaceous of the Western Atlantic ocean: evidence of enhanced fertilization accross the Berriasian-Valanginian transition." palaios 23: 821-832. Duchamp-Alphonse, S., Gardin, S., Fiet, N., Bartolini, A., Blamart, D. and Pagel, M. (2007). "Fertilization of the northwestern Tethys (Vocontian basin, SE France) during the Valanginian carbon isotope perturbation: Evidence from calcareous nannofossils and trace element data." Palaeogeography, Palaeoclimatology, Palaeoecology 243(1-2): 132-151. Föllmi, K.B., Weissert, H., Bisping, M. & Funk, H. 1994: Phosphogenesis, carbon-isotope stratigraphy, and carbonate-platform evolution along the Lower Cretaceous northern tethyan margin. Geological Society of America, Bulletin 106, 729

  17. A basal magma ocean dynamo to explain the early lunar magnetic field

    NASA Astrophysics Data System (ADS)

    Scheinberg, Aaron L.; Soderlund, Krista M.; Elkins-Tanton, Linda T.

    2018-06-01

    The source of the ancient lunar magnetic field is an unsolved problem in the Moon's evolution. Theoretical work invoking a core dynamo has been unable to explain the magnitude of the observed field, falling instead one to two orders of magnitude below it. Since surface magnetic field strength is highly sensitive to the depth and size of the dynamo region, we instead hypothesize that the early lunar dynamo was driven by convection in a basal magma ocean formed from the final stages of an early lunar magma ocean; this material is expected to be dense, radioactive, and metalliferous. Here we use numerical convection models to predict the longevity and heat flow of such a basal magma ocean and use scaling laws to estimate the resulting magnetic field strength. We show that, if sufficiently electrically conducting, a magma ocean could have produced an early dynamo with surface fields consistent with the paleomagnetic observations.

  18. Terrestrial catastrophe caused by cometary impact at the end of Cretaceous

    NASA Astrophysics Data System (ADS)

    Hsü, Kenneth J.

    1980-05-01

    Evidence is presented indicating that the extinction, at the end of the Cretaceous, of large terrestrial animals was caused by atmospheric heating during a cometary impact and that the extinction of calcareous marine plankton was a consequence of poisoning by cyanide released by the fallen comet and of a catastrophic rise in calcite-compensation depth in the oceans after the detoxification of the cyanide.

  19. Upper Cretaceous sequences and sea-level history, New Jersey Coastal Plain

    USGS Publications Warehouse

    Miller, K.G.; Sugarman, P.J.; Browning, J.V.; Kominz, M.A.; Olsson, R.K.; Feigenson, M.D.; Hernandez, J.C.

    2004-01-01

    We developed a Late Cretaceous sealevel estimate from Upper Cretaceous sequences at Bass River and Ancora, New Jersey (ODP [Ocean Drilling Program] Leg 174AX). We dated 11-14 sequences by integrating Sr isotope and biostratigraphy (age resolution ??0.5 m.y.) and then estimated paleoenvironmental changes within the sequences from lithofacies and biofacies analyses. Sequences generally shallow upsection from middle-neritic to inner-neritic paleodepths, as shown by the transition from thin basal glauconite shelf sands (transgressive systems tracts [TST]), to medial-prodelta silty clays (highstand systems tracts [HST]), and finally to upper-delta-front quartz sands (HST). Sea-level estimates obtained by backstripping (accounting for paleodepth variations, sediment loading, compaction, and basin subsidence) indicate that large (>25 m) and rapid (???1 m.y.) sea-level variations occurred during the Late Cretaceous greenhouse world. The fact that the timing of Upper Cretaceous sequence boundaries in New Jersey is similar to the sea-level lowering records of Exxon Production Research Company (EPR), northwest European sections, and Russian platform outcrops points to a global cause. Because backstripping, seismicity, seismic stratigraphic data, and sediment-distribution patterns all indicate minimal tectonic effects on the New Jersey Coastal Plain, we interpret that we have isolated a eustatic signature. The only known mechanism that can explain such global changes-glacio-eustasy-is consistent with foraminiferal ??18O data. Either continental ice sheets paced sea-level changes during the Late Cretaceous, or our understanding of causal mechanisms for global sea-level change is fundamentally flawed. Comparison of our eustatic history with published ice-sheet models and Milankovitch predictions suggests that small (5-10 ?? 106 km3), ephemeral, and areally restricted Antarctic ice sheets paced the Late Cretaceous global sea-level change. New Jersey and Russian eustatic estimates

  20. Intra-Abdominal Candidiasis: The Importance of Early Source Control and Antifungal Treatment

    PubMed Central

    Vergidis, Pascalis; Clancy, Cornelius J.; Shields, Ryan K.; Park, Seo Young; Wildfeuer, Brett N.; Simmons, Richard L.; Nguyen, M. Hong

    2016-01-01

    Intra-abdominal candidiasis (IAC) is poorly understood compared to candidemia. We described the clinical characteristics, microbiology, treatment and outcomes of IAC, and identified risk factors for mortality. We performed a retrospective study of adults diagnosed with IAC at our center in 2012–2013. Risk factors for mortality were evaluated using multivariable logistic regression. We identified 163 patients with IAC, compared to 161 with candidemia. Types of IAC were intra-abdominal abscesses (55%), secondary peritonitis (33%), primary peritonitis (5%), infected pancreatic necrosis (5%), and cholecystitis/cholangitis (3%). Eighty-three percent and 66% of secondary peritonitis and abscesses, respectively, stemmed from gastrointestinal (GI) tract sources. C. albicans (56%) and C. glabrata (24%) were the most common species. Bacterial co-infections and candidemia occurred in 67% and 6% of patients, respectively. Seventy-two percent of patients underwent an early source control intervention (within 5 days) and 72% received early antifungal treatment. 100-day mortality was 28%, and highest with primary (88%) or secondary (40%) peritonitis. Younger age, abscesses and early source control were independent predictors of survival. Younger age, abscesses and early antifungal treatment were independently associated with survival for IAC stemming from GI tract sources. Infectious diseases (ID) consultations were obtained in only 48% of patients. Consulted patients were significantly more likely to receive antifungal treatment. IAC is a common disease associated with heterogeneous manifestations, which result in poor outcomes. All patients should undergo source control interventions and receive antifungal treatment promptly. It is important for the ID community to become more engaged in treating IAC. PMID:27123857

  1. Rb-Sr, Sm-Nd, K-Ca, O, and H isotopic study of Cretaceous-Tertiary boundary sediments, Caravaca, Spain Evidence for an oceanic impact site

    NASA Technical Reports Server (NTRS)

    Depaolo, D. J.; Kyte, F. T.; Marshall, B. D.; Oneil, J. R.; Smit, J.

    1983-01-01

    The results of isotopic and trace-element-abundance analyses of Ir-enriched Cretaceous-Tertiary-boundary clay sediments from Caravaca, Spain, and of adjacent carbonate and marl layers, are presented. Acetic-acid and HCl leachates and residues were analyzed by isotope dilution to determine K, Rb, Sr, Sm, and Nd concentrations and Sr-87/Sr-86 and Nd-143/Nd-144 ratios. The stable isotope ratios delta-D, delta-(C-13), and delta-(0-18) were also determined. The results are presented in tables and graphs and compared with published data on the Caravaca sediments and on samples from other locations. The boundary clay is found to be distinguished from the adjacent layers by its isotopic ratios and to be of mainly terrestrial, lithospheric (deeper than 3-km) origin. Although submarine-weathering effects are evident and difficult to quantify, the degree of variation in Ni, Ir, Sr, and REE concentrations is considered too large to be attributed to postdepositional processes alone. These findings are seen as evidence for the ocean impact of a large single asteroid producing a worldwide blanket of ejecta, a large injection of water vapor into the atmosphere, and perhaps a gigantic tsunami, at the end of the Cretaceous period.

  2. Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae.

    PubMed

    Prasad, V; Strömberg, C A E; Leaché, A D; Samant, B; Patnaik, R; Tang, L; Mohabey, D M; Ge, S; Sahni, A

    2011-09-20

    Rice and its relatives are a focal point in agricultural and evolutionary science, but a paucity of fossils has obscured their deep-time history. Previously described cuticles with silica bodies (phytoliths) from the Late Cretaceous period (67-65 Ma) of India indicate that, by the latest Cretaceous, the grass family (Poaceae) consisted of members of the modern subclades PACMAD (Panicoideae-Aristidoideae-Chloridoideae-Micrairoideae-Arundinoideae-Danthonioideae) and BEP (Bambusoideae-Ehrhartoideae-Pooideae), including a taxon with proposed affinities to Ehrhartoideae. Here we describe additional fossils and show that, based on phylogenetic analyses that combine molecular genetic data and epidermal and phytolith features across Poaceae, these can be assigned to the rice tribe, Oryzeae, of grass subfamily Ehrhartoideae. The new Oryzeae fossils suggest substantial diversification within Ehrhartoideae by the Late Cretaceous, pushing back the time of origin of Poaceae as a whole. These results, therefore, necessitate a re-evaluation of current models for grass evolution and palaeobiogeography.

  3. Hydrocarbons related to early Cretaceous source rocks, reservoirs and seals, trapped in northeastern Neuqun basin, Argentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulisano, C.; Minniti, S.; Rossi, G.

    1996-08-01

    The Jurassic-Cretaceous backarc Neuqun Basin, located in the west central part of Argentina, is currently the most prolific oil basin of the country. The primary objective of this study is to evaluate an Early Cretaceous to Tertiary petroleum system in the northeastern portion of the basin, where oil and gas occurrences (e.g., Puesto Hernandez, Chihuido de la Sierra Negra, El Trapial and Filo Morado oil fields, among others) provide 82 MMBO/yr comprising 67% of the basin oil production and 31% of Argentina. The source rocks are represented by two thick sections of basinal kerogen type I and II organic-rich shales,more » deposited during transgressive peaks (Agrio Formation), with TOC content up to 5.1%. Lowstand sandstones bodies, 10 to 100 m thick, are composed of eolian and fluvial facies with good reservoir conditions (Avil and Troncoso Sandstones). The seals are provided by the organic-rich shales resting sharply upon the Avil Sandstone and a widespread Aptian-Albian evaporitic event (Huitrin Formation) on top of the Troncoso reservoir. Tertiary structural traps (duplex anticlines) are developed in the outer foothills, whereas structural, combined and stratigraphic traps are present in the adjacent stable structural platform. Oil-to-source rock and oil-to-oil correlation by chromatographic and biomarker fingerprints, carbon isotopic composition and the geological evidences support the proposed oil system.« less

  4. Paleoenvironmental conditions across the Jurassic-Cretaceous boundary in central-eastern Mexico

    NASA Astrophysics Data System (ADS)

    Martínez-Yáñez, Mario; Núñez-Useche, Fernando; López Martínez, Rafael; Gardner, Rand D.

    2017-08-01

    The Padni section of central-eastern Mexico is characterized by pelagic, organic-rich carbonates and shales dated in this study by calpionellid biostratigraphy to the late Tithonian-late Berriasian time interval. Microfacies, pyrite framboid size, spectrometric gamma-ray and mineralogical data are herein integrated in order to reconstruct the paleoenvironmental change during the Jurassic-Cretaceous boundary. Deposits of the late Tithonian-early Berriasian are characterized by laminated, organic-rich facies with abundant radiolarian, tiny pyrite framboids and low Th/U ratios. They are linked to upwelling in a semi-restricted basin, high marine productivity and anoxic bottom waters. The early incursions of Tethyan oceanic waters into the proto-Gulf of Mexico occurred during late Tithonian as attested the appearance of calpionellids. Short and intermittent accumulations of saccocomids during early Berriasian suggest episodes of sporadic connection between the Tethys, the proto-Atlantic and the Pacific ocean during sea-level rise events. A full and stable connection between the Tethys and proto-Gulf of Mexico was established until the late Berriasian. This event is supported by the presence of open marine and bioturbated facies with a framboid population typical of dysoxic conditions, higher Th/U ratios and a decreasing pattern of the total organic carbon content. In addition to highlighting the replenishment of the oxygen supply to the basin, this facies also points to a younger age for the finalization of the Yucatán Block rotation and the end of the Gulf of Mexico opening. Deposition of the studied section occurred mostly during a Tithonian-Berriasian arid phase reported in other Tethyan and Atlantic regions. The similarity between the discrete segments of the standard gamma-ray curve defined in the studied outcrop and those reported from subsurface implies their regional continuity allowing their use for correlation purposes.

  5. A long-lived Late Cretaceous-early Eocene extensional province in Anatolia? Structural evidence from the Ivriz Detachment, southern central Turkey

    NASA Astrophysics Data System (ADS)

    Gürer, Derya; Plunder, Alexis; Kirst, Frederik; Corfu, Fernando; Schmid, Stefan M.; van Hinsbergen, Douwe J. J.

    2018-01-01

    Central Anatolia exposes previously buried and metamorphosed, continent-derived rocks - the Kırşehir and Afyon zones - now covering an area of ∼300 × 400 km. So far, the exhumation history of these rocks has been poorly constrained. We show for the first time that the major, >120 km long, top-NE 'Ivriz' Detachment controlled the exhumation of the HP/LT metamorphic Afyon Zone in southern Central Anatolia. We date its activity at between the latest Cretaceous and early Eocene times. Combined with previously documented isolated extensional detachments found in the Kırşehir Block, our results suggest that a major province governed by extensional exhumation was active throughout Central Anatolia between ∼80 and ∼48 Ma. Although similar in dimension to the Aegean extensional province to the east, the Central Anatolian extensional province is considerably older and was controlled by a different extension direction. From this, we infer that the African slab(s) that subducted below Anatolia must have rolled back relative to the Aegean slab since at least the latest Cretaceous, suggesting that these regions were underlain by a segmented slab. Whether or not these early segments already corresponded to the modern Aegean, Antalya, and Cyprus slab segments remains open for debate, but slab segmentation must have occurred much earlier than previously thought.

  6. Palaeomagnetism of lower cretaceous tuffs from Yukon-Kuskokwim delta region, western Alaska

    USGS Publications Warehouse

    Globerman, B.R.; Coe, R.S.; Hoare, J.M.; Decker, J.

    1983-01-01

    During the past decade, the prescient arguments1-3 for the allochthoneity of large portions of southern Alaska have been corroborated by detailed geological and palaeomagnetic studies in south-central Alaska 4-9 the Alaska Peninsula10, Kodiak Island11,12 and the Prince William Sound area13 (Fig. 1). These investigations have demonstrated sizeable northward displacements for rocks of late Palaeozoic, Mesozoic, and early Tertiary age in those regions, with northward motion at times culminating in collision of the allochthonous terranes against the backstop of 'nuclear' Alaska14,15. A fundamental question is which parts of Alaska underwent significantly less latitudinal translation relative to the 'stable' North American continent, thereby serving as the 'accretionary nucleus' into which the displaced 'microplates'16 were eventually incorporated17,18? Here we present new palaeomagnetic results from tuffs and associated volcaniclastic rocks of early Cretaceous age from the Yukon-Kuskokwin delta region in western Alaska. These rocks were probably overprinted during the Cretaceous long normal polarity interval, although a remagnetization event as recent as Palaeocene cannot be ruled out. This overprint direction is not appreciably discordant from the expected late Cretaceous direction for cratonal North America. The implied absence of appreciable northward displacement for this region is consistent with the general late Mesozoic-early Tertiary tectonic pattern for Alaska, based on more definitive studies: little to no poleward displacement for central Alaska, though substantially more northward drift for the 'southern Alaska terranes' (comprising Alaska Peninsula, Kodiak Island, Prince William Sound area, and Matunuska Valley) since late Cretaceous to Palaeocene time. ?? 1983 Nature Publishing Group.

  7. The late Cretaceous Arman flora of Magadan oblast, Northeastern Russia

    NASA Astrophysics Data System (ADS)

    Herman, A. B.; Golovneva, L. B.; Shczepetov, S. V.; Grabovsky, A. A.

    2016-12-01

    The Arman flora from the volcanogenic-sedimentary beds of the Arman Formation is systematically studied using materials from the Arman River basin and the Nelkandya-Khasyn interfluve (Magadan oblast, Northeastern Russia). Seventy-three species of fossil plants belonging to 49 genera are described. They consist of liverworts, horsetails, ferns, seed ferns, cycadaleans, bennettitaleans, ginkgoaleans, czekanowskialeans, conifers, gymnosperms of uncertain systematic affinity, and angiosperms. The Arman flora shows a unique combination, with relatively ancient Early Cretaceous ferns and gymnosperms occurring alongside younger Late Cretaceous plants, primarily angiosperms. The similarity of the Arman flora to the Penzhina and Kaivayam floras of northwestern Kamchatka and the Tylpegyrgynai flora of the Pekul'nei Ridge allows the Arman flora to be dated as Turonian and Coniacian (Late Cretaceous), which is corroborated by isotopic (U-Pb and 40Ar/39Ar) age determination for the plant-bearing layers.

  8. Progress in Late Cretaceous planktonic foraminiferal stable isotope paleoecology and implications for paleoceanographic reconstructions

    NASA Astrophysics Data System (ADS)

    Petrizzo, Maria Rose; Falzoni, Francesca; Huber, Brian T.; MacLeod, Kenneth G.

    2015-04-01

    Paleoecological preferences proposed for Cretaceous planktonic foraminiferal taxa have traditionally been based on morphological analogies with depth-stratified modern species, on biofacies comparison in continental margin and deepwater settings, and limited oxygen and carbon stable isotope data. These studies concluded that large-sized, keeled and heavily calcified planktonic foraminifera generally lived at deeper levels in the surface waters than small-sized, thinner-walled non-keeled species. Stable isotope data have been used to infer information on paleotemperature, paleoceanography and paleoproductivity of ancient oceans and constrain biological paleo-activities (i.e. photosymbiosis and respiration) of fossil species. These studies have suggested that the depth-distribution model based on analogy with modern taxa might not be fully applicable for Cretaceous species, and found particularly 13C-enriched values in some Maastrichtian multiserial taxa that have been related to the activity of photosymbionts. We have collected about 1500 δ18O and δ13C species-specific analyses on glassy preserved planktonic foraminifera from Tanzania (Tanzania Drilling Project TDP sites 23, 28 and 32) and well-preserved planktonic foraminifera from other mid-low latitude localities (Shatsky Rise, northwestern Pacific Ocean, ODP Leg 198 Hole 1210B; Exmouth Plateau, eastern Indian Ocean, ODP Leg 122, Hole 762C; Eratosthenes Seamount, eastern Mediterranean, ODP Leg 160, Hole 967E; Blake Nose, central Atlantic Ocean, ODP Leg 171B, holes 1050C and 1052E) to investigate Late Cretaceous species paleoecological preferences, life strategies and depth distribution in the surface water column. Our results indicates that several large-sized (> 500 μm) double-keeled species belonging to the genera Dicarinella, Marginotruncana and Contusotruncana, generally interpreted as deep to thermocline dwellers, instead occupied shallow/warm layers of the water column, whilst not all biserial species

  9. Cosmic Genes in the Cretaceous-Tertiary transition

    NASA Astrophysics Data System (ADS)

    Wallis, M. K.

    2003-07-01

    It is proposed that genes coding for Aib-polypeptides arose early on in the K/T transition, presumed from the Earth's accretion of interplanetary (comet) dust. Aib-fungi flourished because of the evolutionary advantage of novel antibiotics. The stress on Cretaceous biology led directly and indirectly to mass species extinctions, including many dinosaur species, in the epoch preceding the Chicxulub impact.

  10. Subduction history of the Paleo-Pacific plate beneath the Eurasian continent: Evidence from Mesozoic igneous rocks and accretionary complex in NE Asia

    NASA Astrophysics Data System (ADS)

    Xu, W.

    2015-12-01

    Mesozoic magmatisms in NE China can be subdivided into seven stages, i.e., Late Triassic, Early Jurassic, Middle Jurassic, Late Jurassic, early Early Cretaceous, late Early Cretaceous, and Late Cretaceous. Late Triassic magmatisms consist of calc-alkaline igneous rocks in the Erguna Massif, and bimodal igneous rocks in eastern margin of Eurasian continent. The former reveals southward subduction of the Mongol-Okhotsk oceanic plate, the latter reveals an extensional environment (Xu et al., 2013). Early Jurassic magmatisms are composed of calc-alkaline igneous rocks in the eastern margin of the Eurasian continent and the Erguna Massif, revealing westward subduction of the Paleo-pacific plate and southward subduction of the Mongol-Okhotsk oceanic plate (Tang et al., 2015), respectively. Middle Jurassic magmatism only occur in the Great Xing'an Range and the northern margin of the NCC, and consists of adakitic rocks that formed in crustal thickening, reflecting the closure of the Mongol-Okhotsk ocean (Li et al., 2015). Late Jurassic and early Early Cretaceous magmatisms only occur to the west of the Songliao Basin, and consist of trackyandesite and A-type of rhyolites, revealing an extensional environment related to delamination of thickened crust. The late Early Cretaceous magmatisms are widespread in NE China, and consist of calc-alkaline volcanics in eastern margin and bimodal volcanics in intracontinent, revealing westward subduction of the Paleo-pacific plate. Late Cretaceous magmatisms mainly occur to the east of the Songliao Basin, and consist of calc-alkaline volcanics in eastern margin and alkaline basalts in intracontinent (Xu et al., 2013), revealing westward subduction of the Paleo-pacific plate. The Heilongjiang complex with Early Jurassic deformation, together with Jurassic Khabarovsk complex in Russia Far East and Mino-Tamba complex in Japan, reveal Early Jurassic accretionary history. Additionally, the Raohe complex with the age of ca. 169 Ma was

  11. Intra-spindle Microtubule Assembly Regulates Clustering of Microtubule-Organizing Centers during Early Mouse Development.

    PubMed

    Watanabe, Sadanori; Shioi, Go; Furuta, Yasuhide; Goshima, Gohta

    2016-04-05

    Errors during cell division in oocytes and early embryos are linked to birth defects in mammals. Bipolar spindle assembly in early mouse embryos is unique in that three or more acentriolar microtubule-organizing centers (MTOCs) are initially formed and are then clustered into two spindle poles. Using a knockout mouse and live imaging of spindles in embryos, we demonstrate that MTOC clustering during the blastocyst stage requires augmin, a critical complex for MT-dependent MT nucleation within the spindle. Functional analyses in cultured cells with artificially increased numbers of centrosomes indicate that the lack of intra-spindle MT nucleation, but not loss of augmin per se or overall reduction of spindle MTs, is the cause of clustering failure. These data suggest that onset of mitosis with three or more MTOCs is turned into a typical bipolar division through augmin-dependent intra-spindle MT assembly. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Early dolomitization in the Lower Cretaceous shallow-water carbonates of Southern Apennines (Italy): Clues about palaeoclimatic fluctuations in western Tethys

    NASA Astrophysics Data System (ADS)

    Vinci, Francesco; Iannace, Alessandro; Parente, Mariano; Pirmez, Carlos; Torrieri, Stefano; Giorgioni, Maurizio

    2017-12-01

    A multidisciplinary study of the dolomitized bodies present in the Lower Cretaceous platform carbonates of Mt. Faito (Southern Apennines - Italy) was carried out in order to explore the connection between early dolomite formation and fluctuating climate conditions. The Berriasian-Aptian investigated succession is 466 m thick and mainly consists of shallow-water lagoonal limestones with frequent dolomite caps. The dolomitization intensity varies along the succession and reaches its peak in the upper Hauterivian-lower Barremian interval, where it is present a completely dolomitized interval about 100-m-thick. Field relations, petrography, mineralogy, and geochemistry of the analyzed dolomite bodies allowed identifying two populations of early dolomites, a fine-medium crystalline (FMdol) and a coarse crystalline dolomite (Cdol), both interpreted as the product of mesohaline water reflux. According to our interpretation, FMdol precipitated from concentrated brines in the very early stage of the reflux process, producing typical sedimentary features as dolomite caps. In the successive step of the process, the basin-ward 'latent' reflux precipitated Cdol from less concentrated brines. A peculiar feature of the studied succession is the great consistency between stratigraphic distribution of dolomite bodies and their geochemical signature. The completely dolomitized Hauterivian-Barremian interval, in fact, is characterized by geochemical values suggesting an origin from distinctly saltier brines. Considering that the observed near-surface dolomitization process is controlled by physical and chemical parameters reflecting the paleoenvironmental and paleoclimatic conditions during dolomite formation, we propose that the stratigraphically controlled dolomitization intensity reflects periodic fluctuations in the salinity of dolomitizing fluid, in turn controlled by long-term climate oscillations. The present work highlights that the stratigraphic distribution of early

  13. Early Cretaceous to Paleocene North American Drainage Reorganization and Sediment Routing from Detrital Zircons: Significance to the Alberta Oil Sands and Gulf of Mexico Petroleum Provinces

    NASA Astrophysics Data System (ADS)

    Blum, M. D.

    2014-12-01

    Detrital zircons (DZs) represent a powerful tool for reconstructing continental paleodrainage. This paper uses new DZ data from Lower Cretaceous strata of the Alberta foreland basin, and Upper Cretaceous and Cenozoic strata of the Gulf of Mexico passive margin, to reconstruct paleodrainage and sediment routing, and illustrate significance to giant hydrocarbon systems. DZ populations from the Lower Cretaceous Mannville Group of Alberta and Saskatchewan infer a continental-scale river system that routed sediment from the eastern 2/3rds of North America to the Boreal Sea. Aptian McMurray Formation fluvial sands were derived from a drainage sourced in the Appalachians that was similar in scale to the modern Amazon. Albian fluvial sandstones of the Clearwater and Grand Rapids Formations were derived from the same Appalachian-sourced drainage area, which had expanded to include tributaries from the Cordilleran arc of the northwest US and southwest Canada. DZ populations from the Gulf of Mexico coastal plain complement this view, showing that only the southern US and Appalachian-Ouachita cordillera was integrated with the Gulf through the Late Cretaceous. However, by the Paleocene, drainage from the US Western Cordillera to the Appalachians had been routed to the Gulf of Mexico, establishing the template for sediment routing that persists today. The paleodrainage reorganization and changes in sediment routing described above played key roles in establishment of the Alberta oil sands and Gulf of Mexico as giant petroleum provinces. Early Cretaceous routing of a continental-scale fluvial system to the Alberta foreland provided large and contiguous fluvial point-bar sand bodies that became economically viable reservoirs, whereas mid- to late Cretaceous drainage reorganization routed greatly increased sediment loads to the Gulf of Mexico, which loaded the shelf, matured source rocks, and drove the gravitational and salt tectonics that helped establish the working hydrocarbon

  14. Environmental drivers of crocodyliform extinction across the Jurassic/Cretaceous transition

    PubMed Central

    Mannion, Philip D.; Upchurch, Paul

    2016-01-01

    Crocodyliforms have a much richer evolutionary history than represented by their extant descendants, including several independent marine and terrestrial radiations during the Mesozoic. However, heterogeneous sampling of their fossil record has obscured their macroevolutionary dynamics, and obfuscated attempts to reconcile external drivers of these patterns. Here, we present a comprehensive analysis of crocodyliform biodiversity through the Jurassic/Cretaceous (J/K) transition using subsampling and phylogenetic approaches and apply maximum-likelihood methods to fit models of extrinsic variables to assess what mediated these patterns. A combination of fluctuations in sea-level and episodic perturbations to the carbon and sulfur cycles was primarily responsible for both a marine and non-marine crocodyliform biodiversity decline through the J/K boundary, primarily documented in Europe. This was tracked by high extinction rates at the boundary and suppressed origination rates throughout the Early Cretaceous. The diversification of Eusuchia and Notosuchia likely emanated from the easing of ecological pressure resulting from the biodiversity decline, which also culminated in the extinction of the marine thalattosuchians in the late Early Cretaceous. Through application of rigorous techniques for estimating biodiversity, our results demonstrate that it is possible to tease apart the complex array of controls on diversification patterns in major archosaur clades. PMID:26962137

  15. The restricted gemuk group: A triassic to lower cretaceous succession in southwestern alaska

    USGS Publications Warehouse

    Miller, M.L.; Bradley, D.C.; Bundtzen, T.K.; Blodgett, R.B.; Pessagno, E.A.; Tucker, R.D.; Harris, A.G.

    2007-01-01

    oldest grain is 292 Ma. The youngest zircons are probably not much older than the sandstone itself. Point counts of restricted Gemuk Group sandstones yield average ratios of 24/29/47 for Q/F/L, 15/83/2 for Ls/Lv/Lm, and 41/48/11 for Qm/P/K. In the field, sandstones of the restricted Gemuk Group are not easily distinguished from sandstones of the overlying Upper Cretaceous turbidite-dominated Kuskokwim Group. Petrographically, however, the restricted Gemuk Group has modal K-feldspar, whereas the Kuskokwim Group generally does not (average Qm/P/K of 64/36/0). Some K-feldspar-bearing graywacke that was previously mapped as Kuskokwim Group (Cady et al., 1955) is here reassigned to the restricted Gemuk Group. Major- and trace element geochemistry of shales from the restricted Gemuk Group and the Kuskokwim Group show distinct differences. The chemical index of alteration (CIA) is distinctly higher forshales of the Kuskokwim Group than for those of the restricted Gemuk Group, suggesting more intense weathering during deposition of the Kuskokwim Group. The restricted Gemuk Group represents an estimated 90-100 m.y. of deep-water sedimentation, first accompanied by submarine volcanism and later by nearby explosive arc activity. Two hypotheses are presented for the tectonic setting. One model that needs additional testing is that the restricted Gemuk Group consists of imbricated oceanic plate stratigraphy. Based on available information, our preferred model is that it was deposited in a back-arc, intra-arc, or forearc basin that was subsequently deformed. The terrane affinity of the restricted Gemuk Group is uncertain. The rocks of this area were formerly assigned to the Hagemeister subterrane of the Togiak terrane-a Late Triassic to Early Cretaceous arc-but our data show this to be a poor match. None of the other possibilities (e.g., Nukluk and Tikchik subterranes of the Goodnews terrane) is viable; hence, the terrane subdivision and distribution in southwestern Alaska may need

  16. A new lineage of Cretaceous jewel wasps (Chalcidoidea: Diversinitidae).

    PubMed

    Haas, Michael; Burks, Roger A; Krogmann, Lars

    2018-01-01

    Jewel wasps (Hymenoptera: Chalcidoidea) are extremely species-rich today, but have a sparse fossil record from the Cretaceous, the period of their early diversification. Three genera and three species, Diversinitus attenboroughi gen. & sp. n. , Burminata caputaeria gen. & sp. n. and Glabiala barbata gen. & sp. n. are described in the family Diversinitidae fam. n., from Lower Cretaceous Burmese amber. Placement in Chalcidoidea is supported by the presence of multiporous plate sensilla on the antennal flagellum and a laterally exposed prepectus. The new taxa can be excluded from all extant family level chalcidoid lineages by the presence of multiporous plate sensilla on the first flagellomere in both sexes and lack of any synapomorphies. Accordingly, a new family is proposed for the fossils and its probable phylogenetic position within Chalcidoidea is discussed. Morphological cladistic analyses of the new fossils within the Heraty et al. (2013) dataset did not resolve the phylogenetic placement of Diversinitidae, but indicated its monophyly. Phylogenetically relevant morphological characters of the new fossils are discussed with reference to Cretaceous and extant chalcidoid taxa. Along with mymarid fossils and a few species of uncertain phylogenetic placement, the newly described members of Diversinitidae are among the earliest known chalcidoids and advance our knowledge of their Cretaceous diversity.

  17. Masirah Graben, Oman: A hidden Cretaceous rift basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beauchamp, W.H.; Ries, A.C.; Coward, M.P.

    1995-06-01

    Reflection seismic data, well data, geochemical data, and surface geology suggest that a Cretaceous rift basin exists beneath the thrusted allochthonous sedimentary sequence of the Masirah graben, Oman. The Masirah graben is located east of the Huqf uplift, parallel to the southern coast of Oman. The eastern side of the northeast-trending Huqf anticlinorium is bounded by an extensional fault system that is downthrown to the southeast, forming the western edge of the Masirah graben. This graben is limited to the east by a large wedge of sea floor sediments and oceanic crust, that is stacked as imbricate thrusts. These sediments/ophiolitesmore » were obducted onto the southern margin of the Arabian plate during the collision of the Indian/Afghan plates at the end of the Cretaceous. Most of the Masirah graben is covered by an allochthonous sedimentary sequence, which is complexly folded and deformed above a detachment. This complexly deformed sequence contrasts sharply with what is believed to be a rift sequence below the ophiolites. The sedimentary sequence in the Masirah graben was stable until further rifting of the Arabian Sea/Gulf of Aden in the late Tertiary, resulting in reactivation of earlier rift-associated faults. Wells drilled in the Masirah graben in the south penetrated reservoir quality rocks in the Lower Cretaceous Natih and Shuaiba carbonates. Analyses of oil extracted from Infracambrian sedimentary rocks penetrated by these wells suggest an origin from a Mesozoic source rock.« less

  18. An alternative early opening scenario for the Central Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Labails, Cinthia; Olivet, Jean-Louis; Aslanian, Daniel; Roest, Walter R.

    2010-09-01

    The opening of the Central Atlantic Ocean basin that separated North America from northwest Africa is well documented and assumed to have started during the Late Jurassic. However, the early evolution and the initial breakup history of Pangaea are still debated: most of the existing models are based on one or multiple ridge jumps at the Middle Jurassic leaving the oldest crust on the American side, between the East Coast Magnetic Anomaly (ECMA) and the Blake Spur Magnetic Anomaly (BSMA). According to these hypotheses, the BSMA represents the limit of the initial basin and the footprint subsequent to the ridge jump. Consequently, the evolution of the northwest African margin is widely different from the northeast American margin. However, this setting is in contradiction with the existing observations. In this paper, we propose an alternative scenario for the continental breakup and the Mesozoic spreading history of the Central Atlantic Ocean. The new model is based on an analysis of geophysical data (including new seismic lines, an interpretation of the newly compiled magnetic data, and satellite derived gravimetry) and recently published results which demonstrate that the opening of the Central Atlantic Ocean started already during the Late Sinemurian (190 Ma), based on a new identification of the African conjugate to the ECMA and on the extent of salt provinces off Morocco and Nova Scotia. The identification of an African conjugate magnetic anomaly to BSMA, the African Blake Spur Magnetic Anomaly (ABSMA), together with the significant change in basement topography, are in good agreement with that initial reconstruction. The early opening history for the Central Atlantic Ocean is described in four distinct phases. During the first 20 Myr after the initial breakup (190-170 Ma, from Late Sinemurian to early Bajocian), oceanic accretion was extremely slow (˜ 0.8 cm/y). At the time of Blake Spur (170 Ma, early Bajocian), a drastic change occurred both in the relative

  19. Macrofossil extinction patterns at Bay of Biscay Cretaceous-Tertiary boundary sections

    NASA Technical Reports Server (NTRS)

    Ward, Peter D.; Macleod, Kenneth

    1988-01-01

    Researchers examined several K-T boundary cores at Deep Sea Drilling Project (DSDP) core repositories to document biostratigraphic ranges of inoceramid shell fragments and prisms. As in land-based sections, prisms in the deep sea cores disappear well before the K-T boundary. Ammonites show a very different extinction pattern than do the inoceramids. A minimum of seven ammonite species have been collected from the last meter of Cretaceous strata in the Bay of Biscay basin. In three of the sections there is no marked drop in either species numbers or abundance prior to the K-T boundary Cretaceous strata; at the Zumaya section, however, both species richness and abundance drop in the last 20 m of the Cretaceous, with only a single ammonite specimen recovered to date from the uppermost 12 m of Cretaceous strata in this section. Researchers conclude that inoceramid bivalves and ammonites showed two different times and patterns of extinction, at least in the Bay of Biscay region. The inoceramids disappeared gradually during the Early Maestrichtian, and survived only into the earliest Late Maestrichtian. Ammonites, on the other hand, maintained relatively high species richness throughout the Maestrichtian, and then disappeared suddenly, either coincident with, or immediately before the microfossil extinction event marking the very end of the Cretaceous.

  20. Evidence for subduction-related magmatism during the Cretaceous and Cenozoic in Myanmar

    NASA Astrophysics Data System (ADS)

    Sevastjanova, Inga; Sagi, David Adam; Webb, Peter; Masterton, Sheona; Hill, Catherine; Davies, Clare

    2017-04-01

    Myanmar's complex geological history, numerous controversies around its tectonic evolution and the presence of prospective hydrocarbon basins make it a key area of interest for geologists. Understanding whether a passive or an active margin existed in the region during the Cenozoic is particularly important for the production of accurate basin models; active Cenozoic subduction would imply that hydrocarbon basins in the forearc experienced extension due to slab rollback. The geology of Myanmar was influenced by the regional tectonics associated with the Cretaceous and Cenozoic closure of the Neotethys Ocean. During this time, India travelled rapidly from Gondwana to Asia at speeds up to 20 cm/yr. To accommodate the north-eastward motion of India, the Neotethys Ocean was consumed at the subduction zone along the southern margin of Eurasia. Based on our Global Plate Model, this subduction zone can reasonably be expected to extend for the entire width of the Neotethys Ocean as far as Myanmar and Southeast Asia at their eastern extent. Moreover, a) Cretaceous volcanism onshore Myanmar, b) the middle Cenozoic arc-related extension in the Present Day eastern Andaman Sea and c) the late Cenozoic uplift of the Indo-Burman Ranges are all contemporaneous with the subduction ages predicted by the global plate motions. However, because of the geological complexity of the area, additional evidence would augment interpretations that are based on structural data. In an attempt to reduce the uncertainty in the existing interpretations, we have compiled published zircon geochronological data from detrital and igneous rocks in the region. We have used published zircon U-Pb ages and, where available, published Hf isotope data and CL images (core/rim) in order to distinguish 'juvenile' mantle-derived zircons from those of reworked crustal origin. The compilation shows that Upper Cretaceous and Cenozoic zircons, which are interpreted to have a volcanic provenance, are common across the

  1. Petrogenesis and tectonic implications of Early Cretaceous volcanic rocks from Lingshan Island in the Sulu Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Meng, Yuanku; Santosh, M.; Li, Rihui; Xu, Yang; Hou, Fanghui

    2018-07-01

    The Dabie-Sulu orogenic belt in eastern China marks the boundary between the Yangtze Block and the North China Block. Here we investigate a suite of volcanic rocks from Lingshan Island in the Sulu belt comprising rhyolite, trachyte, trachyandesite and basaltic trachyandesite. We present petrological, geochemical and zircon Usbnd Pb ages and Hfsbnd O isotope data with a view to gain insights on the petrogenesis and tectonic implications. SHRIMP II analyses of zircon grains from the rhyolite yield 206Pb/238U age of 127.6 ± 1.3 Ma and LA-MC-ICP-MS dating show 126.3 ± 1.2 Ma and 127.3 ± 1.1 Ma, together constraining the eruption time as Early Cretaceous. LA-MC-ICP-MS analyses of zircon grains from the andesitic rocks yield 206Pb/238U ages of 129.0 ± 1.6 Ma, 129.8 ± 1.5 Ma and 130.9 ± 1.0 Ma. Geochemically, the rhyolite shows shoshonitic features with low MgO and Cr, but high Na2O + K2O. The zircon grains from these rocks yield negative εHf(t) values and low δ18O values, and these together with the presence of Neoproterozoic inherited zircons suggest that the magma source involved melting of the Yangtze crust. The andesitic rocks, including basaltic trachyandesite, trachyandesite and trachyte, show a wide range of SiO2, Mg# values, and Cr, enriched in LILE and LREE, depleted in HFSE (Nb, Ta and Ti), and have significantly negative zircon εHf(t) values, suggesting derivation from subcontinental lithosphere mantle that was metasomatized by felsic melts. Our results, integrated with those from previous studies suggest heterogeneous magma involving the mixing of mantle and crustal sources within an extensional setting in the Early Cretaceous.

  2. Transformation from Paleo-Asian Ocean closure to Paleo-Pacific subduction: New constraints from granitoids in the eastern Jilin-Heilongjiang Belt, NE China

    NASA Astrophysics Data System (ADS)

    Ma, Xing-Hua; Zhu, Wen-Ping; Zhou, Zhen-Hua; Qiao, Shi-Lei

    2017-08-01

    The eastern Jilin-Heilongjiang Belt (EJHB) of NE China is a unique orogen that underwent two stages of evolution within the tectonic regimes of the Paleo-Asian and Paleo-Pacific oceans. 158 available zircon U-Pb ages, including 26 ages obtained during the present study and 132 ages from the literature, were compiled and analyzed for the Mesozoic and Cenozoic granitoids from the EJHB and the adjacent Russian Sikhote-Alin Orogenic Belt (SAOB), to examine the temporal-spatial distribution of the granitoids and to constrain the tectonic evolution of the East Asian continental margin. Five stages of granitic magmatism can be identified: Early Triassic (251-240 Ma), Late Triassic (228-215 Ma), latest Triassic to Middle Jurassic (213-158 Ma), Early Cretaceous (131-105 Ma), and Late Cretaceous to Paleocene (95-56 Ma). The Early Triassic granitoids are restricted to the Yanbian region along the Changchun-Yanji Suture, and show geochemical characteristics of magmas from a thickened lower crust source, probably due to the final collision of the combined NE China blocks with the North China Craton. The Late Triassic granitoids, with features of A-type granites, represent post-collisional magmatic activities that were related to post-orogenic extension, marking the end of the tectonic evolution of the Paleo-Asian Ocean. The latest Triassic to Paleocene granitoids with calc-alkaline characteristics were NE-trending emplaced along the EJHB and SAOB and young towards the coastal region, and represent continental marginal arc magmas that were associated with the northwestwards subduction of the Paleo-Pacific Plate. Two periods of magmatic quiescence (158-131 and 105-95 Ma) correspond to changes in the subduction direction of the Paleo-Pacific Plate from oblique relative to the continental margin to subparallel. Taking all this into account, we conclude that: (1) the final closure of the Paleo-Asian Ocean occurred along the Changchun-Yanji Suture during the Early Triassic; (2) the

  3. Early experience of intra-ureteric capsaicin infusion in loin pain haematuria syndrome.

    PubMed

    Armstrong, T; McLean, A D; Hayes, M; Morgans, B T; Tulloch, D N

    2000-02-01

    To evaluate early results of the intra-ureteric instillation of capsaicin for the treatment of loin pain haematuria syndrome (LPHS). Ten patients with LPHS were treated using intra-ureteric capsaicin instillation. A solution of capsaicin was infused into the affected ureter through an embolectomy catheter, under anaesthesia. The success of the treatment was assessed using patient questionnaires and the quantitative reduction in the patients' analgesic requirements measured. During a mean follow-up of 6 months, six of the 10 patients had short- to medium-term symptomatic relief after one or more treatments; four had no relief from their symptoms. One patient had a mucosal ulceration in the bladder after extravasation of the capsaicin solution. Two patients subsequently underwent simple nephrectomy for symptomatic nonfunctioning kidneys. These results are consistent with other preliminary reports of the efficacy of capsaicin treatment in LPHS and such treatment therefore has a definite therapeutic role in this difficult condition. We are uncertain if the treatment contributed to the deterioration of the excised kidneys. This early experience suggests a need for careful consideration when contemplating this treatment, with attention directed to both the initial diagnosis and possibly the technique of capsaicin/instillation. We include a protocol to follow when preparing patients for capsaicin treatment.

  4. On the photosynthetic potential in the very Early Archean oceans.

    PubMed

    Avila, Daile; Cardenas, Rolando; Martin, Osmel

    2013-02-01

    In this work we apply a mathematical model of photosynthesis to quantify the potential for photosynthetic life in the very Early Archean oceans. We assume the presence of oceanic blockers of ultraviolet radiation, specifically ferrous ions. For this scenario, our results suggest a potential for photosynthetic life greater than or similar to that in later eras/eons, such as the Late Archean and the current Phanerozoic eon.

  5. New fossil ants in French Cretaceous amber (Hymenoptera: Formicidae)

    NASA Astrophysics Data System (ADS)

    Perrichot, Vincent; Nel, André; Néraudeau, Didier; Lacau, Sébastien; Guyot, Thierry

    2008-02-01

    Recent studies on the ant phylogeny are mainly based on the molecular analyses of extant subfamilies and do not include the extinct, only Cretaceous subfamily Sphecomyrminae. However, the latter is of major importance for ant relationships, as it is considered the most basal subfamily. Therefore, each new discovery of a Mesozoic ant is of high interest for improving our understanding of their early history and basal relationships. In this paper, a new sphecomyrmine ant, allied to the Burmese amber genus Haidomyrmex, is described from mid-Cretaceous amber of France as Haidomyrmodes mammuthus gen. and sp. n. The diagnosis of the tribe Haidomyrmecini is emended based on the new type material, which includes a gyne (alate female) and two incomplete workers. The genus Sphecomyrmodes, hitherto known by a single species from Burmese amber, is also reported and a new species described as S. occidentalis sp. n. after two workers remarkably preserved in a single piece of Early Cenomanian French amber. The new fossils provide additional information on early ant diversity and relationships and demonstrate that the monophyly of the Sphecomyrminae, as currently defined, is still weakly supported.

  6. Water-mass evolution in the Cretaceous Western Interior Seaway of North America and equatorial Atlantic

    NASA Astrophysics Data System (ADS)

    Eldrett, James S.; Dodsworth, Paul; Bergman, Steven C.; Wright, Milly; Minisini, Daniel

    2017-07-01

    The Late Cretaceous Epoch was characterized by major global perturbations in the carbon cycle, the most prominent occurring near the Cenomanian-Turonian (CT) transition marked by Oceanic Anoxic Event 2 (OAE-2) at 94.9-93.7 Ma. The Cretaceous Western Interior Seaway (KWIS) was one of several epicontinental seas in which a complex water-mass evolution was recorded in widespread sedimentary successions. This contribution integrates new data on the main components of organic matter, geochemistry, and stable isotopes along a north-south transect from the KWIS to the equatorial western Atlantic and Southern Ocean. In particular, cored sedimentary rocks from the Eagle Ford Group of west Texas (˜ 90-98 Ma) demonstrate subtle temporal and spatial variations in palaeoenvironmental conditions and provide an important geographic constraint for interpreting water-mass evolution. High-latitude (boreal-austral), equatorial Atlantic Tethyan and locally sourced Western Interior Seaway water masses are distinguished by distinct palynological assemblages and geochemical signatures. The northward migration of an equatorial Atlantic Tethyan water mass into the KWIS occurred during the early-middle Cenomanian (98-95 Ma) followed by a major re-organization during the latest Cenomanian-Turonian (95-94 Ma) as a full connection with a northerly boreal water mass was established during peak transgression. This oceanographic change promoted de-stratification of the water column and improved oxygenation throughout the KWIS and as far south as the Demerara Rise off Suriname. In addition, the recorded decline in redox-sensitive trace metals during the onset of OAE-2 likely reflects a genuine oxygenation event related to open water-mass exchange and may have been complicated by variable contribution of organic matter from different sources (e.g. refractory/terrigenous material), requiring further investigation.

  7. Global research on the Cretaceous

    NASA Astrophysics Data System (ADS)

    Ginsburg, Robert N.

    Cretaceous Resources, Events and Rhythms, a new international research effort on the global aspects of Cretaceous sedimentary geology, is underway. This Global Sedimentary Geology Project (GSGP) is organized by the Commission on Global Sedimentary Geology of the International Union of Geological Sciences (IUGS). The GSGP secretariat is at the University of Miami, Florida (Fisher Island, Miami Beach, FL 33139, tel. 305-672-1840, RNGINSBURG/KOSMOS).Cretaceous time was selected for this pilot research project because Cretaceous sea levels and climates can provide a vision of Earth in its “greenhouse state,” because there is an established geochronology for the era's wide-spread deposits, and because there are extensive resources of hydrocarbons, coal, bauxite and other minerals in Cretaceous rocks.

  8. Significance of the giant Lower Cretaceous paleoweathering event

    NASA Astrophysics Data System (ADS)

    Thiry, Médard; Ricordel-Prognon, Caroline; Schmitt, Jean-Michel

    2010-05-01

    Weathering profiles typically develop at the interface with the atmosphere, and thus, record the fluctuations in the paleoatmosphere's chemistry and climatic conditions. Consequently they are one of the main archives to upgrade our understanding on paleoclimate and the Earth's environmental history. In this presentation, we will focus on the linking between paleoatmosphere compositions, weathering rates, and their impact on the subsequent sedimentary records. Distribution of the Lower Cretaceous lateritic weathering facies. During the Early Cretaceous, sea level drops and wide exondations lead to development of deep "lateritic" weathering profiles. Thick kaolinitic weathering profiles occured on the Hercynian basements and diverse kaolinitic and ferruginous weathering products covered the Jurassic limestone platforms. This major lateritic event is not restricted to Europe but also well know in North-America (up to Canada), South-America (down to Argentina), and in Australia. Moreover, recent paleomagnetic and radiometric datations revealed that numerous kaolinitic and ferruginous formations, which classically were ascribed to Tertiary ages, date back to the Lower Cretaceous period (Thiry et al., 2006). Additionally, the Bonherz iron ore deposits in the paleokarsts of the Jurassic limestone plateform of the Paris Basin also have to be reconsidered as of Cretaceous age, probably as well as the Tertiary age of the Swiss and Bavarian Jura Bonherz. Paleoclimatic interpretation. During a long time, the interpretation of these paleoweathering features has been a major palaeoclimatic argument. The spreading out of deep kaolinitic weathering profiles (from the Scandinavian and Canadian shields to southern Argentina and Australia, which was still situated close to Antarctica at that time) has lead to considerations, that during this period a warm and wet climate prevailed globally, with very little latitudinal differentiation. These paleoclimatic interpretations stand in

  9. Unraveling the unusual morphology of the Cretaceous Dirck Hartog extinct mid-ocean ridge

    NASA Astrophysics Data System (ADS)

    Watson, S. J.; Whittaker, J. M.; Halpin, J.; Williams, S.; Milan, L. A.; Daczko, N. R.; Wyman, D. A.

    2015-12-01

    The Perth Abyssal Plain (PAP), offshore southwest Australia formed during Mesozoic East Gondwana breakup and Kerguelen plume activity. This study combines petrographic and geochemical data from the first samples ever to be dredged from the flanks of the Dirck Hartog Ridge (DHR), a prominent linear bathymetric feature in the central PAP, with new bathymetric profiles across the PAP to better constrain the formation of the early Indian Ocean floor. The DHR exhibits high relief and distinctive asymmetry that is unusual compared to most active or extinct spreading centres and likely results from compression and deformation of the recently extinct DHR during changes in relative motion of the Indian plate (110 - 100 Ma). Exhumation of gabbros in the southern DHR and an increase in seafloor roughness towards the centre of the PAP, likely result from a half spreading rate decrease from 35 mm/yr (based on magnetic reversals) to 24 mm/yr at ~114 Ma. The results support a slowdown of spreading prior to full cessation at ~102 Ma. The composition of basaltic samples varies along the DHR: from sub-alkaline dolerites with incompatible element concentrations most similar to depleted-to-normal mid-ocean ridge basalts in the south, to alkali basalts similar to ocean island basalts in the north. Therefore, magma sources and degrees of partial melting varied in space and time, a result supporting the interpretation that the DHR is an extinct spreading ridge rather than a pseudofault. The enriched alkali basalt signatures may be attributed to melting of a heterogeneous mantle or to the influence of the Kerguelen plume over distances greater than 1000 km. The results demonstrate the significance of regional tectonic plate motions on the formation and deformation of young ocean crust, and provide insight into the unique DHR morphology.

  10. The Changing Nature of the Hawaiian Hotspot in the Late Cretaceous-Early Tertiary: Evidence From Helium Isotopes and Melt Inclusion Compositions

    NASA Astrophysics Data System (ADS)

    Keller, R.; Graham, D.; Duncan, R.; Regelous, M.

    2002-12-01

    Ocean Drilling Program Leg 197 recovered basaltic basement from three of the Late Cretaceous-Paleogene Emperor seamounts: Detroit (Sites 1203 and 1204), Nintoku (Site 1205), and Koko (Site 1206) seamounts. The depths of penetration into basement achieved by this drilling (140-450 m), the range of rock types recovered (hawaiites, alkalic basalts, and tholeiitic basalts), and the age range (48-76 Ma) makes this one of the most comprehensive collections of the volcanic products of the Hawaiian hotspot available, and opens up new opportunities to study the temporal evolution of the Hawaiian hotspot during the Late Cretaceous and early Tertiary. Previous studies of the chemical evolution of the Hawaiian hotspot (Lanphere et al., 1980; Keller et al., 2000) found significant temporal variations. For example, Sr isotopic ratios of the tholeiitic basalts remain fairly constant along the Hawaiian Islands/Ridge between Kilauea volcano on Hawaii and the Hawaiian-Emperor bend, but then decrease steadily northward along the Emperor seamounts. Trace element compositions (especially the rare earth element patterns) also show limited variations along the Hawaiian Islands/Ridge, but change toward more depleted values northward along the Emperor seamounts. The trend to more MORB-like compositions back in time was attributed to a decrease in distance between the hotspot and the nearest spreading center, although a more comprehensive study suggests that variations in lithospheric thickness also caused changes in the composition of the plume melts (Regelous et al., 2002). We will complement these previous studies and the ongoing work of the other Leg 197 scientists by studying two aspects of the Emperor seamount basalts: helium isotopes and melt inclusion compositions. We will measure the helium isotopic ratios of selected olivine separates from three of the Leg 197 drill sites and from DSDP Site 433 on Suiko seamount (65 Ma) to determine if the composition of the Hawaiian "plume signal

  11. Europatitan eastwoodi, a new sauropod from the lower Cretaceous of Iberia in the initial radiation of somphospondylans in Laurasia

    PubMed Central

    2017-01-01

    The sauropod of El Oterillo II is a specimen that was excavated from the Castrillo de la Reina Formation (Burgos, Spain), late Barremian–early Aptian, in the 2000s but initially remained undescribed. A tooth and elements of the axial skeleton, and the scapular and pelvic girdle, represent it. It is one of the most complete titanosauriform sauropods from the Early Cretaceous of Europe and presents an opportunity to deepen our understanding of the radiation of this clade in the Early Cretaceous and study the paleobiogeographical relationships of Iberia with Gondwana and with other parts of Laurasia. The late Barremian–early Aptian is the time interval in the Cretaceous with the greatest diversity of sauropod taxa described in Iberia: two titanosauriforms, Tastavinsaurus and Europatitan; and a rebbachisaurid, Demandasaurus. The new sauropod Europatitan eastwoodi n. gen. n. sp. presents a series of autapomorphic characters in the presacral vertebrae and scapula that distinguish it from the other sauropods of the Early Cretaceous of Iberia. Our phylogenetic study locates Europatitan as the basalmost member of the Somphospondyli, clearly differentiated from other clades such as Brachiosauridae and Titanosauria, and distantly related to the contemporaneous Tastavinsaurus. Europatitan could be a representative of a Eurogondwanan fauna like Demandasaurus, the other sauropod described from the Castrillo de la Reina Formation. The presence of a sauropod fauna with marked Gondwananan affinities in the Aptian of Iberia reinforces the idea of faunal exchanges between this continental masses during the Early Cretaceous. Further specimens and more detailed analysis are needed to elucidate if this Aptian fauna is caused by the presence of previously unnoticed Aptian land bridges, or it represents a relict fauna from an earlier dispersal event. PMID:28674644

  12. Leaf Assemblages across the Cretaceous-Tertiary Boundary in the Raton Basin, New Mexico and Colorado

    NASA Astrophysics Data System (ADS)

    Wolfe, Jack A.; Upchurch, Garland R., Jr.

    1987-08-01

    Analyses of leaf megafossil and dispersed leaf cuticle assemblages indicate that major ecologic disruption and high rates of extinction occurred in plant communities at the Cretaceous-Tertiary boundary in the Raton Basin. In diversity increase, the early Paleocene vegetational sequence mimics normal short-term ecologic succession, but on a far longer time scale. No difference can be detected between latest Cretaceous and early Paleocene temperatures, but precipitation markedly increased at the boundary. Higher survival rate of deciduous versus evergreen taxa supports occurrence of a brief cold interval (<1 year), as predicted in models of an “impact winter.”

  13. Tomographic images of subducted oceans matched to the accretionary records of orogens - Case study of North America and relevance to Central Asia

    NASA Astrophysics Data System (ADS)

    Sigloch, Karin; Mihalynuk, Mitchell G.; Hosseini, Kasra

    2016-04-01

    Accretionary orogens are the surface record of subduction on the 100-million-year timescale; they aggregate buoyant crustal welts that resisted subduction. The other record of subduction is found in the deep subsurface: oceanic lithosphere preserved in the mantle that records ocean basin closure between successive generations of arcs. Seismic tomography maps out these crumpled paleo-oceans down to the core-mantle boundary, where slab accumulates. One such accumulation of enormous scale is under Eastern Asia, recording the assembly of the Central Asian Orogenic Belt (CAOB). Deep CAOB slab has hardly been explored because tomographic image resolution in the lowermost mantle is limited, but this is rapidly improving. We present new images of the CAOB slabs from our P-wave tomography that includes core-diffracted waves as a technical novelty. The previous slab blur sharpens into the type of elongated geometries expected to trace paleo-trench lines. Since the North American Cordillera is younger than the CAOB (mostly <200 m.y. versus ~650-250 m.y.), its slabs have descended only to mid-mantle depths (<2000 km), where tomographic resolution is much better. Hence we can make a detailed, spatiotemporal match between 3-D slab geometries and the accretion history of the Cordillera - a blueprint for continental-scale investigations in other accretionary orogens, including what may become possible for the CAOB. Lower-mantle slabs beneath North America reveal evolving configurations of arc-trench positions back to the breakup of Pangea. These can be combined with quantitative plate reconstructions to show where and when the westward-drifting continent overrode pre-existing, intra-oceanic subduction zones, and accreted their associated arcs and basement terranes in Jurassic and Cretaceous times. Tectonic predictions from this "tomographic time machine" can be checked against the geological record. To demonstrate, we propose a resolution to the longstanding debate of how and when

  14. Cretaceous-Tertiary boundary in the Antarctic: Climatic cooling precedes biotic crisis

    NASA Technical Reports Server (NTRS)

    Stott, Lowell D.; Kennett, James P.

    1988-01-01

    Stable isotopic investigations were conducted on calcareous microfossils across two deep sea Cretaceous-Tertiary boundary sequences on Maud Rise, Weddell Sea, Antarctica. The boundary is taken at the level of massive extinctions in calcareous planktonic microfossils, and coincides with a sharp lithologic change from pure calcareous ooze to calcareous ooze with a large volcanic clay component. The uppermost Maestrichtian is marked by a long-term decrease in delta value of 0 to 18 which spans most of the lower and middle A. mayaroensis Zone and represents a warming trend which culminated in surface water temperatures of about 16 C. At approximately 3 meters below the K-T boundary this warming trend terminates abruptly and benthic and planktonic isotopic records exhibit a rapid increase in delta value of 0 to 18 that continues up to the K-T boundary. The trend towards cooler surface water temperatures stops abruptly at the K-T boundary and delta value of 0 to 18 values remain relatively stable through the Paleocene. Comparison of the Antarctic sequence with the previously documented deep sea records in the South Atlantic reveal shifts of similar magnitude in the latest Maestrichtian. It is indicated that the Southern Ocean underwent the most significant, and apparently permanent, climatic change. The latest Cretaceous oxygen isotopic shift recorded at Maud Rise and other deep sea sites is similar in magnitude to large positive delta valve of 0 to 18 shifts in the middle Eocene, at the Eocene/Oligocene boundary and in the middle Miocene that marked large scale climatic transitions which ultimately lead to cryospheric development of the Antarctic. The climatic shift at the end of the Cretaceous represents one of the most significant climatic transitions recorded in the latest Phanerozoic and had a profound effect on global climate as well as oceanic circulation.

  15. Isotope composition and volume of Earth’s early oceans

    PubMed Central

    Pope, Emily C.; Bird, Dennis K.; Rosing, Minik T.

    2012-01-01

    Oxygen and hydrogen isotope compositions of Earth’s seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hydrogen’s was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotope compositions of ancient seawater. Archaean oceans were depleted in deuterium [expressed as δD relative to Vienna standard mean ocean water (VSMOW)] by at most 25 ± 5‰, but oxygen isotope ratios were comparable to modern oceans. Mass balance of the global hydrogen budget constrains the contribution of continental growth and planetary hydrogen loss to the secular evolution of hydrogen isotope ratios in Earth’s oceans. Our calculations predict that the oceans of early Earth were up to 26% more voluminous, and atmospheric CH4 and CO2 concentrations determined from limits on hydrogen escape to space are consistent with clement conditions on Archaean Earth. PMID:22392985

  16. Two-types of Early Cretaceous adakitic porphyries from the Luxi terrane, eastern North China Block: Melting of subducted Paleo-Pacific slab and delaminated newly underplated lower crust

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Xu, Zhaowen; Lu, Xiancai; Fu, Bin; Lu, Jianjun; Yang, Xiaonan; Zhao, Zengxia

    2016-01-01

    Mengyin adakitic porphyry was most likely derived from partial melting of subducted oceanic slab with some input of NCB Neoarchean-Paleoproterozoic lower crust components. The Liujing adakitic porphyry was probably derived from partial melting of delaminated newly underplated thick lower crust, which then interacted with above asthenospheric mantle peridotite. Slab rollback together with the ridge subduction of the Paleo-Pacific slab was the most likely geodynamic mechanism for formation of the Early Cretaceous Mengyin and Liujing adakitic porphyries.

  17. Impact of Northern Hemisphere polar gateways on the Arctic Ocean climate during the latest Cretaceous as simulated by an Earth System Model.

    NASA Astrophysics Data System (ADS)

    Niezgodzki, Igor; Knorr, Gregor; Lohmann, Gerrit; Tyszka, Jarosław

    2017-04-01

    Using the Earth System Model COSMOS, we simulate the Late Cretaceous climate with different gateway configurations in the Arctic Ocean region under constant CO2 level of 1120 ppm (4 x pre-industrial). Based on the Maastrichtian paleogeography, we modify gateway configurations in the Arctic region according to different scenarios recorded from the Campanian - Maastrichtian ( 83-66 Ma). Our simulation with the Greenland-Norwegian Sea even as deep as 1.5 km in the Campanian produces consistent salinities in the Greenland-Norwegian Sea and in the surface Arctic Ocean, with the proxy-based salinity reconstructions. Towards the end of the Maastrichtian the gateway became shallower but didn't close entirely before the K-Pg boundary. During entire interval, the simulated salinity in the Arctic Ocean was well stratified, in agreement with the data. The surface ocean became progressively fresher, starting from the moderately brackish conditions in the Campanian to the (almost) freshwater conditions around the K-Pg boundary. Arctic gateways configuration changes cannot reproduce cooling trends as reconstructed by the proxy data during the Campanian - Maastrichtian interval. Our additional sensitivity tests with the different CO2 levels (1-6 x pre-industrial) and fixed (Maastrichtian) paleogeography show that a doubling of atmospheric CO2 concentration from 560 ppm to 1120 ppm results in an increase in the zonal mean surface air temperature in the polar regions by as high as 10°C. This suggests that the CO2 level decline, rather than gateway configuration changes, was responsible for the cooling trend toward the end of the Maastrichtian. The research was supported from the grant of the National Science Center in Poland based on the decision DEC-2012/07/N/ST10/03419.

  18. 118-115 Ma magmatism in the Tethyan Himalaya igneous province: Constraints on Early Cretaceous rifting of the northern margin of Greater India

    NASA Astrophysics Data System (ADS)

    Chen, Sheng-Sheng; Fan, Wei-Ming; Shi, Ren-Deng; Liu, Xiao-Han; Zhou, Xue-Jun

    2018-06-01

    Understanding the dynamics of Large Igneous Provinces (LIPs) is critical to deciphering processes associated with rupturing continental lithosphere. Microcontinental calving, the rifting of microcontinents from mature continental rifted margins, is particularly poorly understood. Here we present new insights into these processes from geochronological and geochemical analyses of igneous rocks from the Tethyan Himalaya. Early Cretaceous mafic dikes are widely exposed in the eastern and western Tethyan Himalaya, but no such rocks have been reported from the central Tethyan Himalaya. Here we present an analysis of petrological, geochronological, geochemical, and Sr-Nd-Hf-Os isotopic data for bimodal magmatic rocks from the center-east Tethyan Himalaya. Zircon U-Pb dating yields six weighted-mean concordant 206Pb/238U ages of 118 ± 1.2 to 115 ± 1.3 Ma. Mafic rocks display MORB-like compositions with flat to depleted LREE trends, and positive εNd(t) (+2.76 to +5.39) and εHf(t) (+8.0 to +11.9) values. The negative Nb anomalies and relatively high 187Os/188Os ratios (0.15-0.19) of these rocks are related to variable degrees (up to 10%) of crustal contamination. Geochemical characteristics indicate that mafic rocks were generated by variable degrees (2-20%) of partial melting of spinel lherzolites in shallow depleted mantle. Felsic rocks are enriched in Th and LREE, with negative Nb anomalies and decoupling of Nd (εNd(t) = -13.39 to -12.78) and Hf (εHf(t) = -4.8 to -2.0), suggesting that they were derived mainly from garnet-bearing lower continental crust. The geochemical characteristics of the bimodal magmatic associations are comparable to those of associations that form in a continental rift setting. Results indicate that Early Cretaceous magmatism occurred across the whole Tethyan Himalaya, named here as the "Tethyan Himalaya igneous province". Separation of the Tethyan Himalaya from the Indian craton may have occurred during ongoing Early Cretaceous extension

  19. Effects of Earth's rotation on the early differentiation of a terrestrial magma ocean

    NASA Astrophysics Data System (ADS)

    Maas, Christian; Hansen, Ulrich

    2015-11-01

    Similar to other terrestrial planets like Moon and Mars, Earth experienced a magma ocean period about 4.5 billion years ago. On Earth differentiation processes in the magma ocean set the initial conditions for core formation and mantle evolution. During the magma ocean period Earth was rotating significantly faster than today. Further, the viscosity of the magma was low, thus that planetary rotation potentially played an important role for differentiation. However, nearly all previous studies neglect rotational effects. All in all, our results suggest that planetary rotation plays an important role for magma ocean crystallization. We employ a 3-D numerical model to study crystal settling in a rotating and vigorously convecting early magma ocean. We show that crystal settling in a terrestrial magma ocean is crucially affected by latitude as well as by rotational strength and crystal density. Due to rotation an inhomogeneous accumulation of crystals during magma ocean solidification with a distinct crystal settling between pole and equator could occur. One could speculate that this may have potentially strong effects on the magma ocean solidification time and the early mantle composition. It could support the development of a basal magma ocean and the formation of anomalies at the core-mantle boundary in the equatorial region, reaching back to the time of magma ocean solidification.

  20. The origin of modern crocodyliforms: new evidence from the Cretaceous of Australia

    PubMed Central

    Salisbury, Steven W; Molnar, Ralph E; Frey, Eberhard; Willis, Paul M.A

    2006-01-01

    While the crocodyliform lineage extends back over 200 million years (Myr) to the Late Triassic, modern forms—members of Eusuchia—do not appear until the Cretaceous. Eusuchia includes the crown group Crocodylia, which comprises Crocodyloidea, Alligatoroidea and Gavialoidea. Fossils of non-crocodylian eusuchians are currently rare and, in most instances, fragmentary. Consequently, the transition from Neosuchia to Crocodylia has been one of the most poorly understood areas of crocodyliform evolution. Here we describe a new crocodyliform from the mid-Cretaceous (98–95 Myr ago; Albian–Cenomanian) Winton Formation of Queensland, Australia, as the most primitive member of Eusuchia. The anatomical changes associated with the emergence of this taxon indicate a pivotal shift in the feeding and locomotor behaviour of crocodyliforms—a shift that may be linked to the subsequent rapid diversification of Eusuchia 20 Myr later during the Late Cretaceous and Early Tertiary. While Laurasia (in particular North America) is the most likely ancestral area for Crocodylia, the biogeographic events associated with the origin of Eusuchia are more complex. Although the fossil evidence is limited, it now seems likely that at least part of the early history of Eusuchia transpired in Gondwana. PMID:16959633

  1. Altered carbon cycling and coupled changes in Early Cretaceous weathering patterns: Evidence from integrated carbon isotope and sandstone records of the western Tethys

    NASA Astrophysics Data System (ADS)

    Wortmann, Ulrich Georg; Herrle, Jens Olaf; Weissert, Helmut

    2004-03-01

    In this study we investigate if a major perturbation of the Early Cretaceous carbon cycle was accompanied by altered weathering and erosion rates. The large Aptian carbon isotope anomaly records the response of the biosphere to widespread volcanic activity and probably resulting changes in atmospheric pCO2 levels. Elevated pCO2 levels should also result in an accelerated hydrological cycle and increased silicate weathering, creating a negative feedback loop removing CO2 from the atmosphere. We propose to interpret the widespread occurrence of quartz sandstones in the Tethys-Atlantic seaway as a result of altered weathering and erosion rates in the wake of the Aptian carbon cycle excursion. We challenge the traditional notion that these are 'flysch' deposits associated with Early Cretaceous orogenic movements in the western Tethys. We propose that these sandstones were most likely part of a large conveyor belt system, acting along the Iberian and European margin of the Tethys seaway. Using chemostratigraphic correlations, we show that the activity of this system was only short-lived and coeval with changes in coastal ecology and the Aptian carbon cycle perturbations. We tentatively relate the existence of this system to a transient climate regime, characterized by fluctuating pCO2 levels.

  2. Neuquén Group (Upper Cretaceous): A case of underfilled-overfilled cycles in an Andean foreland basin, Neuquén basin, Argentina

    NASA Astrophysics Data System (ADS)

    Asurmendi, Estefanía; Sánchez, María Lidia; Fennell, Lucas

    2017-12-01

    The Nenquén Group was deposited during a period dominated by the Cretaceous Greenhouse and can be divided in three cycles correlated with large-scale changes in the evolution of the Andean foreland basin. The filling of the Neuquén Group is constituted by a complete cycle and two incomplete cycles of underfilled-overfilled, separated by first-order discontinuities assigned to the uplift of the Agrio fold-and-thrust belt during the Chasca/Catequil, Mid Ocean Ridge (CCMOR) collision, coinciding with first-order climatic changes within the Cretaceous greenhouse cycle. The Candeleros Formation in the base of this group was deposited in late underfilled conditions, showing prominent forebulge zones. It is demonstrated that during the Albian, with the cratonward migration of the uplifting forebulge zones, the axis of backbulge zones also migrated cratonwards and a wide uplifted forebulge zone was formed. On top, the Huincul Formation was deposited in an overfilled period without orogenic load, while the Cerro Lisandro Formation was deposited in early underfilled conditions with orogenic load. The Río Neuquén Subgroup started with a late underfilled period (Portezuelo Formation -second-order discontinuity), and after wards the Plottier Formation was deposited in an overfilled period without orogenic load. Finally, the Río Colorado Subgroup was deposited under late and early underfilled conditions (Bajo de la Carpa and Anacleto Formations respectively).

  3. Early Permian mafic dikes in the Nagqu area, central Tibet, China, associated with embryonic oceanic crust of the Meso-Tethys Ocean

    NASA Astrophysics Data System (ADS)

    Chen, S. S.; Fan, W. M.; Shi, R. D.; Gong, X. H.

    2017-12-01

    During the latest Carboniferous to early Permian, a mantle plume initiated continental rifting along the northern Gondwana margin, which subsequently developed into the Meso-Tethys Ocean. However, the nature and timing of the embryonic oceanic crust of the Meso-Tethys Ocean remains poorly understood. Here, we present for the first time a combined analysis of petrological, geochronological, geochemical, and Sr-Nd isotopic data for mafic rocks from the Nagqu area, central Tibet. Zircons from the mafic rocks yield a concordant age of ca. 277.8±1.8 Ma, which is slightly younger than the age of mantle plume activity (ca. 300-279 Ma), as represented by the large igneous province (LIP) on the northern Gondwana margin. Geochemical features suggest that the Nagqu mafic rocks, which display normal mid ocean ridge basalt (N-MORB) affinities, are different from those of the LIP, which display oceanic island basalt (OIB)-type affinities. The Nagqu mafic rocks result from a relatively high degree of melting of depleted asthenospheric mantle. Combined with observations from previous studies, we suggest that the late early Permian Nagqu magmatism fully records processes of early stage rifting and incipient formation of oceanic crust. Moreover, the patterns of magmatism are consistent with patterns of rift-related sedimentation that records the transition from predominantly continental to marine deposition in the region during the Carboniferous-Permian. We therefore suggest that rifting of the eastern Cimmerian and northern Gondwana continents started at ca. 277.8 Ma, and the rifting culminated in the opening of the Meso-Tethys Ocean.

  4. Assessing the duration of drowning episodes during the Early Cretaceous

    NASA Astrophysics Data System (ADS)

    Godet, A.; Föllmi, K. B.

    2013-12-01

    Drowning unconformities are stratigraphic key surfaces in the history of carbonate platforms. They mostly consist in the deposition of deep marine facies on top of shallow marine limestones. Although large-scale depositional geometries mimic lowstand systems track architecture, these sedimentary turnovers are developed in relation with major sea level rise, inducing an increase in the rate of creation of accommodation space that outpaces the capacity of carbonate to keep up. This so-called paradox of carbonate platform drowning implies that other parameters than purely eustatic fluctuations are involved in the demise of shallow marine ecosystems. Worldwide and at different time during Earth history, in-depth studies of drowning unconformities revealed that changes in nutrient input, clastic delivery, temperature, or a combination of them may be responsible for a decrease in light penetration in the water column and the progressive suffocation and poisoning of photosynthetic carbonate producers. The examination of such case examples from various stratigraphic intervals and palaeogeographical settings thus helps in identifying and hierarchizing potential triggering mechanisms for drowning unconformities. This is complemented by new data from Early Cretaceous successions from the Helvetic Alps. During this time period, the Helvetic carbonate platform developed along the northern Tethyan margin using both photozoan and heterozoan communities. Phases of healthy production were interrupted by several drowning episodes. The latter are marked in the sedimentary record by condensation and associated phosphogenesis and glauconitisation. From the earliest Valanginian to the early to late Barremian, three drowning unconformities reflect the intermittent installation of a more humid climate and subsequent enhanced trophic conditions, which first induced a switch from photozoan to heterozoan communities and then to long-lasting drowning phases. The latter encompass several sea

  5. Plume versus plate origin for the Shatsky Rise oceanic plateau (NW Pacific): Insights from Nd, Pb and Hf isotopes

    NASA Astrophysics Data System (ADS)

    Heydolph, Ken; Murphy, David T.; Geldmacher, Jörg; Romanova, Irina V.; Greene, Andrew; Hoernle, Kaj; Weis, Dominique; Mahoney, John

    2014-07-01

    Shatsky Rise, an early Cretaceous igneous oceanic plateau in the NW Pacific, comprises characteristics that could be attributed to either formation by shallow, plate tectonic-controlled processes or to an origin by a mantle plume (head). The plateau was drilled during Integrated Ocean Drilling Program (IODP) Expedition 324. Complementary to a recent trace element study (Sano et al., 2012) this work presents Nd, Pb and Hf isotope data of recovered lava samples cored from the three major volcanic edifices of the Shatsky Rise. Whereas lavas from the oldest edifice yield fairly uniform compositions, a wider isotopic spread is found for lavas erupted on the younger parts of the plateau, suggesting that the Shatsky magma source became more heterogeneous with time. At least three isotopically distinct components can be identified in the magma source: 1) a volumetrically and spatially most common, moderately depleted component of similar composition to modern East Pacific Ridge basalt but with low 3He/4He, 2) an isotopically very depleted component which could represent local, early Cretaceous (entrained) depleted upper mantle, and 3) an isotopically enriched component, indicating the presence of (recycled) continental material in the magma source. The majority of analyzed Shatsky lavas, however, possess Nd-Hf-Pb isotope compositions consistent with a derivation from an early depleted, non-chondritic reservoir. By comparing these results with petrological and trace element data of mafic volcanic rock samples from all three massifs (Tamu, Ori, Shirshov), we discuss the origin of Shatsky Rise magmatism and evaluate the possible involvement of a mantle plume (head).

  6. Biogenesis and early life on Earth and Europa: favored by an alkaline ocean?

    PubMed

    Kempe, Stephan; Kazmierczak, Jozef

    2002-01-01

    Recent discoveries about Europa--the probable existence of a sizeable ocean below its ice crust; the detection of hydrated sodium carbonates, among other salts; and the calculation of a net loss of sodium from the subsurface--suggest the existence of an alkaline ocean. Alkaline oceans (nicknamed "soda oceans" in analogy to terrestrial soda lakes) have been hypothesized also for early Earth and Mars on the basis of mass balance considerations involving total amounts of acids available for weathering and the composition of the early crust. Such an environment could be favorable to biogenesis since it may have provided for very low Ca2+ concentrations mandatory for the biochemical function of proteins. A rapid loss of CO2 from Europa's atmosphere may have led to freezing oceans. Alkaline brine bubbles embedded in ice in freezing and impact-thawing oceans could have provided a suitable environment for protocell formation and the large number of trials needed for biogenesis. Understanding these processes could be central to assessing the probability of life on Europa.

  7. The breakup of East Gondwana: Assimilating constraints from Cretaceous ocean basins around India into a best-fit tectonic model

    NASA Astrophysics Data System (ADS)

    Gibbons, Ana D.; Whittaker, Joanne M.; Müller, R. Dietmar

    2013-03-01

    models for the Cretaceous seafloor-spreading history of East Gondwana result in unlikely tectonic scenarios for at least one of the plate boundaries involved and/or violate particular constraints from at least one of the associated ocean basins. We link East Gondwana spreading corridors by integrating magnetic and gravity anomaly data from the Enderby Basin off East Antarctica within a regional plate kinematic framework to identify a conjugate series of east-west-trending magnetic anomalies, M4 to M0 ( 126.7-120.4 Ma). The mid-ocean ridge that separated Greater India from Australia-Antarctica propagated from north to south, starting at 136 Ma northwest of Australia, and reached the southern tip of India at 126 Ma. Seafloor spreading in the Enderby Basin was abandoned at 115 Ma, when a ridge jump transferred the Elan Bank and South Kerguelen Plateau to the Antarctic plate. Our revised plate kinematic model helps resolve the problem of successive two-way strike-slip motion between Madagascar and India seen in many previously published reconstructions and also suggests that seafloor spreading between them progressed from south to north from 94 to 84 Ma. This timing is essential for tectonic flow lines to match the curved fracture zones of the Wharton and Enderby basins, as Greater India gradually began to unzip from Madagascar from 100 Ma. In our model, the 85-East Ridge and Kerguelen Fracture Zone formed as conjugate flanks of a "leaky" transform fault following the 100 Ma spreading reorganization. Our model also identifies the Afanasy Nikitin Seamounts as products of the Conrad Rise hotspot.

  8. Geomagnetic Reversals of the Late Jurassic and Early Cretaceous Captured in a North China Core

    NASA Astrophysics Data System (ADS)

    Kuhn, T.; Fu, R. R.; Kent, D. V.; Olsen, P. E.

    2016-12-01

    The Tuchengzi formation in North China nominally spans nearly 20 million years of the Late Jurassic and Early Cretaceous, an interval during which age calibration of the Geomagnetic Polarity Time Scale (GPTS) based on seafloor magnetic anomalies is poorly known. The overlying Yixian formation is of special paleontological interest due to an abundance of spectacularly preserved macrofossils of feathered non-avian dinosaurs, birds, mammals, and insects. Scarce fossils in the Tuchengzi, sparse accurate radiometric dates on both the Tuchengzi and overlying Yixian formation, and scant previous paleomagnetic studies on these formations motivated our application of magnetostratigraphy as a geochronological tool. We constructed a geomagnetic reversal sequence from the upper 142m of a 200m core extracted in Liaoning Province at Huangbanjigou spanning the lower Yixian Formation and the unconformably underlying Tuchengzi Formation. Thermal demagnetization up to 680°C in steps of 25-50°C revealed predominantly normal overprints consistent with the modern day field with unblocking temperatures between 125°C and as high as 550°C, as well as normal and reverse characteristic components with unblocking temperatures between 500°C and 680°C. Going up from the base of the core, there is a reverse polarity magnetozone >6m thick, followed by a 5m normal magnetozone, a 10m reverse magnetozone, a 25m normal magnetozone, and a 6m reverse magnetozone truncated by the Yixian-Tuchengzi unconformity. Above the unconformity, all 81m of core were normal. These results indicate that a meaningful polarity stratigraphy can be recovered from the Tuchengzi and Yixian formations that will be invaluable for correlations across the Tuchengzi and potentially the Yixian formations, which span thousands of square kilometers and vary in thickness by many hundreds of meters. The results also demonstrate that, in combination with accurate and precise radiometric dates, the Tuchengzi Formation has the

  9. Chitinase genes (CHIAs) provide genomic footprints of a post-Cretaceous dietary radiation in placental mammals

    PubMed Central

    Emerling, Christopher A.

    2018-01-01

    The end-Cretaceous extinction led to a massive faunal turnover, with placental mammals radiating in the wake of nonavian dinosaurs. Fossils indicate that Cretaceous stem placentals were generally insectivorous, whereas their earliest Cenozoic descendants occupied a variety of dietary niches. It is hypothesized that this dietary radiation resulted from the opening of niche space, following the extinction of dinosaurian carnivores and herbivores. We provide the first genomic evidence for the occurrence and timing of this dietary radiation in placental mammals. By comparing the genomes of 107 placental mammals, we robustly infer that chitinase genes (CHIAs), encoding enzymes capable of digesting insect exoskeletal chitin, were present as five functional copies in the ancestor of all placental mammals, and the number of functional CHIAs in the genomes of extant species positively correlates with the percentage of invertebrates in their diets. The diverse repertoire of CHIAs in early placental mammals corroborates fossil evidence of insectivory in Cretaceous eutherians, with descendant lineages repeatedly losing CHIAs beginning at the Cretaceous/Paleogene (K/Pg) boundary as they radiated into noninsectivorous niches. Furthermore, the timing of gene loss suggests that interordinal diversification of placental mammals in the Cretaceous predates the dietary radiation in the early Cenozoic, helping to reconcile a long-standing debate between molecular timetrees and the fossil record. Our results demonstrate that placental mammal genomes, including humans, retain a molecular record of the post-K/Pg placental adaptive radiation in the form of numerous chitinase pseudogenes. PMID:29774238

  10. Paleobotany of Livingston Island: The first report of a Cretaceous fossil flora from Hannah Point

    USGS Publications Warehouse

    Leppe, M.; Michea, W.; Muñoz, C.; Palma-Heldt, S.; Fernandoy, F.

    2007-01-01

    This is the first report of a fossil flora from Hannah Point, Livingston Island, South Shetland Islands, Antarctica. The fossiliferous content of an outcrop, located between two igneous rock units of Cretaceous age are mainly composed of leaf imprints and some fossil trunks. The leaf assemblage consists of 18 taxa of Pteridophyta, Pinophyta and one angiosperm. The plant assemblage can be compared to other Early Cretaceous floras from the South Shetland Islands, but several taxa have an evidently Late Cretaceous affinity. A Coniacian-Santonian age is the most probable age for the outcrops, supported by previous K/Ar isotopic studies of the basalts over and underlying the fossiliferous sequence

  11. Early summer southern China rainfall variability and its oceanic drivers

    NASA Astrophysics Data System (ADS)

    Li, Weijing; Ren, Hong-Chang; Zuo, Jinqing; Ren, Hong-Li

    2018-06-01

    Rainfall in southern China reaches its annual peak in early summer (May-June) with strong interannual variability. Using a combination of observational analysis and numerical modeling, the present study investigates the leading modes of this variability and its dynamic drivers. A zonal dipole pattern termed the southern China Dipole (SCD) is found to be the dominant feature in early summer during 1979-2014, and is closely related to a low-level anomalous anticyclone over the Philippine Sea (PSAC) and a Eurasian wave-train pattern over the mid-high latitudes. Linear regressions based on observations and numerical experiments using the CAM5 model suggest that the associated atmospheric circulation anomalies in early summer are linked to decaying El Niño-Southern Oscillation-like sea surface temperature (SST) anomalies in the tropical Pacific, basin-scale SST anomalies in the tropical Indian Ocean, and meridional tripole-like SST anomalies in the North Atlantic in the previous winter to early summer. The tropical Pacific and Indian Ocean SST anomalies primarily exert an impact on the SCD through changing the polarity of the PSAC, while the North Atlantic tripole-like SST anomalies mainly exert a downstream impact on the SCD by inducing a Eurasian wave-train pattern. The North Atlantic tripole-like SST anomalies also make a relatively weak contribution to the variations of the PSAC and SCD through a subtropical teleconnection. Modeling results indicate that the three-basin combined forcing has a greater impact on the SCD and associated circulation anomalies than the individual influence from any single oceanic basin.

  12. Late Cretaceous tectonothermal evolution of the southern Lhasa terrane, South Tibet: Consequence of a Mesozoic Andean-type orogeny

    NASA Astrophysics Data System (ADS)

    Dong, Xin; Zhang, Ze-ming; Klemd, Reiner; He, Zhen-yu; Tian, Zuo-lin

    2018-04-01

    The Lhasa terrane of the southern Tibetan Plateau participated in a Mesozoic Andean-type orogeny caused by the northward subduction of the Neo-Tethyan oceanic lithosphere. However, metamorphic rocks, which can unravel details of the geodynamic evolution, are rare and only exposed in the south-eastern part of the Lhasa terrane. Therefore, we conducted a detailed petrological, geochemical and U-Pb zircon geochronological study of the late Cretaceous metamorphic rocks and associated gabbros from the Nyemo inlier of the southern Lhasa terrane. The Nyemo metamorphic rocks including gneisses, schists, marbles and calc-silicate rocks, experienced peak amphibolite-facies contact metamorphism under P-T conditions of 3.5-4.0 kbar and 642-657 °C with a very high geothermal gradient of 45-50 °C/km, revealing a distinct deflection from the steady-state geotherm during low-pressure metamorphism. Inherited magmatic zircon cores from the metamorphic rocks yielded protolith ages of 197-194 Ma, while overgrowth zircon rims yielded metamorphic ages of ca. 86 Ma. Whole-rock chemistry and zircon Hf isotopes suggest that the protoliths of the gneisses and schists are andesites and tuffs of the early Jurassic Sangri Group, which were derived from a depleted mantle source of a continental arc affinity. The coeval intimately-associated gabbro (ca. 86 Ma) crystallized under P-T conditions of 3.5-5.3 kbar and 914-970 °C, supplying the heat flux high enough to cause the contact metamorphism of the Sangri Group rock types. We propose that the intrusion of the gabbro and a simultaneous pressure increase of up to 4.0 kbar, which is related to crustal thickening due to crustal overthrusting and the intrusion of mafic material, resulted in the late Cretaceous metamorphism of the early Jurassic Sangri Group during an Andean-type orogeny. Furthermore the Nyemo metamorphic rocks, which have previously been considered to represent slivers of the Precambrian metamorphic basement of the Lhasa terrane

  13. Facies architecture and paleohydrology of a synrift succession in the Early Cretaceous Choyr Basin, southeastern Mongolia

    USGS Publications Warehouse

    Ito, M.; Matsukawa, M.; Saito, T.; Nichols, D.J.

    2006-01-01

    The Choyr Basin is one of several Early Cretaceous rift basins in southwestern Mongolia that developed in specific regions between north-south trending fold-and-thrust belts. The eastern margin of the basin is defined by high-angle normal and/or strike-slip faults that trend north-to-south and northeast-to-southwest and by the overall geometry of the basin, which is interpreted to be a half graben. The sedimentary succession of the Choyr Basin documents one of the various types of tectono-sedimentary processes that were active in the rift basins of East Asia during Early Cretaceous time. The sedimentary infill of the Choyr Basin is newly defined as the Khalzan Uul and Khuren Dukh formations based on detailed mapping of lateral and vertical variations in component lithofacies assemblages. These two formations are heterotopic deposits and constitute a third-order fluvio-lacustrine sequence that can be divided into transgressive and highstand systems tracts. The lower part of the transgressive systems tract (TST) is characterized by sandy alluvial-fan and braided-river systems on the hanging wall along the western basin margin, and by a gravelly alluvial-fan system on the footwall along the eastern basin margin. The alluvial-fan and braided-river deposits along the western basin margin are fossiliferous and are interpreted to have developed in association with a perennial fluvial system. In contrast, alluvial-fan deposits along the eastern basin margin do not contain any distinct faunas or floras and are interpreted to have been influenced by a high-discharge ephemeral fluvial system associated with fluctuations in wetting and drying paleohydrologic processes. The lower part of the TST deposit fines upward to siltstone-dominated flood-plain and ephemeral-lake deposits that constitute the upper part of the TST and the lower part of the highstand systems tract (HST). These mudstone deposits eventually reduced the topographic irregularities typical of the early stage of

  14. Regional setting and characteristics of the Neoproterozoic Wadi Hamama Zn-Cu-Ag-Au prospect: evidence for an intra-oceanic island arc-hosted volcanogenic hydrothermal system

    NASA Astrophysics Data System (ADS)

    Abd El-Rahman, Yasser; Surour, Adel A.; El-Manawi, Abdel Hamid W.; El-Dougdoug, Abdel-Monem A.; Omar, Sayed

    2015-04-01

    The Wadi Hamama area is a volcanogenic Zn-Cu-Au-Ag prospect. It is hosted by a Neoproterozoic bimodal-mafic sequence, which comprises basalt, dacite and rhyolite along with volcaniclastic rocks. The rocks have a low-K tholeiitic affinity and are enriched in large ion lithophile elements over high field strength elements, which indicated their formation in an intra-oceanic island arc tectonic setting. The area was intruded by a tonalite-trondhjemite body, which has an intra-oceanic island arc affinity and later by diorite, which has a cordilleran-margin geochemical affinity. These rock units were intruded by post-tectonic granite dykes, which have a within-plate geochemical signature. There is a quartz-carbonate horizon extending along the contact between the basalt and the volcaniclastic rocks, mainly banded and lapilli tuffs. This horizon is of exhalative origin and is underlain by a mushroom-shaped alteration zone extending from the horizon down to the massive basalt. The footwall alteration is characterized by a silica-rich core surrounded by a thick chlorite sheath. Both the quartz-carbonate horizon and the footwall-altered rocks enclose historical trenches and pits. Sulfide-rich core samples are enriched in Zn, relative to Cu, and in Ag, which indicates the low-temperature nature of the hydrothermal system. The prospect was affected by supergene processes, which led to the widespread occurrence of secondary copper minerals and gold enrichment relative to the leached base metals, especially Zn. The prospect formed through a limited rifting of an intra-oceanic island arc which resulted in the formation of a small-scale volcanogenic Zn-Cu-Ag-Au prospect.

  15. Revised nomenclature, definitions, and correlations for the Cretaceous formations in USGS-Clubhouse Crossroads #1, Dorchester County, South Carolina

    USGS Publications Warehouse

    Gohn, Gregory S.

    1992-01-01

    and definitions of the Cape Fear, Middendorf, Black Creek, and Peedee Formations originally used for the core by Gohn and others and Hazel and others are substantially changed herein. In addition, the Black Creek Formation of the core is raised in rank to become the Black Creek Group, which consists of two newly defined formations (Cane Acre and Coachman) and two newly recognized formations previously described in outcrop (Bladen and Donoho Creek). Four subsurface formations that are not known in outcrop are newly defined in the core (Beech Hill, Clubhouse, Shepherd Grove, and Caddin). The revised stratigraphy of the Cretaceous section in the Clubhouse Crossroads #1 core, from base to top, is as follows: Beech Hill Formation (Cenomanian?), Clubhouse Formation (late Cenomanian? and Turonian), Cape Fear Formation (late Turonian? to early Santonian), Middendorf Formation (middle Santonian), Shepherd Grove Formation (late Santonian and early Campanian), Caddin Formation (early Campanian), Cane Acre Formation (middle Campanian, Black Creek Group), Coachman Formation (middle to late Campanian, Black Creek Group), Bladen Formation (late Campanian, Black Creek Group), Donoho Creek Formation (early Maastrichtian, Black Creek Group), and Peedee Formation (late early Maastrichtian to middle or late Maastrichtian).

  16. Petrogenesis of the late Early Cretaceous granodiorite - Quartz diorite from eastern Guangdong, SE China: Implications for tectono-magmatic evolution and porphyry Cu-Au-Mo mineralization

    NASA Astrophysics Data System (ADS)

    Jia, Lihui; Mao, Jingwen; Liu, Peng; Li, Yang

    2018-04-01

    Comprehensive petrological, zircon U-Pb dating, Hf-O isotopes, whole rock geochemistry and Sr-Nd isotopes data are presented for the Xinwei and Sanrao intrusions in the eastern Guangdong Province, Southeast (SE) China, with an aim to constrain the petrogenesis, tectono-magmatic evolution and evaluate the implication for porphyry Cu-Au-Mo mineralization. The Xinwei intrusion is composed of granodiorite and quartz diorite, whilst the Sanrao intrusion consists of granodiorite. Zircon U-Pb ages show that both intrusions were emplaced at ca. 106-102 Ma. All rocks are metaluminous to weakly peraluminous, high-K calc-alkaline in composition, and they are characterized by LREEs enrichment, depletion in Nb, Ta, P, and Ti, and strongly fractionated LREEs to HREEs. The initial 87Sr/86Sr ratios range from 0.7055 to 0.7059, and εNd(t) values range from -3.9 to -3.0. Together with the relatively high εHf(t) values (-3.2 to 3.3) and low δ18O values (4.9‰ to 6.6‰), these data suggest that the Xinwei and Sanrao intrusions were derived from a mixed source: including the mantle-derived mafic magmas and lower continental crustal magmas. Fractional crystallization played an important role in the magmatic evolution of the Xinwei and Sanrao intrusions. The elemental and isotopic compositions of the Xinwei and Sanrao intrusions, as well as the high water content and oxidation state of their parental magmas, are similar to those of the ore-bearing granodiorites of the Luoboling porphyry Cu-Mo deposit in the Fujian Province, neighbouring east to the Guangdong Province, indicating that the late Early Cretaceous granodioritic intrusions in the eastern Guangdong Province may also have Cu-Au-Mo mineralization potential. The late Early Cretaceous magmatic event is firstly reported in eastern Guangdong, and represents a positive response of large-scale lithosphere extension and thinning, triggered by the changing subduction direction of the Paleo-Pacific plate from oblique subduction to

  17. Shallow magnetic inclinations in the Cretaceous Valle Group, Baja California: remagnetization, compaction, or terrane translation?

    NASA Astrophysics Data System (ADS)

    Smith, Douglas P.; Busby, Cathy J.

    1993-10-01

    Paleomagnetic data from Albian to Turonian sedimentary rocks on Cedros Island, Mexico (28.2° N, 115.2° W) support the interpretation that Cretaceous rocks of western Baja California have moved farther northward than the 3° of latitude assignable to Neogene oblique rifting in the Gulf of California. Averaged Cretaceous paleomagnetic results from Cedros Island support 20 ± 10° of northward displacement and 14 ± 7° of clockwise rotation with respect to cratonic North America. Positive field stability tests from the Vizcaino terrane substantiate a mid-Cretaceous age for the high-temperature characteristic remanent magnetization in mid-Cretaceous strata. Therefore coincidence of characteristic magnetization directions and the expected Quaternary axial dipole direction is not due to post mid-Cretaceous remagnetization. A slump test performed on internally coherent, intrabasinal slump blocks within a paleontologically dated olistostrome demonstrates a mid-Cretaceous age of magnetization in the Valle Group. The in situ high-temperature natural remanent magnetization directions markedly diverge from the expected Quaternary axial dipole, indicating that the characteristic, high-temperature magnetization was acquired prior to intrabasinal slumping. Early acquisition of the characteristic magnetization is also supported by a regional attitude test involving three localities in coherent mid-Cretaceous Valle Group strata. Paleomagnetic inclinations in mudstone are not different from those in sandstone, indicating that burial compaction did not bias the results toward shallow inclinations in the Vizcaino terrane.

  18. High resolution carbon isotope stratigraphy and glendonite occurrences of the Christopher Formation, Sverdrup Basin (Axel Heiberg Island, Canada): implications for mid Cretaceous high latitude climate change

    NASA Astrophysics Data System (ADS)

    Herrle, Jens O.; Schröder-Adams, Claudia J.; Galloway, Jennifer M.; Pugh, Adam T.

    2013-04-01

    Understanding the evolution of Canada's Arctic region, as a crucial component of Earth's climate system, is fundamental to assess short and long-term climate, environmental, and paleogeographic change. However, the stratigraphy and paleoenvironmental evolution of the Cretaceous Arctic is poorly constrained and a detailed bio- and chemostratigraphic correlation of major mid-Cretaceous paleoceanographic turning points such as Oceanic Anoxic Events, cold snaps, and biotic turnovers with key locations of the high- and low latitudes is missing. Here we present for the first time a high resolution bio- and carbon isotope stratigraphy of the Arctic Albian Christopher Formation of the Sverdrup Basin at Glacier Fiord in the southern part of Axel Heiberg Island, Canadian High Arctic. By using these techniques we developed a high temporal framework to record major environmental changes as it is indicated by the occurrence of glendonites and sandstone intervals of our studied Albian succession. The Albian Christopher Formation is a shale dominated marine unit with a thickness of approximately 1200 m. Several transgressive/ regressive cycles can be recognized by prograding shoreface units that break up mudrock deposition. In addition, glendonites are mainly found in the lower part of the Christopher Formation. Glendonites are pseudomorphs of calcite, after the metastable mineral ikaite, and have been often described from high latitude Permian, Jurassic and Cretaceous marine environments from the Canadian Arctic, Spitsbergen and Australia. The formation of glendonites takes place in the uppermost layer of the sediment and requires near-freezing temperatures, high salinity, and orthophosphate-rich bottom water. Although the presence of glendonites implies a range of paleoenvironmental conditions there is a consensus in the scientific literature that they reflect cooler paleoenvironmental conditions. Preliminary bio- and carbon isotope stratigraphic results suggest that the

  19. Evidence of reworked Cretaceous fossils and their bearing on the existence of Tertiary dinosaurs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, J.G.; Kirkland, J.I.; Doi, K.

    The Paleocene Shotgun fauna of Wyoming includes marine sharks as well as mammals. It has been suggested that the sharks were introduced from the Cannonball Sea. It is more likely that these sharks were reworked from a Cretaceous rock sequence that included both marine and terrestrial deposits as there is a mixture of marine and freshwater taxa. These taxa have not been recorded elsewhere after the Cretaceous and are not known from the Cannonball Formation. Early Eocene localities at Raven Ridge, Utah, similarly contain teeth of Cretaceous marine and freshwater fish, dinosaurs, and Eocene mammals. The Cretaceous teeth are wellmore » preserved, variably abraded, and serve to cast doubts on criteria recently used to claim that dinosaur teeth recovered from the Paleocene of Montana are not reworked. Another Eocene locality in the San Juan Basin has produced an Eocene mammalian fauna with diverse Cretaceous marine sharks. Neither the nature of preservation nor the degree of abrasion could be used to distinguish reworked from contemporaneous material. The mixed environments represented by the fish taxa and recognition of the extensive pre-Tertiary extinction of both marine and freshwater fish were employed to recognize reworked specimens.« less

  20. The Gondwana Breakup and the History of the Atlantic and Indian Oceans Unveils Two New Clades for Early Neobatrachian Diversification

    PubMed Central

    Frazão, Annelise; da Silva, Hélio Ricardo; Russo, Claudia Augusta de Moraes

    2015-01-01

    The largest anuran diversity belongs to the Neobatrachia, which harbor more than five thousand extant species. Here, we propose a new hypothesis for the historical aspects of the neobatrachian evolution with a formal biogeographical analysis. We selected 12 genes for 144 neobatrachian genera and four archaeobatrachian outgroups and performed a phylogenetic analysis using a maximum likelihood algorithm with the rapid bootstrap test. We also estimated divergence times for major lineages using a relaxed uncorrelated clock method. According to our time scale, the diversification of crown Neobatrachia began around the end of the Early Cretaceous. Our phylogenetic tree suggests that the first split of Neobatrachia is related to the geological events in the Atlantic and Indian Oceans. Hence, we propose names for these clades that indicate this connection, i.e., Atlanticanura and Indianura. The Atlanticanura is composed of three major neobatrachian lineages: Heleophrynidae, Australobatrachia and Nobleobatrachia. On the other hand, the Indianura consists of two major lineages: Sooglossoidea and Ranoides. The biogeographical analysis indicates that many neobatrachian splits occurred as a result of geological events such as the separation between South America and Africa, between India and the Seychelles, and between Australia and South America. PMID:26618546

  1. Evolution of the Late Cretaceous-Paleogene Cordilleran arc magmatism in NW Mexico: a review from updated geochronological studies.

    NASA Astrophysics Data System (ADS)

    Valencia-Moreno, M.; Iriondo, A.; Perez-Segura, E.; Noguez-Alcantara, B.

    2007-05-01

    During most of the Mesozoic and Cenozoic, the locus of subduction related arc magmatism in northwestern Mexico was relatively mobile, probably due to changes in the mechanical conditions of the Farallon-North America plate convergence. The older Mesozoic events recognized in this region occurred in the Late Triassic and Jurassic, but the associated rocks are poorly preserved. However, a belt of Late Cretaceous through Paleogene magmatic rocks is well exposed along Baja California, Sonora and Sinaloa. Since the late 70's, it was noted that during the Early Cretaceous the igneous activity along this belt remained relatively static in the westernmost part, but migrated eastward in the Late Cretaceous, penetrating more than 1000 km into the continent. The arc magmatism reached western Sonora at about 90 Ma, and then it started to move faster inland, presumably due to flattening of the subducted oceanic slab. Recent U-Pb zircon data revealed unexpected old ages (89-95 Ma) near the eastern edge of Sonora, which are difficult to explain on the basis of the classic tectonic interpretations. A model based on two synchronic sites for magma emplacement may explain the age overlapping observed along the belt; however, a profound re-evaluation a proper geodynamic scenario to support this model is required. Even if restoration of the large Neogene crustal extension is made, particularly for central and northern Sonora, the relatively flat-subduction regime commonly accepted for the Laramide event appears unable to explain the anomalously broad expression of the magmatic belt in northwestern Mexico. An alternative model based on two synchronic sites of magma emplacement, as suggested by the new age data, may better explain the large volume of igneous rocks produced during this time in Sonora and most of Chihuahua. This mechanism may differ southwards in Sinaloa, where the magmatic belt becomes considerably narrower. Moreover, the possible existence of two spatially distinct sites

  2. Geoligical outline of the Lower Cretaceous Bahia Supergroup, Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca, J.I.

    1966-01-01

    The report area encompasses about 41,200 sq km covered by over 6,000 m of Lower Cretaceous sediments deposited in fresh to brackish water environment. These sediments, the Bahia Supergroup, represent most of the sedimentary section of the Almada, Reconcavo, Tucano and Jatoba basins. The Reconcavo basin is a half-graben filled with Lower Cretaceous rocks which tilt regionally to the SE. The sediments deposited in this basin were distorted by 2 major periods of deformation. As the result of the application of these systems of tensional forces, the sediments were broken into a complicated system of normal faults. Most of themore » oil production in Brazil, about 91,000 bpd, comes from the Reconcavo basin. During a great part of the Early Cretaceous the Reconcavo and Almada basins probably were connected with the Alagoas-Sergipe basin by the continental shelf. The continental drift theory may explain the presence of these fresh water sediments in the coast line and in the continental shelf of the Bahia and Alagoas-Sergipe states. This offshore area is very prospective and may contribute, in the future, with substantial quantities of hydrocarbons. (14 refs.)« less

  3. Vegetation-induced warming of high-latitude regions during the Late Cretaceous period

    NASA Astrophysics Data System (ADS)

    Otto-Bliesner, Bette L.; Upchurch, Garland R.

    1997-02-01

    Modelling studies of pre-Quaternary (>2 million years ago) climate implicate atmospheric carbon dioxide concentrations1, land elevation2 and land-sea distribution3-5 as important factors influencing global climate change over geological timescales. But during times of global warmth, such as the Cretaceous period and Eocene epoch, there are large discrepancies between model simulations of high-latitude and continental-interior temperatures and those indicated by palaeotemperature records6,7. Here we use a global climate model for the latest Cretaceous (66 million years ago) to examine the role played by high- and middle-latitude forests in surface temperature regulation. In our simulations, this forest vegetation warms the global climate by 2.2 °C. The low-albedo deciduous forests cause high-latitude land areas to warm, which then transfer more heat to adjacent oceans, thus delaying sea-ice formation and increasing winter temperatures over coastal land. Overall, the inclusion of some of the physical and physiological climate feedback effects of high-latitude forest vegetation in our simulations reduces the existing discrepancies between observed and modelled climates of the latest Cretaceous, suggesting that these forests may have made an important contribution to climate regulation during periods of global warmth.

  4. Biotic association and palaeoenvironmental reconstruction of the "Loma del Pterodaustro" fossil site (Early Cretaceous, Argentina)

    USGS Publications Warehouse

    Chiappe, L.; Rivarola, D.; Cione, A.; Fregenal-Martinez, M.; Sozzi, H.; Buatois, L.; Gallego, O.; Laza, J.; Romero, E.; Lopez-Arbarello, A.; Buscalioni, A.; Marsicano, C.; Adamonis, S.; Ortega, F.; McGehee, S.; Di, Iorio O.

    1998-01-01

    A sedimentological analysis of the basal section of the Early Cretaceous, lacustrine Lagarcito Formation at "Loma del Pterodaustro" (San Luis, Argentina) and a summary of its biological components are presented. Three sedimentological facies can be recognized in the basal sequence of the Lagarcito Formation. Fossil remains are particularly abundant in laminated claystones of a facies interpreted as deposits formed in offshore areas of the lake. The preservation of delicate structures allows recognition of these deposits as a Konservat Lagersta??tte. Up to now, rocks at "Loma del Pterodaustro" have yielded plants, conchostracans, semionotid and pleuropholid fishes, pterodactyloid pterosaurs, and a variety of invertebrate traces. The chronology of the Lagarcito Formation is discussed and it is concluded that this unit is of Albian age. The palaeoenvironment of deposition of the basal sequence of the Lagarcito Formation at "Loma del Pterodaustro" is interpreted as a perennial, shallow lake developed within an alluvial plain, under semiarid climatic conditions.

  5. Was Late Cretaceous Magmatism in the Northern Rocky Mountains Really Arc-Related?

    NASA Astrophysics Data System (ADS)

    Farmer, G.

    2011-12-01

    Calc-alkaline, Cretaceous magmatism affected much of the northern Rocky Mountain region in the western U.S. and is generally interpreted as continental arc magmatism despite the fact that it occurred as far east into the continental interior as the Late Cretaceous (75 Ma to 78 Ma) Sliderock Mountain volcanoplutonic complex in south-central Montana. Magmatism may have migrated so far inboard as a response to shallowing of the dip angle of underthrust oceanic lithosphere, but the exact sources, tectonic setting and trigger mechanisms for the Late Cretaceous igneous activity remain unclear. In this study, new trace element and Nd and Sr isotopic data, combined with existing age and major element data (duBray et al., 1998, USGS Prof. Paper 1602), from the most mafic lavas present at the Sliderock Mountain Volcano were used to further define the source regions of the Late Cretaceous magmatism. The most mafic lava flows are high K (~2-3 wt. % K2O), low Ti (< 1 wt. % TiO2), low Ni (< 20 ppm) basaltic andesites. Major element oxide contents for these rocks are only weakly correlated with increasing wt. % SiO2 on conventional Harker diagrams. All of the rocks are characterized by high LILE/HFSE ratios and high Pb contents (17-20 ppm), as expected for arc-related magmatism. The rocks also have high (La/Yb)N (7-20) but show decreasing (Dy/Yb)N with increasing wt.% SiO2, suggesting a cryptic role for amphibole fractionation during evolution of their parental magmas. Initial ɛNd values range from -19 to -29 but do not covary with rock bulk composition and as a result are unlikely to represent the result of interaction with local Archean continental crust. Initial 87Sr/86Sr, in contrast, vary over a restricted range from 0.7045 to 0.7065. The lowest 87Sr/86Sr correspond to samples with the highest Sr/Y (120-190). The low ɛNd values for the basaltic andesites suggest that if these volcanic rocks were ultimately derived from ultramafic mantle sources, melting must have occurred

  6. Cretaceous and Paleogene granitoid suites of the Sikhote-Alin area (Far East Russia): Geochemistry and tectonic implications

    NASA Astrophysics Data System (ADS)

    Grebennikov, Andrei V.; Khanchuk, Alexander I.; Gonevchuk, Valeriy G.; Kovalenko, Sergey V.

    2016-09-01

    The Mesozoic and Cenozoic geological history of NE Asia comprises alternating episodes of subduction or transform strike-slip movement of the oceanic plate along the continental margin of Eurasia. This sequence resulted in the regular generation of granitoid suites that are characterized by different ages, compositions, and tectonic settings. The Hauterivian-Aptian orogenic stage of the Sikhote-Alin, associated with the strike-slip displacement of the early Paleozoic continental blocks, the successive deformation of the Jurassic and Early Cretaceous terranes, and the injection of the earliest S-type granitoids. During late Albian, the area underwent syn-strike-slip compression caused by collision with the Aptian island arc and resulted in the injection of voluminous magmas of calc-alkaline magnesian (S- and I-type) and alkali-calcic ferroan (A-type) granitoids into syn-faulting compressional and extensional basins, respectively. Northwestward to westward movement of the Izanagi Plate resulted in the initiation of frontal subduction of the Paleo-Pacific Plate during the Cenomanian-Maastrichtian. In turn, this resulted in the generation of plateau-forming ignimbrites and their intrusive analogs formed from metaluminous I-type felsic magmas. Paleocene-Eocene magmatism in the Sikhote-Alin area commenced after the termination of subduction in a rifting regime related to strike-slip movement of the oceanic plate relative to the continent. The break-off of the subducted plate and the injection of oceanic asthenospheric material into the subcontinental lithosphere resulted in the eruption of lamproites and fayalite rhyolites, and coeval intrusions of gabbro and alkali feldspar granites (A-type). The A-type granitic-rocks and coeval gabbro-monzonites are considered to be reliable indicators of the transform continental margin geodynamic settings.

  7. The Sredne-Amursky basin: A migrating cretaceous depocenter for the Amur river, eastern Siberia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Light, M.; Maslanyj, M.; Davidson, K.

    1993-09-01

    Recently acquired seismic, well, and regional geological data imply favorable conditions for the accumulation of oil and gas in the 20,000 km[sup 2] Sredne-Amursky basin. Major graben and northeast-trending sinistral wrench-fault systems are recognized in the basin. Lower and Upper Cretaceous sediments are up to 9000 and 3000 m thick, respectively. Paleogeographic reconstructions imply that during the Late Triassic-Early Cretaceous the Sredne-Amursky basin was part of a narrow marine embayment (back-arc basin), which was open to the north. During the Cretaceous, the region was part of a foreland basin complicated by strike-slip, which produced subsidence related to transtension during obliquemore » collision of the Sikhote-Alin arc with Eurasian margin. Contemporaneous uplift also related to this collision migrated from south to north and may have sourced northward-directed deltas and alluvial fans, which fed northward into the closing back-arc basin between 130 and 85 Ma. The progradational clastic succession of the Berriasian-Albian and the Late Cretaceous fluvial, brackish water and paralic sediments within the basin may be analogous to the highly productive late Tertiary clastics of the Amur River delta in the northeast Sakhalin basin. Cretaceous-Tertiary lacustrine-deltaic sapropelic shales provide significant source and seal potential and potential reservoirs occur in the Cretaceous and Tertiary. Structural plays were developed during Cretaceous rifting and subsequent strike-slip deformation. If the full hydrocarbon potential of the Sredne-Amursky basin is to be realized, the regional appraisal suggests that exploration should be focused toward the identification of plays related to prograding Cretaceous deltaic depositional systems.« less

  8. Early Evolution of Modern Birds Structured by Global Forest Collapse at the End-Cretaceous Mass Extinction.

    PubMed

    Field, Daniel J; Bercovici, Antoine; Berv, Jacob S; Dunn, Regan; Fastovsky, David E; Lyson, Tyler R; Vajda, Vivi; Gauthier, Jacques A

    2018-06-04

    The fossil record and recent molecular phylogenies support an extraordinary early-Cenozoic radiation of crown birds (Neornithes) after the Cretaceous-Paleogene (K-Pg) mass extinction [1-3]. However, questions remain regarding the mechanisms underlying the survival of the deepest lineages within crown birds across the K-Pg boundary, particularly since this global catastrophe eliminated even the closest stem-group relatives of Neornithes [4]. Here, ancestral state reconstructions of neornithine ecology reveal a strong bias toward taxa exhibiting predominantly non-arboreal lifestyles across the K-Pg, with multiple convergent transitions toward predominantly arboreal ecologies later in the Paleocene and Eocene. By contrast, ecomorphological inferences indicate predominantly arboreal lifestyles among enantiornithines, the most diverse and widespread Mesozoic avialans [5-7]. Global paleobotanical and palynological data show that the K-Pg Chicxulub impact triggered widespread destruction of forests [8, 9]. We suggest that ecological filtering due to the temporary loss of significant plant cover across the K-Pg boundary selected against any flying dinosaurs (Avialae [10]) committed to arboreal ecologies, resulting in a predominantly non-arboreal post-extinction neornithine avifauna composed of total-clade Palaeognathae, Galloanserae, and terrestrial total-clade Neoaves that rapidly diversified into the broad range of avian ecologies familiar today. The explanation proposed here provides a unifying hypothesis for the K-Pg-associated mass extinction of arboreal stem birds, as well as for the post-K-Pg radiation of arboreal crown birds. It also provides a baseline hypothesis to be further refined pending the discovery of additional neornithine fossils from the Latest Cretaceous and earliest Paleogene. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Mineralogy and diagenesis of low-permeability sandstones of Late Cretaceous age, Piceance Creek Basin, northwestern Colorado

    USGS Publications Warehouse

    Hansley, Paula L.; Johnson, Ronald C.

    1980-01-01

    This report presents preliminary results of a mineralogic and diagenetic study of some low-permeability sandstones from measured surface sections and cores obtained from drill holes in the Piceance Creek Basin of northwestern Colorado. A documentation of the mineralogy and diagenetic history will aid in the exploration for natural gas and in the development of recovery technology in these low-permability sandstones. These sandstones are in the nonmarine upper part of the Mesaverde Formation (or Group) of Late Cretaceous age and are separated from overlying lower Tertiary rocks by a major regional unconformity. Attention is focused on the sandstone units of the Ohio Creek Member, which directly underlies the unconformity; however, comparisons between the mineralogy of the Ohio Creek strata and that of the underlying sandstone units are made whenever possible. The Ohio Creek is a member of the Hunter Canyon Formation (Mesaverde Group) in the southwestern part of the basin, and the Mesaverde Formation in the southern and central parts of the basin. The detrital mineralogy is fairly constant throughout all of these nonrnarine Cretaceous sandstone units; however, in the southeastern part of the basin, there is an increase in percentage of feldspar, quartzite, and igneous rock fragments in sandstones of the Ohio Creek Member directly underlying the unconformity. In the southwestern part of the basin, sandstones of the Ohio Creek Member are very weathered and are almost-entirely comprised of quartz, chert, and kaolinite. A complex diagenetic history, partly related to the overlying unconformity, appears to be responsible for transforming these sandstones into potential gas reservoirs. The general diagenetic sequence for the entire Upper Cretaceous interval studied is interpreted to be (early to late): early(?) calcite cement, chlorite, quartz overgrowths, calcite cement, secondary porosity, analcime (surface only), kaolinite and illite, and late carbonate cements

  10. Giant Upper Cretaceous oysters from the Gulf coast and Caribbean

    USGS Publications Warehouse

    Sohl, Norman F.; Kauffman, Erle G.

    1964-01-01

    Two unusually massive ostreid species, representing the largest and youngest Mesozoic members of their respective lineages, occur in Upper Cretaceous sediment of the gulf coast and Caribbean areas. Their characteristics and significance, as well as the morphologic terminology of ostreids in general, are discussed. Crassostrea cusseta Sohl and Kauffman n. sp. is the largest known ostreid from Mesozoic rocks of North America; it occurs sporadically in the Cusseta Sand and rarely in the Blufftown Formation of the Chattahoochee River region in Georgia and Alabama. It is especially notable in that it lacks a detectable posterior adductor muscle scar on large adult shells. C. cusseta is the terminal Cretaceous member of the C. soleniscus lineage in gulf coast sediments; the lineage continues, however, with little basic modification, throughout the Cenozoic, being represented in the Eocene by C. gigantissima (Finch) and probably, in modern times, by C. virginica (Gmelin). The C. soleniscus lineage is the first typically modern crassostreid group recognized in the Mesozoic. Arctostrea aguilerae (Böse) occurs in Late Campanian and Early Maestrichtian sediments of Alabama, Mississippi, Texas(?), Mexico, and Cuba. The mature shell of this species is larger and more massive than that of any other known arctostreid. Arctostrea is well represented throughout the Upper Jurassic and Cretaceous of Europe, but in North America, despite the great numbers and diversity of Cretaceous oysters, only A. aguilerae and the Albian form A. carinata are known. The presence of A. aquilerae in both the Caribbean and gulf coast faunas is exceptional, as the Late Cretaceous faunas of these provinces are generally distinct and originated in different faunal realms.

  11. Basalts dredged from the Amirante ridge, western Indian ocean

    USGS Publications Warehouse

    Fisher, R.L.; Engel, C.G.; Hilde, T.W.C.

    1968-01-01

    Oceanic tholeiitic basalts were dredged from 2500 to 3000 m depth on each flank of the Amirante Ridge, 1200 km southeast of Somalia in the western Indian Ocean, by R.V. Argo in 1964. One sample, probably shed from a flow or dike in basement beneath the coralline cap, gave a wholerock KAr age of 82??16??106 years. The age is similar to those reported by others for agglomerate from Providence Reef, nearer Madagascar, and for gabbro from Chain Ridge, the southwest member of Owen Fracture Zone, nearer the Somali coast. The Amirante Cretaceous-Early Tertiary occurrence lies between the "continental" 650 ?? 106 years granites of Seychelles Archipelago and the large Precambrian "continental" block of Madagascar. Trends of major structures and distribution of the related topographic and magnetic-anomaly lineations in 7-8 ?? 106 km2of the surrounding Indian Ocean suggest that in addition to spreading of the seafloor from the seismically-active Mid-Indian Ocean Ridge-Carlsberg Ridge complex there has been, since mid-Mesozoic time, distributed left-lateral shear along 52??-54??E that has moved Madagascar at least 700 km south relative to Seychelles Bank. Measurements by other indicate the absolute movement of Madagascar has been southward as well. The emplacement of oceanic tholeiitic basalts at shallow depth, the development of volcanic topography between the sedimented Somali and Mascarene basins, and the existence of the faulted Amirante Trench and Ridge are consequences of the displacement. ?? 1968.

  12. Early onset of industrial-era warming across the oceans and continents.

    PubMed

    Abram, Nerilie J; McGregor, Helen V; Tierney, Jessica E; Evans, Michael N; McKay, Nicholas P; Kaufman, Darrell S

    2016-08-25

    The evolution of industrial-era warming across the continents and oceans provides a context for future climate change and is important for determining climate sensitivity and the processes that control regional warming. Here we use post-ad 1500 palaeoclimate records to show that sustained industrial-era warming of the tropical oceans first developed during the mid-nineteenth century and was nearly synchronous with Northern Hemisphere continental warming. The early onset of sustained, significant warming in palaeoclimate records and model simulations suggests that greenhouse forcing of industrial-era warming commenced as early as the mid-nineteenth century and included an enhanced equatorial ocean response mechanism. The development of Southern Hemisphere warming is delayed in reconstructions, but this apparent delay is not reproduced in climate simulations. Our findings imply that instrumental records are too short to comprehensively assess anthropogenic climate change and that, in some regions, about 180 years of industrial-era warming has already caused surface temperatures to emerge above pre-industrial values, even when taking natural variability into account.

  13. A new dinosaur ichnotaxon from the Lower Cretaceous Patuxent Formation of Maryland and Virginia

    USGS Publications Warehouse

    Stanford, Ray; Weems, Robert E.; Lockley, Martin G.

    2004-01-01

    In recent years, numerous dinosaur footprints have been discovered on bedding surfaces within the Lower Cretaceous Patuxent Formation of Maryland and Virginia. Among these, distinctive small tracks that display a combination of small manus with five digit impressions and a relatively much larger pes with four toe impressions evidently were made by animals belonging to the ornithischian family Hypsilophodontidae. These tracks differ from any ornithischian ichnotaxon previously described. We here name them Hypsiloichnus marylandicus and provide a description of their diagnostic characteristics. Although hypsilophodontid skeletal remains have not been found in the Patuxent, their skeletal remains are known from Lower Cretaceous strata of similar age in both western North America and Europe. Therefore, it is not surprising to find that an Early Cretaceous representative of this family also existed in eastern North America.

  14. Extreme Morphogenesis and Ecological Specialization among Cretaceous Basal Ants.

    PubMed

    Perrichot, Vincent; Wang, Bo; Engel, Michael S

    2016-06-06

    Ants comprise one lineage of the triumvirate of eusocial insects and experienced their early diversification within the Cretaceous [1-9]. Their ecological success is generally attributed to their remarkable social behavior. Not all ants cooperate in social hunting, however, and some of the most effective predatory ants are solitary hunters with powerful trap jaws [10]. Recent evolutionary studies predict that the early branching lineages of extant ants formed small colonies of ground-dwelling, solitary specialist predators [2, 5, 7, 11, 12], while some Cretaceous fossils suggest group recruitment and socially advanced behavior among stem-group ants [9]. We describe a trap-jaw ant from 99 million-year-old Burmese amber with head structures that presumably functioned as a highly specialized trap for large-bodied prey. These are a cephalic horn resulting from an extreme modification of the clypeus hitherto unseen among living and extinct ants and scythe-like mandibles that extend high above the head, both demonstrating the presence of exaggerated morphogenesis early among stem-group ants. The new ant belongs to the Haidomyrmecini, possibly the earliest ant lineage [9], and together these trap-jaw ants suggest that at least some of the earliest Formicidae were solitary specialist predators. With their peculiar adaptations, haidomyrmecines had a refined ecology shortly following the advent of ants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Evidence for Proterozoic and late Cretaceous-early Tertiary ore-forming events in the Coeur d'Alene district, Idaho and Montana

    USGS Publications Warehouse

    Leach, D.L.; Hofstra, A.H.; Church, S.E.; Snee, L.W.; Vaughn, R.B.; Zartman, R.E.

    1998-01-01

    New 40Ar/39Ar age spectra on sericite and lead isotope data on tetrahedrite, siderite, galena, bournonite, and stibnite, together with previously published isotopic, geochemical, and geologic studies provide evidence for two major vein-forming events in the Coeur d'Alene district and surrounding area of the Belt basin. The data suggest that the zinc- and lead-rich veins (e.g., Bunker Hill and Star-Morning mines) formed in the Proterozoic (1.0 Ga), whereas the silver-rich veins (e.g., Silver belt mines), antimony veins (e.g., US Antimony mine), and gold-bearing quartz veins (Murry subdistrict) formed in Late Cretaceous to early Tertiary time.

  16. Preliminary source rock evaluation and hydrocarbon generation potential of the early Cretaceous subsurface shales from Shabwah sub-basin in the Sabatayn Basin, Western Yemen

    NASA Astrophysics Data System (ADS)

    Al-Matary, Adel M.; Hakimi, Mohammed Hail; Al Sofi, Sadam; Al-Nehmi, Yousif A.; Al-haj, Mohammed Ail; Al-Hmdani, Yousif A.; Al-Sarhi, Ahmed A.

    2018-06-01

    A conventional organic geochemical study has been performed on the shale samples collected from the early Cretaceous Saar Formation from the Shabwah oilfields in the Sabatayn Basin, Western Yemen. The results of this study were used to preliminary evaluate the potential source-rock of the shales in the Saar Formation. Organic matter richness, type, and petroleum generation potential of the analysed shales were assessed. Total organic carbon content and Rock- Eval pyrolysis results indicate that the shale intervals within the early Cretaceous Saar Formation have a wide variation in source rock generative potential and quality. The analysed shale samples have TOC content in the range of 0.50 and 5.12 wt% and generally can be considered as fair to good source rocks. The geochemical results of this study also indicate that the analysed shales in the Saar Formation are both oil- and gas-prone source rocks, containing Type II kerogen and mixed Types II-III gradient to Type III kerogen. This is consistent with Hydrogen Index (HI) values between 66 and 552 mg HC/g TOC. The temperature-sensitive parameters such as vitrinite reflectance (%VRo), Rock-Eval pyrolysis Tmax and PI reveal that the analysed shale samples are generally immature to early-mature for oil-window. Therefore, the organic matter has not been altered by thermal maturity thus petroleum has not yet generated. Therefore, exploration strategies should focus on the known deeper location of the Saar Formation in the Shabwah-sub-basin for predicting the kitchen area.

  17. A critical evaluation of carbon isotope stratigraphy and biostratigraphic implications for Late Cretaceous global correlation

    NASA Astrophysics Data System (ADS)

    Wendler, Ines

    2013-11-01

    carbonate, and in partitioning of carbon between organic carbon and carbonate sinks. These variations are mainly controlled by changes in climate and eustasy. Additionally, some globally synchronous shifts in the bulk δ13Ccarb records could result from parallel variation in the contribution of authigenic carbonate to the sediment. Formation of these cements through biologically mediated early diagenetic processes is related to availability of oxygen and organic material and, thus, can be globally synchronized by fluctuations in eustasy, atmospheric and oceanic oxygen levels or in large-scale oceanic circulation. Because the influence of early diagenetic cements on the bulk δ13Ccarb signal can, but need not be synchronized, chemostratigraphy should not be used as a stand-alone method for trans-continental correlation, and especially minor isotopic shifts have to be interpreted with utmost care. Nevertheless, the observed consistency of the δ13C correlations confirms global scale applicability of bulk sediment δ13C chemostratigraphy for the Late Cretaceous, including sediments that underwent lithification and burial diagenesis such as the sediments from the Himalayan and Alpine sections. Limitations arise from increased uncertainties (1) in sediments with very low carbonate content, (2) from larger δ13C variability in sediments from very shallow marine environments, (3) from unrecognized hiatuses or strong changes in sedimentation rates, and (4) in sections with short stratigraphic coverage or with few biostratigraphic marker horizons.

  18. Two early eudicot fossil flowers from the Kamikitaba assemblage (Coniacian, Late Cretaceous) in northeastern Japan

    DOE PAGES

    Takahashi, Masamichi; Herendeen, Patrick S.; Xiao, Xianghui

    2017-05-11

    Two new fossil taxa referable to the basal eudicot grade are described from the Kamikitaba locality (ca. 89 MYBP, early Coniacian: Late Cretaceous) in the Ashizawa Formation (Asamigawa Member) of Futaba Group in northeastern Japan. These charcoalified mesofossils exhibit well-preserved three-dimensional structure and were analyzed using synchrotron-radiation X-ray microtomography (SRXTM) at the Advanced Photon Source (APS) to document the composition and internal structure. Cathiaria japonica sp. nov. is represented by infructescence segments that consist of an axis bearing three to four fruits. The capsular fruits are sessile and dehiscent and consist of a gynoecium subtended by a bract. No perianthmore » parts are present. The gynoecium is monocarpellate containing two pendulous seeds. The carpel is ascidiate in the lower half and conduplicate in the upper part, style is deflected abaxially with a dorsiventral suture and a large, obliquely decurrent stigma. Pollen grains are tricolpate with a reticulate exine. The morphological features of Cathiaria are consistent with an assignment to the Buxaceae s. l. (including Didymelaceae). Archaeostella verticillata gen. et sp. nov. is represented by flowers that are small, actinomorphic, pedicellate, bisexual, semi-inferior, and multicarpellate. The floral receptacle is cup shaped with a perigynous perianth consisting of several tepals inserted around the rim. The androecium comprises ca. 120 stamens with clear differentiation into anther and filament. The anthers are basifixed and tetrasporangiate. The gynoecium consists of a whorl of ten conduplicate, laterally connate but distally distinct carpels with a conspicuous dorsal bulge, including a central cavity. The styles are short, becoming recurved with a ventrally decurrent stigma. The fruit type is a follicle. Seeds are ca. 10 per carpel, marginal, pendulous from the broad, oblique summit of the locule. Seeds are small, spindle-shaped, with a chalazal extension

  19. Two early eudicot fossil flowers from the Kamikitaba assemblage (Coniacian, Late Cretaceous) in northeastern Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Masamichi; Herendeen, Patrick S.; Xiao, Xianghui

    Two new fossil taxa referable to the basal eudicot grade are described from the Kamikitaba locality (ca. 89 MYBP, early Coniacian: Late Cretaceous) in the Ashizawa Formation (Asamigawa Member) of Futaba Group in northeastern Japan. These charcoalified mesofossils exhibit well-preserved three-dimensional structure and were analyzed using synchrotron-radiation X-ray microtomography (SRXTM) at the Advanced Photon Source (APS) to document the composition and internal structure. Cathiaria japonica sp. nov. is represented by infructescence segments that consist of an axis bearing three to four fruits. The capsular fruits are sessile and dehiscent and consist of a gynoecium subtended by a bract. No perianthmore » parts are present. The gynoecium is monocarpellate containing two pendulous seeds. The carpel is ascidiate in the lower half and conduplicate in the upper part, style is deflected abaxially with a dorsiventral suture and a large, obliquely decurrent stigma. Pollen grains are tricolpate with a reticulate exine. The morphological features of Cathiaria are consistent with an assignment to the Buxaceae s. l. (including Didymelaceae). Archaeostella verticillata gen. et sp. nov. is represented by flowers that are small, actinomorphic, pedicellate, bisexual, semi-inferior, and multicarpellate. The floral receptacle is cup shaped with a perigynous perianth consisting of several tepals inserted around the rim. The androecium comprises ca. 120 stamens with clear differentiation into anther and filament. The anthers are basifixed and tetrasporangiate. The gynoecium consists of a whorl of ten conduplicate, laterally connate but distally distinct carpels with a conspicuous dorsal bulge, including a central cavity. The styles are short, becoming recurved with a ventrally decurrent stigma. The fruit type is a follicle. Seeds are ca. 10 per carpel, marginal, pendulous from the broad, oblique summit of the locule. Seeds are small, spindle-shaped, with a chalazal extension

  20. Late Cretaceous Aquatic Plant World in Patagonia, Argentina

    PubMed Central

    Cúneo, N. Rubén; Gandolfo, María A.; Zamaloa, María C.; Hermsen, Elizabeth

    2014-01-01

    In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla) and a monocot (Araceae). Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae). Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form) and the eudicot angiosperm Nelumbo (Nelumbonaceae) are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae), ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America. PMID:25148081

  1. Age, distribution and style of deformation in Alaska north of 60°N: Implications for assembly of Alaska

    USGS Publications Warehouse

    Moore, Thomas; Box, Stephen E.

    2016-01-01

    The structural architecture of Alaska is the product of a complex history of deformation along both the Cordilleran and Arctic margins of North America involving oceanic plates, subduction zones and strike-slip faults and with continental elements of Laurentia, Baltica, and Siberia. We use geological constraints to assign regions of deformation to 14 time intervals and to map their distributions in Alaska. Alaska can be divided into three domains with differing deformational histories. Each domain includes a crustal fragment that originated near Early Paleozoic Baltica. The Northern domain experienced the Early Cretaceous Brookian orogeny, an oceanic arc-continent collision, followed by mid-Cretaceous extension. Early Cretaceous opening of the oceanic Canada Basin rifted the orogen from the Canadian Arctic margin, producing the bent trends of the orogen. The second (Southern) domain consists of Neoproterozoic and younger crust of the amalgamated Peninsular-Wrangellia-Alexander arc terrane and its paired Mesozoic accretionary prism facing the Pacific Ocean basin. The third (Interior) domain, situated between the first two domains and roughly bounded by the Cenozoic dextral Denali and Tintina faults, includes the large continental Yukon Composite and Farewell terranes having different Permian deformational episodes. Although a shared deformation that might mark their juxtaposition by collisional processes is unrecognized, sedimentary linkage between the two terranes and depositional overlap of the boundary with the Northern domain occurred by early Late Cretaceous. Late Late Cretaceous deformation is the first deformation shared by all three domains and correlates temporally with emplacement of the Southern domain against the remainder of Alaska. Early Cenozoic shortening is mild across interior Alaska but is significant in the Brooks Range, and correlates in time with dextral faulting, ridge subduction and counter-clockwise rotation of southern Alaska. Late Cenozoic

  2. Rb-Sr, Sm-Nd, K-Ca, O, and H isotopic study of Cretaceous-Tertiary boundary sediments, Caravaca, Spain: evidence for an oceanic impact site

    USGS Publications Warehouse

    DePaolo, D.J.; Kyte, F.T.; Marshall, B.D.; O'Neil, J.R.; Smit, J.

    1983-01-01

    Isotopic ratios and trace element abundances were measured on samples of Ir-enriched clay at the Cretaceous-Tertiary boundary, and in carbonate and marl from 5 cm below and 3 cm above the boundary. Samples were leached with acetic acid to remove carbonate, and with hydrochloric acid. Leachates and residues were measured. The Sr, Nd, O and H isotopic compositions of the boundary clay residues are distinct from those of the stratigraphically neighboring materials. The data indicate that most of the clay material was derived from a terrestrial source with relatively low 87Sr/86Sr and high 143Nd/144Nd ratios. The ??18O data suggest that the detritus has been modified by submarine weathering. K-Ca and Rb-Sr systematics, as well as O isotope ratios of K-feldspar spherules within the boundary clay, suggest that they are predominantly authigenic and may have formed after the time of deposition. However, Sm-Nd and Rb-Sr isotopic data indicate that the spherules contain relict material that provides information on the nature of the original detritus. The isotopic evidence for foreign terrestrial detritus in the boundary clay, the low rare earth element concentrations and high Ni concentration, support the hypothesis of a terminal Cretaceous asteroidal impact that produced a global layer of fallout. The data are most easily explained if the impact site was on oceanic crust rather than continental crust, and if a substantial fraction of the fallout was derived from relatively deep within the lithosphere (>3 km). This would probably require a single large impactor. ?? 1983.

  3. An unrecognized major collision of the Okhotomorsk Block with East Asia during the Late Cretaceous, constraints on the plate reorganization of the Northwest Pacific

    NASA Astrophysics Data System (ADS)

    Yang, Yong-Tai

    2013-11-01

    Asian margin during the Jurassic-Early Cretaceous were subdivided into narrow and subparallel belts by the upper crustal strike-slip fault system. The departure of the Okhotomorsk Block from the northeast-striking Asian margin resulted in the occurrence of an extensional setting and formation of a wide magmatic belt to the west of the margin. In the Campanian, the block collided with the Siberian margin, in Northeast Asia. At about 77 Ma, a new oceanic subduction occurred to the south of the Okhotomorsk Block, ending its long-distance northward motion. Based on the new tectonic model, the abundant Late Archean to Early Proterozoic detrital zircons in the Cretaceous sandstones in Kamchatka, Southwest Japan, and Taiwan are interpreted to have been sourced from the Okhotomorsk Block basement which possibly formed during the Late Archean and Early Proterozoic. The new model suggests a rapidly northward-moving Okhotomorsk Block at an average speed of 22.5 cm/yr during 89-77 Ma. It is hypothesized that the Okhotomorsk-East Asia collision during 100-89 Ma slowed down the northwestward motion of the Izanagi Plate, while slab pull forces produced from the subducting Izanagi Plate beneath the Siberian margin redirected the plate from northwestward to north-northwestward motion at about 90-89 Ma.

  4. Early Cretaceous stratigraphy, paleontology, and sedimentary tectonics in Paris overthrust foredeep (western Wyoming and southeastern Idaho) compared with Quaternary features of indo-gangetic plain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorr, J.A. Jr.

    1983-08-01

    Fluviatile clastics of the nonmarine, early Cretaceous Gannett and Wayan groups were deposited on wet alluvial megafans and on intervening interfan piedmont slopes which declined eastward into more poorly drained lowlands from a western highland source area uplifted episodically by movements of the Paris overthrust. Lacustrine episodes of deposition intercalated Peterson and Draney limestones with Gannett fluvial clastics. Westward marine transgressions (Skull Creek, Mowry) intercalated mixed lacustrine and brackish facies (Smiths and Cokedale formations) into Wayan fluviatile clastics. Newly discovered fossil vertebrate and invertebrate materials (all fragmentary but identifiable) include: Gannett Group - large reptiles including turtles; Thomas Fork Formationmore » - freshwater gastropods and unionid pelecypods, gastroliths, two types of turtles, large reptilian fragments (dinosaur), and abundant dinosaur eggshell fragments; Wayan Formation - perennially aquatic snails, turtles, unidentifiable large reptiles, two types of crocodilians, an iguanodontid dinosaur (Tenontosaurus), an ankylosaurian dinosaur, a large ornithopod dinosaur, gastroliths, abundant and ubiquitous dinosaur eggshell fragments (numerous types and sizes), and miscellaneous unidentifiable small vertebrate bone fragments. A census of analogous modern reptile reproductive behaviors supports the conclusion that the Wayan, and probably also the Gannett, alluvial fan environments were used as upland breeding grounds by dinosaurs and perhaps other reptiles. Comparison of these Early Cretaceous data with observations on the tectonic setting, sedimentology, and biology of the Quaternary indo-gangetic plain suggests many close analogies between the two sedimentary tectonic settings.« less

  5. Organic Matter Production And Preservation During Transgression And Highstand Of The Niobrara Cyclothem, Cretaceous Western Interior Seaway

    NASA Astrophysics Data System (ADS)

    Salacup, J. M.; Petsch, S. T.; Leckie, R.

    2007-12-01

    The Upper Cretaceous Niobrara cyclothem (upper Turonian-lower Campanian) is a second-order transgressive- regressive cycle of the Cretaceous Western Interior Seaway reflecting interactions among eustatic sea level change, regional tectonic events, and sediment supply. These strata provide a unique window into Late Cretaceous sediment deposition and paleoceaonographic conditions in an epicontinental seaway. However, the response of organic matter production and burial to these forcings remains less than fully resolved. Geochemical analyses of the Montezuma Valley and Smoky Hill Members of the Mancos Shale at its principal reference section at Mesa Verde, Colorado, reveal potential relationships among organic matter abundance and composition, paleoceanographic conditions inferred from microfossils, and sea level change. These rock units represent transgression and early highstand of the Niobrara cyclothem. At Mesa Verde, the upper Smoky Hill coincides with the spatially-restricted but temporally-extended Oceanic Anoxic Event 3 of middle Coniacian to early Santonian age (~88.5-86.5 Ma). It is broadly characterized as dark-gray, foraminifer-rich calcareous shale, mudstone, and marlstone. Bulk geochemical properties, including %TOC, %CaCO3, and C/N, reflect changes in organic matter delivery and preservation, and are closely correlated to inferred water-depth and/or distance from shore. Proximity to the western paleo-shore appears to exercise a primary control over the composition of the identified biomarkers with secondary influence from redox-sensitive diagenetic processes and autochthonous microbial production, which in turn may reflect higher-order sea-level fluctuations. Changes in n-alkane, hopane, and sterane distributions are coincident with the second-order transgression of the seaway. Additionally, the presence in some samples of long-chain alkylcycloalkanes and alkylbenzenes may reflect the direct cyclization and aromatization of precursor algal and bacterial

  6. Stratigraphic framework and evolution of the Cretaceous continental sequences of the Bauru, Sanfranciscana, and Parecis basins, Brazil

    NASA Astrophysics Data System (ADS)

    Batezelli, Alessandro; Ladeira, Francisco Sergio Bernardes

    2016-01-01

    With the breakup of the supercontinent Gondwana, the South American Plate has undergone an intense process of tectonic restructuring that led to the genesis of the interior basins that encompassed continental sedimentary sequences. The Brazilian Bauru, Sanfranciscana and Parecis basins during Late Cretaceous have had their evolution linked to this process of structuring and therefore have very similar sedimentary characteristics. The purpose of this study is to establish a detailed understanding of alluvial sedimentary processes and architecture within a stratigraphic sequence framework using the concept of the stratigraphic base level or the ratio between the accommodation space and sediment supply. The integration of the stratigraphic and facies data contributed to defining the stratigraphic architecture of the Bauru, Sanfranciscana and Parecis Basins, supporting a model for continental sequences that depicts qualitative changes in the sedimentation rate (S) and accommodation space (A) that occurred during the Cretaceous. This study discusses the origin of the unconformity surfaces (K-0, K-1 and K-1A) that separate Sequences 1, 2A and 2B and the sedimentary characteristics of the Bauru, Sanfranciscana and Parecis Basins from the Aptian to the Maastrichtian, comparing the results with other Cretaceous Brazilian basins. The lower Cretaceous Sequence 1 (Caiuá and Areado groups) is interpreted as a low-accommodation systems tract compound by fluvial and aeolian systems. The upper Cretaceous lacustrine, braided river-dominated alluvial fan and aeolian systems display characteristics of the evolution from high-to low-accommodation systems tracts (Sequences 2A and 2B). Unconformity K-0 is related to the origin of the Bauru Basin itself in the Early Cretaceous. In Sanfranciscana and Parecis basins, the unconformity K-0 marks the contact between aeolian deposits from Lower Cretaceous and Upper Cretaceous alluvial systems (Sequences 1 and 2). Unconformity K-1, which was

  7. Petroleum Systems of the Nigerian Sector of Chad Basin: Insights from Field and Subsurface Data

    NASA Astrophysics Data System (ADS)

    Suleiman, A. A.; Nwaobi, G. O.; Bomai, A.; Dauda, R.; Bako, M. D.; Ali, M. S.; Moses, S. D.

    2017-12-01

    A.A. Suleiman, A. Bomai, R. Dauda, O.G. NwaobiNigerian National Petroleum CorporationAbstract:Formation of the West and Central African Rift systems (WCARS) reflects intra-plate deformation linked to the Early to Late Cretaceous opening of South Atlantic Ocean. From an economic point of view, the USGS (2010) estimated Chad Basin, which is part of WCARS rift system to contain, up to 2.32 BBO and 14.62 TCF. However, there has been no exploration success in the Nigerian sector of the Chad Basin principally because of a poor understanding of the basin tectono-stratigraphic evolution and petroleum system development. In this study, we use 3D seismic, geochemical and field data to construct a tectono-stratigraphic framework of the Nigerian sector of Chad Basin; within this framework we then investigate the basins petroleum system development. Our analysis suggests two key plays exist in the basin, Lower and Upper Cretaceous plays. Pre-Bima lacustrine shale and the Gongila Formation constitute the prospective source rocks for the Lower Cretaceous play, whereas the Fika Shale may provide the source, for the Upper Cretaceous play. Source rock hydrocarbon modeling indicates possible oil and gas generation and expulsion from the lacustrine shales and Fika Shale in Cretaceous and Tertiary times respectively. Bima Sandstone and weathered basement represent prospective reservoirs for the Lower Cretaceous play and intra-Fika sandstone beds for the Upper Cretaceous play. We identify a range of trapping mechanisms such as inversion-related anticlines. Shales of the Gongila Formation provide the top sealing for the Lower Cretaceous play. Our field observations have proved presence of the key elements of the petroleum system in the Nigerian Sector of the Chad Basin. It has also demonstrated presence of igneous intrusions in the stratigraphy of the basin that we found to influence the hydrocarbon potential of the basin through source rock thermal maturity and degradation. Our study

  8. Early detection of ocean acidification effects on marine calcification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilyina, T.; Zeebe, R. E.; E. Maier-Reimer

    Ocean acidification is likely to impact calcification rates in many pelagic organisms, which may in turn cause significant changes in marine ecosystem structure. We examine effects of changes in marine CaCO3 production on total alkalinity (TA) in the ocean using the global biogeochemical ocean model HAMOCC. We test a variety of future calcification scenarios because experimental studies with different organisms have revealed a wide range of calcification sensitivities to CaCO3 saturation state. The model integrations start at a preindustrial steady state in the year 1800 and run until the year 2300 forced with anthropogenic CO2 emissions. Calculated trends in TAmore » are evaluated taking into account the natural variability in ocean carbonate chemistry, as derived from repeat hydrographic transects. We conclude that the data currently available does not allow discerning significant trends in TA due to changes in pelagic calcification caused by ocean acidification. Given different calcification scenarios, our model calculations indicate that the TA increase over time will start being detectable by the year 2040, increasing by 5–30 umol/kg compared to the present-day values. In a scenario of extreme reductions in calcification, large TA changes relative to preindustrial conditions would have occurred at present, which we consider very unlikely. However, the time interval of reliable TA observations is too short to disregard this scenario. The largest increase in surface ocean TA is predicted for the tropical and subtropical regions. In order to monitor and quantify possible early signs of acidification effects, we suggest to specifically target those regions during future ocean chemistry surveys.« less

  9. Integrated geophysical and geological study and petroleum appraisal of Cretaceous plays in the Western Gulf of Gabes, Tunisia

    NASA Astrophysics Data System (ADS)

    Dkhaili, Noomen; Bey, Saloua; El Abed, Mahmoud; Gasmi, Mohamed; Inoubli, Mohamed Hedi

    2015-09-01

    An integrated study of available seismic and calibrated wells has been conducted in order to ascertain the structural development and petroleum potential of the Cretaceous Formations of the Western Gulf of Gabes. This study has resulted in an understanding of the controls of deep seated Tethyan tectonic lineaments by analysis of the Cretaceous deposits distribution. Three main unconformities have been identified in this area, unconformity U1 between the Jurassic and Cretaceous series, unconformity U2 separating Early from Late Cretaceous and known as the Austrian unconformity and the major unconformity U3 separating Cretaceous from Tertiary series. The seismic analysis and interpretation have confirmed the existence of several features dominated by an NE-SW extensive tectonic regime evidenced by deep listric faults, asymmetric horst and graben and tilted blocks structures. Indeed, the structural mapping of these unconformities, displays the presence of dominant NW-SE fault system (N140 to N160) bounding a large number of moderate sized basins. A strong inversion event related to the unconformity U3 can be demonstrated by the mapping of the unconformities consequence of the succession of several tectonic manifestations during the Cretaceous and post-Cretaceous periods. These tectonic events have resulted in the development of structural and stratigraphic traps further to the porosity and permeability enhancement of Cretaceous reservoirs.

  10. Tectonic Mechanism for the Mid-Cretaceous - Early Paleogene Intraplate Magmatism from the Gulf of Mexico to Northwestern Canada

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Murphy, M. A.; Snow, J. E.; van Wijk, J.; Cannon, J. M.; Parsons, C.

    2017-12-01

    Tectonic mechanisms have remained controversial for a number of intraplate igneous suites of mid-Cretaceous - early Paleogene age across North America. They span the northern Gulf of Mexico (GoM), through Arkansas and Kansas in the US, to Saskatchewan and Northwestern Territories in Canada, resembling a belt that is located 1000+ km inboard from, and aligned sub-parallel to, the western margin of North America. The northern GoM magmatism is characterized by lamproites, carbonatites, nephelinites, with other alkaline rocks, whereas the rest igneous provinces are dominated by kimberlites. Their geochemical signatures, in general, point to a sub-lithospheric mantle origin. Hypotheses that explain the tectonic origin of these magmatic rocks include: (1) hotspots and mantle plumes, (2) edge-driven convection, (3) lithospheric reactivation, and (4) low-angle subduction. Evaluation based on our integration of published geological and geophysical data shows that contradictions exist in each model between observations and predictions. To explain this plate-scale phenomenon, we propose that the Farallon slab may have stagnated within or around the mantle transition zone during the Early Cretaceous, with its leading edge reaching ca. 1600 km inland beneath the North American plate. Dehydration and decarbonation of the slab produces sporadic, dense, low-degree partial melts at the mantle transition zone depths. As the slab descends into the lower mantle, Rayleigh-Taylor instabilities are induced at slab edges, causing passive upwelling that brings alkali-rich carbonate silicate melts to the base of the overriding plate. Subsequently, the North American lithosphere with varying thicknesses, discontinuities, and compositions interacts with the rising partial melts, generating a spectrum of igneous rocks. Fragments of the once-stagnated slab may still be detectable in the lower mantle beneath eastern US in seismic tomography models. This study highlights a profound plate

  11. Molecular and Paleontological Evidence for a Post-Cretaceous Origin of Rodents

    PubMed Central

    Wu, Shaoyuan; Wu, Wenyu; Zhang, Fuchun; Ye, Jie; Ni, Xijun; Sun, Jimin; Edwards, Scott V.; Meng, Jin; Organ, Chris L.

    2012-01-01

    The timing of the origin and diversification of rodents remains controversial, due to conflicting results from molecular clocks and paleontological data. The fossil record tends to support an early Cenozoic origin of crown-group rodents. In contrast, most molecular studies place the origin and initial diversification of crown-Rodentia deep in the Cretaceous, although some molecular analyses have recovered estimated divergence times that are more compatible with the fossil record. Here we attempt to resolve this conflict by carrying out a molecular clock investigation based on a nine-gene sequence dataset and a novel set of seven fossil constraints, including two new rodent records (the earliest known representatives of Cardiocraniinae and Dipodinae). Our results indicate that rodents originated around 61.7–62.4 Ma, shortly after the Cretaceous/Paleogene (K/Pg) boundary, and diversified at the intraordinal level around 57.7–58.9 Ma. These estimates are broadly consistent with the paleontological record, but challenge previous molecular studies that place the origin and early diversification of rodents in the Cretaceous. This study demonstrates that, with reliable fossil constraints, the incompatibility between paleontological and molecular estimates of rodent divergence times can be eliminated using currently available tools and genetic markers. Similar conflicts between molecular and paleontological evidence bedevil attempts to establish the origination times of other placental groups. The example of the present study suggests that more reliable fossil calibration points may represent the key to resolving these controversies. PMID:23071573

  12. The Caribbean-Colombian cretaceous igneous province: The internal anatomy of an oceanic plateau

    NASA Astrophysics Data System (ADS)

    Kerr, Andrew C.; Tarney, John; Marriner, Giselle F.; Nivia, Alvaro; Saunders, Andrew D.

    The Late Cretaceous Caribbean—Colombian igneous province is one of the world's best-exposed examples of a plume-derived oceanic plateau. The buoyancy of the plateau (resulting from residual heat and thick crust) kept it from being totally subducted as it moved eastward with the Farallon Plate from its site of generation in the eastern Pacific and encountered a destructive plate margin. In effect, the plateau makes up much of the Caribbean Plate; it is well exposed around its margins, but more so in accreted terranes in western Colombia (including the well-known Gorgona komatiites and Bolívar mafic/ultramafic cumulates). Compositionally, the lavas of the plateau form three groups: (a) basalts, picrites, and komatiites with light-rare-earth-element (LREE)-depleted chondrite-normalised patterns; (b) basalts with LREE-enriched patterns; and (c) basalts with essentially flat REE patterns (the most dominant type) similar to many of the basalts from the Ontong Java Plateau. These three types demonstrate the heterogeneous nature of the mantle plume source region. The picrites and the komatiites seem to lie nearer the base of the plateau than the more homogeneous basalts; thus, the more MgO-rich melts may have been erupted before large magma chambers had a chance to develop. A reconstructed crustal cross section through the plateau consists of dunitic and pyroxenitic cumulates near the base which are overlain by layered olivine-rich gabbros and more isotropic gabbros. The lowermost eruptive sequence comprises compositionally heterogeneous picrites/komatiites overlain by more homogeneous pillow basalts. Spectacular hornblende-plagioclase veins cut the Bolívar assemblage and these may represent local partial melts of the plateau's base as it was thrusted onto the continent. Subduction-related batholiths and extrusive rocks found around the margin of the province are of two distinct ages; one suite represents pre-plateau collision-related volcanism whereas the other suite

  13. View of an intact oceanic arc, from surficial to mesozonal levels: Cretaceous Alisitos arc, Baja California

    NASA Astrophysics Data System (ADS)

    Busby, Cathy; Fackler Adams, Benjamin; Mattinson, James; Deoreo, Stephen

    2006-01-01

    suspensions that mixed completely with water. In contrast, gentler slopes on the opposite flank allowed pyroclastic flows to enter the sea with integrity, and supported extensive buildups of bioherms. Caldera collapse on the major subaerial edifice ponded the tuff of Aguajito to a thickness of at least 3 km. The outflow ignimbrite forms a marker in nonmarine to shallow marine sections, and in deepwater sections it occurs as blocks up to 150 m long in a debris-avalanche deposit. These welded ignimbrite blocks were deposited hot enough to deform plastically and form peperite with the debris-avalanche matrix. The debris avalanche was likely triggered by injection of feeder dikes along the basin-bounding fault zone during the caldera-forming eruption. Intra-arc extension controlled very high subsidence rates, followed shortly thereafter by accretion through back-arc basin closure by 105 Ma. Accretion of the oceanic arc may have been accomplished by detachment of the upper crust along a still hot, thick middle crustal tonalitic layer, during subduction of mafic-ultramafic substrate.

  14. End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change

    PubMed Central

    Petersen, Sierra V.; Dutton, Andrea; Lohmann, Kyger C.

    2016-01-01

    The cause of the end-Cretaceous (KPg) mass extinction is still debated due to difficulty separating the influences of two closely timed potential causal events: eruption of the Deccan Traps volcanic province and impact of the Chicxulub meteorite. Here we combine published extinction patterns with a new clumped isotope temperature record from a hiatus-free, expanded KPg boundary section from Seymour Island, Antarctica. We document a 7.8±3.3 °C warming synchronous with the onset of Deccan Traps volcanism and a second, smaller warming at the time of meteorite impact. Local warming may have been amplified due to simultaneous disappearance of continental or sea ice. Intra-shell variability indicates a possible reduction in seasonality after Deccan eruptions began, continuing through the meteorite event. Species extinction at Seymour Island occurred in two pulses that coincide with the two observed warming events, directly linking the end-Cretaceous extinction at this site to both volcanic and meteorite events via climate change. PMID:27377632

  15. End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change.

    PubMed

    Petersen, Sierra V; Dutton, Andrea; Lohmann, Kyger C

    2016-07-05

    The cause of the end-Cretaceous (KPg) mass extinction is still debated due to difficulty separating the influences of two closely timed potential causal events: eruption of the Deccan Traps volcanic province and impact of the Chicxulub meteorite. Here we combine published extinction patterns with a new clumped isotope temperature record from a hiatus-free, expanded KPg boundary section from Seymour Island, Antarctica. We document a 7.8±3.3 °C warming synchronous with the onset of Deccan Traps volcanism and a second, smaller warming at the time of meteorite impact. Local warming may have been amplified due to simultaneous disappearance of continental or sea ice. Intra-shell variability indicates a possible reduction in seasonality after Deccan eruptions began, continuing through the meteorite event. Species extinction at Seymour Island occurred in two pulses that coincide with the two observed warming events, directly linking the end-Cretaceous extinction at this site to both volcanic and meteorite events via climate change.

  16. End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change

    NASA Astrophysics Data System (ADS)

    Petersen, Sierra V.; Dutton, Andrea; Lohmann, Kyger C.

    2016-07-01

    The cause of the end-Cretaceous (KPg) mass extinction is still debated due to difficulty separating the influences of two closely timed potential causal events: eruption of the Deccan Traps volcanic province and impact of the Chicxulub meteorite. Here we combine published extinction patterns with a new clumped isotope temperature record from a hiatus-free, expanded KPg boundary section from Seymour Island, Antarctica. We document a 7.8+/-3.3 °C warming synchronous with the onset of Deccan Traps volcanism and a second, smaller warming at the time of meteorite impact. Local warming may have been amplified due to simultaneous disappearance of continental or sea ice. Intra-shell variability indicates a possible reduction in seasonality after Deccan eruptions began, continuing through the meteorite event. Species extinction at Seymour Island occurred in two pulses that coincide with the two observed warming events, directly linking the end-Cretaceous extinction at this site to both volcanic and meteorite events via climate change.

  17. Evolving Oxygen Landscape of the Early Atmosphere and Oceans

    NASA Astrophysics Data System (ADS)

    Lyons, T. W.; Reinhard, C. T.; Planavsky, N. J.

    2013-12-01

    The past decade has witnessed remarkable advances in our understanding of oxygen on the early Earth, and a new framework, the topic of this presentation, is now in place to address the controls on spatiotemporal distributions of oxygen and their potential relationships to deep-Earth processes. Recent challenges to the Archean biomarker record have put an added burden on inorganic geochemistry to fingerprint and quantify the early production, accumulation, and variation of biospheric oxygen. Fortunately, a wide variety of techniques now point convincingly to photosynthetic oxygen production and dynamic accumulation well before the canonical Great Oxidation Event (GOE). Recent modeling of sulfur recycling over this interval allows for transient oxygen accumulation in the atmosphere without the disappearance of non-mass-dependent (NMD) sulfur isotope anomalies from the stratigraphic record and further allows for persistent accumulation in the atmosphere well before the permanent disappearance of NMD signals. This recent work suggests that the initial rise of oxygen may have occurred in fits and starts rather than a single step, and that once permanently present in the atmosphere, oxygen likely rose to high levels and then plummeted, in phase with the Paleoproterozoic Lomagundi positive carbon isotope excursion. More than a billion years of oxygen-free conditions in the deep ocean followed and set a challenging course for life, including limited abundances and diversity of eukaryotic organisms. Despite this widespread anoxia, sulfidic (euxinic) conditions were likely limited to productive ocean margins. Nevertheless, euxinia was sufficiently widespread to impact redox-dependent nutrient relationships, particularly the availability of bioessential trace metals critical in the nitrogen cycle, which spawned feedbacks that likely maintained oxygen at very low levels in the ocean and atmosphere and delayed the arrival of animals. Then, in the mid, pre-glacial Neoproterozoic

  18. Physical and chemical consequences of crustal melting in fossil mature intra-oceanic arcs

    NASA Astrophysics Data System (ADS)

    Berger, J.; Burg, J.-P.

    2012-04-01

    Seismic velocity models of active intra-oceanic arcs show roots with densities and P-wave velocities intermediate to classical lower oceanic crust (density; ~3.0, Vp: ~7.0 km/s) and uppermost harzburgitic mantle (density: 3.2-3.3, Vp: 7.9-8.0 km/s). Most studies on active and fossil exhumed island arcs interpret the petrological nature of this root as ultramafic cumulates crystallized from primitive melts and/or as pyroxenites formed via basalt-peridotite reactions. Igneous cumulates and pyroxenites have densities close to or above that of uppermost mantle rocks; they can consequently undergo gravity-driven delamination, a process thought to drive the bulk composition of the arc toward an andesitic, continental crust-like composition. Dehydration and melting reactions are reported from exposed arc roots (Jijal complex in Kohistan; Amalaoulaou arc in Mali; Fiordland arc in New-Zealand). Intense influx of mantle-derived basaltic magmas at high pressure in a thickening island arc can enable lower crustal rocks to locally cross the dehydration-melting solidus of hydrous subalkaline basalts. Thermodynamic modeling using Perple_X, geochemical analysis and compilation of experimental and field data have been combined to constrain processes, conditions and consequences of intra-arc melting. The position of the solidus in a P-T grid is strongly dependent of the bulk water content: at 1 GPa, it is as low as 750 °C for water saturated hornblende-gabbros (>1 wt% H2O) and 830°C for gabbros with 0.1 wt% H2O. Incipient melting (F <10 %) near the solidus produces trondhjemitic melt and garnet granulites residue. The latter has composition very close to that of igneous precursors but is characterized by contrasted physical properties (density: 3.2-3.3, Vp: 6.9-7.4 km/s). Higher partial melting degrees (F: 10-20 %) lead to the formation of anorthositic melts in equilibrium with garnet-clinopyroxene-rutile residues (density: up to 3.45, Vp: up to 7.7 km/s). These melts are rich in

  19. First report on Cretaceous paleoweathering rates in western Panthalassa: Evidence of global enhancement of continental weathering during OAE 2

    NASA Astrophysics Data System (ADS)

    Ohta, T.

    2013-12-01

    Mid-Cretaceous is characterized by intensified oceanic anoxia (Oceanic Anoxic Events: OAEs) that raised global deposition of organic black shales. Several models have been proposed to explain the cause of the OAEs in conjunction with Cretaceous global warmth, active volcanism, sea-level changes and others. For example, Weissert et al. (1998) proposed a mechanism called 'weathering hypothesis'. In this model, the cause of the OAEs is explained in a following chain reaction, (1) global warmth and increase in atmospheric CO2 enhanced weathering of continental crust, (2) enhanced land weathering led excessive influx of nutrients from continents to oceans, (3) eutrophication enhanced primary productivity, (4) the excessive primary producers consumed dissolved oceanic oxygen that finally led to the OAEs. Several studies, in fact, revealed a causal relation between enhanced weathering and OAEs in northern Tethys region. However, it is necessary to collect worldwide information to unravel the global response of weathering hypothesis as a cause of OAEs. For such reason, the present contribution conducted measurements of the degree of hinterland paleoweathering during OAEs in northern Japan, for the purpose to provide a first report on the relation between continental weathering and OAEs in open ocean, the western Panthalassa Ocean. Aptian to Campanian forearc basin mudstones (Yezo Group) were analyzed by XRF and the degree of hinterland weathering was evaluated by geochemical weathering index (W index; Ohta and Arai, 2007). The W values obtained for the Yezo Group are 30~50, which is equivalent to the W values of recent soils developed in temperate mid-latitude climate. The W values show a fluctuation pattern that is concordant with the Cretaceous paleotemperature changes. This match indicates that the change in paleotemperature governed the weathering rates of East Asian continental crust. In addition, hinterland weathering rates show instantaneous increase during the OAE

  20. Magnetic Anomalies Associated With Fracture Zones in the Cretaceous Magnetic Quiet Zone in the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Ishihara, T.

    2003-12-01

    The existence of magnetic anomalies along east-west trending fracture zones in the north Pacific is well known. These anomalies are particularly prominent in the Cretaceous magnetic quiet zone, where no comparable anomalies are observed other than those associated with the Hawaiian Ridge and the Musician Seamounts in a newly compiled magnetic anomaly map. Model calculation was conducted using old magnetic and bathymetric data collected in the Cretaceous magnetic quiet zone. Two-dimensional simple models along north-south lines, which cross the Mendocino, Pioneer, Murray, Molokai and Clarion Fracture Zones, were constructed in order to clarify the sources of these magnetic anomalies. In these model calculations, it was assumed that the source bodies have normal remanent magnetizations with their inclinations of about 5 (for Mendocino FZ) to -25 degrees (for Clarion FZ), corresponding to the latitudes 40 degrees south of the present locations, as was suggested to have been in the late Cretaceous by some of paleomagnetic studies. This assumption is consistent with the dominance of negative anomalies in the observation. The model calculations suggest that under assumption of 0.5 km thick magnetic source bodies, remanent magnetizations more than 10 A/m should occur below some of the ridges and troughs in these fractures zones. Alternatively, in more plausible models with a remanent magnetization of 3 A/m, the magnetic source bodies should have thicknesses of up to about 5 km there.

  1. Cretaceous shelf-sea chalk deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattin, D.E.

    1988-01-01

    The word ''chalk'' is linked etymologically to the Cretaceous, but chalky facies neither dominate that system nor are confined to it. As used commonly, the term ''chalk'' refers to a variety of marine limestone that is white to light gray very fine grained, soft and friable, porous, and composed predominantly of calcitic skeletal remains, especially those derived from coccolithophores. No simple definition suffices to embrace all Cretaceous chalks, which include sandy, marly, shelly, phospatic, glauconitic, dolomitic, pyritic and organic-rich lithotypes. Most of the world's exposed Cretaceous chalk deposits were formed at shelf depths rather than in the deep sea. Cretaceousmore » shelf-sea chalks are developed most extensively in northern Europe, the U.S. Gulf Coastal Plain and Western Interior, and the Middle East, with lesser occurrences alo in Australia. Most Cretaceous shelf-sea chalks formed in the temperature zones, and in relatively deep water. Cretaceous chalks deposited on well-oxygenated sea floors are bioturbated and massive where deficient in terrigenous detritus, or bioturbated and rhythmically interbedded with argillaceous units where influx of terrigenous detritus varied systematically with climate changes. Accumulation of sufficient pelagic mud to form vast deposits of Cretaceous shelf-sea chalk required (1) sustained high productivity of calareous plankton, (2) extensive development of stable shelf and continental platform environments, (3) highstands of seal level, (4) deficiency of aragonitic skeletal material in chalk-forming sediments, and (5) low rates of terrigenous detrital influx. These conditions were met at different times in different places, even within the same general region.« less

  2. The clasts of Cretaceous marls in the conglomerates of the Konradsheim Formation (Pöchlau quarry, Gresten Klippen Zone, Austria)

    NASA Astrophysics Data System (ADS)

    Ślączka, Andrzej; Gasiñski, M. Adam; Bąk, Marta; Wessely, Godfrid

    2009-04-01

    Investigations were carried out on foraminiferids and radiolaria from redeposited clasts within the conglomerates of the Konradsheim Formation (Gresten Klippen Zone) in the area of the Pöchlau hill, east of Maria Neustift. These shales and marls are of Middle to Late Jurassic and Early Cretaceous age. In the latter clasts, foraminiferal assemblages with Tritaxia ex gr. gaultina as well as radiolaria species Angulobracchia portmanni Baumgartner, Dictyomitra communis (Squinabol), Hiscocapsa asseni (Tan), Pseudodictyomitra lodogaensis Pessagno, Pseudoeucyrtis hanni (Tan), Rhopalosyringium fossile (Squinabol) were found. In one block from the uppermost part of the sequence there is an assemblage with Caudammina (H) gigantea, Rotalipora appenninica and Globotruncana bulloides. However, the brecciated character of this block and occurrence near a fault suggest that it was probably wedged into the conglomerates of the Konradsheim Formation during tectonic movements. In pelitic siliceous limestones below the Konradsheim Limestone radiolarian assemblages of Middle Callovian to Early Tithonian age were found. They enable correlation with the Scheibbsbach Formation. In a marly sequence, above the conglomeratic limestone, the foraminiferal assemblages contain taxa from mid-Cretaceous up to Paleocene. The present biostratigraphic investigation confirmed the previous stratigraphic assignments and imply clearly that the sedimentation of deposits similar to the Konradsheim Formation also occurred at the end of the Early Cretaceous and deposition of conglomeratic limestones within the Gresten Klippen Zone, and especially within the Konradsheim Formation, was repeated several times during the Late Jurassic and Early Cretaceous.

  3. Hydrocarbon potential of Early Cretaceous lacustrine sediments from Bima Formation, Yola Sub-basin, Northern Benue Trough, NE Nigeria: Insight from organic geochemistry and petrology

    NASA Astrophysics Data System (ADS)

    Sarki Yandoka, Babangida M.; Abdullah, Wan Hasiah; Abubakar, M. B.; Adegoke, Adebanji Kayode; Maigari, A. S.; Haruna, A. I.; Yaro, Usman Y.

    2017-05-01

    The Early Cretaceous lacustrine sediments from Bima Formation in the Yola Sub-basin, Northern Benue Trough, northeastern Nigeria were studied based on organic geochemistry and petrology. This is in other to provide information on hydrocarbon generation potential; organic matter type (quality), richness (quantity), origin/source inputs, redox conditions (preservation) and thermal maturation in relation to thermal effect of Tertiary volcanics. The total organic carbon (TOC) contents ranges from 0.38 to 0.86 wt % with extractable organic matter (EOM) below 1000 ppm and pyrolysis S2 yield values from 0.16 to 0.68 mg/g, suggesting poor to fair source rock richness. Based on kerogen pyrolysis and microscopy coupled with biomarker parameters, the organic matters contain Type I (lacustrine algae), Type III (terrestrially derived land-plants) and Type IV kerogens deposited in a mixed lacustrine-terrestrial environment under suboxic to relatively anoxic conditions. This suggest potential occurrence of Early Cretaceous lacustrine sediments (perhaps Lower Cretaceous petroleum system) in Yola Sub-basin of the Northern Benue Trough as present in the neighbouring basins of Chad, Niger and Sudan Republics that have both oil and gas generation potential within the same rift trend (WCARS). Vitrinite reflectance (%Ro) and Tmax values of the lacustrine shales ranges from 1.12 to 2.32 VRo% and 448-501 °C, respectively, indicating peak-late to post-maturity stage. This is supported by the presence of dark brown palynomorphs, amorphous organic matter and phytoclasts as well as inertinite macerals. Consequently, the organic matters in the lacustrine shales of Bima Formation in the Yola Sub-basin appeared as a source of oil (most likely even waxy) and gas prone at a relatively deeper part of the basin. However, the high thermal maturity enhanced the organic matters and most of the hydrocarbons that formed in the course of thermal maturation were likely expelled to the reservoir rock units

  4. Petroleum system elements within the Late Cretaceous and Early Paleogene sediments of Nigeria's inland basins: An integrated sequence stratigraphic approach

    NASA Astrophysics Data System (ADS)

    Dim, Chidozie Izuchukwu Princeton; Onuoha, K. Mosto; Okeugo, Chukwudike Gabriel; Ozumba, Bertram Maduka

    2017-06-01

    Sequence stratigraphic studies have been carried out using subsurface well and 2D seismic data in the Late Cretaceous and Early Paleogene sediments of Anambra and proximal onshore section of Niger Delta Basin in the Southeastern Nigeria. The aim was to establish the stratigraphic framework for better understanding of the reservoir, source and seal rock presence and distribution in the basin. Thirteen stratigraphic bounding surfaces (consisting of six maximum flooding surfaces - MFSs and seven sequence boundaries - SBs) were recognized and calibrated using a newly modified chronostratigraphic chart. Stratigraphic surfaces were matched with corresponding foraminiferal and palynological biozones, aiding correlation across wells in this study. Well log sequence stratigraphic correlation reveals that stratal packages within the basin are segmented into six depositional sequences occurring from Late Cretaceous to Early Paleogene age. Generated gross depositional environment maps at various MFSs show that sediment packages deposited within shelfal to deep marine settings, reflect continuous rise and fall of sea levels within a regressive cycle. Each of these sequences consist of three system tracts (lowstand system tract - LST, transgressive system tract - TST and highstand system tract - HST) that are associated with mainly progradational and retrogradational sediment stacking patterns. Well correlation reveals that the sand and shale units of the LSTs, HSTs and TSTs, that constitute the reservoir and source/seal packages respectively are laterally continuous and thicken basinwards, due to structural influences. Result from interpretation of seismic section reveals the presence of hanging wall, footwall, horst block and collapsed crest structures. These structural features generally aid migration and offer entrapment mechanism for hydrocarbon accumulation. The combination of these reservoirs, sources, seals and trap elements form a good petroleum system that is viable

  5. The Cretaceous Polar and Western Interior seas: paleoenvironmental history and paleoceanographic linkages

    NASA Astrophysics Data System (ADS)

    Schröder-Adams, Claudia

    2014-03-01

    This study reviews the Cretaceous histories of the Polar and Western Interior seas as recorded in the Canadian High Arctic Sverdrup Basin, Beaufort-Mackenzie Basin of northwest Canada and Western Canadian Foreland Basin. Newly emerging stratigraphic, paleoclimatic and paleoenvironmental interpretations from the polar realm allow for a fresh look at the response of this oceanic system to global climatic trends and sea-level histories over 35 Ma. Sverdrup basin localities on Axel Heiberg and Ellef Ringnes islands represent shelf to slope environments that contrasted with the shallow water and low gradient settings of the Canadian Western Interior Sea. Both marine systems, connected throughout Aptian to Maastrichtian time, responded to global transgressive-regressive cycles resulting in dynamic paleogeographic changes. The upper Aptian to Campanian succession of the Polar Sea shows at least two unconformable boundaries; one at the Albian/Cenomanian transition and another within the upper Cenomanian. The shallow basin setting and in particular the forebulge and backbulge settings of the Western Canadian Foreland Basin are characterized by multiple erosional surfaces throughout the Cretaceous succession. The Upper Albian disconformity is widely discernible close to the entrance of the Western Interior Sea to the Polar Sea. This suggests a short-lived closure of the latest Albian Mowry Sea that might have been responsible for the large loss of benthic foraminiferal species at this time. Several oceanic anoxic events are documented in these basins representing their response to global climate dynamics. During the Late Cretaceous temperature maximum benthic foraminiferal communities were severely restricted by bottom water hypoxia in both basins. A stratified water column might have been the result of increased freshwater runoff under warm, humid conditions. These conditions supported vegetation up into the polar latitudes that added abundant organic matter to marine shelf

  6. A lower Cretaceous (Valanginian) seed cone provides the earliest fossil record for Picea (Pinaceae).

    PubMed

    Klymiuk, Ashley A; Stockey, Ruth A

    2012-06-01

    Sequence analyses for Pinaceae have suggested that extant genera diverged in the late Mesozoic. While the fossil record indicates that Pinaceae was highly diverse during the Cretaceous, there are few records of living genera. This description of an anatomically preserved seed cone extends the fossil record for Picea A. Dietrich (Pinaceae) by ∼75 Ma. The specimen was collected from the Apple Bay locality of Vancouver Island (Lower Cretaceous, Valanginian) and is described from anatomical sections prepared using cellulose acetate peels. Cladistic analyses of fossil and extant pinaceous seed cones employed parsimony ratchet searches of an anatomical and morphological matrix. This new seed cone has a combination of characters shared only with the genus Picea A. Dietr. and is thus described as Picea burtonii Klymiuk et Stockey sp. nov. Bisaccate pollen attributable to Picea is found in the micropyles of several ovules, corroborating the designation of this cone as an early spruce. Cladistic analyses place P. burtonii with extant Picea and an Oligocene representative of the genus. Furthermore, our analyses indicate that Picea is sister to Cathaya Chun et Kuang, and P. burtonii helps to establish a minimum date for this node in hypotheses of conifer phylogeny. As an early member of the extant genus Picea, this seed cone extends the fossil record of Picea to the Valanginian Stage of the Early Cretaceous, ca. 136 Ma, thereby resolving a ghost lineage predicted by molecular divergence analyses, and offers new insight into the evolution of Pinaceae.

  7. Mating and aggregative behaviors among basal hexapods in the Early Cretaceous.

    PubMed

    Sánchez-García, Alba; Peñalver, Enrique; Delclòs, Xavier; Engel, Michael S

    2018-01-01

    Among the many challenges in paleobiology is the inference and reconstruction of behaviors that rarely, if ever, leave a physical trace on the environment that is suitable for fossilization. Of particular significance are those behaviors tied to mating and courtship, individual interactions critical for species integrity and continuance, as well as those for dispersal, permitting the taxon to expand its distribution as well as access new habitats in the face of local or long-term environmental change. In this context, two recently discovered fossils from the Early Cretaceous amber of Spain (ca. 105 mya) give a detailed view of otherwise fleeting ethologies in Collembola. These occurrences are phylogenetically spaced across the class, and from species representing the two major clades of springtails-Symphypleona and Entomobryomorpha. Specifically, we report unique evidence from a symphypleonan male (Pseudosminthurides stoechus Sánchez-García & Engel, 2016) with modified antennae that may have functioned as a clasping organ for securing females during mating on water's surface, and from an aggregation of entomobryomorphan individuals (Proisotoma communis Sánchez-García & Engel, 2016) purportedly representing a swarming episode on the forest floor. We demonstrate that the mating behavioral repertoire in P. stoechus, which is associated with considerable morphological adaptations, likely implied elaborate courtship and maneuvering for guarantee sperm transfer in an epineustic species. These discoveries reveal significant behaviors consistent with modern counterparts and a generalized stasis for some ancient hexapod ethologies associated with complex mating and courtship and social or pre-social aggregations, so critical to specific constancy and dispersal.

  8. Mating and aggregative behaviors among basal hexapods in the Early Cretaceous

    PubMed Central

    Sánchez-García, Alba; Peñalver, Enrique; Delclòs, Xavier

    2018-01-01

    Among the many challenges in paleobiology is the inference and reconstruction of behaviors that rarely, if ever, leave a physical trace on the environment that is suitable for fossilization. Of particular significance are those behaviors tied to mating and courtship, individual interactions critical for species integrity and continuance, as well as those for dispersal, permitting the taxon to expand its distribution as well as access new habitats in the face of local or long-term environmental change. In this context, two recently discovered fossils from the Early Cretaceous amber of Spain (ca. 105 mya) give a detailed view of otherwise fleeting ethologies in Collembola. These occurrences are phylogenetically spaced across the class, and from species representing the two major clades of springtails—Symphypleona and Entomobryomorpha. Specifically, we report unique evidence from a symphypleonan male (Pseudosminthurides stoechus Sánchez-García & Engel, 2016) with modified antennae that may have functioned as a clasping organ for securing females during mating on water’s surface, and from an aggregation of entomobryomorphan individuals (Proisotoma communis Sánchez-García & Engel, 2016) purportedly representing a swarming episode on the forest floor. We demonstrate that the mating behavioral repertoire in P. stoechus, which is associated with considerable morphological adaptations, likely implied elaborate courtship and maneuvering for guarantee sperm transfer in an epineustic species. These discoveries reveal significant behaviors consistent with modern counterparts and a generalized stasis for some ancient hexapod ethologies associated with complex mating and courtship and social or pre-social aggregations, so critical to specific constancy and dispersal. PMID:29466382

  9. Sedimentary Mercury Enrichments as a Marker for Submarine Large Igneous Province Volcanism? Evidence From the Mid-Cenomanian Event and Oceanic Anoxic Event 2 (Late Cretaceous)

    NASA Astrophysics Data System (ADS)

    Scaife, J. D.; Ruhl, M.; Dickson, A. J.; Mather, T. A.; Jenkyns, H. C.; Percival, L. M. E.; Hesselbo, S. P.; Cartwright, J.; Eldrett, J. S.; Bergman, S. C.; Minisini, D.

    2017-12-01

    Oceanic Anoxic Event 2 (OAE 2), during the Cenomanian-Turonian transition (˜94 Ma), was the largest perturbation of the global carbon cycle in the mid-Cretaceous and can be recognized by a positive carbon-isotope excursion in sedimentary strata. Although OAE 2 has been linked to large-scale volcanism, several large igneous provinces (LIPs) were active at this time (e.g., Caribbean, High Arctic, Madagascan, Ontong-Java) and little clear evidence links OAE 2 to a specific LIP. The Mid-Cenomanian Event (MCE, ˜96 Ma), identified by a small, 1‰ positive carbon-isotope excursion, is often referred to as a prelude to OAE 2. However, no underlying cause has yet been demonstrated and its relationship to OAE 2 is poorly constrained. Here we report sedimentary mercury (Hg) concentration data from four sites, three from the southern margin of the Western Interior Seaway and one from Demerara Rise, in the equatorial proto-North Atlantic Ocean. We find that, in both areas, increases in mercury concentrations and Hg/TOC ratios coincide with the MCE and the OAE 2. However, the increases found in these sites are of a lower magnitude than those found in records of many other Mesozoic events, possibly characteristic of a marine rather than atmospheric dispersal of mercury for both events. Combined, the new mercury data presented here are consistent with an initial magmatic pulse at the time of the MCE, with a second, greater pulse at the onset of OAE 2, possibly related to the emplacement of LIPs in the Pacific Ocean and/or the High Arctic.

  10. Cretaceous paleoceanography of the western North Atlantic Ocean

    USGS Publications Warehouse

    Arthur, Michael A.; Dean, Walter E.

    1986-01-01

    In this paper we summarize available information on the Cretaceous lithostratigraphy and paleoceanography of the western North Atlantic. The data and some of our interpretations draw in large part on papers published in the Deep Sea Drilling Project (DSDP) volumes. We have attempted to cite relevant references when possible, but space limitations make it difficult to give proper credit to all sources; we apologize for any omissions.Organic carbon (Corg) and carbonate (CaCO3) analyses were tabulated for each site from papers in the DSDP Initial Report volumes and other published works (e.g., Summerhayes,1981). Corg, CaCO3, and non-CaCO3 mass accumulation rates (MARS) were calculated using core by core averages of component percentages for the more continuously cored sites; core averages for wet bulk density and porosity (from DSDP data files); biostratigraphies of de Graciansky and others (1982), Roth and Bowdler (1981), and Cool (1982); and the time scales of the Decade of North American Geology (Palmer, 1983; Kent and Gradstein, this volume) or Harland and others (1982; see Plate 1).Backtracked paleodepths for western North Atlantic DSDP Sites from Tucholke and Vogt (1979) with the revised stratigraphy of de Graciansky and others (1982) were used in plotting Corg and CaCO3 in Figures 2, 3, 4 and 5 (see also Thierstein, 1979).Backtracking curves of seafloor paleodepth versus age (Sclater and others, 1977; Tucholke and Vogt, 1979) for selected western North Atlantic DSDP sites. Average CaCO3 concentrations per core are shown by code number

  11. Ascaulocardium armatum (Morton 1833), new genus (Late Cretaceous): the ultimate variation on the bivalve paradigm.

    USGS Publications Warehouse

    Pojeta, J.; Sohl, N.F.

    1987-01-01

    Cretaceous clavagellid pelecypods are a poorly known group, and have previously received little study. Ascaulocardium armatum is conchologically the most complex burrowing pelecypod known. From the study of living clavagellids, it is possible to interpret the various tubes extending outward from the adventitious crypt of A. armatum as devices for hydraulic burrowing and deposit feeding. The conchologically complex A. armatum occurs near the beginning of the history of the Clavagellidae, and does not seem to have given rise to any younger species. Ascaulocardium armatum is known only from the Upper Cretaceous rocks (Santonian-Maastrichtian) of the east Gulf and Atlantic Coastal Plains of the United States of America, as is probably the genus Ascaulocardium. All known Cretaceous clavagellids are burrowing species having a free right valve, and this is the ancestral mode of life of the Clavagellidae. Clavagellids that have a boring habit are a more recent evolutionary development, as are burrowing species having both juvenile valves cemented to the crypt. Clavagellids probably evolved from Jurassic-Early Cretaceous pholadomyids. Almost all Cretaceous clavagellids occur outside the Tethyan Zoogeographic Realm; this distribution is in marked contrast to the modern distribution of the family. Living species mostly inhabit clear, shallow seas in subtropical to tropical shelf areas. - Authors

  12. Strongly foliated garnetiferous amphibolite clasts in ophiolitic melanges, Yarlung Zangbo Suture Zone, Tibet; Early Cretaceous disruption of a back-arc basin?

    NASA Astrophysics Data System (ADS)

    Guilmette, C.; Hebert, R.; Wang, C.; Indares, A. D.; Ullrich, T. D.; Dostal, J.; Bedard, E.

    2007-12-01

    equilibrium between 11-13 kbars and 825-850°C, corresponding to high-P granulite facies conditions. In a general way, the geochemistry of the strongly foliated amphibolite clasts suggests that their igneous protolith probably crystallized within the same supra-subduction zone as the crustal rocks from the overlying ophiolite. Then some of these rocks were entrained to mantle depth and were rapidly exhumed, most likely along a lithospheric scale thrust fault underneath the ophiolite. This event corresponds with the end of magmatic activity within the ophiolitic crust and mantle and could be regarded as the inception of a subduction plane at the spreading ridge of a back-arc basin. The whole package was later on obducted over the Indian passive margin, at about 70 Ma. Such a model suggests that closure of the oceanic domain separating India from Eurasia implied disruption of at least one arc-back-arc system, thus requiring at least one early intraoceanic collision or major plate movement reorganization prior to the Late Cretaceous obduction.

  13. Production and recycling of oceanic crust in the early Earth

    NASA Astrophysics Data System (ADS)

    van Thienen, P.; van den Berg, A. P.; Vlaar, N. J.

    2004-08-01

    Because of the strongly different conditions in the mantle of the early Earth regarding temperature and viscosity, present-day geodynamics cannot simply be extrapolated back to the early history of the Earth. We use numerical thermochemical convection models including partial melting and a simple mechanism for melt segregation and oceanic crust production to investigate an alternative suite of dynamics which may have been in operation in the early Earth. Our modelling results show three processes that may have played an important role in the production and recycling of oceanic crust: (1) Small-scale ( x×100 km) convection involving the lower crust and shallow upper mantle. Partial melting and thus crustal production takes place in the upwelling limb and delamination of the eclogitic lower crust in the downwelling limb. (2) Large-scale resurfacing events in which (nearly) the complete crust sinks into the (eventually lower) mantle, thereby forming a stable reservoir enriched in incompatible elements in the deep mantle. New crust is simultaneously formed at the surface from segregating melt. (3) Intrusion of lower mantle diapirs with a high excess temperature (about 250 K) into the upper mantle, causing massive melting and crustal growth. This allows for plumes in the Archean upper mantle with a much higher excess temperature than previously expected from theoretical considerations.

  14. Eobowenia gen. nov. from the Early Cretaceous of Patagonia: indication for an early divergence of Bowenia?

    PubMed

    Coiro, Mario; Pott, Christian

    2017-04-07

    Even if they are considered the quintessential "living fossils", the fossil record of the extant genera of the Cycadales is quite poor, and only extends as far back as the Cenozoic. This lack of data represents a huge hindrance for the reconstruction of the recent history of this important group. Among extant genera, Bowenia (or cuticles resembling those of extant Bowenia) has been recorded in sediments from the Late Cretaceous and the Eocene of Australia, but its phylogenetic placement and the inference from molecular dating still imply a long ghost lineage for this genus. We re-examine the fossil foliage Almargemia incrassata from the Lower Cretaceous Anfiteatro de Ticó Formation in Patagonia, Argentina, in the light of a comparative cuticular analysis of extant Zamiaceae. We identify important differences with the other member of the genus, viz. A. dentata, and bring to light some interesting characters shared exclusively between A. incrassata and extant Bowenia. We interpret our results to necessitate the erection of the new genus Eobowenia to accommodate the fossil leaf earlier assigned as Almargemia incrassata. We then perfom phylogenetic analyses, including the first combined morphological and molecular analysis of the Cycadales, that indicate that the newly erected genus could be related to extant Bowenia. Eobowenia incrassata could represent an important clue for the understanding of evolution and biogeography of the extant genus Bowenia, as the presence of Eobowenia in Patagonia is yet another piece of the biogeographic puzzle that links southern South America with Australasia.

  15. Seawater Chemistry Across Cretaceous-Tertiary Boundary

    NASA Astrophysics Data System (ADS)

    Misra, S.; Turchyn, A. V.

    2016-12-01

    Continental weathering is recognized as one of the primary mechanisms moderating the concentration of CO2 in the atmosphere. Past carbon cycle perturbations, often associated with mass extinction events, recovered on a timescale of hundreds of thousands of years, broadly consistent with enhanced chemical weathering being the key moderating process. Since chemical weathering of continental rocks controls the delivery of cations to the oceans, records of seawater cation chemistry provide a powerful archive of this interplay and feedback between climate and weathering.The Cretaceous-Paleogene (K-Pg) boundary at 65.6 Ma is the last major mass extinction event. The two accepted drivers of K-Pg events were the geologically coeval eruption of Deccan Trap continental flood basalts and the meteorite impact at Chicxulub. The Chicxulub impact happened during a second pulse of Deccan traps volcanism. Thus, teasing apart the timing and dominant driver of the mass extinction and the recovery remains enigmatic. A key feature of the K-Pg event is the transient acidification of the global surface ocean that drove the collapse of the oceanic ecosystem. This surface ocean acidification was caused by `geologically instantaneous' influx of large quantities of acidic gases (viz. CO2, SO2) to the ocean-atmosphere system. We will present high-resolution records of Li, B, Mg, and Ca isotope (δ7Li, δ11B, δ26Mg, and δ44Ca, respectively) measured in single species foraminifera across the K-Pg boundary to assess the perturbation and the subsequent continental weathering feedback. The unique aspect of the proposed research is in the first direct reconstruction of seawater isotopic composition of elements intimately linked to the continental weathering cycle (Li, Mg, and Ca), and the carbon budget of the ocean-atmosphere system (Boron) across an event of rapid climate transition and recovery. Moreover, this will allow to fingerprint the timing of the acidic gas input to the atmosphere and to

  16. Large-scale removal of lithosphere underneath the North China Craton in the Early Cretaceous: Geochemical constraints from volcanic lavas in the Bohai Bay Basin

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Liu, Zheng; Zhang, Shuai; Li, Xiaoguang; Qi, Jiafu

    2017-11-01

    Cratons are generally considered as the most stable tectonic units on the Earth. Rare magmatism, seismic activity, and intracrustal ductile deformation occur in them. However, several cratons experienced entirely different fates, including the North China Craton (NCC), and were subsequently destroyed. Geodynamic mechanisms and timing of the cratonic destruction are strongly debated. In this paper, we investigate a suite of Mesozoic intermediate to felsic volcanic rocks which are collected from boreholes in the Liaohe Depression of the Bohai Bay Basin the eastern NCC. These volcanic rocks have Precambrian basement-like Sr-Nd isotopic characteristics, consistent with derivation from the lower continental crust underneath the NCC. The Late Jurassic ( 165 Ma) intermediate volcanic rocks don't exhibit markedly negative Eu anomalies, which require a source beyond the plagioclase stability field. And the low heavy rare earth elements (HREEs) contents of these samples indicate that their source has garnet as residue. The Early Cretaceous ( 122 Ma) felsic volcanic rocks are depleted in HREEs but with remarkable Eu anomalies, suggesting that their source have both garnet and plagioclase. The crust thicknesses, estimated from the geochemistry of the intermediate and felsic rocks, are ≥ 50 km at 165 Ma and 30-50 km at 122 Ma, respectively. The crustal thinning is attributed to lithospheric delamination beneath the NCC. Our results combined with previous studies imply that the large-scale lithospheric removal occurred in the Early Cretaceous, between 140 and 120 Ma.

  17. Intra-annual variability of the radiocarbon content of corals from the Galapagos Islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, T.A.; Farwell, G.W.; Schmidt, F.H.

    1993-01-01

    The authors report AMS [sup 14]C measurements on sub annual samples of coral from the Galapagos Islands that span the period, 1970-1973. Both the major 1972 El Nino/Southern Oscillation event and intra-annual changes in regional upwelling of [sup 14]C-depleted waters associated with alternation of surface-ocean current patterns are evident in the record. These data show that the corals preserve a detailed record of past intra-annual variations of the [sup 14]C content of surface ocean water.

  18. Magnetization of the oceanic crust: TRM or CRM?

    NASA Technical Reports Server (NTRS)

    Raymond, C. A.; Labrecque, J. L.

    1987-01-01

    A model was proposed in which chemical remanent magnetization (CRM) acquired within the first 20 Ma of crustal evolution may account for 80% of the bulk natural remanent magnetization (NRM) of older basalts. The CRM of the crust is acquired as the original thermoremanent magnetization (TRM) is lost through low temperature alteration. The CRM intensity and direction are controlled by the post-emplacement polarity history. This model explains several independent observations concerning the magnetization of the oceanic crust. The model accounts for amplitude and skewness discrepancies observed in both the intermediate wavelength satellite field and the short wavelength sea surface magnetic anomaly pattern. It also explains the decay of magnetization away from the spreading axis, and the enhanced magnetization of the Cretaceous Quiet Zones while predicting other systematic variations with age in the bulk magnetization of the oceanic crust. The model also explains discrepancies in the anomaly skewness parameter observed for anomalies of Cretaceous age. Further studies indicate varying rates of TRM decay in very young crust which depicts the advance of low temperature alteration through the magnetized layer.

  19. Time scales of critical events around the Cretaceous-Paleogene boundary.

    PubMed

    Renne, Paul R; Deino, Alan L; Hilgen, Frederik J; Kuiper, Klaudia F; Mark, Darren F; Mitchell, William S; Morgan, Leah E; Mundil, Roland; Smit, Jan

    2013-02-08

    Mass extinctions manifest in Earth's geologic record were turning points in biotic evolution. We present (40)Ar/(39)Ar data that establish synchrony between the Cretaceous-Paleogene boundary and associated mass extinctions with the Chicxulub bolide impact to within 32,000 years. Perturbation of the atmospheric carbon cycle at the boundary likely lasted less than 5000 years, exhibiting a recovery time scale two to three orders of magnitude shorter than that of the major ocean basins. Low-diversity mammalian fauna in the western Williston Basin persisted for as little as 20,000 years after the impact. The Chicxulub impact likely triggered a state shift of ecosystems already under near-critical stress.

  20. Early cretaceous lower crustal reworking in NE China: insights from geochronology and geochemistry of felsic igneous rocks from the Great Xing'an range

    NASA Astrophysics Data System (ADS)

    Li, Yinglei; Liu, Huichuan; Huangfu, Pengpeng; He, Hongyun; Liu, Yongzheng

    2018-01-01

    This paper presents new zircon LA-ICP-MS U-Pb ages and whole-rock geochemical data for two granitic plutons and rhyolites of the Baiyingaolao Formation in the western Xing'an range (NE China). The two syenogranite granitic plutons yield identical zircon U-Pb age of 142 ± 1 Ma, and the Baiyingaolao rhyolites yield zircon U-Pb age of 138 ± 2 Ma. The granites contain some hornblendes, and show low Zr and Zr + Nb + Ce + Y contents, and low A/CNK (0.98-1.11), Mg# (6-55), and FeOT/MgO values. Rhyolite samples show similar geochemical characteristics with A/CNK of 0.99-1.10 and Mg# of 14-21. In combination with the high K2O contents (4.43-5.61 wt%) and negative correlations between P2O5 and SiO2, both the granites and rhyolites were classified as high-K calc-alkaline I-type granitoids. All samples give high zirconium saturation temperature of 794-964 °C with few initially inherited zircons, and belong to high-temperature I-type granitoids. They were generated by dehydration melting of biotite/muscovite from sub-alkaline meta-basalts in lower crust depth, leaving garnet, amphibole, and plagioclase as the major residual minerals. The syenogranites and rhyolites are likely formed in Mongol-Okhotsk oceanic subduction setting. Incorporating other lower crust-originated felsic rocks in Erguna and Xing'an massifs and Songliao basin, it is argued that lower crustal reworking is pronounced in NE China during Early Cretaceous.

  1. Severe environmental effects of Chicxulub impact imply key role in end-Cretaceous mass extinction

    NASA Astrophysics Data System (ADS)

    Brugger, Julia; Feulner, Georg; Petri, Stefan

    2017-04-01

    66 million years ago, during the most recent of the five severe mass extinctions in Earth's history, non-avian dinosaurs and many other organisms became extinct. The cause of this end-Cretaceous mass extinction is seen in either flood-basalt eruptions or an asteroid impact. Modeling the climatic changes after the Chicxulub asteroid impact allow to assess its contribution to the extinction event and to analyze the short-term and long-term response of the climate and the biosphere to the impact. Existing studies either investigated the effect of dust, which is now believed to play a minor role, or used one-dimensional, non-coupled models. In contrast, we use a coupled climate model to explore the longer lasting cooling due to sulfate aerosols. Based on data from geophysical impact modeling, we set up simulations with different stratospheric residence times for sulfate aerosols. Depending on this residence time, global surface air temperature decreased by at least 26°C, with 3 to 16 years subfreezing temperatures and a recovery time larger than 30 years. Vigorous ocean mixing, caused by the fast cooling of the surface ocean, might have perturbed marine ecosystems by the upwelling of nutrients. The dramatic climatic changes seen in our simulations imply severe environmental effects and therefore a significant contribution of the impact in the end-Cretaceous mass extinction.

  2. Cretaceous Small Scavengers: Feeding Traces in Tetrapod Bones from Patagonia, Argentina

    PubMed Central

    de Valais, Silvina; Apesteguía, Sebastián; Garrido, Alberto C.

    2012-01-01

    Ecological relationships among fossil vertebrate groups are interpreted based on evidence of modification features and paleopathologies on fossil bones. Here we describe an ichnological assemblage composed of trace fossils on reptile bones, mainly sphenodontids, crocodyliforms and maniraptoran theropods. They all come from La Buitrera, an early Late Cretaceous locality in the Candeleros Formation of northwestern Patagonia, Argentina. This locality is significant because of the abundance of small to medium-sized vertebrates. The abundant ichnological record includes traces on bones, most of them attributable to tetrapods. These latter traces include tooth marks that provde evidence of feeding activities made during the sub-aerial exposure of tetrapod carcasses. Other traces are attributable to arthropods or roots. The totality of evidence provides an uncommon insight into paleoecological aspects of a Late Cretaceous southern ecosystem. PMID:22253800

  3. Morphological Analysis of Cretaceous-Paleogene Boundary Foraminiferal Taxa

    NASA Astrophysics Data System (ADS)

    Mikenas, M.; Hull, P. M.; Henehan, M. J.

    2014-12-01

    66 million years ago at the end of the Cretaceous period, an asteroid impact in the Gulf of Mexico triggered the sudden extinction of an estimated 50% of marine invertebrate species. The event profoundly affected planktonic foraminifera, marine protists with an excellent fossil records in open marine sediments. The mass extinction and expansive fossil record of foraminifera creates the opportunity for detailed studies of the way species and ecosystems evolve and respond to environmental changes. Community level research is, however, relatively rare compared to geochemical paleoceanographic approaches. This is due, in part, to the fact that community level data collection is labor intensive and only partially records all aspects of the biological response. Here, I use a new approach to quantify community change with a computer-controlled microscope able to take high-resolution images of thousands of foraminifera at a time. Analytical software is used to classify populations by morphology, and this data is compared with traditional assemblage counts from multiple oceanic core sites from the late Maastrichtian to the early Danian. Previous studies have suggested that certain phenotypic characteristics are related to ecological niches -here, the direct measurement of shape of large populations of foraminifera is used to research the possible correlation between the K-Pg boundary events and community structure. Continued study of morphological data can be used to investigate the evolution of foraminiferal phenotypes, the connection between shape and ecological behavior, and the changes they exhibit in response to both sudden and long term changes in climate such as occurred near the K/Pg boundary. The image database of Maastrichtian and early Danian foraminifera will be made available to the scientific community, enabling inter-lab and cross-site comparisons.

  4. Dinosaurs and the Cretaceous Terrestrial Revolution

    PubMed Central

    Lloyd, Graeme T; Davis, Katie E; Pisani, Davide; Tarver, James E; Ruta, Marcello; Sakamoto, Manabu; Hone, David W.E; Jennings, Rachel; Benton, Michael J

    2008-01-01

    The observed diversity of dinosaurs reached its highest peak during the mid- and Late Cretaceous, the 50 Myr that preceded their extinction, and yet this explosion of dinosaur diversity may be explained largely by sampling bias. It has long been debated whether dinosaurs were part of the Cretaceous Terrestrial Revolution (KTR), from 125–80 Myr ago, when flowering plants, herbivorous and social insects, squamates, birds and mammals all underwent a rapid expansion. Although an apparent explosion of dinosaur diversity occurred in the mid-Cretaceous, coinciding with the emergence of new groups (e.g. neoceratopsians, ankylosaurid ankylosaurs, hadrosaurids and pachycephalosaurs), results from the first quantitative study of diversification applied to a new supertree of dinosaurs show that this apparent burst in dinosaurian diversity in the last 18 Myr of the Cretaceous is a sampling artefact. Indeed, major diversification shifts occurred largely in the first one-third of the group's history. Despite the appearance of new clades of medium to large herbivores and carnivores later in dinosaur history, these new originations do not correspond to significant diversification shifts. Instead, the overall geometry of the Cretaceous part of the dinosaur tree does not depart from the null hypothesis of an equal rates model of lineage branching. Furthermore, we conclude that dinosaurs did not experience a progressive decline at the end of the Cretaceous, nor was their evolution driven directly by the KTR. PMID:18647715

  5. Environmental Effects of an Impact-Generated Dust Cloud: Implications for the Cretaceous-Tertiary Extinctions

    NASA Astrophysics Data System (ADS)

    Pollack, James B.; Toon, Owen B.; Ackerman, Thomas P.; McKay, Christopher P.; Turco, Richard P.

    1983-01-01

    A model of the evolution and radiative effects of a debris cloud from a hypothesized impact event at the Cretaceous-Tertiary boundary suggests that the cloud could have reduced the amount of light at the earth's surface below that required for photosynthesis for several months and, for a somewhat shorter interval, even below that needed for many animals to see. For 6 months to 1 year, the surface would cool; the oceans would cool only a few degrees Celsius at most, but the continents might cool a maximum of 40 Kelvin. Extinctions in the ocean may have been caused primarily by the temporary cessation of photosynthesis, but those on land may have been primarily induced by a combination of lowered temperatures and reduced light.

  6. Environmental effects of an impact-generated dust cloud - Implications for the Cretaceous-Tertiary extinctions

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.; Toon, O. B.; Ackerman, T. P.; Mckay, C. P.; Turco, R. P.

    1983-01-01

    A model of the evolution and radiative effects of a debris cloud from a hypothesized impact event at the Cretaceous-Tertiary boundary suggests that the cloud could have reduced the amount of light at the earth's surface below that required for photosynthesis for several months and, for a somewhat shorter interval, even below that needed for many animals to see. For 6 months to 1 year, the surface would cool; the oceans could cool only a few degrees Celsius at most, but the continents might cool a maximum of 40 Kelvin. Extinctions in the ocean may have been caused primarily by the temporary cessation of photosynthesis, but those on land may have been primarily induced by a combination of lowered temperatures and reduced light.

  7. Sedimentology and sequence stratigraphy from outcrops of the Kribi-Campo sub-basin: Lower Mundeck Formation (Lower Cretaceous, southern Cameroon)

    NASA Astrophysics Data System (ADS)

    Ntamak-Nida, Marie Joseph; Bourquin, Sylvie; Makong, Jean-Claude; Baudin, François; Mpesse, Jean Engelbert; Ngouem, Christophe Itjoko; Komguem, Paul Bertrand; Abolo, Guy Martin

    2010-08-01

    The Kribi-Campo sub-basin is composed of an Early to Mid Cretaceous series from West Africa's Atlantic coast and is located in southern Cameroon in the Central African equatorial rain forest. It is the smallest coastal basin in Cameroon and forms the southern part of the Douala/Kribi-Campo basin known as Douala basin ( s.l.). Until now, no detailed sedimentological studies have been carried out on the outcrops of this basin located in the Campo area. The aim of this study was to characterise the depositional environments, vertical evolution and tectonic context of these Lower Cretaceous series in order to make a comparison with adjacent basins and replace them in the geodynamic context. Facies analysis of the Lower Mundeck Formation (Lower Cretaceous) indicates the presence of four major, interfigered facies associations, that are inferred to represent elements of an alluvial to lacustrine-fan delta system. The clast lithologies suggest proximity of relief supplying coarse-grained sediment during the deposition of the Lower Mundeck Formation at Campo. The general dip and direction of the bedding is approximately 10°-12°NW, which also corresponds to the orientation of the foliations in the underlying metamorphic basement. The main sedimentary succession is characterised by a major retrogradational/progradational cycle of Late Aptian age, evaluated at about 3 Ma, with a well-developed progradational trend characterised by fluctuations of the recognised depositional environments. Fluctuations in lake level and sediment supply were possibly controlled by active faults at the basin margin, although climatic changes may have also played a role. The consistently W-WNW palaeoflow of sediments suggests that the palaeorelief was located to the east and could be oriented in a NNE-SSW direction, downthrown to the west. Local outcrops dated as Albian, both north and south of the main outcrop, display some marine influence. These deposits are cut by 040-060 faults parallel to

  8. New Ophthalmosaurid Ichthyosaurs from the European Lower Cretaceous Demonstrate Extensive Ichthyosaur Survival across the Jurassic–Cretaceous Boundary

    PubMed Central

    Fischer, Valentin; Maisch, Michael W.; Naish, Darren; Kosma, Ralf; Liston, Jeff; Joger, Ulrich; Krüger, Fritz J.; Pérez, Judith Pardo; Tainsh, Jessica

    2012-01-01

    Background Ichthyosauria is a diverse clade of marine amniotes that spanned most of the Mesozoic. Until recently, most authors interpreted the fossil record as showing that three major extinction events affected this group during its history: one during the latest Triassic, one at the Jurassic–Cretaceous boundary (JCB), and one (resulting in total extinction) at the Cenomanian-Turonian boundary. The JCB was believed to eradicate most of the peculiar morphotypes found in the Late Jurassic, in favor of apparently less specialized forms in the Cretaceous. However, the record of ichthyosaurs from the Berriasian–Barremian interval is extremely limited, and the effects of the end-Jurassic extinction event on ichthyosaurs remains poorly understood. Methodology/Principal Findings Based on new material from the Hauterivian of England and Germany and on abundant material from the Cambridge Greensand Formation, we name a new ophthalmosaurid, Acamptonectes densus gen. et sp. nov. This taxon shares numerous features with Ophthalmosaurus, a genus now restricted to the Callovian–Berriasian interval. Our phylogenetic analysis indicates that Ophthalmosauridae diverged early in its history into two markedly distinct clades, Ophthalmosaurinae and Platypterygiinae, both of which cross the JCB and persist to the late Albian at least. To evaluate the effect of the JCB extinction event on ichthyosaurs, we calculated cladogenesis, extinction, and survival rates for each stage of the Oxfordian–Barremian interval, under different scenarios. The extinction rate during the JCB never surpasses the background extinction rate for the Oxfordian–Barremian interval and the JCB records one of the highest survival rates of the interval. Conclusions/Significance There is currently no evidence that ichthyosaurs were affected by the JCB extinction event, in contrast to many other marine groups. Ophthalmosaurid ichthyosaurs remained diverse from their rapid radiation in the Middle Jurassic to

  9. Tectono-Magmatic Evolution of the South Atlantic Continental Margins with Respect to Opening of the Ocean

    NASA Astrophysics Data System (ADS)

    Melankholina, E. N.; Sushchevskaya, N. M.

    2018-03-01

    The history of the opening of the South Atlantic in Early Cretaceous time is considered. It is shown that the determining role for continental breakup preparation has been played by tectono-magmatic events within the limits of the distal margins that developed above the plume head. The formation of the Rio Grande Rise-Walvis Ridge volcanic system along the trace of the hot spot is considered. The magmatism in the South Atlantic margins, its sources, and changes in composition during the evolution are described. On the basis of petrogeochemical data, the peculiarities of rocks with a continental signature are shown. Based on Pb-Sr-Nd isotopic studies, it is found that the manifestations of magmatism in the proximal margins had features of enriched components related to the EM I and EM II sources, sometimes with certain participation of the HIMU source. Within the limits of the Walvis Ridge, as magmatism expanded to the newly formed oceanic crust, the participation of depleted asthenospheric mantle became larger in the composition of magmas. The role played by the Tristan plume in magma generation is discussed: it is the most considered as the heat source that determined the melting of the ancient enriched lithosphere. The specifics of the tectono-magmatic evolution of the South Atlantic is pointed out: the origination during spreading of a number of hot spots above the periphery of the African superplume. The diachronous character of the opening of the ocean is considered in the context of northward progradation of the breakup line and its connection with the northern branch of the Atlantic Ocean in the Mid-Cretaceous.

  10. Synchroneity of the K-T oceanic mass extinction and meteorite impact: Blake Nose, western North Atlantic

    USGS Publications Warehouse

    Norris, R.D.; Huber, B.T.; Self-Trail, J.

    1999-01-01

    A 10-cm-thick layer of green spherules occurs precisely at the biostratigraphic boundary between the Cretaceous and Paleogene (K-T boundary) at Ocean Drilling Program Site 1049 (lat 30??08???N, long 76??06???W). The spherulitic layer contains abundant rock fragments (chalk, limestone, dolomite, chert, mica books, and schist) as well as shocked quartz, abundant large Cretaceous planktic foraminifera, and rounded clasts of clay as long as 4 mm interpreted as altered tektite glass probably derived from the Chicxulub impact structure. Most of the Cretaceous foraminifera present above the spherule layer are not survivors since small specimens are conspicuously rare compared to large individuals. Instead, the Cretaceous taxa in Paleocene sediments are thought to be reworked. The first Paleocene planktic foraminifera and calcareous nannofossil species are recorded immediately above the spherule bed, the upper part of which contains an iridium anomaly. Hence, deposition of the impact ejecta exactly coincided with the biostratigraphic K-T boundary and demonstrates that the impact event was synchronous with the evolutionary turnover in the oceans. These results are consistent with a reanalysis of the biostratigraphy of the K-T boundary stratotype, which argues that shallow-marine K-T boundary sections are not biostratigraphically more complete than deep-sea K-T boundary sites.

  11. Oligocene to Recent tectonic history of the Central Solomon intra-arc basin as determined from marine seismic reflection data and compilation of onland geology

    NASA Astrophysics Data System (ADS)

    Cowley, Shane; Mann, Paul; Coffin, M. F.; Shipley, Thomas H.

    2004-10-01

    Systematic analysis of a grid of 3450 km of multichannel seismic reflection lines from the Solomon Islands constrains the late Tertiary sedimentary and tectonic history of the Solomon Island arc and its convergent interaction with the Cretaceous Ontong Java oceanic plateau (OJP). The OJP, the largest oceanic plateau on Earth, subducted beneath the northern edge of the Solomon arc in the late Neogene, but the timing and consequences of this obliquely convergent event and its role in the subduction polarity reversal process remain poorly constrained. The Central Solomon intra-arc basin (CSB), which developed in Oligocene to Recent time above the Solomon arc, provides a valuable record of the tectonic environment prior to and accompanying the OJP convergent event and the subsequent arc polarity reversal. Recognition of regionally extensive stratigraphic sequences—whose ages can be inferred from marine sedimentary sections exposed onland in the Solomon Islands—indicate four distinct tectonic phases affecting the Solomon Island arc. Phase 1: Late Oligocene-Late Miocene rifting of the northeast-facing Solomon Island arc produced basal, normal-fault-controlled, asymmetrical sequences of the CSB; the proto-North Solomon trench was probably much closer to the CSB and is inferred to coincide with the trace of the present-day Kia-Kaipito-Korigole (KKK) fault zone; this protracted period of intra-arc extension shows no evidence for interruption by an early Miocene period of convergent "soft docking" of the Ontong Java Plateau as proposed by previous workers. Phase 2: Late Miocene-Pliocene oblique convergence of the Ontong Java Plateau at the proto-North Solomon trench (KKK fault zone) and folding of the CSB and formation of the Malaita accretionary prism (MAP); the highly oblique and diachronous convergence between the Ontong Java plateau and the Solomon arc terminates intra-arc extension first in the southeast (Russell subbasin of the CSB) during the Late Miocene and

  12. Spatial variations in effective elastic thickness in the Western Pacific Ocean and their implications for Mesozoic volcanism

    NASA Astrophysics Data System (ADS)

    Kalnins, L. M.; Watts, A. B.

    2009-08-01

    We have used free-air gravity anomaly and bathymetric data, together with a moving window admittance technique, to determine the spatial variation in oceanic elastic thickness, Te, in the Western Pacific ocean. Synthetic tests using representative seamounts show that Te can be recovered to an accuracy of ± 5 km for plates up to 30 km thick, with increased accuracy of ± 3 km for Te ≤ 20 km. The Western Pacific has a T e range of 0-50 km, with a mean of 9.4 km and a standard deviation of 6.8 km. The T e structure of the region is dominated by relatively high Te over the Hawaiian-Emperor Seamount Chain, intermediate values over the Marshall Islands, Gilbert Ridge, and Marcus-Wake Guyots, and low values over the Line Islands, Mid-Pacific Mountains, Caroline Islands, Shatsky Rise, Hess Rise, and Musician Seamounts. Plots of Te at sites with radiometric ages suggest that Te is to first order controlled by the age of the lithosphere at the time of loading. In areas that backtrack into the South Pacific Isotopic and Thermal Anomaly (SOPITA), Te may be as low as the depth to the 180 ± 120 °C isotherm at least locally. In the northern part of the study area including the Hawaiian-Emperor Seamount Chain, Te correlates with the depth to 310 ± 120 °C. These best-fitting isotherms imply peak rates of volcanism during 100-120 Ma (Early Cretaceous) and 140-150 Ma (Late Jurassic). The corresponding addition of 8 × 10 6 km 3 and 4 × 10 6 km 3 of volcanic material to the surface of the oceanic crust would result in long-term sea-level rises of 20 m and 10 m respectively. The Late Jurassic volcanic event, like the later Early Cretaceous event, appears to have influenced the tectonic evolution of the Pacific plate convergent boundaries, resulting in increased volcanism and orogenesis.

  13. Early Cretaceous Ductile Deformation of Marbles from the Western Hills of Beijing, North China Craton

    NASA Astrophysics Data System (ADS)

    Feng, H.; Liu, J.

    2017-12-01

    During the Early Cretaceous tectonic lithosphere extension, the pre-mesozoic rocks from the Western Hills in the central part of the North China Craton suffered from weak metamorphism but intense shear deformation. The prominent features of the deformation structures are the coexisting layer-parallel shear zones and intrafolia folds, and the along-strike thickness variations of the marble layers from the highly sheared Mesoproterozoic Jing'eryu Formation. Platy marbles are well-developed in the thinner layers, while intrafolia folds are often observed in the thicker layers. Most folds are tight recumbent folds and their axial planes are parallel to the foliations and layerings of the marbles. The folds are A-type folds with hinges being always paralleling to the stretching lineations consistently oriented at 130°-310° directions throughout the entire area. SPO and microstructural analyses of the sheared marbles suggest that the thicker layers suffered from deformations homogeneously, while strain localization can be distinguished in the thinner layers. Calcite twin morphology and CPO analysis indicate that the deformation of marbles from both thinner and thicker layers happened at temperatures of 300 to 500°C. The above analysis suggests that marbles in the thicker layers experienced a progressive sequence of thermodynamic events: 1) regional metamorphism, 2) early ductile deformation dominated by relatively higher temperature conditions, during which all the mineral particles elongated and oriented limitedly and the calcite grains are deformed mainly by mechanical twinning, and 3) late superimposition of relatively lower temperature deformation and recrystallization, which superposed the early deformation, and made the calcites finely granulated, elongated and oriented by dynamical recrystallization along with other grains. Marbles from the thinner layers, however, experienced a similar, but different sequence of thermo-dynamic events, i.e. regional

  14. New toothed flying reptile from Asia: close similarities between early Cretaceous pterosaur faunas from China and Brazil.

    PubMed

    Wang, Xiaolin; Kellner, Alexander W A; Jiang, Shunxing; Cheng, Xin

    2012-04-01

    Despite the great increase in pterosaur diversity in the last decades, particularly due to discoveries made in western Liaoning (China), very little is known regarding pterosaur biogeography. Here, we present the description of a new pterosaur from the Jiufotang Formation that adds significantly to our knowledge of pterosaur distribution and enhances the diversity of cranial anatomy found in those volant creatures. Guidraco venator gen. et sp. nov. has an unusual upward-directed frontal crest and large rostral teeth, some of which surpass the margins of the skull and lower jaw when occluded. The new species is closely related to a rare taxon from the Brazilian Crato Formation, posing an interesting paleobiogeographic problem and supporting the hypothesis that at least some early Cretaceous pterosaur clades, such as the Tapejaridae and the Anhangueridae, might have originated in Asia. The association of the new specimen with coprolites and the cranial morphology suggest that G. venator preyed on fish.

  15. A new specimen of Manchurochelys manchoukuoensis from the Early Cretaceous Jehol Biota of Chifeng, Inner Mongolia, China and the phylogeny of Cretaceous basal eucryptodiran turtles

    PubMed Central

    2014-01-01

    Background Manchurochelys manchoukuoensis is an emblematic turtle from the Cretaceous Yixian Formation of Liaoning, China, a geological rock unit that is famous for yielding perfectly preserved skeletons of fossil vertebrates, including that of feathered dinosaurs. Manchurochelys manchoukuoensis was one of the first vertebrates described from this fauna, also known as the Jehol Biota. The holotype was lost during World War II and only one additional specimen has been described since. Manchurochelys manchoukuoensis is a critical taxon for unraveling the phylogenetic relationships of Cretaceous pancryptodires from Asia, a group that is considered to be of key importance for the origin of crown-group hidden-neck turtles (Cryptodira). Results A new specimen of Manchurochelys manchoukuoensis is described here from the Jiufotang Formation of Qilinshan, Chifeng, Inner Mongolia, China. This is the third specimen described and expands the range of this taxon from the Yixian Formation of the Fuxin-Yixian Basin in Liaoning to the Jiufotang Formation of the Chifeng-Yuanbaoshan Basin. A possible temporal extension of the range is less certain. The new finding adds to our understanding of the morphology of this taxon and invites a thorough revision of the phylogeny of Macrobaenidae, Sinemydidae, and closely allied forms. Conclusions Our comprehensive phylogenetic analyses of Cretaceous Asian pancryptodires yielded two main competing hypotheses: in the first these taxa form a paraphyletic grade, whereas in the second they form a monophyletic clade. The inclusion of problematic tree changing taxa, such as Panpleurodires (stem + crown side-neck turtles) has a major influence on the phylogenetic relationships of Sinemydidae and closely allied forms. Manchurochelys manchoukuoensis nests within Sinemydidae together with Sinemys spp. and Dracochelys bicuspis in the majority of our analyses. PMID:24707892

  16. Chukchi Borderland | Crustal Complex of the Amerasia Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ilhan, I.; Coakley, B.; Houseknecht, D. W.

    2017-12-01

    In the Arctic Ocean, Chukchi Borderland separates the North Chukchi shelf and Toll deep basins to the west and Canada deep basin to the east. Existing plate reconstructions have attempted to restore this north-striking, fragments of the continental crust to all margins of the Amerasia Basin based on sparse geologic and geophysical measurements. Regional multi-channel seismic reflection and potential field geophysics, and geologic data indicate it is a high standing continental block, requiring special accommodation to create a restorable model of the formation of the Amerasia Basin. The Borderland is composed of the Chukchi Plateau, Northwind Basin, and Northwind Ridge divided by mostly north striking normal faults. These offset the basement and bound a sequence of syn-tectonic sediments. Equivalent strata are, locally, uplifted, deformed and eroded. Seaward dipping reflectors (SDRs) are observed in the juncture between the North Chukchi, Toll basins, and southern Chukchi Plateau underlying a regional angular unconformity. This reveals that this rifted margin was associated with volcanism. An inferred condensed section, which is believed to be Hauterivian-Aptian in age, synchronous with the composite pebble shale and gamma-ray zone of the Alaska North Slope forms the basal sediments in the North Chukchi Basin. Approximately 15 km of post-rift strata onlap the condensed section, SDRs and, in part, the wedge sequence on the Chukchi Plateau from west to east, thinning to the north. These post-Aptian sediments imply that the rifted margin subsided no later than the earliest Cretaceous, providing a plausible time constraint for the inferred pre-Cretaceous rifting in this region. The recognition of SDRs and Hauterivian—Aptian condensed section, and continuity of the Early—Late Cretaceous post-rift strata along the margins of the Borderland, strike variations of the normal faults, absence of observable deformation along the Northwind Escarpment substantially constrain

  17. Cycles and trends in the δ18O and δ13C records over the Jurassic and Early Cretaceous

    NASA Astrophysics Data System (ADS)

    Martinez, Mathieu; Dera, Guillaume

    2015-04-01

    The million-year fluctuations of the Mesozoic climate are explored through spectral analyses performed on an exhaustive compilation of δ18O and δ13C data measured on belemnite rostra. The data include more than 3500 data points, all coming from Western Tethys and Euro-boreal domains, and covering a time interval spanning 76 Myr from the Sinemurian (~197 Ma; Early Jurassic) to the Aptian (~123 Ma; Early Cretaceous) with an average sample step of ~0.04 Myr. Spectral analyses are performed using the multi-taper method and the evolutive Fast Fourier Transform in order to get an accurate estimate of significant periods and their evolution during geological times. The age uncertainties of the Geological Time Scale 2012 are taken into account to assess the impact of these uncertainties on the identification of the significant periods. After implementing an error model that simulates the uncertainties of the Geological Time Scale, two periods remains significant: the δ13C displays a high-amplitude period at 9.1 Myr, while the δ18O displays a high-amplitude period at 16.4 Myr. The 16.4-Myr period is only expressed in the Early and Middle Jurassic, with maximum amplitudes reached during the 'Toarcian Plateau' (Dera et al., 2011). It is probably a consequence of the activity of the Karoo-Ferrar Large Igneous Province and is an event in the δ18O rather than a true cycle. The 9.1-Myr period displays a spectacular continuity from the Toarcian to the Aptian, and could be related to this intriguing 9.1-Myr cycle observed in the δ13C from the Cenozoic, related to a Myr-amplitude modulation of the eccentricity cycles (Boulila et al., 2012). The δ13C in the Western Tethys thus appears to have a very rhythmic behaviour, interpreted here as a long-term orbital modulation of moisture and heat transfer from equatorial to higher latitudes, modulating in return continental weathering, nutrient and detrital exports to basins, neritic vs. pelagic productivity and finally preservation

  18. Petrogenesis of fertile mantle peridotites from the Monte del Estado massif (southwest Puerto Rico): a preserved section of Proto-Caribbean oceanic lithospheric mantle?

    NASA Astrophysics Data System (ADS)

    Marchesi, Claudio; Jolly, Wayne T.; Lewis, John F.; Garrido, Carlos J.; Proenza, Joaquín. A.; Lidiak, Edward G.

    2010-05-01

    The Monte del Estado massif is the largest and northernmost serpentinized peridotite belt in southwest Puerto Rico. It is mainly composed of spinel lherzolite and minor harzburgite with variable clinopyroxene modal abundances. Mineral and whole rock major and trace element compositions of peridotites coincide with those of fertile abyssal peridotites from mid ocean ridges. Peridotites lost 2-14 wt% of relative MgO and variable amounts of CaO by serpentinization and seafloor weathering. HREE contents in whole rock indicate that the Monte del Estado peridotites are residues after low to moderate degrees (2-15%) of fractional partial melting in the spinel stability field. However, very low LREE/HREE and MREE/HREE in clinopyroxene cannot be explained by melting models of a spinel lherzolite source and support that the Monte del Estado peridotites experienced initial low fractional melting degrees (~ 4%) in the garnet stability field. The relative enrichment of LREE in whole rock is not due to secondary processes but probably reflects the capture of percolating melt fractions along grain boundaries or as microinclusions in minerals, or the presence of exotic micro-phases in the mineral assemblage. We propose that the Monte del Estado peridotite belt represents a section of ancient Proto-Caribbean (Atlantic) lithospheric mantle originated by seafloor spreading between North and South America in the Late Jurassic-Early Cretaceous. This portion of oceanic lithospheric mantle was subsequently trapped in the forearc region of the Greater Antilles paleo-island arc generated by the northward subduction of the Caribbean plate beneath the Proto-Caribbean ocean. Finally, the Monte del Estado peridotites belt was emplaced in the Early Cretaceous probably as result of the change in subduction polarity of the Greater Antilles paleo-island arc without having been significantly modified by subduction processes.

  19. Ecological response to collapse of the biological pump following the mass extinction at the Cretaceous-Paleogene boundary

    NASA Astrophysics Data System (ADS)

    Vellekoop, Johan; Woelders, Lineke; Açikalin, Sanem; Smit, Jan; van de Schootbrugge, Bas; Yilmaz, Ismail Ö.; Brinkhuis, Henk; Speijer, Robert P.

    2017-02-01

    It is commonly accepted that the mass extinction associated with the Cretaceous-Paleogene (K-Pg) boundary (˜ 66 Ma) is related to the environmental effects of a large extraterrestrial impact. The biological and oceanographic consequences of the mass extinction are, however, still poorly understood. According to the Living Ocean model, the biological crisis at the K-Pg boundary resulted in a long-term reduction of export productivity in the early Paleocene. Here, we combine organic-walled dinoflagellate cyst (dinocyst) and benthic foraminiferal analyses to provide new insights into changes in the coupling of pelagic and benthic ecosystems. To this end, we perform dinocyst and benthic foraminiferal analyses on the recently discovered Tethyan K-Pg boundary section at Okçular, Turkey, and compare the results with other K-Pg boundary sites in the Tethys. The post-impact dominance of epibenthic morphotypes and an increase of inferred heterotrophic dinocysts in the early Paleocene at Okçular are consistent with published records from other western Tethyan sites. Together, these records indicate that during the early Paleocene more nutrients remained available for the Tethyan planktonic community, whereas benthic communities were deprived of food. Hence, in the post-impact phase the reduction of export productivity likely resulted in enhanced recycling of nutrients in the upper part of the water column, all along the western Tethyan margins.

  20. Newly combined 40Ar/39Ar and U-Pb ages of the Upper Cretaceous timescale from Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Gaylor, J. R.; Heredia, B. D.; Quidelleur, X.; Takashima, R.; Nishi, H.; Mezger, K.

    2011-12-01

    The main targets for GTS next project (www.gtsnext.eu) are to develop highly refined geological time scales, including the Upper Cretaceous. The Cretaceous period is characterised by numerous global anoxic events in the marine realm, rich ammonitic fossil assemblages and specialised foraminifera. However, lack of age diagnostic macro and micro fossils in the North Pacific sections has made it difficult to link these with global sections such as the Western Interior Basin (North America). Using advances with terrestrial C-isotope and planktic foraminifera records within Central Hokkaido we are able to correlate these sections globally. The Cretaceous Yezo group in Central Hokkaido comprises deep marine mudstones and turbidite sandstones interbedded with acidic volcanic tuffs. Using various sections within the Yezo group, we radiometrically dated tuffs at the main stage boundaries in the Upper Cretaceous. The samples derive from the Kotanbetsu, Shumarinai, Tiomiuchi and the Hakkin river sections, spanning the time from the Albian-Cenomanian up until the Campanian-Santonian boundaries, and were dated using 40Ar/39Ar, K/Ar and U-Pb techniques. Recent age constraints in the Hokkaido counterparts (Kotanbetsu sections) show good coherence between radiometric chronometers on the various Upper Cretaceous stage boundaries. These additional ages together with our isotope ages from the different sections around the Hokkaido basin are well linked by the various faunal assemblages and C-isotope curves. The combined radio isotope ages contribute to previous attempts (such as those focused in the Western Interior Basin) supporting the synchronicity of events such as global oceanic anoxic events. Finally, the ages obtained here also compliment the previous C-isotope and planktic foraminifera records allowing for a more precise climatic history of the Northwest Pacific during the Cretaceous. The research within the GTSnext project is funded by the European Community's Seventh

  1. Cretaceous plutonic rocks in the Donner Lake-Cisco Grove area, northern Sierra Nevada, California

    USGS Publications Warehouse

    Kulow, Matthew J.; Hanson, Richard E.; Girty, Gary H.; Girty, Melissa S.; Harwood, David S.

    1998-01-01

    The northernmost occurrences of extensive, glaciated exposures of the Sierra Nevada batholith occur in the Donner Lake-Cisco Grove area of the northern Sierra Nevada. The plutonic rocks in this area, which are termed here the Castle Valley plutonic assemblage, crop out over an area of 225 km2 and for the most part are shown as a single undifferentiated mass on previously published geological maps. In the present work, the plutonic assemblage is divided into eight separate intrusive units or lithodemes, two of which each consist of two separate plutons. Compositions are dominantly granodiorite and tonalite, but diorite and granite form small plutons in places. Spectacular examples of comb layering and orbicular texture occur in the diorites. U-Pb zircon ages have been obtained for all but one of the main units and range from ~120 to 114 Ma, indicating that the entire assemblage was emplaced in a narrow time frame in the Early Cretaceous. This is consistent with abundant field evidence that many of the individual phases were intruded penecontemporaneously. The timing of emplacement correlates with onset of major Cretaceous plutonism in the main part of the Sierra Nevada batholith farther south. The emplacement ages also are similar to isotopic ages for gold-quartz mineralization in the Sierran foothills west of the study area, suggesting a direct genetic relationship between the voluminous Early Cretaceous plutonism and hydrothermal gold mineralization.

  2. Total petroleum systems of the Bonaparte Gulf Basin area, Australia; Jurassic, Early Cretaceous-Mesozoic; Keyling, Hyland Bay-Permian; Milligans-Carboniferous, Permian

    USGS Publications Warehouse

    Bishop, M.G.

    1999-01-01

    The Bonaparte Gulf Basin Province (USGS #3910) of northern Australia contains three important hydrocarbon source-rock intervals. The oldest source-rock interval and associated reservoir rocks is the Milligans-Carboniferous, Permian petroleum system. This petroleum system is located at the southern end of Joseph Bonaparte Gulf and includes both onshore and offshore areas within a northwest to southeast trending Paleozoic rift that was initiated in the Devonian. The Milligans Formation is a Carboniferous marine shale that sources accumulations of both oil and gas in Carboniferous and Permian deltaic, marine shelf carbonate, and shallow to deep marine sandstones. The second petroleum system in the Paleozoic rift is the Keyling, Hyland Bay-Permian. Source rocks include Lower Permian Keyling Formation delta-plain coals and marginal marine shales combined with Upper Permian Hyland Bay Formation prodelta shales. These source-rock intervals provide gas and condensate for fluvial, deltaic, and shallow marine sandstone reservoirs primarily within several members of the Hyland Bay Formation. The Keyling, Hyland Bay-Permian petroleum system is located in the Joseph Bonaparte Gulf, north of the Milligans-Carboniferous, Permian petroleum system, and may extend northwest under the Vulcan graben sub-basin. The third and youngest petroleum system is the Jurassic, Early Cretaceous-Mesozoic system that is located seaward of Joseph Bonaparte Gulf on the Australian continental shelf, and trends southwest-northeast. Source-rock intervals in the Vulcan graben sub-basin include deltaic mudstones of the Middle Jurassic Plover Formation and organic-rich marine shales of the Upper Jurassic Vulcan Formation and Lower Cretaceous Echuca Shoals Formation. These intervals produce gas, oil, and condensate that accumulates in, shallow- to deep-marine sandstone reservoirs of the Challis and Vulcan Formations of Jurassic to Cretaceous age. Organic-rich, marginal marine claystones and coals of the

  3. The End of Tethys: Opening and Closing of Oceans between Australia, India and SE Asia

    NASA Astrophysics Data System (ADS)

    Hall, R.

    2008-12-01

    SE Asia has grown by closure of Tethyan oceans south of Asia, principally by addition of fragments rifted from the Gondwana margins, resulting in a mosaic of continental crust and arc/ophiolite sutures. A new reconstruction identifies the blocks rifted from West and NW Australia in the Late Jurassic. They are now in Borneo, Java and Sulawesi, not West Burma as often assumed. Rifting in the Banda and Argo regions began at about 160 Ma, possibly due to south-directed subduction at the north Gondwana margin. Greater India is proposed to have extended north to the northern edge of the Exmouth Plateau and began to separate from Australia at about 140 Ma. The Banda and Argo blocks collided with the SE Asian margin between 110 and 90 Ma. At 90 Ma the Woyla intra-oceanic arc also collided with the Sumatra margin. This terminated subduction beneath Sundaland. The Indian and Australian plates were separated by a leaky transform from about 90 to 75 Ma which became a slightly convergent transform from about 75 to 55 Ma. This transform boundary is considered the eastern end of Tethys from the mid Cretaceous. There was a completely different history of subduction north of India compared to that north of Australia. The subduction history is recorded in the deep mantle by distinctive velocity anomalies which change from east to west abruptly at about 110°E. Between 90 and 45 Ma, India moved rapidly north with north-directed subduction within Tethys and at the Asian margin. It collided with an intra-oceanic arc at about 57 Ma, west of Sumatra, but continued to move north. The first contact of India with Asia was probably about 45 Ma, an estimate dependent on the shape of Greater India and the Asian margin; final ocean closure was later. North of Australia, between 90 and 45 Ma, there was no subduction beneath Sumatra and Java. During this interval south Sundaland was a mainly passive margin with some strike-slip deformation and extension. At 45 Ma Australia began to move north and

  4. Geological Structure and History of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Petrov, Oleg; Morozov, Andrey; Shokalsky, Sergey; Sobolev, Nikolay; Kashubin, Sergey; Pospelov, Igor; Tolmacheva, Tatiana; Petrov, Eugeny

    2016-04-01

    New data on geological structure of the deep-water part of the Arctic Basin have been integrated in the joint project of Arctic states - the Atlas of maps of the Circumpolar Arctic. Geological (CGS, 2009) and potential field (NGS, 2009) maps were published as part of the Atlas; tectonic (Russia) and mineral resources (Norway) maps are being completed. The Arctic basement map is one of supplements to the tectonic map. It shows the Eurasian basin with oceanic crust and submerged margins of adjacent continents: the Barents-Kara, Amerasian ("Amerasian basin") and the Canada-Greenland. These margins are characterized by strained and thinned crust with the upper crust layer, almost extinct in places (South Barents and Makarov basins). In the Central Arctic elevations, seismic studies and investigation of seabed rock samples resulted in the identification of a craton with the Early Precambrian crust (near-polar part of the Lomonosov Ridge - Alpha-Mendeleev Rise). Its basement presumably consists of gneiss granite (2.6-2.2 Ga), and the cover is composed of Proterozoic quartzite sandstone and dolomite overlain with unconformity and break in sedimentation by Devonian-Triassic limestone with fauna and terrigenous rocks. The old crust is surrounded by accretion belts of Timanides and Grenvillides. Folded belts with the Late Precambrian crust are reworked by Caledonian-Ellesmerian and the Late Mesozoic movements. Structures of the South Anuy - Angayucham ophiolite suture reworked in the Early Cretaceous are separated from Mesozoides proper of the Pacific - Verkhoyansk-Kolyma and Koryak-Kamchatka belts. The complicated modern ensemble of structures of the basement and the continental frame of the Arctic Ocean was formed as a result of the conjugate evolution and interaction of the three major oceans of the Earth: Paleoasian, Paleoatlantic and Paleopacific.

  5. Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: An error analysis

    USGS Publications Warehouse

    Kominz, M.A.; Browning, J.V.; Miller, K.G.; Sugarman, P.J.; Mizintseva, S.; Scotese, C.R.

    2008-01-01

    Sea level has been estimated for the last 108 million years through backstripping of corehole data from the New Jersey and Delaware Coastal Plains. Inherent errors due to this method of calculating sea level are discussed, including uncertainties in ages, depth of deposition and the model used for tectonic subsidence. Problems arising from the two-dimensional aspects of subsidence and response to sediment loads are also addressed. The rates and magnitudes of sea-level change are consistent with at least ephemeral ice sheets throughout the studied interval. Million-year sea-level cycles are, for the most part, consistent within the study area suggesting that they may be eustatic in origin. This conclusion is corroborated by correlation between sequence boundaries and unconformities in New Zealand. The resulting long-term curve suggests that sea level ranged from about 75-110 m in the Late Cretaceous, reached a maximum of about 150 m in the Early Eocene and fell to zero in the Miocene. The Late Cretaceous long-term (107 years) magnitude is about 100-150 m less than sea level predicted from ocean volume. This discrepancy can be reconciled by assuming that dynamic topography in New Jersey was driven by North America overriding the subducted Farallon plate. However, geodynamic models of this effect do not resolve the problem in that they require Eocene sea level to be significantly higher in the New Jersey region than the global average. ?? 2008 The Authors. Journal compilation ?? 2008 Blackwell Publishing.

  6. ACEX: A First Look at Arctic Ocean Cenozoic History

    NASA Astrophysics Data System (ADS)

    Moran, K.; Backman, J.

    2004-12-01

    The first Integrated Ocean Drilling Program mission specificplatform expedition (ACEX - Arctic Coring Expedition) drilled and recovered core from five holes at four sites through Cenozoic sediments draping the crest of the Lomonosov Ridge in the central Arctic Ocean. Coring continued into the underlying Cretaceous sedimentary bedrock. Sites are located only a few nautical miles apart along a single seismic line (AWI-91090), showing an identical and coherent Cenozoic seismostratigraphy. Preliminary results from shipboard investigations of core-catcher-based bio- and lithostratigraphy, pore water analyses and core logger data describe a thick (~160 m) middle Miocene through Pleistocene sequence that shows large amplitude, cyclic variability in the density, magnetic susceptibility and acoustic velocity of the sediments. Sediments are largely carbonate free. Pleistocene sedimentation rates are close to 3 cm/ka, whereas Pliocene sediments are by-and-large missing. A sharp change in physical properties at ~200 m defines the transition into a 200+ m thick Paleogene sequence that is initially dominated by large numbers of dinoflagellate cysts. The early Miocene, Oligocene and late Eocene appear to be largely missing in a hiatus. However, a 32 m thick interval separates the overlying middle Miocene from the underlying middle Eocene and presumably preserves some of the early Neogene and late Paleogene sections. Dinoflagellate cysts, diatoms, ebridians and silicoflagellates are common to abundant in the middle Eocene section, which bottoms in a spectacular layer showing massive occurrences of glochidia and massulae (megaspores) of the freshwater hydropterid fern Azolla (duckweed) at the early/middle Eocene boundary (~306 m), suggesting strongly reduced surface water salinity or perhaps even a brief episode of fresh water conditions at the surface. Biosilica is not present prior to the late early Eocene (~320 m). The (sub-) tropical dinoflagellate species Apectodinium augustum

  7. Survivability and reactivity of glycine and alanine in early oceans: effects of meteorite impacts.

    PubMed

    Umeda, Yuhei; Fukunaga, Nao; Sekine, Toshimori; Furukawa, Yoshihiro; Kakegawa, Takeshi; Kobayashi, Takamichi; Nakazawa, Hiromoto

    2016-01-01

    Prebiotic oceans might have contained abundant amino acids, and were subjected to meteorite impacts, especially during the late heavy bombardment. It is so far unknown how meteorite impacts affected amino acids in the early oceans. Impact experiments were performed under the conditions where glycine was synthesized from carbon, ammonia, and water, using aqueous solutions containing (13)C-labeled glycine and alanine. Selected amino acids and amines in samples were analyzed with liquid chromatography-mass spectrometry (LC/MS). In particular, the (13)C-labeled reaction products were analyzed to distinguish between run products and contaminants. The results revealed that both amino acids survived partially in the early ocean through meteorite impacts, that part of glycine changed into alanine, and that large amounts of methylamine and ethylamine were formed. Fast decarboxylation was confirmed to occur during such impact processes. Furthermore, the formation of n-butylamine, detected only in the samples recovered from the solutions with additional nitrogen and carbon sources of ammonia and benzene, suggests that chemical reactions to form new biomolecules can proceed through marine impacts. Methylamine and ethylamine from glycine and alanine increased considerably in the presence of hematite rather than olivine under similar impact conditions. These results also suggest that amino acids present in early oceans can contribute further to impact-induced reactions, implying that impact energy plays a potential role in the prebiotic formation of various biomolecules, although the reactions are complicated and depend upon the chemical environments as well.

  8. Bedrock geology and tectonic evolution of the Wrangellia, Peninsular, and Chugach Terranes along the Trans-Alaska Crustal Transect in the Chugach Mountains and Southern Copper River Basin, Alaska

    NASA Astrophysics Data System (ADS)

    Plafker, George; Nokleberg, W. J.; Lull, J. S.

    1989-04-01

    The Trans-Alaskan Crustal Transect in the southern Copper River Basin and Chugach Mountains traverses the margins of the Peninsular and Wrangellia terranes, and the adjacent accretionary oceanic units of the Chugach terrane to the south. The southern Wrangellia terrane margin consists of a polymetamorphosed magmatic arc complex at least in part of Pennsylvanian age (Strelna Metamorphics and metagranodiorite) and tonalitic metaplutonic rocks of the Late Jurassic Chitina magmatic arc. The southern Peninsular terrane margin is underlain by rocks of the Late Triassic (?) and Early Jurassic Talkeetna magmatic arc (Talkeetna Formation and Border Ranges ultra-mafic-mafic assemblage) on Permian or older basement rocks. The Peninsular and Wrangellia terranes are parts of a dominantly oceanic superterrane (composite Terrane II) that was amalgamated by Late Triassic time and was accreted to terranes of continental affinity north of the Denali fault system in the mid- to Late Cretaceous. The Chugach terrane in the transect area consists of three successively accreted units: (1) minor greenschist and intercalated blueschist, the schist of Liberty Creek, of unknown protolith age that was metamorphosed and probably accreted during the Early Jurassic, (2) the McHugh Complex (Late Triassic to mid-Cretaceous protolith age), a melange of mixed oceanic, volcaniclastic, and olistostromal rocks that is metamorphosed to prehnite-pumpellyite and lower greenschist facies that was accreted by middle Cretaceous time, and (3) the Upper Cretaceous Valdez Group, mainly magmatic arc-derived flysch and lesser oceanic volcanic rocks of greenschist facies that was accreted by early Paleocene time. A regional thermal event that culminated in early middle Eocene time (48-52 Ma) resulted in widespread greenschist facies metamorphism and plutonism.

  9. Depositional environments and processes in Upper Cretaceous nonmarine and marine sediments, Ocean Point dinosaur locality, North Slope, Alaska

    USGS Publications Warehouse

    Phillips, R.L.

    2003-01-01

    A 178-m-thick stratigraphic section exposed along the lower Colville River in northern Alaska, near Ocean Point, represents the uppermost part of a 1500 m Upper Cretaceous stratigraphic section. Strata exposed at Ocean Point are assigned to the Prince Creek and Schrader Bluff formations. Three major depositional environments are identified consisting, in ascending order, of floodplain, interdistributary-bay, and shallow-marine shelf. Nonmarine strata, comprising the lower 140 m of this section, consist of fluvial distributaries, overbank sediments, tephra beds, organic-rich beds, and vertebrate remains. Tephras yield isotopic ages between 68 and 72.9 Ma, generally consistent with paleontologic ages of late Campanian-Maastrichtian determined from dinosaur remains, pollen, foraminifers, and ostracodes. Meandering low-energy rivers on a low-gradient, low-relief floodplain carried a suspended-sediment load. The rivers formed multistoried channel deposits (channels to 10 m deep) as well as solitary channel deposits (channels 2-5 m deep). Extensive overbank deposits resulting from episodic flooding formed fining-upward strata on the floodplain. The fining-upward strata are interbedded with tephra and beds of organic-rich sediment. Vertical-accretion deposits containing abundant roots indicate a sheet flood origin for many beds. Vertebrate and nonmarine invertebrate fossils along with plant debris were locally concentrated in the floodplain sediment. Deciduous conifers as well as abundant wetland plants, such as ferns, horsetails, and mosses, covered the coastal plain. Dinosaur skeletal remains have been found concentrated in floodplain sediments in organic-rich bone beds and as isolated bones in fluvial channel deposits in at least nine separate horizons within a 100-m-thick interval. Arenaceous foraminifers in some organic-rich beds and shallow fluvial distributaries indicate a lower coastal plain environment with marginal marine (bay) influence. Marginal marine strata

  10. An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf megafossils

    PubMed Central

    Beerling, D. J.; Lomax, B. H.; Royer, D. L.; Upchurch, G. R.; Kump, L. R.

    2002-01-01

    The end-Cretaceous mass extinctions, 65 million years ago, profoundly influenced the course of biotic evolution. These extinctions coincided with a major extraterrestrial impact event and massive volcanism in India. Determining the relative importance of each event as a driver of environmental and biotic change across the Cretaceous-Tertiary boundary (KTB) crucially depends on constraining the mass of CO2 injected into the atmospheric carbon reservoir. Using the inverse relationship between atmospheric CO2 and the stomatal index of land plant leaves, we reconstruct Late Cretaceous-Early Tertiary atmospheric CO2 concentration (pCO2) levels with special emphasis on providing a pCO2 estimate directly above the KTB. Our record shows stable Late Cretaceous/Early Tertiary background pCO2 levels of 350–500 ppm by volume, but with a marked increase to at least 2,300 ppm by volume within 10,000 years of the KTB. Numerical simulations with a global biogeochemical carbon cycle model indicate that CO2 outgassing during the eruption of the Deccan Trap basalts fails to fully account for the inferred pCO2 increase. Instead, we calculate that the postboundary pCO2 rise is most consistent with the instantaneous transfer of ≈4,600 Gt C from the lithic to the atmospheric reservoir by a large extraterrestrial bolide impact. A resultant climatic forcing of +12 W⋅m−2 would have been sufficient to warm the Earth's surface by ≈7.5°C, in the absence of counter forcing by sulfate aerosols. This finding reinforces previous evidence for major climatic warming after the KTB impact and implies that severe and abrupt global warming during the earliest Paleocene was an important factor in biotic extinction at the KTB. PMID:12060729

  11. Geologic models and evaluation of undiscovered conventional and continuous oil and gas resources: Upper Cretaceous Austin Chalk

    USGS Publications Warehouse

    Pearson, Krystal

    2012-01-01

    The Upper Cretaceous Austin Chalk forms a low-permeability, onshore Gulf of Mexico reservoir that produces oil and gas from major fractures oriented parallel to the underlying Lower Cretaceous shelf edge. Horizontal drilling links these fracture systems to create an interconnected network that drains the reservoir. Field and well locations along the production trend are controlled by fracture networks. Highly fractured chalk is present along both regional and local fault zones. Fractures are also genetically linked to movement of the underlying Jurassic Louann Salt with tensile fractures forming downdip of salt-related structures creating the most effective reservoirs. Undiscovered accumulations should also be associated with structure-controlled fracture systems because much of the Austin that overlies the Lower Cretaceous shelf edge remains unexplored. The Upper Cretaceous Eagle Ford Shale is the primary source rock for Austin Chalk hydrocarbons. This transgressive marine shale varies in thickness and lithology across the study area and contains both oil- and gas-prone kerogen. The Eagle Ford began generating oil and gas in the early Miocene, and vertical migration through fractures was sufficient to charge the Austin reservoirs.

  12. Evidence for reactive reduced phosphorus species in the early Archean ocean

    PubMed Central

    Pasek, Matthew A.; Harnmeijer, Jelte P.; Buick, Roger; Gull, Maheen; Atlas, Zachary

    2013-01-01

    It has been hypothesized that before the emergence of modern DNA–RNA–protein life, biology evolved from an “RNA world.” However, synthesizing RNA and other organophosphates under plausible early Earth conditions has proved difficult, with the incorporation of phosphorus (P) causing a particular problem because phosphate, where most environmental P resides, is relatively insoluble and unreactive. Recently, it has been proposed that during the Hadean–Archean heavy bombardment by extraterrestrial impactors, meteorites would have provided reactive P in the form of the iron–nickel phosphide mineral schreibersite. This reacts in water, releasing soluble and reactive reduced P species, such as phosphite, that could then be readily incorporated into prebiotic molecules. Here, we report the occurrence of phosphite in early Archean marine carbonates at levels indicating that this was an abundant dissolved species in the ocean before 3.5 Ga. Additionally, we show that schreibersite readily reacts with an aqueous solution of glycerol to generate phosphite and the membrane biomolecule glycerol–phosphate under mild thermal conditions, with this synthesis using a mineral source of P. Phosphite derived from schreibersite was, hence, a plausible reagent in the prebiotic synthesis of phosphorylated biomolecules and was also present on the early Earth in quantities large enough to have affected the redox state of P in the ocean. Phosphorylated biomolecules like RNA may, thus, have first formed from the reaction of reduced P species with the prebiotic organic milieu on the early Earth. PMID:23733935

  13. Island life in the Cretaceous - faunal composition, biogeography, evolution, and extinction of land-living vertebrates on the Late Cretaceous European archipelago

    PubMed Central

    Csiki-Sava, Zoltán; Buffetaut, Eric; Ősi, Attila; Pereda-Suberbiola, Xabier; Brusatte, Stephen L.

    2015-01-01

    Abstract The Late Cretaceous was a time of tremendous global change, as the final stages of the Age of Dinosaurs were shaped by climate and sea level fluctuations and witness to marked paleogeographic and faunal changes, before the end-Cretaceous bolide impact. The terrestrial fossil record of Late Cretaceous Europe is becoming increasingly better understood, based largely on intensive fieldwork over the past two decades, promising new insights into latest Cretaceous faunal evolution. We review the terrestrial Late Cretaceous record from Europe and discuss its importance for understanding the paleogeography, ecology, evolution, and extinction of land-dwelling vertebrates. We review the major Late Cretaceous faunas from Austria, Hungary, France, Spain, Portugal, and Romania, as well as more fragmentary records from elsewhere in Europe. We discuss the paleogeographic background and history of assembly of these faunas, and argue that they are comprised of an endemic ‘core’ supplemented with various immigration waves. These faunas lived on an island archipelago, and we describe how this insular setting led to ecological peculiarities such as low diversity, a preponderance of primitive taxa, and marked changes in morphology (particularly body size dwarfing). We conclude by discussing the importance of the European record in understanding the end-Cretaceous extinction and show that there is no clear evidence that dinosaurs or other groups were undergoing long-term declines in Europe prior to the bolide impact. PMID:25610343

  14. Early Cenozoic "dome like" exhumation around the Irish Sea

    NASA Astrophysics Data System (ADS)

    Doepke, Daniel; Cogné, Nathan; Chew, David; Stuart, Fin

    2016-04-01

    Despite decades of research the Early Cenozoic exhumation history of Ireland and Britain is still poorly understood and subject to contentious debate (see Davis et al., 2012 and subsequent comments). Previous studies have attributed the Cenozoic exhumation history of Ireland and Britain mainly to: (a) Paleogene - Neogene far-field stress between the opening of the North Atlantic Ocean and the Alpine collision (Ziegler et al., 1995; Hillis et al., 2008) or (b) early Paleogene mantle driven magmatic underplating associated with the development of the proto-Iceland mantle plume beneath the Irish Sea (Brodie and White, 1994; Al-Kindi et al., 2003). The major differences between the two hypotheses are the pattern and timing of spatial exhumation. This project thus seeks to investigate the timing and mechanisms of late Mesozoic - early Cenozoic exhumation on the onshore part of the British Isles by using a combination of apatite fission track (AFT) and apatite (U-Th-Sm)/He (AHe) data, which we then model using the QTQt program of Gallagher (2012) to better constrain the modelled thermal histories. Our studied area centres on the margins of the Irish Sea, but includes all Ireland and western Britain. Overall we analysed 74 samples for AFT and 66 samples for AHe dating. In particular, our results include ten pseudo-vertical profiles. The AFT ages display a wide range of ages from early Carboniferous in Scotland to early Eocene in central Ireland. Our AHe ages range from mid Permian on Shetland to Eocene Ft-corrected. The AFT data do not show any specific spatial distribution, however, the Ft-corrected AHe ages around the Irish Sea only focus around late Cretaceous to Eocene suggesting an important thermal event around this time. The modelled thermal histories of samples located around the Irish Sea and western Scotland show a clear late Cretaceous to early Paleogene cooling event which is not present elsewhere. The distribution of this cooling event is broadly consistent

  15. The Cretaceous-Tertiary boundary biotic crisis in the Basque country

    NASA Technical Reports Server (NTRS)

    Lamolda, M. A.

    1988-01-01

    The Zumaya section has been selected as a classic locality for the study of the Cretaceous-Tertiary (K-T) boundary due to its richness in microfaune, macrofaune, and nannoflora. The sections present similar good conditions for the study of the K-T boundary. The sedimentary rocks of the Uppermost Maastrichtian from the Basque Country are purple or pink marls and marls-tones. Above it is found a clayed bed, 40 to 29 cm thick, grey or dark grey in its basal part, of Lowermost Danian age. Above there is alternation of micritic grey-pink limestones and thin clay beds of Dano-Montian age. The average sedimentation is 7 to 8 times higher during the Upper Maastrichtian than in the Dano-Montian. The macrofauna underwent a decrease since the Campanian and was not found in the last 11 m of the Zumaya section; it was associated with changes in paleoceanographic conditions and primary productivity of the oceans. The microfossil assemblages in the K-T transition allows the recognition of several phases of a complex crisis between two well established planktonic ecosystems. In the Mayaroensis Zone there is a stable ecosystem with 45 to 47 planktonic foraminifera species. The disappearance of A. mayaroensis starts a degradation of the ecosystem. The number of planktonic foraminiera species decreases between 20 and 45 percent. The next phase of the crisis was the result of main extinction events in the planktonic calcareous ecosystem. There are several cretaceous planktonic foraminifera species, probably reworked, whose numbers decrease upward. The next and last phase of the biotic crisis shows a diversification of the ecosystem; the number of planktonic foraminifera is 2 to 3 times higher than before and it is noted the first appearance of Tertiary nannoflora species, while Cretaceous species decrease and persisting species are still the main ones.

  16. Displaced intra-articular calcaneal fractures.

    PubMed

    Bajammal, Sohail; Tornetta, Paul; Sanders, David; Bhandari, Mohit

    2005-01-01

    Calcaneal fractures comprise 1 to 2 percent of all fractures. Approximately 75% of calcaneal fractures are intra-articular. The management of intra-articular calcaneal fractures remains controversial. Nonoperative treatment options include elevation, ice, early mobilization, and cyclic compression of the plantar arch. Operative treatment options include closed reduction and percutaneous pin fixation, open reduction and internal fixation, and arthrodesis. The effect of operative versus nonoperative treatment has been the focus of several comparative studies. This study was designed to determine the effect of operative treatment compared with nonoperative treatment on the rate of union, complications, and functional outcome after intra-articular calcaneal fracture in adults.

  17. Paired Magnetic Susceptibility Cyclostratigraphy and Revised Magnetostratigraphy with Late Cretaceous Euler Pole from Forbes Formation, Sand Creek, Sacramento Valley, California

    NASA Astrophysics Data System (ADS)

    Slotznick, S. P.; Raub, T.; Mitchell, R. N.; Ward, P. D.; Kirschvink, J. L.

    2012-12-01

    Magnetostratigraphy in Upper Cretaceous rocks of Sacramento Valley has successfully complemented biostratigraphy for correlating between circum-Pacific basins. Most paleomagnetic measurements were done pre-1990 using alternating field demagnetization only, due to oxidation accompanying thermal demagnetization. We present paleomagnetic data collected via thermal demagnetization in a flowing nitrogen atmosphere from 223 cores collected over a 130m of section of Forbes Formation in Sand Creek, CA spanning upper Dobbins Shale, Forbes Unit 2 and lower Unit 3. These results uniformly indicate Reversed Chron 33R, contra previously published magnetostratigraphy of the area (Ward et al. 1983, Verosub et al. 1989). Additionally, these paleomagnetic results yield a tightly-constrained paleolatitude for Forbes Formation of 31±3°, which varies significantly from previous APWP models ca. 83 Ma (Besse and Courtillot, 2002) suggesting an unaccounted-for deficiency in reconstructions of North America at this time. This discrepancy might indicate an inaccurate cratonic reference pole, underestimated intrabatholithic or distributed plate boundary deformation, and/or true polar wander. As opposed to other units yielding anomalous late Cretaceous paleolatitudes from outboard terranes, Forbes Formation in Sacramento Valley laps unambiguously onto the North American continent. A 25m AW34 core was collected using a Winkie drillrig near the top of Dobbins Shale Mbr. Paleomagnetic measurements on subsamples from the Winkie core, unaffected by surface weathering, combine with the surficial dataset, and we propose a new set of Euler pole solutions potentially quantifying Basin and Range extension and late Cretaceous intra-Sierran shear. Through magnetic susceptibility measurements of the Winkie core, we were able to resolve orbital cycles which, paired with rock magnetic measurements, constrain basin subsidence and sedimentation rate off the Sierran arc at its age of termination. Re

  18. Variable sources for Cretaceous to recent HIMU and HIMU-like intraplate magmatism in New Zealand

    NASA Astrophysics Data System (ADS)

    van der Meer, Q. H. A.; Waight, T. E.; Scott, J. M.; Münker, C.

    2017-07-01

    Continental intraplate magmas with isotopic affinities similar to HIMU are identified worldwide. Involvement of an asthenospheric HIMU or HIMU-like source is contested because the characteristic radiogenic Pb compositions coupled with unradiogenic Sr and intermediate Nd and Hf compositions can also result from in-situ ingrowth in metasomatised lithospheric mantle. Sr-Nd-Pb-Hf isotopic compositions of late Cretaceous lamprophyre dikes from Westland, New Zealand, provide new insights into the formation of a HIMU-like alkaline intraplate magmatic province under the Zealandia continent. The oldest (102-100 Ma) calc-alkaline lamprophyres are compositionally similar to the preceding arc-magmatism (206Pb/204Pb(i) = 18.6, 207Pb/204Pb(i) = 15.62, 208Pb/204Pb(i) = 38.6, 87Sr/86Sr(i) = 0.7063-0.7074, εNd(i) = -2.1 - +0.1 and εHf(i) = -0.2 - +2.3) and are interpreted as melts originating from subduction-modified lithosphere. Alkaline dikes erupted on the inboard Gondwana margin shortly after cessation of subduction (92-84 Ma) have heterogeneous isotopic properties: 206Pb/204Pb(i) = 18.7 to 19.4, 207Pb/204Pb(i) = 15.60 to 15.65, 208Pb/204Pb(i) = 38.6 to 39.4, 87Sr/86Sr(i) = 0.7031 to 0.7068, εNd(i) = +4.5 to +8.0 and εHf(i) = +5.1 to +8.0. Melt compositions point to an amphibole-bearing spinel facies lithospheric mantle source enriched by metasomatism that introduced, amongst many elements, U + Th which lead to rapid ingrowth to HIMU-like compositions. Importantly, this HIMU-like source enrichment appears to have completely originated from the complex local subduction history. A coeval episode of alkaline magmatism (mainly 98-82 Ma) occurred outboard of Gondwana's former active margin and on the Hikurangi oceanic plateau (accreted to Zealandia in the Early Cretaceous) with compositions closer to true HIMU (206Pb/204Pb(i) ≈ 20.5, 207Pb/204Pb(i) ≈ 15.7, 208Pb/204Pb(i) ≈ 40.0, εNd(i) ≈ 4.5 and εHf(i) ≈ 4.0). In contrast to the inboard HIMU-like magmas, the

  19. Possible tidal resonance of the early Earth's ocean due to the lunar orbit evolution

    NASA Astrophysics Data System (ADS)

    Motoyama, M.; Tsunakawa, H.; Takahashi, F.

    2016-12-01

    The ocean tide is one of the most important factors affecting the Earth's surface environment and the evolution of the Earth-Moon system (e.g. Goldreich, 1966). According to the Giant Impact hypothesis, the Moon was formed very near the Earth 4.6 billion years ago (Hartmann and Davis, 1979). At that time, the tidal force would be about several thousand times as strong as the present. However previous studies pointed out that significant attenuation of tidal waves might have occurred due to mechanical response of water motion (e.g. Hansen, 1982; Abe and Ooe, 2001), resulting in relatively calm state like the present ocean.In the present study, we analyze tidal response of the ocean on the early Earth using a model of constant-depth ocean covering all the surface of the rigid Earth. The examined modes of response are not only M2 corresponding to spherical harmonics Y22 but also others such as Y21, since the lunar orbital plane would be inclined.First, estimated is an ocean depth for possible resonance of the individual mode. Eigen frequencies of the fluid on a rotating sphere with no friction are calculated on the basis of previous study (Longuet-Higgins, 1968). These frequencies depend on the Earth's rotation rate and the ocean depth. The Earth's rotation period is assumed to have changed from 5 hours to 24 hours for the past 4.6 billion years (e.g. Mignard, 1980; Stacey and Davis, 2008). It is found that resonance could occur for diurnal modes of Y21 and Y31 with reasonable depths of the ancient ocean (1300 - 5200 m).Then we obtain a 2D response function on a sphere with friction in order to estimate the tidal amplitude of the ocean for main modes . The response function in the present study shows good agreement with the numerical simulation result of the tidal torque response of M2 (Abe et al., 1997). The calculation results suggest that diurnal modes of Y21 and Y31 would grown on the early Earth, while the other modes would fairly be attenuated. In particular

  20. Subseafloor fluid mixing and fossilized microbial life in a Cretaceous 'Lost City'-type hydrothermal system at the Iberian Margin

    NASA Astrophysics Data System (ADS)

    Klein, F.; Humphris, S. E.; Guo, W.; Schubotz, F.; Schwarzenbach, E. M.; Orsi, W.

    2015-12-01

    Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support autotrophic microorganisms in the hydrated oceanic mantle (serpentinite). Despite the potentially significant implications for the distribution of microbial life on Earth and other water-bearing planetary bodies, our understanding of such environments remains elusive. In the present study we examined fossilized microbial communities and fluid mixing processes in the subseafloor of a Cretaceous 'Lost City'-type hydrothermal system at the passive Iberia Margin (ODP Leg 149, Hole 897D). Brucite and calcite co-precipitated from mixed fluids ca. 65m below the Cretaceous palaeo-seafloor at temperatures of 32±4°C within steep chemical gradients (fO2, pH, CH4, SO4, ΣCO2, etc) between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity within the oceanic basement. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon but depleted in 13C. We detected a combination of bacterial diether lipid biomarkers, archaeol and archaeal tetraethers analogous to those found in brucite-carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin during the Cretaceous, possibly before the onset of seafloor spreading in the Atlantic. 'Lost City'-type serpentinization systems have been discovered at mid-ocean ridges, in forearc settings of subduction zones and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments as demonstrated in the present study. Because equivalent systems have likely existed throughout most of Earth

  1. Subseafloor fluid mixing and fossilized microbial life in a Cretaceous 'Lost City'-type hydrothermal system at the Iberian Margin

    NASA Astrophysics Data System (ADS)

    Klein, F.; Humphris, S. E.; Guo, W.; Schubotz, F.; Schwarzenbach, E. M.; Orsi, W.

    2014-12-01

    Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support autotrophic microorganisms in the hydrated oceanic mantle (serpentinite). Despite the potentially significant implications for the distribution of microbial life on Earth and other water-bearing planetary bodies, our understanding of such environments remains elusive. In the present study we examined fossilized microbial communities and fluid mixing processes in the subseafloor of a Cretaceous 'Lost City'-type hydrothermal system at the passive Iberia Margin (ODP Leg 149, Hole 897D). Brucite and calcite co-precipitated from mixed fluids ca. 65m below the Cretaceous palaeo-seafloor at temperatures of 32±4°C within steep chemical gradients (fO2, pH, CH4, SO4, ΣCO2, etc) between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity within the oceanic basement. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon but depleted in 13C. We detected a combination of bacterial diether lipid biomarkers, archaeol and archaeal tetraethers analogous to those found in brucite-carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin during the Cretaceous, possibly before the onset of seafloor spreading in the Atlantic. 'Lost City'-type serpentinization systems have been discovered at mid-ocean ridges, in forearc settings of subduction zones and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments as demonstrated in the present study. Because equivalent systems have likely existed throughout most of Earth

  2. Polychronous (Early Cretaceous to Palaeogene) emplacement of the Mundwara alkaline complex, Rajasthan, India: 40Ar/39Ar geochronology, petrochemistry and geodynamics

    NASA Astrophysics Data System (ADS)

    Pande, Kanchan; Cucciniello, Ciro; Sheth, Hetu; Vijayan, Anjali; Sharma, Kamal Kant; Purohit, Ritesh; Jagadeesan, K. C.; Shinde, Sapna

    2017-07-01

    The Mundwara alkaline plutonic complex (Rajasthan, north-western India) is considered a part of the Late Cretaceous-Palaeogene Deccan Traps flood basalt province, based on geochronological data (mainly 40Ar/39Ar, on whole rocks, biotite and hornblende). We have studied the petrology and mineral chemistry of some Mundwara mafic rocks containing mica and amphibole. Geothermobarometry indicates emplacement of the complex at middle to upper crustal levels. We have obtained new 40Ar/39Ar ages of 80-84 Ma on biotite separates from mafic rocks and 102-110 Ma on whole-rock nepheline syenites. There is no evidence for excess 40Ar. The combined results show that some of the constituent intrusions of the Mundwara complex are of Deccan age, but others are older and unrelated to the Deccan Traps. The Mundwara alkaline complex is thus polychronous and similar to many alkaline complexes around the world that show recurrent magmatism, sometimes over hundreds of millions of years. The primary biotite and amphibole in Mundwara mafic rocks indicate hydrous parental magmas, derived from hydrated mantle peridotite at relatively low temperatures, thus ruling out a mantle plume. This hydration and metasomatism of the Rajasthan lithospheric mantle may have occurred during Jurassic subduction under Gondwanaland, or Precambrian subduction events. Low-degree decompression melting of this old, enriched lithospheric mantle, due to periodic diffuse lithospheric extension, gradually built the Mundwara complex from the Early Cretaceous to Palaeogene time.

  3. The Laminated Marca Shale: High-Frequency Climate Cycles From the Latest Cretaceous

    NASA Astrophysics Data System (ADS)

    Davies, A.; Kemp, A. E.; Weedon, G.; Barron, J. A.

    2005-12-01

    The Latest Cretaceous (Maastrichtian) Marca Shale Member, California, displays a well-preserved record of alternating terrigenous and diatomaceous laminae couplets, remarkably similar in lithology to recent laminated sediments from the Gulf of California and Santa Barbara Basin. This similarity, together with the recognition of intra- and inter-annual variability in the diatom flora, implies an annual origin for these couplets. High-resolution backscattered electron imagery has identified two sublaminae types within the varved succession; near monospecific lamina of Chaetoceros-type resting spore and of large Azpeitiopsis morenoensis. The composition and occurrence of these laminae is similar to ENSO forced intra-annual variability of diatom flora along the modern Californian margin. Relative thickness variations in terrigenous and biogenic laminae (proxies for precipitation and productivity respectively) also exhibit similar characteristics to variability in Quaternary varves from the Santa Barbara Basin, shown to be imparted by ENSO forcing. In order to track changes in the levels of bottom water oxygenation within the basin, a bioturbation index was established. Periods when bioturbation was minimal (enhanced benthic anoxia) coincide with times of greatest diatomaceous export flux and also lowest flux of detrital material. Conversely, periods of enhanced bioturbation correspond with reduced diatomaceous export flux and an increased flux of detrital material, comparable with ENSO forced variations in diatomaceous and terrigenous export flux and associated benthic oxygenation levels in Pleistocene varves off the Californian margin. Power spectra obtained from time-series analysis of the bioturbation index and laminae thickness variations exhibit strong signals within the ENSO band. This research implies that high-frequency climate perturbations are inherent components of the climate system and that ENSO-type variability was not confined to the dynamic climate

  4. Origin of ophiolite complexes related to intra-oceanic subduction initiation: implications of IODP Expedition 352 (Izu-Bonin fore arc)

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair; Avery, Aaron; Carvallo, Claire; Christeson, Gail; Ferré, Eric; Kurz, Walter; Kutterolf, Steffen; Morgan, Sally; Pearce, Julian; Reagan, Mark; Sager, William; Shervais, John; Whattam, Scott; International Ocean Discovery Program Expedition 352 (Izu-Bonin-Mariana Fore Arc), the Scientific Party of

    2015-04-01

    Ophiolites, representing oceanic crust exposed on land (by whatever means), are central to the interpretation of many orogenic belts (e.g. E Mediterranean). Based mostly on geochemical evidence, ophiolites are widely interpreted, in many but by no means all cases, as having formed within intra-oceanic settings above subduction zones (e.g. Troodos ophiolite, Cyprus). Following land geological, dredging and submersible studies, fore arcs of the SW Pacific region became recognised as likely settings of supra-subduction zone ophiolite genesis. This hypothesis was tested by recent drilling of the Izu-Bonin fore arc. Four sites were drilled, two on the outer fore arc and two on the upper trench slope. Site survey seismic data, combined with borehole data, indicate that three of the sites are located in fault-controlled sediment ponds that formed in response to dominantly down-to the-west extensional faulting (with hints of preceding top-to-the-east compressional thrusting). The sediments overlying the igneous basement, of maximum Late Eocene to Recent age, document ash and aeolian input, together with mass wasting of the fault-bounded sediment ponds. At the two more trenchward sites (U1440 and U1441), mostly tholeiitic basalts were drilled, including massive and pillowed lavas and hyaloclastite. Geochemically, these extrusives are of near mid-oceanic ridge basalt composition (fore arc basalts). Subtle chemical deviation from normal MORB can be explained by weakly fluid-influenced melting during decompression melting in the earliest stages of supra-subduction zone spreading (not as 'trapped' older MORB). The remaining two sites, c. 6 km to the west (U1439 and U1442), penetrated dominantly high-magnesian andesites, known as boninites, largely as fragmental material. Their formation implies the extraction of highly depleted magmas from previously depleted, refractory upper mantle in a supra-subduction zone setting. Following supra-subduction zone spreading, the active

  5. Oceanic oxygenation events in the anoxic Ediacaran ocean.

    PubMed

    Sahoo, S K; Planavsky, N J; Jiang, G; Kendall, B; Owens, J D; Wang, X; Shi, X; Anbar, A D; Lyons, T W

    2016-09-01

    The ocean-atmosphere system is typically envisioned to have gone through a unidirectional oxygenation with significant oxygen increases in the earliest (ca. 635 Ma), middle (ca. 580 Ma), or late (ca. 560 Ma) Ediacaran Period. However, temporally discontinuous geochemical data and the patchy metazoan fossil record have been inadequate to chart the details of Ediacaran ocean oxygenation, raising fundamental debates about the timing of ocean oxygenation, its purported unidirectional rise, and its causal relationship, if any, with the evolution of early animal life. To better understand the Ediacaran ocean redox evolution, we have conducted a multi-proxy paleoredox study of a relatively continuous, deep-water section in South China that was paleogeographically connected with the open ocean. Iron speciation and pyrite morphology indicate locally euxinic (anoxic and sulfidic) environments throughout the Ediacaran in this section. In the same rocks, redox sensitive element enrichments and sulfur isotope data provide evidence for multiple oceanic oxygenation events (OOEs) in a predominantly anoxic global Ediacaran-early Cambrian ocean. This dynamic redox landscape contrasts with a recent view of a redox-static Ediacaran ocean without significant change in oxygen content. The duration of the Ediacaran OOEs may be comparable to those of the oceanic anoxic events (OAEs) in otherwise well-oxygenated Phanerozoic oceans. Anoxic events caused mass extinctions followed by fast recovery in biologically diversified Phanerozoic oceans. In contrast, oxygenation events in otherwise ecologically monotonous anoxic Ediacaran-early Cambrian oceans may have stimulated biotic innovations followed by prolonged evolutionary stasis. © 2016 John Wiley & Sons Ltd.

  6. The oldest known snakes from the Middle Jurassic-Lower Cretaceous provide insights on snake evolution.

    PubMed

    Caldwell, Michael W; Nydam, Randall L; Palci, Alessandro; Apesteguía, Sebastián

    2015-01-27

    The previous oldest known fossil snakes date from ~100 million year old sediments (Upper Cretaceous) and are both morphologically and phylogenetically diverse, indicating that snakes underwent a much earlier origin and adaptive radiation. We report here on snake fossils that extend the record backwards in time by an additional ~70 million years (Middle Jurassic-Lower Cretaceous). These ancient snakes share features with fossil and modern snakes (for example, recurved teeth with labial and lingual carinae, long toothed suborbital ramus of maxillae) and with lizards (for example, pronounced subdental shelf/gutter). The paleobiogeography of these early snakes is diverse and complex, suggesting that snakes had undergone habitat differentiation and geographic radiation by the mid-Jurassic. Phylogenetic analysis of squamates recovers these early snakes in a basal polytomy with other fossil and modern snakes, where Najash rionegrina is sister to this clade. Ingroup analysis finds them in a basal position to all other snakes including Najash.

  7. Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact

    NASA Technical Reports Server (NTRS)

    Pope, K. O.; Baines, K. H.; Ocampo, A. C.; Ivanov, B. A.

    1997-01-01

    A comprehensive analysis of volatiles in the Chicxulub impact strongly supports the hypothesis that impact-generated sulfate aerosols caused over a decade of global cooling, acid rain, and disruption of ocean circulation, which contributed to the mass extinction at the Cretaceous/Tertiary (K/T) boundary. The crater size, meteoritic content of the K/T boundary clay, and impact models indicate that the Chicxulub crater was formed by a short period comet or an asteroid impact that released 0.7-3.4 x 10(31) ergs of energy. Impact models and experiments combined with estimates of volatiles in the projectile and target rocks predict that over 200 gigatons (Gt) each of SO2 and water vapor, and over 500 Gt of CO2, were globally distributed in the stratosphere by the impact. Additional volatiles may have been produced on a global or regional scale that formed sulfate aerosols rapidly in cooler parts of the vapor plume, causing an early, intense pulse of sulfuric acid rain. Estimates of the conversion rate of stratospheric SO2 and water vapor to sulfate aerosol, based on volcanic production of sulfate aerosols, coupled with calculations of diffusion, coagulation, and sedimentation, demonstrate that the 200 Gt stratospheric SO2 and water vapor reservoir would produce sulfate aerosols for 12 years. These sulfate aerosols caused a second pulse of acid rain that was global. Radiative transfer modeling of the aerosol clouds demonstrates (1) that if the initial rapid pulse of sulfate aerosols was global, photosynthesis may have been shut down for 6 months and (2) that for the second prolonged aerosol cloud, solar transmission dropped 80% by the end of first year and remained 50% below normal for 9 years. As a result, global average surface temperatures probably dropped between 5 degrees and 31 degrees K, suggesting that global near-freezing conditions may have been reached. Impact-generated CO2 caused less than 1 degree K greenhouse warming and therefore was insignificant compare

  8. Glendonites as a paleoenvironmental tool: Implications for early Cretaceous high latitudinal climates in Australia

    NASA Astrophysics Data System (ADS)

    De Lurio, Jennifer L.; Frakes, L. A.

    1999-04-01

    Glendonites, calcite pseudomorphs after the metastable mineral ikaite (CaCO 3 · 6H 2O), occur in the Late Aptian interval of the Bulldog Shale in the Eromanga Basin, Australia and in other Early Cretaceous basins at high paleolatitudes. Ikaite precipitation in the marine environment requires near-freezing temperatures (not higher than 4°C), high alkalinity, increased levels of orthophosphate, and high P CO2. The rapid and complete transformation of ikaite to calcite at temperatures between 5 and 8°C provides an upper limit on the oxygen isotopic composition of the pore waters: -2.6 <δ w <-3.4‰SMOW. If it is assumed that these pore waters are representative of the shallow Eromanga Basin, the calculated δ w can be used to reassess belemnite fossil oxygen isotopic paleotemperatures - temperature recorded by fauna living in the basin at the time of ikaite precipitation. Data previously reported as 11 to 16°C (assuming δ w = 0.0‰SMOW) yield paleotemperatures ranging from -1 to 5°C, squarely in the range of ikaite stability. The low δ w indicates hyposaline conditions, most likely caused by mixing high latitude meteoric waters with seawater. The 18O depleted, low temperature waters suggest that the region was at least seasonally colder than previously accepted.

  9. A new basal titanosaur (Dinosauria, Sauropoda) from the Lower Cretaceous of Brazil

    NASA Astrophysics Data System (ADS)

    Carvalho, Ismar de Souza; Salgado, Leonardo; Lindoso, Rafael Matos; Araújo-Júnior, Hermínio Ismael de; Nogueira, Francisco Cézar Costa; Soares, José Agnelo

    2017-04-01

    Although dinosaurian ichnofaunas are common in the Northeastern Brazilian Interior Basins, osteological remains are poorly represented in these areas. One of the main challenges in vertebrate paleontology in the Lower Cretaceous of this region is to recognize body-fossils, which can unveil the anatomy, functional morphology and paleoecological aspects of the dinosaurian fauna recorded until now only by footprints and trackways. The discovery of a new dinosaur specimen in the Rio Piranhas Formation of the Triunfo Basin opens new perspectives into the comprehension of paleogeographical and temporal distribution of the titanosaur sauropods. Titanosaurs are common in Upper Cretaceous rocks of Brazil and Argentina. The age of the Rio Piranhas Formation is considered to range from Berriasian to early Hauterivian. Thus, the description of this new species opens new viewpoints concerning the paleobiogeographical aspects of these sauropod dinosaurs.

  10. Carbon isotopic evidence for photosynthesis in Early Cambrian oceans

    NASA Astrophysics Data System (ADS)

    Surge, Donna M.; Savarese, Michael; Dodd, J. Robert; Lohmann, Kyger C.

    1997-06-01

    Were the first metazoan reefs ecologically similar to modern tropical reefs, enabling them to persist under oligotrophic conditions? We tested the hypothesis of ecological similarity by employing a geochemical approach. Petrography, cathodoluminescence, trace elements, and stable isotope analyses of primary precipitates of the Lower Cambrian Ajax Limestone, South Australia, indicate preservation of original C isotopic composition. All primary carbonate components exhibit C isotopic values similar to the composition of inorganically precipitated fibrous marine cements, suggesting that archaeocyaths and the calcimicrobe Epiphyton precipitated skeletal carbonate in equilibrium with ambient seawater in the absence of vital effects. Such data do not support the contention that archaeocyaths possessed photosymbionts. However, a +0.55‰ shift in δ13C occurs in reefs developed under shallower-water conditions relative to deeper reefs. This shift suggests the stratification of primary production in Early Cambrian oceans. The pattern is similar to that seen in the modern ocean, whereby significant photosynthesis modulates the C isotopic composition of the photic zone.

  11. The atypical Caribbean-Colombia oceanic plateau and its role in the deformation of the Northern Andes

    NASA Astrophysics Data System (ADS)

    Ferrari, L.; Lopez-Martinez, M.; Petrone, C. M.; Serrano, L.

    2013-05-01

    The Late Cretaceous to Early Tertiary tectono-magmatic evolution of the Northern Andes has been strongly influenced by the dextral oblique interaction of the Caribbean-Colombian oceanic plateau (CCOP) with northwestern South America. This complex interaction has resulted in several pulses of transpressional deformation and crustal accretion to the South America plate but also in a widespread deformation in the plateau itself. In this peculiar type of orogeny one of the factors controlling the deformation is the crustal structure and thus the rheological profiles of the two lithospheric sections that interact. The genesis of the CCOP has been traditionally associated to the melting of the Galapagos plume head when it impacted the Farallon plate, which is supposed to have built an unsubductable and thick crustal section. This interpretation was based on the apparent clustering of ages at ~91-89 Ma for several obducted fragments of the CCOP in northwestern South America and in the Caribbean islands. However, seismic profiles show that magmatism added a very variable amount but no more than 10 km of igneous material to the original crust of the Farallon plate, making the CCOP much more irregular than other oceanic plateaus. Recent studies of key areas of the obducted part of the CCOP contradict the notion that the plateau formed by melting of a plume head at ~ 90 Ma. Particularly, new geochronologic data and petrologic modeling from the small Gorgona Island document a magmatic activity spanning the whole Late Cretaceous (98.7±7.7 to 64.4±5 Ma) and a progressive increase in the degree of melting and melt extraction with time. Multiple magmatic pulses over several tens of Ma in small areas like Gorgona, are also recognized in other areas of the CCOP, documenting a long period of igneous activity with peaks at 74-76, 80-82, and 88-90 Ma in decreasing order of importance. Even older, Early Cretaceous ages, have been reported for fragments in Costa Rica and Curaçao. A

  12. Debris-carrying camouflage among diverse lineages of Cretaceous insects.

    PubMed

    Wang, Bo; Xia, Fangyuan; Engel, Michael S; Perrichot, Vincent; Shi, Gongle; Zhang, Haichun; Chen, Jun; Jarzembowski, Edmund A; Wappler, Torsten; Rust, Jes

    2016-06-01

    Insects have evolved diverse methods of camouflage that have played an important role in their evolutionary success. Debris-carrying, a behavior of actively harvesting and carrying exogenous materials, is among the most fascinating and complex behaviors because it requires not only an ability to recognize, collect, and carry materials but also evolutionary adaptations in related morphological characteristics. However, the fossil record of such behavior is extremely scarce, and only a single Mesozoic example from Spanish amber has been recorded; therefore, little is known about the early evolution of this complicated behavior and its underlying anatomy. We report a diverse insect assemblage of exceptionally preserved debris carriers from Cretaceous Burmese, French, and Lebanese ambers, including the earliest known chrysopoid larvae (green lacewings), myrmeleontoid larvae (split-footed lacewings and owlflies), and reduviids (assassin bugs). These ancient insects used a variety of debris material, including insect exoskeletons, sand grains, soil dust, leaf trichomes of gleicheniacean ferns, wood fibers, and other vegetal debris. They convergently evolved their debris-carrying behavior through multiple pathways, which expressed a high degree of evolutionary plasticity. We demonstrate that the behavioral repertoire, which is associated with considerable morphological adaptations, was already widespread among insects by at least the Mid-Cretaceous. Together with the previously known Spanish specimen, these fossils are the oldest direct evidence of camouflaging behavior in the fossil record. Our findings provide a novel insight into early evolution of camouflage in insects and ancient ecological associations among plants and insects.

  13. Changing climate in a pre-impact world: a multi-proxy paleotemperature reconstruction across the last million years of the Cretaceous

    NASA Astrophysics Data System (ADS)

    Woelders, L.; Vellekoop, J.; Reichart, G. J.; de Nooijer, L. J.; Sluijs, A.; Peterse, F.; Claeys, P. F.; Speijer, R. P.

    2015-12-01

    Climate instability during the last million years of the Cretaceous (67-66 Ma) is still poorly documented and not well understood. One of the reasons for this is that in deep time, different proxies are likely to yield different temperatures. This is because the application of calibrations based on present day temperature proxy relationships is affected by source organism evolution, differences in ocean chemistry and non-analogue processes. Only by combining temperature estimates derived from different, independent proxies, the problems with individual proxies can be cancelled out. A quantitative, multi-proxy temperature record from the latest Cretaceous therefore may provide a better insight in climate changes across this time interval. For such a multi-proxy research, sediments are required that yield both well-preserved foraminiferal calcite as well as organic biomarkers. Very few sites are known to provide such sedimentary records, but ODP Leg 174AX Site Bass River (New Jersey Shelf) has proven to be an excellent archive for paleotemperature reconstructions for the Cretaceous and Paleogene. We here present a multi-proxy, quantitative paleotemperature reconstruction of the last million years of the Cretaceous of the Bass River core. Benthic and planktic foraminiferal Mg/Ca and δ18O were determined, as well as the organic geochemical sea surface temperature proxy TEX86. This resulted in a unique coupled surface and bottom water temperature record of the latest Cretaceous. Our data suggest a ~2-6 ˚C bottom water warming and a ~4-6 ˚C surface water warming approximately 300 kyr before the Cretaceous-Paleogene boundary, followed by a cooling trend across the boundary. This warming event appears to coincide with the main phase of the Deccan Traps eruptions and therefore probably represents a global event.

  14. Cretaceous sedimentation in the outer Eastern Carpathians: Implications for the facies model reconstruction of the Moldavide Basin

    NASA Astrophysics Data System (ADS)

    Roban, R. D.; Krézsek, C.; Melinte-Dobrinescu, M. C.

    2017-06-01

    The mid Cretaceous is characterized by high eustatic sea-levels with widespread oxic conditions that made possible the occurrence of globally correlated Oceanic Red Beds. However, very often, these eustatic signals have been overprinted by local tectonics, which in turn resulted in Lower Cretaceous closed and anoxic basins, as in the Eastern Carpathians. There, the black shale to red bed transition occurs in the latest Albian up to the early Cenomanian. Although earlier studies discussed the large-scale basin configuration, no detailed petrography and sedimentology study has been performed in the Eastern Carpathians. This paper describes the Hauterivian to Turonian lithofacies and interprets the depositional settings based on their sedimentological features. The studied sections crop out only in tectonic half windows of the Eastern Carpathians, part of the Vrancea Nappe. The lithofacies comprises black shales interbedded with siderites and sandstones, calcarenites, marls, radiolarites and red shales. The siliciclastic muddy lithofacies in general reflects accumulation by suspension settling of pelagites and hemipelagites in anoxic (black shale) to dysoxic (dark gray and gray to green shales) and oxic (red shales) conditions. The radiolarites alternate with siliceous shales and are considered as evidence of climate changes. The sandstones represent mostly low and high-density turbidite currents in deep-marine lobes, as well as channel/levee systems. The source area is an eastern one, e.g., the Eastern Carpathians Foreland, given the abundance of low grade metamorphic clasts. The Hauterivian - lower Albian sediments are interpreted as deep-marine, linear and multiple sourced mud dominated systems deposited in a mainly anoxic to dysoxic basin. The anoxic conditions existed in the early to late Albian, but sedimentation changed to a higher energy mud/sand-dominated submarine channels and levees. This coarsening upwards tendency is interpreted as the effect of the

  15. Hughmillerites vancouverensis sp. nov. and the Cretaceous diversification of Cupressaceae.

    PubMed

    Atkinson, Brian A; Rothwell, Gar W; Stockey, Ruth A

    2014-12-01

    • Two ovulate conifer cones, one of which is attached terminally to a short leafy shoot, reveal the presence of a new species of Hughmillerites in the Early Cretaceous Apple Bay flora of Vancouver Island, British Columbia, Canada. This ancient conifer expands the diversity of Cupressaceae in the Mesozoic and reveals details about the evolution of Subfamily: Cunninghamioideae.• Specimens were studied from anatomical sections prepared using the cellulose acetate peel technique.• Vegetative shoots have helically arranged leaves that are Cunninghamia-like. Seed cones have many helically arranged bract/scale complexes in which the bract is larger than the ovuliferous scale. Each ovuliferous scale has three free tips that separate from the bract immediately distal to an inverted seed. Several ovuliferous scales show interseminal ridges between seeds.• This study documents a new extinct species of cunninghamioid conifers, Hughmillerites vancouverensis, expanding the record of the genus from the Late Jurassic to the Early Cretaceous. This new extinct species emphasizes the important role that conifers from subfamily Cunninghamioideae played in the initial evolutionary radiation of Cupressaceae. In light of recent findings in conifer regulatory genetics, we use H. vancouverensis to hypothesize that variations of expression in certain gene homologues played an important role in the evolution of the cupressaceous ovuliferous scale. © 2014 Botanical Society of America, Inc.

  16. New petrofacies in upper Cretaceous section of southern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colburn, I.P.; Oliver, D.

    1986-04-01

    A distinctive sandstone-conglomerate petrofacies is recognized throughout the Late Cretaceous (Maestrichtian-late Campanian) Chatsworth Formation in the Simi Hills. It is named the Woolsey Canyon petrofacies after the district where it was first recognized. The petrofacies is also recognized in the Late Cretaceous (late Campanian and possibly early Maestrichtian) Tuna Canyon Formation of the central Santa Monica Mountains. The conglomerates in the petrofacies are composed predominantly of angular pebble-size clasts of argillite, quartz-rich rocks (orthoquartzarenite, metaorthoquartzarenite, mice quartz schist) and leucocratic plutoniate (granite-granodiorite). The conglomerate texture and composition are mirrored in the sandstone. The uniformly angular character of the conglomerate clastsmore » and the survival of argillite clasts indicate that the detritus underwent no more than 5 mi of subaerial transport before it entered the deep marine realm. Foraminifers collected from mudstones interbedded with the conglomerates indicate upper bathyal water depth at the site of deposition. A source terrane of low to moderate relief is indicated by the absence of cobbles and boulders. Bed forms, sedimentary structures, and textural features indicate the detritus moved north from its source terrane to be deposited by turbidity currents, debris flows, and grain flows on the Chatsworth Submarine Fan. The detritus of the Woolsey Canyon petrofacies was derived from basement rocks, now largely buried beneath the Los Angeles basin, that were being eroded during the formation of the Cretaceous Los Angeles erosion surface. The detritus came from the Los Angeles arch of that surface.« less

  17. Tectonic evolution of the Black Sea orogene belt and the history of opening of the Black Sea basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uesuemezsoy, S.

    1988-08-01

    The Black Sea basin is surrounded by successive orogenic belts of Hercynian, Cimmerian, and Alpine ages. The Rhodope, Thracian, western Pontian, and Transcaucasian (RTPT) blocks of Precambrian age were involved by the circum-Black Sea orogene belts. The Hercynian orogene was documented in the Balkanide, Great Caucasian, Kriastide, southern Pontian, and Transcaucasian belts. The Cimmerian orogene extended north and south of the Black Sea. The southern Cimmerian orogene was represented by the circum-Rhodope and East Thracian-Strandja-Kuere belts. The northern Cimmerian orogene belt extended along the Dobruca-Crimean and southern slope belts. Following the demise of the Black Sea Cimmerian basin, the northernmostmore » oceanic branch extending from Nish-Trajan through the present Black Sea to the intra-Transcaucasian basin, was opened within the Hercynian and Cimmerian consolidated terrain in the Late Jurassic. The other oceanic branch, extending from Izmir-Ankara through circum Kirsehir to various basins, was opened within the Paleotethyan collision belt, considered to be eastern extension of the Pindus basin. The Nish-Trajan sector of the northernmost basin was closed in the middle Cretaceous, and the Moesian platform re-fused to the Getic-Serbo-Macedonian-Rhodope belt. The easternmost extension of the intra-Transcaucasian basin disappeared in the Late Cretaceous. Consequently, the northernmost oceanic branch was reduced to the present Black Sea basin.« less

  18. New Caledonia a classic example of an arc continent collision

    NASA Astrophysics Data System (ADS)

    Aitchison, J.

    2011-12-01

    The SW Pacific island of New Caledonia presents a classic example of an arc-continent collision. This event occurred in the Late Eocene when elements of an intra-oceanic island arc system, the Loyalty-D'Entrecasteaux arc, which stretched SSE from near Papua New Guinea east of New Caledonia to offshore New Zealand, collided with micro-continental fragments that had rifted off eastern Gondwana (Australia) in the late Cretaceous. Intervening Late Cretaceous to Paleogene oceanic crust of the South Loyalty Basin was eliminated through eastward subduction beneath this west-facing intra-oceanic island arc. As with many arc-continent collisions elsewhere collision was accompanied by ophiolite emplacement. The erosional remnants of which are extensive in New Caledonia. Collision led to subduction flip, followed by extensive rollback in front of the newly established east-facing Vitiaz arc. Post-collisional magmatism occurred after slab break-off and is represented by small-scale granitoid intrusions. Additional important features of New Caledonia include the presence of a regionally extensive UHP metamorphic terrain consisting of blueschists and eclogites that formed during the subduction process and were rapidly exhumed as a result of the collision Not only was collision and associated orogeny short-lived this collision system has not been overprinted by any major subsequent collision. New Caledonia thus provides an exceptional location for the study of processes related to arc-continent collision in general.

  19. High geomagnetic intensity during the mid-Cretaceous from Thellier analyses of single plagioclase crystals.

    PubMed

    Tarduno, J A; Cottrell, R D; Smirnov, A V

    2001-03-02

    Recent numerical simulations have yielded the most efficient geodynamo, having the largest dipole intensity when reversal frequency is low. Reliable paleointensity data are limited but heretofore have suggested that reversal frequency and paleointensity are decoupled. We report data from 56 Thellier-Thellier experiments on plagioclase crystals separated from basalts of the Rajmahal Traps (113 to 116 million years old) of India that formed during the Cretaceous Normal Polarity Superchron. These data suggest a time-averaged paleomagnetic dipole moment of 12.5 +/- 1.4 x 10(22) amperes per square meter, three times greater than mean Cenozoic and Early Cretaceous-Late Jurassic dipole moments when geomagnetic reversals were frequent. This result supports a correlation between intervals of low reversal frequency and high geomagnetic field strength.

  20. Cretaceous Vertebrate Tracksites - Korean Cretaceous Dinosaur Coast World Heritage Nomination Site

    NASA Astrophysics Data System (ADS)

    Huh, M.; Woo, K. S.; Lim, J. D.; Paik, I. S.

    2009-04-01

    South Korea is one of the best known regions in the world for Cretaceous fossil footprints, which are also world-renowned. Korea has produced more scientifically named bird tracks (ichnotaxa) than any other region in the world. It has also produced the world's largest pterosaur tracks. Dinosaur tracksites also have the highest frequency of vertebrate track-bearing levels currently known in any stratigraphic sequence. Among the areas that have the best track records, and the greatest scientific significance with best documentation, Korea ranks very highly. Objective analysis of important individual tracksites and tracksite regions must be based on multiple criteria including: size of site, number of tracks, trackways and track bearing levels, number of valid named ichnotaxa including types, number of scientific publications, quality of preservation. The unique and distinctive dinosaur tracksites are known as one of the world's most important dinosaur track localities. In particular, the dinosaur track sites in southern coastal area of Korea are very unique. In the sites, we have excavated over 10,000 dinosaur tracks. The Hwasun sites show diverse gaits with unusual walking patterns and postures in some tracks. The pterosaur tracks are the most immense in the world. The longest pterosaur trackway yet known from any track sites suggests that pterosaurs were competent terrestrial locomotors. This ichnofauna contains the first pterosaur tracks reported from Asia. The Haenam Uhangri pterosaur assigns to a new genus Haenamichnus which accomodates the new ichnospecies, Haenamichnus uhangriensis. At least 12 track types have been reported from the Haman and Jindong Formations (probably late Lower Cretaceous). These include the types of bird tracks assigned to Koreanornis, Jindongornipes, Ignotornis and Goseongornipes. In addition the bird tracks Hwangsanipes, Uhangrichnus, the pterosaur track Haenamichnus and the dinosaur tracks, Brontopodus, Caririchnium, Minisauripus and

  1. The Cretaceous-Tertiary boundary interval in Badlands National Park, South Dakota

    USGS Publications Warehouse

    Stoffer, Philip W.; Messina, Paula; Chamberlain, John A.; Terry, Dennis O.

    2001-01-01

    A marine K-T boundary interval has been identified throughout the Badlands National Park region of South Dakota. Data from marine sediments suggest that deposits from two asteroid impacts (one close, one far away) may be preserved in the Badlands. These impact-generated deposits may represent late Maestrichtian events or possibly the terminal K-T event. Interpretation is supported by paleontological correlation, sequence stratigraphy, magnetostratigraphy, and strontium isotope geochronology. This research is founded on nearly a decade of NPS approved field work in Badlands National Park and a foundation of previously published data and interpretations. The K-T boundary occurs within or near the base of a stratigraphic interval referred to as the "Interior Zone." We interpret the stratigraphy of the Interior Zone as a series of distinct, recognizable lithologic members and units from oldest to youngest, an upper weathered interval of the Elk Butte Member of the Pierre Shale (early late Maestrichtian), a complete (albeit condensed) interval of Fox Hill Formation, a pedogenically altered K-T Boundary "Disturbed Zone," and a generally unresolved sequence of marine to marginal marine units ranging in age from possibly latest Maestrichtian to late Paleocene (the "Yellow Mounds"), that underlie a basal red clay unit (the late Eocene overbank channel facies of the Chamberlain Pass Formation at the base of the White River Group). Within this sequence is a series of unconformities that all display some degree of subaerial weathering and erosion. The dating of marine fossils above and below these unconformities are in line with generally accepted global sea-level changes recognized for the late Campanian through early Eocene. Within the greater framework of regional geology, these findings support that the Western Interior Seaway and subsequent Cannonball Seaway were dependently linked to the changing base-level controlled by sea-level of the global ocean through the Gulf of

  2. Titanite-scale insights into multi-stage magma mixing in Early Cretaceous of NW Jiaodong terrane, North China Craton

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Yang, Kui-Feng; Fan, Hong-Rui; Liu, Xuan; Cai, Ya-Chun; Yang, Yue-Heng

    2016-08-01

    The Early Cretaceous Guojialing-type granodiorites in northwestern Jiaodong terrane carry significant records for strong mantle-crust interaction during the destruction of North China Craton (NCC); however, the definite petrogenetic mechanism and detailed magmatic process remain an enigma. Titanite in igneous rocks can serve as an effective petrogenetic indicator. Here, we present integrated geochronological and geochemical studies on titanites from Guojialing-type granodiorites and their dioritic enclaves to constrain their petrogenesis. Titanites from granodiorites (G-type) and plagioclase-rich dioritic enclaves (E-type-I) present an identical U-Pb age ( 130 Ma) and an indistinguishable wide range of Zr and total REEs contents, and Th/U ratios. However, these two types of titanites exhibit distinct micro-scale textures and geochemical compositions. G-type titanites are characterized by oscillatory zonings with two Light BSE zones (LBZ) and two or three dark BSE zones, whereas E-type-I titanites are marked by core-mantle-rim zonings. Drastic increase of LREEs, Zr, Hf, and Fe and decrease of Nb, Ta, Al, and F contents are observed in LBZ of G-type titanites, whereas remarkable reduction of LREEs, Zr, and Hf and elevation of F contents are observed from the cores to the mantles of E-type-I titanites. Based on Zr-in-titanite thermometry, G-type titanites are interpreted to have experienced twice notable temperature increase, while E-type-I titanites are inferred to have undergone a rapid cooling process. Furthermore, we suggest that the drastic chemical changes in G-type and E-type-I titanites are ascribed to early-stage magma mixing between a colder felsic magma and a Fe-, REE-rich hotter dioritic magma. Compared to G-type and E-type-I titanites, titanites from plagioclase-poor dioritic enclaves (E-type-II) are characterized by their occurrence in interstitial space and present a relatively younger U-Pb age ( 128 Ma) and much narrower and lower range of Zr, total

  3. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic

    NASA Astrophysics Data System (ADS)

    Golonka, J.

    2004-03-01

    Thirteen time interval maps were constructed, which depict the Triassic to Neogene plate tectonic configuration, paleogeography and general lithofacies of the southern margin of Eurasia. The aim of this paper is to provide an outline of the geodynamic evolution and position of the major tectonic elements of the area within a global framework. The Hercynian Orogeny was completed by the collision of Gondwana and Laurussia, whereas the Tethys Ocean formed the embayment between the Eurasian and Gondwanian branches of Pangea. During Late Triassic-Early Jurassic times, several microplates were sutured to the Eurasian margin, closing the Paleotethys Ocean. A Jurassic-Cretaceous north-dipping subduction boundary was developed along this new continental margin south of the Pontides, Transcaucasus and Iranian plates. The subduction zone trench-pulling effect caused rifting, creating the back-arc basin of the Greater Caucasus-proto South Caspian Sea, which achieved its maximum width during the Late Cretaceous. In the western Tethys, separation of Eurasia from Gondwana resulted in the formation of the Ligurian-Penninic-Pieniny-Magura Ocean (Alpine Tethys) as an extension of Middle Atlantic system and a part of the Pangean breakup tectonic system. During Late Jurassic-Early Cretaceous times, the Outer Carpathian rift developed. The opening of the western Black Sea occurred by rifting and drifting of the western-central Pontides away from the Moesian and Scythian platforms of Eurasia during the Early Cretaceous-Cenomanian. The latest Cretaceous-Paleogene was the time of the closure of the Ligurian-Pieniny Ocean. Adria-Alcapa terranes continued their northward movement during Eocene-Early Miocene times. Their oblique collision with the North European plate led to the development of the accretionary wedge of the Outer Carpathians and its foreland basin. The formation of the West Carpathian thrusts was completed by the Miocene. The thrust front was still propagating eastwards in

  4. Magnetization of the oceanic crust - Thermoremanent magnetization of chemical remanent magnetization?

    NASA Technical Reports Server (NTRS)

    Raymond, C. A.; Labrecque, J. L.

    1987-01-01

    A model was proposed in which chemical remanent magnetization (CRM) acquired within the first 20 Ma of crustal evolution may account for 80 percent of the bulk natural remanent magnetization (NRM) of older basalts. The CRM of the crust is acquired as the original thermoremanent magnetization (TRM) is lost through low temperature alteration. The CRM intensity and direction are controlled by the post-emplacement polarity history. This model explains several independent observations concerning the magnetization of the oceanic crust. The model accounts for amplitude and skewness dicrepancies observed in both the intermediate wavelength satellite field and the short wavelength sea surface magnetic anomaly pattern. It also explains the decay of magnetization away from the spreading axis, and the enhanced magnetization of the Cretaceous Quiet Zones while predicting other systematic variations with age in the bulk magnetization of the oceanic crust. The model also explains discrepancies in the anomaly skewness parameter observed for anomalies of Cretaceous age. Further studies indicate varying rates of TRM decay in very young crust which depicts the advance of low temperature alteration through the magnetized layer.

  5. Early Spontaneous Graft Intra- and Perihepatic Hematoma after Liver Transplantation.

    PubMed

    Lupaşcu, Cristian; Apopei, Oana; Vlad, Nutu; Vasiluta, Ciprian; Trofin, Ana-Maria; Zabara, Mihai; Vornicu, Alexandra; Lupaşcu-Ursulescu, Corina; Nitu, Mioara; Crumpei, Felicia; Braşoveanu, Vladislav; Popescu, Irinel

    2017-01-01

    Hematoma of the graft is a life threatening complication of liver transplantation (LT) and there has been no overt conclusion in the literature about optimal management except in scarcely reported cases. It may be either intrahepatic or subcapsular, then again it may develop spontaneously or following parenchimal injuries or transhepatic percutaneous invasive manoeuvers. In this report we describe a rare case of large spontaneous graft intra- and perihepatic hematoma. A 62 year-old man underwent a whole graft orthotopic liver transplantation (OLT) for decompensated chronic liver disease due to alcoholic cirrhosis. The surgical procedure was uneventful. During the early postoperative course, routine Doppler ultrasound examination and CT-scan revealed an extrahepatic paracaval hematoma, 7 days after transplantation, which was stable and conservatively managed until the 18-th postoperative day, when rapidly expanding intraparenchimal hematoma involving the right hemiliver, several other perihepatic hematomas, significant right pleural effusion and hemorrhagic ascites were described. The patient was successfully treated conservatively (nonsurgically) with slow recovery of the liver allograft and discharged one month later in good general status. Celsius.

  6. Transition from continental to oceanic crust on the Wilkes-Adelie margin of Antarctica

    NASA Astrophysics Data System (ADS)

    Eittreim, Stephen L.

    1994-12-01

    The Wilkes-Adelie margin of East Antarctica, a passive margin rifted in the Early Cretaceous, has an unusually reflective Moho which can be traced seismically across the continent-ocean transition. Velocity models and depth sections were constructed from a combined set of U.S. and French multichannel seismic reflection lines to investigate the transition from continental to oceanic crust. These data show that the boundary between oldest oceanic crust and transitional continental crust is marked by a minimum in subsediment crustal thickness and, in places, by a shoaling of Moho. The Moho reflection is continuous across the edge of oceanic crust, and gradually deepens landward under the continental edge. A marginal rift basin, some tens of kilometers in width, lies in the transition between continental and oceanic crust, contains an average of about 4 km of synrift sediment that is prograded in places, and has characteristics of a former rift valley, now subsided to about 10 km. Three types of reflections in the seismic data are interpreted as volcanic deposits: (1) high-amplitude reflections that floor the marginal rift basin, (2) irregularly seaward dipping sequences that comprise an anomalously thick edge of oceanic crust, and (3) highly irregular and diffractive reflections from oceanic crustal basins that cap a normal-thickness ocean crust. The present depth to the prefit surface of continental crust is compatible with passive margin subsidence since 95 Ma, corrected for its load of synrift and postrift sediment and mechanically stretched by factors of beta = 1.8 or higher. Comparison of seismic crustal thickness measurements with inferred crustal thinning from subsidence analysis shows agreement for areas where beta less than 4. In areas where beta greater than 4, measured thickness is greater than that inferred from subsidence analysis, a result that could be explained by underplating the crust beneath the marginal rift basin.

  7. Paleoclimatic and paleolatitude settings of accumulation of radiolarian siliceous-volcanogenic sequences in the middle Mesozoic Pacific: Evidence from allochthons of East Asia

    NASA Astrophysics Data System (ADS)

    Vishnevskaya, V. S.; Filatova, N. I.

    2017-09-01

    Jurassic-Cretaceous siliceous-volcanogenic rocks from nappes of tectonostratigraphic sequences of the East Asia Middle Cretaceous Okhotsk-Koryak orogenic belt are represented by a wide range of geodynamic sedimentation settings: oceanic (near-spreading zones, seamounts, and deep-water basins), marginal seas, and island arcs. The taxonomic compositions of radiolarian communities are used as paleolatitude indicators in the Northern Pacific. In addition, a tendency toward climate change in the Mesozoic is revealed based on these communities: from the warm Triassic to the cold Jurassic with intense warming from the Late Jurassic to the Early Cretaceous. Cretaceous warming led to heating of ocean waters even at moderately high latitudes and to the development of Tethyan radiolarians there. These data are confirmed by a global Cretaceous temperature peak coinciding with a high-activity pulse of the planetary mantle superplume system, which created thermal anomalies and the greenhouse effect. In addition, the Pacific superplume attributed to this system caused accelerated movement of oceanic plates, which resulted in a compression setting on the periphery of the Pacific and the formation of the Okhotsk-Koryak orogenic belt on its northwestern framing in the Middle Cretaceous, where Mesozoic rocks of different geodynamic and latitudinal-climate settings were juxtaposed into allochthonous units.

  8. A hidden Late Cretaceous arc and subsequent magmatic events in the Caucasus-Iran-Anatolia (CIA) orogenic belt: Detrital zircon U-Pb and Hf isotopic constraints

    NASA Astrophysics Data System (ADS)

    Tien, C. Y.; Lin, Y. C.; Chu, M. F.; Chung, S. L.; Bi˙ngöl, A. F.

    2017-12-01

    The Caucasus-Iran-Anatolia (CIA) orogenic belt formed by "Turkic-type orogeny" consists mainly of subduction-accretion complexes following the collision between Eurasia and Arabia and the closure of Neotethy. This study reports U-Pb and Hf isotopic data of detrital zircon separates from five Eocene to mid-Miocene sandstone samples from Divrigi and Duranlar in the west to the Mus basin in the east, all locating in the northern part of the Bitlis-Zagros suture zone. The U-Pb age data suggest four main magmatic episodes: (1) 100-70 Ma, (2) 60-40 Ma, (3) 30 Ma, and (4) 15 Ma. The Late Cretaceous zircons recovered mainly from the Mus basin are marked by a significant Hf isotopic variation over time, with ɛHf(T) values dropping from +15 to -10. Zircons from the second and third episodes show spatial variations in isotopic compositions, with positive ɛHf(T) values (+10 to +5) in the Mus basin and heterogeneous ɛHf(T) values (+10 to -10) in the west. The fourth and youngest episode of zircons, mainly from Duranlar area, shows uniform ɛHf(T) values around +5. We attribute the Late Cretaceous episode of zircons to the broadly coeval Elazig arc magmatism that, according to our counterpart study, occurred as a short-lived, intra-oceanic arc system by subduction initiation after the formation of Neotethyan ophiolites in the region. Moreover, we argue that this Late Cretaceous arc system may have existed more widely within the southern branch of Neothethys than that suggested by present-day outcrops. The dramatic change in Hf isotopic composition from 100 to 70 Ma, also observed in the rock record by our counterpart study, may be interpreted as a result of subduction to accretion processes. The remaining three episodes of zircons are related to younger stages of magmatism within or around the suture zone that remains poorly studied. Our results indicate that detrital zircon is a useful tool to uncover "hidden" magmatic records in the CIA and other "Turkic-type" orogenic

  9. The Early Origin of the Antarctic Marine Fauna and Its Evolutionary Implications.

    PubMed

    Crame, J Alistair; Beu, Alan G; Ineson, Jon R; Francis, Jane E; Whittle, Rowan J; Bowman, Vanessa C

    2014-01-01

    The extensive Late Cretaceous - Early Paleogene sedimentary succession of Seymour Island, N.E. Antarctic Peninsula offers an unparalleled opportunity to examine the evolutionary origins of a modern polar marine fauna. Some 38 modern Southern Ocean molluscan genera (26 gastropods and 12 bivalves), representing approximately 18% of the total modern benthic molluscan fauna, can now be traced back through at least part of this sequence. As noted elsewhere in the world, the balance of the molluscan fauna changes sharply across the Cretaceous - Paleogene (K/Pg) boundary, with gastropods subsequently becoming more diverse than bivalves. A major reason for this is a significant radiation of the Neogastropoda, which today forms one of the most diverse clades in the sea. Buccinoidea is the dominant neogastropod superfamily in both the Paleocene Sobral Formation (SF) (56% of neogastropod genera) and Early - Middle Eocene La Meseta Formation (LMF) (47%), with the Conoidea (25%) being prominent for the first time in the latter. This radiation of Neogastropoda is linked to a significant pulse of global warming that reached at least 65°S, and terminates abruptly in the upper LMF in an extinction event that most likely heralds the onset of global cooling. It is also possible that the marked Early Paleogene expansion of neogastropods in Antarctica is in part due to a global increase in rates of origination following the K/Pg mass extinction event. The radiation of this and other clades at ∼65°S indicates that Antarctica was not necessarily an evolutionary refugium, or sink, in the Early - Middle Eocene. Evolutionary source - sink dynamics may have been significantly different between the Paleogene greenhouse and Neogene icehouse worlds.

  10. Impact melting of frozen oceans on the early Earth: implications for the origin of life

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Bigham, C.; Miller, S. L.

    1994-01-01

    Without sufficient greenhouse gases in the atmosphere, the early Earth would have become a permanently frozen planet because the young Sun was less luminous than it is today. Several resolutions to this faint young Sun-frozen Earth paradox have been proposed, with an atmosphere rich in CO2 being the one generally favored. However, these models assume that there were no mechanisms for melting a once frozen ocean. Here we show that bolide impacts between about 3.6 and 4.0 billion years ago could have episodically melted an ice-covered early ocean. Thaw-freeze cycles associated with bolide impacts could have been important for the initiation of abiotic reactions that gave rise to the first living organisms.

  11. Paleolatitudes of the Tibetan Himalaya from primary and secondary magnetizations of Jurassic to Lower Cretaceous sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Huang, Wentao; van Hinsbergen, Douwe J. J.; Dekkers, Mark J.; Garzanti, Eduardo; Dupont-Nivet, Guillaume; Lippert, Peter C.; Li, Xiaochun; Maffione, Marco; Langereis, Cor G.; Hu, Xiumian; Guo, Zhaojie; Kapp, Paul

    2015-01-01

    The Tibetan Himalaya represents the northernmost continental unit of the Indian plate that collided with Asia in the Cenozoic. Paleomagnetic studies on the Tibetan Himalaya can help constrain the dimension and paleogeography of "Greater India," the Indian plate lithosphere that subducted and underthrusted below Asia after initial collision. Here we present a paleomagnetic investigation of a Jurassic (limestones) and Lower Cretaceous (volcaniclastic sandstones) section of the Tibetan Himalaya. The limestones yielded positive fold test, showing a prefolding origin of the isolated remanent magnetizations. Detailed paleomagnetic analyses, rock magnetic tests, end-member modeling of acquisition curves of isothermal remanent magnetization, and petrographic investigation reveal that the magnetic carrier of the Jurassic limestones is authigenic magnetite, whereas the dominant magnetic carrier of the Lower Cretaceous volcaniclastic sandstones is detrital magnetite. Our observations lead us to conclude that the Jurassic limestones record a prefolding remagnetization, whereas the Lower Cretaceous volcaniclastic sandstones retain a primary remanence. The volcaniclastic sandstones yield an Early Cretaceous paleolatitude of 55.5°S [52.5°S, 58.6°S] for the Tibetan Himalaya, suggesting it was part of the Indian continent at that time. The size of "Greater India" during Jurassic time cannot be estimated from these limestones. Instead, a paleolatitude of the Tibetan Himalaya of 23.8°S [21.8°S, 26.1°S] during the remagnetization process is suggested. It is likely that the remagnetization, caused by the oxidation of early diagenetic pyrite to magnetite, was induced during 103-83 or 77-67 Ma. The inferred paleolatitudes at these two time intervals imply very different tectonic consequences for the Tibetan Himalaya.

  12. Tsunami Early Warning for the Indian Ocean Region - Status and Outlook

    NASA Astrophysics Data System (ADS)

    Lauterjung, Joern; Rudloff, Alexander; Muench, Ute; Gitews Project Team

    2010-05-01

    The German-Indonesian Tsunami Early Warning System (GITEWS) for the Indian Ocean region has gone into operation in Indonesia in November 2008. The system includes a seismological network, together with GPS stations and a network of GPS buoys additionally equipped with ocean bottom pressure sensors and a tide gauge network. The different sensor systems have, for the most part, been installed and now deliver respective data either online or interactively upon request to the Warning Centre in Jakarta. Before 2011, however, the different components requires further optimization and fine tuning, local personnel needs to be trained and eventual problems in the daily operation have to be dealt with. Furthermore a company will be founded in the near future, which will guarantee a sustainable maintenance and operation of the system. This concludes the transfer from a temporarily project into a permanent service. This system established in Indonesia differs from other Tsunami Warning Systems through its application of modern scientific methods and technologies. New procedures for the fast and reliable determination of strong earthquakes, deformation monitoring by GPS, the modeling of tsunamis and the assessment of the situation have been implemented in the Warning System architecture. In particular, the direct incorporation of different sensors provides broad information already at the early stages of Early Warning thus resulting in a stable system and minimizing breakdowns and false alarms. The warning system is designed in an open and modular structure based on the most recent developments and standards of information technology. Therefore, the system can easily integrate additional sensor components to be used for other multi-hazard purposes e.g. meteorological and hydrological events. Up to now the German project group is cooperating in the Indian Ocean region with Sri Lanka, the Maldives, Iran, Yemen, Tanzania and Kenya to set up the equipment primarily for

  13. Application of Seasat Altimetry to Tectonic Studies of Fracture Zones in the Southern Oceans

    DTIC Science & Technology

    1987-06-01

    separation of the Indian, African and Antartic plates. More accurate poles describing the development of the Southwest Indian Ocean during the Cretaceous to...directions and rates across the common boundaries of the African, Indian, Antartic and South American plate system. It is 250 from the poles calculated

  14. Climate change and carbon-cycling during the latest Cretaceous-Early Paleogene; a new 13.5 million year-long, orbital-resolution, stable isotope record from the South Atlantic

    NASA Astrophysics Data System (ADS)

    Barnet, J.; Littler, K.; Kroon, D.; Leng, M. J.; Westerhold, T.; Roehl, U.; Zachos, J. C.

    2017-12-01

    The "greenhouse" world of the latest Cretaceous-Early Paleogene ( 70-34 Ma) was characterised by multi-million year variability in climate and the carbon-cycle. Throughout this interval the pervasive imprint of orbital-cyclicity, particularly eccentricity and precession, is visible in elemental and stable isotope data obtained from multiple deep-sea sites. Periodic "hyperthermal" events, occurring largely in-step with these orbital cycles, have proved particularly enigmatic, and may be the closest, albeit imperfect, analogues for anthropogenic climate change. This project utilises CaCO3-rich marine sediments recovered from ODP Site 1262 at a paleo-depth of 3600 m on the Walvis Ridge, South Atlantic, of late Maastrichtian-mid Paleocene age ( 67-60 Ma). We have derived high-resolution (2.5-4 kyr) carbon and oxygen isotope data from the epifaunal benthic foraminifera species Nuttallides truempyi. Combining the new record with the existing Late Paleocene-Early Eocene record generated from the same site by Littler et al. (2014), yields a single-site reference curve detailing 13.5 million years of orbital cyclicity in paleoclimate and carbon cycle from the latest Cretaceous to near the peak warmth of the Early Paleogene greenhouse. Spectral analysis of this new combined dataset allows us to identify long (405-kyr) eccentricity, short (100-kyr) eccentricity, and precession (19-23-kyr) as the principle forcing mechanisms governing pacing of the background climate and carbon-cycle during this time period, with a comparatively weak obliquity (41-kyr) signal. Cross-spectral analysis suggests that changes in climate lead the carbon cycle throughout most of the record, emphasising the role of the release of temperature-sensitive carbon stores as a positive feedback to an initial warming induced by changes in orbital configuration. The expression of comparatively understudied Early Paleocene events, including the Dan-C2 Event, Latest Danian Event, and Danian/Selandian Transition

  15. From Tethyan Oceans to the Western Mediterranean I - Plate reconstructions from the Present back to the Early Mesozoic

    NASA Astrophysics Data System (ADS)

    Schmid, Stefan; Handy, Mark; Bousquet, Romain; Kissling, Eduard; Bernoulli, Daniel

    2010-05-01

    -Kabylia-Peloritani-Calabria; Michard et al. 2002) is rendered necessary for two principal reasons: (a) the contrasting tectonometamorphic evolution of the West Ligurian Ocean (future Alps-Corsica-Betics) and the East Ligurian Ocean (future Apennine) make it necessary to kinematically decouple the fate of these two branches of Alpine Tethys located on opposite sides of the Alkapekia continental block; (b) Alkapecia that was formerly part of the African and/or Adriatic plate overrode parts of the Iberian, African and Adria plates as an independent continental microplate during Late Cenozoic rollback subduction leading to the present-day Betic-Rif arc and the Calabrian Trench-Arc system. Our complex five-plate model provides an explanation of the equally complex evolution of the Western Mediterranean-Alps system, as discussed in part II of this contribution (Handy et al.). Márton, E., Zampieri, D., Grandesso, P., Ćosović, V., Moro, A., submitted to Tectonophysics. New Cretaceous paleomagnetic results from the foreland of the Southern Alps and the refined apparent polar wander path for stable Adria. Savostin, L.A., Sibuet, J.-C., Zonenshain, L.P., Le Pichon, X., Roulet, M.-J., 1986. Kinematic evolution of the Tethys belt from the Atlantic ocean to the Pamire since the Triassic. Tectonophysics 123: 1-35. Séranne, M., 1999. The Gulf of Lion continental margin (NW Mediterranean) revisited by IBS: an overview. In: B. Durand, L. Jolivet, F. Horvath, M. Séranne (Editors), The Mediterranean Basins: Tertiary Extension within the Alpine Orogen. Geological Society, London, Special Publications 156: 15-36. Michard, A., Chalouan, A., Feinberg, H., Goffé, B., Montigny, R., 2002. How does the Alpine belt end between Spain and Morocco? Bullétin Societé géologique de France 173: 3-15.

  16. Isolated teeth of Anhangueria  (Pterosauria: Pterodactyloidea) from the Lower Cretaceous of Lightning Ridge, New South Wales, Australia

    PubMed Central

    Smith, Elizabeth T.; Bell, Phil R.

    2017-01-01

    The fossil record of Australian pterosaurs is sparse, consisting of only a small number of isolated and fragmentary remains from the Cretaceous of Queensland, Western Australia and Victoria. Here, we describe two isolated pterosaur teeth from the Lower Cretaceous (middle Albian) Griman Creek Formation at Lightning Ridge (New South Wales) and identify them as indeterminate members of the pterodactyloid clade Anhangueria. This represents the first formal description of pterosaur material from New South Wales. The presence of one or more anhanguerian pterosaurs at Lightning Ridge correlates with the presence of ‘ornithocheirid’ and Anhanguera-like pterosaurs from the contemporaneous Toolebuc Formation of central Queensland and the global distribution attained by ornithocheiroids during the Early Cretaceous. The morphology of the teeth and their presence in the estuarine- and lacustrine-influenced Griman Creek Formation is likely indicative of similar life habits of the tooth bearer to other members of Anhangueria. PMID:28480142

  17. Structural implications of an offset Early Cretaceous shoreline in northern California

    USGS Publications Warehouse

    Jones, D.L.; Irwin, W.P.

    1971-01-01

    Recognition of a nonmarine to marine transition in sedimentary rocks at Glade Creek and Big Bar in the southern Klamath Mountains permits reconstruction of the approximate position of a north-trending Early Cretaceous (Valanginian) shoreline. At the southern end of the Klamath Mountains, the shoreline is displaced 60 mi or more to the east by a west-northwest-trending fault zone. South of this fault zone the shoreline is buried at a much lower level beneath late Cenozoic rocks in the Great Valley. This large displacement probably is the result of differential movement along a system of left-lateral tear faults in the upper plate of the Coast Range thrust. The westward bulge of the Klamath arc also may have resulted from this faulting, as the amount and direction of the bulge is comparable with the displacement of the Valanginian shoreline.Basal clastic strata at both Glade Creek and Big Bar contain abundant fresh-water or brackish-water clams, many of which consist of unabraded paired valves. These are conformably overlain by Valanginian marine strata containing Buchia crassicollis solida.The position of the Valanginian shoreline beneath the Great Valley cannot be directly observed because it is buried by thick late Cenozoic deposits. However, its approximate westernmost limit must lie between the outcrop belt of marine strata on the west side of the valley and drill holes to basement on the east side, in which equivalent strata are absent.Franciscan rocks containing Valanginian fossils occur 10 mi southwest of Glade Creek, but these are deep-water marine eugeosynclinal rocks that were deposited far to the west of the shoreline. The deformation responsible for the displacement of the Valanginian shoreline and juxtaposition of the Franciscan rocks and Klamath Mountain basement rocks involved eastward under-thrusting of the Franciscan beneath the Coast Range thrust contemporaneous with differential movement along tear faults within the upper plate.

  18. Isotope and elemental geochemistry of Cretaceous fossiliferous concretions (Santana Formation, Brazil)

    NASA Astrophysics Data System (ADS)

    Heimhofer, Ulrich; Meister, Patrick; Bernasconi, Stefano M.; Ariztegui, Daniel; Martill, David M.; Schwark, Lorenz

    2014-05-01

    Exceptional three-dimensional fossil preservation (incl. phosphatization of soft-tissues) within organic carbon-rich mudstones is often associated with the formation of a protective carbonate shell surrounding the fossil specimen. Examples for this type of preservation are the Early Cretaceous fishes, turtles and pterosaurs from the Brazilian Santana Formation. Numerous studies proposed different conceptual models for concretion formation. Having new state-of-the-art geochemical tools at hand we revisited these models for the Santana Formation as an exemplary case. Differential compaction clearly indicates early precipitation of micritic calcite surrounding a central cavity containing the still decomposing fossil. The presence of pyrite forming a circular rim around the fossil and carbonate with negative carbon isotope compositions suggest intense sulphate reduction whereby the production of ammonium from the decay of proteins led to an increased alkalinity, which induced early carbonate precipitation. By means of micro-XRF scanning we found that pyrite is absent from the interior part of the concretions and that total iron content is very low, which indicate absence of sulphate reduction at the center of the concretions and possibly local onset of methanogenesis. We postulate that the central cavity may even have been filled with methane gas that evolved from the decaying animal. Methane diffusing outward was anaerobically oxidized in the surrounding sulphate reduction zone. Carbonate clumped isotopes revealed that micritic calcite formed early, but that these early precipitates are overprinted by two different late diagenetic cements precipitated at elevated temperatures. The occurrence of an outermost "cone-in-cone" calcite rim can be associated with burial showing temperatures of up to 60°C. Strontium-isotope ratios of matrix calcite and cement phases show radiogenic values (0.710416 to 0.712465), which are significantly higher than typical marine Cretaceous

  19. Ophthalmic Vascular Events after Primary Unilateral Intra-arterial Chemotherapy for Retinoblastoma in Early and Recent Eras.

    PubMed

    Dalvin, Lauren A; Ancona-Lezama, David; Lucio-Alvarez, J Antonio; Masoomian, Babak; Jabbour, Pascal; Shields, Carol L

    2018-06-16

    To assess risk factors for ophthalmic vascular events after intra-arterial chemotherapy (IAC) for retinoblastoma. Retrospective cohort study. Patients who received unilateral IAC as primary treatment for retinoblastoma from January 1, 2009, to November 30, 2017, at a single center. Records were reviewed for patient demographics, tumor features, IAC parameters, and treatment-related vascular events in the early IAC era (2009-2011) compared with the recent era (2012-2017) using the t test and Fisher exact test. Change in event rates over time was assessed using Poisson regression analysis, with Spearman's rho used to test correlation. Rate of IAC-induced ophthalmic vascular events. There were 243 chemotherapy infusions in 76 eyes of 76 patients, divided into early (22 eyes, 57 infusions) and recent (54 eyes, 186 infusions) eras. Intra-arterial chemotherapy consisted of melphalan (243 infusions), topotecan (124 infusions), and carboplatin (9 infusions). A comparison (early vs. recent era) revealed fewer mean number of infusions (2.6 vs. 3.4, P = 0.02) with similar mean patient age and presenting tumor features. Event rates decreased over time (P < 0.01), with fewer ophthalmic vascular events (early era vs. recent era) in the recent era (59% vs. 9% per eye, 23% vs. 3% per infusion, P < 0.01), including peripheral retinal nonperfusion (5% vs. 2% per eye, P = 0.50), vitreous hemorrhage (9% vs. 2%, P = 0.20), subretinal hemorrhage (0% vs. 2%, P = 0.99), branch retinal vein occlusion (5% vs. 0%, P = 0.29), choroidal ischemia (14% vs. 4%, P = 0.14), and ophthalmic artery spasm/occlusion (27% vs. 0%, P < 0.01). Events did not correlate to patient age (P = 0.75), tumor diameter (P = 0.32), tumor thickness (P = 0.59), or cumulative dosage of melphalan (P = 0.13) or topotecan (P = 0.59). There were no IAC-induced vascular events in 72 infusions of 21 consecutively treated eyes in 2016 to 2017. Ophthalmic vascular events after IAC have decreased from the early era

  20. Early Mars may have had a methanol ocean

    NASA Astrophysics Data System (ADS)

    Tang, Yan; Chen, Qianwang; Huang, Yujie

    2006-01-01

    The detection of gray crystalline hematite deposits on Mars by Thermal Emission Spectrometer (TES) has been used to argue for the presence of liquid water on Mars in the distant past. By methanol-thermal treatment of anhydrous FeCl 3 at low temperatures (70-160 °C), crystalline gray hematite with layered structure was synthesized, based on this result an alternative explanation for the origin of martian hematite deposits is suggested. Methane could be abundant in the early martian atmosphere; process such as photochemical oxidation of methane could result in the formation of ocean or pool of organic compounds such as methanol, which provides an environment for the formation of large-scale hematite deposits on Mars.

  1. Early concepts and charts of ocean circulation

    NASA Astrophysics Data System (ADS)

    Peterson, R. G.; Stramma, L.; Kortum, G.

    little about them was reported in the Classical works. Following the dark and Middle Ages, when little progress was made, the voyages of discovery brought startling observations of many of Earth's most important ocean currents, such as the North and South Equatorial currents, the Gulf Stream, the Agulhas, Kuroshio, Peru, and Guinea currents, and others. The Gulf Stream appears to have been mapped as early as 1525 (Ribeiro) on the basis of Spanish pilot charts. Some currents were found to be westward, in the direction of the primum mobile as expected by theologians and philosophers, while others were not. The fifteenth through seventeenth centuries were marked by attainments of knowledge that increasingly taxed the abilities of science writers to reconcile new information with accepted doctrine. Consequences of this were descriptions of ocean circulation that questioned doctrine, yet were limited by it (Martyr; Gilbert; Bourne; Varen), while other descriptions disdainfully violated observation (Kircher; Happel). The expectation of a continuous westward oceanic flow around Earth in the direction of the primum mobile was so pervasive that it became central to arguments about a need for a passage through or around the Canadian north, and thus weighed significantly on the exploration and mapping of North America. Religious influences and the conceptual importance of the primum mobile waned by the close of the Renaissance and wind came to be seen as the primary cause of ocean currents (Dampier). The Gulf Stream (Franklin) and other North Atlantic flow patterns (de Brahm), as well as the southern Agulhas Current (Rennell), were mapped in the mid-to-late eighteenth century. Significant advances beyond these in determining the global ocean circulation came only after the routine determination of longitude at sea was instituted. The introduction of the marine chronometer in the late eighteenth century (Harrison) made this possible. By the end of the eighteenth century it was

  2. Brazilian continental cretaceous

    NASA Astrophysics Data System (ADS)

    Petri, Setembrino; Campanha, Vilma A.

    1981-04-01

    Cretaceous deposits in Brazil are very well developed, chiefly in continental facies and in thick sequences. Sedimentation occurred essentially in rift-valleys inland and along the coast. Three different sequences can be distinguished: (1) a lower clastic non-marine section, (2) a middle evaporitic section, (3) an upper marine section with non-marine regressive lithosomes. Continental deposits have been laid down chiefly between the latest Jurassic and Albian. The lower lithostratigraphic unit is represented by red shales with occasional evaporites and fresh-water limestones, dated by ostracods. A series of thick sandstone lithosomes accumulated in the inland rift-valleys. In the coastal basins these sequences are often incompletely preserved. Uplift in the beginning of the Aptian produced a widespread unconformity. In many of the inland rift-valleys sedimentation ceased at that time. A later transgression penetrated far into northeastern Brazil, but shortly after continental sedimentation continued, with the deposition of fluvial sandstones which once covered large areas of the country and which have been preserved in many places. The continental Cretaceous sediments have been laid down in fluvial and lacustrine environments, under warm climatic conditions which were dry from time to time. The fossil record is fairly rich, including besides plants and invertebrates, also reptiles and fishes. As faulting tectonism was rather strong, chiefly during the beginning of the Cretaceous, intercalations of igneous rocks are frequent in some places. Irregular uplift and erosion caused sediments belonging to the remainder of this period to be preserved only in tectonic basins scattered across the country.

  3. Exhumation History Of Brasilian Highlands After Late Cretaceous Alcaline Magmatism

    NASA Astrophysics Data System (ADS)

    Doranti Tiritan, Carolina; Hackspacher, Peter Christian; Carina Siqueira Ribeiro, Marli; Glasmacher, Ulrich Anton; Françoso de Godoy, Daniel

    2017-04-01

    The southeast Brazilian margin recorded a long history of tectonic and magmatic events after the Gondwana continent break up. The drifting of the South American Platform over a thermal anomaly generated a series of alkaline intrusions that are distributed from the interior to the coast from west to east. Several exhumation events are recorded on the region and we are providing insights on the landscape evolution of the region since Late Cretaceous, comparing low temperature thermochronology results from two alkaline intrusions regions. Poços de Caldas Alkaline Massif (PCAM), is lied in the interior, 300km from the coastline, covering over 800km2 intruding the Precambrian basement around 83Ma, nepheline syenites, phonolites and tinguaites intruded in a continuous and rapid sequence lasting between 1 to 2 Ma. São Sebastião Island (SSI) on the other hand is located at the coast, 200 km southeast of São Paulo. It is characterized by an intrusion in Precambrian/Brazilian orogen and intruded by Early Cretaceous sub-alkaline basic and acid dykes, as well as by Late Cretaceous alkaline stocks (syenites) and dykes (basanite to phonolite). Will be presenting the apatite fission track (AFT) and (U-Th)/He results that shows the main difference between the areas is that PCAM region register older history then the coastal area of SSI, where thermal history starts register cooling event after the South Atlantic rifting process, while in the PCAM area register a previous history, since Carboniferous. The results are giving support to studies that indicate the development of the relief in Brazil being strongly influenced by the local and regional tectonic movements and the lithological and structural settings. The landscape at the Late Cretaceous was witness of heating process between 90 and 60Ma due the intense uplift of South American Platform. The elevation of the isotherms is associated with the mantellic plumes and the crustal thickness that caused thermal anomalies due

  4. Impact melting of frozen oceans on the early Earth: Implications for the origin of life

    PubMed Central

    Bada, J. L.; Bigham, C.; Miller, S. L.

    1994-01-01

    Without sufficient greenhouse gases in the atmosphere, the early Earth would have become a permanently frozen planet because the young Sun was less luminous than it is today. Several resolutions to this faint young Sun-frozen Earth paradox have been proposed, with an atmosphere rich in CO2 being the one generally favored. However, these models assume that there were no mechanisms for melting a once frozen ocean. Here we show that bolide impacts between about 3.6 and 4.0 billion years ago could have episodically melted an ice-covered early ocean. Thaw-freeze cycles associated with bolide impacts could have been important for the initiation of abiotic reactions that gave rise to the first living organisms. PMID:11539550

  5. Reconstruction of South Pacific Dust Accumulation during the Early Paleogene Greenhouse

    NASA Astrophysics Data System (ADS)

    Amaya, D.; Thomas, D. J.; Marcantonio, F.; Korty, R.; Huber, M.; Winckler, G.; Alvarez Zarikian, C. A.

    2012-12-01

    The accumulation of dust in remote, pelagic sediments is controlled by aridity in the source regions as well as the gustiness of the transporting winds. Models and theory predict lower zonal wind intensities and gustiness in climates characterized by diminished meridional gradients such as the Late Cretaceous and Early Paleogene. The few published long-term data indicate overall lower dust accumulation in the northern Pacific and southern Indian Ocean during the Late Cretaceous and Early Paleogene than during the Neogene, as well as higher dust accumulation in the northern hemisphere than that in the south during the Late Cretaceous and Early Paleogene. However, the existing dust reconstruction likely is biased by sparse coverage, particularly from the Pacific with data limited to the northern low and subtropical latitudes. To begin examining the South Pacific, we took advantage of an extensive geochemical data set generated for DSDP Site 596, and estimated 232Th-based dust fluxes from the published 232Th concentration data and sediment mass accumulation rates. The long-term trend and absolute flux values from Site 596 are similar to that of the northern Pacific GPC3, with the exception of the late Paleocene - early Eocene and the late Neogene. We also generated a new 232Th-based dust accumulation record from IODP Site U1370 to begin examining the record from southern temperate and high latitudes (Site U1370 backtracks to close to 60°S at 50 Ma). The Site U1370 data reveal dust fluxes significantly higher than those recorded in the North Pacific, however the overall decrease from ~65 Ma to ~25 Ma is similar to the trends at Site 576 and GPC3. The new South Pacific data suggests that Sites 596 and U1370 were influenced by different prevailing winds (e.g., delivering dust from source regions with different vegetation/hydrologic conditions), different levels of storminess/gustiness, or a combination of both. If the dust fluxes recorded at Site U1370 are

  6. Late Cretaceous (Late Campanian-Maastrichtian) sea surface temperature record of the Boreal Chalk Sea

    NASA Astrophysics Data System (ADS)

    Thibault, N.; Harlou, R.; Schovsbo, N. H.; Stemmerik, L.; Surlyk, F.

    2015-11-01

    The last 8 Myr of the Cretaceous greenhouse interval were characterized by a progressive global cooling with superimposed cool/warm fluctuations. The mechanisms responsible for these climatic fluctuations remain a source of debate that can only be resolved through multi-disciplinary studies and better time constraints. For the first time, we present a record of very high-resolution (ca. 4.5 kyr) sea-surface temperature (SST) changes from the Boreal epicontinental Chalk Sea (Stevns-1 core, Denmark), tied to an astronomical time scale of the late Campanian-Maastrichtian (74 to 66 Myr). Well-preserved bulk stable isotope trends and calcareous nannofossil palaeoecological patterns from the fully cored Stevns-1 borehole show marked changes in SSTs. These variations correlate with deep-water records of climate change from the tropical South Atlantic and Pacific oceans but differ greatly from the climate variations of the North Atlantic. We demonstrate that the onset and end of the early Maastrichtian cooling and of the large negative Campanian-Maastrichtian boundary carbon isotope excursion are coincident in the Chalk Sea. The direct link between SSTs and δ13C variations in the Chalk Sea reassesses long-term glacio-eustasy as the potential driver of carbon isotope and climatic variations in the Maastrichtian.

  7. Late Cretaceous (late Campanian-Maastrichtian) sea-surface temperature record of the Boreal Chalk Sea

    NASA Astrophysics Data System (ADS)

    Thibault, Nicolas; Harlou, Rikke; Schovsbo, Niels H.; Stemmerik, Lars; Surlyk, Finn

    2016-02-01

    The last 8 Myr of the Cretaceous greenhouse interval were characterized by a progressive global cooling with superimposed cool/warm fluctuations. The mechanisms responsible for these climatic fluctuations remain a source of debate that can only be resolved through multi-disciplinary studies and better time constraints. For the first time, we present a record of very high-resolution (ca. 4.5 kyr) sea-surface temperature (SST) changes from the Boreal epicontinental Chalk Sea (Stevns-1 core, Denmark), tied to an astronomical timescale of the late Campanian-Maastrichtian (74 to 66 Ma). Well-preserved bulk stable isotope trends and calcareous nannofossil palaeoecological patterns from the fully cored Stevns-1 borehole show marked changes in SSTs. These variations correlate with deep-water records of climate change from the tropical South Atlantic and Pacific oceans but differ greatly from the climate variations of the North Atlantic. We demonstrate that the onset and end of the early Maastrichtian cooling and of the large negative Campanian-Maastrichtian boundary carbon isotope excursion are coincident in the Chalk Sea. The direct link between SSTs and δ13C variations in the Chalk Sea reassesses long-term glacio-eustasy as the potential driver of carbon isotope and climatic variations in the Maastrichtian.

  8. Dinosaur morphological diversity and the end-Cretaceous extinction.

    PubMed

    Brusatte, Stephen L; Butler, Richard J; Prieto-Márquez, Albert; Norell, Mark A

    2012-05-01

    The extinction of non-avian dinosaurs 65 million years ago is a perpetual topic of fascination, and lasting debate has focused on whether dinosaur biodiversity was in decline before end-Cretaceous volcanism and bolide impact. Here we calculate the morphological disparity (anatomical variability) exhibited by seven major dinosaur subgroups during the latest Cretaceous, at both global and regional scales. Our results demonstrate both geographic and clade-specific heterogeneity. Large-bodied bulk-feeding herbivores (ceratopsids and hadrosauroids) and some North American taxa declined in disparity during the final two stages of the Cretaceous, whereas carnivorous dinosaurs, mid-sized herbivores, and some Asian taxa did not. Late Cretaceous dinosaur evolution, therefore, was complex: there was no universal biodiversity trend and the intensively studied North American record may reveal primarily local patterns. At least some dinosaur groups, however, did endure long-term declines in morphological variability before their extinction.

  9. Endocranial Morphology of the Primitive Nodosaurid Dinosaur Pawpawsaurus campbelli from the Early Cretaceous of North America

    PubMed Central

    Paulina-Carabajal, Ariana; Lee, Yuong-Nam; Jacobs, Louis L.

    2016-01-01

    Background Ankylosaurs are one of the least explored clades of dinosaurs regarding endocranial anatomy, with few available descriptions of braincase anatomy and even less information on brain and inner ear morphologies. The main goal of this study is to provide a detailed description of the braincase and internal structures of the Early Cretaceous nodosaurid Pawpawsaurus campbelli, based on recently made CT scans. Methodology/Principal Findings The skull of Pawpawsaurus was CT scanned at University of Texas at Austin (UTCT). Three-dimensional models were constructed using Mimics 18.0 (Materialise). The digital data and further processed 3D models revealed inaccessible anatomic structures, allowing a detailed description of the lateral wall of the braincase (obscured by other bones in the articulated skull), and endocranial structures such as the cranial endocast, the most complete inner ear morphology for a nodosaurid, and the interpretation of the airflow system within the nasal cavities. Conslusions/Significance The new information on the endocranial morphology of Pawpawsaurus adds anatomical data to the poorly understand ankylosaur paleoneurology. The new set of data has potential use not only in taxonomy and phylogeny, but also in paleobiological interpretations based on the relative development of sense organs, such as olfaction, hearing and balance. PMID:27007950

  10. Eighty-five million years of Pacific Ocean gyre ecosystem structure: long-term stability marked by punctuated change.

    PubMed

    Sibert, Elizabeth; Norris, Richard; Cuevas, Jose; Graves, Lana

    2016-05-25

    While the history of taxonomic diversification in open ocean lineages of ray-finned fish and elasmobranchs is increasingly known, the evolution of their roles within the open ocean ecosystem remains poorly understood. To assess the relative importance of these groups through time, we measured the accumulation rate of microfossil fish teeth and elasmobranch dermal denticles (ichthyoliths) in deep-sea sediment cores from the North and South Pacific gyres over the past 85 million years (Myr). We find three distinct and stable open ocean ecosystem structures, each defined by the relative and absolute abundance of elasmobranch and ray-finned fish remains. The Cretaceous Ocean (pre-66 Ma) was characterized by abundant elasmobranch denticles, but low abundances of fish teeth. The Palaeogene Ocean (66-20 Ma), initiated by the Cretaceous/Palaeogene mass extinction, had nearly four times the abundance of fish teeth compared with elasmobranch denticles. This Palaeogene Ocean structure remained stable during the Eocene greenhouse (50 Ma) and the Eocene-Oligocene glaciation (34 Ma), despite large changes in the overall accumulation of both groups during those intervals, suggesting that climate change is not a primary driver of ecosystem structure. Dermal denticles virtually disappeared from open ocean ichthyolith assemblages approximately 20 Ma, while fish tooth accumulation increased dramatically in variability, marking the beginning of the Modern Ocean. Together, these results suggest that open ocean fish community structure is stable on long timescales, independent of total production and climate change. The timing of the abrupt transitions between these states suggests that the transitions may be due to interactions with other, non-preserved pelagic consumer groups. © 2016 The Author(s).

  11. Eighty-five million years of Pacific Ocean gyre ecosystem structure: long-term stability marked by punctuated change

    PubMed Central

    Norris, Richard; Cuevas, Jose; Graves, Lana

    2016-01-01

    While the history of taxonomic diversification in open ocean lineages of ray-finned fish and elasmobranchs is increasingly known, the evolution of their roles within the open ocean ecosystem remains poorly understood. To assess the relative importance of these groups through time, we measured the accumulation rate of microfossil fish teeth and elasmobranch dermal denticles (ichthyoliths) in deep-sea sediment cores from the North and South Pacific gyres over the past 85 million years (Myr). We find three distinct and stable open ocean ecosystem structures, each defined by the relative and absolute abundance of elasmobranch and ray-finned fish remains. The Cretaceous Ocean (pre-66 Ma) was characterized by abundant elasmobranch denticles, but low abundances of fish teeth. The Palaeogene Ocean (66–20 Ma), initiated by the Cretaceous/Palaeogene mass extinction, had nearly four times the abundance of fish teeth compared with elasmobranch denticles. This Palaeogene Ocean structure remained stable during the Eocene greenhouse (50 Ma) and the Eocene–Oligocene glaciation (34 Ma), despite large changes in the overall accumulation of both groups during those intervals, suggesting that climate change is not a primary driver of ecosystem structure. Dermal denticles virtually disappeared from open ocean ichthyolith assemblages approximately 20 Ma, while fish tooth accumulation increased dramatically in variability, marking the beginning of the Modern Ocean. Together, these results suggest that open ocean fish community structure is stable on long timescales, independent of total production and climate change. The timing of the abrupt transitions between these states suggests that the transitions may be due to interactions with other, non-preserved pelagic consumer groups. PMID:27194702

  12. Inference of pCO2 Levels during the Late Cretaceous Using Fossil Lauraceae

    NASA Astrophysics Data System (ADS)

    Richey, J. D.; Upchurch, G. R.

    2011-12-01

    Botanical estimates of pCO2 for the Late Cretaceous have most commonly used Stomatal Index (SI) in fossil Ginkgo. Recently, SI in fossil Lauraceae has been used to infer changes in pCO2 across the Cenomanian-Turonian boundary, based on the relation between SI and pCO2 in extant Laurus and Hypodaphnis. To provide a broad-scale picture of pCO2 based on fossil Lauraceae, we examined dispersed cuticle of the leaf macrofossil genus Pandemophyllum from: 1) the early to middle Cenomanian of the Potomac Group of Maryland (Mauldin Mountain locality, lower Zone III) and 2) the Maastrichtian of southern Colorado (Raton Basin, Starkville South and Berwind Canyon localities). These samples fall within the Late Cretaceous decline in pCO2 inferred from geochemical modeling and other proxies. SI was calculated from fossil cuticle fragments using ImageJ and counts of up to 56,000 cells per sample, a far greater number of cells than are counted in most studies. CO2 levels were estimated using the relation between SI and CO2 published for Laurus nobilis and Hypodaphnis zenkeri. Early to middle Cenomanian atmospheric pCO2 is estimated at 362-536 parts per million (ppm). This represents the absolute minimum and maximum estimated CO2 levels from the ±95% confidence intervals (CI) of the relation between SI and CO2 for the modern equivalents, and SI ± 1 Standard Deviation (SD) in the fossil genus Pandemophyllum. Late Maastrichtian atmospheric pCO2 is estimated at 358-534 ppm. The Maastrichtian estimates falls within the range of published estimates from other proxies. The Cenomanian estimate, in contrast, is low relative to most other estimates. The 95% confidence intervals of our pCO2 estimates overlap each other and many of the assemblages published by Barclay et al. (2010) for Lauraceae across the Cenomanian-Turonian boundary. This could indicate that 1) pCO2 did not undergo a major long-term decline during the Late Cretaceous, 2) Lauraceae show low sensitivity to high pCO2, or 3

  13. The First Freshwater Mosasauroid (Upper Cretaceous, Hungary) and a New Clade of Basal Mosasauroids

    PubMed Central

    Makádi, László; Caldwell, Michael W.; Ősi, Attila

    2012-01-01

    Mosasauroids are conventionally conceived of as gigantic, obligatorily aquatic marine lizards (1000s of specimens from marine deposited rocks) with a cosmopolitan distribution in the Late Cretaceous (90–65 million years ago [mya]) oceans and seas of the world. Here we report on the fossilized remains of numerous individuals (small juveniles to large adults) of a new taxon, Pannoniasaurus inexpectatus gen. et sp. nov. from the Csehbánya Formation, Hungary (Santonian, Upper Cretaceous, 85.3–83.5 mya) that represent the first known mosasauroid that lived in freshwater environments. Previous to this find, only one specimen of a marine mosasauroid, cf. Plioplatecarpus sp., is known from non-marine rocks in Western Canada. Pannoniasaurus inexpectatus gen. et sp. nov. uniquely possesses a plesiomorphic pelvic anatomy, a non-mosasauroid but pontosaur-like tail osteology, possibly limbs like a terrestrial lizard, and a flattened, crocodile-like skull. Cladistic analysis reconstructs P. inexpectatus in a new clade of mosasauroids: (Pannoniasaurus (Tethysaurus (Yaguarasaurus, Russellosaurus))). P. inexpectatus is part of a mixed terrestrial and freshwater faunal assemblage that includes fishes, amphibians turtles, terrestrial lizards, crocodiles, pterosaurs, dinosaurs and birds. PMID:23284766

  14. Terrestrial paleoclimatic changes in northeast Asia during OAE 3 in the Late Cretaceous: Organic geochemical evidences from the Songliao paleo-lake Basin, northeast China

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Wang, C.; Huang, H.

    2016-12-01

    Oceanic anoxic events (OAEs) in the Cretaceous greenhouse world record significant paleoclimatic changes and represent major disturbances in the global carbon cycle. The Coniacian-Santonian oceanic anoxic event (OAE 3), the last of the Cretaceous OAEs, is characterized by restricted black shale deposits in equatorial to mid-latitude Atlantic and adjacent basins. Continental hydroclimate on tropical Africa and South America was proved have a strong effect on carbon burial in ocean basins during OAE 3, although terrestrial paleoclimatic changes on the other continents were not well understood. The Continental Scientific Drilling Project of the Songliao paleo-lake Basin (northeast China) recovered 500m thick, continuous, dark-colored, deep lacustrine mudstone of the Qingshankou Formation, with the age of 92.0-86.2Ma tightly constrained by radiometric dating on volcanic ashes, magnetostratigraphy and cyclostratigraphy. These sediments thus provide an opportunity to study terrestrial paleoclimate changes in northeast Asia during OAE 3. Our high-resolution ( 1m interval) TOC and δ13Corg data of the Qingshankou Formation in the Songliao Basin show several positive δ13Corg excursions over the OAE 3 time period. Spectrum analysis shows remarkable Milankovich cycles including eccentricity cycles ( 400kyr) and precession cycles ( 20 kyr). These data suggest that dark-colored mudstone deposition in the Songliao paleo-lake was probably controlled by regional hydroclimatic changes which were influenced by orbital forcing.

  15. Extending the fossil record of Polytrichaceae: Early Cretaceous Meantoinea alophosioides gen. et sp. nov., permineralized gametophytes with gemma cups from Vancouver Island.

    PubMed

    Bippus, Alexander C; Stockey, Ruth A; Rothwell, Gar W; Tomescu, Alexandru M F

    2017-04-01

    Diverse in modern ecosystems, mosses are dramatically underrepresented in the fossil record. Furthermore, most pre-Cenozoic mosses are known only from compression fossils, lacking detailed anatomical information. When preserved, anatomy vastly improves resolution in the systematic placement of fossils. Lower Cretaceous deposits at Apple Bay (Vancouver Island, British Columbia, Canada) contain a diverse anatomically preserved flora that includes numerous bryophytes, many of which have yet to be characterized. Among them is a polytrichaceous moss that is described here. Fossil moss gametophytes preserved in four carbonate concretions were studied in serial sections prepared using the cellulose acetate peel technique. We describe Meantoinea alophosioides gen. et sp. nov., a polytrichaceous moss with terminal gemma cups containing stalked, lenticular gemmae. Leaves with characteristic costal anatomy, differentiated into sheathing base and free lamina and bearing photosynthetic lamellae, along with a conducting strand in the stem, place Meantoinea in family Polytrichaceae. The bistratose leaf lamina with an adaxial layer of mamillose cells, short photosynthetic lamellae restricted to the costa, and presence of gemma cups indicate affinities with basal members of the Polytrichaceae, such as Lyellia , Bartramiopsis , and Alophosia . Meantoinea alophosioides enriches the documented moss diversity of an already-diverse Early Cretaceous plant fossil assemblage. This is the third moss described from the Apple Bay plant fossil assemblage and represents the first occurrence of gemma cups in a fossil moss. It is also the oldest unequivocal record of Polytrichaceae, providing a hard minimum age for the group of 136 million years. © 2017 Botanical Society of America.

  16. Brachyceran Diptera (Insecta) in Cretaceous ambers, Part IV, Significant New Orthorrhaphous Taxa

    PubMed Central

    Grimaldi, David A.; Arillo, Antonio; Cumming, Jeffrey M.; Hauser, Martin

    2011-01-01

    Abstract Thirteen species of basal Brachycera (11 described as new) are reported, belonging to nine families and three infraorders. They are preserved in amber from the Early Cretaceous (Neocomian) of Lebanon, Albian of northern Spain, upper Albian to lower Cenomanian of northern Myanmar, and Late Cretaceous of New Jersey USA (Turonian) and Alberta, Canada (Campanian). Taxa are as follows, with significance as noted: In Stratiomyomorpha: Stratiomyidae (Cretaceogaster pygmaeus Teskey [2 new specimens in Canadian amber], Lysistrata emerita Grimaldi & Arillo, gen. et sp. n. [stem-group species of the family in Spanish amber]), and Xylomyidae (Cretoxyla azari Grimaldi & Cumming, gen. et sp. n. [in Lebanese amber], and an undescribed species from Spain). In Tabanomorpha: Tabanidae (Cratotabanus newjerseyensis Grimaldi, sp. n., in New Jersey amber). In Muscomorpha: Acroceridae (Schlingeromyia minuta Grimaldi & Hauser, gen. et sp. n. and Burmacyrtus rusmithi Grimaldi & Hauser gen. et sp. n., in Burmese amber, the only definitive species of the family from the Cretaceous); Mythicomyiidae (Microburmyia analvena Grimaldi & Cumming gen. et sp. n. and Microburmyia veanalvena Grimaldi & Cumming, sp. n., stem-group species of the family, both in Burmese amber); Apsilocephalidae or near (therevoid family-group) (Kumaromyia burmitica Grimaldi & Hauser, gen. et sp. n. [in Burmese amber]); Apystomyiidae (Hilarimorphites burmanica Grimaldi & Cumming, sp. n. [in Burmese amber], whose closest relatives are from the Late Jurassic of Kazachstan, the Late Cretaceous of New Jersey, and Recent of California). Lastly, two species belonging to families incertae sedis, both in Burmese amber: Tethepomyiidae (Tethepomyia zigrasi Grimaldi & Arillo sp. n., the aculeate oviscapt of which indicates this family was probably parasitoidal and related to Eremochaetidae); and unplaced to family is Myanmyia asteiformia Grimaldi, gen. et sp. n., a minute fly with highly reduced venation. These new taxa

  17. Brachyceran Diptera (Insecta) in Cretaceous ambers, Part IV, Significant New Orthorrhaphous Taxa.

    PubMed

    Grimaldi, David A; Arillo, Antonio; Cumming, Jeffrey M; Hauser, Martin

    2011-01-01

    Thirteen species of basal Brachycera (11 described as new) are reported, belonging to nine families and three infraorders. They are preserved in amber from the Early Cretaceous (Neocomian) of Lebanon, Albian of northern Spain, upper Albian to lower Cenomanian of northern Myanmar, and Late Cretaceous of New Jersey USA (Turonian) and Alberta, Canada (Campanian). Taxa are as follows, with significance as noted: In Stratiomyomorpha: Stratiomyidae (Cretaceogaster pygmaeus Teskey [2 new specimens in Canadian amber], Lysistrata emerita Grimaldi & Arillo, gen. et sp. n. [stem-group species of the family in Spanish amber]), and Xylomyidae (Cretoxyla azari Grimaldi & Cumming, gen. et sp. n. [in Lebanese amber], and an undescribed species from Spain). In Tabanomorpha: Tabanidae (Cratotabanus newjerseyensis Grimaldi, sp. n., in New Jersey amber). In Muscomorpha: Acroceridae (Schlingeromyia minuta Grimaldi & Hauser, gen. et sp. n. and Burmacyrtus rusmithi Grimaldi & Hauser gen. etsp. n., in Burmese amber, the only definitive species of the family from the Cretaceous); Mythicomyiidae (Microburmyia analvena Grimaldi & Cumming gen. et sp. n. and Microburmyia veanalvena Grimaldi & Cumming, sp. n., stem-group species of the family, both in Burmese amber); Apsilocephalidae or near (therevoid family-group) (Kumaromyia burmitica Grimaldi & Hauser, gen. et sp. n. [in Burmese amber]); Apystomyiidae (Hilarimorphites burmanica Grimaldi & Cumming, sp. n. [in Burmese amber], whose closest relatives are from the Late Jurassic of Kazachstan, the Late Cretaceous of New Jersey, and Recent of California). Lastly, two species belonging to families incertae sedis, both in Burmese amber: Tethepomyiidae (Tethepomyia zigrasi Grimaldi & Arillo sp. n., the aculeate oviscapt of which indicates this family was probably parasitoidal and related to Eremochaetidae); and unplaced to family is Myanmyia asteiformia Grimaldi, gen. et sp. n., a minute fly with highly reduced venation. These new taxa significantly

  18. Early Paleogene variations in the calcite compensation depth: new constraints using old borehole sediments from across Ninetyeast Ridge, central Indian Ocean

    NASA Astrophysics Data System (ADS)

    Slotnick, B. S.; Lauretano, V.; Backman, J.; Dickens, G. R.; Sluijs, A.; Lourens, L.

    2015-03-01

    Major variations in global carbon cycling occurred between 62 and 48 Ma, and these very likely related to changes in the total carbon inventory of the ocean-atmosphere system. Based on carbon cycle theory, variations in the mass of the ocean carbon should be reflected in contemporaneous global ocean carbonate accumulation on the seafloor and, thereby, the depth of the calcite compensation depth (CCD). To better constrain the cause and magnitude of these changes, the community needs early Paleogene carbon isotope and carbonate accumulation records from widely separated deep-sea sediment sections, especially including the Indian Ocean. Several CCD reconstructions for this time interval have been generated using scientific drill sites in the Atlantic and Pacific oceans; however, corresponding information from the Indian Ocean has been extremely limited. To assess the depth of the CCD and the potential for renewed scientific drilling of Paleogene sequences in the Indian Ocean, we examine lithologic, nannofossil, carbon isotope, and carbonate content records for late Paleocene - early Eocene sediments recovered at three sites spanning Ninetyeast Ridge: Deep Sea Drilling Project (DSDP) Sites 213 (deep, east), 214 (shallow, central), and 215 (deep, west). The disturbed, discontinuous sediment sections are not ideal, because they were recovered in single holes using rotary coring methods, but remain the best Paleogene sediments available from the central Indian Ocean. The δ13C records at Sites 213 and 215 are similar to those generated at several locations in the Atlantic and Pacific, including the prominent high in δ13C across the Paleocene carbon isotope maximum (PCIM) at Site 215, and the prominent low in δ13C across the early Eocene Climatic Optimum (EECO) at both Site 213 and Site 215. The Paleocene-Eocene thermal maximum (PETM) and the K/X event are found at Site 213 but not at Site 215, presumably because of coring gaps. Carbonate content at both Sites 213 and

  19. The age and diversification of terrestrial New World ecosystems through Cretaceous and Cenozoic time.

    PubMed

    Graham, Alan

    2011-03-01

    Eight ecosystems that were present in the Cretaceous about 100 Ma (million years ago) in the New World eventually developed into the 12 recognized for the modern Earth. Among the forcing mechanisms that drove biotic change during this interval was a decline in global temperatures toward the end of the Cretaceous, augmented by the asteroid impact at 65 Ma and drainage of seas from continental margins and interiors; separation of South America from Africa beginning in the south at ca. 120 Ma and progressing northward until completed 90-100 Ma; the possible emission of 1500 gigatons of methane and CO(2) attributed to explosive vents in the Norwegian Sea at ca. 55 Ma, resulting in a temperature rise of 5°-6°C in an already warm world; disruption of the North Atlantic land bridge at ca. 45 Ma at a time when temperatures were falling; rise of the Andes Mountains beginning at ca. 40 Ma; opening of the Drake Passage between South America and Antarctica at ca. 32 Ma with formation of the cold Humboldt at ca. 30 Ma; union of North and South America at ca. 3.5 Ma; and all within the overlay of evolutionary processes. These processes generated a sequence of elements (e.g., species growing in moist habitats within an overall dry environment; gallery forests), early versions (e.g., mangrove communities without Rhizophora until the middle Eocene), and essentially modern versions of present-day New World ecosystems. As a first approximation, the fossil record suggests that early versions of aquatic communities (in the sense of including a prominent angiosperm component) appeared early in the Middle to Late Cretaceous, the lowland neotropical rainforest at 64 Ma (well developed by 58-55 Ma), shrubland/chaparral-woodland-savanna and grasslands around the middle Miocene climatic optimum at ca. 15-13 Ma, deserts in the middle Miocene/early Pliocene at ca. 10 Ma, significant tundra at ca. 7-5 Ma, and alpine tundra (páramo) shortly thereafter when cooling temperatures were augmented

  20. Bio- and chemostratigraphy of the Early Aptian Oceanic Anoxic Event 1a within the mid-latitudes of northwest Europe (Germany, Lower Saxony Basin)

    NASA Astrophysics Data System (ADS)

    Heldt, Matthias; Mutterlose, Joerg; Berner, Uli; Erbacher, Jochen

    2013-04-01

    The Mid-Cretaceous period was characterised by a series of prominent anoxic events, one of these was the late Early Aptian Oceanic Anoxic Event 1a (OAE 1a). The Fischschiefer horizon is the regional sedimentary expression of this event in a small epicontinental sea in northwest Europe (Germany, Lower Saxony Basin). In the present study, two sediment cores of Lower to Upper Aptian age (Hoheneggelsen KB 9 and 40) from the Brunswick area, north Germany, have been investigated in detail with respect to their lithostratigraphy, geochemistry (CaCO3, TOC), biostratigraphy (coccoliths, nannoliths) and high-resolution chemostratigraphy (^13Ccarb and ^13Corg). Together with separately published new planktonic foraminifer data of the cores it was possible to establish a detailed time frame and to recognise the OAE 1a. The ^13C data enabled us to subdivide the deposits into isotope segments (C2-C7), which are commonly used as stratigraphic markers in coeval sediments around the world. The carbon isotope curves are compared to recently published Aptian curves from other parts of the Lower Saxony Basin, all of which record the prominent carbon isotope anomaly of the OAE 1a. A high-resolution correlation of the typical isotope trends of OAE 1a (segments C3-6) across the Lower Saxony Basin appears difficult due to an early diagenetic overprint of the primary isotope signal. These alterations can be explained by the temporary establishment of euxinic conditions the Lower Saxony Basin during OAE 1a as consequence of an interplay of different factors, such as global warming, restricted palaeogeography, increased fluvial input and intensified stable water stratification, which is supported by several lines of regional evidence.