Science.gov

Sample records for early dark energy

  1. Dark Energy Survey releases early data | News

    released to the public. Astronomers and astronomy buffs can download the data from the website for the of all the images taken for the Dark Energy Survey. This is good news for the astronomy community, as Optical Astronomy Observatory's Cerro Tololo Inter-American Observatory in Chile. The Dark Energy Survey

  2. Constraining early and interacting dark energy with gravitational wave standard sirens: the potential of the eLISA mission

    SciT

    Caprini, Chiara; Tamanini, Nicola, E-mail: chiara.caprini@cea.fr, E-mail: nicola.tamanini@cea.fr

    We perform a forecast analysis of the capability of the eLISA space-based interferometer to constrain models of early and interacting dark energy using gravitational wave standard sirens. We employ simulated catalogues of standard sirens given by merging massive black hole binaries visible by eLISA, with an electromagnetic counterpart detectable by future telescopes. We consider three-arms mission designs with arm length of 1, 2 and 5 million km, 5 years of mission duration and the best-level low frequency noise as recently tested by the LISA Pathfinder. Standard sirens with eLISA give access to an intermediate range of redshift 1 ∼< zmore » ∼< 8, and can therefore provide competitive constraints on models where the onset of the deviation from ΛCDM (i.e. the epoch when early dark energy starts to be non-negligible, or when the interaction with dark matter begins) occurs relatively late, at z ∼< 6. If instead early or interacting dark energy is relevant already in the pre-recombination era, current cosmological probes (especially the cosmic microwave background) are more efficient than eLISA in constraining these models, except possibly in the interacting dark energy model if the energy exchange is proportional to the energy density of dark energy.« less

  3. Holographic Dark Energy Density

    NASA Astrophysics Data System (ADS)

    Saadat, Hassan

    2011-06-01

    In this article we consider the cosmological model based on the holographic dark energy. We study dark energy density in Universe with arbitrary spatially curvature described by the Friedmann-Robertson-Walker metric. We use Chevallier-Polarski-Linder parametrization to specify dark energy density.

  4. Dark Energy Survey Group

    Supernova Argonne/HEP Dark Energy Survey Group Ravi Gupta, Eve Kovacs, Steve Kuhlmann, Hal Spinka, Kasia Pomian The Argonne/HEP Dark Energy Survey (DES) group worked to build and test the Dark Energy Camera

  5. Superconducting dark energy

    NASA Astrophysics Data System (ADS)

    Liang, Shi-Dong; Harko, Tiberiu

    2015-04-01

    Based on the analogy with superconductor physics we consider a scalar-vector-tensor gravitational model, in which the dark energy action is described by a gauge invariant electromagnetic type functional. By assuming that the ground state of the dark energy is in a form of a condensate with the U(1) symmetry spontaneously broken, the gauge invariant electromagnetic dark energy can be described in terms of the combination of a vector and of a scalar field (corresponding to the Goldstone boson), respectively. The gravitational field equations are obtained by also assuming the possibility of a nonminimal coupling between the cosmological mass current and the superconducting dark energy. The cosmological implications of the dark energy model are investigated for a Friedmann-Robertson-Walker homogeneous and isotropic geometry for two particular choices of the electromagnetic type potential, corresponding to a pure electric type field, and to a pure magnetic field, respectively. The time evolutions of the scale factor, matter energy density and deceleration parameter are obtained for both cases, and it is shown that in the presence of the superconducting dark energy the Universe ends its evolution in an exponentially accelerating vacuum de Sitter state. By using the formalism of the irreversible thermodynamic processes for open systems we interpret the generalized conservation equations in the superconducting dark energy model as describing matter creation. The particle production rates, the creation pressure and the entropy evolution are explicitly obtained.

  6. Dark Energy, or Worse

    Carroll, Sean

    2018-01-09

    General relativity is inconsistent with cosmological observations unless we invoke components of dark matter and dark energy that dominate the universe. While it seems likely that these exotic substances really do exist, the alternative is worth considering: that Einstein's general relativity breaks down on cosmological scales. I will discuss models of modified gravity, tests in the solar system and elsewhere, and consequences for cosmology.

  7. Dark energy in the dark ages

    NASA Astrophysics Data System (ADS)

    Linder, Eric V.

    2006-08-01

    Non-negligible dark energy density at high redshifts would indicate dark energy physics distinct from a cosmological constant or "reasonable" canonical scalar fields. Such dark energy can be constrained tightly through investigation of the growth of structure, with limits of ≲2% of total energy density at z ≫ 1 for many models. Intermediate dark energy can have effects distinct from its energy density; the dark ages acceleration can be constrained to last less than 5% of a Hubble e-fold time, exacerbating the coincidence problem. Both the total linear growth, or equivalently σ8, and the shape and evolution of the nonlinear mass power spectrum for z < 2 (using the Linder-White nonlinear mapping prescription) provide important windows. Probes of growth, such as weak gravitational lensing, can interact with supernovae and CMB distance measurements to scan dark energy behavior over the entire range z = 0-1100.

  8. NASA and Dark Energy

    NASA Astrophysics Data System (ADS)

    Rhodes, Jason

    2014-03-01

    Dark energy, the name given to the cause of the accelerating expansion of the Universe, is one of the most profound mysteries in modern science. Current cosmological models hold that dark energy is currently the dominant component of the Universe, but the exact nature of dark energy remains poorly understood. There are ambitious ground-based surveys underway that seek to understand dark energy and NASA is participating in the development of significantly more ambitious space-based surveys planned for the next decade. NASA has provided mission enabling technology to the European Space Agency's (ESA) Euclid mission in exchange for US scientists to participate in the Euclid mission. NASA is also developing the Wide Field Infrared Survey Telescope-Astrophysics Focused Telescope Asset (WFIRST-AFTA) mission for possible launch in ~2023. WFIRST was the highest ranked space mission in the Astro2010 Decadal Survey and the AFTA incarnation of the WFIRST design uses a 2.4 m space telescope to go beyond what the Decadal Survey envisioned for WFIRST. Understanding dark energy is one of the primary science goals of WFIRST-AFTA. I'll discuss the status of Euclid and WFIRST and comment on the complementarity of the two missions.

  9. Big Mysteries: Dark Energy

    SciT

    Lincoln, Don

    2014-04-15

    Scientists were shocked in 1998 when the expansion of the universe wasn't slowing down as expected by our best understanding of gravity at the time; the expansion was speeding up! That observation is just mind blowing, and yet it is true. In order to explain the data, physicists had to resurrect an abandoned idea of Einstein's now called dark energy. In this video, Fermilab's Dr. Don Lincoln tells us a little about the observations that led to the hypothesis of dark energy and what is the status of current research on the subject.

  10. Big Mysteries: Dark Energy

    Lincoln, Don

    2018-01-16

    Scientists were shocked in 1998 when the expansion of the universe wasn't slowing down as expected by our best understanding of gravity at the time; the expansion was speeding up! That observation is just mind blowing, and yet it is true. In order to explain the data, physicists had to resurrect an abandoned idea of Einstein's now called dark energy. In this video, Fermilab's Dr. Don Lincoln tells us a little about the observations that led to the hypothesis of dark energy and what is the status of current research on the subject.

  11. Unparticle dark energy

    SciT

    Dai, D.-C.; Stojkovic, Dejan; Dutta, Sourish

    2009-09-15

    We examine a dark energy model where a scalar unparticle degree of freedom plays the role of quintessence. In particular, we study a model where the unparticle degree of freedom has a standard kinetic term and a simple mass potential, the evolution is slowly rolling and the field value is of the order of the unparticle energy scale ({lambda}{sub u}). We study how the evolution of w depends on the parameters B (a function of unparticle scaling dimension d{sub u}), the initial value of the field {phi}{sub i} (or equivalently, {lambda}{sub u}) and the present matter density {omega}{sub m0}. Wemore » use observational data from type Ia supernovae, baryon acoustic oscillations and the cosmic microwave background to constrain the model parameters and find that these models are not ruled out by the observational data. From a theoretical point of view, unparticle dark energy model is very attractive, since unparticles (being bound states of fundamental fermions) are protected from radiative corrections. Further, coupling of unparticles to the standard model fields can be arbitrarily suppressed by raising the fundamental energy scale M{sub F}, making the unparticle dark energy model free of most of the problems that plague conventional scalar field quintessence models.« less

  12. Dark energy: A brief review

    NASA Astrophysics Data System (ADS)

    Li, Miao; Li, Xiao-Dong; Wang, Shuang; Wang, Yi

    2013-12-01

    The problem of dark energy is briefly reviewed in both theoretical and observational aspects. In the theoretical aspect, dark energy scenarios are classified into symmetry, anthropic principle, tuning mechanism, modified gravity, quantum cosmology, holographic principle, back-reaction and phenomenological types. In the observational aspect, we introduce cosmic probes, dark energy related projects, observational constraints on theoretical models and model independent reconstructions.

  13. Dark Energy in Practice

    NASA Astrophysics Data System (ADS)

    Sapone, Domenico

    In this paper we review a part of the approaches that have been considered to explain the extraordinary discovery of the late time acceleration of the Universe. We discuss the arguments that have led physicists and astronomers to accept dark energy as the current preferable candidate to explain the acceleration. We highlight the problems and the attempts to overcome the difficulties related to such a component. We also consider alternative theories capable of explaining the acceleration of the Universe, such as modification of gravity. We compare the two approaches and point out the observational consequences, reaching the sad but foresightful conclusion that we will not be able to distinguish between a Universe filled by dark energy or a Universe where gravity is different from General Relativity. We review the present observations and discuss the future experiments that will help us to learn more about our Universe. This is not intended to be a complete list of all the dark energy models but this paper should be seen as a review on the phenomena responsible for the acceleration. Moreover, in a landscape of hardly compelling theories, it is an important task to build simple measurable parameters useful for future experiments that will help us to understand more about the evolution of the Universe.

  14. Explorations in dark energy

    NASA Astrophysics Data System (ADS)

    Bozek, Brandon

    This dissertation describes three research projects on the topic of dark energy. The first project is an analysis of a scalar field model of dark energy with an exponential potential using the Dark Energy Task Force (DETF) simulated data models. Using Markov Chain Monte Carlo sampling techniques we examine the ability of each simulated data set to constrain the parameter space of the exponential potential for data sets based on a cosmological constant and a specific exponential scalar field model. We compare our results with the constraining power calculated by the DETF using their "w 0--wa" parameterization of the dark energy. We find that respective increases in constraining power from one stage to the next produced by our analysis give results consistent with DETF results. To further investigate the potential impact of future experiments, we also generate simulated data for an exponential model background cosmology which can not be distinguished from a cosmological constant at DETF Stage 2, and show that for this cosmology good DETF Stage 4 data would exclude a cosmological constant by better than 3sigma. The second project details this analysis on a Inverse Power Law (IPL) or "Ratra-Peebles" (RP) model. This model is a member of a popular subset of scalar field quintessence models that exhibit "tracking" behavior that make this model particularly theoretically interesting. We find that the relative increase in constraining power on the parameter space of this model is consistent to what was found in the first project and the DETF report. We also show, using a background cosmology based on an IPL scalar field model that is consistent with a cosmological constant with Stage 2 data, that good DETF Stage 4 data would exclude a cosmological constant by better than 3sigma. The third project extends the Causal Entropic Principle to predict the preferred curvature within the "multiverse". The Causal Entropic Principle (Bousso, et al.) provides an alternative approach

  15. The dark side of cosmology: dark matter and dark energy.

    PubMed

    Spergel, David N

    2015-03-06

    A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales. Copyright © 2015, American Association for the Advancement of Science.

  16. The Dark Energy Survey: More than dark energy - An overview

    DOE PAGES

    Abbott, T.

    2016-03-21

    This overview article describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters ( grizY). By its completion the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovaemore » and other transients. The main goals of DES are to characterise dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from `Science Verification', and from the first, second and third seasons of observations), what DES can tell us about the solar system, the Milky Way, galaxy evolution, quasars, and other topics. In addition, we show that if the cosmological model is assumed to be Lambda+ Cold Dark Matter (LCDM) then important astrophysics can be deduced from the primary DES probes. Lastly, highlights from DES early data include the discovery of 34 Trans Neptunian Objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed).« less

  17. Tsallis holographic dark energy

    NASA Astrophysics Data System (ADS)

    Tavayef, M.; Sheykhi, A.; Bamba, Kazuharu; Moradpour, H.

    2018-06-01

    Employing the modified entropy-area relation suggested by Tsallis and Cirto [1], and the holographic hypothesis, a new holographic dark energy (HDE) model is proposed. Considering a flat Friedmann-Robertson-Walker (FRW) universe in which there is no interaction between the cosmos sectors, the cosmic implications of the proposed HDE are investigated. Interestingly enough, we find that the identification of IR-cutoff with the Hubble radius, can lead to the late time accelerated Universe even in the absence of interaction between two dark sectors of the Universe. This is in contrast to the standard HDE model with Hubble cutoff, which does not imply the accelerated expansion, unless the interaction is taken into account.

  18. Dark energy and extended dark matter halos

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  19. THE DARK ENERGY CAMERA

    SciT

    Flaugher, B.; Diehl, H. T.; Alvarez, O.

    2015-11-15

    The Dark Energy Camera is a new imager with a 2.°2 diameter field of view mounted at the prime focus of the Victor M. Blanco 4 m telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five-element optical corrector, seven filters, a shutter with a 60 cm aperture, and a charge-coupled device (CCD) focal plane of 250 μm thick fully depleted CCDs cooled inside a vacuummore » Dewar. The 570 megapixel focal plane comprises 62 2k × 4k CCDs for imaging and 12 2k × 2k CCDs for guiding and focus. The CCDs have 15 μm × 15 μm pixels with a plate scale of 0.″263 pixel{sup −1}. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 s with 6–9 electron readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.« less

  20. The Dark Energy Camera

    DOE PAGES

    Flaugher, B.

    2015-04-11

    The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250-μm thick fully depleted CCDs cooled inside a vacuum Dewar.more » The 570 Mpixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15μm x 15μm pixels with a plate scale of 0.263" per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.« less

  1. Understanding Dark Energy

    NASA Astrophysics Data System (ADS)

    Greyber, Howard

    2009-11-01

    By careful analysis of the data from the WMAP satellite, scientists were surprised to determine that about 70% of the matter in our universe is in some unknown form, and labeled it Dark Energy. Earlier, in 1998, two separate international groups of astronomers studying Ia supernovae were even more surprised to be forced to conclude that an amazing smooth transition occurred, from the expected slowing down of the expansion of our universe (due to normal positive gravitation) to an accelerating expansion of the universe that began at at a big bang age of the universe of about nine billion years. In 1918 Albert Einstein stated that his Lambda term in his theory of general relativity was ees,``the energy of empty space,'' and represented a negative pressure and thus a negative gravity force. However my 2004 ``Strong'' Magnetic Field model (SMF) for the origin of magnetic fields at Combination Time (Astro-ph0509223 and 0509222) in our big bang universe produces a unique topology for Superclusters, having almost all the mass, visible and invisible, i.e. from clusters of galaxies down to particles with mass, on the surface of an ellipsoid surrounding a growing very high vacuum. If I hypothesize, with Einstein, that there exists a constant ees force per unit volume, then, gradually, as the universe expands from Combination Time, two effects occur (a) the volume of the central high vacuum region increases, and (b) the density of positive gravity particles in the central region of each Supercluster in our universe decreases dramatically. Thus eventually Einstein's general relativity theory's repulsive gravity of the central very high vacuum region becomes larger than the positive gravitational attraction of all the clusters of galaxies, galaxies, quasars, stars and plasma on the Supercluster shell, and the observed accelerating expansion of our universe occurs. This assumes that our universe is made up mostly of such Superclusters. It is conceivable that the high vacuum

  2. Throwing light on dark energy.

    PubMed

    Kirshner, Robert P

    2003-06-20

    Supernova observations show that the expansion of the universe has been speeding up. This unexpected acceleration is ascribed to a dark energy that pervades space. Supernova data, combined with other observations, indicate that the universe is about 14 billion years old and is composed of about 30%matter and 70%dark energy. New observational programs can trace the history of cosmic expansion more precisely and over a larger span of time than has been done to date to learn whether the dark energy is a modern version of Einstein's cosmological constant or another form of dark energy that changes with time. Either conclusion is an enigma that points to gaps in our fundamental understanding of gravity.

  3. Direct reconstruction of dark energy.

    PubMed

    Clarkson, Chris; Zunckel, Caroline

    2010-05-28

    An important issue in cosmology is reconstructing the effective dark energy equation of state directly from observations. With so few physically motivated models, future dark energy studies cannot only be based on constraining a dark energy parameter space. We present a new nonparametric method which can accurately reconstruct a wide variety of dark energy behavior with no prior assumptions about it. It is simple, quick and relatively accurate, and involves no expensive explorations of parameter space. The technique uses principal component analysis and a combination of information criteria to identify real features in the data, and tailors the fitting functions to pick up trends and smooth over noise. We find that we can constrain a large variety of w(z) models to within 10%-20% at redshifts z≲1 using just SNAP-quality data.

  4. Dark energy from gravitoelectromagnetic inflation?

    NASA Astrophysics Data System (ADS)

    Membiela, F. A.; Bellini, M.

    2008-02-01

    Gravitoectromagnetic Inflation (GI) was introduced to describe in an unified manner, electromagnetic, gravitatory and inflaton fields from a 5D vacuum state. On the other hand, the primordial origin and evolution of dark energy is today unknown. In this letter we show using GI that the zero modes of some redefined vector fields $B_i=A_i/a$ produced during inflation, could be the source of dark energy in the universe.

  5. Falsification of dark energy by fluid mechanics

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.

    2011-11-01

    The 2011 Nobel Prize in Physics has been awarded for the discovery from observations of increased supernovae dimness interpreted as distance, so that the Universe expansion rate has changed from a rate decreasing since the big bang to one that is now increasing, driven by anti-gravity forces of a mysterious dark energy material comprising 70% of the Universe mass-energy. Fluid mechanical considerations falsify both the accelerating expansion and dark energy concepts. Kinematic viscosity is neglected in current stan- dard models of self-gravitational structure formation, which rely on cold dark matter CDM condensations and clusterings that are also falsified by fluid mechanics. Weakly collisional CDM particles do not condense but diffuse away. Photon viscosity predicts su- perclustervoid fragmentation early in the plasma epoch and protogalaxies at the end. At the plasma-gas transition, the plasma fragments into Earth-mass gas planets in trillion planet clumps (proto-globular-star-cluster PGCs). The hydrogen planets freeze to form the dark matter of galaxies and merge to form their stars. Dark energy is a systematic dimming error for Supernovae Ia caused by dark matter planets near hot white dwarf stars at the Chandrasekhar carbon limit. Evaporated planet atmospheres may or may not scatter light from the events depending on the line of sight.

  6. Embrace the Dark Side: Advancing the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Suchyta, Eric

    The Dark Energy Survey (DES) is an ongoing cosmological survey intended to study the properties of the accelerated expansion of the Universe. In this dissertation, I present work of mine that has advanced the progress of DES. First is an introduction, which explores the physics of the cosmos, as well as how DES intends to probe it. Attention is given to developing the theoretical framework cosmologists use to describe the Universe, and to explaining observational evidence which has furnished our current conception of the cosmos. Emphasis is placed on the dark sector - dark matter and dark energy - the content of the Universe not explained by the Standard Model of particle physics. As its name suggests, the Dark Energy Survey has been specially designed to measure the properties of dark energy. DES will use a combination of galaxy cluster, weak gravitational lensing, angular clustering, and supernovae measurements to derive its state of the art constraints, each of which is discussed in the text. The work described in this dissertation includes science measurements directly related to the first three of these probes. The dissertation presents my contributions to the readout and control system of the Dark Energy Camera (DECam); the name of this software is SISPI. SISPI uses client-server and publish-subscribe communication patterns to coordinate and command actions among the many hardware components of DECam - the survey instrument for DES, a 570 megapixel CCD camera, mounted at prime focus of the Blanco 4-m Telescope. The SISPI work I discuss includes coding applications for DECam's filter changer mechanism and hexapod, as well as developing the Scripts Editor, a GUI application for DECam users to edit and export observing sequence SISPI can load and execute. Next, the dissertation describes the processing of early DES data, which I contributed. This furnished the data products used in the first-completed DES science analysis, and contributed to improving the

  7. Constraints on the coupling between dark energy and dark matter from CMB data

    SciT

    Murgia, R.; Gariazzo, S.; Fornengo, N., E-mail: riccardo.murgia@sissa.it, E-mail: gariazzo@to.infn.it, E-mail: fornengo@to.infn.it

    2016-04-01

    We investigate a phenomenological non-gravitational coupling between dark energy and dark matter, where the interaction in the dark sector is parameterized as an energy transfer either from dark matter to dark energy or the opposite. The models are constrained by a whole host of updated cosmological data: cosmic microwave background temperature anisotropies and polarization, high-redshift supernovae, baryon acoustic oscillations, redshift space distortions and gravitational lensing. Both models are found to be compatible with all cosmological observables, but in the case where dark matter decays into dark energy, the tension with the independent determinations of H{sub 0} and σ{sub 8}, alreadymore » present for standard cosmology, increases: this model in fact predicts lower H{sub 0} and higher σ{sub 8}, mostly as a consequence of the higher amount of dark matter at early times, leading to a stronger clustering during the evolution. Instead, when dark matter is fed by dark energy, the reconstructed values of H{sub 0} and σ{sub 8} nicely agree with their local determinations, with a full reconciliation between high- and low-redshift observations. A non-zero coupling between dark energy and dark matter, with an energy flow from the former to the latter, appears therefore to be in better agreement with cosmological data.« less

  8. Dark Energy Camera for Blanco

    SciT

    Binder, Gary A.; /Caltech /SLAC

    2010-08-25

    In order to make accurate measurements of dark energy, a system is needed to monitor the focus and alignment of the Dark Energy Camera (DECam) to be located on the Blanco 4m Telescope for the upcoming Dark Energy Survey. One new approach under development is to fit out-of-focus star images to a point spread function from which information about the focus and tilt of the camera can be obtained. As a first test of a new algorithm using this idea, simulated star images produced from a model of DECam in the optics software Zemax were fitted. Then, real images frommore » the Mosaic II imager currently installed on the Blanco telescope were used to investigate the algorithm's capabilities. A number of problems with the algorithm were found, and more work is needed to understand its limitations and improve its capabilities so it can reliably predict camera alignment and focus.« less

  9. Measuring Dark Energy with CHIME

    NASA Astrophysics Data System (ADS)

    Newburgh, Laura; Chime Collaboration

    2015-04-01

    The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a new radio transit interferometer currently being built at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC, Canada. We will use the 21 cm emission line of neutral hydrogen to map baryon acoustic oscillations between 400-800 MHz across 3/4 of the sky. These measurements will yield sensitive constraints on the dark energy equation of state between redshifts 0.8 - 2.5, a fascinating but poorly probed era corresponding to when dark energy began to impact the expansion history of the Universe. I will describe theCHIME instrument, the analysis challenges, the calibration requirements, and current status.

  10. DoE Early Career Research Program: Final Report: Model-Independent Dark-Matter Searches at the ATLAS Experiment and Applications of Many-core Computing to High Energy Physics

    SciT

    Farbin, Amir

    2015-07-15

    This is the final report of for DoE Early Career Research Program Grant Titled "Model-Independent Dark-Matter Searches at the ATLAS Experiment and Applications of Many-core Computing to High Energy Physics".

  11. Dark Energy from Discrete Spacetime

    PubMed Central

    Trout, Aaron D.

    2013-01-01

    Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies. PMID:24312502

  12. Dark energy from discrete spacetime.

    PubMed

    Trout, Aaron D

    2013-01-01

    Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.

  13. Dark energy and dark matter from an additional adiabatic fluid

    NASA Astrophysics Data System (ADS)

    Dunsby, Peter K. S.; Luongo, Orlando; Reverberi, Lorenzo

    2016-10-01

    The dark sector is described by an additional barotropic fluid which evolves adiabatically during the Universe's history and whose adiabatic exponent γ is derived from the standard definitions of specific heats. Although in general γ is a function of the redshift, the Hubble parameter and its derivatives, we find that our assumptions lead necessarily to solutions with γ =constant in a Friedmann-Lemaître-Robertson-Walker universe. The adiabatic fluid acts effectively as the sum of two distinct components, one evolving like nonrelativistic matter and the other depending on the value of the adiabatic index. This makes the model particularly interesting as a way of simultaneously explaining the nature of both dark energy and dark matter, at least at the level of the background cosmology. The Λ CDM model is included in this family of theories when γ =0 . We fit our model to supernovae Ia, H (z ) and baryonic acoustic oscillation data, discussing the model selection criteria. The implications for the early Universe and the growth of small perturbations in this model are also discussed.

  14. Falsification of Dark Energy by Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.

    2012-03-01

    The 2011 Nobel Prize in Physics was awarded for the discovery of accelerating super- novae dimness, suggesting a remarkable reversal in the expansion rate of the Universe from a decrease to an increase, driven by anti-gravity forces of a mysterious dark energy material comprising 70% of the Universe mass-energy. Fluid mechanics and Herschel- Planck-Spitzer-Hubble etc. space telescope observations falsify both the accelerating ex- pansion rate and dark energy concepts. Kinematic viscosity is neglected in models of self-gravitational structure formation. Large plasma photon viscosity predicts protosu- perclustervoid fragmentation early in the plasma epoch and protogalaxies at the end. At the plasma-gas transition, the gas protogalaxies fragment into Earth-mass rogue plan- ets in highly persistent, trillion-planet clumps (proto-globular-star-cluster PGCs). PGC planets freeze to form the dark matter of galaxies and merge to form their stars, giving the hydrogen triple-point (14 K) infrared emissions observed. Dark energy is a system- atic dimming error for Supernovae Ia caused by partially evaporated planets feeding hot white dwarf stars at the Chandrasekhar carbon limit. Planet atmospheres may or may not dim light from SNe-Ia events depending on the line of sight.

  15. The Dark Energy Spectroscopic Instrument (DESI)

    NASA Astrophysics Data System (ADS)

    Flaugher, Brenna; Bebek, Chris

    2014-07-01

    The Dark Energy Spectroscopic Instrument (DESI) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations (BAO) and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar spectroscopic redshift survey. The DESI instrument consists of a new wide-field (3.2 deg. linear field of view) corrector plus a multi-object spectrometer with up to 5000 robotically positioned optical fibers and will be installed at prime focus on the Mayall 4m telescope at Kitt Peak, Arizona. The fibers feed 10 three-arm spectrographs producing spectra that cover a wavelength range from 360-980 nm and have resolution of 2000-5500 depending on the wavelength. The DESI instrument is designed for a 14,000 sq. deg. multi-year survey of targets that trace the evolution of dark energy out to redshift 3.5 using the redshifts of luminous red galaxies (LRGs), emission line galaxies (ELGs) and quasars. DESI is the successor to the successful Stage-III BOSS spectroscopic redshift survey and complements imaging surveys such as the Stage-III Dark Energy Survey (DES, currently operating) and the Stage-IV Large Synoptic Survey Telescope (LSST, planned start early in the next decade).

  16. Dark information of black hole radiation raised by dark energy

    NASA Astrophysics Data System (ADS)

    Ma, Yu-Han; Chen, Jin-Fu; Sun, Chang-Pu

    2018-06-01

    The "lost" information of black hole through the Hawking radiation was discovered being stored in the correlation among the non-thermally radiated particles (Parikh and Wilczek, 2000 [31], Zhang et al., 2009 [16]). This correlation information, which has not yet been proved locally observable in principle, is named by dark information. In this paper, we systematically study the influences of dark energy on black hole radiation, especially on the dark information. Calculating the radiation spectrum in the existence of dark energy by the approach of canonical typicality, which is reconfirmed by the quantum tunneling method, we find that the dark energy will effectively lower the Hawking temperature, and thus makes the black hole has longer life time. It is also discovered that the non-thermal effect of the black hole radiation is enhanced by dark energy so that the dark information of the radiation is increased. Our observation shows that, besides the mechanical effect (e.g., gravitational lensing effect), the dark energy rises the stored dark information, which could be probed by a non-local coincidence measurement similar to the coincidence counting of the Hanbury-Brown-Twiss experiment in quantum optics.

  17. Strongly coupled dark energy with warm dark matter vs. LCDM

    NASA Astrophysics Data System (ADS)

    Bonometto, S. A.; Mezzetti, M.; Mainini, R.

    2017-10-01

    Cosmologies including strongly Coupled (SC) Dark Energy (DE) and Warm dark matter (SCDEW) are based on a conformally invariant (CI) attractor solution modifying the early radiative expansion. Then, aside of radiation, a kinetic field Φ and a DM component account for a stationary fraction, ~ 1 %, of the total energy. Most SCDEW predictions are hardly distinguishable from LCDM, while SCDEW alleviates quite a few LCDM conceptual problems, as well as its difficulties to meet data below the average galaxy scale. The CI expansion begins at the end of inflation, when Φ (future DE) possibly plays a role in reheating, and ends at the Higgs scale. Afterwards, a number of viable options is open, allowing for the transition from the CI expansion to the present Universe. In this paper: (i) We show how the attractor is recovered when the spin degrees of freedom decreases. (ii) We perform a detailed comparison of CMB anisotropy and polarization spectra for SCDEW and LCDM, including tensor components, finding negligible discrepancies. (iii) Linear spectra exhibit a greater parameter dependence at large k's, but are still consistent with data for suitable parameter choices. (iv) We also compare previous simulation results with fresh data on galaxy concentration. Finally, (v) we outline numerical difficulties at high k. This motivates a second related paper [1], where such problems are treated in a quantitative way.

  18. Strongly coupled dark energy with warm dark matter vs. LCDM

    SciT

    Bonometto, S.A.; Mezzetti, M.; Mainini, R., E-mail: bonometto@oats.inaf.it, E-mail: mezzetti@oats.inaf.it, E-mail: roberto.mainini@mib.infn.it

    Cosmologies including strongly Coupled (SC) Dark Energy (DE) and Warm dark matter (SCDEW) are based on a conformally invariant (CI) attractor solution modifying the early radiative expansion. Then, aside of radiation, a kinetic field Φ and a DM component account for a stationary fraction, ∼ 1 %, of the total energy. Most SCDEW predictions are hardly distinguishable from LCDM, while SCDEW alleviates quite a few LCDM conceptual problems, as well as its difficulties to meet data below the average galaxy scale. The CI expansion begins at the end of inflation, when Φ (future DE) possibly plays a role in reheating,more » and ends at the Higgs scale. Afterwards, a number of viable options is open, allowing for the transition from the CI expansion to the present Universe. In this paper: (i) We show how the attractor is recovered when the spin degrees of freedom decreases. (ii) We perform a detailed comparison of CMB anisotropy and polarization spectra for SCDEW and LCDM, including tensor components, finding negligible discrepancies. (iii) Linear spectra exhibit a greater parameter dependence at large k 's, but are still consistent with data for suitable parameter choices. (iv) We also compare previous simulation results with fresh data on galaxy concentration. Finally, (v) we outline numerical difficulties at high k . This motivates a second related paper [1], where such problems are treated in a quantitative way.« less

  19. Characterizing Dark Energy Through Supernovae

    NASA Astrophysics Data System (ADS)

    Davis, Tamara M.; Parkinson, David

    Type Ia supernovae are a powerful cosmological probe that gave the first strong evidence that the expansion of the universe is accelerating. Here we provide an overview of how supernovae can go further to reveal information about what is causing the acceleration, be it dark energy or some modification to our laws of gravity. We first review the methods of statistical inference that are commonly used, making a point of separating parameter estimation from model selection. We then summarize the many different approaches used to explain or test the acceleration, including parametric models (like the standard model, ΛCDM), nonparametric models, dark fluid models such as quintessence, and extensions to standard gravity. Finally, we also show how supernova data can be used beyond the Hubble diagram, to give information on gravitational lensing and peculiar velocities that can be used to distinguish between models that predict the same expansion history.

  20. Quantum field theory of interacting dark matter and dark energy: Dark monodromies

    DOE PAGES

    D’Amico, Guido; Hamill, Teresa; Kaloper, Nemanja

    2016-11-28

    We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long-range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory.more » Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations« less

  1. Quantum field theory of interacting dark matter and dark energy: Dark monodromies

    SciT

    D’Amico, Guido; Hamill, Teresa; Kaloper, Nemanja

    We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long-range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory.more » Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations« less

  2. Information entropy and dark energy evolution

    NASA Astrophysics Data System (ADS)

    Capozziello, Salvatore; Luongo, Orlando

    Here, the information entropy is investigated in the context of early and late cosmology under the hypothesis that distinct phases of universe evolution are entangled between them. The approach is based on the entangled state ansatz, representing a coarse-grained definition of primordial dark temperature associated to an effective entangled energy density. The dark temperature definition comes from assuming either Von Neumann or linear entropy as sources of cosmological thermodynamics. We interpret the involved information entropies by means of probabilities of forming structures during cosmic evolution. Following this recipe, we propose that quantum entropy is simply associated to the thermodynamical entropy and we investigate the consequences of our approach using the adiabatic sound speed. As byproducts, we analyze two phases of universe evolution: the late and early stages. To do so, we first recover that dark energy reduces to a pure cosmological constant, as zero-order entanglement contribution, and second that inflation is well-described by means of an effective potential. In both cases, we infer numerical limits which are compatible with current observations.

  3. Sourcing dark matter and dark energy from α-attractors

    SciT

    Mishra, Swagat S.; Sahni, Varun; Shtanov, Yuri, E-mail: swagat@iucaa.in, E-mail: varun@iucaa.in, E-mail: shtanov@bitp.kiev.ua

    In [1], Kallosh and Linde drew attention to a new family of superconformal inflationary potentials, subsequently called α-attractors [2]. The α-attractor family can interpolate between a large class of inflationary models. It also has an important theoretical underpinning within the framework of supergravity. We demonstrate that the α-attractors have an even wider appeal since they may describe dark matter and perhaps even dark energy. The dark matter associated with the α-attractors, which we call α-dark matter (αDM), shares many of the attractive features of fuzzy dark matter, with V (φ) = ½ m {sup 2}φ{sup 2}, while having none ofmore » its drawbacks. Like fuzzy dark matter, αDM can have a large Jeans length which could resolve the cusp-core and substructure problems faced by standard cold dark matter. αDM also has an appealing tracker property which enables it to converge to the late-time dark matter asymptote, ( w ) ≅ 0, from a wide range of initial conditions. It thus avoids the enormous fine-tuning problems faced by the m {sup 2}φ{sup 2} potential in describing dark matter.« less

  4. Ultraviolet complete dark energy model

    NASA Astrophysics Data System (ADS)

    Narain, Gaurav; Li, Tianjun

    2018-04-01

    We consider a local phenomenological model to explain a nonlocal gravity scenario which has been proposed to address dark energy issues. This nonlocal gravity action has been seen to fit the data as well as Λ -CDM and therefore demands a more fundamental local treatment. The induced gravity model coupled with higher-derivative gravity is exploited for this proposal, as this perturbatively renormalizable model has a well-defined ultraviolet (UV) description where ghosts are evaded. We consider a generalized version of this model where we consider two coupled scalar fields and their nonminimal coupling with gravity. In this simple model, one of the scalar field acquires a vacuum expectation value (VEV), thereby inducing a mass for one of the scalar fields and generating Newton's constant. The induced mass however is seen to be always above the running energy scale thereby leading to its decoupling. The residual theory after decoupling becomes a platform for driving the accelerated expansion under certain conditions. Integrating out the residual scalar generates a nonlocal gravity action. The leading term of which is the nonlocal gravity action used to fit the data of dark energy.

  5. Bianchi-V string cosmological model with dark energy anisotropy

    NASA Astrophysics Data System (ADS)

    Mishra, B.; Tripathy, S. K.; Ray, Pratik P.

    2018-05-01

    The role of anisotropic components on the dark energy and the dynamics of the universe is investigated. An anisotropic dark energy fluid with different pressures along different spatial directions is assumed to incorporate the effect of anisotropy. One dimensional cosmic strings aligned along x-direction supplement some kind of anisotropy. Anisotropy in the dark energy pressure is found to evolve with cosmic expansion at least at late times. At an early phase, the anisotropic effect due to the cosmic strings substantially affect the dynamics of the accelerating universe.

  6. Probing the sign-changeable interaction between dark energy and dark matter with current observations

    NASA Astrophysics Data System (ADS)

    Guo, Juan-Juan; Zhang, Jing-Fei; Li, Yun-He; He, Dong-Ze; Zhang, Xin

    2018-03-01

    We consider the models of vacuum energy interacting with cold dark matter in this study, in which the coupling can change sigh during the cosmological evolution. We parameterize the running coupling b by the form b( a) = b 0 a+ b e(1- a), where at the early-time the coupling is given by a constant b e and today the coupling is described by another constant b 0. We explore six specific models with (i) Q = b( a) H 0 ρ 0, (ii) Q = b( a) H 0 ρ de, (iii) Q = b( a) H 0 ρ c, (iv) Q = b( a) Hρ 0, (v) Q = b( a) H ρ de, and (vi) Q = b( a) Hρ c. The current observational data sets we use to constrain the models include the JLA compilation of type Ia supernova data, the Planck 2015 distance priors data of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the Hubble constant direct measurement. We find that, for all the models, we have b 0 < 0 and b e > 0 at around the 1 σ level, and b 0 and b e are in extremely strong anti-correlation. Our results show that the coupling changes sign during the evolution at about the 1 σ level, i.e., the energy transfer is from dark matter to dark energy when dark matter dominates the universe and the energy transfer is from dark energy to dark matter when dark energy dominates the universe.

  7. k-essence model of inflation, dark matter, and dark energy

    SciT

    Bose, Nilok; Majumdar, A. S.

    We investigate the possibility for k-essence dynamics to reproduce the primary features of inflation in the early universe, generate dark matter subsequently, and finally account for the presently observed acceleration. We first show that for a purely kinetic k-essence model the late-time energy density of the universe when expressed simply as a sum of a cosmological constant and a dark matter term leads to a static universe. We then study another k-essence model in which the Lagrangian contains a potential for the scalar field as well as a noncanonical kinetic term. We show that such a model generates the basicmore » features of inflation in the early universe, and also gives rise to dark matter and dark energy at appropriate subsequent stages. Observational constraints on the parameters of this model are obtained.« less

  8. [Dark matter and dark energy of the universe].

    PubMed

    Aguilar Peris, José

    2005-01-01

    At the turn of the 20th Century, the Universe was thought to consist of our solar system, the Sun, planets, satellites and comets, floating under the Milky Way. The astronomers were ignorant of the existence of galaxies, clusters, quasars and black holes. Over the last ten years the Cosmology has made remarkable progress in our understanding of the composition of the Universe: 23 per cent is in an unknown form called dark matter; 73 per cent in another form called dark energy; 3 per cent is made of free hydrogen and helium atoms; 0.5 per cent makes up all the light we see in the night including the stars, clusters and superclusters; 0.3 per cent is in free neutrino particles; and finally, 0.03 per cent is in the heavier nuclei of which the Sun, the Earth and ourselves are made. In this work we study specially the dark matter and the dark energy. The first one appears to be attached to galaxies, and astronomers agree that it is cold, meaning that the particles that make up that matter are not moving fast. Very recently astronomers discovered that a tremendous amount of the so-cahled dark energy exists and that it is pushing and accelerating the expansion of the Universe. Should this expansion continue for another 14,000 million years, the sky will darken with only a handful of galaxies remaining visible.

  9. Imperfect dark energy from kinetic gravity braiding

    SciT

    Deffayet, Cédric; Pujolàs, Oriol; Sawicki, Ignacy

    2010-10-01

    We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding,more » the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energy. As an example, we study in detail a simple one-parameter model. The possible observational signatures of this model include a sizeable Early Dark Energy and a specific equation of state evolving into the final de-Sitter state from a healthy phantom regime.« less

  10. The cosmological constant and dark energy

    NASA Astrophysics Data System (ADS)

    Peebles, P. J.; Ratra, Bharat

    2003-04-01

    Physics welcomes the idea that space contains energy whose gravitational effect approximates that of Einstein’s cosmological constant, Λ; today the concept is termed dark energy or quintessence. Physics also suggests that dark energy could be dynamical, allowing for the arguably appealing picture of an evolving dark-energy density approaching its natural value, zero, and small now because the expanding universe is old. This would alleviate the classical problem of the curious energy scale of a millielectron volt associated with a constant Λ. Dark energy may have been detected by recent cosmological tests. These tests make a good scientific case for the context, in the relativistic Friedmann-Lemaître model, in which the gravitational inverse-square law is applied to the scales of cosmology. We have well-checked evidence that the mean mass density is not much more than one-quarter of the critical Einstein de Sitter value. The case for detection of dark energy is not yet as convincing but still serious; we await more data, which may be derived from work in progress. Planned observations may detect the evolution of the dark-energy density; a positive result would be a considerable stimulus for attempts at understanding the microphysics of dark energy. This review presents the basic physics and astronomy of the subject, reviews the history of ideas, assesses the state of the observational evidence, and comments on recent developments in the search for a fundamental theory.

  11. Darkness without dark matter and energy - generalized unimodular gravity

    NASA Astrophysics Data System (ADS)

    Barvinsky, A. O.; Kamenshchik, A. Yu.

    2017-11-01

    We suggest a Lorentz non-invariant generalization of the unimodular gravity theory, which is classically equivalent to general relativity with a locally inert (devoid of local degrees of freedom) perfect fluid having an equation of state with a constant parameter w. For the range of w near -1 this dark fluid can play the role of dark energy, while for w = 0 this dark dust admits spatial inhomogeneities and can be interpreted as dark matter. We discuss possible implications of this model in the cosmological initial conditions problem. In particular, this is the extension of known microcanonical density matrix predictions for the initial quantum state of the closed cosmology to the case of spatially open Universe, based on the imitation of the spatial curvature by the dark fluid density. We also briefly discuss quantization of this model necessarily involving the method of gauge systems with reducible constraints and the effect of this method on the treatment of recently! suggested mechanism of vacuum energy sequestering.

  12. Dark energy, scalar singlet dark matter and the Higgs portal

    NASA Astrophysics Data System (ADS)

    Landim, Ricardo G.

    2018-05-01

    One of the simplest extensions of the Standard Model (SM) comprises the inclusion of a massive real scalar field, neutral under the SM gauge groups, to be a dark matter candidate. The addition of a dimension-six term into the potential of the scalar dark matter enables the appearance of a false vacuum that describes the cosmic acceleration. We show that the running of the singlet self-interaction and the Higgs portal coupling differs from the standard scalar singlet dark matter model. If we maintain a positive quartic coupling, it is also possible to describe the accelerated expansion of the Universe through a false vacuum with the addition of a dimension-eight interaction term. In this case, where the potential remains bounded from below at low energies, the false vacuum decay is highly suppressed.

  13. The Dark Energy Survey: more than dark energy – an overview

    DOE PAGES

    Abbott, T.

    2016-03-21

    This overview article describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters ( grizY). By its completion the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovaemore » and other transients. The main goals of DES are to characterise dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from `Science Verification', and from the first, second and third seasons of observations), what DES can tell us about the solar system, the Milky Way, galaxy evolution, quasars, and other topics. In addition, we show that if the cosmological model is assumed to be Lambda+ Cold Dark Matter (LCDM) then important astrophysics can be deduced from the primary DES probes. Lastly, highlights from DES early data include the discovery of 34 Trans Neptunian Objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed).« less

  14. The Dark Energy Survey: more than dark energy – an overview

    SciT

    Vikram, Vinu; Abbott, T; Abdalla, F. B.

    This overview paper describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4 m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion, the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovaemore » and other transients. The main goals of DES are to characterize dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large-scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper, we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from ‘Science Verification’, and from the first, second and third seasons of observations), what DES can tell us about the Solar system, the Milky Way, galaxy evolution, quasars and other topics. In addition, we show that if the cosmological model is assumed to be Λ+cold dark matter, then important astrophysics can be deduced from the primary DES probes. Highlights from DES early data include the discovery of 34 trans-Neptunian objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed).« less

  15. The Dark Energy Survey: more than dark energy – an overview

    SciT

    Abbott, T.

    This overview article describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters ( grizY). By its completion the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovaemore » and other transients. The main goals of DES are to characterise dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from `Science Verification', and from the first, second and third seasons of observations), what DES can tell us about the solar system, the Milky Way, galaxy evolution, quasars, and other topics. In addition, we show that if the cosmological model is assumed to be Lambda+ Cold Dark Matter (LCDM) then important astrophysics can be deduced from the primary DES probes. Lastly, highlights from DES early data include the discovery of 34 Trans Neptunian Objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed).« less

  16. Dark energy models through nonextensive Tsallis' statistics

    NASA Astrophysics Data System (ADS)

    Barboza, Edésio M.; Nunes, Rafael da C.; Abreu, Everton M. C.; Ananias Neto, Jorge

    2015-10-01

    The accelerated expansion of the Universe is one of the greatest challenges of modern physics. One candidate to explain this phenomenon is a new field called dark energy. In this work we have used the Tsallis nonextensive statistical formulation of the Friedmann equation to explore the Barboza-Alcaniz and Chevalier-Polarski-Linder parametric dark energy models and the Wang-Meng and Dalal vacuum decay models. After that, we have discussed the observational tests and the constraints concerning the Tsallis nonextensive parameter. Finally, we have described the dark energy physics through the role of the q-parameter.

  17. Evolution of density and velocity profiles of dark matter and dark energy in spherical voids

    NASA Astrophysics Data System (ADS)

    Novosyadlyj, Bohdan; Tsizh, Maksym; Kulinich, Yurij

    2017-02-01

    We analyse the evolution of cosmological perturbations which leads to the formation of large isolated voids in the Universe. We assume that initial perturbations are spherical and all components of the Universe (radiation, matter and dark energy) are continuous media with ideal fluid energy-momentum tensors, which interact only gravitationally. Equations of the evolution of perturbations for every component in the comoving to cosmological background reference frame are obtained from equations of energy and momentum conservation and Einstein's ones and are integrated numerically. Initial conditions are set at the early stage of evolution in the radiation-dominated epoch, when the scale of perturbation is much larger than the particle horizon. Results show how the profiles of density and velocity of matter and dark energy are formed and how they depend on parameters of dark energy and initial conditions. In particular, it is shown that final matter density and velocity amplitudes change within range ˜4-7 per cent when the value of equation-of-state parameter of dark energy w vary in the range from -0.8 to -1.2, and change within ˜1 per cent only when the value of effective sound speed of dark energy vary over all allowable range of its values.

  18. Gravity resonance spectroscopy constrains dark energy and dark matter scenarios.

    PubMed

    Jenke, T; Cronenberg, G; Burgdörfer, J; Chizhova, L A; Geltenbort, P; Ivanov, A N; Lauer, T; Lins, T; Rotter, S; Saul, H; Schmidt, U; Abele, H

    2014-04-18

    We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate that Newton's inverse square law of gravity is understood at micron distances on an energy scale of 10-14  eV. At this level of precision, we are able to provide constraints on any possible gravitylike interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant β>5.8×108 at 95% confidence level (C.L.), and an attractive (repulsive) dark matter axionlike spin-mass coupling is excluded for the coupling strength gsgp>3.7×10-16 (5.3×10-16) at a Yukawa length of λ=20  μm (95% C.L.).

  19. Dark Energy and Dark Matter from Emergent Gravity Picture

    NASA Astrophysics Data System (ADS)

    Seok Yang, Hyun

    2018-01-01

    We suggest that dark energy and dark matter may be a cosmic uroboros of quantum gravity due to the coherent vacuum structure of spacetime. We apply the emergent gravity to a large N matrix model by considering the vacuum in the noncommutative (NC) Coulomb branch satisfying the Heisenberg algebra. We observe that UV fluctuations in the NC Coulomb branch are always paired with IR fluctuations and these UV/IR fluctuations can be extended to macroscopic scales. We show that space-like fluctuations give rise to the repulsive gravitational force while time-like fluctuations generate the attractive gravitational force. When considering the fact that the fluctuations are random in nature and we are living in the (3+1)-dimensional spacetime, the ratio of the repulsive and attractive components will end in ¾ : ¼= 75 : 25 and this ratio curiously coincides with the dark composition of our current Universe. If one includes ordinary matters which act as the attractive gravitational force, the emergent gravity may explain the dark sector of our Universe more precisely.

  20. Ricci-Gauss-Bonnet holographic dark energy

    NASA Astrophysics Data System (ADS)

    Saridakis, Emmanuel N.

    2018-03-01

    We present a model of holographic dark energy in which the infrared cutoff is determined by both the Ricci and the Gauss-Bonnet invariants. Such a construction has the significant advantage that the infrared cutoff, and consequently the holographic dark energy density, does not depend on the future or the past evolution of the universe, but only on its current features, and moreover it is determined by invariants, whose role is fundamental in gravitational theories. We extract analytical solutions for the behavior of the dark energy density and equation-of-state parameters as functions of the redshift. These reveal the usual thermal history of the universe, with the sequence of radiation, matter and dark energy epochs, resulting in the future to a complete dark energy domination. The corresponding dark energy equation-of-state parameter can lie in the quintessence or phantom regime, or experience the phantom-divide crossing during the cosmological evolution, and its asymptotic value can be quintessencelike, phantomlike, or be exactly equal to the cosmological-constant value. Finally, we extract the constraints on the model parameters that arise from big bang nucleosynthesis.

  1. Dark Energy Camera (DECam) | CTIO

    DECam SAM 0.9-m CCD Goodman SOI Optical Spectrographs CHIRON COSMOS Goodman Filters Telescopes Blanco 4 affecting mainly short exposures taken with bluer filters in dark conditions. 2015 Dec. A new filter, N964 the SDSS filters, has been successfully installed. Images are still being evaluated, but looks good

  2. Dark Energy, Dark Matter and Science with Constellation-X

    NASA Technical Reports Server (NTRS)

    Cardiff, Ann Hornschemeier

    2005-01-01

    Constellation-X, with more than 100 times the collecting area of any previous spectroscopic mission operating in the 0.25-40 keV bandpass, will enable highthroughput, high spectral resolution studies of sources ranging from the most luminous accreting supermassive black holes in the Universe to the disks around young stars where planets form. This talk will review the updated Constellation-X science case, released in booklet form during summer 2005. The science areas where Constellation-X will have major impact include the exploration of the space-time geometry of black holes spanning nine orders of magnitude in mass and the nature of the dark energy and dark matter which govern the expansion and ultimate fate of the Universe. Constellation-X will also explore processes referred to as "cosmic feedback" whereby mechanical energy, radiation, and chemical elements from star formation and black holes are returned to interstellar and intergalactic medium, profoundly affecting the development of structure in the Universe, and will also probe all the important life cycles of matter, from stellar and planetary birth to stellar death via supernova to stellar endpoints in the form of accreting binaries and supernova remnants. This talk will touch upon all these areas, with particular emphasis on Constellation-X's role in the study of Dark Energy.

  3. Roles of dark energy perturbations in dynamical dark energy models: can we ignore them?

    PubMed

    Park, Chan-Gyung; Hwang, Jai-chan; Lee, Jae-heon; Noh, Hyerim

    2009-10-09

    We show the importance of properly including the perturbations of the dark energy component in the dynamical dark energy models based on a scalar field and modified gravity theories in order to meet with present and future observational precisions. Based on a simple scaling scalar field dark energy model, we show that observationally distinguishable substantial differences appear by ignoring the dark energy perturbation. By ignoring it the perturbed system of equations becomes inconsistent and deviations in (gauge-invariant) power spectra depend on the gauge choice.

  4. Report of the Dark Energy Task Force

    DOE R&D Accomplishments Database

    Albrecht, Andreas; Bernstein, Gary; Cahn, Robert; Freedman, Wendy L.; Hewitt, Jacqueline; Hu, Wayne; Huth, John; Kamionkowski, Marc; Kolb, Edward W.; Knox, Lloyd; Mather, John C.

    2006-01-01

    Dark energy appears to be the dominant component of the physical Universe, yet there is no persuasive theoretical explanation for its existence or magnitude. The acceleration of the Universe is, along with dark matter, the observed phenomenon that most directly demonstrates that our theories of fundamental particles and gravity are either incorrect or incomplete. Most experts believe that nothing short of a revolution in our understanding of fundamental physics will be required to achieve a full understanding of the cosmic acceleration. For these reasons, the nature of dark energy ranks among the very most compelling of all outstanding problems in physical science. These circumstances demand an ambitious observational program to determine the dark energy properties as well as possible.

  5. Cosmic Acceleration, Dark Energy, and Fundamental Physics

    NASA Astrophysics Data System (ADS)

    Turner, Michael S.; Huterer, Dragan

    2007-11-01

    A web of interlocking observations has established that the expansion of the Universe is speeding up and not slowing, revealing the presence of some form of repulsive gravity. Within the context of general relativity the cause of cosmic acceleration is a highly elastic ( p˜-ρ), very smooth form of energy called “dark energy” accounting for about 75% of the Universe. The “simplest” explanation for dark energy is the zero-point energy density associated with the quantum vacuum; however, all estimates for its value are many orders-of-magnitude too large. Other ideas for dark energy include a very light scalar field or a tangled network of topological defects. An alternate explanation invokes gravitational physics beyond general relativity. Observations and experiments underway and more precise cosmological measurements and laboratory experiments planned for the next decade will test whether or not dark energy is the quantum energy of the vacuum or something more exotic, and whether or not general relativity can self consistently explain cosmic acceleration. Dark energy is the most conspicuous example of physics beyond the standard model and perhaps the most profound mystery in all of science.

  6. "Dark energy" in the Local Void

    NASA Astrophysics Data System (ADS)

    Villata, M.

    2012-05-01

    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (˜5×1015 M ⊙) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.

  7. Cosmic Visions Dark Energy: Small Projects Portfolio

    SciT

    Dawson, Kyle; Frieman, Josh; Heitmann, Katrin

    Understanding cosmic acceleration is one of the key science drivers for astrophysics and high-energy physics in the coming decade (2014 P5 Report). With the Large Synoptic Survey Telescope (LSST) and the Dark Energy Spectroscopic Instrument (DESI) and other new facilities beginning operations soon, we are entering an exciting phase during which we expect an order of magnitude improvement in constraints on dark energy and the physics of the accelerating Universe. This is a key moment for a matching Small Projects portfolio that can (1) greatly enhance the science reach of these flagship projects, (2) have immediate scientific impact, and (3)more » lay the groundwork for the next stages of the Cosmic Frontier Dark Energy program. In this White Paper, we outline a balanced portfolio that can accomplish these goals through a combination of observational, experimental, and theory and simulation efforts.« less

  8. Dark Energy and the Hubble Law

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Dolgachev, V. P.; Domozhilova, L. M.

    The Big Bang predicted by Friedmann could not be empirically discovered in the 1920th, since global cosmological distances (more than 300-1000 Mpc) were not available for observations at that time. Lemaitre and Hubble studied receding motions of galaxies at local distances of less than 20-30 Mpc and found that the motions followed the (nearly) linear velocity-distance relation, known now as Hubble's law. For decades, the real nature of this phenomenon has remained a mystery, in Sandage's words. After the discovery of dark energy, it was suggested that the dynamics of local expansion flows is dominated by omnipresent dark energy, and it is the dark energy antigravity that is able to introduce the linear velocity-distance relation to the flows. It implies that Hubble's law observed at local distances was in fact the first observational manifestation of dark energy. If this is the case, the commonly accepted criteria of scientific discovery lead to the conclusion: In 1927, Lemaitre discovered dark energy and Hubble confirmed this in 1929.

  9. Redshift drift constraints on holographic dark energy

    NASA Astrophysics Data System (ADS)

    He, Dong-Ze; Zhang, Jing-Fei; Zhang, Xin

    2017-03-01

    The Sandage-Loeb (SL) test is a promising method for probing dark energy because it measures the redshift drift in the spectra of Lyman- α forest of distant quasars, covering the "redshift desert" of 2 ≲ z ≲ 5, which is not covered by existing cosmological observations. Therefore, it could provide an important supplement to current cosmological observations. In this paper, we explore the impact of SL test on the precision of cosmological constraints for two typical holographic dark energy models, i.e., the original holographic dark energy (HDE) model and the Ricci holographic dark energy (RDE) model. To avoid data inconsistency, we use the best-fit models based on current combined observational data as the fiducial models to simulate 30 mock SL test data. The results show that SL test can effectively break the existing strong degeneracy between the present-day matter density Ωm0 and the Hubble constant H 0 in other cosmological observations. For the considered two typical dark energy models, not only can a 30-year observation of SL test improve the constraint precision of Ωm0 and h dramatically, but can also enhance the constraint precision of the model parameters c and α significantly.

  10. Gravitoelectromagnetism and Dark Energy in Superconductors

    NASA Astrophysics Data System (ADS)

    de Matos, Clovis Jacinto

    A gravitomagnetic analog of the London moment in superconductors could explain the anomalous Cooper pair mass excess reported by Janet Tate. Ultimately the gravitomagnetic London moment is attributed to the breaking of the principle of general covariance in superconductors. This naturally implies nonconservation of classical energy-momentum. A possible relation with the manifestation of dark energy in superconductors is questioned.

  11. Model selection and constraints from holographic dark energy scenarios

    NASA Astrophysics Data System (ADS)

    Akhlaghi, I. A.; Malekjani, M.; Basilakos, S.; Haghi, H.

    2018-07-01

    In this study, we combine the expansion and the growth data in order to investigate the ability of the three most popular holographic dark energy models, namely event future horizon, Ricci scale, and Granda-Oliveros IR cutoffs, to fit the data. Using a standard χ2 minimization method, we place tight constraints on the free parameters of the models. Based on the values of the Akaike and Bayesian information criteria, we find that two out of three holographic dark energy models are disfavoured by the data, because they predict a non-negligible amount of fractional dark energy density at early enough times. Although the growth rate data are relatively consistent with the holographic dark energy models which are based on Ricci scale and Granda-Oliveros IR cutoffs, the combined analysis provides strong indications against these models. Finally, we find that the model for which the holographic dark energy is related with the future horizon is consistent with the combined observational data.

  12. DESTINY, The Dark Energy Space Telescope

    NASA Technical Reports Server (NTRS)

    Pasquale, Bert A.; Woodruff, Robert A.; Benford, Dominic J.; Lauer, Tod

    2007-01-01

    We have proposed the development of a low-cost space telescope, Destiny, as a concept for the NASA/DOE Joint Dark Energy Mission. Destiny is a 1.65m space telescope, featuring a near-infrared (0.85-1.7m) survey camera/spectrometer with a moderate flat-field field of view (FOV). Destiny will probe the properties of dark energy by obtaining a Hubble diagram based on Type Ia supernovae and a large-scale mass power spectrum derived from weak lensing distortions of field galaxies as a function of redshift.

  13. Dark Energy: A Crisis for Fundamental Physics

    Stubbs, Christopher [Harvard University, Cambridge, Massachusetts, USA

    2017-12-09

    Astrophysical observations provide robust evidence that our current picture of fundamental physics is incomplete. The discovery in 1998 that the expansion of the Universe is accelerating (apparently due to gravitational repulsion between regions of empty space!) presents us with a profound challenge, at the interface between gravity and quantum mechanics. This "Dark Energy" problem is arguably the most pressing open question in modern fundamental physics. The first talk will describe why the Dark Energy problem constitutes a crisis, with wide-reaching ramifications. One consequence is that we should probe our understanding of gravity at all accessible scales, and the second talk will present experiments and observations that are exploring this issue.

  14. Dark energy with fine redshift sampling

    NASA Astrophysics Data System (ADS)

    Linder, Eric V.

    2007-03-01

    The cosmological constant and many other possible origins for acceleration of the cosmic expansion possess variations in the dark energy properties slow on the Hubble time scale. Given that models with more rapid variation, or even phase transitions, are possible though, we examine the fineness in redshift with which cosmological probes can realistically be employed, and what constraints this could impose on dark energy behavior. In particular, we discuss various aspects of baryon acoustic oscillations, and their use to measure the Hubble parameter H(z). We find that currently considered cosmological probes have an innate resolution no finer than Δz≈0.2 0.3.

  15. Dark energy in systems of galaxies

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.

    2013-11-01

    The precise observational data of the Hubble Space Telescope have been used to study nearby galaxy systems. The main result is the detection of dark energy in groups, clusters, and flows of galaxies on a spatial scale of about 1-10 Mpc. The local density of dark energy in these systems, which is determined by various methods, is close to the global value or even coincides with it. A theoretical model of the nearby Universe has been constructed, which describes the Local Group of galaxies with the flow of dwarf galaxies receding from this system. The key physical parameter of the group-flow system is zero gravity radius, which is the distance at which the gravity of dark matter is compensated by dark-energy antigravity. The model predicts the existence of local regions of space where Einstein antigravity is stronger than Newton gravity. Six such regions have been revealed in the data of the Hubble space telescope. The nearest of these regions is at a distance of 1-3 Mpc from the center of the Milky Way. Antigravity in this region is several times stronger than gravity. Quasiregular flows of receding galaxies, which are accelerated by the dark-energy antigravity, exist in these regions. The model of the nearby Universe at the scale of groups of galaxies (˜1 Mpc) can be extended to the scale of clusters (˜10 Mpc). The systems of galaxies with accelerated receding flows constitute a new and probably widespread class of metagalactic populations. Strong dynamic effects of local dark energy constitute the main characteristic feature of these systems.

  16. Early Universe synthesis of asymmetric dark matter nuggets

    SciT

    Gresham, Moira I.; Lou, Hou Keong; Zurek, Kathryn M.

    We compute the mass function of bound states of asymmetric dark matter - nuggets - synthesized in the early Universe. We apply our results for the nugget density and binding energy computed from a nuclear model to obtain analytic estimates of the typical nugget size exiting synthesis. We numerically solve the Boltzmann equation for synthesis including two-to-two fusion reactions, estimating the impact of bottlenecks on the mass function exiting synthesis. These results provide the basis for studying the late Universe cosmology of nuggets in a future companion paper.

  17. Early Universe synthesis of asymmetric dark matter nuggets

    NASA Astrophysics Data System (ADS)

    Gresham, Moira I.; Lou, Hou Keong; Zurek, Kathryn M.

    2018-02-01

    We compute the mass function of bound states of asymmetric dark matter—nuggets—synthesized in the early Universe. We apply our results for the nugget density and binding energy computed from a nuclear model to obtain analytic estimates of the typical nugget size exiting synthesis. We numerically solve the Boltzmann equation for synthesis including two-to-two fusion reactions, estimating the impact of bottlenecks on the mass function exiting synthesis. These results provide the basis for studying the late Universe cosmology of nuggets in a future companion paper.

  18. Early Universe synthesis of asymmetric dark matter nuggets

    DOE PAGES

    Gresham, Moira I.; Lou, Hou Keong; Zurek, Kathryn M.

    2018-02-12

    We compute the mass function of bound states of asymmetric dark matter - nuggets - synthesized in the early Universe. We apply our results for the nugget density and binding energy computed from a nuclear model to obtain analytic estimates of the typical nugget size exiting synthesis. We numerically solve the Boltzmann equation for synthesis including two-to-two fusion reactions, estimating the impact of bottlenecks on the mass function exiting synthesis. These results provide the basis for studying the late Universe cosmology of nuggets in a future companion paper.

  19. Concordance cosmology without dark energy

    NASA Astrophysics Data System (ADS)

    Rácz, Gábor; Dobos, László; Beck, Róbert; Szapudi, István; Csabai, István

    2017-07-01

    According to the separate universe conjecture, spherically symmetric sub-regions in an isotropic universe behave like mini-universes with their own cosmological parameters. This is an excellent approximation in both Newtonian and general relativistic theories. We estimate local expansion rates for a large number of such regions, and use a scale parameter calculated from the volume-averaged increments of local scale parameters at each time step in an otherwise standard cosmological N-body simulation. The particle mass, corresponding to a coarse graining scale, is an adjustable parameter. This mean field approximation neglects tidal forces and boundary effects, but it is the first step towards a non-perturbative statistical estimation of the effect of non-linear evolution of structure on the expansion rate. Using our algorithm, a simulation with an initial Ωm = 1 Einstein-de Sitter setting closely tracks the expansion and structure growth history of the Λ cold dark matter (ΛCDM) cosmology. Due to small but characteristic differences, our model can be distinguished from the ΛCDM model by future precision observations. Moreover, our model can resolve the emerging tension between local Hubble constant measurements and the Planck best-fitting cosmology. Further improvements to the simulation are necessary to investigate light propagation and confirm full consistency with cosmic microwave background observations.

  20. Quantum Yang-Mills Dark Energy

    NASA Astrophysics Data System (ADS)

    Pasechnik, Roman

    2016-02-01

    In this short review, I discuss basic qualitative characteristics of quantum non-Abelian gauge dynamics in the non-stationary background of the expanding Universe in the framework of the standard Einstein--Yang--Mills formulation. A brief outlook of existing studies of cosmological Yang--Mills fields and their properties will be given. Quantum effects have a profound impact on the gauge field-driven cosmological evolution. In particular, a dynamical formation of the spatially-homogeneous and isotropic gauge field condensate may be responsible for both early and late-time acceleration, as well as for dynamical compensation of non-perturbative quantum vacua contributions to the ground state of the Universe. The main properties of such a condensate in the effective QCD theory at the flat Friedmann--Lema\\'itre--Robertson--Walker (FLRW) background will be discussed within and beyond perturbation theory. Finally, a phenomenologically consistent dark energy can be induced dynamically as a remnant of the QCD vacua compensation arising from leading-order graviton-mediated corrections to the QCD ground state.

  1. QCD nature of dark energy at finite temperature: Cosmological implications

    NASA Astrophysics Data System (ADS)

    Azizi, K.; Katırcı, N.

    2016-05-01

    The Veneziano ghost field has been proposed as an alternative source of dark energy, whose energy density is consistent with the cosmological observations. In this model, the energy density of the QCD ghost field is expressed in terms of QCD degrees of freedom at zero temperature. We extend this model to finite temperature to search the model predictions from late time to early universe. We depict the variations of QCD parameters entering the calculations, dark energy density, equation of state, Hubble and deceleration parameters on temperature from zero to a critical temperature. We compare our results with the observations and theoretical predictions existing at different eras. It is found that this model safely defines the universe from quark condensation up to now and its predictions are not in tension with those of the standard cosmology. The EoS parameter of dark energy is dynamical and evolves from -1/3 in the presence of radiation to -1 at late time. The finite temperature ghost dark energy predictions on the Hubble parameter well fit to those of Λ CDM and observations at late time.

  2. New Light on Dark Energy

    NASA Astrophysics Data System (ADS)

    2008-01-01

    Using ESO's Very Large Telescope Interferometer, astronomers have probed the inner parts of the disc of material surrounding a young stellar object, witnessing how it gains its mass before becoming an adult. ESO PR Photo 03/08 ESO PR Photo 03a/08 The disc around MWC 147 (Artist's Impression) The astronomers had a close look at the object known as MWC 147, lying about 2,600 light years away towards the constellation of Monoceros ('the Unicorn'). MWC 147 belongs to the family of Herbig Ae/Be objects. These have a few times the mass of our Sun and are still forming, increasing in mass by swallowing material present in a surrounding disc. MWC 147 is less than half a million years old. If one associated the middle-aged, 4.6 billion year old Sun with a person in his early forties, MWC 147 would be a 1-day-old baby [1]. The morphology of the inner environment of these young stars is however a matter of debate and knowledge of it is important to better understand how stars and their cortège of planets form. The astronomers Stefan Kraus, Thomas Preibisch, and Keiichi Ohnaka have used the four 8.2-m Unit Telescopes of ESO's Very Large Telescope to this purpose, combining the light from two or three telescopes with the MIDI and AMBER instruments. "With our VLTI/MIDI and VLTI/AMBER observations of MWC147, we combine, for the first time, near- and mid-infrared interferometric observations of a Herbig Ae/Be star, providing a measurement of the disc size over a wide wavelength range [2]," said Stefan Kraus, lead-author of the paper reporting the results. "Different wavelength regimes trace different temperatures, allowing us to probe the disc's geometry on the smaller scale, but also to constrain how the temperature changes with the distance from the star." The near-infrared observations probe hot material with temperatures of up to a few thousand degrees in the innermost disc regions, while the mid-infrared observations trace cooler dust further out in the disc. The

  3. Chandra Opens New Line of Investigation on Dark Energy

    NASA Astrophysics Data System (ADS)

    2004-05-01

    ability of X-ray observations to detect and study the hot gas in galaxy clusters. From these data, the ratio of the mass of the hot gas and the mass of the dark matter in a cluster can be determined. The observed values of the gas fraction depend on the assumed distance to the cluster, which in turn depends on the curvature of space and the amount of dark energy in the universe. Galaxy Cluster Animation Galaxy Cluster Animation Because galaxy clusters are so large, they are thought to represent a fair sample of the matter content in the universe. If so, then relative amounts of hot gas and dark matter should be the same for every cluster. Using this assumption, Allen and colleagues adjusted the distance scale to determine which one fit the data best. These distances show that the expansion of the Universe was first decelerating and then began to accelerate about six billion years ago. Chandra's observations agree with supernova results including those from the Hubble Space Telescope (HST), which first showed dark energy's effect on the acceleration of the Universe. Chandra's results are completely independent of the supernova technique - both in wavelength and the objects observed. Such independent verification is a cornerstone of science. In this case it helps to dispel any remaining doubts that the supernova technique is flawed. "Our Chandra method has nothing to do with other techniques, so they're definitely not comparing notes, so to speak," said Robert Schmidt of University of Potsdam in Germany, another coauthor on the study. Energy Distribution of the Universe Energy Distribution of the Universe Better limits on the amount of dark energy and how it varies with time are obtained by combining the X-ray results with data from NASA's Wilkinson Microwave Anisotropy Probe (WMAP), which used observations of the cosmic microwave background radiation to discover evidence for dark energy in the very early Universe. Using the combined data, Allen and his colleagues found

  4. Dark energy and the BOOMERANG data.

    PubMed

    Amendola, L

    2001-01-08

    The recent high-quality BOOMERANG data allow the testing of many competing cosmological models. Here I present a seven-parameter likelihood analysis of dark energy models with exponential potential and explicit coupling to dark matter. The BOOMERANG data constrain the dimensionless coupling beta to be smaller than 0.1, an order of magnitude better than previous limits. In terms of the constant xi of nonminimally coupled theories, this amounts to xi<0.01. On the other hand, BOOMERANG does not have enough sensitivity to put constraints on the potential slope.

  5. Dark Energy Found Stifling Growth in Universe

    NASA Astrophysics Data System (ADS)

    2008-12-01

    WASHINGTON -- For the first time, astronomers have clearly seen the effects of "dark energy" on the most massive collapsed objects in the universe using NASA's Chandra X-ray Observatory. By tracking how dark energy has stifled the growth of galaxy clusters and combining this with previous studies, scientists have obtained the best clues yet about what dark energy is and what the destiny of the universe could be. This work, which took years to complete, is separate from other methods of dark energy research such as supernovas. These new X-ray results provide a crucial independent test of dark energy, long sought by scientists, which depends on how gravity competes with accelerated expansion in the growth of cosmic structures. Techniques based on distance measurements, such as supernova work, do not have this special sensitivity. Scientists think dark energy is a form of repulsive gravity that now dominates the universe, although they have no clear picture of what it actually is. Understanding the nature of dark energy is one of the biggest problems in science. Possibilities include the cosmological constant, which is equivalent to the energy of empty space. Other possibilities include a modification in general relativity on the largest scales, or a more general physical field. People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Ghostly Glow Reveals a Hidden Class of Long-Wavelength Radio Emitters Powerful Nearby Supernova Caught By Web Cassiopeia A Comes Alive Across Time and Space To help decide between these options, a new way of looking at dark energy is required. It is accomplished by observing how cosmic acceleration affects the growth of galaxy clusters over time. "This result could be described as 'arrested development of the universe'," said Alexey Vikhlinin of the Smithsonian Astrophysical Observatory in Cambridge, Mass., who led the research. "Whatever is forcing the expansion of the universe to speed up is also forcing its

  6. Symmetron dark energy in laboratory experiments.

    PubMed

    Upadhye, Amol

    2013-01-18

    The symmetron scalar field is a matter-coupled dark energy candidate which effectively decouples from matter in high-density regions through a symmetry restoration. We consider a previously unexplored regime, in which the vacuum mass μ~2.4×10(-3) eV of the symmetron is near the dark energy scale, and the matter coupling parameter M~1 TeV is just beyond standard model energies. Such a field will give rise to a fifth force at submillimeter distances which can be probed by short-range gravity experiments. We show that a torsion pendulum experiment such as Eöt-Wash can exclude symmetrons in this regime for all self-couplings λ is < or approximately equal to 7.5.

  7. Interacting dark energy: Dynamical system analysis

    NASA Astrophysics Data System (ADS)

    Golchin, Hanif; Jamali, Sara; Ebrahimi, Esmaeil

    We investigate the impacts of interaction between dark matter (DM) and dark energy (DE) in the context of two DE models, holographic (HDE) and ghost dark energy (GDE). In fact, using the dynamical system analysis, we obtain the cosmological consequence of several interactions, considering all relevant component of universe, i.e. matter (dark and luminous), radiation and DE. Studying the phase space for all interactions in detail, we show the existence of unstable matter-dominated and stable DE-dominated phases. We also show that linear interactions suffer from the absence of standard radiation-dominated epoch. Interestingly, this failure resolved by adding the nonlinear interactions to the models. We find an upper bound for the value of the coupling constant of the interaction between DM and DE as b < 0.57in the case of holographic model, and b < 0.61 in the case of GDE model, to result in a cosmological viable matter-dominated epoch. More specifically, this bound is vital to satisfy instability and deceleration of matter-dominated epoch.

  8. Dark energy and the anthropic principle

    NASA Astrophysics Data System (ADS)

    Křížek, Michal

    2012-01-01

    The Hubble constant is split into two terms H = H1 + H2 , where H1 is a decreasing function due to the Big Bang and the subsequent gravitational interaction that slows the expansion of the Universe and H2 is an increasing function that corresponds to dark energy which accelerates this expansion. For T = 13.7 Gyr we prove that H2( T) > 5 m/(yr AU). This is a quite large number and thus the impact of dark energy, which is spread almost everywhere uniformly, should be observable not only on large scales, but also in our Solar system. In particular, we show that Earth, Mars and other planets were closer to the Sun 4.5 Gyr ago. The recession speed ≈5.3 m/yr of the Earth from the Sun seems to be just right for an almost constant influx of solar energy from the origin of life on Earth up to the present over which time the Sun's luminosity has increased approximately linearly. This presents further support for the Anthropic Principle. Namely, the existence of dark energy guarantees very stable conditions for the development of intelligent life on Earth over a period of 3.5 Gyr.

  9. Dark energy simulacrum in nonlinear electrodynamics

    SciT

    Labun, Lance; Rafelski, Johann

    2010-03-15

    Quasiconstant external fields in nonlinear electromagnetism generate a global contribution proportional to g{sup {mu}{nu}}in the energy-momentum tensor, thus a simulacrum of dark energy. To provide a thorough understanding of the origin and strength of its effects, we undertake a complete theoretical and numerical study of the energy-momentum tensor T{sup {mu}{nu}}for nonlinear electromagnetism. The Euler-Heisenberg nonlinearity due to quantum fluctuations of spinor and scalar matter fields is considered and contrasted with the properties of classical nonlinear Born-Infeld electromagnetism. We address modifications of charged particle kinematics by strong background fields.

  10. Dark energy from the string axiverse.

    PubMed

    Kamionkowski, Marc; Pradler, Josef; Walker, Devin G E

    2014-12-19

    String theories suggest the existence of a plethora of axionlike fields with masses spread over a huge number of decades. Here, we show that these ideas lend themselves to a model of quintessence with no super-Planckian field excursions and in which all dimensionless numbers are order unity. The scenario addresses the "Why now?" problem-i.e., Why has accelerated expansion begun only recently?-by suggesting that the onset of dark-energy domination occurs randomly with a slowly decreasing probability per unit logarithmic interval in cosmic time. The standard axion potential requires us to postulate a rapid decay of most of the axion fields that do not become dark energy. The need for these decays is averted, though, with the introduction of a slightly modified axion potential. In either case, a universe like ours arises in roughly 1 in 100 universes. The scenario may have a host of observable consequences.

  11. Scale Dependence of Dark Energy Antigravity

    NASA Astrophysics Data System (ADS)

    Perivolaropoulos, L.

    2002-09-01

    We investigate the effects of negative pressure induced by dark energy (cosmological constant or quintessence) on the dynamics at various astrophysical scales. Negative pressure induces a repulsive term (antigravity) in Newton's law which dominates on large scales. Assuming a value of the cosmological constant consistent with the recent SnIa data we determine the critical scale $r_c$ beyond which antigravity dominates the dynamics ($r_c \\sim 1Mpc $) and discuss some of the dynamical effects implied. We show that dynamically induced mass estimates on the scale of the Local Group and beyond are significantly modified due to negative pressure. We also briefly discuss possible dynamical tests (eg effects on local Hubble flow) that can be applied on relatively small scales (a few $Mpc$) to determine the density and equation of state of dark energy.

  12. Dark Energy: A Crisis for Fundamental Physics

    SciT

    Stubbs, Christopher

    2010-04-12

    Astrophysical observations provide robust evidence that our current picture of fundamental physics is incomplete. The discovery in 1998 that the expansion of the Universe is accelerating (apparently due to gravitational repulsion between regions of empty space!) presents us with a profound challenge, at the interface between gravity and quantum mechanics. This "Dark Energy" problem is arguably the most pressing open question in modern fundamental physics. The first talk will describe why the Dark Energy problem constitutes a crisis, with wide-reaching ramifications. One consequence is that we should probe our understanding of gravity at all accessible scales, and the second talkmore » will present experiments and observations that are exploring this issue.« less

  13. Stochastic dark energy from inflationary quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Glavan, Dražen; Prokopec, Tomislav; Starobinsky, Alexei A.

    2018-05-01

    We study the quantum backreaction from inflationary fluctuations of a very light, non-minimally coupled spectator scalar and show that it is a viable candidate for dark energy. The problem is solved by suitably adapting the formalism of stochastic inflation. This allows us to self-consistently account for the backreaction on the background expansion rate of the Universe where its effects are large. This framework is equivalent to that of semiclassical gravity in which matter vacuum fluctuations are included at the one loop level, but purely quantum gravitational fluctuations are neglected. Our results show that dark energy in our model can be characterized by a distinct effective equation of state parameter (as a function of redshift) which allows for testing of the model at the level of the background.

  14. Dark energy domination in the Virgocentric flow

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Karachentsev, I. D.; Nasonova, O. G.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2010-09-01

    Context. The standard ΛCDM cosmological model implies that all celestial bodies are embedded in a perfectly uniform dark energy background, represented by Einstein's cosmological constant, and experience its repulsive antigravity action. Aims: Can dark energy have strong dynamical effects on small cosmic scales as well as globally? Continuing our efforts to clarify this question, we now focus on the Virgo Cluster and the flow of expansion around it. Methods: We interpret the Hubble diagram from a new database of velocities and distances of galaxies in the cluster and its environment, using a nonlinear analytical model, which incorporates the antigravity force in terms of Newtonian mechanics. The key parameter is the zero-gravity radius, the distance at which gravity and antigravity are in balance. Results: 1. The interplay between the gravity of the cluster and the antigravity of the dark energy background determines the kinematical structure of the system and controls its evolution. 2. The gravity dominates the quasi-stationary bound cluster, while the antigravity controls the Virgocentric flow, bringing order and regularity to the flow, which reaches linearity and the global Hubble rate at distances ⪆15 Mpc. 3. The cluster and the flow form a system similar to the Local Group and its outflow. In the velocity-distance diagram, the cluster-flow structure reproduces the group-flow structure with a scaling factor of about 10; the zero-gravity radius for the cluster system is also 10 times larger. Conclusions: The phase and dynamical similarity of the systems on the scales of 1-30 Mpc suggests that a two-component pattern may be universal for groups and clusters: a quasi-stationary bound central component and an expanding outflow around it, caused by the nonlinear gravity-antigravity interplay with the dark energy dominating in the flow component.

  15. Probing dark energy via galaxy cluster outskirts

    NASA Astrophysics Data System (ADS)

    Morandi, Andrea; Sun, Ming

    2016-04-01

    We present a Bayesian approach to combine Planck data and the X-ray physical properties of the intracluster medium in the virialization region of a sample of 320 galaxy clusters (0.056 < z < 1.24, kT ≳ 3 keV) observed with Chandra. We exploited the high level of similarity of the emission measure in the cluster outskirts as cosmology proxy. The cosmological parameters are thus constrained assuming that the emission measure profiles at different redshift are weakly self-similar, that is their shape is universal, explicitly allowing for temperature and redshift dependence of the gas fraction. This cosmological test, in combination with Planck+SNIa data, allows us to put a tight constraint on the dark energy models. For a constant-w model, we have w = -1.010 ± 0.030 and Ωm = 0.311 ± 0.014, while for a time-evolving equation of state of dark energy w(z) we have Ωm = 0.308 ± 0.017, w0 = -0.993 ± 0.046 and wa = -0.123 ± 0.400. Constraints on the cosmology are further improved by adding priors on the gas fraction evolution from hydrodynamic simulations. Current data favour the cosmological constant with w ≡ -1, with no evidence for dynamic dark energy. We checked that our method is robust towards different sources of systematics, including background modelling, outlier measurements, selection effects, inhomogeneities of the gas distribution and cosmic filaments. We also provided for the first time constraints on which definition of cluster boundary radius is more tenable, namely based on a fixed overdensity with respect to the critical density of the Universe. This novel cosmological test has the capacity to provide a generational leap forward in our understanding of the equation of state of dark energy.

  16. Holographic dark energy with cosmological constant

    NASA Astrophysics Data System (ADS)

    Hu, Yazhou; Li, Miao; Li, Nan; Zhang, Zhenhui

    2015-08-01

    Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ωhde are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ2min=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain -0.07<ΩΛ0<0.68 and correspondingly 0.04<Ωhde0<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.

  17. Dark Energy from structure: a status report

    NASA Astrophysics Data System (ADS)

    Buchert, Thomas

    2008-02-01

    The effective evolution of an inhomogeneous universe model in any theory of gravitation may be described in terms of spatially averaged variables. In Einstein’s theory, restricting attention to scalar variables, this evolution can be modeled by solutions of a set of Friedmann equations for an effective volume scale factor, with matter and backreaction source terms. The latter can be represented by an effective scalar field (“morphon field”) modeling Dark Energy. The present work provides an overview over the Dark Energy debate in connection with the impact of inhomogeneities, and formulates strategies for a comprehensive quantitative evaluation of backreaction effects both in theoretical and observational cosmology. We recall the basic steps of a description of backreaction effects in relativistic cosmology that lead to refurnishing the standard cosmological equations, but also lay down a number of challenges and unresolved issues in connection with their observational interpretation. The present status of this subject is intermediate: we have a good qualitative understanding of backreaction effects pointing to a global instability of the standard model of cosmology; exact solutions and perturbative results modeling this instability lie in the right sector to explain Dark Energy from inhomogeneities. It is fair to say that, even if backreaction effects turn out to be less important than anticipated by some researchers, the concordance high-precision cosmology, the architecture of current N-body simulations, as well as standard perturbative approaches may all fall short in correctly describing the Late Universe.

  18. Using atom interferometry to detect dark energy

    NASA Astrophysics Data System (ADS)

    Burrage, Clare; Copeland, Edmund J.

    2016-04-01

    We review the tantalising prospect that the first evidence for the dark energy driving the observed acceleration of the universe on giga-parsec scales may be found through metre scale laboratory-based atom interferometry experiments. To do that, we first introduce the idea that scalar fields could be responsible for dark energy and show that in order to be compatible with fifth force constraints, these fields must have a screening mechanism which hides their effects from us within the solar system. Particular emphasis is placed on one such screening mechanism known as the chameleon effect where the field's mass becomes dependent on the environment. The way the field behaves in the presence of a spherical source is determined and we then go on to show how in the presence of the kind of high vacuum associated with atom interferometry experiments, and when the test particle is an atom, it is possible to use the associated interference pattern to place constraints on the acceleration due to the fifth force of the chameleon field - this has already been used to rule out large regions of the chameleon parameter space and maybe one day will be able to detect the force due to the dark energy field in the laboratory.

  19. Covariant generalized holographic dark energy and accelerating universe

    NASA Astrophysics Data System (ADS)

    Nojiri, Shin'ichi; Odintsov, S. D.

    2017-08-01

    We propose the generalized holographic dark energy model where the infrared cutoff is identified with the combination of the FRW universe parameters: the Hubble rate, particle and future horizons, cosmological constant, the universe lifetime (if finite) and their derivatives. It is demonstrated that with the corresponding choice of the cutoff one can map such holographic dark energy to modified gravity or gravity with a general fluid. Explicitly, F( R) gravity and the general perfect fluid are worked out in detail and the corresponding infrared cutoff is found. Using this correspondence, we get realistic inflation or viable dark energy or a unified inflationary-dark energy universe in terms of covariant holographic dark energy.

  20. Saul Perlmutter, Distant Supernovae, Dark Energy, and the Accelerating

    , Distant Supernovae, Dark Energy, and the Accelerating Expansion of the Universe Resources with Additional nature of dark energy.'1 'The accelerating expansion means that the universe could expand forever until , in the distant future, it is cold and dark. The teams' discovery led to speculation that there is a

  1. System Architecture of the Dark Energy Survey Camera Readout Electronics

    SciT

    Shaw, Theresa; /FERMILAB; Ballester, Otger

    2010-05-27

    The Dark Energy Survey makes use of a new camera, the Dark Energy Camera (DECam). DECam will be installed in the Blanco 4M telescope at Cerro Tololo Inter-American Observatory (CTIO). DECam is presently under construction and is expected to be ready for observations in the fall of 2011. The focal plane will make use of 62 2Kx4K and 12 2kx2k fully depleted Charge-Coupled Devices (CCDs) for guiding, alignment and focus. This paper will describe design considerations of the system; including, the entire signal path used to read out the CCDs, the development of a custom crate and backplane, the overallmore » grounding scheme and early results of system tests.« less

  2. Can particle-creation phenomena replace dark energy?

    NASA Astrophysics Data System (ADS)

    Debnath, Subhra; Sanyal, Abhik Kumar

    2011-07-01

    Particle creation at the expense of the gravitational field might be sufficient to explain the cosmic evolution history, without the need of dark energy at all. This phenomena has been investigated in a recent work by Lima et al (Class. Quantum Grav. 2008 25 205006) assuming particle creation at the cost of gravitational energy in the late Universe. However, the model does not satisfy the WMAP constraint on the matter-radiation equality (Steigman et al 2009 J. Cosmol. Astropart. Phys. JCAP06(2009)033). Here, we have suggested a model, in the same framework, which fits perfectly with SNIa data at low redshift as well as an early integrated Sachs-Wolfe effect on the matter-radiation equality determined by WMAP at high redshift. Such a model requires the presence of nearly 26% primeval matter in the form of baryons and cold dark matter.

  3. Dark Energy from Violation of Energy Conservation.

    PubMed

    Josset, Thibaut; Perez, Alejandro; Sudarsky, Daniel

    2017-01-13

    In this Letter, we consider the possibility of reconciling metric theories of gravitation with a violation of the conservation of energy-momentum. Under some circumstances, this can be achieved in the context of unimodular gravity, and it leads to the emergence of an effective cosmological constant in Einstein's equation. We specifically investigate two potential sources of energy nonconservation-nonunitary modifications of quantum mechanics and phenomenological models motivated by quantum gravity theories with spacetime discreteness at the Planck scale-and show that such locally negligible phenomena can nevertheless become relevant at the cosmological scale.

  4. Dark Energy from Violation of Energy Conservation

    NASA Astrophysics Data System (ADS)

    Josset, Thibaut; Perez, Alejandro; Sudarsky, Daniel

    2017-01-01

    In this Letter, we consider the possibility of reconciling metric theories of gravitation with a violation of the conservation of energy-momentum. Under some circumstances, this can be achieved in the context of unimodular gravity, and it leads to the emergence of an effective cosmological constant in Einstein's equation. We specifically investigate two potential sources of energy nonconservation—nonunitary modifications of quantum mechanics and phenomenological models motivated by quantum gravity theories with spacetime discreteness at the Planck scale—and show that such locally negligible phenomena can nevertheless become relevant at the cosmological scale.

  5. Dark Energy and Gravity Experiment Explorer and Pathfinder

    NASA Astrophysics Data System (ADS)

    Chiow, S.-w.; Yu, N.

    2018-02-01

    We propose to utilize the unique gravity and vacuum environment in the orbits of the Deep Space Gateway for direct detections of dark energy using atom interferometers, and for pathfinder experiments for future gravitational wave and dark matter detections.

  6. Dark Energy and Key Physical Parameters of Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Bisnovatyi-Kogan, G. S.

    We discuss the physics of clusters of galaxies embedded in the cosmic dark energy background and show that 1) the halo cut-off radius of a cluster like the Virgo cluster is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; 2) the halo averaged density is equal to two densities of dark energy; 3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile.

  7. Variable sound speed in interacting dark energy models

    NASA Astrophysics Data System (ADS)

    Linton, Mark S.; Pourtsidou, Alkistis; Crittenden, Robert; Maartens, Roy

    2018-04-01

    We consider a self-consistent and physical approach to interacting dark energy models described by a Lagrangian, and identify a new class of models with variable dark energy sound speed. We show that if the interaction between dark energy in the form of quintessence and cold dark matter is purely momentum exchange this generally leads to a dark energy sound speed that deviates from unity. Choosing a specific sub-case, we study its phenomenology by investigating the effects of the interaction on the cosmic microwave background and linear matter power spectrum. We also perform a global fitting of cosmological parameters using CMB data, and compare our findings to ΛCDM.

  8. Replacing dark energy by silent virialisation

    NASA Astrophysics Data System (ADS)

    Roukema, Boudewijn F.

    2018-02-01

    fixed cosmological time. Conculsions. Thus, starting from EdS initial conditions and averaging on a typical non-linear structure formation scale, the VQZA dark-energy-free average expansion matches ΛCDM expansion to first order. The software packages used here are free-licensed.

  9. Probing dark energy with atom interferometry

    NASA Astrophysics Data System (ADS)

    Burrage, Clare; Copeland, Edmund J.; Hinds, E. A.

    2015-03-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  10. Dark energy and key physical parameters of clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Chernin, A. D.

    2012-04-01

    We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: (1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; (2) the halo averaged density is equal to two densities of dark energy; (3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.

  11. Dark energy and fate of the Universe

    NASA Astrophysics Data System (ADS)

    Li, XiaoDong; Wang, Shuang; Huang, QingGuo; Zhang, Xin; Li, Miao

    2012-07-01

    We explore the ultimate fate of the Universe by using a divergence-free parametrization for dark energy w( z)= w 0+ w a [ln(2 + z) / (1 + z) - ln 2]. Unlike the Chevallier-Polarski-Linder parametrization, this parametrization has well behaved, bounded behavior for both high redshifts and negative redshifts, and thus can genuinely cover many theoretical dark energy models. After constraining the parameter space of this parametrization by using the current cosmological observations, we find that, at the 95.4% confidence level, our Universe can still exist at least 16.7 Gyr before it ends in a big rip. Moreover, for the phantom energy dominated Universe, we find that a gravitationally bound system will be destroyed at a time {{t ˜eq Psqrt {2| {1 + 3w( - 1)} |} } {/ {{t ˜eq Psqrt {2| {1 + 3w( - 1)} |} } {[ {6π | {1 + w( - 1)} |} ]}}} . } {[ {6π | {1 + w( - 1)} |} ]}}, where P is the period of a circular orbit around this system, before the big rip.

  12. Anisotropic universe with magnetized dark energy

    NASA Astrophysics Data System (ADS)

    Goswami, G. K.; Dewangan, R. N.; Yadav, Anil Kumar

    2016-04-01

    In the present work we have searched the existence of the late time acceleration of the Universe filled with cosmic fluid and uniform magnetic field as source of matter in anisotropic Heckmann-Schucking space-time. The observed acceleration of universe has been explained by introducing a positive cosmological constant Λ in the Einstein's field equation which is mathematically equivalent to vacuum energy with equation of state (EOS) parameter set equal to -1. The present values of the matter and the dark energy parameters (Ωm)0 & (Ω_{Λ})0 are estimated in view of the latest 287 high red shift (0.3 ≤ z ≤1.4) SN Ia supernova data's of observed apparent magnitude along with their possible error taken from Union 2.1 compilation. It is found that the best fit value for (Ωm)0 & (Ω_{Λ})0 are 0.2820 & 0.7177 respectively which are in good agreement with recent astrophysical observations in the latest surveys like WMAP [2001-2013], Planck [latest 2015] & BOSS. Various physical parameters such as the matter and dark energy densities, the present age of the universe and deceleration parameter have been obtained on the basis of the values of (Ωm)0 & (Ω_{Λ})0. Also we have estimated that the acceleration would have begun in the past at z = 0.71131 ˜6.2334 Gyrs before from present.

  13. Dark energy from the motions of neutrinos

    NASA Astrophysics Data System (ADS)

    Simpson, Fergus; Jimenez, Raul; Pena-Garay, Carlos; Verde, Licia

    2018-06-01

    Ordinarily, a scalar field may only play the role of dark energy if it possesses a potential that is either extraordinarily flat or extremely fine-tuned. Here we demonstrate that these restrictions are lifted when the scalar field undergoes persistent energy exchange with another fluid. In this scenario, the field is prevented from reversing its direction of motion, and instead may come to rest while displaced from the local minimum of its potential. Therefore almost any scalar potential is capable of initiating a prolonged phase of cosmic acceleration. If the rate of energy transfer is modulated via a derivative coupling, the field undergoes a rapid process of freezing, after which the field's equation of state mimicks that of a cosmological constant. We present a physically motivated realisation in the form of a neutrino-majoron coupling, which avoids the dynamical instabilities associated with mass-varying neutrino models. Finally we discuss possible means by which this model could be experimentally verified.

  14. Dark energy from primordial inflationary quantum fluctuations.

    PubMed

    Ringeval, Christophe; Suyama, Teruaki; Takahashi, Tomo; Yamaguchi, Masahide; Yokoyama, Shuichiro

    2010-09-17

    We show that current cosmic acceleration can be explained by an almost massless scalar field experiencing quantum fluctuations during primordial inflation. Provided its mass does not exceed the Hubble parameter today, this field has been frozen during the cosmological ages to start dominating the Universe only recently. By using supernovae data, completed with baryonic acoustic oscillations from galaxy surveys and cosmic microwave background anisotropies, we infer the energy scale of primordial inflation to be around a few TeV, which implies a negligible tensor-to-scalar ratio of the primordial fluctuations. Moreover, our model suggests that inflation lasted for an extremely long period. Dark energy could therefore be a natural consequence of cosmic inflation close to the electroweak energy scale.

  15. R2 dark energy in the laboratory

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; Valageas, Patrick; Vanhove, Pierre

    2018-05-01

    We analyze the role, on large cosmological scales and laboratory experiments, of the leading curvature squared contributions to the low-energy effective action of gravity. We argue for a natural relationship c0λ2≃1 at low energy between the R2 coefficients c0 of the Ricci scalar squared term in this expansion and the dark energy scale Λ =(λ MPl)4 in four-dimensional Planck mass units. We show how the compatibility between the acceleration of the expansion rate of the Universe, local tests of gravity and the quantum stability of the model all converge to select such a relationship up to a coefficient which should be determined experimentally. When embedding this low-energy theory of gravity into candidates for its ultraviolet completion, we find that the proposed relationship is guaranteed in string-inspired supergravity models with modulus stabilization and supersymmetry breaking leading to de Sitter compactifications. In this case, the scalar degree of freedom of R2 gravity is associated to a volume modulus. Once written in terms of a scalar-tensor theory, the effective theory corresponds to a massive scalar field coupled with the universal strength β =1 /√{6 } to the matter stress-energy tensor. When the relationship c0λ2≃1 is realized, we find that on astrophysical scales and in cosmology the scalar field is ultralocal and therefore no effect arises on such large scales. On the other hand, the scalar field mass is tightly constrained by the nonobservation of fifth forces in torsion pendulum experiments such as Eöt-Wash. It turns out that the observation of the dark energy scale in cosmology implies that the scalar field could be detectable by fifth-force experiments in the near future.

  16. Dynamical system analysis for DBI dark energy interacting with dark matter

    NASA Astrophysics Data System (ADS)

    Mahata, Nilanjana; Chakraborty, Subenoy

    2015-01-01

    A dynamical system analysis related to Dirac-Born-Infeld (DBI) cosmological model has been investigated in this present work. For spatially flat FRW spacetime, the Einstein field equation for DBI scenario has been used to study the dynamics of DBI dark energy interacting with dark matter. The DBI dark energy model is considered as a scalar field with a nonstandard kinetic energy term. An interaction between the DBI dark energy and dark matter is considered through a phenomenological interaction between DBI scalar field and the dark matter fluid. The field equations are reduced to an autonomous dynamical system by a suitable redefinition of the basic variables. The potential of the DBI scalar field is assumed to be exponential. Finally, critical points are determined, their nature have been analyzed and corresponding cosmological scenario has been discussed.

  17. Effect of Dark Energy Perturbation on Cosmic Voids Formation

    NASA Astrophysics Data System (ADS)

    Endo, Takao; Nishizawa, Atsushi J.; Ichiki, Kiyotomo

    2018-05-01

    In this paper, we present the effects of dark energy perturbation on the formation and abundance of cosmic voids. We consider dark energy to be a fluid with a negative pressure characterised by a constant equation of state w and speed of sound c_s^2. By solving fluid equations for two components, namely, dark matter and dark energy fluids, we quantify the effects of dark energy perturbation on the sizes of top-hat voids. We also explore the effects on the size distribution of voids based on the excursion set theory. We confirm that dark energy perturbation negligibly affects the size evolution of voids; c_s^2=0 varies the size only by 0.1% as compared to the homogeneous dark energy model. We also confirm that dark energy perturbation suppresses the void size when w < -1 and enhances the void size when w > -1 (Basse et al. 2011). In contrast to the negligible impact on the size, we find that the size distribution function on scales larger than 10 Mpc/h highly depends on dark energy perturbation; compared to the homogeneous dark energy model, the number of large voids of radius 30Mpc is 25% larger for the model with w = -0.9 and c_s^2=0 while they are 20% less abundant for the model with w = -1.3 and c_s^2=0.

  18. Observational constraints on holographic tachyonic dark energy in interaction with dark matter

    SciT

    Micheletti, Sandro M. R., E-mail: smrm@fma.if.usp.br

    2010-05-01

    We discuss an interacting tachyonic dark energy model in the context of the holographic principle. The potential of the holographic tachyon field in interaction with dark matter is constructed. The model results are compared with CMB shift parameter, baryonic acoustic oscilations, lookback time and the Constitution supernovae sample. The coupling constant of the model is compatible with zero, but dark energy is not given by a cosmological constant.

  19. Holographic dark energy with cosmological constant

    SciT

    Hu, Yazhou; Li, Nan; Zhang, Zhenhui

    2015-08-01

    Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ω{sub hde} are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by usingmore » the recent observational data. We find the model yields χ{sup 2}{sub min}=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain −0.07« less

  20. Examining the evidence for dynamical dark energy.

    PubMed

    Zhao, Gong-Bo; Crittenden, Robert G; Pogosian, Levon; Zhang, Xinmin

    2012-10-26

    We apply a new nonparametric Bayesian method for reconstructing the evolution history of the equation of state w of dark energy, based on applying a correlated prior for w(z), to a collection of cosmological data. We combine the latest supernova (SNLS 3 year or Union 2.1), cosmic microwave background, redshift space distortion, and the baryonic acoustic oscillation measurements (including BOSS, WiggleZ, and 6dF) and find that the cosmological constant appears consistent with current data, but that a dynamical dark energy model which evolves from w<-1 at z~0.25 to w>-1 at higher redshift is mildly favored. Estimates of the Bayesian evidence show little preference between the cosmological constant model and the dynamical model for a range of correlated prior choices. Looking towards future data, we find that the best fit models for current data could be well distinguished from the ΛCDM model by observations such as Planck and Euclid-like surveys.

  1. A dark energy model alternative to generalized Chaplygin gas

    NASA Astrophysics Data System (ADS)

    Hova, Hoavo; Yang, Huanxiong

    By proposing a new cosmic fluid model of ‑ 1 ≤ ω ≤ 0 as an alternative to the generalized Chaplygin gas, we reexamine the role of Chaplygin gaslike fluid models in understanding dark energy and dark matter. Instead of as a unified dark matter, the fluid is suggested to be a mixture of unclustered dark energy and pressureless dark matter. Within such a scenario, the sub-horizon fluctuations of matter are stable and scale invariant, similar to those in standard ΛCDM model.

  2. PHYSICS OF OUR DAYS: Dark energy: myths and reality

    NASA Astrophysics Data System (ADS)

    Lukash, V. N.; Rubakov, V. A.

    2008-03-01

    We discuss the questions related to dark energy in the Universe. We note that in spite of the effect of dark energy, large-scale structure is still being generated in the Universe and this will continue for about ten billion years. We also comment on some statements in the paper "Dark energy and universal antigravitation" by A D Chernin, Physics Uspekhi 51 (3) (2008).

  3. Chameleon dark energy models with characteristic signatures

    SciT

    Gannouji, Radouane; Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601; Moraes, Bruno

    2010-12-15

    In chameleon dark energy models, local gravity constraints tend to rule out parameters in which observable cosmological signatures can be found. We study viable chameleon potentials consistent with a number of recent observational and experimental bounds. A novel chameleon field potential, motivated by f(R) gravity, is constructed where observable cosmological signatures are present both at the background evolution and in the growth rate of the perturbations. We study the evolution of matter density perturbations on low redshifts for this potential and show that the growth index today {gamma}{sub 0} can have significant dispersion on scales relevant for large scale structures.more » The values of {gamma}{sub 0} can be even smaller than 0.2 with large variations of {gamma} on very low redshifts for the model parameters constrained by local gravity tests. This gives a possibility to clearly distinguish these chameleon models from the {Lambda}-cold-dark-matter ({Lambda}CDM) model in future high-precision observations.« less

  4. Cold dark energy constraints from the abundance of galaxy clusters

    DOE PAGES

    Heneka, Caroline; Rapetti, David; Cataneo, Matteo; ...

    2017-10-05

    We constrain cold dark energy of negligible sound speed using galaxy cluster abundance observations. In contrast to standard quasi-homogeneous dark energy, negligible sound speed implies clustering of the dark energy fluid at all scales, allowing us to measure the effects of dark energy perturbations at cluster scales. We compare those models and set the stage for using non-linear information from semi-analytical modelling in cluster growth data analyses. For this, we recalibrate the halo mass function with non-linear characteristic quantities, the spherical collapse threshold and virial overdensity, that account for model and redshift-dependent behaviours, as well as an additional mass contributionmore » for cold dark energy. Here in this paper, we present the first constraints from this cold dark matter plus cold dark energy mass function using our cluster abundance likelihood, which self-consistently accounts for selection effects, covariances and systematic uncertainties. We combine cluster growth data with cosmic microwave background, supernovae Ia and baryon acoustic oscillation data, and find a shift between cold versus quasi-homogeneous dark energy of up to 1σ. We make a Fisher matrix forecast of constraints attainable with cluster growth data from the ongoing Dark Energy Survey (DES). For DES, we predict ~ 50 percent tighter constraints on (Ωm, w) for cold dark energy versus wCDM models, with the same free parameters. Overall, we show that cluster abundance analyses are sensitive to cold dark energy, an alternative, viable model that should be routinely investigated alongside the standard dark energy scenario.« less

  5. Cold dark energy constraints from the abundance of galaxy clusters

    SciT

    Heneka, Caroline; Rapetti, David; Cataneo, Matteo

    We constrain cold dark energy of negligible sound speed using galaxy cluster abundance observations. In contrast to standard quasi-homogeneous dark energy, negligible sound speed implies clustering of the dark energy fluid at all scales, allowing us to measure the effects of dark energy perturbations at cluster scales. We compare those models and set the stage for using non-linear information from semi-analytical modelling in cluster growth data analyses. For this, we recalibrate the halo mass function with non-linear characteristic quantities, the spherical collapse threshold and virial overdensity, that account for model and redshift-dependent behaviours, as well as an additional mass contributionmore » for cold dark energy. Here in this paper, we present the first constraints from this cold dark matter plus cold dark energy mass function using our cluster abundance likelihood, which self-consistently accounts for selection effects, covariances and systematic uncertainties. We combine cluster growth data with cosmic microwave background, supernovae Ia and baryon acoustic oscillation data, and find a shift between cold versus quasi-homogeneous dark energy of up to 1σ. We make a Fisher matrix forecast of constraints attainable with cluster growth data from the ongoing Dark Energy Survey (DES). For DES, we predict ~ 50 percent tighter constraints on (Ωm, w) for cold dark energy versus wCDM models, with the same free parameters. Overall, we show that cluster abundance analyses are sensitive to cold dark energy, an alternative, viable model that should be routinely investigated alongside the standard dark energy scenario.« less

  6. BOOK REVIEW Dark Energy: Theory and Observations Dark Energy: Theory and Observations

    NASA Astrophysics Data System (ADS)

    Faraoni, Valerio

    2011-02-01

    The 1998 discovery of what seems an acceleration of the cosmic expansion was made using type Ia supernovae and was later confirmed by other cosmological observations. It has made a huge impact on cosmology, prompting theoreticians to explain the observations and introducing the concept of dark energy into modern physics. A vast literature on dark energy and its alternatives has appeared since then, and this is the first comprehensive book devoted to the subject. This book is addressed to an advanced audience comprising graduate students and researchers in cosmology. Although it contains forty four fully solved problems and the first three chapters are rather introductory, they do not constitute a self-consistent course in cosmology and this book assumes graduate level knowledge of cosmology and general relativity. The fourth chapter focuses on observations, while the rest of this book addresses various classes of models proposed, including the cosmological constant, quintessence, k-essence, phantom energy, coupled dark energy, etc. The title of this book should not induce the reader into believing that only dark energy models are addressed—the authors devote two chapters to discussing conceptually very different approaches alternative to dark energy, including ƒ(R) and Gauss-Bonnet gravity, braneworld and void models, and the backreaction of inhomogeneities on the cosmic dynamics. Two chapters contain a general discussion of non-linear cosmological perturbations and statistical methods widely applicable in cosmology. The final chapter outlines future perspectives and the most likely lines of observational research on dark energy in the future. Overall, this book is carefully drafted, well presented, and does a good job of organizing the information available in the vast literature. The reader is pointed to the essential references and guided in a balanced way through the various proposals aimied at explaining the cosmological observations. Not all classes of

  7. Interactive mixture of inhomogeneous dark fluids driven by dark energy: a dynamical system analysis

    NASA Astrophysics Data System (ADS)

    Izquierdo, Germán; Blanquet-Jaramillo, Roberto C.; Sussman, Roberto A.

    2018-03-01

    We examine the evolution of an inhomogeneous mixture of non-relativistic pressureless cold dark matter (CDM), coupled to dark energy (DE) characterised by the equation of state parameter w<-1/3, with the interaction term proportional to the DE density. This coupled mixture is the source of a spherically symmetric Lemaître-Tolman-Bondi (LTB) metric admitting an asymptotic Friedman-Lemaître-Robertson-Walker (FLRW) background. Einstein's equations reduce to a 5-dimensional autonomous dynamical system involving quasi-local variables related to suitable averages of covariant scalars and their fluctuations. The phase space evolution around the critical points (past/future attractors and five saddles) is examined in detail. For all parameter values and both directions of energy flow (CDM to DE and DE to CDM) the phase space trajectories are compatible with a physically plausible early cosmic times behaviour near the past attractor. This result compares favourably with mixtures with interaction driven by the CDM density, whose past evolution is unphysical for DE to CDM energy flow. Numerical examples are provided describing the evolution of an initial profile that can be associated with idealised structure formation scenarios.

  8. Observational constraints on variable equation of state parameters of dark matter and dark energy after Planck

    NASA Astrophysics Data System (ADS)

    Kumar, Suresh; Xu, Lixin

    2014-10-01

    In this paper, we study a cosmological model in general relativity within the framework of spatially flat Friedmann-Robertson-Walker space-time filled with ordinary matter (baryonic), radiation, dark matter and dark energy, where the latter two components are described by Chevallier-Polarski-Linder equation of state parameters. We utilize the observational data sets from SNLS3, BAO and Planck + WMAP9 + WiggleZ measurements of matter power spectrum to constrain the model parameters. We find that the current observational data offer tight constraints on the equation of state parameter of dark matter. We consider the perturbations and study the behavior of dark matter by observing its effects on CMB and matter power spectra. We find that the current observational data favor the cold dark matter scenario with the cosmological constant type dark energy at the present epoch.

  9. Does Cometary Panspermia Falsify Dark Energy?

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.

    2011-10-01

    The 2011 Nobel Prize for physics has been awarded to Saul Perlmutter, Brian P. Schmidt, and Adam G. Riess "for the discovery of the accelerating expansion of the Universe through observations of distant supernovae", judged to be the "most important discovery or invention within the field of physics" (Excerpt from the will of Alfred Nobel). Are we forced by this claimed discovery to believe the universe is dominated by anti- gravitational dark energy? Can the discovery be falsified? Because life as we observe it on Earth is virtually impossible by the standard ΛCDMHC model, extraterrestrial life and cometary panspermia may provide the first definitive falsification of a Nobel Prize in Physics since its first award in 1901 to Wilhelm Röntgen for his discovery of X-rays.

  10. The Dark Energy Survey Image Processing Pipeline

    NASA Astrophysics Data System (ADS)

    Morganson, E.; Gruendl, R. A.; Menanteau, F.; Carrasco Kind, M.; Chen, Y.-C.; Daues, G.; Drlica-Wagner, A.; Friedel, D. N.; Gower, M.; Johnson, M. W. G.; Johnson, M. D.; Kessler, R.; Paz-Chinchón, F.; Petravick, D.; Pond, C.; Yanny, B.; Allam, S.; Armstrong, R.; Barkhouse, W.; Bechtol, K.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Buckley-Geer, E.; Covarrubias, R.; Desai, S.; Diehl, H. T.; Goldstein, D. A.; Gruen, D.; Li, T. S.; Lin, H.; Marriner, J.; Mohr, J. J.; Neilsen, E.; Ngeow, C.-C.; Paech, K.; Rykoff, E. S.; Sako, M.; Sevilla-Noarbe, I.; Sheldon, E.; Sobreira, F.; Tucker, D. L.; Wester, W.; DES Collaboration

    2018-07-01

    The Dark Energy Survey (DES) is a five-year optical imaging campaign with the goal of understanding the origin of cosmic acceleration. DES performs a ∼5000 deg2 survey of the southern sky in five optical bands (g, r, i, z, Y) to a depth of ∼24th magnitude. Contemporaneously, DES performs a deep, time-domain survey in four optical bands (g, r, i, z) over ∼27 deg2. DES exposures are processed nightly with an evolving data reduction pipeline and evaluated for image quality to determine if they need to be retaken. Difference imaging and transient source detection are also performed in the time domain component nightly. On a bi-annual basis, DES exposures are reprocessed with a refined pipeline and coadded to maximize imaging depth. Here we describe the DES image processing pipeline in support of DES science, as a reference for users of archival DES data, and as a guide for future astronomical surveys.

  11. Nonlinear effective theory of dark energy

    NASA Astrophysics Data System (ADS)

    Cusin, Giulia; Lewandowski, Matthew; Vernizzi, Filippo

    2018-04-01

    We develop an approach to parametrize cosmological perturbations beyond linear order for general dark energy and modified gravity models characterized by a single scalar degree of freedom. We derive the full nonlinear action, focusing on Horndeski theories. In the quasi-static, non-relativistic limit, there are a total of six independent relevant operators, three of which start at nonlinear order. The new nonlinear couplings modify, beyond linear order, the generalized Poisson equation relating the Newtonian potential to the matter density contrast. We derive this equation up to cubic order in perturbations and, in a companion article [1], we apply it to compute the one-loop matter power spectrum. Within this approach, we also discuss the Vainshtein regime around spherical sources and the relation between the Vainshtein scale and the nonlinear scale for structure formation.

  12. Weak lensing in the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Troxel, Michael

    2016-03-01

    I will present the current status of weak lensing results from the Dark Energy Survey (DES). DES will survey 5000 square degrees in five photometric bands (grizY), and has already provided a competitive weak lensing catalog from Science Verification data covering just 3% of the final survey footprint. I will summarize the status of shear catalog production using observations from the first year of the survey and discuss recent weak lensing science results from DES. Finally, I will report on the outlook for future cosmological analyses in DES including the two-point cosmic shear correlation function and discuss challenges that DES and future surveys will face in achieving a control of systematics that allows us to take full advantage of the available statistical power of our shear catalogs.

  13. The Dark Energy Survey Data Release 1

    SciT

    Abbott, T.M.C.; et al.

    We describe the first public data release of the Dark Energy Survey, DES DR1, consisting of reduced single epoch images, coadded images, coadded source catalogs, and associated products and services assembled over the first three years of DES science operations. DES DR1 is based on optical/near-infrared imaging from 345 distinct nights (August 2013 to February 2016) by the Dark Energy Camera mounted on the 4-m Blanco telescope at Cerro Tololo Inter-American Observatory in Chile. We release data from the DES wide-area survey covering ~5,000 sq. deg. of the southern Galactic cap in five broad photometric bands, grizY. DES DR1 hasmore » a median delivered point-spread function of g = 1.12, r = 0.96, i = 0.88, z = 0.84, and Y = 0.90 arcsec FWHM, a photometric precision of < 1% in all bands, and an astrometric precision of 151 mas. The median coadded catalog depth for a 1.95" diameter aperture at S/N = 10 is g = 24.33, r = 24.08, i = 23.44, z = 22.69, and Y = 21.44 mag. DES DR1 includes nearly 400M distinct astronomical objects detected in ~10,000 coadd tiles of size 0.534 sq. deg. produced from ~39,000 individual exposures. Benchmark galaxy and stellar samples contain ~310M and ~ 80M objects, respectively, following a basic object quality selection. These data are accessible through a range of interfaces, including query web clients, image cutout servers, jupyter notebooks, and an interactive coadd image visualization tool. DES DR1 constitutes the largest photometric data set to date at the achieved depth and photometric precision.« less

  14. Nonlinear spherical perturbations in quintessence models of dark energy

    NASA Astrophysics Data System (ADS)

    Pratap Rajvanshi, Manvendra; Bagla, J. S.

    2018-06-01

    Observations have confirmed the accelerated expansion of the universe. The accelerated expansion can be modelled by invoking a cosmological constant or a dynamical model of dark energy. A key difference between these models is that the equation of state parameter w for dark energy differs from ‑1 in dynamical dark energy (DDE) models. Further, the equation of state parameter is not constant for a general DDE model. Such differences can be probed using the variation of scale factor with time by measuring distances. Another significant difference between the cosmological constant and DDE models is that the latter must cluster. Linear perturbation analysis indicates that perturbations in quintessence models of dark energy do not grow to have a significant amplitude at small length scales. In this paper we study the response of quintessence dark energy to non-linear perturbations in dark matter. We use a fully relativistic model for spherically symmetric perturbations. In this study we focus on thawing models. We find that in response to non-linear perturbations in dark matter, dark energy perturbations grow at a faster rate than expected in linear perturbation theory. We find that dark energy perturbation remains localised and does not diffuse out to larger scales. The dominant drivers of the evolution of dark energy perturbations are the local Hubble flow and a supression of gradients of the scalar field. We also find that the equation of state parameter w changes in response to perturbations in dark matter such that it also becomes a function of position. The variation of w in space is correlated with density contrast for matter. Variation of w and perturbations in dark energy are more pronounced in response to large scale perturbations in matter while the dependence on the amplitude of matter perturbations is much weaker.

  15. LSST Probes of Dark Energy: New Energy vs New Gravity

    NASA Astrophysics Data System (ADS)

    Bradshaw, Andrew; Tyson, A.; Jee, M. J.; Zhan, H.; Bard, D.; Bean, R.; Bosch, J.; Chang, C.; Clowe, D.; Dell'Antonio, I.; Gawiser, E.; Jain, B.; Jarvis, M.; Kahn, S.; Knox, L.; Newman, J.; Wittman, D.; Weak Lensing, LSST; LSS Science Collaborations

    2012-01-01

    Is the late time acceleration of the universe due to new physics in the form of stress-energy or a departure from General Relativity? LSST will measure the shape, magnitude, and color of 4x109 galaxies to high S/N over 18,000 square degrees. These data will be used to separately measure the gravitational growth of mass structure and distance vs redshift to unprecedented precision by combining multiple probes in a joint analysis. Of the five LSST probes of dark energy, weak gravitational lensing (WL) and baryon acoustic oscillation (BAO) probes are particularly effective in combination. By measuring the 2-D BAO scale in ugrizy-band photometric redshift-selected samples, LSST will determine the angular diameter distance to a dozen redshifts with sub percent-level errors. Reconstruction of the WL shear power spectrum on linear and weakly non-linear scales, and of the cross-correlation of shear measured in different photometric redshift bins provides a constraint on the evolution of dark energy that is complementary to the purely geometric measures provided by supernovae and BAO. Cross-correlation of the WL shear and BAO signal within redshift shells minimizes the sensitivity to systematics. LSST will also detect shear peaks, providing independent constraints. Tomographic study of the shear of background galaxies as a function of redshift allows a geometric test of dark energy. To extract the dark energy signal and distinguish between the two forms of new physics, LSST will rely on accurate stellar point-spread functions (PSF) and unbiased reconstruction of galaxy image shapes from hundreds of exposures. Although a weighted co-added deep image has high S/N, it is a form of lossy compression. Bayesian forward modeling algorithms can in principle use all the information. We explore systematic effects on shape measurements and present tests of an algorithm called Multi-Fit, which appears to avoid PSF-induced shear systematics in a computationally efficient way.

  16. Dark matter and dark energy from the solution of the strong CP problem.

    PubMed

    Mainini, Roberto; Bonometto, Silvio A

    2004-09-17

    The Peccei-Quinn (PQ) solution of the strong CP problem requires the existence of axions, which are viable candidates for dark matter. If the Nambu-Goldstone potential of the PQ model is replaced by a potential V(|Phi|) admitting a tracker solution, the scalar field |Phi| can account for dark energy, while the phase of Phi yields axion dark matter. If V is a supergravity (SUGRA) potential, the model essentially depends on a single parameter, the energy scale Lambda. Once we set Lambda approximately equal to 10(10) GeV at the quark-hadron transition, |Phi| naturally passes through values suitable to solve the strong CP problem, later growing to values providing fair amounts of dark matter and dark energy.

  17. Dark energy and doubly coupled bigravity

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; Davis, Anne-Christine; Noller, Johannes

    2017-05-01

    We analyse the late time cosmology and the gravitational properties of doubly coupled bigravity in the constrained vielbein formalism (equivalent to the metric formalism) when the mass of the massive graviton is of the order of the present Hubble rate. We focus on one of the two branches of background cosmology where the ratio between the scale factors of the two metrics is algebraically determined. We find that the late time physics depends on the mass of the graviton, which dictates the future asymptotic cosmological constant. The Universe evolves from a matter dominated epoch to a dark energy dominated era where the equation of state of dark energy can always be made close to  -1 now by appropriately tuning the graviton mass. We also analyse the perturbative spectrum of the theory in the quasi-static approximation, well below the strong coupling scale where no instability is present, and we show that there are five scalar degrees of freedom, two vectors and two gravitons. In Minkowski space, where the four Newtonian potentials vanish, the theory manifestly reduces to one massive and one massless graviton. In a cosmological FRW background for both metrics, four of the five scalars are Newtonian potentials which lead to a modification of gravity on large scales. The fifth one gives rise to a ghost which decouples from pressure-less matter in the quasi-static approximation. In this scalar sector, gravity is modified with effects on both the growth of structure and the lensing potential. In particular, we find that the Σ parameter governing the Poisson equation of the weak lensing potential can differ from one in the recent past of the Universe. Overall, the nature of the modification of gravity at low energy, which reveals itself in the growth of structure and the lensing potential, is intrinsically dependent on the couplings to matter and the potential term of the vielbeins. We also find that the time variation of Newton’s constant in the Jordan frame can

  18. Baryon Acoustic Oscillation Intensity Mapping of Dark Energy

    NASA Astrophysics Data System (ADS)

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B.; McDonald, Patrick

    2008-03-01

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called “dark energy.” To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 109 individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

  19. Baryon acoustic oscillation intensity mapping of dark energy.

    PubMed

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B; McDonald, Patrick

    2008-03-07

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called "dark energy." To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 10(9) individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

  20. The viability of phantom dark energy: A review

    NASA Astrophysics Data System (ADS)

    Ludwick, Kevin J.

    2017-09-01

    In this brief review, we examine the theoretical consistency and viability of phantom dark energy. Almost all data sets from cosmological probes are compatible with the dark energy of the phantom variety (i.e. equation-of-state parameter w < -1) and may even favor evolving dark energy, and since we expect every physical entity to have some kind of field description, we set out to examine the case for phantom dark energy as a field theory. We discuss the many attempts at frameworks that may mitigate and eliminate theoretical pathologies associated with phantom dark energy. We also examine frameworks that provide an apparent measurement w < -1 while avoiding the need for a phantom field theory.

  1. Planck constraints on holographic dark energy

    NASA Astrophysics Data System (ADS)

    Li, Miao; Li, Xiao-Dong; Ma, Yin-Zhe; Zhang, Xin; Zhang, Zhenhui

    2013-09-01

    We perform a detailed investigation on the cosmological constraints on the holographic dark energy (HDE) model by using the Plank data. We find that HDE can provide a good fit to the Plank high-l (l gtrsim 40) temperature power spectrum, while the discrepancy at l simeq 20-40 found in the ΛCDM model remains unsolved in the HDE model. The Plank data alone can lead to strong and reliable constraint on the HDE parameter c. At the 68% confidence level (CL), we obtain c = 0.508 ± 0.207 with Plank+WP+lensing, favoring the present phantom behavior of HDE at the more than 2σ CL. By combining Plank+WP with the external astrophysical data sets, i.e. the BAO measurements from 6dFGS+SDSS DR7(R)+BOSS DR9, the direct Hubble constant measurement result (H0 = 73.8 ± 2.4 kms-1Mpc-1) from the HST, the SNLS3 supernovae data set, and Union2.1 supernovae data set, we get the 68% CL constraint results c = 0.484 ± 0.070, 0.474 ± 0.049, 0.594 ± 0.051, and 0.642 ± 0.066, respectively. The constraints can be improved by 2%-15% if we further add the Plank lensing data into the analysis. Compared with the WMAP-9 results, the Plank results reduce the error by 30%-60%, and prefer a phantom-like HDE at higher significant level. We also investigate the tension between different data sets. We find no evident tension when we combine Plank data with BAO and HST. Especially, we find that the strong correlation between Ωmh3 and dark energy parameters is helpful in relieving the tension between the Plank and HST measurements. The residual value of χ2Plank+WP+HST-χ2Plank+WP is 7.8 in the ΛCDM model, and is reduced to 1.0 or 0.3 if we switch the dark energy to w model or the holographic model. When we introduce supernovae data sets into the analysis, some tension appears. We find that the SNLS3 data set is in tension with all other data sets; for example, for the Plank+WP, WMAP-9 and BAO+HST, the corresponding Δχ2 is equal to 6.4, 3.5 and 4.1, respectively. As a comparison, the Union2

  2. Reconstructing the interaction between dark energy and dark matter using Gaussian processes

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Guo, Zong-Kuan; Cai, Rong-Gen

    2015-06-01

    We present a nonparametric approach to reconstruct the interaction between dark energy and dark matter directly from SNIa Union 2.1 data using Gaussian processes, which is a fully Bayesian approach for smoothing data. In this method, once the equation of state (w ) of dark energy is specified, the interaction can be reconstructed as a function of redshift. For the decaying vacuum energy case with w =-1 , the reconstructed interaction is consistent with the standard Λ CDM model, namely, there is no evidence for the interaction. This also holds for the constant w cases from -0.9 to -1.1 and for the Chevallier-Polarski-Linder (CPL) parametrization case. If the equation of state deviates obviously from -1 , the reconstructed interaction exists at 95% confidence level. This shows the degeneracy between the interaction and the equation of state of dark energy when they get constraints from the observational data.

  3. Dodging the dark matter degeneracy while determining the dynamics of dark energy

    NASA Astrophysics Data System (ADS)

    Busti, Vinicius C.; Clarkson, Chris

    2016-05-01

    One of the key issues in cosmology is to establish the nature of dark energy, and to determine whether the equation of state evolves with time. When estimating this from distance measurements there is a degeneracy with the matter density. We show that there exists a simple function of the dark energy equation of state and its first derivative which is independent of this degeneracy at all redshifts, and so is a much more robust determinant of the evolution of dark energy than just its derivative. We show that this function can be well determined at low redshift from supernovae using Gaussian Processes, and that this method is far superior to a variety of parameterisations which are also subject to priors on the matter density. This shows that parametrised models give very biased constraints on the evolution of dark energy.

  4. Interacting holographic dark energy models: a general approach

    NASA Astrophysics Data System (ADS)

    Som, S.; Sil, A.

    2014-08-01

    Dark energy models inspired by the cosmological holographic principle are studied in homogeneous isotropic spacetime with a general choice for the dark energy density . Special choices of the parameters enable us to obtain three different holographic models, including the holographic Ricci dark energy (RDE) model. Effect of interaction between dark matter and dark energy on the dynamics of those models are investigated for different popular forms of interaction. It is found that crossing of phantom divide can be avoided in RDE models for β>0.5 irrespective of the presence of interaction. A choice of α=1 and β=2/3 leads to a varying Λ-like model introducing an IR cutoff length Λ -1/2. It is concluded that among the popular choices an interaction of the form Q∝ Hρ m suits the best in avoiding the coincidence problem in this model.

  5. A Possible Solution to the Smallness Problem of Dark Energy

    SciT

    Chen, Pisin; /SLAC; Gu, Je-An

    2005-07-08

    The smallness of the dark energy density has been recognized as the most crucial difficulty in understanding dark energy and also one of the most important questions in the new century. In a recent paper[1], we proposed a new dark energy model in which the smallness of the cosmological constant is naturally achieved by invoking the Casimir energy in a supersymmetry-breaking brane-world. In this paper we review the basic notions of this model. Various implications, perspectives, and subtleties of this model are briefly discussed.

  6. Cooling the dark energy camera instrument

    SciT

    Schmitt, R.L.; Cease, H.; /Fermilab

    2008-06-01

    DECam, camera for the Dark Energy Survey (DES), is undergoing general design and component testing. For an overview see DePoy, et al in these proceedings. For a description of the imager, see Cease, et al in these proceedings. The CCD instrument will be mounted at the prime focus of the CTIO Blanco 4m telescope. The instrument temperature will be 173K with a heat load of 113W. In similar applications, cooling CCD instruments at the prime focus has been accomplished by three general methods. Liquid nitrogen reservoirs have been constructed to operate in any orientation, pulse tube cryocoolers have been usedmore » when tilt angles are limited and Joule-Thompson or Stirling cryocoolers have been used with smaller heat loads. Gifford-MacMahon cooling has been used at the Cassegrain but not at the prime focus. For DES, the combined requirements of high heat load, temperature stability, low vibration, operation in any orientation, liquid nitrogen cost and limited space available led to the design of a pumped, closed loop, circulating nitrogen system. At zenith the instrument will be twelve meters above the pump/cryocooler station. This cooling system expected to have a 10,000 hour maintenance interval. This paper will describe the engineering basis including the thermal model, unbalanced forces, cooldown time, the single and two-phase flow model.« less

  7. Graviweak Unification, Invisible Universe and Dark Energy

    NASA Astrophysics Data System (ADS)

    Das, C. R.; Laperashvili, L. V.; Tureanu, A.

    2013-07-01

    We consider a graviweak unification model with the assumption of the existence of a hidden (invisible) sector of our Universe, parallel to the visible world. This Hidden World (HW) is assumed to be a Mirror World (MW) with broken mirror parity. We start with a diffeomorphism invariant theory of a gauge field valued in a Lie algebra g, which is broken spontaneously to the direct sum of the space-time Lorentz algebra and the Yang-Mills algebra: ˜ {g} = {{su}}(2) (grav)L ⊕ {{su}}(2)L — in the ordinary world, and ˜ {g}' = {{su}}(2){' (grav)}R ⊕ {{su}}(2)'R — in the hidden world. Using an extension of the Plebanski action for general relativity, we recover the actions for gravity, SU(2) Yang-Mills and Higgs fields in both (visible and invisible) sectors of the Universe, and also the total action. After symmetry breaking, all physical constants, including the Newton's constants, cosmological constants, Yang-Mills couplings, and other parameters, are determined by a single parameter g present in the initial action, and by the Higgs VEVs. The dark energy problem of this model predicts a too large supersymmetric breaking scale (MSUSY 1010GeV), which is not within the reach of the LHC experiments.

  8. The Dark Energy Survey Image Processing Pipeline

    SciT

    Morganson, E.; et al.

    The Dark Energy Survey (DES) is a five-year optical imaging campaign with the goal of understanding the origin of cosmic acceleration. DES performs a 5000 square degree survey of the southern sky in five optical bands (g,r,i,z,Y) to a depth of ~24th magnitude. Contemporaneously, DES performs a deep, time-domain survey in four optical bands (g,r,i,z) over 27 square degrees. DES exposures are processed nightly with an evolving data reduction pipeline and evaluated for image quality to determine if they need to be retaken. Difference imaging and transient source detection are also performed in the time domain component nightly. On amore » bi-annual basis, DES exposures are reprocessed with a refined pipeline and coadded to maximize imaging depth. Here we describe the DES image processing pipeline in support of DES science, as a reference for users of archival DES data, and as a guide for future astronomical surveys.« less

  9. Photometric Characterization of the Dark Energy Camera

    DOE PAGES

    Bernstein, G. M.; Abbott, T. M. C.; Armstrong, R.; ...

    2018-04-02

    We characterize the variation in photometric response of the Dark Energy Camera (DECam) across its 520 Mpix science array during 4 years of operation. These variations are measured using high signal-to-noise aperture photometry of >10 7 stellar images in thousands of exposures of a few selected fields, with the telescope dithered to move the sources around the array. A calibration procedure based on these results brings the rms variation in aperture magnitudes of bright stars on cloudless nights down to 2–3 mmag, with <1 mmag of correlated photometric errors for stars separated by ≥20''. On cloudless nights, any departures ofmore » the exposure zeropoints from a secant airmass law exceeding 1 mmag are plausibly attributable to spatial/temporal variations in aperture corrections. These variations can be inferred and corrected by measuring the fraction of stellar light in an annulus between 6'' and 8'' diameter. Key elements of this calibration include: correction of amplifier nonlinearities; distinguishing pixel-area variations and stray light from quantum-efficiency variations in the flat fields; field-dependent color corrections; and the use of an aperture-correction proxy. The DECam response pattern across the 2° field drifts over months by up to ±9 mmag, in a nearly wavelength-independent low-order pattern. Here, we find no fundamental barriers to pushing global photometric calibrations toward mmag accuracy.« less

  10. Photometric Characterization of the Dark Energy Camera

    NASA Astrophysics Data System (ADS)

    Bernstein, G. M.; Abbott, T. M. C.; Armstrong, R.; Burke, D. L.; Diehl, H. T.; Gruendl, R. A.; Johnson, M. D.; Li, T. S.; Rykoff, E. S.; Walker, A. R.; Wester, W.; Yanny, B.

    2018-05-01

    We characterize the variation in photometric response of the Dark Energy Camera (DECam) across its 520 Mpix science array during 4 years of operation. These variations are measured using high signal-to-noise aperture photometry of >107 stellar images in thousands of exposures of a few selected fields, with the telescope dithered to move the sources around the array. A calibration procedure based on these results brings the rms variation in aperture magnitudes of bright stars on cloudless nights down to 2–3 mmag, with <1 mmag of correlated photometric errors for stars separated by ≥20″. On cloudless nights, any departures of the exposure zeropoints from a secant airmass law exceeding 1 mmag are plausibly attributable to spatial/temporal variations in aperture corrections. These variations can be inferred and corrected by measuring the fraction of stellar light in an annulus between 6″ and 8″ diameter. Key elements of this calibration include: correction of amplifier nonlinearities; distinguishing pixel-area variations and stray light from quantum-efficiency variations in the flat fields; field-dependent color corrections; and the use of an aperture-correction proxy. The DECam response pattern across the 2° field drifts over months by up to ±9 mmag, in a nearly wavelength-independent low-order pattern. We find no fundamental barriers to pushing global photometric calibrations toward mmag accuracy.

  11. Photometric Characterization of the Dark Energy Camera

    SciT

    Bernstein, G. M.; Abbott, T. M. C.; Armstrong, R.

    We characterize the variation in photometric response of the Dark Energy Camera (DECam) across its 520 Mpix science array during 4 years of operation. These variations are measured using high signal-to-noise aperture photometry of >10 7 stellar images in thousands of exposures of a few selected fields, with the telescope dithered to move the sources around the array. A calibration procedure based on these results brings the rms variation in aperture magnitudes of bright stars on cloudless nights down to 2–3 mmag, with <1 mmag of correlated photometric errors for stars separated by ≥20''. On cloudless nights, any departures ofmore » the exposure zeropoints from a secant airmass law exceeding 1 mmag are plausibly attributable to spatial/temporal variations in aperture corrections. These variations can be inferred and corrected by measuring the fraction of stellar light in an annulus between 6'' and 8'' diameter. Key elements of this calibration include: correction of amplifier nonlinearities; distinguishing pixel-area variations and stray light from quantum-efficiency variations in the flat fields; field-dependent color corrections; and the use of an aperture-correction proxy. The DECam response pattern across the 2° field drifts over months by up to ±9 mmag, in a nearly wavelength-independent low-order pattern. Here, we find no fundamental barriers to pushing global photometric calibrations toward mmag accuracy.« less

  12. Teleparallel dark energy in a system of D0-branes

    NASA Astrophysics Data System (ADS)

    Sharma, Umesh Kumar; Sepehri, Alireza; Pradhan, Anirudh

    A new model which allows a non-minimal coupling between gravity and quintessence in the configuration of teleparallel gravity was recently proposed by Geng et al. [“Teleparallel” dark energy, Phys. Lett. B 704 (2011) 384-387] and they named it teleparallel dark energy. Now the main problem which arises is to know what is the source of this dark energy? The answer of this question is given by us in M-theory. This type of dark energy may be produced at three stages in our model. First, one six-dimensional universe is formed by combining and expanding D0-branes. We know that this universe-brane is polarized on two circles and our four-dimensional cosmos and two D1-branes are yielded. At third stage, two D1-branes glued to each other and one D2-brane is formed. This D2 connects our universe with another universe, gives its energy to them and causes the production of dark energy. Thus, the D2-brane is unstable and dissolves in our four-dimensional universes and supplies the needed teleparallel dark energy for expansion. These calculations are extended to M-theory and shown that the amount of teleparallel dark energy which is produced by compactification of universe-branes in M-theory is more than string theory.

  13. Spectroscopic Needs for Imaging Dark Energy Experiments

    DOE PAGES

    Newman, Jeffrey A.; Slosar, Anze; Abate, Alexandra; ...

    2015-03-15

    Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-z’s): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-z’s will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments. Hence, to achieve their full potential, imaging-based experiments will require large setsmore » of objects with spectroscopically-determined redshifts, for two purposes: Training: Objects with known redshift are needed to map out the relationship between object color and z (or, equivalently, to determine empirically-calibrated templates describing the rest-frame spectra of the full range of galaxies, which may be used to predict the color-z relation). The ultimate goal of training is to minimize each moment of the distribution of differences between photometric redshift estimates and the true redshifts of objects, making the relationship between them as tight as possible. The larger and more complete our “training set” of spectroscopic redshifts is, the smaller the RMS photo-z errors should be, increasing the constraining power of imaging experiments; Requirements: Spectroscopic redshift measurements for ~30,000 objects over >~15 widely-separated regions, each at least ~20 arcmin in diameter, and reaching the faintest objects used in a given experiment, will likely be necessary if photometric redshifts are to be trained and calibrated with conventional techniques. Larger, more complete samples (i.e., with longer exposure times) can improve photo-z algorithms and reduce

  14. Dark Energy Domination In The Virgocentric Flow

    NASA Astrophysics Data System (ADS)

    Byrd, Gene; Chernin, A. D.; Karachentsev, I. D.; Teerikorpi, P.; Valtonen, M.; Dolgachev, V. P.; Domozhilova, L. M.

    2011-04-01

    Dark energy (DE) was first observationally detected at large Gpc distances. If it is a vacuum energy formulated as Einstein's cosmological constant, Λ, DE should also have dynamical effects at much smaller scales. Previously, we found its effects on much smaller Mpc scales in our Local Group (LG) as well as in other nearby groups. We used new HST observations of member 3D distances from the group centers and Doppler shifts. We find each group's gravity dominates a bound central system of galaxies but DE antigravity results in a radial recession increasing with distance from the group center of the outer members. Here we focus on the much larger (but still cosmologically local) Virgo Cluster and systems around it using new observations of velocities and distances. We propose an analytic model whose key parameter is the zero-gravity radius (ZGR) from the cluster center where gravity and DE antigravity balance. DE brings regularity to the Virgocentric flow. Beyond Virgo's 10 Mpc ZGR, the flow curves to approach a linear global Hubble law at larger distances. The Virgo cluster and its outer flow are similar to the Local Group and its local outflow with a scaling factor of about 10; the ZGR for Virgo is 10 times larger than that of the LG. The similarity of the two systems on the scales of 1 to 30 Mpc suggests that a quasi-stationary bound central component and an expanding outflow applies to a wide range of groups and clusters due to small scale action of DE as well as gravity. Chernin, et al 2009 Astronomy and Astrophysics 507, 1271 http://arxiv.org/abs/1006.0066 http://arxiv.org/abs/1006.0555

  15. Has ESA's XMM-Newton cast doubt over dark energy?

    NASA Astrophysics Data System (ADS)

    2003-12-01

    Galaxy cluster RXJ0847 hi-res Size hi-res: 100k Galaxy cluster RXJ0847 The fuzzy object at the centre of the frame is one of the galaxy clusters observed by XMM-Newton in its investigation of the distant Universe. The cluster, designated RXJ0847.2+3449, is about 7 000 million light years away, so we see it here as it was 7 000 million years ago, when the Universe was only about half of its present age. This cluster is made up of several dozen galaxies. Observations of eight distant clusters of galaxies, the furthest of which is around 10 thousand million light years away, were studied by an international group of astronomers led by David Lumb of ESA's Space Research and Technology Centre (ESTEC) in the Netherlands. They compared these clusters to those found in the nearby Universe. This study was conducted as part of the larger XMM-Newton Omega Project, which investigates the density of matter in the Universe under the lead of Jim Bartlett of the College de France. Clusters of galaxies are prodigious emitters of X-rays because they contain a large quantity of high-temperature gas. This gas surrounds galaxies in the same way as steam surrounds people in a sauna. By measuring the quantity and energy of X-rays from a cluster, astronomers can work out both the temperature of the cluster gas and also the mass of the cluster. Theoretically, in a Universe where the density of matter is high, clusters of galaxies would continue to grow with time and so, on average, should contain more mass now than in the past. Most astronomers believe that we live in a low-density Universe in which a mysterious substance known as 'dark energy' accounts for 70% of the content of the cosmos and, therefore, pervades everything. In this scenario, clusters of galaxies should stop growing early in the history of the Universe and look virtually indistinguishable from those of today. In a paper soon to be published by the European journal Astronomy and Astrophysics, astronomers from the XMM

  16. Figures of merit for present and future dark energy probes

    SciT

    Mortonson, Michael J.; Huterer, Dragan; Hu, Wayne

    2010-09-15

    We compare current and forecasted constraints on dynamical dark energy models from Type Ia supernovae and the cosmic microwave background using figures of merit based on the volume of the allowed dark energy parameter space. For a two-parameter dark energy equation of state that varies linearly with the scale factor, and assuming a flat universe, the area of the error ellipse can be reduced by a factor of {approx}10 relative to current constraints by future space-based supernova data and CMB measurements from the Planck satellite. If the dark energy equation of state is described by a more general basis ofmore » principal components, the expected improvement in volume-based figures of merit is much greater. While the forecasted precision for any single parameter is only a factor of 2-5 smaller than current uncertainties, the constraints on dark energy models bounded by -1{<=}w{<=}1 improve for approximately 6 independent dark energy parameters resulting in a reduction of the total allowed volume of principal component parameter space by a factor of {approx}100. Typical quintessence models can be adequately described by just 2-3 of these parameters even given the precision of future data, leading to a more modest but still significant improvement. In addition to advances in supernova and CMB data, percent-level measurement of absolute distance and/or the expansion rate is required to ensure that dark energy constraints remain robust to variations in spatial curvature.« less

  17. Is the effective field theory of dark energy effective?

    NASA Astrophysics Data System (ADS)

    Linder, Eric V.; Sengör, Gizem; Watson, Scott

    2016-05-01

    The effective field theory of cosmic acceleration systematizes possible contributions to the action, accounting for both dark energy and modifications of gravity. Rather than making model dependent assumptions, it includes all terms, subject to the required symmetries, with four (seven) functions of time for the coefficients. These correspond respectively to the Horndeski and general beyond Horndeski class of theories. We address the question of whether this general systematization is actually effective, i.e. useful in revealing the nature of cosmic acceleration when compared with cosmological data. The answer is no and yes: there is no simple time dependence of the free functions—assumed forms in the literature are poor fits, but one can derive some general characteristics in early and late time limits. For example, we prove that the gravitational slip must restore to general relativity in the de Sitter limit of Horndeski theories, and why it doesn't more generally. We also clarify the relation between the tensor and scalar sectors, and its important relation to observations; in a real sense the expansion history H(z) or dark energy equation of state w(z) is 1/5 or less of the functional information! In addition we discuss the de Sitter, Horndeski, and decoupling limits of the theory utilizing Goldstone techniques.

  18. Is the effective field theory of dark energy effective?

    SciT

    Linder, Eric V.; Sengör, Gizem; Watson, Scott, E-mail: evlinder@lbl.gov, E-mail: gsengor@syr.edu, E-mail: gswatson@syr.edu

    2016-05-01

    The effective field theory of cosmic acceleration systematizes possible contributions to the action, accounting for both dark energy and modifications of gravity. Rather than making model dependent assumptions, it includes all terms, subject to the required symmetries, with four (seven) functions of time for the coefficients. These correspond respectively to the Horndeski and general beyond Horndeski class of theories. We address the question of whether this general systematization is actually effective, i.e. useful in revealing the nature of cosmic acceleration when compared with cosmological data. The answer is no and yes: there is no simple time dependence of the freemore » functions —assumed forms in the literature are poor fits, but one can derive some general characteristics in early and late time limits. For example, we prove that the gravitational slip must restore to general relativity in the de Sitter limit of Horndeski theories, and why it doesn't more generally. We also clarify the relation between the tensor and scalar sectors, and its important relation to observations; in a real sense the expansion history H ( z ) or dark energy equation of state w ( z ) is 1/5 or less of the functional information! In addition we discuss the de Sitter, Horndeski, and decoupling limits of the theory utilizing Goldstone techniques.« less

  19. Time-varying q-deformed dark energy interacts with dark matter

    NASA Astrophysics Data System (ADS)

    Dil, Emre; Kolay, Erdinç

    We propose a new model for studying the dark constituents of the universe by regarding the dark energy as a q-deformed scalar field interacting with the dark matter, in the framework of standard general relativity. Here we assume that the number of particles in each mode of the q-deformed scalar field varies in time by the particle creation and annihilation. We first describe the q-deformed scalar field dark energy quantum-field theoretically, then construct the action and the dynamical structure of these interacting dark sectors, in order to study the dynamics of the model. We perform the phase space analysis of the model to confirm and interpret our proposal by searching the stable attractor solutions implying the late-time accelerating phase of the universe. We then obtain the result that when interaction and equation-of-state parameter of the dark matter evolve from the present day values into a particular value, the dark energy turns out to be a q-deformed scalar field.

  20. Dark Energy Survey finds more celestial neighbors | News

    Energy Survey finds more celestial neighbors August 17, 2015 icon icon icon New dwarf galaxy candidates could mean our sky is more crowded than we thought The Dark Energy Survey has now mapped one-eighth of Survey Collaboration The Dark Energy Survey has now mapped one-eighth of the full sky (red shaded region

  1. Modified dark matter: Relating dark energy, dark matter and baryonic matter

    NASA Astrophysics Data System (ADS)

    Edmonds, Douglas; Farrah, Duncan; Minic, Djordje; Ng, Y. Jack; Takeuchi, Tatsu

    Modified dark matter (MDM) is a phenomenological model of dark matter, inspired by gravitational thermodynamics. For an accelerating universe with positive cosmological constant (Λ), such phenomenological considerations lead to the emergence of a critical acceleration parameter related to Λ. Such a critical acceleration is an effective phenomenological manifestation of MDM, and it is found in correlations between dark matter and baryonic matter in galaxy rotation curves. The resulting MDM mass profiles, which are sensitive to Λ, are consistent with observational data at both the galactic and cluster scales. In particular, the same critical acceleration appears both in the galactic and cluster data fits based on MDM. Furthermore, using some robust qualitative arguments, MDM appears to work well on cosmological scales, even though quantitative studies are still lacking. Finally, we comment on certain nonlocal aspects of the quanta of modified dark matter, which may lead to novel nonparticle phenomenology and which may explain why, so far, dark matter detection experiments have failed to detect dark matter particles.

  2. Neutrino mass and dark energy from weak lensing.

    PubMed

    Abazajian, Kevork N; Dodelson, Scott

    2003-07-25

    Weak gravitational lensing of background galaxies by intervening matter directly probes the mass distribution in the Universe. This distribution is sensitive to both the dark energy and neutrino mass. We examine the potential of lensing experiments to measure features of both simultaneously. Focusing on the radial information contained in a future deep 4000 deg(2) survey, we find that the expected (1-sigma) error on a neutrino mass is 0.1 eV, if the dark-energy parameters are allowed to vary. The constraints on dark-energy parameters are similarly restrictive, with errors on w of 0.09.

  3. Studies of dark energy with X-ray observatories.

    PubMed

    Vikhlinin, Alexey

    2010-04-20

    I review the contribution of Chandra X-ray Observatory to studies of dark energy. There are two broad classes of observable effects of dark energy: evolution of the expansion rate of the Universe, and slow down in the rate of growth of cosmic structures. Chandra has detected and measured both of these effects through observations of galaxy clusters. A combination of the Chandra results with other cosmological datasets leads to 5% constraints on the dark energy equation-of-state parameter, and limits possible deviations of gravity on large scales from general relativity.

  4. Dark energy and the quietness of the local Hubble flow

    NASA Astrophysics Data System (ADS)

    Axenides, M.; Perivolaropoulos, L.

    2002-06-01

    The linearity and quietness of the local (<10 Mpc) Hubble flow (LHF) in view of the very clumpy local universe is a long standing puzzle in standard and in open CDM (cold dark matter) cosmogony. The question addressed in this paper is whether the antigravity component of the recently discovered dark energy can cool the velocity flow enough to provide a solution to this puzzle. We calculate the growth of matter fluctuations in a flat universe containing a fraction ΩX(t0) of dark energy obeying the time independent equation of state pX=wρX. We find that dark energy can indeed cool the LHF. However the dark energy parameter values required to make the predicted velocity dispersion consistent with the observed value vrms~=40 km/s have been ruled out by other observational tests constraining the dark energy parameters w and ΩX. Therefore despite the claims of recent qualitative studies, dark energy with time independent equation of state cannot by itself explain the quietness and linearity of the local Hubble flow.

  5. The CHASE laboratory search for chameleon dark energy

    SciT

    Steffen, Jason H.; /Fermilab

    2010-11-01

    A scalar field is a favorite candidate for the particle responsible for dark energy. However, few theoretical means exist that can simultaneously explain the observed acceleration of the Universe and evade tests of gravity. The chameleon mechanism, whereby the properties of a particle depend upon the local environment, is one possible avenue. We present the results of the Chameleon Afterglow Search (CHASE) experiment, a laboratory probe for chameleon dark energy. CHASE marks a significant improvement other searches for chameleons both in terms of its sensitivity to the photon/chameleon coupling as well as its sensitivity to the classes of chameleon darkmore » energy models and standard power-law models. Since chameleon dark energy is virtually indistinguishable from a cosmological constant, CHASE tests dark energy models in a manner not accessible to astronomical surveys.« less

  6. Constraints to Dark Energy Using PADE Parameterizations

    NASA Astrophysics Data System (ADS)

    Rezaei, M.; Malekjani, M.; Basilakos, S.; Mehrabi, A.; Mota, D. F.

    2017-07-01

    We put constraints on dark energy (DE) properties using PADE parameterization, and compare it to the same constraints using Chevalier-Polarski-Linder (CPL) and ΛCDM, at both the background and the perturbation levels. The DE equation of the state parameter of the models is derived following the mathematical treatment of PADE expansion. Unlike CPL parameterization, PADE approximation provides different forms of the equation of state parameter that avoid the divergence in the far future. Initially we perform a likelihood analysis in order to put constraints on the model parameters using solely background expansion data, and we find that all parameterizations are consistent with each other. Then, combining the expansion and the growth rate data, we test the viability of PADE parameterizations and compare them with CPL and ΛCDM models, respectively. Specifically, we find that the growth rate of the current PADE parameterizations is lower than ΛCDM model at low redshifts, while the differences among the models are negligible at high redshifts. In this context, we provide for the first time a growth index of linear matter perturbations in PADE cosmologies. Considering that DE is homogeneous, we recover the well-known asymptotic value of the growth index (namely {γ }∞ =\\tfrac{3({w}∞ -1)}{6{w}∞ -5}), while in the case of clustered DE, we obtain {γ }∞ ≃ \\tfrac{3{w}∞ (3{w}∞ -5)}{(6{w}∞ -5)(3{w}∞ -1)}. Finally, we generalize the growth index analysis in the case where γ is allowed to vary with redshift, and we find that the form of γ (z) in PADE parameterization extends that of the CPL and ΛCDM cosmologies, respectively.

  7. The Dark Energy Survey First Data Release

    NASA Astrophysics Data System (ADS)

    Carrasco Kind, Matias

    2018-01-01

    In this talk I will announce and highlight the main components of the first public data release (DR1) coming from the Dark Energy Survey (DES).In January 2016, the DES survey made available, in a simple unofficial release to the astronomical community, the first set of products. This data was taken and studied during the DES Science Verification period consisting on roughly 250 sq. degrees and 25 million objects at a mean depth of i=23.7 that led to over 80 publications from DES scientist.The DR1 release is the first official release from the main survey and it consists on the observations taken during the first 3 seasons from August 2013 to February 2016 (about 100 nights each season) of the survey which cover the entire DES footprint. All of the Single Epoch Images and the Year 3 Coadded images distributed in 10223 tiles are available for download in this release. The catalogs provide astrometry, photometry and basic classification for near 400M objects in roughly 5000 sq. degrees on the southern hemisphere with a approximate mean depth of i=23.3. Complementary footprint, masking and depth information is also available. All of the software used during the generation of these products are open sourced and have been made available through the Github DES Organization. Images, data and other sub products have been possible through the international and collaborative effort of all 25 institutions involved in DES and are available for exploration and download through the interfaces provided by a partnership between NCSA, NOAO and LIneA.

  8. Dark matter and dark energy interactions: theoretical challenges, cosmological implications and observational signatures.

    PubMed

    Wang, B; Abdalla, E; Atrio-Barandela, F; Pavón, D

    2016-09-01

    Models where dark matter and dark energy interact with each other have been proposed to solve the coincidence problem. We review the motivations underlying the need to introduce such interaction, its influence on the background dynamics and how it modifies the evolution of linear perturbations. We test models using the most recent observational data and we find that the interaction is compatible with the current astronomical and cosmological data. Finally, we describe the forthcoming data sets from current and future facilities that are being constructed or designed that will allow a clearer understanding of the physics of the dark sector.

  9. A Unified Model of Phantom Energy and Dark Matter

    NASA Astrophysics Data System (ADS)

    Chaves, Max; Singleton, Douglas

    2008-01-01

    To explain the acceleration of the cosmological expansion researchers have considered an unusual form of mass-energy generically called dark energy. Dark energy has a ratio of pressure over mass density which obeys w = p/ρ < -1/3. This form of mass-energy leads to accelerated expansion. An extreme form of dark energy, called phantom energy, has been proposed which has w = p/ρ < -1. This possibility is favored by the observational data. The simplest model for phantom energy involves the introduction of a scalar field with a negative kinetic energy term. Here we show that theories based on graded Lie algebras naturally have such a negative kinetic energy and thus give a model for phantom energy in a less ad hoc manner. We find that the model also contains ordinary scalar fields and anti-commuting (Grassmann) vector fields which act as a form of two component dark matter. Thus from a gauge theory based o! n a graded algebra we naturally obtained both phantom energy and dark matter.

  10. Cosmological viability conditions for f(T) dark energy models

    SciT

    Setare, M.R.; Mohammadipour, N., E-mail: rezakord@ipm.ir, E-mail: N.Mohammadipour@uok.ac.ir

    2012-11-01

    Recently f(T) modified teleparallel gravity where T is the torsion scalar has been proposed as the natural gravitational alternative for dark energy. We perform a detailed dynamical analysis of these models and find conditions for the cosmological viability of f(T) dark energy models as geometrical constraints on the derivatives of these models. We show that in the phase space exists two cosmologically viable trajectory which (i) The universe would start from an unstable radiation point, then pass a saddle standard matter point which is followed by accelerated expansion de sitter point. (ii) The universe starts from a saddle radiation epoch,more » then falls onto the stable matter era and the system can not evolve to the dark energy dominated epoch. Finally, for a number of f(T) dark energy models were proposed in the more literature, the viability conditions are investigated.« less

  11. Model selection as a science driver for dark energy surveys

    NASA Astrophysics Data System (ADS)

    Mukherjee, Pia; Parkinson, David; Corasaniti, Pier Stefano; Liddle, Andrew R.; Kunz, Martin

    2006-07-01

    A key science goal of upcoming dark energy surveys is to seek time-evolution of the dark energy. This problem is one of model selection, where the aim is to differentiate between cosmological models with different numbers of parameters. However, the power of these surveys is traditionally assessed by estimating their ability to constrain parameters, which is a different statistical problem. In this paper, we use Bayesian model selection techniques, specifically forecasting of the Bayes factors, to compare the abilities of different proposed surveys in discovering dark energy evolution. We consider six experiments - supernova luminosity measurements by the Supernova Legacy Survey, SNAP, JEDI and ALPACA, and baryon acoustic oscillation measurements by WFMOS and JEDI - and use Bayes factor plots to compare their statistical constraining power. The concept of Bayes factor forecasting has much broader applicability than dark energy surveys.

  12. Dark energy two decades after: observables, probes, consistency tests.

    PubMed

    Huterer, Dragan; Shafer, Daniel L

    2018-01-01

    The discovery of the accelerating universe in the late 1990s was a watershed moment in modern cosmology, as it indicated the presence of a fundamentally new, dominant contribution to the energy budget of the universe. Evidence for dark energy, the new component that causes the acceleration, has since become extremely strong, owing to an impressive variety of increasingly precise measurements of the expansion history and the growth of structure in the universe. Still, one of the central challenges of modern cosmology is to shed light on the physical mechanism behind the accelerating universe. In this review, we briefly summarize the developments that led to the discovery of dark energy. Next, we discuss the parametric descriptions of dark energy and the cosmological tests that allow us to better understand its nature. We then review the cosmological probes of dark energy. For each probe, we briefly discuss the physics behind it and its prospects for measuring dark energy properties. We end with a summary of the current status of dark energy research.

  13. New limits on coupled dark energy model after Planck 2015

    NASA Astrophysics Data System (ADS)

    Li, Hang; Yang, Weiqiang; Wu, Yabo; Jiang, Ying

    2018-06-01

    We used the Planck 2015 cosmic microwave background anisotropy, baryon acoustic oscillation, type-Ia supernovae, redshift-space distortions, and weak gravitational lensing to test the model parameter space of coupled dark energy. We assumed the constant and time-varying equation of state parameter for dark energy, and treated dark matter and dark energy as the fluids whose energy transfer was proportional to the combined term of the energy densities and equation of state, such as Q = 3 Hξ(1 +wx) ρx and Q = 3 Hξ [ 1 +w0 +w1(1 - a) ] ρx, the full space of equation of state could be measured when we considered the term (1 +wx) in the energy exchange. According to the joint observational constraint, the results showed that wx = - 1.006-0.027+0.047 and ξ = 0.098-0.098>+0.026 for coupled dark energy with a constant equation of state, w0 = -1.076-0.076+0.085, w1 = - 0.069-0.319+0.361, and ξ = 0.210-0.210+0.048 for a variable equation of state. We did not get any clear evidence for the coupling in the dark fluids at 1 σ region.

  14. Searching for dark matter-dark energy interactions: Going beyond the conformal case

    NASA Astrophysics Data System (ADS)

    van de Bruck, Carsten; Mifsud, Jurgen

    2018-01-01

    We consider several cosmological models which allow for nongravitational direct couplings between dark matter and dark energy. The distinguishing cosmological features of these couplings can be probed by current cosmological observations, thus enabling us to place constraints on these specific interactions which are composed of the conformal and disformal coupling functions. We perform a global analysis in order to independently constrain the conformal, disformal, and mixed interactions between dark matter and dark energy by combining current data from: Planck observations of the cosmic microwave background radiation anisotropies, a combination of measurements of baryon acoustic oscillations, a supernova type Ia sample, a compilation of Hubble parameter measurements estimated from the cosmic chronometers approach, direct measurements of the expansion rate of the Universe today, and a compilation of growth of structure measurements. We find that in these coupled dark-energy models, the influence of the local value of the Hubble constant does not significantly alter the inferred constraints when we consider joint analyses that include all cosmological probes. Moreover, the parameter constraints are remarkably improved with the inclusion of the growth of structure data set measurements. We find no compelling evidence for an interaction within the dark sector of the Universe.

  15. New Light on Dark Energy (LBNL Science at the Theater)

    Linder, Eric; Ho, Shirly; Aldering, Greg; Fraiknoi, Andrew

    2017-12-09

    A panel of Lab scientists — including Eric Linder, Shirly Ho, and Greg Aldering — along with Andrew Fraiknoi, the Bay Area's most popular astronomy explainer, gathered at the Berkeley Repertory Theatre on Monday, April 25, 2011, for a discussion about "New Light on Dark Energy." Topics will include hunting down Type 1a supernovae, measuring the universe using baryon oscillation, and whether dark energy is the true driver of the universe.

  16. What do we really know about dark energy?

    PubMed

    Durrer, Ruth

    2011-12-28

    In this paper, we discuss what we truly know about dark energy. I shall argue that, to date, our single indication for the existence of dark energy comes from distance measurements and their relation to redshift. Supernovae, cosmic microwave background anisotropies and observations of baryon acoustic oscillations simply tell us that the observed distance to a given redshift z is larger than the one expected from a Friedmann-Lemaître universe with matter only and the locally measured Hubble parameter.

  17. New Light on Dark Energy (LBNL Science at the Theater)

    SciT

    Linder, Eric; Ho, Shirly; Aldering, Greg

    2011-04-25

    A panel of Lab scientists — including Eric Linder, Shirly Ho, and Greg Aldering — along with Andrew Fraiknoi, the Bay Area's most popular astronomy explainer, gathered at the Berkeley Repertory Theatre on Monday, April 25, 2011, for a discussion about "New Light on Dark Energy." Topics will include hunting down Type 1a supernovae, measuring the universe using baryon oscillation, and whether dark energy is the true driver of the universe.

  18. An effective description of dark matter and dark energy in the mildly non-linear regime

    DOE PAGES

    Lewandowski, Matthew; Maleknejad, Azadeh; Senatore, Leonardo

    2017-05-18

    In the next few years, we are going to probe the low-redshift universe with unprecedented accuracy. Among the various fruits that this will bear, it will greatly improve our knowledge of the dynamics of dark energy, though for this there is a strong theoretical preference for a cosmological constant. We assume that dark energy is described by the so-called Effective Field Theory of Dark Energy, which assumes that dark energy is the Goldstone boson of time translations. Such a formalism makes it easy to ensure that our signatures are consistent with well-established principles of physics. Since most of the informationmore » resides at high wavenumbers, it is important to be able to make predictions at the highest wavenumber that is possible. Furthermore, the Effective Field Theory of Large-Scale Structure (EFTofLSS) is a theoretical framework that has allowed us to make accurate predictions in the mildly non-linear regime. In this paper, we derive the non-linear equations that extend the EFTofLSS to include the effect of dark energy both on the matter fields and on the biased tracers. For the specific case of clustering quintessence, we then perturbatively solve to cubic order the resulting non-linear equations and construct the one-loop power spectrum of the total density contrast.« less

  19. An effective description of dark matter and dark energy in the mildly non-linear regime

    SciT

    Lewandowski, Matthew; Maleknejad, Azadeh; Senatore, Leonardo

    In the next few years, we are going to probe the low-redshift universe with unprecedented accuracy. Among the various fruits that this will bear, it will greatly improve our knowledge of the dynamics of dark energy, though for this there is a strong theoretical preference for a cosmological constant. We assume that dark energy is described by the so-called Effective Field Theory of Dark Energy, which assumes that dark energy is the Goldstone boson of time translations. Such a formalism makes it easy to ensure that our signatures are consistent with well-established principles of physics. Since most of the informationmore » resides at high wavenumbers, it is important to be able to make predictions at the highest wavenumber that is possible. Furthermore, the Effective Field Theory of Large-Scale Structure (EFTofLSS) is a theoretical framework that has allowed us to make accurate predictions in the mildly non-linear regime. In this paper, we derive the non-linear equations that extend the EFTofLSS to include the effect of dark energy both on the matter fields and on the biased tracers. For the specific case of clustering quintessence, we then perturbatively solve to cubic order the resulting non-linear equations and construct the one-loop power spectrum of the total density contrast.« less

  20. An effective description of dark matter and dark energy in the mildly non-linear regime

    SciT

    Lewandowski, Matthew; Senatore, Leonardo; Maleknejad, Azadeh, E-mail: matthew.lewandowski@cea.fr, E-mail: azade@ipm.ir, E-mail: senatore@stanford.edu

    In the next few years, we are going to probe the low-redshift universe with unprecedented accuracy. Among the various fruits that this will bear, it will greatly improve our knowledge of the dynamics of dark energy, though for this there is a strong theoretical preference for a cosmological constant. We assume that dark energy is described by the so-called Effective Field Theory of Dark Energy, which assumes that dark energy is the Goldstone boson of time translations. Such a formalism makes it easy to ensure that our signatures are consistent with well-established principles of physics. Since most of the informationmore » resides at high wavenumbers, it is important to be able to make predictions at the highest wavenumber that is possible. The Effective Field Theory of Large-Scale Structure (EFTofLSS) is a theoretical framework that has allowed us to make accurate predictions in the mildly non-linear regime. In this paper, we derive the non-linear equations that extend the EFTofLSS to include the effect of dark energy both on the matter fields and on the biased tracers. For the specific case of clustering quintessence, we then perturbatively solve to cubic order the resulting non-linear equations and construct the one-loop power spectrum of the total density contrast.« less

  1. Does the diffusion dark matter-dark energy interaction model solve cosmological puzzles?

    NASA Astrophysics Data System (ADS)

    Szydłowski, Marek; Stachowski, Aleksander

    2016-08-01

    We study dynamics of cosmological models with diffusion effects modeling dark matter and dark energy interactions. We show the simple model with diffusion between the cosmological constant sector and dark matter, where the canonical scaling law of dark matter (ρd m ,0a-3(t )) is modified by an additive ɛ (t )=γ t a-3(t ) to the form ρd m=ρd m ,0a-3(t )+ɛ (t ). We reduced this model to the autonomous dynamical system and investigate it using dynamical system methods. This system possesses a two-dimensional invariant submanifold on which the dark matter-dark energy (DM-DE) interaction can be analyzed on the phase plane. The state variables are density parameter for matter (dark and visible) and parameter δ characterizing the rate of growth of energy transfer between the dark sectors. A corresponding dynamical system belongs to a general class of jungle type of cosmologies represented by coupled cosmological models in a Lotka-Volterra framework. We demonstrate that the de Sitter solution is a global attractor for all trajectories in the phase space and there are two repellers: the Einstein-de Sitter universe and the de Sitter universe state dominating by the diffusion effects. We distinguish in the phase space trajectories, which become in good agreement with the data. They should intersect a rectangle with sides of Ωm ,0∈[0.2724 ,0.3624 ] , δ ∈[0.0000 ,0.0364 ] at the 95% CL. Our model could solve some of the puzzles of the Λ CDM model, such as the coincidence and fine-tuning problems. In the context of the coincidence problem, our model can explain the present ratio of ρm to ρd e, which is equal 0.457 6-0.0831+0.1109 at a 2 σ confidence level.

  2. Comparison of dark energy models after Planck 2015

    NASA Astrophysics Data System (ADS)

    Xu, Yue-Yao; Zhang, Xin

    2016-11-01

    We make a comparison for ten typical, popular dark energy models according to their capabilities of fitting the current observational data. The observational data we use in this work include the JLA sample of type Ia supernovae observation, the Planck 2015 distance priors of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the direct measurement of the Hubble constant. Since the models have different numbers of parameters, in order to make a fair comparison, we employ the Akaike and Bayesian information criteria to assess the worth of the models. The analysis results show that, according to the capability of explaining observations, the cosmological constant model is still the best one among all the dark energy models. The generalized Chaplygin gas model, the constant w model, and the α dark energy model are worse than the cosmological constant model, but still are good models compared to others. The holographic dark energy model, the new generalized Chaplygin gas model, and the Chevalliear-Polarski-Linder model can still fit the current observations well, but from an economically feasible perspective, they are not so good. The new agegraphic dark energy model, the Dvali-Gabadadze-Porrati model, and the Ricci dark energy model are excluded by the current observations.

  3. Radio Astronomers Develop New Technique for Studying Dark Energy

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Pioneering observations with the National Science Foundation's giant Robert C. Byrd Green Bank Telescope (GBT) have given astronomers a new tool for mapping large cosmic structures. The new tool promises to provide valuable clues about the nature of the mysterious "dark energy" believed to constitute nearly three-fourths of the mass and energy of the Universe. Dark energy is the label scientists have given to what is causing the Universe to expand at an accelerating rate. While the acceleration was discovered in 1998, its cause remains unknown. Physicists have advanced competing theories to explain the acceleration, and believe the best way to test those theories is to precisely measure large-scale cosmic structures. Sound waves in the matter-energy soup of the extremely early Universe are thought to have left detectable imprints on the large-scale distribution of galaxies in the Universe. The researchers developed a way to measure such imprints by observing the radio emission of hydrogen gas. Their technique, called intensity mapping, when applied to greater areas of the Universe, could reveal how such large-scale structure has changed over the last few billion years, giving insight into which theory of dark energy is the most accurate. "Our project mapped hydrogen gas to greater cosmic distances than ever before, and shows that the techniques we developed can be used to map huge volumes of the Universe in three dimensions and to test the competing theories of dark energy," said Tzu-Ching Chang, of the Academia Sinica in Taiwan and the University of Toronto. To get their results, the researchers used the GBT to study a region of sky that previously had been surveyed in detail in visible light by the Keck II telescope in Hawaii. This optical survey used spectroscopy to map the locations of thousands of galaxies in three dimensions. With the GBT, instead of looking for hydrogen gas in these individual, distant galaxies -- a daunting challenge beyond the technical

  4. Direct probe of dark energy through gravitational lensing effect

    SciT

    He, Hong-Jian; Zhang, Zhen, E-mail: hjhe@tsinghua.edu.cn, E-mail: zh.zhang@pku.edu.cn

    We show that gravitational lensing can provide a direct method to probe the nature of dark energy at astrophysical scales. For lensing system as an isolated astrophysical object, we derive the dark energy contribution to gravitational potential as a repulsive power-law term, containing a generic equation of state parameter w . We find that it generates w -dependent and position-dependent modification to the conventional light orbital equation of w =−1. With post-Newtonian approximation, we compute its direct effect for an isolated lensing system at astrophysical scales and find that the dark energy force can deflect the path of incident lightmore » rays. We demonstrate that the dark-energy-induced deflection angle Δα{sub DE}∝ M {sup (1+1/3} {sup w} {sup )} (with 1+1/3 w > 0), which increases with the lensing mass M and consistently approaches zero in the limit M → 0. This effect is distinctive because dark energy tends to diffuse the rays and generates concave lensing effect . This is in contrast to the conventional convex lensing effect caused by both visible and dark matter. Measuring such concave lensing effect can directly probe the existence and nature of dark energy. We estimate this effect and show that the current gravitational lensing experiments are sensitive to the direct probe of dark energy at astrophysical scales. For the special case w =−1, our independent study favors the previous works that the cosmological constant can affect light bending, but our prediction qualitatively and quantitatively differ from the literature, including our consistent realization of Δα{sub DE} → 0 (under 0 M → ) at the leading order.« less

  5. Scaling cosmology with variable dark-energy equation of state

    SciT

    Castro, David R.; Velten, Hermano; Zimdahl, Winfried, E-mail: drodriguez-ufes@hotmail.com, E-mail: velten@physik.uni-bielefeld.de, E-mail: winfried.zimdahl@pq.cnpq.br

    2012-06-01

    Interactions between dark matter and dark energy which result in a power-law behavior (with respect to the cosmic scale factor) of the ratio between the energy densities of the dark components (thus generalizing the ΛCDM model) have been considered as an attempt to alleviate the cosmic coincidence problem phenomenologically. We generalize this approach by allowing for a variable equation of state for the dark energy within the CPL-parametrization. Based on analytic solutions for the Hubble rate and using the Constitution and Union2 SNIa sets, we present a statistical analysis and classify different interacting and non-interacting models according to the Akaikemore » (AIC) and the Bayesian (BIC) information criteria. We do not find noticeable evidence for an alleviation of the coincidence problem with the mentioned type of interaction.« less

  6. Ghost Dark Energy with Non-Linear Interaction Term

    NASA Astrophysics Data System (ADS)

    Ebrahimi, E.

    2016-06-01

    Here we investigate ghost dark energy (GDE) in the presence of a non-linear interaction term between dark matter and dark energy. To this end we take into account a general form for the interaction term. Then we discuss about different features of three choices of the non-linear interacting GDE. In all cases we obtain equation of state parameter, w D = p/ ρ, the deceleration parameter and evolution equation of the dark energy density parameter (Ω D ). We find that in one case, w D cross the phantom line ( w D < -1). However in two other classes w D can not cross the phantom divide. The coincidence problem can be solved in these models completely and there exist good agreement between the models and observational values of w D , q. We study squared sound speed {vs2}, and find that for one case of non-linear interaction term {vs2} can achieves positive values at late time of evolution.

  7. Finding structure in the dark: Coupled dark energy, weak lensing, and the mildly nonlinear regime

    NASA Astrophysics Data System (ADS)

    Miranda, Vinicius; González, Mariana Carrillo; Krause, Elisabeth; Trodden, Mark

    2018-03-01

    We reexamine interactions between the dark sectors of cosmology, with a focus on robust constraints that can be obtained using only mildly nonlinear scales. While it is well known that couplings between dark matter and dark energy can be constrained to the percent level when including the full range of scales probed by future optical surveys, calibrating matter power spectrum emulators to all possible choices of potentials and couplings requires many computationally expensive n-body simulations. Here we show that lensing and clustering of galaxies in combination with the cosmic microwave background (CMB) are capable of probing the dark sector coupling to the few percent level for a given class of models, using only linear and quasilinear Fourier modes. These scales can, in principle, be described by semianalytical techniques such as the effective field theory of large-scale structure.

  8. Constraints on the dark matter and dark energy interactions from weak lensing bispectrum tomography

    SciT

    An, Rui; Feng, Chang; Wang, Bin, E-mail: an_rui@sjtu.edu.cn, E-mail: chang.feng@uci.edu, E-mail: wang_b@sjtu.edu.cn

    We estimate uncertainties of cosmological parameters for phenomenological interacting dark energy models using weak lensing convergence power spectrum and bispectrum. We focus on the bispectrum tomography and examine how well the weak lensing bispectrum with tomography can constrain the interactions between dark sectors, as well as other cosmological parameters. Employing the Fisher matrix analysis, we forecast parameter uncertainties derived from weak lensing bispectra with a two-bin tomography and place upper bounds on strength of the interactions between the dark sectors. The cosmic shear will be measured from upcoming weak lensing surveys with high sensitivity, thus it enables us to usemore » the higher order correlation functions of weak lensing to constrain the interaction between dark sectors and will potentially provide more stringent results with other observations combined.« less

  9. PHYSICS OF OUR DAYS: Dark energy and universal antigravitation

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.

    2008-03-01

    Universal antigravitation, a new physical phenomenon discovered astronomically at distances of 5 to 8 billion light years, manifests itself as cosmic repulsion that acts between distant galaxies and overcomes their gravitational attraction, resulting in the accelerating expansion of the Universe. The source of the antigravitation is not galaxies or any other bodies of nature but a previously unknown form of mass/energy that has been termed dark energy. Dark energy accounts for 70 to 80% of the total mass and energy of the Universe and, in macroscopic terms, is a kind of continuous medium that fills the entire space of the Universe and is characterized by positive density and negative pressure. With its physical nature and microscopic structure unknown, dark energy is among the most critical challenges fundamental science faces in the twenty-first century.

  10. Yang-Mills condensate as dark energy: A nonperturbative approach

    NASA Astrophysics Data System (ADS)

    Donà, Pietro; Marcianò, Antonino; Zhang, Yang; Antolini, Claudia

    2016-02-01

    Models based on the Yang-Mills condensate (YMC) have been advocated for in the literature and claimed as successful candidates for explaining dark energy. Several variations on this simple idea have been considered, the most promising of which are reviewed here. Nevertheless, the previously attained results relied heavily on the perturbative approach to the analysis of the effective Yang-Mills action, which is only adequate in the asymptotically free limit, and were extended into a regime, the infrared limit, in which confinement is expected. We show that if a minimum of the effective Lagrangian in θ =-Fμν aFa μ ν/2 exists, a YMC forms that drives the Universe toward an accelerated de Sitter phase. The details of the models depend weakly on the specific form of the effective Yang-Mills Lagrangian. Using nonperturbative techniques mutated from the functional renormalization-group procedure, we finally show that the minimum in θ of the effective Lagrangian exists. Thus, a YMC can actually take place. The nonperturbative model has properties similar to the ones in the perturbative model. In the early stage of the Universe, the YMC equation of state has an evolution that resembles the radiation component, i.e., wy→1 /3 . However, in the late stage, wy naturally runs to the critical state with wy=-1 , and the Universe transitions from a matter-dominated into a dark energy dominated stage only at latest time, at a redshift whose value depends on the initial conditions that are chosen while solving the dynamical system.

  11. An ecological approach to problems of Dark Energy, Dark Matter, MOND and Neutrinos

    NASA Astrophysics Data System (ADS)

    Zhao, Hong Sheng

    2008-11-01

    Modern astronomical data on galaxy and cosmological scales have revealed powerfully the existence of certain dark sectors of fundamental physics, i.e., existence of particles and fields outside the standard models and inaccessible by current experiments. Various approaches are taken to modify/extend the standard models. Generic theories introduce multiple de-coupled fields A, B, C, each responsible for the effects of DM (cold supersymmetric particles), DE (Dark Energy) effect, and MG (Modified Gravity) effect respectively. Some theories use adopt vanilla combinations like AB, BC, or CA, and assume A, B, C belong to decoupled sectors of physics. MOND-like MG and Cold DM are often taken as antagnising frameworks, e.g. in the muddled debate around the Bullet Cluster. Here we argue that these ad hoc divisions of sectors miss important clues from the data. The data actually suggest that the physics of all dark sectors is likely linked together by a self-interacting oscillating field, which governs a chameleon-like dark fluid, appearing as DM, DE and MG in different settings. It is timely to consider an interdisciplinary approach across all semantic boundaries of dark sectors, treating the dark stress as one identity, hence accounts for several "coincidences" naturally.

  12. Exacerbating the Cosmological Constant Problem with Interacting Dark Energy Models.

    PubMed

    Marsh, M C David

    2017-01-06

    Future cosmological surveys will probe the expansion history of the Universe and constrain phenomenological models of dark energy. Such models do not address the fine-tuning problem of the vacuum energy, i.e., the cosmological constant problem (CCP), but can make it spectacularly worse. We show that this is the case for "interacting dark energy" models in which the masses of the dark matter states depend on the dark energy sector. If realized in nature, these models have far-reaching implications for proposed solutions to the CCP that require the number of vacua to exceed the fine-tuning of the vacuum energy density. We show that current estimates of the number of flux vacua in string theory, N_{vac}∼O(10^{272 000}), are far too small to realize certain simple models of interacting dark energy and solve the cosmological constant problem anthropically. These models admit distinctive observational signatures that can be targeted by future gamma-ray observatories, hence making it possible to observationally rule out the anthropic solution to the cosmological constant problem in theories with a finite number of vacua.

  13. Anisotropic ghost dark energy cosmological model with hybrid expansion law

    NASA Astrophysics Data System (ADS)

    Mahanta, Chandra Rekha; Sarma, Nitin

    2017-11-01

    In this paper, we study the anisotropic Bianchi type-VI0 metric filled with dark matter and anisotropic ghost dark energy. We have solved the Einstein's field equations by considering hybrid expansion law (HEL) for the average scale factor. It is found that at later times the universe becomes spatially homogeneous, isotropic and flat. From a state finder diagnosis, it is found that our model is having similar behavior like ɅCDM model at late phase of cosmic time.

  14. Fundamentalist physics: why Dark Energy is bad for astronomy

    NASA Astrophysics Data System (ADS)

    White, Simon D. M.

    2007-06-01

    Astronomers carry out observations to explore the diverse processes and objects which populate our Universe. High-energy physicists carry out experiments to approach the Fundamental Theory underlying space, time and matter. Dark Energy is a unique link between them, reflecting deep aspects of the Fundamental Theory, yet apparently accessible only through astronomical observation. Large sections of the two communities have therefore converged in support of astronomical projects to constrain Dark Energy. In this essay I argue that this convergence can be damaging for astronomy. The two communities have different methodologies and different scientific cultures. By uncritically adopting the values of an alien system, astronomers risk undermining the foundations of their own current success and endangering the future vitality of their field. Dark Energy is undeniably an interesting problem to tackle through astronomical observation, but it is one of many and not necessarily the one where significant progress is most likely to follow a major investment of resources.

  15. Higgs seesaw mechanism as a source for dark energy.

    PubMed

    Krauss, Lawrence M; Dent, James B

    2013-08-09

    Motivated by the seesaw mechanism for neutrinos which naturally generates small neutrino masses, we explore how a small grand-unified-theory-scale mixing between the standard model Higgs boson and an otherwise massless hidden sector scalar can naturally generate a small mass and vacuum expectation value for the new scalar which produces a false vacuum energy density contribution comparable to that of the observed dark energy dominating the current expansion of the Universe. This provides a simple and natural mechanism for producing the correct scale for dark energy, even if it does not address the long-standing question of why much larger dark energy contributions are not produced from the visible sector. The new scalar produces no discernible signatures in existing terrestrial experiments so that one may have to rely on other cosmological tests of this idea.

  16. Analytic study of the effect of dark energy-dark matter interaction on the growth of structures

    SciT

    Marcondes, Rafael J.F.; Landim, Ricardo C.G.; Costa, André A.

    2016-12-01

    Large-scale structure has been shown as a promising cosmic probe for distinguishing and constraining dark energy models. Using the growth index parametrization, we obtain an analytic formula for the growth rate of structures in a coupled dark energy model in which the exchange of energy-momentum is proportional to the dark energy density. We find that the evolution of f σ{sub 8} can be determined analytically once we know the coupling, the dark energy equation of state, the present value of the dark energy density parameter and the current mean amplitude of dark matter fluctuations. After correcting the growth function formore » the correspondence with the velocity field through the continuity equation in the interacting model, we use our analytic result to compare the model's predictions with large-scale structure observations.« less

  17. Fine-structure constant constraints on dark energy. II. Extending the parameter space

    NASA Astrophysics Data System (ADS)

    Martins, C. J. A. P.; Pinho, A. M. M.; Carreira, P.; Gusart, A.; López, J.; Rocha, C. I. S. A.

    2016-01-01

    Astrophysical tests of the stability of fundamental couplings, such as the fine-structure constant α , are a powerful probe of new physics. Recently these measurements, combined with local atomic clock tests and Type Ia supernova and Hubble parameter data, were used to constrain the simplest class of dynamical dark energy models where the same degree of freedom is assumed to provide both the dark energy and (through a dimensionless coupling, ζ , to the electromagnetic sector) the α variation. One caveat of these analyses was that it was based on fiducial models where the dark energy equation of state was described by a single parameter (effectively its present day value, w0). Here we relax this assumption and study broader dark energy model classes, including the Chevallier-Polarski-Linder and early dark energy parametrizations. Even in these extended cases we find that the current data constrains the coupling ζ at the 1 0-6 level and w0 to a few percent (marginalizing over other parameters), thus confirming the robustness of earlier analyses. On the other hand, the additional parameters are typically not well constrained. We also highlight the implications of our results for constraints on violations of the weak equivalence principle and improvements to be expected from forthcoming measurements with high-resolution ultrastable spectrographs.

  18. Reconstruction of interaction rate in holographic dark energy

    NASA Astrophysics Data System (ADS)

    Mukherjee, Ankan

    2016-11-01

    The present work is based on the holographic dark energy model with Hubble horizon as the infrared cut-off. The interaction rate between dark energy and dark matter has been reconstructed for three different parameterizations of the deceleration parameter. Observational constraints on the model parameters have been obtained by maximum likelihood analysis using the observational Hubble parameter data (OHD), type Ia supernovab data (SNe), baryon acoustic oscillation data (BAO) and the distance prior of cosmic microwave background (CMB) namely the CMB shift parameter data (CMBShift). The interaction rate obtained in the present work remains always positive and increases with expansion. It is very similar to the result obtained by Sen and Pavon [1] where the interaction rate has been reconstructed for a parametrization of the dark energy equation of state. Tighter constraints on the interaction rate have been obtained in the present work as it is based on larger data sets. The nature of the dark energy equation of state parameter has also been studied for the present models. Though the reconstruction is done from different parametrizations, the overall nature of the interaction rate is very similar in all the cases. Different information criteria and the Bayesian evidence, which have been invoked in the context of model selection, show that the these models are at close proximity of each other.

  19. Growth of perturbations in dark energy parametrization scenarios

    NASA Astrophysics Data System (ADS)

    Mehrabi, Ahmad

    2018-04-01

    In this paper, we study the evolution of dark matter perturbations in the linear regime by considering the possibility of dark energy perturbations. To do this, two popular parametrizations, Chevallier-Polarski-Linder (CPL) and Barboza-Alcaniz (BA), with the same number of free parameters and different redshift dependency have been considered. We integrate the full relativistic equations to obtain the growth of matter fluctuations for both clustering and smooth versions of CPL and BA dark energy. The growth rate is larger (smaller) than the Λ CDM in the smooth cases when w <-1 (w >-1 ), but the dark energy clustering gives a larger (smaller) growth index when w >-1 (w <-1 ). We measure the relative difference of the growth rate with respect to concordance Λ CDM and study how it changes depending on the free parameters. Furthermore, it is found that the difference of growth rates between smooth CPL and BA is negligible, less than 0.5%, while for the clustering case, the difference is considerable and might be as large as 2%. Eventually, using the latest geometrical and growth rate observational data, we perform an overall likelihood analysis and show that both smooth and clustering cases of CPL and BA parametrizations are consistent with observations. In particular, we find the dark energy figure of merit is approximately 70 for the BA and approximately 30 for the CPL, which indicates the BA model constrains relatively better than the CPL one.

  20. Reconstruction of interaction rate in holographic dark energy

    SciT

    Mukherjee, Ankan, E-mail: ankan_ju@iiserkol.ac.in

    2016-11-01

    The present work is based on the holographic dark energy model with Hubble horizon as the infrared cut-off. The interaction rate between dark energy and dark matter has been reconstructed for three different parameterizations of the deceleration parameter. Observational constraints on the model parameters have been obtained by maximum likelihood analysis using the observational Hubble parameter data (OHD), type Ia supernovab data (SNe), baryon acoustic oscillation data (BAO) and the distance prior of cosmic microwave background (CMB) namely the CMB shift parameter data (CMBShift). The interaction rate obtained in the present work remains always positive and increases with expansion. Itmore » is very similar to the result obtained by Sen and Pavon [1] where the interaction rate has been reconstructed for a parametrization of the dark energy equation of state. Tighter constraints on the interaction rate have been obtained in the present work as it is based on larger data sets. The nature of the dark energy equation of state parameter has also been studied for the present models. Though the reconstruction is done from different parametrizations, the overall nature of the interaction rate is very similar in all the cases. Different information criteria and the Bayesian evidence, which have been invoked in the context of model selection, show that the these models are at close proximity of each other.« less

  1. Quantum matter bounce with a dark energy expanding phase

    NASA Astrophysics Data System (ADS)

    Colin, Samuel; Pinto-Neto, Nelson

    2017-09-01

    Analyzing quantum cosmological scenarios containing one scalar field with exponential potential, we have obtained a universe model which realizes a classical dust contraction from very large scales, the initial repeller of the model, and moves to a stiff matter contraction near the singularity, which is avoided due to a quantum bounce. The universe is then launched in a stiff matter expanding phase, which then moves to a dark energy era, finally returning to the dust expanding phase, the final attractor of the model. Hence, one has obtained a nonsingular cosmological model where a single scalar field can describe both the matter contracting phase of a bouncing model, necessary to give an almost scale invariant spectrum of scalar cosmological perturbations, and a transient expanding dark energy phase. As the universe is necessarily dust dominated in the far past, usual adiabatic vacuum initial conditions can be easily imposed in this era, avoiding the usual issues appearing when dark energy is considered in bouncing models.

  2. Energy weighted x-ray dark-field imaging.

    PubMed

    Pelzer, Georg; Zang, Andrea; Anton, Gisela; Bayer, Florian; Horn, Florian; Kraus, Manuel; Rieger, Jens; Ritter, Andre; Wandner, Johannes; Weber, Thomas; Fauler, Alex; Fiederle, Michael; Wong, Winnie S; Campbell, Michael; Meiser, Jan; Meyer, Pascal; Mohr, Jürgen; Michel, Thilo

    2014-10-06

    The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects' microstructures on a scale smaller than the pixel size even with low geometric magnification. In this publication we demonstrate that the dark-field image quality can be enhanced with an energy-resolving pixel detector. Energy-resolved x-ray dark-field images were acquired with a 16-energy-channel photon-counting pixel detector with a 1 mm thick CdTe sensor in a Talbot-Lau x-ray interferometer. A method for contrast-noise-ratio (CNR) enhancement is proposed and validated experimentally. In measurements, a CNR improvement by a factor of 1.14 was obtained. This is equivalent to a possible radiation dose reduction of 23%.

  3. What We Know About Dark Energy From Supernovae

    Filippenko, Alex

    2018-01-24

    The measured distances of type Ia (white dwarf) supernovae as a function of redshift (z) have shown that the expansion of the Universe is currently accelerating, probably due to the presence of dark energy (X) having a negative pressure. Combining all of the data with existing results from large-scale structure surveys, we find a best fit for Omega M and Omega X of 0.28 and 0.72 (respectively), in excellent agreement with the values derived independently from WMAP measurements of the cosmic microwave background radiation. Thus far, the best-fit value for the dark energy equation-of-state parameter is -1, and its first derivative is consistent with zero, suggesting that the dark energy may indeed be Einstein's cosmological constant.

  4. High-energy neutrinos from multibody decaying dark matter

    NASA Astrophysics Data System (ADS)

    Hiroshima, Nagisa; Kitano, Ryuichiro; Kohri, Kazunori; Murase, Kohta

    2018-01-01

    Since the report of the PeV-TeV neutrinos by the IceCube Collaboration, various particle physics models have been proposed to explain the neutrino spectrum by dark matter particles decaying into neutrinos and other standard model particles. In such scenarios, simultaneous γ -ray emission is commonly expected. Therefore, multimessenger connections are generally important for the indirect searches of dark matters. The recent development of γ -ray astronomy puts stringent constraints on the properties of dark matter, especially by observations with the Fermi γ -ray satellite in the last several years. Motivated by the lack of γ -ray as well as the shape of the neutrino spectrum observed by IceCube, we discuss a scenario in which the DM is a PeV scale particle which couples strongly to other invisible particles and its decay products do not contain a charged particle. As an example to realize such possibilities, we consider a model of fermionic dark matter that decays into a neutrino and many invisible fermions. The dark matter decay is secluded in the sense that the emitted products are mostly neutrinos and dark fermions. One remarkable feature of this model is the resulting broadband neutrino spectra around the energy scale of the dark matter. We apply this model to multi-PeV dark matter, and discuss possible observable consequences in light of the IceCube data. In particular, this model could account for the large flux at medium energies of ˜10 - 100 TeV , possibly as well as the second peak at PeV, without violating the stringent γ -ray constraints from Fermi and air-shower experiments such as CASA-MIA.

  5. Dark Energy and Dark Matter as w = -1 Virtual Particles and the World Hologram Model

    NASA Astrophysics Data System (ADS)

    Sarfatti, Jack

    2011-04-01

    The elementary physics battle-tested principles of Lorentz invariance, Einstein equivalence principle and the boson commutation and fermion anti-commutation rules of quantum field theory explain gravitationally repulsive dark energy as virtual bosons and gravitationally attractive dark matter as virtual fermion-antifermion pairs. The small dark energy density in our past light cone is the reciprocal entropy-area of our future light cone's 2D future event horizon in a Novikov consistent loop in time in our accelerating universe. Yakir Aharonov's "back-from-the-future" post-selected final boundary condition is set at our observer-dependent future horizon that also explains why the irreversible thermodynamic arrow of time of is aligned with the accelerating dark energy expansion of the bulk 3D space interior to our future 2D horizon surrounding it as the hologram screen. Seth Lloyd has argued that all 2D horizon surrounding surfaces are pixelated quantum computers projecting interior bulk 3D quanta of volume (Planck area)Sqrt(area of future horizon) as their hologram images in 1-1 correspondence.

  6. Instability in interacting dark sector: an appropriate holographic Ricci dark energy model

    SciT

    Herrera, Ramón; Hipólito-Ricaldi, W.S.; Videla, Nelson, E-mail: ramon.herrera@pucv.cl, E-mail: wiliam.ricaldi@ufes.br, E-mail: nelson.videla@ing.uchile.cl

    In this paper we investigate the consequences of phantom crossing considering the perturbative dynamics in models with interaction in their dark sector. By mean of a general study of gauge-invariant variables in comoving gauge, we relate the sources of instabilities in the structure formation process with the phantom crossing. In order to illustrate these relations and its consequences in more detail, we consider a specific case of an holographic dark energy interacting with dark matter. We find that in spite of the model is in excellent agreement with observational data at background level, however it is plagued of instabilities inmore » its perturbative dynamics. We reconstruct the model in order to avoid these undesirable instabilities, and we show that this implies a modification of the concordance model at background. Also we find drastic changes on the parameters space in our model when instabilities are avoided.« less

  7. [Relationship between early maladaptive schemas, attachment quality and fear of darkness].

    PubMed

    Kopcsó, Krisztina; Láng, András

    2014-12-07

    Although fear of darkness is most common in childhood, it is also a remarkable phenomenon in young adulthood. To examine the relationship between fear of darkness, early maladaptive schemas and attachment quality in young adults and assess fear related sex differences. A self-developed scale was used to measure fear of darkness' intensity and frequency. Young Schema Questionnaire - Short Form and two scales that measure attachment dimensions were also applied. 120 university students (68 women, 52 men) filled in the tests. Fear of darkness' frequency correlated with avoidant attachment, and intensity with independent and anxious attachment. Fear of darkness variables correlated with several early maladaptive schemas. Women reported more frequent and intensive fear of darkness than men. These results indicated that the elevated level of fear of darkness is related to specific cognitive style and attachment quality. This highlights the potential clinical relevance of fear of darkness.

  8. Dark energy cosmology with tachyon field in teleparallel gravity

    SciT

    Motavalli, H., E-mail: Motavalli@Tabrizu.ac.ir; Akbarieh, A. Rezaei; Nasiry, M.

    2016-07-15

    We construct a tachyon teleparallel dark energy model for a homogeneous and isotropic flat universe in which a tachyon as a non-canonical scalar field is non-minimally coupled to gravity in the framework of teleparallel gravity. The explicit form of potential and coupling functions are obtained under the assumption that the Lagrangian admits the Noether symmetry approach. The dynamical behavior of the basic cosmological observables is compared to recent observational data, which implies that the tachyon field may serve as a candidate for dark energy.

  9. First SN Discoveries from the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Abbott, T.; Abdalla, F.; Achitouv, I.; Ahn, E.; Aldering, G.; Allam, S.; Alonso, D.; Amara, A.; Annis, J.; Antonik, M.; Aragon-Salamanca, A.; Armstrong, R.; Ashall, C.; Asorey, J.; Bacon, D.; Balbinot, E.; Banerji, M.; Barbary, K.; Barkhouse, W.; Baruah, L.; Bauer, A.; Bechtol, K.; Becker, M.; Bender, R.; Benoist, C.; Benoit-Levy, A.; Bernardi, M.; Bernstein, G.; Bernstein, J. P.; Bernstein, R.; Bertin, E.; Beynon, E.; Bhattacharya, S.; Biesiadzinski, T.; Biswas, R.; Blake, C.; Bloom, J. S.; Bocquet, S.; Brandt, C.; Bridle, S.; Brooks, D.; Brown, P. J.; Brunner, R.; Buckley-Geer, E.; Burke, D.; Burkert, A.; Busha, M.; Campa, J.; Campbell, H.; Cane, R.; Capozzi, D.; Carlstrom, J.; Carnero Rosell, A.; Carollo, M.; Carrasco-Kind, M.; Carretero, J.; Carter, M.; Casas, R.; Castander, F. J.; Chen, Y.; Chiu, I.; Chue, C.; Clampitt, J.; Clerkin, L.; Cohn, J.; Colless, M.; Copeland, E.; Covarrubias, R. A.; Crittenden, R.; Crocce, M.; Cunha, C.; da Costa, L.; d'Andrea, C.; Das, S.; Das, R.; Davis, T. M.; Deb, S.; DePoy, D.; Derylo, G.; Desai, S.; de Simoni, F.; Devlin, M.; Diehl, H. T.; Dietrich, J.; Dodelson, S.; Doel, P.; Dolag, K.; Efstathiou, G.; Eifler, T.; Erickson, B.; Eriksen, M.; Estrada, J.; Etherington, J.; Evrard, A.; Farrens, S.; Fausti Neto, A.; Fernandez, E.; Ferreira, P. C.; Finley, D.; Fischer, J. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Furlanetto, C.; Garcia-Bellido, J.; Gaztanaga, E.; Gelman, M.; Gerdes, D.; Giannantonio, T.; Gilhool, S.; Gill, M.; Gladders, M.; Gladney, L.; Glazebrook, K.; Gray, M.; Gruen, D.; Gruendl, R.; Gupta, R.; Gutierrez, G.; Habib, S.; Hall, E.; Hansen, S.; Hao, J.; Heitmann, K.; Helsby, J.; Henderson, R.; Hennig, C.; High, W.; Hirsch, M.; Hoffmann, K.; Holhjem, K.; Honscheid, K.; Host, O.; Hoyle, B.; Hu, W.; Huff, E.; Huterer, D.; Jain, B.; James, D.; Jarvis, M.; Jarvis, M. J.; Jeltema, T.; Johnson, M.; Jouvel, S.; Kacprzak, T.; Karliner, I.; Katsaros, J.; Kent, S.; Kessler, R.; Kim, A.; Kim-Vy, T.; King, L.; Kirk, D.; Kochanek, C.; Kopp, M.; Koppenhoefer, J.; Kovacs, E.; Krause, E.; Kravtsov, A.; Kron, R.; Kuehn, K.; Kuemmel, M.; Kuhlmann, S.; Kunder, A.; Kuropatkin, N.; Kwan, J.; Lahav, O.; Leistedt, B.; Levi, M.; Lewis, P.; Liddle, A.; Lidman, C.; Lilly, S.; Lin, H.; Liu, J.; Lopez-Arenillas, C.; Lorenzon, W.; LoVerde, M.; Ma, Z.; Maartens, R.; Maccrann, N.; Macri, L.; Maia, M.; Makler, M.; Manera, M.; Maraston, C.; March, M.; Markovic, K.; Marriner, J.; Marshall, J.; Marshall, S.; Martini, P.; Marti Sanahuja, P.; Mayers, J.; McKay, T.; McMahon, R.; Melchior, P.; Merritt, K. W.; Merson, A.; Miller, C.; Miquel, R.; Mohr, J.; Moore, T.; Mortonson, M.; Mosher, J.; Mould, J.; Mukherjee, P.; Neilsen, E.; Ngeow, C.; Nichol, R.; Nidever, D.; Nord, B.; Nugent, P.; Ogando, R.; Old, L.; Olsen, J.; Ostrovski, F.; Paech, K.; Papadopoulos, A.; Papovich, C.; Patton, K.; Peacock, J.; Pellegrini, P. S. S.; Peoples, J.; Percival, W.; Perlmutter, S.; Petravick, D.; Plazas, A.; Ponce, R.; Poole, G.; Pope, A.; Refregier, A.; Reyes, R.; Ricker, P.; Roe, N.; Romer, K.; Roodman, A.; Rooney, P.; Ross, A.; Rowe, B.; Rozo, E.; Rykoff, E.; Sabiu, C.; Saglia, R.; Sako, M.; Sanchez, A.; Sanchez, C.; Sanchez, E.; Sanchez, J.; Santiago, B.; Saro, A.; Scarpine, V.; Schindler, R.; Schmidt, B. P.; Schmitt, R. L.; Schubnell, M.; Seitz, S.; Senger, R.; Sevilla, I.; Sharp, R.; Sheldon, E.; Sheth, R.; Smith, R. C.; Smith, M.; Snigula, J.; Soares-Santos, M.; Sobreira, F.; Song, J.; Soumagnac, M.; Spinka, H.; Stebbins, A.; Stoughton, C.; Suchyta, E.; Suhada, R.; Sullivan, M.; Sun, F.; Suntzeff, N.; Sutherland, W.; Swanson, M. E. C.; Sypniewski, A. J.; Szepietowski, R.; Talaga, R.; Tarle, G.; Tarrant, E.; Balan, S. Thaithara; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker, D.; Uddin, S. A.; Ural, S.; Vikram, V.; Voigt, L.; Walker, A. R.; Walker, T.; Wechsler, R.; Weinberg, D.; Weller, J.; Wester, W.; Wetzstein, M.; White, M.; Wilcox, H.; Wilman, D.; Yanny, B.; Young, J.; Zablocki, A.; Zenteno, A.; Zhang, Y.; Zuntz, J.

    2012-12-01

    The Dark Energy Survey (DES) report the discovery of the first set of supernovae (SN) from the project. Images were observed as part of the DES Science Verification phase using the newly-installed 570-Megapixel Dark Energy Camera on the CTIO Blanco 4-m telescope by observers J. Annis, E. Buckley-Geer, and H. Lin. SN observations are planned throughout the observing campaign on a regular cadence of 4-6 days in each of the ten 3-deg2 fields in the DES griz filters.

  10. Dark energy properties from large future galaxy surveys

    SciT

    Basse, Tobias; Bjælde, Ole Eggers; Hannestad, Steen

    2014-05-01

    We perform a detailed forecast on how well a Euclid-like survey will be able to constrain dark energy and neutrino parameters from a combination of its cosmic shear power spectrum, galaxy power spectrum, and cluster mass function measurements. We find that the combination of these three probes vastly improves the survey's potential to measure the time evolution of dark energy. In terms of a dark energy figure-of-merit defined as (σ(w{sub p})σ(w{sub a})){sup −1}, we find a value of 690 for Euclid-like data combined with Planck-like measurements of the cosmic microwave background anisotropies in a 10-dimensional cosmological parameter space, assuming amore » ΛCDM fiducial cosmology. For the more commonly used 7-parameter model, we find a figure-of-merit of 1900 for the same data combination. We consider also the survey's potential to measure dark energy perturbations in models wherein the dark energy is parameterised as a fluid with a nonstandard non-adiabatic sound speed, and find that in an optimistic scenario in which w{sub 0} deviates from -1 by as much as is currently observationally allowed, models with c-circumflex {sub s}{sup 2} = 10{sup −6} and c-circumflex {sub s}{sup 2} = 1 can be distinguished from one another at more than 2σ significance. We emphasise that constraints on the dark energy sound speed from cluster measurements are strongly dependent on the modelling of the cluster mass function; significantly weaker sensitivities ensue if we modify our model to include fewer features of nonlinear dark energy clustering. Finally, we find that the sum of neutrino masses can be measured with a 1σ precision of 0.015 eV, even in complex cosmological models in which the dark energy equation of state varies with time. The 1σ sensitivity to the effective number of relativistic species N{sub eff}{sup ml} is approximately 0.03, meaning that the small deviation of 0.046 from 3 in the standard value of N{sub eff}{sup ml} due to non-instantaneous decoupling

  11. Time arrow is influenced by the dark energy.

    PubMed

    Allahverdyan, A E; Gurzadyan, V G

    2016-05-01

    The arrow of time and the accelerated expansion are two fundamental empirical facts of the universe. We advance the viewpoint that the dark energy (positive cosmological constant) accelerating the expansion of the universe also supports the time asymmetry. It is related to the decay of metastable states under generic perturbations, as we show on example of a microcanonical ensemble. These states will not be metastable without dark energy. The latter also ensures a hyperbolic motion leading to dynamic entropy production with the rate determined by the cosmological constant.

  12. Dark energy properties from large future galaxy surveys

    NASA Astrophysics Data System (ADS)

    Basse, Tobias; Eggers Bjælde, Ole; Hamann, Jan; Hannestad, Steen; Wong, Yvonne Y. Y.

    2014-05-01

    We perform a detailed forecast on how well a Euclid-like survey will be able to constrain dark energy and neutrino parameters from a combination of its cosmic shear power spectrum, galaxy power spectrum, and cluster mass function measurements. We find that the combination of these three probes vastly improves the survey's potential to measure the time evolution of dark energy. In terms of a dark energy figure-of-merit defined as (σ(wp)σ(wa))-1, we find a value of 690 for Euclid-like data combined with Planck-like measurements of the cosmic microwave background anisotropies in a 10-dimensional cosmological parameter space, assuming a ΛCDM fiducial cosmology. For the more commonly used 7-parameter model, we find a figure-of-merit of 1900 for the same data combination. We consider also the survey's potential to measure dark energy perturbations in models wherein the dark energy is parameterised as a fluid with a nonstandard non-adiabatic sound speed, and find that in an optimistic scenario in which w0 deviates from -1 by as much as is currently observationally allowed, models with hat cs2 = 10-6 and hat cs2 = 1 can be distinguished from one another at more than 2σ significance. We emphasise that constraints on the dark energy sound speed from cluster measurements are strongly dependent on the modelling of the cluster mass function; significantly weaker sensitivities ensue if we modify our model to include fewer features of nonlinear dark energy clustering. Finally, we find that the sum of neutrino masses can be measured with a 1σ precision of 0.015 eV, even in complex cosmological models in which the dark energy equation of state varies with time. The 1σ sensitivity to the effective number of relativistic species Neffml is approximately 0.03, meaning that the small deviation of 0.046 from 3 in the standard value of Neffml due to non-instantaneous decoupling and finite temperature effects can be probed with 1σ precision for the first time.

  13. Cosmological implications of quantum mechanics parametrization of dark energy

    NASA Astrophysics Data System (ADS)

    Szydłowski, Marek; Stachowski, Aleksander; Urbanowski, Krzysztof

    2017-08-01

    We consider the cosmology with the running dark energy. The parametrization of dark energy is derived from the quantum process of transition from the false vacuum state to the true vacuum state. This model is the generalized interacting CDM model. We consider the energy density of dark energy parametrization, which is given by the Breit-Wigner energy distribution function. The idea of the process of the quantum mechanical decay of unstable states was formulated by Krauss and Dent. We used this idea in our considerations. In this model is an energy transfer in the dark sector. In this evolutional scenario the universe starts from the false vacuum state and goes to the true vacuum state of the present day universe. The intermediate regime during the passage from false to true vacuum states takes place. In this way the cosmological constant problem can be tried to solve. We estimate the cosmological parameters for this model. This model is in a good agreement with the astronomical data and is practically indistinguishable from CDM model.

  14. Inelastic frontier: Discovering dark matter at high recoil energy

    DOE PAGES

    Bramante, Joseph; Fox, Patrick J.; Kribs, Graham D.; ...

    2016-12-27

    There exist well-motivated models of particle dark matter which predominantly scatter inelastically off nuclei in direct detection experiments. This inelastic transition causes the dark matter to upscatter in terrestrial experiments into an excited state up to 550 keV heavier than the dark matter itself. An inelastic transition of this size is highly suppressed by both kinematics and nuclear form factors. In this paper, we extend previous studies of inelastic dark matter to determine the present bounds on the scattering cross section and the prospects for improvements in sensitivity. Three scenarios provide illustrative examples: nearly pure Higgsino supersymmetric dark matter, magnetic inelasticmore » dark matter, and inelastic models with dark photon exchange. We determine the elastic scattering rate (through loop diagrams involving the heavy state) as well as verify that exothermic transitions are negligible (in the parameter space we consider). Presently, the strongest bounds on the cross section are from xenon at LUX-PandaX (when the mass splitting δ≲160 keV), iodine at PICO (when 160≲δ≲300 keV), and tungsten at CRESST (when δ≳300 keV). Amusingly, once δ≳200 keV, weak scale (and larger) dark matter–nucleon scattering cross sections are allowed. The relative competitiveness of these diverse experiments is governed by the upper bound on the recoil energies employed by each experiment, as well as strong sensitivity to the mass of the heaviest element in the detector. Several implications, including sizable recoil energy-dependent annual modulation and improvements for future experiments, are discussed. We show that the xenon experiments can improve on the PICO results, if they were to analyze their existing data over a larger range of recoil energies, i.e., 20–500 keV Intriguingly, CRESST has reported several events in the recoil energy range 45–100 keV that, if interpreted as dark matter scattering, is compatible with δ~200 keV and an

  15. A New Viewpoint (The expanding universe, Dark energy and Dark matter)

    NASA Astrophysics Data System (ADS)

    Cwele, Daniel

    2011-10-01

    Just as the relativity paradox once threatened the validity of physics in Albert Einstein's days, the cosmos paradox, the galaxy rotation paradox and the experimental invalidity of the theory of dark matter and dark energy threaten the stability and validity of physics today. These theories and ideas and many others, including the Big Bang theory, all depend almost entirely on the notion of the expanding universe, Edwin Hubble's observations and reports and the observational inconsistencies of modern day theoretical Physics and Astrophysics on related subjects. However, much of the evidence collected in experimental Physics and Astronomy aimed at proving many of these ideas and theories is ambiguous, and can be used to prove other theories, given a different interpretation of its implications. The argument offered here is aimed at providing one such interpretation, attacking the present day theories of dark energy, dark matter and the Big Bang, and proposing a new Cosmological theory based on a modification of Isaac Newton's laws and an expansion on Albert Einstein's theories, without assuming any invalidity or questionability on present day cosmological data and astronomical observations.

  16. Predicting Cortical Dark/Bright Asymmetries from Natural Image Statistics and Early Visual Transforms

    PubMed Central

    Cooper, Emily A.; Norcia, Anthony M.

    2015-01-01

    The nervous system has evolved in an environment with structure and predictability. One of the ubiquitous principles of sensory systems is the creation of circuits that capitalize on this predictability. Previous work has identified predictable non-uniformities in the distributions of basic visual features in natural images that are relevant to the encoding tasks of the visual system. Here, we report that the well-established statistical distributions of visual features -- such as visual contrast, spatial scale, and depth -- differ between bright and dark image components. Following this analysis, we go on to trace how these differences in natural images translate into different patterns of cortical input that arise from the separate bright (ON) and dark (OFF) pathways originating in the retina. We use models of these early visual pathways to transform natural images into statistical patterns of cortical input. The models include the receptive fields and non-linear response properties of the magnocellular (M) and parvocellular (P) pathways, with their ON and OFF pathway divisions. The results indicate that there are regularities in visual cortical input beyond those that have previously been appreciated from the direct analysis of natural images. In particular, several dark/bright asymmetries provide a potential account for recently discovered asymmetries in how the brain processes visual features, such as violations of classic energy-type models. On the basis of our analysis, we expect that the dark/bright dichotomy in natural images plays a key role in the generation of both cortical and perceptual asymmetries. PMID:26020624

  17. Observing the clustering properties of galaxy clusters in dynamical dark-energy cosmologies

    NASA Astrophysics Data System (ADS)

    Fedeli, C.; Moscardini, L.; Bartelmann, M.

    2009-06-01

    We study the clustering properties of galaxy clusters expected to be observed by various forthcoming surveys both in the X-ray and sub-mm regimes by the thermal Sunyaev-Zel'dovich effect. Several different background cosmological models are assumed, including the concordance ΛCDM and various cosmologies with dynamical evolution of the dark energy. Particular attention is paid to models with a significant contribution of dark energy at early times which affects the process of structure formation. Past light cone and selection effects in cluster catalogs are carefully modeled by realistic scaling relations between cluster mass and observables and by properly taking into account the selection functions of the different instruments. The results show that early dark-energy models are expected to produce significantly lower values of effective bias and both spatial and angular correlation amplitudes with respect to the standard ΛCDM model. Among the cluster catalogs studied in this work, it turns out that those based on eRosita, Planck, and South Pole Telescope observations are the most promising for distinguishing between various dark-energy models.

  18. Clustering redshift distributions for the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Helsby, Jennifer

    Accurate determination of photometric redshifts and their errors is critical for large scale structure and weak lensing studies for constraining cosmology from deep, wide imaging surveys. Current photometric redshift methods suffer from bias and scatter due to incomplete training sets. Exploiting the clustering between a sample of galaxies for which we have spectroscopic redshifts and a sample of galaxies for which the redshifts are unknown can allow us to reconstruct the true redshift distribution of the unknown sample. Here we use this method in both simulations and early data from the Dark Energy Survey (DES) to determine the true redshift distributions of galaxies in photometric redshift bins. We find that cross-correlating with the spectroscopic samples currently used for training provides a useful test of photometric redshifts and provides reliable estimates of the true redshift distribution in a photometric redshift bin. We discuss the use of the cross-correlation method in validating template- or learning-based approaches to redshift estimation and its future use in Stage IV surveys.

  19. Cosmic shear bias and calibration in dark energy studies

    NASA Astrophysics Data System (ADS)

    Taylor, A. N.; Kitching, T. D.

    2018-07-01

    With the advent of large-scale weak lensing surveys there is a need to understand how realistic, scale-dependent systematics bias cosmic shear and dark energy measurements, and how they can be removed. Here, we show how spatially varying image distortions are convolved with the shear field, mixing convergence E and B modes, and bias the observed shear power spectrum. In practise, many of these biases can be removed by calibration to data or simulations. The uncertainty in this calibration is marginalized over, and we calculate how this propagates into parameter estimation and degrades the dark energy Figure-of-Merit. We find that noise-like biases affect dark energy measurements the most, while spikes in the bias power have the least impact. We argue that, in order to remove systematic biases in cosmic shear surveys and maintain statistical power, effort should be put into improving the accuracy of the bias calibration rather than minimizing the size of the bias. In general, this appears to be a weaker condition for bias removal. We also investigate how to minimize the size of the calibration set for a fixed reduction in the Figure-of-Merit. Our results can be used to correctly model the effect of biases and calibration on a cosmic shear survey, assess their impact on the measurement of modified gravity and dark energy models, and to optimize survey and calibration requirements.

  20. Searching for sterile neutrinos in dynamical dark energy cosmologies

    NASA Astrophysics Data System (ADS)

    Feng, Lu; Zhang, Jing-Fei; Zhang, Xin

    2018-05-01

    We investigate how the dark energy properties change the cosmological limits on sterile neutrino parameters by using recent cosmological observations. We consider the simplest dynamical dark energy models, the wCDM model and the holographic dark energy (HDE) model, to make an analysis. The cosmological observations used in this work include the Planck 2015 CMB temperature and polarization data, the baryon acoustic oscillation data, the type Ia supernova data, the Hubble constant direct measurement data, and the Planck CMB lensing data. We find that, m v,terile ff < 0.2675 eV and Ne f f < 3.5718 for ACDM cosmology, m v,terile ff < 0.5313 eV and Ne f f < 3.5008 for wCDM cosmology, and raffterile < 0.1989 eV and Ne f f < 3.6701 for HDE cosmology, from the constraints of the combination of these data. Thus, without the addition of measurements of growth of structure, only upper limits on both m v,terile ff and Ne f f can be derived, indicating that no evidence of the existence of a sterile neutrino species with eV-scale mass is found in this analysis. Moreover, compared to the ACDM model, in the wCDM model the limit on m v,terile ff becomes much looser, but in the HDE model the limit becomes much tighter. Therefore, the dark energy properties could significantly influence the constraint limits of sterile neutrino parameters.

  1. The solutions and thermodynamic dark energy in the accelerating universe

    SciT

    Demirel, E. C. Günay

    Recently, Tachyonic matter expressed in terms of scalar field is suggested to be the reason of acceleration of the universe as dark energy [1]-[3]. In this study, dynamic solutions and thermodynamic properties of matters such as Tachyonic matters were investigated.

  2. Dark Energy and the Fate of the Universe

    NASA Astrophysics Data System (ADS)

    Linde, A.

    2002-12-01

    The present stage of acceleration of the universe may continue forever. However, we have found a broad class of theories of dark energy that lead to a global collapse of the universe 10-30 billion years from now. I will discuss the possibility to find our destiny using cosmological observations.

  3. Growth index and statefinder diagnostic of oscillating dark energy

    NASA Astrophysics Data System (ADS)

    Panotopoulos, Grigoris; Rincón, Ángel

    2018-05-01

    We study in some detail the cosmology of oscillating dark energy described by concrete equations-of-state introduced recently in the literature. In particular, we compute the statefinder parameters, the growth index, as well as the combination parameter A =f σ8, and a comparison with the concordance Λ CDM is made.

  4. Dark Energy and the Cosmological Constant: A Brief Introduction

    ERIC Educational Resources Information Center

    Harvey, Alex

    2009-01-01

    The recently observed acceleration of the expansion of the universe is a topic of intense interest. The favoured causes are the "cosmological constant" or "dark energy". The former, which appears in the Einstein equations as the term [lambda]g[subscript [mu]v], provides an extremely simple, well-defined mechanism for the acceleration. However,…

  5. Encircling the dark: constraining dark energy via cosmic density in spheres

    NASA Astrophysics Data System (ADS)

    Codis, S.; Pichon, C.; Bernardeau, F.; Uhlemann, C.; Prunet, S.

    2016-08-01

    The recently published analytic probability density function for the mildly non-linear cosmic density field within spherical cells is used to build a simple but accurate maximum likelihood estimate for the redshift evolution of the variance of the density, which, as expected, is shown to have smaller relative error than the sample variance. This estimator provides a competitive probe for the equation of state of dark energy, reaching a few per cent accuracy on wp and wa for a Euclid-like survey. The corresponding likelihood function can take into account the configuration of the cells via their relative separations. A code to compute one-cell-density probability density functions for arbitrary initial power spectrum, top-hat smoothing and various spherical-collapse dynamics is made available online, so as to provide straightforward means of testing the effect of alternative dark energy models and initial power spectra on the low-redshift matter distribution.

  6. Distance measurements from supernovae and dark energy constraints

    SciT

    Wang Yun

    2009-12-15

    Constraints on dark energy from current observational data are sensitive to how distances are measured from Type Ia supernova (SN Ia) data. We find that flux averaging of SNe Ia can be used to test the presence of unknown systematic uncertainties, and yield more robust distance measurements from SNe Ia. We have applied this approach to the nearby+SDSS+ESSENCE+SNLS+HST set of 288 SNe Ia, and the 'Constitution' set of 397 SNe Ia. Combining the SN Ia data with cosmic microwave background anisotropy data from Wilkinson Microwave Anisotropy Probe 5 yr observations, the Sloan Digital Sky Survey baryon acoustic oscillation measurements, themore » data of 69 gamma-ray bursts (GRBs) , and the Hubble constant measurement from the Hubble Space Telescope project SHOES, we measure the dark energy density function X(z){identical_to}{rho}{sub X}(z)/{rho}{sub X}(0) as a free function of redshift (assumed to be a constant at z>1 or z>1.5). Without the flux averaging of SNe Ia, the combined data using the Constitution set of SNe Ia seem to indicate a deviation from a cosmological constant at {approx}95% confidence level at 0 < or apporx. z < or approx. 0.8; they are consistent with a cosmological constant at {approx}68% confidence level when SNe Ia are flux averaged. The combined data using the nearby+SDSS+ESSENCE+SNLS+HST data set of SNe Ia are consistent with a cosmological constant at 68% confidence level with or without flux averaging of SNe Ia, and give dark energy constraints that are significantly more stringent than that using the Constitution set of SNe Ia. Assuming a flat Universe, dark energy is detected at >98% confidence level for z{<=}0.75 using the combined data with 288 SNe Ia from nearby+SDSS+ESSENCE+SNLS+HST, independent of the assumptions about X(z{>=}1). We quantify dark energy constraints without assuming a flat Universe using the dark energy figure of merit for both X(z) and a dark energy equation-of-state linear in the cosmic scale factor.« less

  7. Modelling non-linear effects of dark energy

    NASA Astrophysics Data System (ADS)

    Bose, Benjamin; Baldi, Marco; Pourtsidou, Alkistis

    2018-04-01

    We investigate the capabilities of perturbation theory in capturing non-linear effects of dark energy. We test constant and evolving w models, as well as models involving momentum exchange between dark energy and dark matter. Specifically, we compare perturbative predictions at 1-loop level against N-body results for four non-standard equations of state as well as varying degrees of momentum exchange between dark energy and dark matter. The interaction is modelled phenomenologically using a time dependent drag term in the Euler equation. We make comparisons at the level of the matter power spectrum and the redshift space monopole and quadrupole. The multipoles are modelled using the Taruya, Nishimichi and Saito (TNS) redshift space spectrum. We find perturbation theory does very well in capturing non-linear effects coming from dark sector interaction. We isolate and quantify the 1-loop contribution coming from the interaction and from the non-standard equation of state. We find the interaction parameter ξ amplifies scale dependent signatures in the range of scales considered. Non-standard equations of state also give scale dependent signatures within this same regime. In redshift space the match with N-body is improved at smaller scales by the addition of the TNS free parameter σv. To quantify the importance of modelling the interaction, we create mock data sets for varying values of ξ using perturbation theory. This data is given errors typical of Stage IV surveys. We then perform a likelihood analysis using the first two multipoles on these sets and a ξ=0 modelling, ignoring the interaction. We find the fiducial growth parameter f is generally recovered even for very large values of ξ both at z=0.5 and z=1. The ξ=0 modelling is most biased in its estimation of f for the phantom w=‑1.1 case.

  8. Probing dark energy using convergence power spectrum and bi-spectrum

    SciT

    Dinda, Bikash R., E-mail: bikash@ctp-jamia.res.in

    Weak lensing convergence statistics is a powerful tool to probe dark energy. Dark energy plays an important role to the structure formation and the effects can be detected through the convergence power spectrum, bi-spectrum etc. One of the most promising and simplest dark energy model is the ΛCDM . However, it is worth investigating different dark energy models with evolving equation of state of the dark energy. In this work, detectability of different dark energy models from ΛCDM model has been explored through convergence power spectrum and bi-spectrum.

  9. Universe without dark energy: Cosmic acceleration from dark matter-baryon interactions

    NASA Astrophysics Data System (ADS)

    Berezhiani, Lasha; Khoury, Justin; Wang, Junpu

    2017-06-01

    Cosmic acceleration is widely believed to require either a source of negative pressure (i.e., dark energy), or a modification of gravity, which necessarily implies new degrees of freedom beyond those of Einstein gravity. In this paper we present a third possibility, using only dark matter (DM) and ordinary matter. The mechanism relies on the coupling between dark matter and ordinary matter through an effective metric. Dark matter couples to an Einstein-frame metric, and experiences a matter-dominated, decelerating cosmology up to the present time. Ordinary matter couples to an effective metric that depends also on the DM density, in such a way that it experiences late-time acceleration. Linear density perturbations are stable and propagate with arbitrarily small sound speed, at least in the case of "pressure" coupling. Assuming a simple parametrization of the effective metric, we show that our model can successfully match a set of basic cosmological observables, including luminosity distance, baryon acoustic oscillation measurements, angular-diameter distance to last scattering, etc. For the growth history of density perturbations, we find an intriguing connection between the growth factor and the Hubble constant. To get a growth history similar to the Λ CDM prediction, our model predicts a higher H0, closer to the value preferred by direct estimates. On the flip side, we tend to overpredict the growth of structures whenever H0 is comparable to the Planck preferred value. The model also tends to predict larger redshift-space distortions at low redshift than Λ CDM .

  10. Dark Energy and Dark Matter Hidden in the Geometry of Space?

    NASA Astrophysics Data System (ADS)

    Buchert, Thomas

    A spatially flat and infinite Universe in the form of a "concordant" standard model of cosmology rules present-day thinking of cosmologists. The price to pay is an unknown physical origin of Dark Energy and Dark Matter that are supposed to exist and even appear to rule the dynamics of our Universe. A growing number of cosmologists question the existence of dark constituents: the standard model of cosmology may be just too simple, since it neglects the influence of structure in the Universe on its global expansion history. The key-issue appears to be the curvature of space: the formation of structure interacts with the geometry of space, changing our global picture of the Universe. This chapter explains the underlying mechanism that works in the right direction to uncover the dark faces of the standard model of cosmology. If successful, this novel approach furnishes a new paradigm of modern cosmology. Hundreds of researchers have recently embarked into studies of this new subject. We understand much at present, but there are many open questions.

  11. Topology and dark energy: testing gravity in voids.

    PubMed

    Spolyar, Douglas; Sahlén, Martin; Silk, Joe

    2013-12-13

    Modified gravity has garnered interest as a backstop against dark matter and dark energy (DE). As one possible modification, the graviton can become massive, which introduces a new scalar field--here with a Galileon-type symmetry. The field can lead to a nontrivial equation of state of DE which is density and scale dependent. Tension between type Ia supernovae and Planck could be reduced. In voids, the scalar field dramatically alters the equation of state of DE, induces a soon-observable gravitational slip between the two metric potentials, and develops a topological defect (domain wall) due to a nontrivial vacuum structure for the field.

  12. ΛGR Centennial: Cosmic Web in Dark Energy Background

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.

    The basic building blocks of the Cosmic Web are groups and clusters of galaxies, super-clusters (pancakes) and filaments embedded in the universal dark energy background. The background produces antigravity, and the antigravity effect is strong in groups, clusters and superclusters. Antigravity is very weak in filaments where matter (dark matter and baryons) produces gravity dominating in the filament internal dynamics. Gravity-antigravity interplay on the large scales is a grandiose phenomenon predicted by ΛGR theory and seen in modern observations of the Cosmic Web.

  13. Holographic Dark Energy in Brans-Dicke Theory with Logarithmic Form of Scalar Field

    NASA Astrophysics Data System (ADS)

    Singh, C. P.; Kumar, Pankaj

    2017-10-01

    In this paper, an interacting holographic dark energy model with Hubble horizon as an infra-red cut-off is considered in the framework of Brans-Dicke theory. We assume the Brans-Dicke scalar field as a logarithmic form ϕ = ϕ 0 l n( α + β a), where a is the scale factor, α and β are arbitrary constants, to interpret the physical phenomena of the Universe. The equation of state parameter w h and deceleration parameter q are obtained to discuss the dynamics of the evolution of the Universe. We present a unified model of holographic dark energy which explains the early time acceleration (inflation), medieval time deceleration and late time acceleration. It is also observed that w h may cross the phantom divide line in the late time evolution. We also discuss the cosmic coincidence problem. We obtain a time-varying density ratio of holographic dark energy to dark matter which is a constant of order one (r˜ O(1)) during early and late time evolution, and may evolve sufficiently slow at present time. Thus, the model successfully resolves the cosmic coincidence problem.

  14. Inflation and dark energy from f(R) gravity

    NASA Astrophysics Data System (ADS)

    Artymowski, Michał; Lalak, Zygmunt

    2014-09-01

    The standard Starobinsky inflation has been extended to the R + α Rn - β R2-n model to obtain a stable minimum of the Einstein frame scalar potential of the auxiliary field. As a result we have obtained obtain a scalar potential with non-zero value of residual vacuum energy, which may be a source of Dark Energy. Our results can be easily consistent with PLANCK or BICEP2 data for appropriate choices of the value of n.

  15. On the observability of coupled dark energy with cosmic voids

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Carlesi, Edoardo; Wandelt, Benjamin D.; Knebe, Alexander

    2015-01-01

    Taking N-body simulations with volumes and particle densities tuned to match the sloan digital sky survey DR7 spectroscopic main sample, we assess the ability of current void catalogues to distinguish a model of coupled dark matter-dark energy from Λ cold dark matter cosmology using properties of cosmic voids. Identifying voids with the VIDE toolkit, we find no statistically significant differences in the ellipticities, but find that coupling produces a population of significantly larger voids, possibly explaining the recent result of Tavasoli et al. In addition, we use the universal density profile of Hamaus et al. to quantify the relationship between coupling and density profile shape, finding that the coupling produces broader, shallower, undercompensated profiles for large voids by thinning the walls between adjacent medium-scale voids. We find that these differences are potentially measurable with existing void catalogues once effects from survey geometries and peculiar velocities are taken into account.

  16. Growth of Cosmic Structure: Probing Dark Energy Beyond Expansion

    DOE PAGES

    Huterer, Dragan; Kirkby, David; Bean, Rachel; ...

    2014-03-15

    The quantity and quality of cosmic structure observations have greatly accelerated in recent years, and further leaps forward will be facilitated by imminent projects. These will enable us to map the evolution of dark and baryonic matter density fluctuations over cosmic history. The way that these fluctuations vary over space and time is sensitive to several pieces of fundamental physics: the primordial perturbations generated by GUT-scale physics; neutrino masses and interactions; the nature of dark matter and dark energy. We focus on the last of these here: the ways that combining probes of growth with those of the cosmic expansionmore » such as distance-redshift relations will pin down the mechanism driving the acceleration of the Universe.« less

  17. Growth of Cosmic Structure: Probing Dark Energy Beyond Expansion

    SciT

    Huterer, Dragan; Kirkby, David; Bean, Rachel

    The quantity and quality of cosmic structure observations have greatly accelerated in recent years, and further leaps forward will be facilitated by imminent projects. These will enable us to map the evolution of dark and baryonic matter density fluctuations over cosmic history. The way that these fluctuations vary over space and time is sensitive to several pieces of fundamental physics: the primordial perturbations generated by GUT-scale physics; neutrino masses and interactions; the nature of dark matter and dark energy. We focus on the last of these here: the ways that combining probes of growth with those of the cosmic expansionmore » such as distance-redshift relations will pin down the mechanism driving the acceleration of the Universe.« less

  18. Probing Models of Dark Matter and the Early Universe

    NASA Astrophysics Data System (ADS)

    Orlofsky, Nicholas David

    This thesis discusses models for dark matter (DM) and their behavior in the early universe. An important question is how phenomenological probes can directly search for signals of DM today. Another topic of investigation is how the DM and other processes in the early universe must evolve. Then, astrophysical bounds on early universe dynamics can constrain DM. We will consider these questions in the context of three classes of DM models--weakly interacting massive particles (WIMPs), axions, and primordial black holes (PBHs). Starting with WIMPs, we consider models where the DM is charged under the electroweak gauge group of the Standard Model. Such WIMPs, if generated by a thermal cosmological history, are constrained by direct detection experiments. To avoid present or near-future bounds, the WIMP model or cosmological history must be altered in some way. This may be accomplished by the inclusion of new states that coannihilate with the WIMP or a period of non-thermal evolution in the early universe. Future experiments are likely to probe some of these altered scenarios, and a non-observation would require a high degree of tuning in some of the model parameters in these scenarios. Next, axions, as light pseudo-Nambu-Goldstone bosons, are susceptible to quantum fluctuations in the early universe that lead to isocurvature perturbations, which are constrained by observations of the cosmic microwave background (CMB). We ask what it would take to allow axion models in the face of these strong CMB bounds. We revisit models where inflationary dynamics modify the axion potential and discuss how isocurvature bounds can be relaxed, elucidating the difficulties in these constructions. Avoiding disruption of inflationary dynamics provides important limits on the parameter space. Finally, PBHs have received interest in part due to observations by LIGO of merging black hole binaries. We ask how these PBHs could arise through inflationary models and investigate the opportunity

  19. New Perspectives: Wave Mechanical Interpretations of Dark Matter, Baryon and Dark Energy

    NASA Astrophysics Data System (ADS)

    Russell, Esra

    We model the cosmic components: dark matter, dark energy and baryon distributions in the Cosmic Web by means of highly nonlinear Schrodinger type and reaction diffusion type wave mechanical descriptions. The construction of these wave mechanical models of the structure formation is achieved by introducing the Fisher information measure and its comparison with highly nonlinear term which has dynamical analogy to infamous quantum potential in the wave equations. Strikingly, the comparison of this nonlinear term and the Fisher information measure provides a dynamical distinction between lack of self-organization and self-organization in the dynamical evolution of the cosmic components. Mathematically equivalent to the standard cosmic fluid equations, these approaches make it possible to follow the evolution of the matter distribution even into the highly nonlinear regime by circumventing singularities. Also, numerical realizations of the emerging web-like patterns are presented from the nonlinear dynamics of the baryon component while dark energy component shows Gaussian type dynamics corresponding to soliton-like solutions.

  20. Fine Structure of Dark Energy and New Physics

    DOE PAGES

    Jejjala, Vishnu; Kavic, Michael; Minic, Djordje

    2007-01-01

    Following our recent work on the cosmological constant problem, in this letter we make a specific proposal regarding the fine structure (i.e., the spectrum) of dark energy. The proposal is motivated by a deep analogy between the blackbody radiation problem, which led to the development of quantum theory, and the cosmological constant problem, for which we have recently argued calls for a conceptual extension of the quantum theory. We argue that the fine structure of dark energy is governed by a Wien distribution, indicating its dual quantum and classical nature. We discuss observational consequences of such a picture of darkmore » energy and constrain the distribution function.« less

  1. Do stochastic inhomogeneities affect dark-energy precision measurements?

    PubMed

    Ben-Dayan, I; Gasperini, M; Marozzi, G; Nugier, F; Veneziano, G

    2013-01-11

    The effect of a stochastic background of cosmological perturbations on the luminosity-redshift relation is computed to second order through a recently proposed covariant and gauge-invariant light-cone averaging procedure. The resulting expressions are free from both ultraviolet and infrared divergences, implying that such perturbations cannot mimic a sizable fraction of dark energy. Different averages are estimated and depend on the particular function of the luminosity distance being averaged. The energy flux being minimally affected by perturbations at large z is proposed as the best choice for precision estimates of dark-energy parameters. Nonetheless, its irreducible (stochastic) variance induces statistical errors on Ω(Λ)(z) typically lying in the few-percent range.

  2. Effects of Anisotropy on Scalar Field Ghost Dark Energy and the Non-Equilibrium Thermodynamics in Fractal Cosmology

    NASA Astrophysics Data System (ADS)

    Najafi, A.; Hossienkhani, H.

    2017-10-01

    Since the fractal cosmology has been created in early universe, therefore their models were mostly isotropic. The majority of previous studies had been based on FRW universe, while in the early universe, the best model for describing fractal cosmology is actually the anisotropic universe. Therefore in this work, by assuming the anisotropic universe, the cosmological implications of ghost and generalized ghost dark energy models with dark matter in fractal cosmology has been discussed. Moreover, the different kinds of dark energy models such as quintessence and tachyon field, with the generalized ghost dark energy in fractal universe has been investigated. In addition, we have reconstructed the Hubble parameter, H, the energy density, ρ, the deceleration parameter, q, the equations of state parameter, {ω }{{}D}, for both ghost and generalized ghost dark energy models. This correspondence allows us to reconstruct the potential and the dynamics of a fractal canonical scalar field according to the evolution of generalized ghost dark energy density. Eventually, thermodynamics of the cosmological apparent horizon in fractal cosmology was investigated and the validity of the Generalized second law of thermodynamics (GSLT) have been examined in an anisotropic universe. The results show the influence of the anisotropy on the GSLT of thermodynamics in a fractal cosmology.

  3. Gravitational collapse of dark matter interacting with dark energy: Black hole formation

    NASA Astrophysics Data System (ADS)

    Shah, Hasrat Hussain; Iqbal, Quaid

    In this work, we study the gravitational collapsing process of a spherically symmetric star constitute of Dark Matter (DM), ρM, and Dark Energy (DE) ρ. In this model, we use anisotropic pressure with Equation of State (EoS) pt = λρ and pr = lρ, (l + 2λ < -1). It reveals that gravitational collapse of DM and DE with interaction leads to the formation of the black hole. When l + 2λ < -3 (phantoms), dust and phantoms could be ejected from the death of white hole. This emitted matter again undergoes to collapsing process and becomes the black hole. This study gives the generalization for isotropy of pressure in the fluid to anisotropy when there will be interaction between DM and DE.

  4. Non-Abelian S-term dark energy and inflation

    NASA Astrophysics Data System (ADS)

    Rodríguez, Yeinzon; Navarro, Andrés A.

    2018-03-01

    We study the role that a cosmic triad in the generalized SU(2) Proca theory, specifically in one of the pieces of the Lagrangian that involves the symmetric version Sμν of the gauge field strength tensor Fμν, has on dark energy and primordial inflation. Regarding dark energy, the triad behaves asymptotically as a couple of radiation perfect fluids whose energy densities are negative for the S term but positive for the Yang-Mills term. This leads to an interesting dynamical fine-tuning mechanism that gives rise to a combined equation of state parameter ω ≃ - 1 and, therefore, to an eternal period of accelerated isotropic expansion for an ample spectrum of initial conditions. Regarding primordial inflation, one of the critical points of the associated dynamical system can describe a prolonged period of isotropic slow-roll inflation sustained by the S term. This period ends up when the Yang-Mills term dominates the energy density leading to the radiation dominated epoch. Unfortunately, in contrast to the dark energy case, the primordial inflation scenario is strongly sensitive to the coupling constants and initial conditions. The whole model, including the other pieces of the Lagrangian that involve Sμν, might evade the recent strong constraints coming from the gravitational wave signal GW170817 and its electromagnetic counterpart GRB 170817A.

  5. Bose-Einstein condensate haloes embedded in dark energy

    NASA Astrophysics Data System (ADS)

    Membrado, M.; Pacheco, A. F.

    2018-04-01

    Context. We have studied clusters of self-gravitating collisionless Newtonian bosons in their ground state and in the presence of the cosmological constant to model dark haloes of dwarf spheroidal (dSph) galaxies. Aim. We aim to analyse the influence of the cosmological constant on the structure of these systems. Observational data of Milky Way dSph galaxies allow us to estimate the boson mass. Methods: We obtained the energy of the ground state of the cluster in the Hartree approximation by solving a variational problem in the particle density. We have also developed and applied the virial theorem. Dark halo models were tested in a sample of 19 galaxies. Galaxy radii, 3D deprojected half-light radii, mass enclosed within them, and luminosity-weighted averages of the square of line-of-sight velocity dispersions are used to estimate the particle mass. Results: Cosmological constant repulsive effects are embedded in one parameter ξ. They are appreciable for ξ > 10-5. Bound structures appear for ξ ≤ ξc = 1.65 × 10-4, what imposes a lower bound for cluster masses as a function of the particle mass. In principle, these systems present tunnelling through a potential barrier; however, after estimating their mean lifes, we realize that their existence is not affected by the age of the Universe. When Milky Way dSph galaxies are used to test the model, we obtain 3.5-1.0+1.3 × 10-22 eV for the particle mass and a lower limit of 5.1-2.8+2.2 × 106 M⊙ for bound haloes. Conclusions: Our estimation for the boson mass is in agreement with other recent results which use different methods. From our particle mass estimation, the treated dSph galaxies would present dark halo masses 5-11 ×107 M⊙. With these values, they would not be affected by the cosmological constant (ξ < 10-8). However, dark halo masses smaller than 107 M⊙ (ξ > 10-5) would already feel their effects. Our model that includes dark energy allows us to deal with these dark haloes. Assuming quantities

  6. James Webb Space Telescope Studies of Dark Energy

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.; Stiavelli, Massimo; Mather, John C.

    2010-01-01

    The Hubble Space Telescope (HST) has contributed significantly to studies of dark energy. It was used to find the first evidence of deceleration at z=1.8 (Riess et al. 2001) through the serendipitous discovery of a type 1a supernova (SN1a) in the Hubble Deep Field. The discovery of deceleration at z greater than 1 was confirmation that the apparent acceleration at low redshift (Riess et al. 1998; Perlmutter et al. 1999) was due to dark energy rather than observational or astrophysical effects such as systematic errors, evolution in the SN1a population or intergalactic dust. The GOODS project and associated follow-up discovered 21 SN1a, expanding on this result (Riess et al. 2007). HST has also been used to constrain cosmological parameters and dark energy through weak lensing measurements in the COSMOS survey (Massey et al 2007; Schrabback et al 2009) and strong gravitational lensing with measured time delays (Suyu et al 2010). Constraints on dark energy are often parameterized as the equation of state, w = P/p. For the cosmological constant model, w = -1 at all times; other models predict a change with time, sometimes parameterized generally as w(a) or approximated as w(sub 0)+(1-a)w(sub a), where a = (1+z)(sup -1) is the scale factor of the universe relative to its current scale. Dark energy can be constrained through several measurements. Standard candles, such as SN1a, provide a direct measurement of the luminosity distance as a function of redshift, which can be converted to H(z), the change in the Hubble constant with redshift. An analysis of weak lensing in a galaxy field can be used to derive the angular-diameter distance from the weak-lensing equation and to measure the power spectrum of dark-matter halos, which constrains the growth of structure in the Universe. Baryonic acoustic oscillations (BAO), imprinted on the distribution of matter at recombination, provide a standard rod for measuring the cosmological geometry. Strong gravitational lensing of a

  7. Gravitational collapse of dark energy field configurations and supermassive black hole formation

    SciT

    Jhalani, V.; Kharkwal, H.; Singh, A., E-mail: anupamsingh.iitk@gmail.com

    Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-timemore » and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.« less

  8. Separating Dark Physics from Physical Darkness: Minimalist Modified Gravity vs. Dark Energy

    SciT

    Huterer, Dragan; Linder, Eric V.

    The acceleration of the cosmic expansion may be due to a new component of physical energy density or a modification of physics itself. Mapping the expansion of cosmic scales and the growth of large scale structure in tandem can provide insights to distinguish between the two origins. Using Minimal Modified Gravity (MMG) - a single parameter gravitational growth index formalism to parameterize modified gravity theories - we examine the constraints that cosmological data can place on the nature of the new physics. For next generation measurements combining weak lensing, supernovae distances, and the cosmic microwave background we can extend themore » reach of physics to allow for fitting gravity simultaneously with the expansion equation of state, diluting the equation of state estimation by less than 25percent relative to when general relativity is assumed, and determining the growth index to 8percent. For weak lensing we examine the level of understanding needed of quasi- and nonlinear structure formation in modified gravity theories, and the trade off between stronger precision but greater susceptibility to bias as progressively more nonlinear information is used.« less

  9. Separating dark physics from physical darkness: Minimalist modified gravity versus dark energy

    SciT

    Huterer, Dragan; Linder, Eric V.

    The acceleration of the cosmic expansion may be due to a new component of physical energy density or a modification of physics itself. Mapping the expansion of cosmic scales and the growth of large scale structure in tandem can provide insights to distinguish between the two origins. Using Minimal Modified Gravity (MMG) - a single parameter gravitational growth index formalism to parametrize modified gravity theories - we examine the constraints that cosmological data can place on the nature of the new physics. For next generation measurements combining weak lensing, supernovae distances, and the cosmic microwave background we can extend themore » reach of physics to allow for fitting gravity simultaneously with the expansion equation of state, diluting the equation of state estimation by less than 25% relative to when general relativity is assumed, and determining the growth index to 8%. For weak lensing we examine the level of understanding needed of quasi- and nonlinear structure formation in modified gravity theories, and the trade off between stronger precision but greater susceptibility to bias as progressively more nonlinear information is used.« less

  10. Dark energy and the inhomogeneous universe

    NASA Astrophysics Data System (ADS)

    Bull, Philip J.

    2013-08-01

    The accurate and safe diagnosis of breast cancer is a significant societal issue, with annual disease incidence of 48,000 women and around 370 men in the UK. Early diagnosis of the disease allows more conservative treatments and better patient outcomes. Microcalcifications in breast tissue are an important indicator for breast cancers, and often the only sign of their presence. Several studies have suggested that the type of calcification formed may act as a marker for malignancy and its presence may be of biological significance. In this work, breast calcifications are studied with FTIR, synchrotron FTIR, ATR FTIR, and Raman mapping to explore their disease specific composition. From a comparison between vibrational spectroscopy and routine staining procedures it becomes clear that calcium builds up prior to calcification formation. Raman and FTIR indicate the same size for calcifications and are in agreement with routine staining techniques. From the synchrotron FTIR measurements it can be proven that amide is present in the centre of the calcifications and the intensity of the bands depends on the pathology. Special attention is paid to the type of carbonate substitution in the calcifications relating to different pathology grades. In contrast to mammography, Raman spectroscopy has the capability to distinguish calcifications based on their chemical composition. The ultimate goal is to turn the acquired knowledge from the mapping studies into a clinical tool based on deep Raman spectroscopy. Deep Raman techniques have a considerable potential to reduce large numbers of normal biopsies, reduce the time delay between screening and diagnosis and therefore diminish patient anxiety. In order to achieve this, a deep Raman system is designed and after evaluation of its performance tested on buried calcification standards in porcine soft tissue and human mammary tissue. It is shown that, when the calcification is probed through tissue, the strong 960 cm-1 phosphate band

  11. Constraints on interacting dark energy models from Planck 2015 and redshift-space distortion data

    SciT

    Costa, André A.; Abdalla, E.; Xu, Xiao-Dong

    2017-01-01

    We investigate phenomenological interactions between dark matter and dark energy and constrain these models by employing the most recent cosmological data including the cosmic microwave background radiation anisotropies from Planck 2015, Type Ia supernovae, baryon acoustic oscillations, the Hubble constant and redshift-space distortions. We find that the interaction in the dark sector parameterized as an energy transfer from dark matter to dark energy is strongly suppressed by the whole updated cosmological data. On the other hand, an interaction between dark sectors with the energy flow from dark energy to dark matter is proved in better agreement with the available cosmologicalmore » observations. This coupling between dark sectors is needed to alleviate the coincidence problem.« less

  12. Two fluid anisotropic dark energy models in a scale invariant theory

    NASA Astrophysics Data System (ADS)

    Tripathy, S. K.; Mishra, B.; Sahoo, P. K.

    2017-09-01

    Some anisotropic Bianchi V dark energy models are investigated in a scale invariant theory of gravity. We consider two non-interacting fluids such as dark energy and a bulk viscous fluid. Dark energy pressure is considered to be anisotropic in different spatial directions. A dynamically evolving pressure anisotropy is obtained from the models. The models favour phantom behaviour. It is observed that, in presence of dark energy, bulk viscosity has no appreciable effect on the cosmic dynamics.

  13. A Note on Equivalence Among Various Scalar Field Models of Dark Energies

    NASA Astrophysics Data System (ADS)

    Mandal, Jyotirmay Das; Debnath, Ujjal

    2017-08-01

    In this work, we have tried to find out similarities between various available models of scalar field dark energies (e.g., quintessence, k-essence, tachyon, phantom, quintom, dilatonic dark energy, etc). We have defined an equivalence relation from elementary set theory between scalar field models of dark energies and used fundamental ideas from linear algebra to set up our model. Consequently, we have obtained mutually disjoint subsets of scalar field dark energies with similar properties and discussed our observation.

  14. New holographic dark energy model inspired by the DGP braneworld

    NASA Astrophysics Data System (ADS)

    Sheykhi, A.; Dehghani, M. H.; Ghaffari, S.

    2016-11-01

    The energy density of the holographic dark energy (HDE) is based on the area law of entropy, and thus any modification of the area law leads to a modified holographic energy density. Inspired by the entropy expression associated with the apparent horizon of a Friedmann-Robertson-Walker (FRW) universe in DGP braneworld, we propose a new model for the HDE in the framework of DGP brane cosmology. We investigate the cosmological consequences of this new model and calculate the equation of state (EoS) parameter by choosing the Hubble radius, L = H-1, as the system’s IR cutoff. Our study show that, due to the effects of the extra dimension (bulk), the identification of IR cutoff with Hubble radius, can reproduce the present acceleration of the universe expansion. This is in contrast to the ordinary HDE in standard cosmology which leads to the zero EoS parameter in the case of choosing the Hubble radius as system’s IR cutoff in the absence of interaction between dark matter (DM) and dark energy (DE).

  15. No-Go Theorem for k-Essence Dark Energy

    SciT

    Bonvin, Camille; Caprini, Chiara; Durrer, Ruth

    We demonstrate that if k-essence can solve the coincidence problem and play the role of dark energy in the Universe, the fluctuations of the field have to propagate superluminally at some stage. We argue that this implies that successful k-essence models violate causality. It is not possible to define a time ordered succession of events in a Lorentz invariant way. Therefore, k-essence cannot arise as a low energy effective field theory of a causal, consistent high energy theory.

  16. Dark energy and the cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Dodelson, S.; Knox, L.

    2000-01-01

    We find that current cosmic microwave background anisotropy data strongly constrain the mean spatial curvature of the Universe to be near zero, or, equivalently, the total energy density to be near critical-as predicted by inflation. This result is robust to editing of data sets, and variation of other cosmological parameters (totaling seven, including a cosmological constant). Other lines of argument indicate that the energy density of nonrelativistic matter is much less than critical. Together, these results are evidence, independent of supernovae data, for dark energy in the Universe.

  17. Dark energy and the cosmic microwave background radiation.

    PubMed

    Dodelson, S; Knox, L

    2000-04-17

    We find that current cosmic microwave background anisotropy data strongly constrain the mean spatial curvature of the Universe to be near zero, or, equivalently, the total energy density to be near critical-as predicted by inflation. This result is robust to editing of data sets, and variation of other cosmological parameters (totaling seven, including a cosmological constant). Other lines of argument indicate that the energy density of nonrelativistic matter is much less than critical. Together, these results are evidence, independent of supernovae data, for dark energy in the Universe.

  18. Illuminating dark photons with high-energy colliders

    NASA Astrophysics Data System (ADS)

    Curtin, David; Essig, Rouven; Gori, Stefania; Shelton, Jessie

    2015-02-01

    High-energy colliders offer a unique sensitivity to dark photons, the mediators of a broken dark U(1) gauge theory that kinetically mixes with the Standard Model (SM) hypercharge. Dark photons can be detected in the exotic decay of the 125 GeV Higgs boson, h→ ZZ D →4 ℓ, and in Drell-Yan events, pp→ Z D → ℓℓ. If the dark U(1) is broken by a hidden-sector Higgs mechanism, then mixing between the dark and SM Higgs bosons also allows the exotic decay h → Z D Z D → 4 ℓ. We show that the 14 TeV LHC and a 100 TeV proton-proton collider provide powerful probes of both exotic Higgs decay channels. In the case of kinetic mixing alone, direct Drell-Yan production offers the best sensitivity to Z D , and can probe ɛ ≳ 9 × 10-4 (4 × 10-4) at the HL-LHC (100 TeV pp collider). The exotic Higgs decay h → ZZ D offers slightly weaker sensitivity, but both measurements are necessary to distinguish the kinetically mixed dark photon from other scenarios. If Higgs mixing is also present, then the decay h → Z D Z D can allow sensitivity to the Z D for ɛ ≳ 10-9 - 10-6 (10-10 - 10-7) for the mass range by searching for displaced dark photon decays. We also compare the Z D sensitivity at pp colliders to the indirect, but model-independent, sensitivity of global fits to electroweak precision observables. We perform a global electroweak fit of the dark photon model, substantially updating previous work in the literature. Electroweak precision measurements at LEP, Tevatron, and the LHC exclude ɛ as low as 3 × 10-2. Sensitivity can be improved by up to a factor of ˜ 2 with HL-LHC data, and an additional factor of ˜ 4 with ILC/GigaZ data.

  19. Reconstructing f(R) modified gravity with dark energy parametrization

    NASA Astrophysics Data System (ADS)

    Morita, Masaaki; Takahashi, Hirotaka

    2014-03-01

    We demonstrate the reconstruction of f(R) modified gravity theory with late-time accelerated cosmic expansion. A second-order differential equation for Lagrangian density is obtained from the field equation, and is solved as a function of the cosmic scale factor in two cases. First we begin with the case of a wCDM cosmological model, in which a dark-energy equation-of-state parameter w is constant, for simplicity. Next we extend the method to a case in which the parameter w is epoch-dependent and is expressed as the Chevallier-Polarski-Linder parametrization. Thus we can represent Lagrangian density of f(R) modified gravity theory in terms of dark energy parameters.

  20. Effects of neutrino mass hierarchies on dynamical dark energy models

    NASA Astrophysics Data System (ADS)

    Yang, Weiqiang; Nunes, Rafael C.; Pan, Supriya; Mota, David F.

    2017-05-01

    We investigate how three different possibilities of neutrino mass hierarchies, namely normal, inverted, and degenerate, can affect the observational constraints on three well-known dynamical dark energy models, namely the Chevallier-Polarski-Linder, logarithmic, and the Jassal-Bagla-Padmanabhan parametrizations. In order to impose the observational constraints on the models, we performed a robust analysis using Planck 2015 temperature and polarization data, supernovae type Ia from the joint light curve analysis, baryon acoustic oscillation distance measurements, redshift space distortion characterized by f (z )σ8(z ) data, weak gravitational lensing data from the Canada-France-Hawaii Telescope Lensing Survey, and cosmic chronometer data plus the local value of the Hubble parameter. We find that different neutrino mass hierarchies return similar fits on almost all model parameters and mildly change the dynamical dark energy properties.

  1. White Dwarfs in the HET Dark Energy Experiment

    NASA Astrophysics Data System (ADS)

    Castanheira, B. G.; Winget, D. E.; Williams, K.; Montgomery, M. H.; Falcon, R. E.; Hermes, J. J.

    2010-11-01

    In the past decades, large scale surveys have discovered a large number of white dwarfs. For example, the Sloan Digital Sky Survey (SDSS) Data Release 7 [5] lists about 20 000 spectroscopically confirmed new white dwarfs. More than just a number, the new discoveries revealed different flavors of white dwarfs, including a new class of pulsators [7] and a larger percentage of stars with a magnetic field [4]. The HET Dark Energy Experiment (HETDEX) will use the 9.2 m Hobby-Eberly Telescope at McDonald Observatory and a set of 150 spectrographs to map the three-dimensional positions of one million galaxies. The main goal of the survey is to probe dark energy by observing the recent universe (2<=z<=4). However, this unique, magnitude-limited survey (V<=22) will also provide a variety of by-products. We expect to obtain spectra for about 10 000 white dwarfs in the next 3 to 4 years.

  2. Constraining viscous dark energy models with the latest cosmological data

    NASA Astrophysics Data System (ADS)

    Wang, Deng; Yan, Yang-Jie; Meng, Xin-He

    2017-10-01

    Based on the assumption that the dark energy possessing bulk viscosity is homogeneously and isotropically permeated in the universe, we propose three new viscous dark energy (VDE) models to characterize the accelerating universe. By constraining these three models with the latest cosmological observations, we find that they just deviate very slightly from the standard cosmological model and can alleviate effectively the current H_0 tension between the local observation by the Hubble Space Telescope and the global measurement by the Planck Satellite. Interestingly, we conclude that a spatially flat universe in our VDE model with cosmic curvature is still supported by current data, and the scale invariant primordial power spectrum is strongly excluded at least at the 5.5σ confidence level in the three VDE models as the Planck result. We also give the 95% upper limits of the typical bulk viscosity parameter η in the three VDE scenarios.

  3. Quantisation of the holographic Ricci dark energy model

    SciT

    Albarran, Imanol; Bouhmadi-López, Mariam, E-mail: imanol@ubi.pt, E-mail: mbl@ubi.pt

    2015-08-01

    While general relativity is an extremely robust theory to describe the gravitational interaction in our Universe, it is expected to fail close to singularities like the cosmological ones. On the other hand, it is well known that some dark energy models might induce future singularities; this can be the case for example within the setup of the Holographic Ricci Dark Energy model (HRDE). On this work, we perform a cosmological quantisation of the HRDE model and obtain under which conditions a cosmic doomsday can be avoided within the quantum realm. We show as well that this quantum model not onlymore » avoid future singularities but also the past Big Bang.« less

  4. Generalized entropy formalism and a new holographic dark energy model

    NASA Astrophysics Data System (ADS)

    Sayahian Jahromi, A.; Moosavi, S. A.; Moradpour, H.; Morais Graça, J. P.; Lobo, I. P.; Salako, I. G.; Jawad, A.

    2018-05-01

    Recently, the Rényi and Tsallis generalized entropies have extensively been used in order to study various cosmological and gravitational setups. Here, using a special type of generalized entropy, a generalization of both the Rényi and Tsallis entropy, together with holographic principle, we build a new model for holographic dark energy. Thereinafter, considering a flat FRW universe, filled by a pressureless component and the new obtained dark energy model, the evolution of cosmos has been investigated showing satisfactory results and behavior. In our model, the Hubble horizon plays the role of IR cutoff, and there is no mutual interaction between the cosmos components. Our results indicate that the generalized entropy formalism may open a new window to become more familiar with the nature of spacetime and its properties.

  5. ASTROPHYSICS. Atom-interferometry constraints on dark energy.

    PubMed

    Hamilton, P; Jaffe, M; Haslinger, P; Simmons, Q; Müller, H; Khoury, J

    2015-08-21

    If dark energy, which drives the accelerated expansion of the universe, consists of a light scalar field, it might be detectable as a "fifth force" between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms, however, can evade these tests by suppressing the forces in regions of high density, such as the laboratory. Using a cesium matter-wave interferometer near a spherical mass in an ultrahigh-vacuum chamber, we reduced the screening mechanism by probing the field with individual atoms rather than with bulk matter. We thereby constrained a wide class of dark energy theories, including a range of chameleon and other theories that reproduce the observed cosmic acceleration. Copyright © 2015, American Association for the Advancement of Science.

  6. Relieving the tension between weak lensing and cosmic microwave background with interacting dark matter and dark energy models

    NASA Astrophysics Data System (ADS)

    An, Rui; Feng, Chang; Wang, Bin

    2018-02-01

    We constrain interacting dark matter and dark energy (IDMDE) models using a 450-degree-square cosmic shear data from the Kilo Degree Survey (KiDS) and the angular power spectra from Planck's latest cosmic microwave background measurements. We revisit the discordance problem in the standard Lambda cold dark matter (ΛCDM) model between weak lensing and Planck datasets and extend the discussion by introducing interacting dark sectors. The IDMDE models are found to be able to alleviate the discordance between KiDS and Planck as previously inferred from the ΛCDM model, and moderately favored by a combination of the two datasets.

  7. Chasing Down Gravitational Wave Sources with the Dark Energy Camera

    SciT

    Annis, Jim; Soares-Santos, Marcelle

    On August 17, 2017, scientists using the Dark Energy Camera tracked down the first visible counterpart to a gravitational wave signal ever spotted by astronomers. Using data provided by the LIGO and Virgo collaborations, scientists embarked on a quest for the unknown, and discovered a new wonder of the universe. Includes interviews with Fermilab’s Jim Annis and Brandeis University’s Marcelle Soares-Santos.

  8. Growth rate in the dynamical dark energy models.

    PubMed

    Avsajanishvili, Olga; Arkhipova, Natalia A; Samushia, Lado; Kahniashvili, Tina

    Dark energy models with a slowly rolling cosmological scalar field provide a popular alternative to the standard, time-independent cosmological constant model. We study the simultaneous evolution of background expansion and growth in the scalar field model with the Ratra-Peebles self-interaction potential. We use recent measurements of the linear growth rate and the baryon acoustic oscillation peak positions to constrain the model parameter [Formula: see text] that describes the steepness of the scalar field potential.

  9. Probing dark energy dynamics from current and future cosmological observations

    SciT

    Zhao Gongbo; Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6; Zhang Xinmin

    2010-02-15

    We report the constraints on the dark energy equation-of-state w(z) using the latest 'Constitution' SNe sample combined with the WMAP5 and Sloan Digital Sky Survey data. Assuming a flat Universe, and utilizing the localized principal component analysis and the model selection criteria, we find that the {Lambda}CDM model is generally consistent with the current data, yet there exists a weak hint of the possible dynamics of dark energy. In particular, a model predicting w(z)<-1 at z is an element of [0.25,0.5) and w(z)>-1 at z is an element of [0.5,0.75), which means that w(z) crosses -1 in the range ofmore » z is an element of [0.25,0.75), is mildly favored at 95% confidence level. Given the best fit model for current data as a fiducial model, we make future forecast from the joint data sets of Joint Dark Energy Mission, Planck, and Large Synoptic Survey Telescope, and we find that the future surveys can reduce the error bars on the w bins by roughly a factor of 10 for a 5-w-bin model.« less

  10. Ghost Dark Energy with Sign-changeable Interaction Term

    NASA Astrophysics Data System (ADS)

    Zadeh, M. Abdollahi; Sheykhi, A.; Moradpour, H.

    2017-11-01

    Regarding the Veneziano ghost of QCD and its generalized form, we consider a Friedmann-Robertson-Walker (FRW) universe filled by a pressureless matter and a dark energy component interacting with each other through a mutual sign-changeable interaction of positive coupling constant. Our study shows that, at the late time, for the deceleration parameter we have q → -1, while the equation of state parameter of the interacting ghost dark energy (GDE) does not cross the phantom line, namely ω D ≥ -1. We also extend our study to the generalized ghost dark energy (GGDE) model and show that, at late time, the equation of state parameter of the interacting GGDE also respects the phantom line in both flat and non-flat universes. Moreover, we find out that, unlike the non-flat universe, we have q → -1 at late time for flat FRW universe. In order to make the behavior of the underlying models more clear, the deceleration parameter q as well as the equation of state parameter w D for flat and closed universes have been plotted against the redshift parameter, z. All of the studied cases admit a transition in the expansion history of universe from a deceleration phase to an accelerated one around z ≈ 0.6.

  11. Ordinary matter, dark matter, and dark energy on normal Zeeman space-times

    NASA Astrophysics Data System (ADS)

    Imre Szabó, Zoltán

    2017-01-01

    Zeeman space-times are new, relativistic, and operator based Hamiltonian models representing multi-particle systems. They are established on Lorentzian pseudo Riemannian manifolds whose Laplacian immediately appears in the form of original quantum physical wave operators. In classical quantum theory they emerge, differently, from the Hamilton formalism and the correspondence principle. Nonetheless, this new model does not just reiterate the well known conceptions but holds the key to solving open problems of quantum theory. Most remarkably, it represents the dark matter, dark energy, and ordinary matter by the same ratios how they show up in experiments. Another remarkable agreement with reality is that the ordinary matter appears to be non-expanding and is described in consent with observations. The theory also explains gravitation, moreover, the Hamilton operators of all energy and matter formations, together with their physical properties, are solely derived from the Laplacian of the Zeeman space-time. By this reason, it is called Monistic Wave Laplacian which symbolizes an all-comprehensive unification of all matter and energy formations. This paper only outlines the normal case where the particles do not have proper spin but just angular momentum. The complete anomalous theory is detailed in [Sz2, Sz3, Sz4, Sz5, Sz6, Sz7].

  12. Transforming Early Childhood Educators' Conceptions of "Dark Play" and Popular Culture

    ERIC Educational Resources Information Center

    Bjartveit, Carolyn; Panayotidis, E. Lisa

    2017-01-01

    In an online graduate-level early childhood education course, the authors sought to playfully disrupt and transform educators' conceptions of children's "dark play," as provoked by contemporary popular culture. Embracing the imaginative potential of darkness and liminality, the course participants problematized and expanded their…

  13. Planck 2015 results: XIV. Dark energy and modified gravity

    SciT

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.

    For this research, we study the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state w(a), as well as principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints and find that it has to be below ~2% (at 95% confidence) of the critical density, even when forcedmore » to play a role for z < 50 only. We then move to general parameterizations of the DE or MG perturbations that encompass both effective field theories and the phenomenology of gravitational potentials in MG models. Lastly, we test a range of specific models, such as k-essence, f(R) theories, and coupled DE. In addition to the latest Planck data, for our main analyses, we use background constraints from baryonic acoustic oscillations, type-Ia supernovae, and local measurements of the Hubble constant. We further show the impact of measurements of the cosmological perturbations, such as redshift-space distortions and weak gravitational lensing. These additional probes are important tools for testing MG models and for breaking degeneracies that are still present in the combination of Planck and background data sets. All results that include only background parameterizations (expansion of the equation of state, early DE, general potentials in minimally-coupled scalar fields or principal component analysis) are in agreement with ΛCDM. Finally, when testing models that also change perturbations (even when the background is fixed to ΛCDM), some tensions appear in a few scenarios: the maximum one found is ~2σ for Planck TT+lowP when parameterizing observables related to the gravitational potentials with a chosen time dependence; the tension

  14. Planck 2015 results. XIV. Dark energy and modified gravity

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Heavens, A.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marchini, A.; Maris, M.; Martin, P. G.; Martinelli, M.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Narimani, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Salvatelli, V.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Schaefer, B. M.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Viel, M.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We study the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state w(a), as well as principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints and find that it has to be below ~2% (at 95% confidence) of the critical density, even when forced to play a role for z < 50 only. We then move to general parameterizations of the DE or MG perturbations that encompass both effective field theories and the phenomenology of gravitational potentials in MG models. Lastly, we test a range of specific models, such as k-essence, f(R) theories, and coupled DE. In addition to the latest Planck data, for our main analyses, we use background constraints from baryonic acoustic oscillations, type-Ia supernovae, and local measurements of the Hubble constant. We further show the impact of measurements of the cosmological perturbations, such as redshift-space distortions and weak gravitational lensing. These additional probes are important tools for testing MG models and for breaking degeneracies that are still present in the combination of Planck and background data sets. All results that include only background parameterizations (expansion of the equation of state, early DE, general potentials in minimally-coupled scalar fields or principal component analysis) are in agreement with ΛCDM. When testing models that also change perturbations (even when the background is fixed to ΛCDM), some tensions appear in a few scenarios: the maximum one found is ~2σ for Planck TT+lowP when parameterizing observables related to the gravitational potentials with a chosen time dependence; the tension increases to, at most, 3σ when external

  15. Planck 2015 results: XIV. Dark energy and modified gravity

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...

    2016-09-20

    For this research, we study the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state w(a), as well as principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints and find that it has to be below ~2% (at 95% confidence) of the critical density, even when forcedmore » to play a role for z < 50 only. We then move to general parameterizations of the DE or MG perturbations that encompass both effective field theories and the phenomenology of gravitational potentials in MG models. Lastly, we test a range of specific models, such as k-essence, f(R) theories, and coupled DE. In addition to the latest Planck data, for our main analyses, we use background constraints from baryonic acoustic oscillations, type-Ia supernovae, and local measurements of the Hubble constant. We further show the impact of measurements of the cosmological perturbations, such as redshift-space distortions and weak gravitational lensing. These additional probes are important tools for testing MG models and for breaking degeneracies that are still present in the combination of Planck and background data sets. All results that include only background parameterizations (expansion of the equation of state, early DE, general potentials in minimally-coupled scalar fields or principal component analysis) are in agreement with ΛCDM. Finally, when testing models that also change perturbations (even when the background is fixed to ΛCDM), some tensions appear in a few scenarios: the maximum one found is ~2σ for Planck TT+lowP when parameterizing observables related to the gravitational potentials with a chosen time dependence; the tension

  16. Galactic cluster winds in presence of a dark energy

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Merafina, M.

    2013-10-01

    We obtain a solution for the hydrodynamic outflow of the polytropic gas from the gravitating centre, in the presence of the uniform dark energy (DE). The antigravity of DE is enlightening the outflow and makes the outflow possible at smaller initial temperature, at the same density. The main property of the wind in the presence of DE is its unlimited acceleration after passing the critical point. In application of this solution to the winds from galaxy clusters, we suggest that collision of the strongly accelerated wind with another galaxy cluster, or with another galactic cluster wind, could lead to the formation of a highest energy cosmic rays.

  17. Inflation and dark energy from the Brans-Dicke theory

    NASA Astrophysics Data System (ADS)

    Artymowski, Michał; Lalak, Zygmunt; Lewicki, Marek

    2015-06-01

    We consider the Brans-Dicke theory motivated by the f(R) = R + α Rn - β R2-n model to obtain a stable minimum of the Einstein frame scalar potential of the Brans-Dicke field. As a result we have obtained an inflationary scalar potential with non-zero value of residual vacuum energy, which may be a source of dark energy. In addition we discuss the probability of quantum tunnelling from the minimum of the potential. Our results can be easily consistent with PLANCK or BICEP2 data for appropriate choices of the value of n and ω.

  18. A geometric measure of dark energy with pairs of galaxies.

    PubMed

    Marinoni, Christian; Buzzi, Adeline

    2010-11-25

    Observations indicate that the expansion of the Universe is accelerating, which is attributed to a ‘dark energy’ component that opposes gravity. There is a purely geometric test of the expansion of the Universe (the Alcock–Paczynski test), which would provide an independent way of investigating the abundance (Ω(X)) and equation of state (W(X)) of dark energy. It is based on an analysis of the geometrical distortions expected from comparing the real-space and redshift-space shape of distant cosmic structures, but it has proved difficult to implement. Here we report an analysis of the symmetry properties of distant pairs of galaxies from archival data. This allows us to determine that the Universe is flat. By alternately fixing its spatial geometry at Ω(k)≡0 and the dark energy equation-of-state parameter at W(X)≡-1, and using the results of baryon acoustic oscillations, we can establish at the 68.3% confidence level that and -0.85>W(X)>-1.12 and 0.60<Ω(X)<0.80.

  19. Entropy corrected holographic dark energy models in modified gravity

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Azhar, Nadeem; Rani, Shamaila

    We consider the power law and the entropy corrected holographic dark energy (HDE) models with Hubble horizon in the dynamical Chern-Simons modified gravity. We explore various cosmological parameters and planes in this framework. The Hubble parameter lies within the consistent range at the present and later epoch for both entropy corrected models. The deceleration parameter explains the accelerated expansion of the universe. The equation of state (EoS) parameter corresponds to quintessence and cold dark matter (ΛCDM) limit. The ωΛ-ωΛ‧ approaches to ΛCDM limit and freezing region in both entropy corrected models. The statefinder parameters are consistent with ΛCDM limit and dark energy (DE) models. The generalized second law of thermodynamics remain valid in all cases of interacting parameter. It is interesting to mention here that our results of Hubble, EoS parameter and ωΛ-ωΛ‧ plane show consistency with the present observations like Planck, WP, BAO, H0, SNLS and nine-year WMAP.

  20. Vector dark energy and high-z massive clusters

    NASA Astrophysics Data System (ADS)

    Carlesi, Edoardo; Knebe, Alexander; Yepes, Gustavo; Gottlöber, Stefan; Jiménez, Jose Beltrán.; Maroto, Antonio L.

    2011-12-01

    The detection of extremely massive clusters at z > 1 such as SPT-CL J0546-5345, SPT-CL J2106-5844 and XMMU J2235.3-2557 has been considered by some authors as a challenge to the standard Λ cold dark matter cosmology. In fact, assuming Gaussian initial conditions, the theoretical expectation of detecting such objects is as low as ≤1 per cent. In this paper we discuss the probability of the existence of such objects in the light of the vector dark energy paradigm, showing by means of a series of N-body simulations that chances of detection are substantially enhanced in this non-standard framework.

  1. Dark matter (energy) may be indistinguishable from modified gravity (MOND)

    NASA Astrophysics Data System (ADS)

    Sivaram, C.

    For Newtonian dynamics to hold over galactic scales, large amounts of dark matter (DM) are required which would dominate cosmic structures. Accounting for the strong observational evidence that the universe is accelerating requires the presence of an unknown dark energy (DE) component constituting about 70% of the matter. Several ingenious ongoing experiments to detect the DM particles have so far led to negative results. Moreover, the comparable proportions of the DM and DE at the present epoch appear unnatural and not predicted by any theory. For these reasons, alternative ideas like MOND and modification of gravity or general relativity over cosmic scales have been proposed. It is shown in this paper that these alternate ideas may not be easily distinguishable from the usual DM or DE hypotheses. Specific examples are given to illustrate this point that the modified theories are special cases of a generalized DM paradigm.

  2. Restrained dark U (1 )d at low energies

    NASA Astrophysics Data System (ADS)

    Correia, Fagner C.; Fajfer, Svjetlana

    2016-12-01

    We investigate a spontaneously broken U (1 )d gauge symmetry with a muon-specific dark Higgs. Our first goal is to verify how the presence of a new dark Higgs, ϕ , and a dark gauge boson, V , can simultaneously face the anomalies from the muon magnetic moment and the proton charge radius. Second, by assuming that V must decay to an electron-positron pair, we explore the corresponding parameter space determined with the low-energy constraints coming from K →μ X , electron (g -2 )e, K →μ νμe+e-, K →μ νμμ+μ-, and τ →ντμ νμe+e-. We focus on the scenario where the V mass is below ˜2 mμ and the ϕ mass runs from few MeV to 250 MeV, with V -photon mixing of the order ˜O (10-3). Among weak process at low energies, we check the influence of the new light vector on kaon decays as well as on the scattering e+e-→μ+μ-e+e- and discuss the impact of the dark Higgs on e+e-→μ+μ-μ+μ-. Finally, we consider contributions of the V -photon mixing in the decays π0→γ e+e-, η →γ e+e-, ρ →π e+e-, K*→K e+e-, and ϕ (1020 )→η e+e-.

  3. Revealing the nonadiabatic nature of dark energy perturbations from galaxy clustering data

    NASA Astrophysics Data System (ADS)

    Velten, Hermano; Fazolo, Raquel

    2017-10-01

    We study structure formation using relativistic cosmological linear perturbation theory in the presence of intrinsic and relative (with respect to matter) nonadiabatic dark energy perturbations. For different dark energy models we assess the impact of nonadiabaticity on the matter growth promoting a comparison with growth rate data. The dark energy models studied lead to peculiar signatures of the (non)adiabatic nature of dark energy perturbations in the evolution of the f σ8(z ) observable. We show that nonadiabatic dark energy models become close to be degenerated with respect to the Λ CDM model at first order in linear perturbations. This would avoid the identification of the nonadiabatic nature of dark energy using current available data. Therefore, such evidence indicates that new probes are necessary to reveal the nonadiabatic features in the dark energy sector.

  4. Local dark matter and dark energy as estimated on a scale of ~1 Mpc in a self-consistent way

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2009-12-01

    Context: Dark energy was first detected from large distances on gigaparsec scales. If it is vacuum energy (or Einstein's Λ), it should also exist in very local space. Here we discuss its measurement on megaparsec scales of the Local Group. Aims: We combine the modified Kahn-Woltjer method for the Milky Way-M 31 binary and the HST observations of the expansion flow around the Local Group in order to study in a self-consistent way and simultaneously the local density of dark energy and the dark matter mass contained within the Local Group. Methods: A theoretical model is used that accounts for the dynamical effects of dark energy on a scale of ~1 Mpc. Results: The local dark energy density is put into the range 0.8-3.7ρv (ρv is the globally measured density), and the Local Group mass lies within 3.1-5.8×1012 M⊙. The lower limit of the local dark energy density, about 4/5× the global value, is determined by the natural binding condition for the group binary and the maximal zero-gravity radius. The near coincidence of two values measured with independent methods on scales differing by ~1000 times is remarkable. The mass ~4×1012 M⊙ and the local dark energy density ~ρv are also consistent with the expansion flow close to the Local Group, within the standard cosmological model. Conclusions: One should take into account the dark energy in dynamical mass estimation methods for galaxy groups, including the virial theorem. Our analysis gives new strong evidence in favor of Einstein's idea of the universal antigravity described by the cosmological constant.

  5. Evolution of non-interacting entropic dark energy and its phantom nature

    NASA Astrophysics Data System (ADS)

    Mathew, Titus K.; Murali, Chinthak; Shejeelammal, J.

    2016-04-01

    Assuming the form of the entropic dark energy (EDE) as it arises from the surface term in the Einstein-Hilbert’s action, its evolution was analyzed in an expanding flat universe. The model parameters were evaluated by constraining the model using the Union data on Type Ia supernovae. We found that in the non-interacting case, the model predicts an early decelerated phase and a later accelerated phase at the background level. The evolutions of the Hubble parameter, dark energy (DE) density, equation of state parameter and deceleration parameter were obtained. The model hardly seems to be supporting the linear perturbation growth for the structure formation. We also found that the EDE shows phantom nature for redshifts z < 0.257. During the phantom epoch, the model predicts big rip effect at which both the scale factor of expansion and the DE density become infinitely large and the big rip time is found to be around 36 Giga years from now.

  6. Traversable geometric dark energy wormholes constrained by astrophysical observations

    NASA Astrophysics Data System (ADS)

    Wang, Deng; Meng, Xin-he

    2016-09-01

    In this paper, we introduce the astrophysical observations into the wormhole research. We investigate the evolution behavior of the dark energy equation of state parameter ω by constraining the dark energy model, so that we can determine in which stage of the universe wormholes can exist by using the condition ω <-1. As a concrete instance, we study the Ricci dark energy (RDE) traversable wormholes constrained by astrophysical observations. Particularly, we find from Fig. 5 of this work, when the effective equation of state parameter ω _X<-1 (or z<0.109), i.e., the null energy condition (NEC) is violated clearly, the wormholes will exist (open). Subsequently, six specific solutions of statically and spherically symmetric traversable wormhole supported by the RDE fluids are obtained. Except for the case of a constant redshift function, where the solution is not only asymptotically flat but also traversable, the five remaining solutions are all non-asymptotically flat, therefore, the exotic matter from the RDE fluids is spatially distributed in the vicinity of the throat. Furthermore, we analyze the physical characteristics and properties of the RDE traversable wormholes. It is worth noting that, using the astrophysical observations, we obtain the constraints on the parameters of the RDE model, explore the types of exotic RDE fluids in different stages of the universe, limit the number of available models for wormhole research, reduce theoretically the number of the wormholes corresponding to different parameters for the RDE model, and provide a clearer picture for wormhole investigations from the new perspective of observational cosmology.

  7. Unification of dark matter-dark energy in generalized Galileon theories

    NASA Astrophysics Data System (ADS)

    Koutsoumbas, George; Ntrekis, Konstantinos; Papantonopoulos, Eleftherios; Saridakis, Emmanuel N.

    2018-02-01

    We present a unified description of the dark matter and the dark energy sectors, in the framework of shift-symmetric generalized Galileon theories. Considering a particular combination of terms in the Horndeski Lagrangian in which we have not introduced a cosmological constant or a matter sector, we obtain an effective unified cosmic fluid whose equation of state wU is zero during the whole matter era, namely from redshifts z ~ 3000 up to z ~ 2–3. Then at smaller redshifts it starts decreasing, passing the bound wU = ‑1/3, which marks the onset of acceleration, at around z ~ 0.5. At present times it acquires the value wU = ‑0.7. Finally, it tends toward a de-Sitter phase in the far future. This behaviour is in excellent agreement with observations. Additionally, confrontation with Supernovae type Ia data leads to a very efficient fit. Examining the model at the perturbative level, we show that it is free from pathologies such as ghosts and Laplacian instabilities, at both scalar and tensor sectors, at all times.

  8. HIRAX: a probe of dark energy and radio transients

    NASA Astrophysics Data System (ADS)

    Newburgh, L. B.; Bandura, K.; Bucher, M. A.; Chang, T.-C.; Chiang, H. C.; Cliche, J. F.; Davé, R.; Dobbs, M.; Clarkson, C.; Ganga, K. M.; Gogo, T.; Gumba, A.; Gupta, N.; Hilton, M.; Johnstone, B.; Karastergiou, A.; Kunz, M.; Lokhorst, D.; Maartens, R.; Macpherson, S.; Mdlalose, M.; Moodley, K.; Ngwenya, L.; Parra, J. M.; Peterson, J.; Recnik, O.; Saliwanchik, B.; Santos, M. G.; Sievers, J. L.; Smirnov, O.; Stronkhorst, P.; Taylor, R.; Vanderlinde, K.; Van Vuuren, G.; Weltman, A.; Witzemann, A.

    2016-08-01

    The Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) is a new 400{800MHz radio interferometer under development for deployment in South Africa. HIRAX will comprise 1024 six meter parabolic dishes on a compact grid and will map most of the southern sky over the course of four years. HIRAX has two primary science goals: to constrain Dark Energy and measure structure at high redshift, and to study radio transients and pulsars. HIRAX will observe unresolved sources of neutral hydrogen via their redshifted 21-cm emission line (`hydrogen intensity mapping'). The resulting maps of large-scale structure at redshifts 0.8{2.5 will be used to measure Baryon Acoustic Oscillations (BAO). BAO are a preferential length scale in the matter distribution that can be used to characterize the expansion history of the Universe and thus understand the properties of Dark Energy. HIRAX will improve upon current BAO measurements from galaxy surveys by observing a larger cosmological volume (larger in both survey area and redshift range) and by measuring BAO at higher redshift when the expansion of the universe transitioned to Dark Energy domination. HIRAX will complement CHIME, a hydrogen intensity mapping experiment in the Northern Hemisphere, by completing the sky coverage in the same redshift range. HIRAX's location in the Southern Hemisphere also allows a variety of cross-correlation measurements with large-scale structure surveys at many wavelengths. Daily maps of a few thousand square degrees of the Southern Hemisphere, encompassing much of the Milky Way galaxy, will also open new opportunities for discovering and monitoring radio transients. The HIRAX correlator will have the ability to rapidly and efficiently detect transient events. This new data will shed light on the poorly understood nature of fast radio bursts (FRBs), enable pulsar monitoring to enhance long-wavelength gravitational wave searches, and provide a rich data set for new radio transient phenomena

  9. Breaking CMB degeneracy in dark energy through LSS

    NASA Astrophysics Data System (ADS)

    Lee, Seokcheon

    2016-03-01

    The cosmic microwave background (CMB) and large-scale structure (LSS) are complementary probes in the investigatation of the early and late time Universe. After the current accomplishment of the high accuracies of CMB measurements, accompanying precision cosmology from LSS data is emphasized. We investigate the dynamical dark energy (DE) models which can produce the same CMB angular power spectra as that of the Λ CDM model with less than a sub-percent level accuracy. If one adopts the dynamical DE models using the so-called Chevallier-Polarski-Linder (CPL) parametrization, ω equiv ω 0 + ω a(1-a), then one obtains models (ω 0,ω a) = (-0.8,-0.767),(-0.9,-0.375), (-1.1,0.355), (-1.2,0.688) named M8, M9, M11, and M12, respectively. The differences of the growth rate, f, which is related to the redshift-space distortions (RSD) between different DE models and the Λ CDM model are about 0.2 % only at z = 0. The difference of f between M8 (M9, M11, M12) and the Λ CDM model becomes maximum at z ˜eq 0.25 with -2.4 (-1.2, 1.2, 2.5) %. This is a scale-independent quantity. One can investigate the one-loop correction of the matter power spectrum of each model using the standard perturbation theory in order to probe the scale-dependent quantity in the quasi-linear regime (i.e. k le 0.4 {h^{-1} Mpc}). The differences in the matter power spectra including the one-loop correction between M8 (M9, M11, M12) and the Λ CDM model for the k= 0.4 {h^{-1} Mpc} scale are 1.8 (0.9, 1.2, 3.0) % at z=0, 3.0 (1.6, 1.9, 4.2) % at z=0.5, and 3.2 (1.7, 2.0, 4.5) % at z=1.0. The larger departure from -1 of ω 0, the larger the difference in the power spectrum. Thus, one should use both the RSD and the quasi-linear observable in order to discriminate a viable DE model among a slew of the models which are degenerate in CMB. Also we obtain the lower limit on ω 0> -1.5 from the CMB acoustic peaks and this will provide a useful limitation on phantom models.

  10. Observational constraints on tachyonic chameleon dark energy model

    NASA Astrophysics Data System (ADS)

    Banijamali, A.; Bellucci, S.; Fazlpour, B.; Solbi, M.

    2018-03-01

    It has been recently shown that tachyonic chameleon model of dark energy in which tachyon scalar field non-minimally coupled to the matter admits stable scaling attractor solution that could give rise to the late-time accelerated expansion of the universe and hence alleviate the coincidence problem. In the present work, we use data from Type Ia supernova (SN Ia) and Baryon Acoustic oscillations to place constraints on the model parameters. In our analysis we consider in general exponential and non-exponential forms for the non-minimal coupling function and tachyonic potential and show that the scenario is compatible with observations.

  11. Local and global dynamical effects of dark energy

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.

    Local expansion flows of galaxies were discovered by Lemaitre and Hubble in 1927-29 at distances of less than 25-30 Mpc. The global expansion of the Universe as a whole was predicted theoretically by Friedmann in 1922-24 and discovered in the 1990s in observations at truly cosmological distances of more than 1 000 Mpc. On all these spatial scales, the flows follow a (nearly) linear velocity-distance relation, known now as Hubble's law. This similarity of local and global phenomena is due to the universal dark energy antigravity which dominates the cosmic dynamics on both local and global spatial scales.

  12. Dynamical systems analysis of phantom dark energy models

    NASA Astrophysics Data System (ADS)

    Roy, Nandan; Bhadra, Nivedita

    2018-06-01

    In this work, we study the dynamical systems analysis of phantom dark energy models considering five different potentials. From the analysis of these five potentials we have found a general parametrization of the scalar field potentials which is obeyed by many other potentials. Our investigation shows that there is only one fixed point which could be the beginning of the universe. However, future destiny has many possible options. A detailed numerical analysis of the system has been presented. The observed late time behaviour in this analysis shows very good agreement with the recent observations.

  13. Probing dark energy with lensing magnification in photometric surveys.

    PubMed

    Schneider, Michael D

    2014-02-14

    I present an estimator for the angular cross correlation of two tracers of the cosmological large-scale structure that utilizes redshift information to isolate separate physical contributions. The estimator is derived by solving the Limber equation for a reweighting of the foreground tracer that nulls either clustering or lensing contributions to the cross correlation function. Applied to future photometric surveys, the estimator can enhance the measurement of gravitational lensing magnification effects to provide a competitive independent constraint on the dark energy equation of state.

  14. General Astrophysics with TPF: Not Just Dark Energy

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2006-01-01

    Besides searching for Earth-LIke Planets, TPF can study Jupiters, Neptunes, and all sorts of exotic planets. It can image debris-disks, YSO disks, AGN disks, maybe even AGB disks. And you are probably aware that a large optical space telescope like TPF-C or TPF-O can be a fantastic tool for studying the equation of state of the Dark Energy. I will review some of the future science of TPF-C, TPF-I and TPF-O, focusing on the applications of TPF to the study of objects in our Galaxy: especially circumstellar disks and planets other than exo-Earths.

  15. Calibrating CHIME: a new radio interferometer to probe dark energy

    NASA Astrophysics Data System (ADS)

    Newburgh, Laura B.; Addison, Graeme E.; Amiri, Mandana; Bandura, Kevin; Bond, J. Richard; Connor, Liam; Cliche, Jean-François; Davis, Greg; Deng, Meiling; Denman, Nolan; Dobbs, Matt; Fandino, Mateus; Fong, Heather; Gibbs, Kenneth; Gilbert, Adam; Griffin, Elizabeth; Halpern, Mark; Hanna, David; Hincks, Adam D.; Hinshaw, Gary; Höfer, Carolin; Klages, Peter; Landecker, Tom; Masui, Kiyoshi; Parra, Juan Mena; Pen, Ue-Li; Peterson, Jeff; Recnik, Andre; Shaw, J. Richard; Sigurdson, Kris; Sitwell, Micheal; Smecher, Graeme; Smegal, Rick; Vanderlinde, Keith; Wiebe, Don

    2014-07-01

    The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a transit interferometer currently being built at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC, Canada. We will use CHIME to map neutral hydrogen in the frequency range 400 { 800MHz over half of the sky, producing a measurement of baryon acoustic oscillations (BAO) at redshifts between 0.8 { 2.5 to probe dark energy. We have deployed a pathfinder version of CHIME that will yield constraints on the BAO power spectrum and provide a test-bed for our calibration scheme. I will discuss the CHIME calibration requirements and describe instrumentation we are developing to meet these requirements.

  16. Linear and non-linear perturbations in dark energy models

    SciT

    Escamilla-Rivera, Celia; Casarini, Luciano; Fabris, Júlio C.

    2016-11-01

    In this work we discuss observational aspects of three time-dependent parameterisations of the dark energy equation of state w ( z ). In order to determine the dynamics associated with these models, we calculate their background evolution and perturbations in a scalar field representation. After performing a complete treatment of linear perturbations, we also show that the non-linear contribution of the selected w ( z ) parameterisations to the matter power spectra is almost the same for all scales, with no significant difference from the predictions of the standard ΛCDM model.

  17. Attaining the Photometric Precision Required by Future Dark Energy Projects

    SciT

    Stubbs, Christopher

    2013-01-21

    This report outlines our progress towards achieving the high-precision astronomical measurements needed to derive improved constraints on the nature of the Dark Energy. Our approach to obtaining higher precision flux measurements has two basic components: 1) determination of the optical transmission of the atmosphere, and 2) mapping out the instrumental photon sensitivity function vs. wavelength, calibrated by referencing the measurements to the known sensitivity curve of a high precision silicon photodiode, and 3) using the self-consistency of the spectrum of stars to achieve precise color calibrations.

  18. Higgs production as a probe of chameleon dark energy

    SciT

    Brax, Philippe; Burrage, Clare; Davis, Anne-Christine

    2010-05-15

    In this paper we study various particle physics effects of a light, scalar dark energy field with chameleonlike couplings to matter. We show that a chameleon model with only matter couplings will induce a coupling to photons. In doing so, we derive the first microphysical realization of a chameleonic dark energy model coupled to the electromagnetic field strength. This analysis provides additional motivation for current and near-future tests of axionlike and chameleon particles. We find a new bound on the coupling strength of chameleons in uniformly coupled models. We also study the effect of chameleon fields on Higgs production, whichmore » is relevant for hadron colliders. These are expected to manufacture Higgs particles through weak boson fusion, or associated production with a Z or W{sup {+-}.} We show that, like the Tevatron, the LHC will not be able to rule out or observe chameleons through this mechanism, because gauge invariance of the low energy Lagrangian suppresses the corrections that may arise.« less

  19. Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos

    NASA Astrophysics Data System (ADS)

    Argüelles, Carlos A.; Kheirandish, Ali; Vincent, Aaron C.

    2017-11-01

    We show that the high-energy cosmic neutrinos seen by the IceCube Neutrino Observatory can be used to probe interactions between neutrinos and the dark sector that cannot be reached by current cosmological methods. The origin of the observed neutrinos is still unknown, and their arrival directions are compatible with an isotropic distribution. This observation, together with dedicated studies of Galactic plane correlations, suggests a predominantly extragalactic origin. Interactions between this isotropic extragalactic flux and the dense dark matter (DM) bulge of the Milky Way would thus lead to an observable imprint on the distribution, which would be seen by IceCube as (i) slightly suppressed fluxes at energies below a PeV and (ii) a deficit of events in the direction of the Galactic center. We perform an extended unbinned likelihood analysis using the four-year high-energy starting event data set to constrain the strength of DM-neutrino interactions for two model classes. We find that, in spite of low statistics, IceCube can probe regions of the parameter space inaccessible to current cosmological methods.

  20. Dynamical dark energy vs. Λ = const in light of observations

    NASA Astrophysics Data System (ADS)

    Solà Peracaula, Joan; de Cruz Pérez, Javier; Gómez-Valent, Adrià

    2018-02-01

    After about two decades of the first observational papers confirming the accelerated expansion of the universe, we are still facing the question whether the cause of it is a rigid cosmological constant Λ-term or a mildly evolving dynamical dark energy (DDE). While studies focusing mainly on CMB measurements do not perceive signs of physics beyond the ΛCDM, in this work we show that if we take a large string SNIa+BAO+H(z)+LSS+CMB of modern cosmological observations, in which not only the CMB but also a rich sample of large-scale structure formation data are included, one can extract ∼3.3σ signs of DDE using a simple XCDM parameterization. These signs can be enhanced up to near 3.8σ in the context of the running vacuum model (RVM), in which the vacuum energy density is in interaction with dark matter. Recently, the RVM has been shown to provide an efficient and economical solution to the σ8 -tension, which is one of the intriguing phenomenological problems that has not been possible to solve within the ΛCDM so far. This fact contributes to strengthen the possibility that dynamical vacuum energy, or in general DDE, could be presently favored by the observations.

  1. Nonparametric Determination of Redshift Evolution Index of Dark Energy

    NASA Astrophysics Data System (ADS)

    Ziaeepour, Houri

    We propose a nonparametric method to determine the sign of γ — the redshift evolution index of dark energy. This is important for distinguishing between positive energy models, a cosmological constant, and what is generally called ghost models. Our method is based on geometrical properties and is more tolerant to uncertainties of other cosmological parameters than fitting methods in what concerns the sign of γ. The same parametrization can also be used for determining γ and its redshift dependence by fitting. We apply this method to SNLS supernovae and to gold sample of re-analyzed supernovae data from Riess et al. Both datasets show strong indication of a negative γ. If this result is confirmed by more extended and precise data, many of the dark energy models, including simple cosmological constant, standard quintessence models without interaction between quintessence scalar field(s) and matter, and scaling models are ruled out. We have also applied this method to Gurzadyan-Xue models with varying fundamental constants to demonstrate the possibility of using it to test other cosmologies.

  2. Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos.

    PubMed

    Argüelles, Carlos A; Kheirandish, Ali; Vincent, Aaron C

    2017-11-17

    We show that the high-energy cosmic neutrinos seen by the IceCube Neutrino Observatory can be used to probe interactions between neutrinos and the dark sector that cannot be reached by current cosmological methods. The origin of the observed neutrinos is still unknown, and their arrival directions are compatible with an isotropic distribution. This observation, together with dedicated studies of Galactic plane correlations, suggests a predominantly extragalactic origin. Interactions between this isotropic extragalactic flux and the dense dark matter (DM) bulge of the Milky Way would thus lead to an observable imprint on the distribution, which would be seen by IceCube as (i) slightly suppressed fluxes at energies below a PeV and (ii) a deficit of events in the direction of the Galactic center. We perform an extended unbinned likelihood analysis using the four-year high-energy starting event data set to constrain the strength of DM-neutrino interactions for two model classes. We find that, in spite of low statistics, IceCube can probe regions of the parameter space inaccessible to current cosmological methods.

  3. The DarkSide-50 Experiment: Electron Recoil Calibrations and A Global Energy Variable

    SciT

    Hackett, Brianne Rae

    2017-01-01

    Over the course of decades, there has been mounting astronomical evidence for non-baryonic dark matter, yet its precise nature remains elusive. A favored candidate for dark matter is the Weakly Interacting Massive Particle (WIMP) which arises naturally out of extensions to the Standard Model. WIMPs are expected to occasionally interact with particles of normal matter through nuclear recoils. DarkSide-50 aims to detect this type of particle through the use of a two-phase liquid argon time projection chamber. To make a claim of discovery, an accurate understanding of the background and WIMP search region is imperative. Knowledge of the backgrounds ismore » done through extensive studies of DarkSide-50's response to electron and nuclear recoils. The CALibration Insertion System (CALIS) was designed and built for the purpose of introduc- ing radioactive sources into or near the detector in a joint eort between Fermi National Laboratory (FNAL) and the University of Hawai'i at Manoa. This work describes the testing, installation, and commissioning of CALIS at the Laboratori Nazionali del Gran Sasso. CALIS has been used in mul- tiple calibration campaigns with both neutron and sources. In this work, DarkSide-50's response to electron recoils, which are important for background estimations, was studied through the use of calibration sources by constructing a global energy variable which takes into account the anti- correlation between scintillation and ionization signals produced by interactions in the liquid argon. Accurately reconstructing the event energy correlates directly with quantitatively understanding the WIMP sensitivity in DarkSide-50. This work also validates the theoretically predicted decay spectrum of 39Ar against 39Ar decay data collected in the early days of DarkSide-50 while it was lled with atmospheric argon; a validation of this type is not readily found in the literature. Finally, we show how well the constructed energy variable can predict energy

  4. Electromagnetic energy transport in nanoparticle chains via dark plasmon modes.

    PubMed

    Solis, David; Willingham, Britain; Nauert, Scott L; Slaughter, Liane S; Olson, Jana; Swanglap, Pattanawit; Paul, Aniruddha; Chang, Wei-Shun; Link, Stephan

    2012-03-14

    Using light to exchange information offers large bandwidths and high speeds, but the miniaturization of optical components is limited by diffraction. Converting light into electron waves in metals allows one to overcome this problem. However, metals are lossy at optical frequencies and large-area fabrication of nanometer-sized structures by conventional top-down methods can be cost-prohibitive. We show electromagnetic energy transport with gold nanoparticles that were assembled into close-packed linear chains. The small interparticle distances enabled strong electromagnetic coupling causing the formation of low-loss subradiant plasmons, which facilitated energy propagation over many micrometers. Electrodynamic calculations confirmed the dark nature of the propagating mode and showed that disorder in the nanoparticle arrangement enhances energy transport, demonstrating the viability of using bottom-up nanoparticle assemblies for ultracompact opto-electronic devices. © 2012 American Chemical Society

  5. The effect of anisotropy on the thermodynamics of the interacting holographic dark energy model

    NASA Astrophysics Data System (ADS)

    Hossienkhani, H.; Jafari, A.; Fayaz, V.; Ramezani, A. H.

    2018-02-01

    By considering a holographic model for the dark energy in an anisotropic universe, the thermodynamics of a scheme of dark matter and dark energy interaction has been investigated. The results suggest that when holographic dark energy and dark matter evolve separately, each of them remains in thermodynamic equilibrium, therefore the interaction between them may be viewed as a stable thermal fluctuation that brings a logarithmic correction to the equilibrium entropy. Also the relation between the interaction term of the dark components and this thermal fluctuation has been obtained. Additionally, for a cosmological interaction as a free function, the anisotropy effects on the generalized second law of thermodynamics have been studied. By using the latest observational data on the holographic dark energy models as the unification of dark matter and dark energy, the observational constraints have been probed. To do this, we focus on observational determinations of the Hubble expansion rate H( z). Finally, we evaluate the anisotropy effects (although low) on various topics, such as the evolution of the statefinder diagnostic, the distance modulus and the spherical collapse from the holographic dark energy model and compare them with the results of the holographic dark energy of the Friedmann-Robertson-Walker and Λ CDM models.

  6. Possible Solution of Dark Matter, the Solution of Dark Energy and Gell-Mann as Great Theoretician

    NASA Astrophysics Data System (ADS)

    Frampton, Paul Howard

    2011-11-01

    This talk discusses the formation of primordial intermediate-mass black holes, in a double-inflationary theory, of sufficient abundance possibly to provide all of the cosmological dark matter. There follows my, hopefully convincing, explanation of the dark energy problem, based on the observation that the visible universe is well approximated by a black hole. Finally, I discuss that Gell-Mann is among the five greatest theoreticians of the twentieth century.

  7. Dark energy coupling with electromagnetism as seen from future low-medium redshift probes

    NASA Astrophysics Data System (ADS)

    Calabrese, E.; Martinelli, M.; Pandolfi, S.; Cardone, V. F.; Martins, C. J. A. P.; Spiro, S.; Vielzeuf, P. E.

    2014-04-01

    Beyond the standard cosmological model the late-time accelerated expansion of the Universe can be reproduced by the introduction of an additional dynamical scalar field. In this case, the field is expected to be naturally coupled to the rest of the theory's fields, unless a (still unknown) symmetry suppresses this coupling. Therefore, this would possibly lead to some observational consequences, such as space-time variations of nature's fundamental constants. In this paper we investigate the coupling between a dynamical dark energy model and the electromagnetic field, and the corresponding evolution of the fine structure constant (α) with respect to the standard local value α0. In particular, we derive joint constraints on two dynamical dark energy model parametrizations (the Chevallier-Polarski-Linder and early dark energy model) and on the coupling with electromagnetism ζ, forecasting future low-medium redshift observations. We combine supernovae and weak lensing measurements from the Euclid experiment with high-resolution spectroscopy measurements of fundamental couplings and the redshift drift from the European Extremely Large Telescope, highlighting the contribution of each probe. Moreover, we also consider the case where the field driving the α evolution is not the one responsible for cosmic acceleration and investigate how future observations can constrain this scenario.

  8. Multiloop atom interferometer measurements of chameleon dark energy in microgravity

    NASA Astrophysics Data System (ADS)

    Chiow, Sheng-wey; Yu, Nan

    2018-02-01

    Chameleon field is one of the promising candidates of dark energy scalar fields. As in all viable candidate field theories, a screening mechanism is implemented to be consistent with all existing tests of general relativity. The screening effect in the chameleon theory manifests its influence limited only to the thin outer layer of a bulk object, thus producing extra forces orders of magnitude weaker than that of the gravitational force of the bulk. For pointlike particles such as atoms, the depth of screening is larger than the size of the particle, such that the screening mechanism is ineffective and the chameleon force is fully expressed on the atomic test particles. Extra force measurements using atom interferometry are thus much more sensitive than bulk mass based measurements, and indeed have placed the most stringent constraints on the parameters characterizing chameleon field. In this paper, we present a conceptual measurement approach for chameleon force detection using atom interferometry in microgravity, in which multiloop atom interferometers exploit specially designed periodic modulation of chameleon fields. We show that major systematics of the dark energy force measurements, i.e., effects of gravitational forces and their gradients, can be suppressed below all hypothetical chameleon signals in the parameter space of interest.

  9. Dark Energy after GW170817 and GRB170817A

    NASA Astrophysics Data System (ADS)

    Creminelli, Paolo; Vernizzi, Filippo

    2017-12-01

    The observation of GW170817 and its electromagnetic counterpart implies that gravitational waves travel at the speed of light, with deviations smaller than a few ×10-15 . We discuss the consequences of this experimental result for models of dark energy and modified gravity characterized by a single scalar degree of freedom. To avoid tuning, the speed of gravitational waves must be unaffected not only for our particular cosmological solution but also for nearby solutions obtained by slightly changing the matter abundance. For this to happen, the coefficients of various operators must satisfy precise relations that we discuss both in the language of the effective field theory of dark energy and in the covariant one, for Horndeski, beyond Horndeski, and degenerate higher-order theories. The simplification is dramatic: of the three functions describing quartic and quintic beyond Horndeski theories, only one remains and reduces to a standard conformal coupling to the Ricci scalar for Horndeski theories. We show that the deduced relations among operators do not introduce further tuning of the models, since they are stable under quantum corrections.

  10. Supergravity, dark energy, and the fate of the universe

    NASA Astrophysics Data System (ADS)

    Kallosh, Renata; Linde, Andrei; Prokushkin, Sergey; Shmakova, Marina

    2002-12-01

    We propose a description of dark energy and acceleration of the universe in extended supergravities with de Sitter (dS) solutions. Some of them are related to M theory with noncompact internal spaces. Masses of ultralight scalars in these models are quantized in units of the Hubble constant: m2=nH2. If the dS solution corresponds to a minimum of the effective potential, the universe eventually becomes dS space. If the dS solution corresponds to a maximum or a saddle point, which is the case in all known models based on N=8 supergravity, the flat universe eventually stops accelerating and collapses to a singularity. We show that in these models, as well as in the simplest models of dark energy based on N=1 supergravity, the typical time remaining before the global collapse is comparable to the present age of the universe, t=O(1010) yr. We discuss the possibility of distinguishing between various models and finding our destiny using cosmological observations.

  11. Observational constraint on dynamical evolution of dark energy

    SciT

    Gong, Yungui; Cai, Rong-Gen; Chen, Yun

    2010-01-01

    We use the Constitution supernova, the baryon acoustic oscillation, the cosmic microwave background, and the Hubble parameter data to analyze the evolution property of dark energy. We obtain different results when we fit different baryon acoustic oscillation data combined with the Constitution supernova data to the Chevallier-Polarski-Linder model. We find that the difference stems from the different values of Ω{sub m0}. We also fit the observational data to the model independent piecewise constant parametrization. Four redshift bins with boundaries at z = 0.22, 0.53, 0.85 and 1.8 were chosen for the piecewise constant parametrization of the equation of state parametermore » w(z) of dark energy. We find no significant evidence for evolving w(z). With the addition of the Hubble parameter, the constraint on the equation of state parameter at high redshift is improved by 70%. The marginalization of the nuisance parameter connected to the supernova distance modulus is discussed.« less

  12. Instrumental Response Model and Detrending for the Dark Energy Camera

    DOE PAGES

    Bernstein, G. M.; Abbott, T. M. C.; Desai, S.; ...

    2017-09-14

    We describe the model for mapping from sky brightness to the digital output of the Dark Energy Camera (DECam) and the algorithms adopted by the Dark Energy Survey (DES) for inverting this model to obtain photometric measures of celestial objects from the raw camera output. This calibration aims for fluxes that are uniform across the camera field of view and across the full angular and temporal span of the DES observations, approaching the accuracy limits set by shot noise for the full dynamic range of DES observations. The DES pipeline incorporates several substantive advances over standard detrending techniques, including principal-components-based sky and fringe subtraction; correction of the "brighter-fatter" nonlinearity; use of internal consistency in on-sky observations to disentangle the influences of quantum efficiency, pixel-size variations, and scattered light in the dome flats; and pixel-by-pixel characterization of instrument spectral response, through combination of internal-consistency constraints with auxiliary calibration data. This article provides conceptual derivations of the detrending/calibration steps, and the procedures for obtaining the necessary calibration data. Other publications will describe the implementation of these concepts for the DES operational pipeline, the detailed methods, and the validation that the techniques can bring DECam photometry and astrometry withinmore » $$\\approx 2$$ mmag and $$\\approx 3$$ mas, respectively, of fundamental atmospheric and statistical limits. In conclusion, the DES techniques should be broadly applicable to wide-field imagers.« less

  13. The Dark Energy Survey and Operations: Years 1 to 3

    SciT

    Diehl, H. T.

    2016-01-01

    The Dark Energy Survey (DES) is an operating optical survey aimed at understanding the accelerating expansion of the universe using four complementary methods: weak gravitational lensing, galaxy cluster counts, baryon acoustic oscillations, and Type Ia supernovae. To perform the 5000 sq-degree wide field and 30 sq-degree supernova surveys, the DES Collaboration built the Dark Energy Camera (DECam), a 3 square-degree, 570-Megapixel CCD camera that was installed at the prime focus of the Blanco 4-meter telescope at the Cerro Tololo Inter-American Observatory (CTIO). DES has completed its third observing season out of a nominal five. This paper describes DES “Year 1”more » (Y1) to “Year 3” (Y3), the strategy, an outline of the survey operations procedures, the efficiency of operations and the causes of lost observing time. It provides details about the quality of the first three season's data, and describes how we are adjusting the survey strategy in the face of the El Niño Southern Oscillation« less

  14. Observational constraints on holographic dark energy with varying gravitational constant

    SciT

    Lu, Jianbo; Xu, Lixin; Saridakis, Emmanuel N.

    2010-03-01

    We use observational data from Type Ia Supernovae (SN), Baryon Acoustic Oscillations (BAO), Cosmic Microwave Background (CMB) and observational Hubble data (OHD), and the Markov Chain Monte Carlo (MCMC) method, to constrain the cosmological scenario of holographic dark energy with varying gravitational constant. We consider both flat and non-flat background geometry, and we present the corresponding constraints and contour-plots of the model parameters. We conclude that the scenario is compatible with observations. In 1σ we find Ω{sub Λ0} = 0.72{sup +0.03}{sub −0.03}, Ω{sub k0} = −0.0013{sup +0.0130}{sub −0.0040}, c = 0.80{sup +0.19}{sub −0.14} and Δ{sub G}≡G'/G = −0.0025{sup +0.0080}{sub −0.0050},more » while for the present value of the dark energy equation-of-state parameter we obtain w{sub 0} = −1.04{sup +0.15}{sub −0.20}.« less

  15. Dark Energy after GW170817 and GRB170817A.

    PubMed

    Creminelli, Paolo; Vernizzi, Filippo

    2017-12-22

    The observation of GW170817 and its electromagnetic counterpart implies that gravitational waves travel at the speed of light, with deviations smaller than a few×10^{-15}. We discuss the consequences of this experimental result for models of dark energy and modified gravity characterized by a single scalar degree of freedom. To avoid tuning, the speed of gravitational waves must be unaffected not only for our particular cosmological solution but also for nearby solutions obtained by slightly changing the matter abundance. For this to happen, the coefficients of various operators must satisfy precise relations that we discuss both in the language of the effective field theory of dark energy and in the covariant one, for Horndeski, beyond Horndeski, and degenerate higher-order theories. The simplification is dramatic: of the three functions describing quartic and quintic beyond Horndeski theories, only one remains and reduces to a standard conformal coupling to the Ricci scalar for Horndeski theories. We show that the deduced relations among operators do not introduce further tuning of the models, since they are stable under quantum corrections.

  16. Instrumental Response Model and Detrending for the Dark Energy Camera

    SciT

    Bernstein, G. M.; Abbott, T. M. C.; Desai, S.

    We describe the model for mapping from sky brightness to the digital output of the Dark Energy Camera (DECam) and the algorithms adopted by the Dark Energy Survey (DES) for inverting this model to obtain photometric measures of celestial objects from the raw camera output. This calibration aims for fluxes that are uniform across the camera field of view and across the full angular and temporal span of the DES observations, approaching the accuracy limits set by shot noise for the full dynamic range of DES observations. The DES pipeline incorporates several substantive advances over standard detrending techniques, including principal-components-based sky and fringe subtraction; correction of the "brighter-fatter" nonlinearity; use of internal consistency in on-sky observations to disentangle the influences of quantum efficiency, pixel-size variations, and scattered light in the dome flats; and pixel-by-pixel characterization of instrument spectral response, through combination of internal-consistency constraints with auxiliary calibration data. This article provides conceptual derivations of the detrending/calibration steps, and the procedures for obtaining the necessary calibration data. Other publications will describe the implementation of these concepts for the DES operational pipeline, the detailed methods, and the validation that the techniques can bring DECam photometry and astrometry withinmore » $$\\approx 2$$ mmag and $$\\approx 3$$ mas, respectively, of fundamental atmospheric and statistical limits. In conclusion, the DES techniques should be broadly applicable to wide-field imagers.« less

  17. Analysis of dark energy models in DGP braneworld

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul

    2015-12-01

    In this paper, we reconsider the accelerated expansion phenomenon in the DGP braneworld scenario which leads to an accelerated universe without cosmological constant or other form of dark energy for the positive branch (ɛ= +1) which is not more attractive model. Thus, we assume the DGP braneworld scenario with (ɛ= -1) and also interacting Hubble and event horizons pilgrim dark energy models. We extract various cosmological parameters in this scenario and displayed our results with respect to redshift parameter. It is found that the ranges of Hubble parameter are coincided with observational results. The equation of state parameter lies within the suggested ranges of different observational schemes. The squared speed of sound shows stability for all present models in DGP braneworld scenario. The ω_{\\vartheta}-ω'_{\\vartheta} planes lie in the range (ω_{\\vartheta}=-1.13^{+0.24}_{-0.25},ω'_{\\vartheta}<1.32) which has been obtained through different observational schemes. It is remarked that our results of various cosmological parameters shows consistency with different observational data like Planck, WP, BAO, H0 and SNLS.

  18. Indirect dark matter signatures in the cosmic dark ages. II. Ionization, heating, and photon production from arbitrary energy injections

    NASA Astrophysics Data System (ADS)

    Slatyer, Tracy R.

    2016-01-01

    Any injection of electromagnetically interacting particles during the cosmic dark ages will lead to increased ionization, heating, production of Lyman-α photons and distortions to the energy spectrum of the cosmic microwave background, with potentially observable consequences. In this paper we describe numerical results for the low-energy electrons and photons produced by the cooling of particles injected at energies from keV to multi-TeV scales, at arbitrary injection redshifts (but focusing on the post-recombination epoch). We use these data, combined with existing calculations modeling the cooling of these low-energy particles, to estimate the resulting contributions to ionization, excitation and heating of the gas, and production of low-energy photons below the threshold for excitation and ionization. We compute corrected deposition-efficiency curves for annihilating dark matter, and demonstrate how to compute equivalent curves for arbitrary energy-injection histories. These calculations provide the necessary inputs for the limits on dark matter annihilation presented in the accompanying paper I, but also have potential applications in the context of dark matter decay or deexcitation, decay of other metastable species, or similar energy injections from new physics. We make our full results publicly available at http://nebel.rc.fas.harvard.edu/epsilon, to facilitate further independent studies. In particular, we provide the full low-energy electron and photon spectra, to allow matching onto more detailed codes that describe the cooling of such particles at low energies.

  19. On the effect of the degeneracy among dark energy parameters

    NASA Astrophysics Data System (ADS)

    Gong, Yungui; Gao, Qing

    2014-01-01

    The dynamics of scalar fields as dark energy is well approximated by some general relations between the equation of state parameter and the fractional energy density . Based on the approximation, for slowly rolling scalar fields, we derived the analytical expressions of which reduce to the popular Chevallier-Polarski-Linder parametrization with an explicit degeneracy relation between and . The models approximate the dynamics of scalar fields well and help eliminate the degeneracies among , , and . With the explicit degeneracy relations, we test their effects on the constraints of the cosmological parameters. We find that: (1) The analytical relations between and for the two models are consistent with observational data. (2) The degeneracies have little effect on . (3) The error of was reduced about 30 % with the degeneracy relations.

  20. Emergent dark energy via decoherence in quantum interactions

    NASA Astrophysics Data System (ADS)

    Altamirano, Natacha; Corona-Ugalde, Paulina; Khosla, Kiran E.; Milburn, Gerard J.; Mann, Robert B.

    2017-06-01

    In this work we consider a recent proposal that gravitational interactions are mediated via classical information and apply it to a relativistic context. We study a toy model of a quantized Friedman-Robertson-Walker (FRW) universe with the assumption that any test particles must feel a classical metric. We show that such a model results in decoherence in the FRW state that manifests itself as a dark energy fluid that fills the spacetime. Analysis of the resulting fluid, shows the equation of state asymptotically oscillates around the value w  =  -1/3, regardless of the spatial curvature, which provides the bound between accelerating and decelerating expanding FRW cosmologies. Motivated with quantum-classical interactions this model is yet another example of theories with violation of energy-momentum conservation whose signature could have significant consequences for the observable universe.

  1. Dark-energy cosmological models in f(G) gravity

    SciT

    Shamir, M. F., E-mail: farasat.shamir@nu.edu.pk

    We discuss dark-energy cosmological models in f(G) gravity. For this purpose, a locally rotationally symmetric Bianchi type I cosmological model is considered. First, exact solutions with a well-known form of the f(G) model are explored. One general solution is discussed using a power-law f(G) gravity model and physical quantities are calculated. In particular, Kasner’s universe is recovered and the corresponding f(G) gravity models are reported. Second, the energy conditions for the model under consideration are discussed using graphical analysis. It is concluded that solutions with f(G) = G{sup 5/6} support expansion of universe while those with f(G) = G{sup 1/2}more » do not favor the current expansion.« less

  2. Dark Energy and Dark Matter Phenomena and the Universe with Variable Gravitational Mass

    NASA Astrophysics Data System (ADS)

    Gorkavyi, N.

    2005-12-01

    Generation of high-frequency gravitational waves near the singularity is a crucial factor for understanding the origin and dynamics of the Universe. Emission of gravitational waves increases with a decreasing radius of collapsed object much faster than a gravitational force itself. Gravitationally unstable matter of the Universe will be completely converted into gravitational radiation during the Big Crunch. According to Misner, Thorne & Wheeler (Gravitation, 1977, p.959) plane gravitational waves have not gravitational mass or spacetime is flat everywhere outside the pulse. We can propose that the gravitational mass of the Universe is vanished after converting matter into gravitational waves. This hypothesis in the framework of Einstein's theory of gravitation can solve the problem of singularity without contradiction with theorems by Penrose-Hawking; explain the acceleration of our Universe as the effect of a retarded gravitational potential (Gorkavyi, BAAS, 2003, 35, #3) and the low quadrupole in fluctuations in CMB as result of blue-shift effect in a gravitational field. Proposed solution of dark energy problem free from coincidence problems. The hypothesis keeps best parts of Big Bang theory and inflation model without any unknown physical fields or new dimensions. According to this hypothesis a relic sea of high-frequency gravitational radiation in our Universe can be very dense. Interaction of relic gravitational waves with gravitational fields of galaxies and stars can create an additional dynamical effects like pressure of relic radiation that proportional to gravitational potential GM/(Rc2). This effect can be responsible for dark matter phenomena in galaxies and the Pioneer acceleration in the solar system (Gorkavyi, BAAS, 2005, 37, #2).

  3. The Evolving Search for the Nature of Dark Energy | Berkeley Lab

    percent of its contents is ordinary matter, 24 percent is dark matter, and all the rest is dark energy ordinary matter, 24 percent is dark matter, and all the rest is dark energy - unless there's a flaw in our Universe, and it's pushing all the rest - ordinary matter and dark matter - farther apart at an ever

  4. Holographic dark energy with varying gravitational constant in Hořava-Lifshitz cosmology

    SciT

    Setare, M.R.; Jamil, Mubasher, E-mail: rezakord@ipm.ir, E-mail: mjamil@camp.nust.edu.pk

    2010-02-01

    We investigate the holographic dark energy scenario with a varying gravitational constant in a flat background in the context of Hořava-Lifshitz gravity. We extract the exact differential equation determining the evolution of the dark energy density parameter, which includes G variation term. Also we discuss a cosmological implication of our work by evaluating the dark energy equation of state for low redshifts containing varying G corrections.

  5. Stellar Streams Discovered in the Dark Energy Survey

    SciT

    Shipp, N.; et al.

    We perform a search for stellar streams around the Milky Way using the first three years of multi-band optical imaging data from the Dark Energy Survey (DES). We use DES data coveringmore » $$\\sim 5000$$ sq. deg. to a depth of $g > 23.5$ with a relative photometric calibration uncertainty of $$< 1 \\%$$. This data set yields unprecedented sensitivity to the stellar density field in the southern celestial hemisphere, enabling the detection of faint stellar streams to a heliocentric distance of $$\\sim 50$$ kpc. We search for stellar streams using a matched-filter in color-magnitude space derived from a synthetic isochrone of an old, metal-poor stellar population. Our detection technique recovers four previously known thin stellar streams: Phoenix, ATLAS, Tucana III, and a possible extension of Molonglo. In addition, we report the discovery of eleven new stellar streams. In general, the new streams detected by DES are fainter, more distant, and lower surface brightness than streams detected by similar techniques in previous photometric surveys. As a by-product of our stellar stream search, we find evidence for extra-tidal stellar structure associated with four globular clusters: NGC 288, NGC 1261, NGC 1851, and NGC 1904. The ever-growing sample of stellar streams will provide insight into the formation of the Galactic stellar halo, the Milky Way gravitational potential, as well as the large- and small-scale distribution of dark matter around the Milky Way.« less

  6. Free-energy minimization and the dark-room problem.

    PubMed

    Friston, Karl; Thornton, Christopher; Clark, Andy

    2012-01-01

    Recent years have seen the emergence of an important new fundamental theory of brain function. This theory brings information-theoretic, Bayesian, neuroscientific, and machine learning approaches into a single framework whose overarching principle is the minimization of surprise (or, equivalently, the maximization of expectation). The most comprehensive such treatment is the "free-energy minimization" formulation due to Karl Friston (see e.g., Friston and Stephan, 2007; Friston, 2010a,b - see also Fiorillo, 2010; Thornton, 2010). A recurrent puzzle raised by critics of these models is that biological systems do not seem to avoid surprises. We do not simply seek a dark, unchanging chamber, and stay there. This is the "Dark-Room Problem." Here, we describe the problem and further unpack the issues to which it speaks. Using the same format as the prolog of Eddington's Space, Time, and Gravitation (Eddington, 1920) we present our discussion as a conversation between: an information theorist (Thornton), a physicist (Friston), and a philosopher (Clark).

  7. Plane Symmetric Dark Energy Models in the Form of Wet Dark Fluid in f ( R, T) Gravity

    NASA Astrophysics Data System (ADS)

    Chirde, V. R.; Shekh, S. H.

    2016-06-01

    In this paper, we have investigated the plane symmetric space-time with wet dark fluid (WDF), which is a candidate for dark energy, in the framework of f ( R, T) gravity Harko et al. 2011, Phys. Rev. D, 84, 024020), where R and T denote the Ricci scalar and the trace of the energy-momentum tensor respectively. We have used the equation of state in the form of WDF for the dark energy component of the Universe. It is modeled on the equation of state p = ω( ρ - ρ ∗). The exact solutions to the corresponding field equations are obtained for power-law and exponential volumetric expansion. The geometrical and physical parameters for both the models are studied. Also, we have discussed the well-known astrophysical phenomena, namely the look-back time, proper distance, the luminosity distance and angular diameter distance with red shift.

  8. Systematic effects on dark energy from 3D weak shear

    NASA Astrophysics Data System (ADS)

    Kitching, T. D.; Taylor, A. N.; Heavens, A. F.

    2008-09-01

    We present an investigation into the potential effect of systematics inherent in multiband wide-field surveys on the dark energy equation-of-state determination for two 3D weak lensing methods. The weak lensing methods are a geometric shear-ratio method and 3D cosmic shear. The analysis here uses an extension of the Fisher matrix framework to include jointly photometric redshift systematics, shear distortion systematics and intrinsic alignments. Using analytic parametrizations of these three primary systematic effects allows an isolation of systematic parameters of particular importance. We show that assuming systematic parameters are fixed, but possibly biased, results in potentially large biases in dark energy parameters. We quantify any potential bias by defining a Bias Figure of Merit. By marginalizing over extra systematic parameters, such biases are negated at the expense of an increase in the cosmological parameter errors. We show the effect on the dark energy Figure of Merit of marginalizing over each systematic parameter individually. We also show the overall reduction in the Figure of Merit due to all three types of systematic effects. Based on some assumption of the likely level of systematic errors, we find that the largest effect on the Figure of Merit comes from uncertainty in the photometric redshift systematic parameters. These can reduce the Figure of Merit by up to a factor of 2 to 4 in both 3D weak lensing methods, if no informative prior on the systematic parameters is applied. Shear distortion systematics have a smaller overall effect. Intrinsic alignment effects can reduce the Figure of Merit by up to a further factor of 2. This, however, is a worst-case scenario, within the assumptions of the parametrizations used. By including prior information on systematic parameters, the Figure of Merit can be recovered to a large extent, and combined constraints from 3D cosmic shear and shear ratio are robust to systematics. We conclude that, as a rule

  9. Viscous cosmology in new holographic dark energy model and the cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Singh, C. P.; Srivastava, Milan

    2018-03-01

    In this work, we study a flat Friedmann-Robertson-Walker universe filled with dark matter and viscous new holographic dark energy. We present four possible solutions of the model depending on the choice of the viscous term. We obtain the evolution of the cosmological quantities such as scale factor, deceleration parameter and transition redshift to observe the effect of viscosity in the evolution. We also emphasis upon the two independent geometrical diagnostics for our model, namely the statefinder and the Om diagnostics. In the first case we study new holographic dark energy model without viscous and obtain power-law expansion of the universe which gives constant deceleration parameter and statefinder parameters. In the limit of the parameter, the model approaches to Λ CDM model. In new holographic dark energy model with viscous, the bulk viscous coefficient is assumed as ζ =ζ 0+ζ 1H, where ζ 0 and ζ 1 are constants, and H is the Hubble parameter. In this model, we obtain all possible solutions with viscous term and analyze the expansion history of the universe. We draw the evolution graphs of the scale factor and deceleration parameter. It is observed that the universe transits from deceleration to acceleration for small values of ζ in late time. However, it accelerates very fast from the beginning for large values of ζ . By illustrating the evolutionary trajectories in r-s and r-q planes, we find that our model behaves as an quintessence like for small values of viscous coefficient and a Chaplygin gas like for large values of bulk viscous coefficient at early stage. However, model has close resemblance to that of the Λ CDM cosmology in late time. The Om has positive and negative curvatures for phantom and quintessence models, respectively depending on ζ . Our study shows that the bulk viscosity plays very important role in the expansion history of the universe.

  10. Dissipation of 'dark energy' by cortex in knowledge retrieval.

    PubMed

    Capolupo, Antonio; Freeman, Walter J; Vitiello, Giuseppe

    2013-03-01

    We have devised a thermodynamic model of cortical neurodynamics expressed at the classical level by neural networks and at the quantum level by dissipative quantum field theory. Our model is based on features in the spatial images of cortical activity newly revealed by high-density electrode arrays. We have incorporated the mechanism and necessity for so-called dark energy in knowledge retrieval. We have extended the model first using the Carnot cycle to define our measures for energy, entropy and temperature, and then using the Rankine cycle to incorporate criticality and phase transitions. We describe the dynamics of two interactive fields of neural activity that express knowledge, one at high and the other at low energy density, and the two operators that create and annihilate the fields. We postulate that the extremely high density of energy sequestered briefly in cortical activity patterns can account for the vividness, richness of associations, and emotional intensity of memories recalled by stimuli. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Intrinsic uncertainty on the nature of dark energy

    NASA Astrophysics Data System (ADS)

    Valkenburg, Wessel; Kunz, Martin; Marra, Valerio

    2013-12-01

    We argue that there is an intrinsic noise on measurements of the equation of state parameter w = p/ρ from large-scale structure around us. The presence of the large-scale structure leads to an ambiguity in the definition of the background universe and thus there is a maximal precision with which we can determine the equation of state of dark energy. To study the uncertainty due to local structure, we model density perturbations stemming from a standard inflationary power spectrum by means of the exact Lemaître-Tolman-Bondi solution of Einstein’s equation, and show that the usual distribution of matter inhomogeneities in a ΛCDM cosmology causes a variation of w - as inferred from distance measures - of several percent. As we observe only one universe, or equivalently because of the cosmic variance, this uncertainty is systematic in nature.

  12. Detecting dark energy in orbit: The cosmological chameleon

    SciT

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine

    2004-12-15

    We show that the chameleon scalar field can drive the current phase of cosmic acceleration for a large class of scalar potentials that are also consistent with local tests of gravity. These provide explicit realizations of a quintessence model where the quintessence scalar field couples directly to baryons and dark matter with gravitational strength. We analyze the cosmological evolution of the chameleon field and show the existence of an attractor solution with the chameleon following the minimum of its effective potential. For a wide range of initial conditions, spanning many orders of magnitude in initial chameleon energy density, the attractormore » is reached before nucleosynthesis. Surprisingly, the range of allowed initial conditions leading to a successful cosmology is wider than in normal quintessence. We discuss applications to the cyclic model of the universe and show how the chameleon mechanism weakens some of the constraints on cyclic potentials.« less

  13. Equation of state of dark energy in f (R ) gravity

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazufumi; Yokoyama, Jun'ichi

    2015-04-01

    f (R ) gravity is one of the simplest generalizations of general relativity, which may explain the accelerated cosmic expansion without introducing a cosmological constant. Transformed into the Einstein frame, a new scalar degree of freedom appears and it couples with matter fields. In order for f (R ) theories to pass the local tests of general relativity, it has been known that the chameleon mechanism with a so-called thin-shell solution must operate. If the thin-shell constraint is applied to a cosmological situation, it has been claimed that the equation-of-state parameter of dark energy w must be extremely close to -1 . We argue this is due to the incorrect use of the Poisson equation, which is valid only in the static case. By solving the correct Klein-Gordon equation perturbatively, we show that a thin-shell solution exists even if w deviates appreciably from -1 .

  14. Transport and installation of the Dark Energy Survey CCD imager

    NASA Astrophysics Data System (ADS)

    Derylo, Greg; Chi, Edward; Diehl, H. Thomas; Estrada, Juan; Flaugher, Brenna; Schultz, Ken

    2012-09-01

    The Dark Energy Survey CCD imager was constructed at the Fermi National Accelerator Laboratory and delivered to the Cerro Tololo Inter-American Observatory in Chile for installation onto the Blanco 4m telescope. Several efforts are described relating to preparation of the instrument for transport, development and testing of a shipping crate designed to minimize transportation loads transmitted to the camera, and inspection of the imager upon arrival at the observatory. Transportation loads were monitored and are described. For installation of the imager at the telescope prime focus, where it mates with its previously-installed optical corrector, specialized tooling was developed to safely lift, support, and position the vessel. The installation and removal processes were tested on the Telescope Simulator mockup at FNAL, thus minimizing technical and schedule risk for the work performed at CTIO. Final installation of the imager is scheduled for August 2012.

  15. Updated observational constraints on quintessence dark energy models

    NASA Astrophysics Data System (ADS)

    Durrive, Jean-Baptiste; Ooba, Junpei; Ichiki, Kiyotomo; Sugiyama, Naoshi

    2018-02-01

    The recent GW170817 measurement favors the simplest dark energy models, such as a single scalar field. Quintessence models can be classified in two classes, freezing and thawing, depending on whether the equation of state decreases towards -1 or departs from it. In this paper, we put observational constraints on the parameters governing the equations of state of tracking freezing, scaling freezing, and thawing models using updated data, from the Planck 2015 release, joint light-curve analysis, and baryonic acoustic oscillations. Because of the current tensions on the value of the Hubble parameter H0, unlike previous authors, we let this parameter vary, which modifies significantly the results. Finally, we also derive constraints on neutrino masses in each of these scenarios.

  16. Dark energy, antimatter gravity and geometry of the Universe

    NASA Astrophysics Data System (ADS)

    Hajdukovic, Dragan Slavkov

    2010-11-01

    This article is based on two hypotheses. The first one is the existence of the gravitational repulsion between particles and antiparticles. Consequently, virtual particle-antiparticle pairs in the quantum vacuum might be considered as gravitational dipoles. The second hypothesis is that the Universe has geometry of a four-dimensional hyper-spherical shell with thickness equal to the Compton wavelength of a pion, which is a simple generalization of the usual geometry of a 3-hypersphere. It is striking that these two hypotheses lead to a simple relation for the gravitational mass density of the vacuum, which is in very good agreement with the observed dark energy density. It might be a sign that QCD fields provide the largest contribution to the gravitational mass of the physical vacuum; contrary to the prediction of the Standard Model that QCD contribution is much smaller than some other contributions.

  17. Clouds at CTIO and the Dark Energy Survey

    SciT

    Neilsen, Jr., Eric

    An understanding of the weather patters at Cerro-Tololo Inter-American (CTIO) Observatory, the observing site for the Dark Energy Survey (DES), is important for assessing the efciency of DES operations in using observing time and for planning future operations. CTIO has maintained records of cloud-cover by quarters of nights since 1975. A comparison between these cloud records in the 2013-2014 DES observing season (DES year 1) and achieved observing efciency and exposure quality allows the DES collaboration to make better use of the historical records in survey planning. Plots and tables here relate human recorded cloud-cover to collection of good DESmore » data, show the variation of typical cloud-cover by month, and evaluate the relationship between the El Niño weather pattern and cloud-cover at CTIO.« less

  18. Dynamical dark energy: Scalar fields and running vacuum

    NASA Astrophysics Data System (ADS)

    Solà, Joan; Gómez-Valent, Adrià; de Cruz Pérez, Javier

    2017-03-01

    Recent analyses in the literature suggest that the concordance ΛCDM model with rigid cosmological term, Λ = const. may not be the best description of the cosmic acceleration. The class of “running vacuum models”, in which Λ = Λ(H) evolves with the Hubble rate, has been shown to fit the string of SNIa + BAO + H(z) + LSS + CMB data significantly better than the ΛCDM. Here, we provide further evidence on the time-evolving nature of the dark energy (DE) by fitting the same cosmological data in terms of scalar fields. As a representative model, we use the original Peebles and Ratra potential, V ∝ ϕ-α. We find clear signs of dynamical DE at ˜ 4σ c.l., thus reconfirming through a nontrivial scalar field approach the strong hints formerly found with other models and parametrizations.

  19. Performance of the dark energy camera liquid nitrogen cooling system

    NASA Astrophysics Data System (ADS)

    Cease, H.; Alvarez, M.; Alvarez, R.; Bonati, M.; Derylo, G.; Estrada, J.; Flaugher, B.; Flores, R.; Lathrop, A.; Munoz, F.; Schmidt, R.; Schmitt, R. L.; Schultz, K.; Kuhlmann, S.; Zhao, A.

    2014-01-01

    The Dark Energy Camera, the Imager and its cooling system was installed onto the Blanco 4m telescope at the Cerro Tololo Inter-American Observatory in Chile in September 2012. The imager cooling system is a LN2 two-phase closed loop cryogenic cooling system. The cryogenic circulation processing is located off the telescope. Liquid nitrogen vacuum jacketed transfer lines are run up the outside of the telescope truss tubes to the imager inside the prime focus cage. The design of the cooling system along with commissioning experiences and initial cooling system performance is described. The LN2 cooling system with the DES imager was initially operated at Fermilab for testing, then shipped and tested in the Blanco Coudé room. Now the imager is operating inside the prime focus cage. It is shown that the cooling performance sufficiently cools the imager in a closed loop mode, which can operate for extended time periods without maintenance or LN2 fills.

  20. Exploring the dark energy biosphere, 15 seconds at a time

    NASA Astrophysics Data System (ADS)

    Petrone, C.; Tossey, L.; Biddle, J.

    2016-12-01

    Science communication often suffers from numerous pitfalls including jargon, complexity, ageneral lack of (science) education of the audience, and short attention spans. With the Center for Dark EnergyBiosphere Investigations (C-DEBI), Delaware Sea Grant is expanding its collection of 15 Second Science videos, whichdeliver complex science topics, with visually stimulating footage and succinct audio. Featuring a diverse cast of scientistsand educators in front of the camera, we are expanded our reach into the public and classrooms. We're alsoexperimenting with smartphone-based virtual reality, for a more immersive experience into the deep! We will show youthe process for planning, producing, and posting our #15secondscience videos and VR segments, and how we areevaluating effectiveness.

  1. The South Pole Telescope: Unraveling the Mystery of Dark Energy

    NASA Astrophysics Data System (ADS)

    Reichardt, Christian L.; de Haan, Tijmen; Bleem, Lindsey E.

    2016-07-01

    The South Pole Telescope (SPT) is a 10-meter telescope designed to survey the millimeter-wave sky, taking advantage of the exceptional observing conditions at the Amundsen-Scott South Pole Station. The telescope and its ground-breaking 960-element bolometric camera finished surveying 2500 square degrees at 95. 150, and 220 GHz in November 2011. We have discovered hundreds of galaxy clusters in the SPT-SZ survey through the Sunyaev-Zel’dovich (SZ) effect. The formation of galaxy clusters the largest bound objects in the universe is highly sensitive to dark energy and the history of structure formation. I will discuss the cosmological constraints from the SPT-SZ galaxy cluster sample as well as future prospects with the soon to-be-installed SPT-3G camera.

  2. Revisiting dark energy models using differential ages of galaxies

    NASA Astrophysics Data System (ADS)

    Rani, Nisha; Jain, Deepak; Mahajan, Shobhit; Mukherjee, Amitabha; Biesiada, Marek

    2017-03-01

    In this work, we use a test based on the differential ages of galaxies for distinguishing the dark energy models. As proposed by Jimenez and Loeb in [1], relative ages of galaxies can be used to put constraints on various cosmological parameters. In the same vein, we reconstruct H0dt/dz and its derivative (H0d2t/dz2) using a model independent technique called non-parametric smoothing. Basically, dt/dz is the change in the age of the object as a function of redshift which is directly linked with the Hubble parameter. Hence for reconstruction of this quantity, we use the most recent H(z) data. Further, we calculate H0dt/dz and its derivative for several models like Phantom, Einstein de Sitter (EdS), ΛCDM, Chevallier-Polarski-Linder (CPL) parametrization, Jassal-Bagla-Padmanabhan (JBP) parametrization and Feng-Shen-Li-Li (FSLL) parametrization. We check the consistency of these models with the results of reconstruction obtained in a model independent way from the data. It is observed that H0dt/dz as a tool is not able to distinguish between the ΛCDM, CPL, JBP and FSLL parametrizations but, as expected, EdS and Phantom models show noticeable deviation from the reconstructed results. Further, the derivative of H0dt/dz for various dark energy models is more sensitive at low redshift. It is found that the FSLL model is not consistent with the reconstructed results, however, the ΛCDM model is in concordance with the 3σ region of the reconstruction at redshift z>= 0.3.

  3. Revisiting dark energy models using differential ages of galaxies

    SciT

    Rani, Nisha; Mahajan, Shobhit; Mukherjee, Amitabha

    In this work, we use a test based on the differential ages of galaxies for distinguishing the dark energy models. As proposed by Jimenez and Loeb in [1], relative ages of galaxies can be used to put constraints on various cosmological parameters. In the same vein, we reconstruct H {sub 0} {sub dt} / dz and its derivative ( H {sub 0} {sub d} {sup 2} {sup t} / dz {sup 2}) using a model independent technique called non-parametric smoothing . Basically, dt / dz is the change in the age of the object as a function of redshift whichmore » is directly linked with the Hubble parameter. Hence for reconstruction of this quantity, we use the most recent H ( z ) data. Further, we calculate H {sub 0} {sub dt} / dz and its derivative for several models like Phantom, Einstein de Sitter (EdS), ΛCDM, Chevallier-Polarski-Linder (CPL) parametrization, Jassal-Bagla-Padmanabhan (JBP) parametrization and Feng-Shen-Li-Li (FSLL) parametrization. We check the consistency of these models with the results of reconstruction obtained in a model independent way from the data. It is observed that H {sub 0} {sub dt} / dz as a tool is not able to distinguish between the ΛCDM, CPL, JBP and FSLL parametrizations but, as expected, EdS and Phantom models show noticeable deviation from the reconstructed results. Further, the derivative of H {sub 0} {sub dt} / dz for various dark energy models is more sensitive at low redshift. It is found that the FSLL model is not consistent with the reconstructed results, however, the ΛCDM model is in concordance with the 3σ region of the reconstruction at redshift z ≥ 0.3.« less

  4. Transient and late time attractor tachyon dark energy: Can we distinguish it from quintessence?

    SciT

    Ali, Amna; Sami, M.; Sen, A. A.

    2009-06-15

    The string inspired tachyon field can serve as a candidate of dark energy. Its equation of state parameter w varies from 0 to -1. In the case of tachyon field potential V({phi}){yields}0 slower (faster) than 1/{phi}{sup 2} at infinity, dark energy (dark matter) is a late time attractor. We investigate the tachyon dark energy models under the assumption that w is close to -1. We find that all the models exhibit unique behavior around the present epoch which is exactly the same as that of the thawing quintessence.

  5. Dark catalysis

    NASA Astrophysics Data System (ADS)

    Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub

    2017-08-01

    Recently it was shown that dark matter with mass of order the weak scale can be charged under a new long-range force, decoupled from the Standard Model, with only weak constraints from early Universe cosmology. Here we consider the implications of an additional charged particle C that is light enough to lead to significant dissipative dynamics on galactic times scales. We highlight several novel features of this model, which can be relevant even when the C particle constitutes only a small fraction of the number density (and energy density). We assume a small asymmetric abundance of the C particle whose charge is compensated by a heavy X particle so that the relic abundance of dark matter consists mostly of symmetric X and bar X, with a small asymmetric component made up of X and C. As the universe cools, it undergoes asymmetric recombination binding the free Cs into (XC) dark atoms efficiently. Even with a tiny asymmetric component, the presence of C particles catalyzes tight coupling between the heavy dark matter X and the dark photon plasma that can lead to a significant suppression of the matter power spectrum on small scales and lead to some of the strongest bounds on such dark matter theories. We find a viable parameter space where structure formation constraints are satisfied and significant dissipative dynamics can occur in galactic haloes but show a large region is excluded. Our model shows that subdominant components in the dark sector can dramatically affect structure formation.

  6. Phantom energy: dark energy with w <--1 causes a cosmic doomsday.

    PubMed

    Caldwell, Robert R; Kamionkowski, Marc; Weinberg, Nevin N

    2003-08-15

    We explore the consequences that follow if the dark energy is phantom energy, in which the sum of the pressure and energy density is negative. The positive phantom-energy density becomes infinite in finite time, overcoming all other forms of matter, such that the gravitational repulsion rapidly brings our brief epoch of cosmic structure to a close. The phantom energy rips apart the Milky Way, solar system, Earth, and ultimately the molecules, atoms, nuclei, and nucleons of which we are composed, before the death of the Universe in a "big rip."

  7. Dark Energy Constraints from the Thermal Sunyaev Zeldovich Power Spectrum

    NASA Astrophysics Data System (ADS)

    Bolliet, Boris; Comis, Barbara; Komatsu, Eiichiro; Macías-Pérez, Juan Francisco

    2018-03-01

    We constrain the dark energy equation of state parameter, w, using the power spectrum of the thermal Sunyaev-Zeldovich (tSZ) effect. We improve upon previous analyses by taking into account the trispectrum in the covariance matrix and marginalising over the foreground parameters, the correlated noise, the mass bias B in the Planck universal pressure profile, and all the relevant cosmological parameters (i.e., not just Ωm and σ8). We find that the amplitude of the tSZ power spectrum at ℓ ≲ 103 depends primarily on F ≡ σ8(Ωm/B)0.40h-0.21, where B is related to more commonly used variable b by B = (1 - b)-1. We measure this parameter with 2.6% precision, F = 0.460 ± 0.012 (68% CL). By fixing the bias to B = 1.25 and adding the local determination of the Hubble constant H0 and the amplitude of the primordial power spectrum constrained by the Planck Cosmic Microwave Background (CMB) data, we find w = -1.10 ± 0.12, σ8 = 0.802 ± 0.037, and Ωm = 0.265 ± 0.022 (68% CL). Our limit on w is consistent with and is as tight as that from the distance-alone constraint from the CMB and H0. Finally, by combining the tSZ power spectrum and the CMB data we find, in the Λ Cold Dark Matter (CDM) model, the mass bias of B = 1.71 ± 0.17, i.e., 1 - b = 0.58 ± 0.06 (68% CL).

  8. A power-law coupled three-form dark energy model

    NASA Astrophysics Data System (ADS)

    Yao, Yan-Hong; Yan, Yang-Jie; Meng, Xin-He

    2018-02-01

    We consider a field theory model of coupled dark energy which treats dark energy as a three-form field and dark matter as a spinor field. By assuming the effective mass of dark matter as a power-law function of the three-form field and neglecting the potential term of dark energy, we obtain three solutions of the autonomous system of evolution equations, including a de Sitter attractor, a tracking solution and an approximate solution. To understand the strength of the coupling, we confront the model with the latest Type Ia Supernova, Baryon Acoustic Oscillations and Cosmic Microwave Background radiation observations, with the conclusion that the combination of these three databases marginalized over the present dark matter density parameter Ω _{m0} and the present three-form field κ X0 gives stringent constraints on the coupling constant, - 0.017< λ <0.047 (2σ confidence level), by which we present the model's applicable parameter range.

  9. Dark Energy Rules the Universe (and why the dinosaurs do not!) (LBNL Science at the Theater)

    SciT

    Linder, Eric

    2008-11-28

    The revolutionary discovery that the expansion of the universe is speeding up, not slowing down from gravity, means that 75 percent of our universe consists of mysterious dark energy. Berkeley Lab theoretical physicist Eric Linder delves into the mystery of dark energy as part of the Science in the Theatre lecture series on Nov. 24, 2008.

  10. Dark Energy Rules the Universe (and why the dinosaurs do not!) (LBNL Science at the Theater)

    Linder, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2018-05-24

    The revolutionary discovery that the expansion of the universe is speeding up, not slowing down from gravity, means that 75 percent of our universe consists of mysterious dark energy. Berkeley Lab theoretical physicist Eric Linder delves into the mystery of dark energy as part of the Science in the Theatre lecture series on Nov. 24, 2008.

  11. Flavor condensates in brane models and dark energy

    NASA Astrophysics Data System (ADS)

    Mavromatos, Nick E.; Sarkar, Sarben; Tarantino, Walter

    2009-10-01

    In the context of a microscopic model of string-inspired foam, in which foamy structures are provided by brany pointlike defects (D-particles) in space-time, we discuss flavor mixing as a result of flavor nonpreserving interactions of (low-energy) fermionic stringy matter excitations with the defects. Such interactions involve splitting and capture of the matter string state by the defect, and subsequent re-emission. As a result of charge conservation, only electrically neutral matter can interact with the D-particles. Quantum fluctuations of the D-particles induce a nontrivial space-time background; in some circumstances, this could be akin to a cosmological Friedman-Robertson-Walker expanding-universe, with weak (but nonzero) particle production. Furthermore, the D-particle medium can induce an Mikheyev-Smirnov-Wolfenstein-type effect. We have argued previously, in the context of bosons, that the so-called flavor vacuum is the appropriate state to be used, at least for low-energy excitations, with energies/momenta up to a dynamically determined cutoff scale. Given the intriguing mass scale provided by neutrino flavor mass differences from the point of view of dark energy, we evaluate the flavor-vacuum expectation value (condensate) of the stress-energy tensor of the 1/2-spin fields with mixing in an effective-low-energy quantum field theory in this foam-induced curved space-time. We demonstrate, at late epochs of the Universe, that the fermionic vacuum condensate behaves as a fluid with negative pressure and positive energy; however, the equation of state has wfermion>-1/3 and so the contribution of the fermion-fluid flavor vacuum alone could not yield accelerating universes. Such contributions to the vacuum energy should be considered as (algebraically) additive to the flavored boson contributions, evaluated in our previous works; this should be considered as natural from (broken) target-space supersymmetry that characterizes realistic superstring

  12. Implications of an extended dark energy cosmology with massive neutrinos for cosmological tensions

    NASA Astrophysics Data System (ADS)

    Poulin, Vivian; Boddy, Kimberly K.; Bird, Simeon; Kamionkowski, Marc

    2018-06-01

    We perform a comprehensive analysis of the most common early- and late-universe solutions to the H0 , Ly -α , and S8 discrepancies. When considered on their own, massive neutrinos provide a natural solution to the S8 discrepancy at the expense of increasing the H0 tension. If all extensions are considered simultaneously, the best-fit solution has a neutrino mass sum of ˜0.4 eV , a dark energy equation of state close to that of a cosmological constant, and no additional relativistic degrees of freedom (d.o.f). However, the H0 tension, while weakened, remains unresolved. Motivated by this result, we perform a nonparametric reconstruction of the evolution of the dark energy fluid density (allowing for negative energy densities), together with massive neutrinos. When all data sets are included, there exists a residual ˜1.9 σ tension with H0. If this residual tension remains in the future, it will indicate that it is not possible to solve the H0 tension solely with a modification of the late-universe dynamics within standard general relativity. However, we do find that it is possible to resolve the tension if either galaxy baryon acoustic oscillation (BAO) or joint light-curve analysis supernovae data are omitted. We find that negative dark energy densities are favored near redshift z ˜2.35 when including the Ly -α BAO measurement (at ˜2 σ ). This behavior may point to a negative curvature, but it is most likely indicative of systematics or at least an underestimated covariance matrix. Quite remarkably, we find that in the extended cosmologies considered in this work, the neutrino mass sum is always close to 0.4 eV regardless of the choice of external data sets, as long as the H0 tension is solved or significantly decreased.

  13. In Vivo Dark-Field Radiography for Early Diagnosis and Staging of Pulmonary Emphysema.

    PubMed

    Hellbach, Katharina; Yaroshenko, Andre; Meinel, Felix G; Yildirim, Ali Ö; Conlon, Thomas M; Bech, Martin; Mueller, Mark; Velroyen, Astrid; Notohamiprodjo, Mike; Bamberg, Fabian; Auweter, Sigrid; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz

    2015-07-01

    The aim of this study was to evaluate the suitability of in vivo x-ray dark-field radiography for early-stage diagnosis of pulmonary emphysema in mice. Furthermore, we aimed to analyze how the dark-field signal correlates with morphological changes of lung architecture at distinct stages of emphysema. Female 8- to 10-week-old C57Bl/6N mice were used throughout all experiments. Pulmonary emphysema was induced by orotracheal injection of porcine pancreatic elastase (80-U/kg body weight) (n = 30). Control mice (n = 11) received orotracheal injection of phosphate-buffered saline. To monitor the temporal patterns of emphysema development over time, the mice were imaged 7, 14, or 21 days after the application of elastase or phosphate-buffered saline. X-ray transmission and dark-field images were acquired with a prototype grating-based small-animal scanner. In vivo pulmonary function tests were performed before killing the animals. In addition, lungs were obtained for detailed histopathological analysis, including mean cord length (MCL) quantification as a parameter for the assessment of emphysema. Three blinded readers, all of them experienced radiologists and familiar with dark-field imaging, were asked to grade the severity of emphysema for both dark-field and transmission images. Histopathology and MCL quantification confirmed the introduction of different stages of emphysema, which could be clearly visualized and differentiated on the dark-field radiograms, whereas early stages were not detected on transmission images. The correlation between MCL and dark-field signal intensities (r = 0.85) was significantly higher than the correlation between MCL and transmission signal intensities (r = 0.37). The readers' visual ratings for dark-field images correlated significantly better with MCL (r = 0.85) than visual ratings for transmission images (r = 0.36). Interreader agreement and the diagnostic accuracy of both quantitative and visual assessment were significantly higher

  14. Modeling Dark Energy Through AN Ising Fluid with Network Interactions

    NASA Astrophysics Data System (ADS)

    Luongo, Orlando; Tommasini, Damiano

    2014-12-01

    We show that the dark energy (DE) effects can be modeled by using an Ising perfect fluid with network interactions, whose low redshift equation of state (EoS), i.e. ω0, becomes ω0 = -1 as in the ΛCDM model. In our picture, DE is characterized by a barotropic fluid on a lattice in the equilibrium configuration. Thus, mimicking the spin interaction by replacing the spin variable with an occupational number, the pressure naturally becomes negative. We find that the corresponding EoS mimics the effects of a variable DE term, whose limiting case reduces to the cosmological constant Λ. This permits us to avoid the introduction of a vacuum energy as DE source by hand, alleviating the coincidence and fine tuning problems. We find fairly good cosmological constraints, by performing three tests with supernovae Ia (SNeIa), baryonic acoustic oscillation (BAO) and cosmic microwave background (CMB) measurements. Finally, we perform the Akaike information criterion (AIC) and Bayesian information criterion (BIC) selection criteria, showing that our model is statistically favored with respect to the Chevallier-Polarsky-Linder (CPL) parametrization.

  15. Inflation without inflaton: A model for dark energy

    NASA Astrophysics Data System (ADS)

    Falomir, H.; Gamboa, J.; Méndez, F.; Gondolo, P.

    2017-10-01

    The interaction between two initially causally disconnected regions of the Universe is studied using analogies of noncommutative quantum mechanics and the deformation of Poisson manifolds. These causally disconnect regions are governed by two independent Friedmann-Lemaître-Robertson-Walker (FLRW) metrics with scale factors a and b and cosmological constants Λa and Λb, respectively. The causality is turned on by positing a nontrivial Poisson bracket [Pα,Pβ]=ɛα βκ/G , where G is Newton's gravitational constant and κ is a dimensionless parameter. The posited deformed Poisson bracket has an interpretation in terms of 3-cocycles, anomalies, and Poissonian manifolds. The modified FLRW equations acquire an energy-momentum tensor from which we explicitly obtain the equation of state parameter. The modified FLRW equations are solved numerically and the solutions are inflationary or oscillating depending on the values of κ . In this model, the accelerating and decelerating regime may be periodic. The analysis of the equation of state clearly shows the presence of dark energy. By completeness, the perturbative solution for κ ≪1 is also studied.

  16. Dark energy equation of state parameter and its evolution at low redshift

    SciT

    Tripathi, Ashutosh; Sangwan, Archana; Jassal, H.K., E-mail: ashutosh_tripathi@fudan.edu.cn, E-mail: archanakumari@iisermohali.ac.in, E-mail: hkjassal@iisermohali.ac.in

    In this paper, we constrain dark energy models using a compendium of observations at low redshifts. We consider the dark energy as a barotropic fluid, with the equation of state a constant as well the case where dark energy equation of state is a function of time. The observations considered here are Supernova Type Ia data, Baryon Acoustic Oscillation data and Hubble parameter measurements. We compare constraints obtained from these data and also do a combined analysis. The combined observational constraints put strong limits on variation of dark energy density with redshift. For varying dark energy models, the range ofmore » parameters preferred by the supernova type Ia data is in tension with the other low redshift distance measurements.« less

  17. Dark matter-rich early-type galaxies in the CASSOWARY 5 strong lensing system

    NASA Astrophysics Data System (ADS)

    Grillo, C.; Christensen, L.

    2011-12-01

    We study the strong gravitational lensing system number 5 identified by the CAmbridge Sloan Survey Of Wide ARcs in the skY (CASSOWARY). In this system, a source at redshift 1.069 is lensed into four detected images by two early-type galaxies at redshift 0.388. The average projected angular distance of the multiple images from the primary lens is 12.6 kpc, corresponding to approximately 1.3 times the value of the galaxy effective radius. The observed positions of the multiple images are well reproduced by a model in which the total mass distribution of the deflector is described in terms of two singular isothermal sphere profiles and a small external shear component. The values of the effective velocity dispersions of the two lens galaxies are 328+7- 8 and 350+17- 18 km s-1. The best-fitting lensing model predicts magnification values larger than 2 for each multiple image and a total magnification factor of 17. By modelling the lens galaxy spectral energy distributions, we measure lens luminous masses of (3.09 ± 0.30) × 1011 and (5.87 ± 0.58) × 1011 M⊙ and stellar mass-to-light ratios of 2.5 ± 0.3 and 2.8 ± 0.3 M⊙ L-1⊙, i (in the observed i band). These values are used to disentangle the luminous and dark matter components in the vicinity of the multiple images. We estimate that the dark over total mass ratio projected within a cylinder centred on the primary lens and with a radius of 12.6 kpc is 0.8 ± 0.1. Inside the effective radii of the two galaxies, we measure projected total mass-to-light ratios of 12.6 ± 1.4 and 13.1 ± 1.7 M⊙ L-1⊙, i. We contrast these measurements with the typical values found at similar distances (in units of the effective radius) in isolated lens galaxies and show that the amount of dark matter present in these lens galaxies is almost a factor 4 larger than in field lens galaxies with comparable luminous masses. Data and models are therefore consistent with interpreting the lens of this system as a galaxy group. We infer

  18. Distributed SUSY breaking: dark energy, Newton's law and the LHC

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; van Nierop, L.; Williams, M.

    2014-07-01

    We identify the underlying symmetry mechanism that suppresses the low-energy effective 4D cosmological constant within some 6D supergravity models, generically leading to results suppressed by powers of the KK scale, m {/K K 2}, relative to the much larger size, m 4, associated with mass- m particles localized in these models on codimension-2 branes. These models are examples for which the local conditions for unbroken supersymmetry can be satisfied locally everywhere within the extra dimensions, but are obstructed only by global conditions like flux quantization or by the mutual inconsistency of the boundary conditions required at the various branes. Consequently quantities (like vacuum energies) forbidden by supersymmetry cannot become nonzero until wavelengths of order the KK scale are integrated out, since only such long wavelength modes can see the entire space and so `know' that supersymmetry has broken. We verify these arguments by extending earlier rugby-ball calculations of one-loop vacuum energies within these models to more general pairs of branes within two warped extra dimensions. For the Standard Model confined to one of two otherwise identical branes, the predicted effective 4D vacuum energy density is of order ρ vac ⋍ C( mM g /4 πM p )4 = C(5 .6 × 10-5 eV)4, where M g ≳ 10 TeV (corresponding to extra-dimensional size r ≲ 1 μm) and M p = 2 .44 × 1018 GeV are the 6D and 4D rationalized Planck scales, and m is the heaviest brane-localized particle. (For numerical purposes we take m to be the top-quark mass and take M g as small as possible, consistent with energy-loss bounds from supernovae.) C is a constant depending on the details of the bulk spectrum, which could easily be of order 500 for each of hundreds of fields in the bulk. The value C ˜ 6 × 106 would give the observed Dark Energy density.

  19. Effects of Low Anisotropy on Generalized Ghost Dark Energy in Galileon Gravity

    NASA Astrophysics Data System (ADS)

    Hossienkhani, H.; Fayaz, V.; Jafari, A.; Yousefi, H.

    2018-04-01

    The definition of the Galileon gravity form is extended to the Brans-Dicke theory. Given, the framework of the Galileon theory, the generalized ghost dark energy model in an anisotropic universe is investigated. We study the cosmological implications of this model. In particular, we obtain the equation of state and the deceleration parameters and a differential equation governing the evolution of this dark energy in Bianchi type I model. We also probe observational constraints by using the latest observational data on the generalized ghost dark energy models as the unification of dark matter and dark energy. In order to do so, we focus on observational determinations of the Hubble expansion rate (namely, the expansion history) H(z). As a result, we show the influence of the anisotropy (although low) on the evolution of the universe in the statefinder diagrams for Galileon gravity.

  20. CALIBRATED ULTRA FAST IMAGE SIMULATIONS FOR THE DARK ENERGY SURVEY

    SciT

    Bruderer, Claudio; Chang, Chihway; Refregier, Alexandre

    2016-01-20

    Image simulations are becoming increasingly important in understanding the measurement process of the shapes of galaxies for weak lensing and the associated systematic effects. For this purpose we present the first implementation of the Monte Carlo Control Loops (MCCL), a coherent framework for studying systematic effects in weak lensing. It allows us to model and calibrate the shear measurement process using image simulations from the Ultra Fast Image Generator (UFig) and the image analysis software SExtractor. We apply this framework to a subset of the data taken during the Science Verification period (SV) of the Dark Energy Survey (DES). Wemore » calibrate the UFig simulations to be statistically consistent with one of the SV images, which covers ∼0.5 square degrees. We then perform tolerance analyses by perturbing six simulation parameters and study their impact on the shear measurement at the one-point level. This allows us to determine the relative importance of different parameters. For spatially constant systematic errors and point-spread function, the calibration of the simulation reaches the weak lensing precision needed for the DES SV survey area. Furthermore, we find a sensitivity of the shear measurement to the intrinsic ellipticity distribution, and an interplay between the magnitude-size and the pixel value diagnostics in constraining the noise model. This work is the first application of the MCCL framework to data and shows how it can be used to methodically study the impact of systematics on the cosmic shear measurement.« less

  1. New Holographic Chaplygin Gas Model of Dark Energy

    NASA Astrophysics Data System (ADS)

    Malekjani, M.; Khodam-Mohammadi, A.

    In this work, we investigate the holographic dark energy model with a new infrared cutoff (new HDE model), proposed by Granda and Oliveros. Using this new definition for the infrared cutoff, we establish the correspondence between the new HDE model and the standard Chaplygin gas (SCG), generalized Chaplygin gas (GCG) and modified Chaplygin gas (MCG) scalar field models in a nonflat universe. The potential and dynamics for these scalar field models, which describe the accelerated expansion of the universe, are reconstructed. According to the evolutionary behavior of the new HDE model, we derive the same form of dynamics and potential for the different SCG, GCG and MCG models. We also calculate the squared sound speed of the new HDE model as well as the SCG, GCG and MCG models, and investigate the new HDE Chaplygin gas models from the viewpoint of linear perturbation theory. In addition, all results in the nonflat universe are discussed in the limiting case of the flat universe, i.e. k = 0.

  2. A topological extension of GR: Black holes induce dark energy

    NASA Astrophysics Data System (ADS)

    Spaans, M.

    2013-02-01

    A topological extension of general relativity is presented. The superposition principle of quantum mechanics, as formulated by the Feynman path integral, is taken as a starting point. It is argued that the trajectories that enter this path integral are distinct and thus that space-time topology is multiply connected. Specifically, space-time at the Planck scale consists of a lattice of three-tori that facilitates many distinct paths for particles to travel along. To add gravity, mini black holes are attached to this lattice. These mini black holes represent Wheeler's quantum foam and result from the fact that GR is not conformally invariant. The number of such mini black holes in any time-slice through four-space is found to be equal to the number of macroscopic (so long-lived) black holes in the entire universe. This connection, by which macroscopic black holes induce mini black holes, is a topological expression of Mach's principle. The proposed topological extension of GR can be tested because, if correct, the dark energy density of the universe should be proportional the total number of macroscopic black holes in the universe at any time. This prediction, although strange, agrees with current astrophysical observations.

  3. Crowdsourcing quality control for Dark Energy Survey images

    NASA Astrophysics Data System (ADS)

    Melchior, P.; Sheldon, E.; Drlica-Wagner, A.; Rykoff, E. S.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Brooks, D.; Buckley-Geer, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Doel, P.; Evrard, A. E.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Jarvis, M.; Kuehn, K.; Li, T. S.; Maia, M. A. G.; March, M.; Marshall, J. L.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Vikram, V.; Walker, A. R.; Wester, W.; Zhang, Y.

    2016-07-01

    We have developed a crowdsourcing web application for image quality control employed by the Dark Energy Survey. Dubbed the "DES exposure checker", it renders science-grade images directly to a web browser and allows users to mark problematic features from a set of predefined classes. Users can also generate custom labels and thus help identify previously unknown problem classes. User reports are fed back to hardware and software experts to help mitigate and eliminate recognized issues. We report on the implementation of the application and our experience with its over 100 users, the majority of which are professional or prospective astronomers but not data management experts. We discuss aspects of user training and engagement, and demonstrate how problem reports have been pivotal to rapidly correct artifacts which would likely have been too subtle or infrequent to be recognized otherwise. We conclude with a number of important lessons learned, suggest possible improvements, and recommend this collective exploratory approach for future astronomical surveys or other extensive data sets with a sufficiently large user base. We also release open-source code of the web application and host an online demo version at http://des-exp-checker.pmelchior.net.

  4. Automated transient identification in the Dark Energy Survey

    SciT

    Goldstein, D. A.

    2015-08-20

    We describe an algorithm for identifying point-source transients and moving objects on reference-subtracted optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised machine learning technique known as Random Forest. We present results from its use in the Dark Energy Survey Supernova program (DES-SN), where it was trained using a sample of 898,963 signal and background events generated by the transient detection pipeline. After reprocessing the data collected during the first DES-SN observing season (2013 September through 2014 February) using the algorithm, the number of transient candidates eligible for human scanning decreased by a factormore » of 13.4, while only 1.0 percent of the artificial Type Ia supernovae (SNe) injected into search images to monitor survey efficiency were lost, most of which were very faint events. Here we characterize the algorithm's performance in detail, and we discuss how it can inform pipeline design decisions for future time-domain imaging surveys, such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility.« less

  5. Cosmic shear measurements with Dark Energy Survey Science Verification data

    DOE PAGES

    Becker, M. R.

    2016-07-06

    Here, we present measurements of weak gravitational lensing cosmic shear two-point statistics using Dark Energy Survey Science Verification data. We demonstrate that our results are robust to the choice of shear measurement pipeline, either ngmix or im3shape, and robust to the choice of two-point statistic, including both real and Fourier-space statistics. Our results pass a suite of null tests including tests for B-mode contamination and direct tests for any dependence of the two-point functions on a set of 16 observing conditions and galaxy properties, such as seeing, airmass, galaxy color, galaxy magnitude, etc. We use a large suite of simulationsmore » to compute the covariance matrix of the cosmic shear measurements and assign statistical significance to our null tests. We find that our covariance matrix is consistent with the halo model prediction, indicating that it has the appropriate level of halo sample variance. We also compare the same jackknife procedure applied to the data and the simulations in order to search for additional sources of noise not captured by the simulations. We find no statistically significant extra sources of noise in the data. The overall detection significance with tomography for our highest source density catalog is 9.7σ. Cosmological constraints from the measurements in this work are presented in a companion paper.« less

  6. Automated transient identification in the Dark Energy Survey

    DOE PAGES

    Goldstein, D. A.; D'Andrea, C. B.; Fischer, J. A.; ...

    2015-09-01

    We describe an algorithm for identifying point-source transients and moving objects on reference-subtracted optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised machine learning technique known as Random Forest. We present results from its use in the Dark Energy Survey Supernova program (DES-SN), where it was trained using a sample of 898,963 signal and background events generated by the transient detection pipeline. After reprocessing the data collected during the first DES-SN observing season (2013 September through 2014 February) using the algorithm, the number of transient candidates eligible for human scanning decreased by a factormore » of 13.4, while only 1.0% of the artificial Type Ia supernovae (SNe) injected into search images to monitor survey efficiency were lost, most of which were very faint events. Furthermore, we characterize the algorithm's performance in detail, and we discuss how it can inform pipeline design decisions for future time-domain imaging surveys, such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility.« less

  7. Dark Energy Survey Year 1 Results: Weak Lensing Shape Catalogues

    SciT

    Zuntz, J.; et al.

    We present two galaxy shape catalogues from the Dark Energy Survey Year 1 data set, covering 1500 square degrees with a median redshift ofmore » $0.59$. The catalogues cover two main fields: Stripe 82, and an area overlapping the South Pole Telescope survey region. We describe our data analysis process and in particular our shape measurement using two independent shear measurement pipelines, METACALIBRATION and IM3SHAPE. The METACALIBRATION catalogue uses a Gaussian model with an innovative internal calibration scheme, and was applied to $riz$-bands, yielding 34.8M objects. The IM3SHAPE catalogue uses a maximum-likelihood bulge/disc model calibrated using simulations, and was applied to $r$-band data, yielding 21.9M objects. Both catalogues pass a suite of null tests that demonstrate their fitness for use in weak lensing science. We estimate the 1$$\\sigma$$ uncertainties in multiplicative shear calibration to be $0.013$ and $0.025$ for the METACALIBRATION and IM3SHAPE catalogues, respectively.« less

  8. Crowdsourcing quality control for Dark Energy Survey images

    DOE PAGES

    Melchior, P.

    2016-07-01

    We have developed a crowdsourcing web application for image quality control employed by the Dark Energy Survey. Dubbed the "DES exposure checker", it renders science-grade images directly to a web browser and allows users to mark problematic features from a set of predefined classes. Users can also generate custom labels and thus help identify previously unknown problem classes. User reports are fed back to hardware and software experts to help mitigate and eliminate recognized issues. We report on the implementation of the application and our experience with its over 100 users, the majority of which are professional or prospective astronomersmore » but not data management experts. We discuss aspects of user training and engagement, and demonstrate how problem reports have been pivotal to rapidly correct artifacts which would likely have been too subtle or infrequent to be recognized otherwise. We conclude with a number of important lessons learned, suggest possible improvements, and recommend this collective exploratory approach for future astronomical surveys or other extensive data sets with a sufficiently large user base. We also release open-source code of the web application and host an online demo versionat http://des-exp-checker.pmelchior.net« less

  9. Automated Transient Identification in the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Goldstein, D. A.; D'Andrea, C. B.; Fischer, J. A.; Foley, R. J.; Gupta, R. R.; Kessler, R.; Kim, A. G.; Nichol, R. C.; Nugent, P. E.; Papadopoulos, A.; Sako, M.; Smith, M.; Sullivan, M.; Thomas, R. C.; Wester, W.; Wolf, R. C.; Abdalla, F. B.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carnero Rosell, A.; Castander, F. J.; da Costa, L. N.; Covarrubias, R.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Fausti Neto, A.; Finley, D. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D.; Gruen, D.; Gruendl, R. A.; James, D.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Maia, M. A. G.; Makler, M.; March, M.; Marshall, J. L.; Martini, P.; Merritt, K. W.; Miquel, R.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Walker, A. R.

    2015-09-01

    We describe an algorithm for identifying point-source transients and moving objects on reference-subtracted optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised machine learning technique known as Random Forest. We present results from its use in the Dark Energy Survey Supernova program (DES-SN), where it was trained using a sample of 898,963 signal and background events generated by the transient detection pipeline. After reprocessing the data collected during the first DES-SN observing season (2013 September through 2014 February) using the algorithm, the number of transient candidates eligible for human scanning decreased by a factor of 13.4, while only 1.0% of the artificial Type Ia supernovae (SNe) injected into search images to monitor survey efficiency were lost, most of which were very faint events. Here we characterize the algorithm’s performance in detail, and we discuss how it can inform pipeline design decisions for future time-domain imaging surveys, such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility. An implementation of the algorithm and the training data used in this paper are available at at http://portal.nersc.gov/project/dessn/autoscan.

  10. If Gravity is Geometry, is Dark Energy just Arithmetic?

    NASA Astrophysics Data System (ADS)

    Czachor, Marek

    2017-04-01

    Arithmetic operations (addition, subtraction, multiplication, division), as well as the calculus they imply, are non-unique. The examples of four-dimensional spaces, R+4 and (- L/2, L/2)4, are considered where different types of arithmetic and calculus coexist simultaneously. In all the examples there exists a non-Diophantine arithmetic that makes the space globally Minkowskian, and thus the laws of physics are formulated in terms of the corresponding calculus. However, when one switches to the `natural' Diophantine arithmetic and calculus, the Minkowskian character of the space is lost and what one effectively obtains is a Lorentzian manifold. I discuss in more detail the problem of electromagnetic fields produced by a pointlike charge. The solution has the standard form when expressed in terms of the non-Diophantine formalism. When the `natural' formalsm is used, the same solution looks as if the fields were created by a charge located in an expanding universe, with nontrivially accelerating expansion. The effect is clearly visible also in solutions of the Friedman equation with vanishing cosmological constant. All of this suggests that phenomena attributed to dark energy may be a manifestation of a miss-match between the arithmetic employed in mathematical modeling, and the one occurring at the level of natural laws. Arithmetic is as physical as geometry.

  11. Modeling the Transfer Function for the Dark Energy Survey

    DOE PAGES

    Chang, C.

    2015-03-04

    We present a forward-modeling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function—a mapping from cosmological/astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator) and catalogs representative of the DES data. In this work we demonstrate the framework by simulating the 244 deg 2 coadd images and catalogs in five bands for the DES Science Verification data. The simulation output is compared withmore » the corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples—star-galaxy classification and proximity effects on object detection—are then used to illustrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modeling approach is generally applicable for other upcoming and future surveys. It provides a powerful tool for systematics studies that is sufficiently realistic and highly controllable.« less

  12. Astrometric Calibration and Performance of the Dark Energy Camera

    SciT

    Bernstein, G. M.; Armstrong, R.; Plazas, A. A.

    2017-05-30

    We characterize the variation in photometric response of the Dark Energy Camera (DECam) across its 520~Mpix science array during 4 years of operation. These variations are measured using high signal-to-noise aperture photometry ofmore » $>10^7$ stellar images in thousands of exposures of a few selected fields, with the telescope dithered to move the sources around the array. A calibration procedure based on these results brings the RMS variation in aperture magnitudes of bright stars on cloudless nights down to 2--3 mmag, with <1 mmag of correlated photometric errors for stars separated by $$\\ge20$$". On cloudless nights, any departures of the exposure zeropoints from a secant airmass law exceeding >1 mmag are plausibly attributable to spatial/temporal variations in aperture corrections. These variations can be inferred and corrected by measuring the fraction of stellar light in an annulus between 6" and 8" diameter. Key elements of this calibration include: correction of amplifier nonlinearities; distinguishing pixel-area variations and stray light from quantum-efficiency variations in the flat fields; field-dependent color corrections; and the use of an aperture-correction proxy. The DECam response pattern across the 2-degree field drifts over months by up to $$\\pm7$$ mmag, in a nearly-wavelength-independent low-order pattern. We find no fundamental barriers to pushing global photometric calibrations toward mmag accuracy.« less

  13. Crowdsourcing quality control for Dark Energy Survey images

    SciT

    Melchior, P.

    We have developed a crowdsourcing web application for image quality control employed by the Dark Energy Survey. Dubbed the "DES exposure checker", it renders science-grade images directly to a web browser and allows users to mark problematic features from a set of predefined classes. Users can also generate custom labels and thus help identify previously unknown problem classes. User reports are fed back to hardware and software experts to help mitigate and eliminate recognized issues. We report on the implementation of the application and our experience with its over 100 users, the majority of which are professional or prospective astronomersmore » but not data management experts. We discuss aspects of user training and engagement, and demonstrate how problem reports have been pivotal to rapidly correct artifacts which would likely have been too subtle or infrequent to be recognized otherwise. We conclude with a number of important lessons learned, suggest possible improvements, and recommend this collective exploratory approach for future astronomical surveys or other extensive data sets with a sufficiently large user base. We also release open-source code of the web application and host an online demo versionat http://des-exp-checker.pmelchior.net« less

  14. ISW-galaxy cross correlation: a probe of dark energy clustering and distribution of dark matter tracers

    SciT

    Khosravi, Shahram; Mollazadeh, Amir; Baghram, Shant, E-mail: khosravi_sh@khu.ac.ir, E-mail: amirmollazadeh@khu.ac.ir, E-mail: baghram@sharif.edu

    2016-09-01

    Cross correlation of the Integrated Sachs-Wolfe signal (ISW) with the galaxy distribution in late time is a promising tool for constraining the dark energy properties. Here, we study the effect of dark energy clustering on the ISW-galaxy cross correlation and demonstrate the fact that the bias parameter between the distribution of the galaxies and the underlying dark matter introduces a degeneracy and complications. We argue that as the galaxy's host halo formation time is different from the observation time, we have to consider the evolution of the halo bias parameter. It will be shown that any deviation from ΛCDM modelmore » will change the evolution of the bias as well. Therefore, it is deduced that the halo bias depends strongly on the sub-sample of galaxies which is chosen for cross correlation and that the joint kernel of ISW effect and the galaxy distribution has a dominant effect on the observed signal. In this work, comparison is made specifically between the clustered dark energy models using two samples of galaxies. The first one is a sub-sample of galaxies from Sloan Digital Sky Survey, chosen with the r-band magnitude 18 < r < 21 and the dark matter halo host of mass M ∼10{sup 12} M {sub ⊙} and formation redshift of z {sub f} ∼ 2.5. The second one is the sub-sample of Luminous Red galaxies with the dark matter halo hosts of mass M ∼ 10{sup 13} M {sub ⊙} and formation redshift of z {sub f} ∼ 2.0. Using the evolved bias we improve the χ{sup 2} for the ΛCDM which reconciles the ∼1σ-2σ tension of the ISW-galaxy signal with ΛCDM prediction. Finally, we study the parameter estimation of a dark energy model with free parameters w {sub 0} and w {sub a} in the equation of state w {sub de} = w {sub 0} + w {sub az} /(1+ z ) with the constant bias parameter and also with an evolved bias model with free parameters of galaxy's host halo mass and the halo formation redshift.« less

  15. Probing interaction and spatial curvature in the holographic dark energy model

    SciT

    Li, Miao; Li, Xiao-Dong; Wang, Shuang

    2009-12-01

    In this paper we place observational constraints on the interaction and spatial curvature in the holographic dark energy model. We consider three kinds of phenomenological interactions between holographic dark energy and matter, i.e., the interaction term Q is proportional to the energy densities of dark energy (ρ{sub Λ}), matter (ρ{sub m}), and matter plus dark energy (ρ{sub m}+ρ{sub Λ}). For probing the interaction and spatial curvature in the holographic dark energy model, we use the latest observational data including the type Ia supernovae (SNIa) Constitution data, the shift parameter of the cosmic microwave background (CMB) given by the five-year Wilkinsonmore » Microwave Anisotropy Probe (WMAP5) observations, and the baryon acoustic oscillation (BAO) measurement from the Sloan Digital Sky Survey (SDSS). Our results show that the interaction and spatial curvature in the holographic dark energy model are both rather small. Besides, it is interesting to find that there exists significant degeneracy between the phenomenological interaction and the spatial curvature in the holographic dark energy model.« less

  16. Interacting dark energy models as an approach for solving Cosmic Coincidence Problem

    NASA Astrophysics Data System (ADS)

    Shojaei, Hamed

    Understanding the dark side of the Universe is one of the main tasks of physicists. As there is no thorough understanding of nature of the dark energy, this area is full of new ideas and there may be several discoveries, theoretical or experimental, in the near future. We know that dark energy, though not detected directly, exists and it is not just an exotic idea. The presence of dark energy is required by the observation of the acceleration of the universe. There are several questions regarding dark energy. What is the nature of dark energy? How does it interact with matter, baryonic or dark? Why is the density of dark energy so tiny, i.e. why rhoΛ ≈ 10--120 M4Pl ? And finally why does its density have the same order of magnitude as the density of matter does at the present time? The last question is one form of what is known as the "Cosmic Coincidence Problem" and in this work, I have been investigating one way to resolve this issue. Observations of Type Ia supernovae indicate that we are in an accelerating universe. A matter-dominated universe cannot be accelerating. A good fit is obtained if we assume that energy density parameters are O Λ = 0.7 and Om = 0.3. Here O Λ is related to dark energy, or cosmological constant in ΛCDM model. At the same time data from Wilkinson Microwave Anisotropy Probe (WMAP) satellite and supernova surveys have placed a constraint on w, the equation of state for dark energy, which is actually the ratio of pressure and energy density. Any good theory needs to explain this coincidence problem and yields a value for w between -1.1 and -0.9. I have employed an interesting approach to solve this problem by assuming that there exists an interaction between dark energy and matter in the context of holographic dark energy. This interaction converts dark energy to matter or vice versa without violating the local conservation of energy in the universe. Holographic dark energy by itself indicates that the value of dark energy is related

  17. Probing the dynamics of dark energy with divergence-free parametrizations: A global fit study

    NASA Astrophysics Data System (ADS)

    Li, Hong; Zhang, Xin

    2011-09-01

    The CPL parametrization is very important for investigating the property of dark energy with observational data. However, the CPL parametrization only respects the past evolution of dark energy but does not care about the future evolution of dark energy, since w ( z ) diverges in the distant future. In a recent paper [J.Z. Ma, X. Zhang, Phys. Lett. B 699 (2011) 233], a robust, novel parametrization for dark energy, w ( z ) = w + w ( l n ( 2 + z ) 1 + z - l n 2 ) , has been proposed, successfully avoiding the future divergence problem in the CPL parametrization. On the other hand, an oscillating parametrization (motivated by an oscillating quintom model) can also avoid the future divergence problem. In this Letter, we use the two divergence-free parametrizations to probe the dynamics of dark energy in the whole evolutionary history. In light of the data from 7-year WMAP temperature and polarization power spectra, matter power spectrum of SDSS DR7, and SN Ia Union2 sample, we perform a full Markov Chain Monte Carlo exploration for the two dynamical dark energy models. We find that the best-fit dark energy model is a quintom model with the EOS across -1 during the evolution. However, though the quintom model is more favored, we find that the cosmological constant still cannot be excluded.

  18. Conceptual problems in detecting the evolution of dark energy when using distance measurements

    NASA Astrophysics Data System (ADS)

    Bolejko, K.

    2011-01-01

    Context. Dark energy is now one of the most important and topical problems in cosmology. The first step to reveal its nature is to detect the evolution of dark energy or to prove beyond doubt that the cosmological constant is indeed constant. However, in the standard approach to cosmology, the Universe is described by the homogeneous and isotropic Friedmann models. Aims: We aim to show that in the perturbed universe (even if perturbations vanish if averaged over sufficiently large scales) the distance-redshift relation is not the same as in the unperturbed universe. This has a serious consequence when studying the nature of dark energy and, as shown here, can impair the analysis and studies of dark energy. Methods: The analysis is based on two methods: the linear lensing approximation and the non-linear Szekeres Swiss-Cheese model. The inhomogeneity scale is ~50 Mpc, and both models have the same density fluctuations along the line of sight. Results: The comparison between linear and non-linear methods shows that non-linear corrections are not negligible. When inhomogeneities are present the distance changes by several percent. To show how this change influences the measurements of dark energy, ten future observations with 2% uncertainties are generated. It is shown the using the standard methods (i.e. under the assumption of homogeneity) the systematics due to inhomogeneities can distort our analysis, and may lead to a conclusion that dark energy evolves when in fact it is constant (or vice versa). Conclusions: Therefore, if future observations are analysed only within the homogeneous framework then the impact of inhomogeneities (such as voids and superclusters) can be mistaken for evolving dark energy. Since the robust distinction between the evolution and non-evolution of dark energy is the first step to understanding the nature of dark energy a proper handling of inhomogeneities is essential.

  19. WIMP-less dark matter and meson decays with missing energy

    SciT

    McKeen, David

    2009-06-01

    WIMP-less dark matter [J. L. Feng and J. Kumar, Phys. Rev. Lett. 101, 231301 (2008).] offers an attractive framework in which dark matter can be very light. We investigate the implications of such scenarios on invisible decays of bottomonium states for dark matter with a mass less than around 5 GeV. We relate these decays to measurements of nucleon-dark matter elastic scattering. We also investigate the effect that a coupling to s quarks has on flavor changing b{yields}s processes involving missing energy.

  20. Probing the stability of superheavy dark matter particles with high-energy neutrinos

    SciT

    Esmaili, Arman; Peres, Orlando L.G.; Ibarra, Alejandro, E-mail: aesmaili@ifi.unicamp.br, E-mail: ibarra@tum.de, E-mail: orlando@ifi.unicamp.br

    2012-11-01

    Two of the most fundamental properties of the dark matter particle, the mass and the lifetime, are only weakly constrained by the astronomical and cosmological evidence of dark matter. We derive in this paper lower limits on the lifetime of dark matter particles with masses in the range 10TeV−10{sup 15}TeV from the non-observation of ultrahigh energy neutrinos in the AMANDA, IceCube, Auger and ANITA experiments. For dark matter particles which produce neutrinos in a two body or a three body leptonic decay, we find that the dark matter lifetime must be longer than O(10{sup 26}−10{sup 28})s for masses between 10more » TeV and the Grand Unification scale. Finally, we also calculate, for concrete particle physics scenarios, the limits on the strength of the interactions that induce the dark matter decay.« less

  1. Local dark energy: HST evidence from the vicinity of the M81/M82 galaxy group

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Karachentsev, I. D.; Kashibadze, O. G.; Makarov, D. I.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.

    2007-10-01

    The Hubble Space Telescope observations of the nearby galaxy group M81/M82 and its vicinity indicate that the dynamics of the expansion outflow around the group is dominated by the antigravity of the dark energy background. The local density of dark energy in the area is estimated to be near the global dark energy density or perhaps exactly equal to it. This conclusion agrees well with our previous results for the Local Group vicinity and the vicinity of the Cen A/M83 group.

  2. Holographic dark energy in higher derivative gravity with time varying model parameter c2

    NASA Astrophysics Data System (ADS)

    Borah, B.; Ansari, M.

    2015-01-01

    Purpose of this paper is to study holographic dark energy in higher derivative gravity assuming the model parameter c2 as a slowly time varying function. Since dark energy emerges as combined effect of linear as well as non-linear terms of curvature, therefore it is important to see holographic dark energy at higher derivative gravity, where action contains both linear as well as non-linear terms of Ricci curvature R. We consider non-interacting scenario of the holographic dark energy with dark matter in spatially flat universe and obtain evolution of the equation of state parameter. Also, we determine deceleration parameter as well as the evolution of dark energy density to explain expansion of the universe. Further, we investigate validity of generalized second law of thermodynamics in this scenario. Finally, we find out a cosmological application of our work by evaluating a relation for the equation of state of holographic dark energy for low red-shifts containing c2 correction.

  3. Comparison of thawing and freezing dark energy parametrizations

    NASA Astrophysics Data System (ADS)

    Pantazis, G.; Nesseris, S.; Perivolaropoulos, L.

    2016-05-01

    Dark energy equation of state w (z ) parametrizations with two parameters and given monotonicity are generically either convex or concave functions. This makes them suitable for fitting either freezing or thawing quintessence models but not both simultaneously. Fitting a data set based on a freezing model with an unsuitable (concave when increasing) w (z ) parametrization [like Chevallier-Polarski-Linder (CPL)] can lead to significant misleading features like crossing of the phantom divide line, incorrect w (z =0 ), incorrect slope, etc., that are not present in the underlying cosmological model. To demonstrate this fact we generate scattered cosmological data at both the level of w (z ) and the luminosity distance DL(z ) based on either thawing or freezing quintessence models and fit them using parametrizations of convex and of concave type. We then compare statistically significant features of the best fit w (z ) with actual features of the underlying model. We thus verify that the use of unsuitable parametrizations can lead to misleading conclusions. In order to avoid these problems it is important to either use both convex and concave parametrizations and select the one with the best χ2 or use principal component analysis thus splitting the redshift range into independent bins. In the latter case, however, significant information about the slope of w (z ) at high redshifts is lost. Finally, we propose a new family of parametrizations w (z )=w0+wa(z/1 +z )n which generalizes the CPL and interpolates between thawing and freezing parametrizations as the parameter n increases to values larger than 1.

  4. Forward Global Photometric Calibration of the Dark Energy Survey

    SciT

    Burke, D. L.; Rykoff, E. S.; Allam, S.

    2017-12-28

    Many scientific goals for the Dark Energy Survey (DES) require calibration of optical/NIR broadbandmore » $b = grizY$ photometry that is stable in time and uniform over the celestial sky to one percent or better. It is also necessary to limit to similar accuracy systematic uncertainty in the calibrated broadband magnitudes due to uncertainty in the spectrum of the source. Here we present a "Forward Global Calibration Method (FGCM)" for photometric calibration of the DES, and we present results of its application to the first three years of the survey (Y3A1). The FGCM combines data taken with auxiliary instrumentation at the observatory with data from the broad-band survey imaging itself and models of the instrument and atmosphere to estimate the spatial- and time-dependence of the passbands of individual DES survey exposures. "Standard" passbands are chosen that are typical of the passbands encountered during the survey. The passband of any individual observation is combined with an estimate of the source spectral shape to yield a magnitude $$m_b^{\\mathrm{std}}$$ in the standard system. This "chromatic correction" to the standard system is necessary to achieve sub-percent calibrations. The FGCM achieves reproducible and stable photometric calibration of standard magnitudes $$m_b^{\\mathrm{std}}$$ of stellar sources over the multi-year Y3A1 data sample with residual random calibration errors of $$\\sigma=5-6\\,\\mathrm{mmag}$$ per exposure. The accuracy of the calibration is uniform across the $$5000\\,\\mathrm{deg}^2$$ DES footprint to within $$\\sigma=7\\,\\mathrm{mmag}$$. The systematic uncertainties of magnitudes in the standard system due to the spectra of sources are less than $$5\\,\\mathrm{mmag}$$ for main sequence stars with $0.5« less

  5. Forward Global Photometric Calibration of the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Burke, D. L.; Rykoff, E. S.; Allam, S.; Annis, J.; Bechtol, K.; Bernstein, G. M.; Drlica-Wagner, A.; Finley, D. A.; Gruendl, R. A.; James, D. J.; Kent, S.; Kessler, R.; Kuhlmann, S.; Lasker, J.; Li, T. S.; Scolnic, D.; Smith, J.; Tucker, D. L.; Wester, W.; Yanny, B.; Abbott, T. M. C.; Abdalla, F. B.; Benoit-Lévy, A.; Bertin, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; García-Bellido, J.; Gruen, D.; Gutierrez, G.; Honscheid, K.; Kuehn, K.; Kuropatkin, N.; Maia, M. A. G.; March, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Plazas, A. A.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Walker, A. R.; DES Collaboration

    2018-01-01

    Many scientific goals for the Dark Energy Survey (DES) require the calibration of optical/NIR broadband b = grizY photometry that is stable in time and uniform over the celestial sky to one percent or better. It is also necessary to limit to similar accuracy systematic uncertainty in the calibrated broadband magnitudes due to uncertainty in the spectrum of the source. Here we present a “Forward Global Calibration Method (FGCM)” for photometric calibration of the DES, and we present results of its application to the first three years of the survey (Y3A1). The FGCM combines data taken with auxiliary instrumentation at the observatory with data from the broadband survey imaging itself and models of the instrument and atmosphere to estimate the spatial and time dependences of the passbands of individual DES survey exposures. “Standard” passbands that are typical of the passbands encountered during the survey are chosen. The passband of any individual observation is combined with an estimate of the source spectral shape to yield a magnitude {m}b{std} in the standard system. This “chromatic correction” to the standard system is necessary to achieve subpercent calibrations and in particular, to resolve ambiguity between the broadband brightness of a source and the shape of its SED. The FGCM achieves a reproducible and stable photometric calibration of standard magnitudes {m}b{std} of stellar sources over the multiyear Y3A1 data sample with residual random calibration errors of σ =6{--}7 {mmag} per exposure. The accuracy of the calibration is uniform across the 5000 {\\deg }2 DES footprint to within σ =7 {mmag}. The systematic uncertainties of magnitudes in the standard system due to the spectra of sources are less than 5 {mmag} for main-sequence stars with 0.5< g-i< 3.0.

  6. A Search for Kilonovae in the Dark Energy Survey

    DOE PAGES

    Doctor, Z.; Kessler, R.; Chen, H. Y.; ...

    2017-03-01

    The coalescence of a binary neutron star pair is expected to produce gravitational waves (GW) and electromagnetic radiation, both of which may be detectable with currently available instruments. In this paper, we describe a search for a predicted r-process optical transient from these mergers, dubbed the “kilonova” (KN), using griz broadband data from the Dark Energy Survey Supernova Program (DES-SN). Some models predict KNe to be redder, shorter-lived, and dimmer than supernovae (SNe), but the event rate of KNe is poorly constrained. We simulate KN and SN light curves with the Monte-Carlo simulation code SNANA to optimize selection requirements, determine search efficiency, and predict SN backgrounds. Our analysis of the first two seasons of DES-SN data results in 0 events, and is consistent with our prediction of 1.1 ± 0.2 background events based on simulations of SNe. From our prediction, there is a 33% chance of finding 0 events in the data. Assuming no underlying galaxy flux, our search sets 90% upper limits on the KN volumetric rate of 1.0 x 10more » $$^{7}$$ Gpc $-$3 yr $-$1 for the dimmest KN model we consider (peak i-band absolute magnitude $${M}_{i}=-11.4$$ mag) and 2.4x 10$$^{4}$$ Gpc $-$3 yr $-$1 for the brightest ($${M}_{i}=-16.2$$ mag). Accounting for anomalous subtraction artifacts on bright galaxies, these limits are ~3 times higher. This analysis is the first untriggered optical KN search and informs selection requirements and strategies for future KN searches. Finally, our upper limits on the KN rate are consistent with those measured by GW and gamma-ray burst searches.« less

  7. Rapidly Evolving Transients in the Dark Energy Survey

    SciT

    Pursiainen, M.; et al.

    We present the results of a search for rapidly evolving transients in the Dark Energy Survey Supernova Programme. These events are characterized by fast light curve evolution (rise to peak inmore » $$\\lesssim 10$$ d and exponential decline in $$\\lesssim30$$ d after peak). We discovered 72 events, including 37 transients with a spectroscopic redshift from host galaxy spectral features. The 37 events increase the total number of rapid optical transients by more than factor of two. They are found at a wide range of redshifts ($0.05M_\\mathrm{g}>-22.25$$). The multiband photometry is well fit by a blackbody up to few weeks after peak. The events appear to be hot ($$T\\approx10000-30000$$ K) and large ($$R\\approx 10^{14}-2\\cdot10^{15}$$ cm) at peak, and generally expand and cool in time, though some events show evidence for a receding photosphere with roughly constant temperature. Spectra taken around peak are dominated by a blue featureless continuum consistent with hot, optically thick ejecta. We compare our events with a previously suggested physical scenario involving shock breakout in an optically thick wind surrounding a core-collapse supernova (CCSNe), we conclude that current models for such a scenario might need an additional power source to describe the exponential decline. We find these transients tend to favor star-forming host galaxies, which could be consistent with a core-collapse origin. However, more detailed modeling of the light curves is necessary to determine their physical origin.« less

  8. Forward Global Photometric Calibration of the Dark Energy Survey

    SciT

    Burke, D. L.; Rykoff, E. S.; Allam, S.

    Many scientific goals for the Dark Energy Survey (DES) require calibration of optical/NIR broadbandmore » $b = grizY$ photometry that is stable in time and uniform over the celestial sky to one percent or better. It is also necessary to limit to similar accuracy systematic uncertainty in the calibrated broadband magnitudes due to uncertainty in the spectrum of the source. Here we present a "Forward Global Calibration Method (FGCM)" for photometric calibration of the DES, and we present results of its application to the first three years of the survey (Y3A1). The FGCM combines data taken with auxiliary instrumentation at the observatory with data from the broad-band survey imaging itself and models of the instrument and atmosphere to estimate the spatial- and time-dependence of the passbands of individual DES survey exposures. "Standard" passbands are chosen that are typical of the passbands encountered during the survey. The passband of any individual observation is combined with an estimate of the source spectral shape to yield a magnitude $$m_b^{\\mathrm{std}}$$ in the standard system. This "chromatic correction" to the standard system is necessary to achieve sub-percent calibrations. The FGCM achieves reproducible and stable photometric calibration of standard magnitudes $$m_b^{\\mathrm{std}}$$ of stellar sources over the multi-year Y3A1 data sample with residual random calibration errors of $$\\sigma=5-6\\,\\mathrm{mmag}$$ per exposure. In conclusion, the accuracy of the calibration is uniform across the $$5000\\,\\mathrm{deg}^2$$ DES footprint to within $$\\sigma=7\\,\\mathrm{mmag}$$. The systematic uncertainties of magnitudes in the standard system due to the spectra of sources are less than $$5\\,\\mathrm{mmag}$$ for main sequence stars with $0.5« less

  9. A Search for Kilonovae in the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Doctor, Z.; Kessler, R.; Chen, H. Y.; Farr, B.; Finley, D. A.; Foley, R. J.; Goldstein, D. A.; Holz, D. E.; Kim, A. G.; Morganson, E.; Sako, M.; Scolnic, D.; Smith, M.; Soares-Santos, M.; Spinka, H.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Drlica-Wagner, A.; Eifler, T. F.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; James, D. J.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Menanteau, F.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Walker, A. R.; Wester, W.; DES Collaboration

    2017-03-01

    The coalescence of a binary neutron star pair is expected to produce gravitational waves (GW) and electromagnetic radiation, both of which may be detectable with currently available instruments. We describe a search for a predicted r-process optical transient from these mergers, dubbed the “kilonova” (KN), using griz broadband data from the Dark Energy Survey Supernova Program (DES-SN). Some models predict KNe to be redder, shorter-lived, and dimmer than supernovae (SNe), but the event rate of KNe is poorly constrained. We simulate KN and SN light curves with the Monte-Carlo simulation code SNANA to optimize selection requirements, determine search efficiency, and predict SN backgrounds. Our analysis of the first two seasons of DES-SN data results in 0 events, and is consistent with our prediction of 1.1 ± 0.2 background events based on simulations of SNe. From our prediction, there is a 33% chance of finding 0 events in the data. Assuming no underlying galaxy flux, our search sets 90% upper limits on the KN volumetric rate of 1.0 × {10}7 Gpc-3 yr-1 for the dimmest KN model we consider (peak I-band absolute magnitude {M}I=-11.4 mag) and 2.4 × {10}4 Gpc-3 yr-1 for the brightest ({M}I=-16.2 mag). Accounting for anomalous subtraction artifacts on bright galaxies, these limits are ˜3 times higher. This analysis is the first untriggered optical KN search and informs selection requirements and strategies for future KN searches. Our upper limits on the KN rate are consistent with those measured by GW and gamma-ray burst searches.

  10. Forward Global Photometric Calibration of the Dark Energy Survey

    DOE PAGES

    Burke, D. L.; Rykoff, E. S.; Allam, S.; ...

    2017-12-28

    Many scientific goals for the Dark Energy Survey (DES) require calibration of optical/NIR broadbandmore » $b = grizY$ photometry that is stable in time and uniform over the celestial sky to one percent or better. It is also necessary to limit to similar accuracy systematic uncertainty in the calibrated broadband magnitudes due to uncertainty in the spectrum of the source. Here we present a "Forward Global Calibration Method (FGCM)" for photometric calibration of the DES, and we present results of its application to the first three years of the survey (Y3A1). The FGCM combines data taken with auxiliary instrumentation at the observatory with data from the broad-band survey imaging itself and models of the instrument and atmosphere to estimate the spatial- and time-dependence of the passbands of individual DES survey exposures. "Standard" passbands are chosen that are typical of the passbands encountered during the survey. The passband of any individual observation is combined with an estimate of the source spectral shape to yield a magnitude $$m_b^{\\mathrm{std}}$$ in the standard system. This "chromatic correction" to the standard system is necessary to achieve sub-percent calibrations. The FGCM achieves reproducible and stable photometric calibration of standard magnitudes $$m_b^{\\mathrm{std}}$$ of stellar sources over the multi-year Y3A1 data sample with residual random calibration errors of $$\\sigma=5-6\\,\\mathrm{mmag}$$ per exposure. In conclusion, the accuracy of the calibration is uniform across the $$5000\\,\\mathrm{deg}^2$$ DES footprint to within $$\\sigma=7\\,\\mathrm{mmag}$$. The systematic uncertainties of magnitudes in the standard system due to the spectra of sources are less than $$5\\,\\mathrm{mmag}$$ for main sequence stars with $0.5« less

  11. Astrometric Calibration and Performance of the Dark Energy Camera

    DOE PAGES

    Bernstein, G. M.; Armstrong, R.; Plazas, A. A.; ...

    2017-05-30

    We characterize the ability of the Dark Energy Camera (DECam) to perform relative astrometry across its 500 Mpix, 3more » $deg^2$ science field of view, and across 4 years of operation. This is done using internal comparisons of $~ 4 x 10^7$ measurements of high-S/N stellar images obtained in repeat visits to fields of moderate stellar density, with the telescope dithered to move the sources around the array. An empirical astrometric model includes terms for: optical distortions; stray electric fields in the CCD detectors; chromatic terms in the instrumental and atmospheric optics; shifts in CCD relative positions of up to $$\\approx 10 \\mu m$$ when the DECam temperature cycles; and low-order distortions to each exposure from changes in atmospheric refraction and telescope alignment. Errors in this astrometric model are dominated by stochastic variations with typical amplitudes of 10-30 mas (in a 30 s exposure) and $$5^{\\prime}-10^{\\prime}$$ arcmin coherence length, plausibly attributed to Kolmogorov-spectrum atmospheric turbulence. The size of these atmospheric distortions is not closely related to the seeing. Given an astrometric reference catalog at density $$\\approx 0.7$$ $$arcmin^{-2}$$, e.g. from Gaia, the typical atmospheric distortions can be interpolated to $$\\approx$$ 7 mas RMS accuracy (for 30 s exposures) with $$1^{\\prime}$$ arcmin coherence length for residual errors. Remaining detectable error contributors are 2-4 mas RMS from unmodelled stray electric fields in the devices, and another 2-4 mas RMS from focal plane shifts between camera thermal cycles. Thus the astrometric solution for a single DECam exposure is accurate to 3-6 mas ( $$\\approx$$ 0.02 pixels, or $$\\approx$$ 300 nm) on the focal plane, plus the stochastic atmospheric distortion.« less

  12. Analytical Considerations about the Cosmological Constant and Dark Energy

    NASA Astrophysics Data System (ADS)

    Abreu, Everton M. C.; de Assis, Leonardo P. G.; Dos Reis, Carlos M. L.

    The accelerated expansion of the universe has now been confirmed by several independent observations including those of high redshift type Ia supernovae, and the cosmic microwave background combined with the large scale structure of the universe. Another way of presenting this kinematic property of the universe is to postulate the existence of a new and exotic entity, with negative pressure, the dark energy (DE). In spite of observationally well established, no single theoretical model provides an entirely compelling framework within which cosmic acceleration or DE can be understood. At present all existing observational data are in agreement with the simplest possibility that the cosmological constant be a candidate for DE. This case is internally self-consistent and noncontradictory. The extreme smallness of the cosmological constant expressed in either Planck, or even atomic units means only that its origin is not related to strong, electromagnetic, and weak interactions. Although in this case DE reduces to only a single fundamental constant we still have no derivation from any underlying quantum field theory for its small value. From the principles of quantum cosmologies, for example, it is possible to obtain the reason for an inverse-square law for the cosmological constant with no conflict with observations. Despite the fact that this general expression is well known, in this work we introduce families of analytical solutions for the scale factor different from the current literature. The knowledge of the scale factor behavior might shed some light on these questions mentioned above since the entire evolution of a homogeneous isotropic universe is contained in the scale factor. We use different parameters for these solutions and with these parameters we establish a connection with the equation of state for different DE scenarios.

  13. Dark energy and modified gravity in the Effective Field Theory of Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Cusin, Giulia; Lewandowski, Matthew; Vernizzi, Filippo

    2018-04-01

    We develop an approach to compute observables beyond the linear regime of dark matter perturbations for general dark energy and modified gravity models. We do so by combining the Effective Field Theory of Dark Energy and Effective Field Theory of Large-Scale Structure approaches. In particular, we parametrize the linear and nonlinear effects of dark energy on dark matter clustering in terms of the Lagrangian terms introduced in a companion paper [1], focusing on Horndeski theories and assuming the quasi-static approximation. The Euler equation for dark matter is sourced, via the Newtonian potential, by new nonlinear vertices due to modified gravity and, as in the pure dark matter case, by the effects of short-scale physics in the form of the divergence of an effective stress tensor. The effective fluid introduces a counterterm in the solution to the matter continuity and Euler equations, which allows a controlled expansion of clustering statistics on mildly nonlinear scales. We use this setup to compute the one-loop dark-matter power spectrum.

  14. Chemical Abundance Measurements of Ultra-Faint Dwarf Galaxies Discovered by the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Nagasawa, Daniel; Marshall, Jennifer L.; Simon, Joshua D.; Hansen, Terese; Li, Ting; Bernstein, Rebecca; Balbinot, Eduardo; Drlica-Wagner, Alex; Pace, Andrew; Strigari, Louis; Pellegrino, Craig; DePoy, Darren L.; Suntzeff, Nicholas; Bechtol, Keith; Dark Energy Suvey

    2018-01-01

    We present chemical abundance analysis results derived from high-resolution spectroscopy of ultra-faint dwarfs discovered by the Dark Energy Survey. Ultra-faint dwarf galaxies preserve a fossil record of the chemical abundance patterns imprinted by the first stars in the Universe. High-resolution spectroscopic observations of member stars in several recently discovered Milky Way satellites reveal a range of abundance patterns among ultra-faint dwarfs suggesting that star formation processes in the early Universe were quite diverse. The chemical content provides a glimpse not only of the varied nucleosynthetic processes and chemical history of the dwarfs themselves, but also the environment in which they were formed. We present the chemical abundance analysis of these objects and discuss possible explanations for the observed abundance patterns.

  15. Dark Energy and Gravity: Yin and Yang of the Universe Artist Concept

    2011-05-19

    New results from NASA Galaxy Evolution Explorer and the Anglo-Australian Telescope atop Siding Spring Mountain in Australia confirm that dark energy is a smooth, uniform force that now dominates over the effects of gravity.

  16. Constraints on Dark Energy from Baryon Acoustic Peak and Galaxy Cluster Gas Mass Measurements

    NASA Astrophysics Data System (ADS)

    Samushia, Lado; Ratra, Bharat

    2009-10-01

    We use baryon acoustic peak measurements by Eisenstein et al. and Percival et al., together with the Wilkinson Microwave Anisotropy Probe (WMAP) measurement of the apparent acoustic horizon angle, and galaxy cluster gas mass fraction measurements of Allen et al., to constrain a slowly rolling scalar field dark energy model, phiCDM, in which dark energy's energy density changes in time. We also compare our phiCDM results with those derived for two more common dark energy models: the time-independent cosmological constant model, ΛCDM, and the XCDM parameterization of dark energy's equation of state. For time-independent dark energy, the Percival et al. measurements effectively constrain spatial curvature and favor a close to the spatially flat model, mostly due to the WMAP cosmic microwave background prior used in the analysis. In a spatially flat model the Percival et al. data less effectively constrain time-varying dark energy. The joint baryon acoustic peak and galaxy cluster gas mass constraints on the phiCDM model are consistent with but tighter than those derived from other data. A time-independent cosmological constant in a spatially flat model provides a good fit to the joint data, while the α parameter in the inverse power-law potential phiCDM model is constrained to be less than about 4 at 3σ confidence level.

  17. Doppelgänger dark energy: modified gravity with non-universal couplings after GW170817

    NASA Astrophysics Data System (ADS)

    Amendola, Luca; Bettoni, Dario; Domènech, Guillem; Gomes, Adalto R.

    2018-06-01

    Gravitational Wave (GW) astronomy severely narrowed down the theoretical space for scalar-tensor theories. We propose a new class of attractor models {for Horndeski action} in which GWs propagate at the speed of light in the nearby universe but not in the past. To do so we derive new solutions to the interacting dark sector in which the ratio of dark energy and dark matter remains constant, which we refer to as doppelgänger dark energy (DDE). We then remove the interaction between dark matter and dark energy by a suitable change of variables. The accelerated expansion that (we) baryons observe is due to a conformal coupling to the dark energy scalar field. We show how in this context it is possible to find a non trivial subset of solutions in which GWs propagate at the speed of light only at low red-shifts. The model is an attractor, thus reaching the limit cT→1 relatively fast. However, the effect of baryons turns out to be non-negligible and severely constrains the form of the Lagrangian. In passing, we found that in the simplest DDE models the no-ghost conditions for perturbations require a non-universal coupling to gravity. In the end, we comment on possible ways to solve the lack of matter domination stage for DDE models.

  18. Gravitational lensing: a unique probe of dark matter and dark energy.

    PubMed

    Ellis, Richard S

    2010-03-13

    I review the development of gravitational lensing as a powerful tool of the observational cosmologist. After the historic eclipse expedition organized by Arthur Eddington and Frank Dyson, the subject lay observationally dormant for 60 years. However, subsequent progress has been astonishingly rapid, especially in the past decade, so that gravitational lensing now holds the key to unravelling the two most profound mysteries of our Universe-the nature and distribution of dark matter, and the origin of the puzzling cosmic acceleration first identified in the late 1990s. In this non-specialist review, I focus on the unusual history and achievements of gravitational lensing and its future observational prospects.

  19. Gravitational lensing: a unique probe of dark matter and dark energy

    PubMed Central

    Ellis, Richard S.

    2010-01-01

    I review the development of gravitational lensing as a powerful tool of the observational cosmologist. After the historic eclipse expedition organized by Arthur Eddington and Frank Dyson, the subject lay observationally dormant for 60 years. However, subsequent progress has been astonishingly rapid, especially in the past decade, so that gravitational lensing now holds the key to unravelling the two most profound mysteries of our Universe—the nature and distribution of dark matter, and the origin of the puzzling cosmic acceleration first identified in the late 1990s. In this non-specialist review, I focus on the unusual history and achievements of gravitational lensing and its future observational prospects. PMID:20123743

  20. Analysis of interacting entropy-corrected holographic and new agegraphic dark energies

    NASA Astrophysics Data System (ADS)

    Ranjit, Chayan; Debnath, Ujjal

    In the present work, we assume the flat FRW model of the universe is filled with dark matter and dark energy where they are interacting. For dark energy model, we consider the entropy-corrected HDE (ECHDE) model and the entropy-corrected NADE (ECNADE). For entropy-corrected models, we assume logarithmic correction and power law correction. For ECHDE model, length scale L is assumed to be Hubble horizon and future event horizon. The ωde-ωde‧ analysis for our different horizons are discussed.

  1. Constraining heavy decaying dark matter with the high energy gamma-ray limits

    NASA Astrophysics Data System (ADS)

    Kalashev, O. E.; Kuznetsov, M. Yu.

    2016-09-01

    We consider decaying dark matter with masses 1 07≲M ≲1 016 GeV as a source of ultrahigh energy (UHE) gamma rays. Using recent limits on UHE gamma-ray flux for energies Eγ>2 ×1 014 eV , provided by extensive air shower observatories, we put limits on masses and lifetimes of the dark matter. We also discuss possible dark matter decay origin of tentative 100 PeV photon flux detected with the EAS-MSU experiment.

  2. N-body simulations with a cosmic vector for dark energy

    NASA Astrophysics Data System (ADS)

    Carlesi, Edoardo; Knebe, Alexander; Yepes, Gustavo; Gottlöber, Stefan; Jiménez, Jose Beltrán.; Maroto, Antonio L.

    2012-07-01

    We present the results of a series of cosmological N-body simulations of a vector dark energy (VDE) model, performed using a suitably modified version of the publicly available GADGET-2 code. The set-ups of our simulations were calibrated pursuing a twofold aim: (1) to analyse the large-scale distribution of massive objects and (2) to determine the properties of halo structure in this different framework. We observe that structure formation is enhanced in VDE, since the mass function at high redshift is boosted up to a factor of 10 with respect to Λ cold dark matter (ΛCDM), possibly alleviating tensions with the observations of massive clusters at high redshifts and early reionization epoch. Significant differences can also be found for the value of the growth factor, which in VDE shows a completely different behaviour, and in the distribution of voids, which in this cosmology are on average smaller and less abundant. We further studied the structure of dark matter haloes more massive than 5 × 1013 h-1 M⊙, finding that no substantial difference emerges when comparing spin parameter, shape, triaxiality and profiles of structures evolved under different cosmological pictures. Nevertheless, minor differences can be found in the concentration-mass relation and the two-point correlation function, both showing different amplitudes and steeper slopes. Using an additional series of simulations of a ΛCDM scenario with the same ? and σ8 used in the VDE cosmology, we have been able to establish whether the modifications induced in the new cosmological picture were due to the particular nature of the dynamical dark energy or a straightforward consequence of the cosmological parameters. On large scales, the dynamical effects of the cosmic vector field can be seen in the peculiar evolution of the cluster number density function with redshift, in the shape of the mass function, in the distribution of voids and on the characteristic form of the growth index γ(z). On

  3. Development of a force sensor using atom interferometry to constrain theories on dark matter and dark energy

    NASA Astrophysics Data System (ADS)

    Schlupf, Chandler; Niederriter, Robert; Bohr, Eliot; Khamis, Sami; Park, Youna; Szwed, Erik; Hamilton, Paul

    2017-04-01

    Atom interferometry has been used in many precision measurements such as Newton's gravitational constant, the fine structure constant, and tests of the equivalence principle. We will perform atom interferometry in an optical lattice to measure the force felt by an atom due to a test mass in search of new forces suggested by dark matter and dark energy theories. We will be developing a new apparatus using laser-cooled ytterbium to continuously measure this force by observing their Bloch oscillations. Interfering atoms in an optical lattice allows continuous measurements in a small volume over a long period of time, enabling our device to be sensitive to time-varying forces while minimizing vibrational noise. We present the details of this experiment and the progress on it thus far.

  4. Black hole formation due to collapsing dark matter in a presence of dark energy in the brane-world scenario

    NASA Astrophysics Data System (ADS)

    Shah, Hasrat Hussain

    In the last three to four decades, various programs have been studied in order to investigate the final fate of gravitational collapse of massive astronomical objects. In the theoretical context, Black Holes (BHs) are the consequence of final stage of the gravitational collapse. In this work, we investigated the gravitational collapse process of a spherically symmetric star constituted of dark matter (DM), ρM, and Dark Energy (DE), ρ in the context of the brane-world scenario. In our model, we discussed the anisotropy of the pressure in a fluid with Equation of State (EoS) pt = kρ and pr = lρ, (l + 2k < ‑1). We briefly discussed various cases of gravitational collapse and it is found that BH can be formed by the gravitational collapse in brane-world regime while in some cases there is only a naked singularity at their end state.

  5. Comparison of dark energy models: A perspective from the latest observational data

    NASA Astrophysics Data System (ADS)

    Li, Miao; Li, Xiaodong; Zhang, Xin

    2010-09-01

    We compare some popular dark energy models under the assumption of a flat universe by using the latest observational data including the type Ia supernovae Constitution compilation, the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey, the cosmic microwave background measurement given by the seven-year Wilkinson Microwave Anisotropy Probe observations and the determination of H 0 from the Hubble Space Telescope. Model comparison statistics such as the Bayesian and Akaike information criteria are applied to assess the worth of the models. These statistics favor models that give a good fit with fewer parameters. Based on this analysis, we find that the simplest cosmological constant model that has only one free parameter is still preferred by the current data. For other dynamical dark energy models, we find that some of them, such as the α dark energy, constant w, generalized Chaplygin gas, Chevalliear-Polarski-Linder parametrization, and holographic dark energy models, can provide good fits to the current data, and three of them, namely, the Ricci dark energy, agegraphic dark energy, and Dvali-Gabadadze-Porrati models, are clearly disfavored by the data.

  6. Dark energy and the structure of the Coma cluster of galaxies

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Bisnovatyi-Kogan, G. S.; Teerikorpi, P.; Valtonen, M. J.; Byrd, G. G.; Merafina, M.

    2013-05-01

    Context. We consider the Coma cluster of galaxies as a gravitationally bound physical system embedded in the perfectly uniform static dark energy background as implied by ΛCDM cosmology. Aims: We ask if the density of dark energy is high enough to affect the structure of a large and rich cluster of galaxies. Methods: We base our work on recent observational data on the Coma cluster, and apply our theory of local dynamical effects of dark energy, including the zero-gravity radius RZG of the local force field as the key parameter. Results: 1) Three masses are defined that characterize the structure of a regular cluster: the matter mass MM, the dark-energy effective mass MDE (<0), and the gravitating mass MG (=MM + MDE). 2) A new matter-density profile is suggested that reproduces the observational data well for the Coma cluster in the radius range from 1.4 Mpc to 14 Mpc and takes the dark energy background into account. 3) Using this profile, we calculate upper limits for the total size of the Coma cluster, R ≤ RZG ≈ 20 Mpc, and its total matter mass, MM ≲ MM(RZG) = 6.2 × 1015 M⊙. Conclusions: The dark energy antigravity affects the structure of the Coma cluster strongly at large radii R ≳ 14 Mpc and should be considered when its total mass is derived.

  7. Modeling and Testing Dark Energy and Gravity with Galaxy Cluster Data

    NASA Astrophysics Data System (ADS)

    Rapetti, David; Cataneo, Matteo; Heneka, Caroline; Mantz, Adam; Allen, Steven W.; Von Der Linden, Anja; Schmidt, Fabian; Lombriser, Lucas; Li, Baojiu; Applegate, Douglas; Kelly, Patrick; Morris, Glenn

    2018-06-01

    The abundance of galaxy clusters is a powerful probe to constrain the properties of dark energy and gravity at large scales. We employed a self-consistent analysis that includes survey, observable-mass scaling relations and weak gravitational lensing data to obtain constraints on f(R) gravity, which are an order of magnitude tighter than the best previously achieved, as well as on cold dark energy of negligible sound speed. The latter implies clustering of the dark energy fluid at all scales, allowing us to measure the effects of dark energy perturbations at cluster scales. For this study, we recalibrated the halo mass function using the following non-linear characteristic quantities: the spherical collapse threshold, the virial overdensity and an additional mass contribution for cold dark energy. We also presented a new modeling of the f(R) gravity halo mass function that incorporates novel corrections to capture key non-linear effects of the Chameleon screening mechanism, as found in high resolution N-body simulations. All these results permit us to predict, as I will also exemplify, and eventually obtain the next generation of cluster constraints on such models, and provide us with frameworks that can also be applied to other proposed dark energy and modified gravity models using cluster abundance observations.

  8. Modified Regge calculus as an explanation of dark energy

    NASA Astrophysics Data System (ADS)

    Stuckey, W. M.; McDevitt, T. J.; Silberstein, M.

    2012-03-01

    Using the Regge calculus, we construct a Regge differential equation for the time evolution of the scale factor a(t) in the Einstein-de Sitter cosmology model (EdS). We propose two modifications to the Regge calculus approach: (1) we allow the graphical links on spatial hypersurfaces to be large, as in direct particle interaction when the interacting particles reside in different galaxies, and (2) we assume that luminosity distance DL is related to graphical proper distance Dp by the equation D_L = (1+z)\\sqrt{\\overrightarrow{D_p}\\cdot \\overrightarrow{D_p}}, where the inner product can differ from its usual trivial form. The modified Regge calculus model (MORC), EdS and ΛCDM are compared using the data from the Union2 Compilation, i.e. distance moduli and redshifts for type Ia supernovae. We find that a best fit line through log {\\big(\\frac{D_L}{{Gpc}}\\big)} versus log z gives a correlation of 0.9955 and a sum of squares error (SSE) of 1.95. By comparison, the best fit ΛCDM gives SSE = 1.79 using Ho = 69.2 km s-1 Mpc, ΩM = 0.29 and ΩΛ = 0.71. The best fit EdS gives SSE = 2.68 using Ho = 60.9 km s-1 Mpc. The best-fit MORC gives SSE = 1.77 and Ho = 73.9 km s-1 Mpc using R = A-1 = 8.38 Gcy and m = 1.71 × 1052 kg, where R is the current graphical proper distance between nodes, A-1 is the scaling factor from our non-trivial inner product, and m is the nodal mass. Thus, the MORC improves the EdS as well as ΛCDM in accounting for distance moduli and redshifts for type Ia supernovae without having to invoke accelerated expansion, i.e. there is no dark energy and the universe is always decelerating.

  9. Perturbation of a planetary orbit by the Lambda-term (dark energy) in Einstein equations

    NASA Astrophysics Data System (ADS)

    Dumin, Yurii

    The problem of cosmological influences at small (e.g. interplanetary) scales is discussed for a few decades, starting from the early 1930's, but still remains unsolved definitively by now [1]. This subject became especially topical in the context of the dark-energy-dominated cosmology, because the commonly-used arguments against the local Hubble expansion (such as Einstein-Straus theorem [2]) are inapplicable when the most contribution to the energy density of the Universe comes from the perfectly-uniform dark energy (Lambda-term). Moreover, there are some empirical evidences in favor of the local cosmological influences. For example, inclusion of the local Hubble expansion into dynamics of the Earth-Moon system enables us to resolve a long-standing discrepancy in the rates of secular increase of the lunar semi-major axis (a) mea-sured by the lunar laser ranging and (b) derived from the astrometric observations of the Earth's rotation deceleration [3, 4]. The aim of the present report is to provide a detailed mathematical treatment of the respective two-body problem in the framework of General Relativity, which is based on the Kottler metric reduced to the Robertson-Walker cosmological asymptotics, as outlined in our earlier work [5]. References: 1. W.B. Bonnor. Gen. Rel. Grav., v.32, p.1005 (2000). 2. A. Einstein and E.G. Straus. Rev. Mod. Phys., v.17, p.120 (1945). 3. Yu.V. Dumin. Adv. Space Res., v.31, p.2461 (2003). 4. Yu.V. Dumin. In Proc. 11th Marcel Grossmann Meeting on General Relativity, World Sci., Singapore, p.1752 (2008). 5. Yu.V. Dumin. Phys. Rev. Lett., v.98, p.059001 (2007).

  10. Composition-Dependent Energy Splitting between Bright and Dark Excitons in Lead Halide Perovskite Nanocrystals.

    PubMed

    Chen, Lan; Li, Bin; Zhang, Chunfeng; Huang, Xinyu; Wang, Xiaoyong; Xiao, Min

    2018-03-14

    Perovskite semiconductor nanocrystals with different compositions have shown promise for applications in light-emitting devices. Dark excitonic states may suppress light emission from such nanocrystals by providing an additional nonradiative recombination channel. Here, we study the composition dependence of dark exciton dynamics in nanocrystals of lead halides by time-resolved photoluminescence spectroscopy at cryogenic temperatures. The presence of a spin-related dark state is revealed by magneto-optical spectroscopy. The energy splitting between bright and dark states is found to be highly sensitive to both halide elements and organic cations, which is explained by considering the effects of size confinement and charge screening, respectively, on the exchange interaction. These findings suggest the possibility of manipulating dark exciton dynamics in perovskite semiconductor nanocrystals by composition engineering, which will be instrumental in the design of highly efficient light-emitting devices.

  11. Dark catalysis

    SciT

    Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa

    Recently it was shown that dark matter with mass of order the weak scale can be charged under a new long-range force, decoupled from the Standard Model, with only weak constraints from early Universe cosmology. Here we consider the implications of an additional charged particle C that is light enough to lead to significant dissipative dynamics on galactic times scales. We highlight several novel features of this model, which can be relevant even when the C particle constitutes only a small fraction of the number density (and energy density). We assume a small asymmetric abundance of the C particle whosemore » charge is compensated by a heavy X particle so that the relic abundance of dark matter consists mostly of symmetric X and X-bar , with a small asymmetric component made up of X and C . As the universe cools, it undergoes asymmetric recombination binding the free C s into ( XC ) dark atoms efficiently. Even with a tiny asymmetric component, the presence of C particles catalyzes tight coupling between the heavy dark matter X and the dark photon plasma that can lead to a significant suppression of the matter power spectrum on small scales and lead to some of the strongest bounds on such dark matter theories. We find a viable parameter space where structure formation constraints are satisfied and significant dissipative dynamics can occur in galactic haloes but show a large region is excluded. Our model shows that subdominant components in the dark sector can dramatically affect structure formation.« less

  12. Eating dark and milk chocolate: a randomized crossover study of effects on appetite and energy intake.

    PubMed

    Sørensen, L B; Astrup, A

    2011-12-05

    To compare the effect of dark and milk chocolate on appetite sensations and energy intake at an ad libitum test meal in healthy, normal-weight men. A total of 16 young, healthy, normal-weight men participated in a randomized, crossover study. Test meals were 100 g of either milk (2285 kJ) or dark chocolate (2502 kJ). Visual-analogue scales were used to record appetite sensations before and after the test meal was consumed and subsequently every 30 min for 5 h. An ad libitum meal was served 2 h after the test meal had been consumed. The participants felt more satiated, less hungry, and had lower ratings of prospective food consumption after consumption of the dark chocolate than after the milk chocolate. Ratings of the desire to eat something sweet, fatty or savoury were all lower after consumption of the dark chocolate. Energy intake at the ad libitum meal was 17% lower after consumption of the dark chocolate than after the milk chocolate (P=0.002). If the energy provided by the chocolate is included in the calculation, the energy intake after consumption of the dark chocolate was still 8% lower than after the milk chocolate (P=0.01). The dark chocolate load resulted in an overall energy difference of -584 kJ (95% confidence interval (-1027;-141)) during the test period. In the present study, dark chocolate promotes satiety, lowers the desire to eat something sweet, and suppresses energy intake compared with milk chocolate.

  13. Eating dark and milk chocolate: a randomized crossover study of effects on appetite and energy intake

    PubMed Central

    Sørensen, L B; Astrup, A

    2011-01-01

    Objective: To compare the effect of dark and milk chocolate on appetite sensations and energy intake at an ad libitum test meal in healthy, normal-weight men. Subjects/methods: A total of 16 young, healthy, normal-weight men participated in a randomized, crossover study. Test meals were 100 g of either milk (2285 kJ) or dark chocolate (2502 kJ). Visual-analogue scales were used to record appetite sensations before and after the test meal was consumed and subsequently every 30 min for 5 h. An ad libitum meal was served 2 h after the test meal had been consumed. Results: The participants felt more satiated, less hungry, and had lower ratings of prospective food consumption after consumption of the dark chocolate than after the milk chocolate. Ratings of the desire to eat something sweet, fatty or savoury were all lower after consumption of the dark chocolate. Energy intake at the ad libitum meal was 17% lower after consumption of the dark chocolate than after the milk chocolate (P=0.002). If the energy provided by the chocolate is included in the calculation, the energy intake after consumption of the dark chocolate was still 8% lower than after the milk chocolate (P=0.01). The dark chocolate load resulted in an overall energy difference of −584 kJ (95% confidence interval (−1027;−141)) during the test period. Conclusion: In the present study, dark chocolate promotes satiety, lowers the desire to eat something sweet, and suppresses energy intake compared with milk chocolate. PMID:23455041

  14. Distinguishing interacting dark energy from wCDM with CMB, lensing, and baryon acoustic oscillation data

    SciT

    Väliviita, Jussi; Palmgren, Elina, E-mail: jussi.valiviita@helsinki.fi, E-mail: elina.palmgren@helsinki.fi

    2015-07-01

    We employ the Planck 2013 CMB temperature anisotropy and lensing data, and baryon acoustic oscillation (BAO) data to constrain a phenomenological wCDM model, where dark matter and dark energy interact. We assume time-dependent equation of state parameter for dark energy, and treat dark matter and dark energy as fluids whose energy-exchange rate is proportional to the dark-matter density. The CMB data alone leave a strong degeneracy between the interaction rate and the physical CDM density parameter today, ω{sub c}, allowing a large interaction rate |Γ| ∼ H{sub 0}. However, as has been known for a while, the BAO data break this degeneracy.more » Moreover, we exploit the CMB lensing potential likelihood, which probes the matter perturbations at redshift z ∼ 2 and is very sensitive to the growth of structure, and hence one of the tools for discerning between the ΛCDM model and its alternatives. However, we find that in the non-phantom models (w{sub de}>−1), the constraints remain unchanged by the inclusion of the lensing data and consistent with zero interaction, −0.14 < Γ/H{sub 0} < 0.02 at 95% CL. On the contrary, in the phantom models (w{sub de}<−1), energy transfer from dark energy to dark matter is moderately favoured over the non-interacting model; 0−0.57 < Γ/H{sub 0} < −0.1 at 95% CL with CMB+BAO, while addition of the lensing data shifts this to −0.46 < Γ/H{sub 0} < −0.01.« less

  15. Imprints of non-standard dark energy and dark matter models on the 21cm intensity map power spectrum

    NASA Astrophysics Data System (ADS)

    Carucci, Isabella P.; Corasaniti, Pier-Stefano; Viel, Matteo

    2017-12-01

    We study the imprint of non-standard dark energy (DE) and dark matter (DM) models on the 21cm intensity map power spectra from high-redshift neutral hydrogen (HI) gas. To this purpose we use halo catalogs from N-body simulations of dynamical DE models and DM scenarios which are as successful as the standard Cold Dark Matter model with Cosmological Constant (ΛCDM) at interpreting available cosmological observations. We limit our analysis to halo catalogs at redshift z=1 and 2.3 which are common to all simulations. For each catalog we model the HI distribution by using a simple prescription to associate the HI gas mass to N-body halos. We find that the DE models leave a distinct signature on the HI spectra across a wide range of scales, which correlates with differences in the halo mass function and the onset of the non-linear regime of clustering. In the case of the non-standard DM model significant differences of the HI spectra with respect to the ΛCDM model only arise from the suppressed abundance of low mass halos. These cosmological model dependent features also appear in the 21cm spectra. In particular, we find that future SKA measurements can distinguish the imprints of DE and DM models at high statistical significance.

  16. Reconstruction of the Dark Energy Equation of State from the Latest Observations

    NASA Astrophysics Data System (ADS)

    Dai, Ji-Ping; Yang, Yang; Xia, Jun-Qing

    2018-04-01

    Since the discovery of the accelerating expansion of our universe in 1998, studying the features of dark energy has remained a hot topic in modern cosmology. In the literature, dark energy is usually described by w ≡ P/ρ, where P and ρ denote its pressure and energy density. Therefore, exploring the evolution of w is the key approach to understanding dark energy. In this work, we adopt three different methods, polynomial expansion, principal component analysis, and the correlated prior method, to reconstruct w with a collection of the latest observations, including the type-Ia supernova, cosmic microwave background, large-scale structure, Hubble measurements, and baryon acoustic oscillations (BAOs), and find that the concordance cosmological constant model (w = ‑1) is still safely consistent with these observational data at the 68% confidence level. However, when we add the high-redshift BAO measurement from the Lyα forest (Lyα FB) of BOSS DR11 quasars into the calculation, there is a significant impact on the reconstruction result. In the standard ΛCDM model, since the Lyα FB data slightly prefer a negative dark energy density, in order to avoid this problem, a dark energy model with a w significantly smaller than ‑1 is needed to explain this Lyα FB data. In this work, we find the consistent conclusion that there is a strong preference for the time-evolving behavior of dark energy w at high redshifts, when including the Lyα FB data. Therefore, we think that this Lyα FB data needs to be watched carefully attention when studying the evolution of the dark energy equation of state.

  17. Experimental High Energy Physics Research: Direct Detection of Dark Matter

    SciT

    Witherell, Michael S.

    2014-10-02

    The grant supported research on an experimental search for evidence of dark matter interactions with normal matter. The PI carried out the research as a member of the LUX and LZ collaborations. The LUX research team collected a first data set with the LUX experiment, a large liquid xenon detector installed in the Sanford Underground Research Facility (SURF). The first results were published in Physical Review Letters on March 4, 2014. The journal Nature named the LUX result a scientific highlight of the year for 2013. In addition, the LZ collaboration submitted the full proposal for the Lux Zeplin experiment,more » which has since been approved by DOE-HEP as a second-generation dark matter experiment. Witherell is the Level 2 manager for the Outer Detector System on the LUX-Zeplin experiment.« less

  18. Dark energy fingerprints in the nonminimal Wu-Yang wormhole structure

    NASA Astrophysics Data System (ADS)

    Balakin, Alexander B.; Zayats, Alexei E.

    2014-08-01

    We discuss new exact solutions to nonminimally extended Einstein-Yang-Mills equations describing spherically symmetric static wormholes supported by the gauge field of the Wu-Yang type in a dark energy environment. We focus on the analysis of three types of exact solutions to the gravitational field equations. Solutions of the first type relate to the model, in which the dark energy is anisotropic; i.e., the radial and tangential pressures do not coincide. Solutions of the second type correspond to the isotropic pressure tensor; in particular, we discuss the exact solution, for which the dark energy is characterized by the equation of state for a string gas. Solutions of the third type describe the dark energy model with constant pressure and energy density. For the solutions of the third type, we consider in detail the problem of horizons and find constraints for the parameters of nonminimal coupling and for the constitutive parameters of the dark energy equation of state, which guarantee that the nonminimal wormholes are traversable.

  19. Automated detection of dark and bright lesions in retinal images for early detection of diabetic retinopathy.

    PubMed

    Akram, Usman M; Khan, Shoab A

    2012-10-01

    There is an ever-increasing interest in the development of automatic medical diagnosis systems due to the advancement in computing technology and also to improve the service by medical community. The knowledge about health and disease is required for reliable and accurate medical diagnosis. Diabetic Retinopathy (DR) is one of the most common causes of blindness and it can be prevented if detected and treated early. DR has different signs and the most distinctive are microaneurysm and haemorrhage which are dark lesions and hard exudates and cotton wool spots which are bright lesions. Location and structure of blood vessels and optic disk play important role in accurate detection and classification of dark and bright lesions for early detection of DR. In this article, we propose a computer aided system for the early detection of DR. The article presents algorithms for retinal image preprocessing, blood vessel enhancement and segmentation and optic disk localization and detection which eventually lead to detection of different DR lesions using proposed hybrid fuzzy classifier. The developed methods are tested on four different publicly available databases. The presented methods are compared with recently published methods and the results show that presented methods outperform all others.

  20. Dark energy in the three-body problem: Wide triple galaxies

    NASA Astrophysics Data System (ADS)

    Emel'yanov, N. V.; Kovalev, M. Yu.; Chernin, A. D.

    2016-04-01

    The structure and evolution of triple galaxy systems in the presence of the cosmic dark-energy background is studied in the framework of the three-body problem. The dynamics of wide triple systems are determinedmainly by the competition between the mutual gravitational forces between the three bodies and the anti-gravity created by the dark-energy background. This problem can be solved via numerical integration of the equations of motion with initial conditions that admit various types of evolutionary behavior of the system. Such dynamical models show that the anti-gravity created by dark energy makes a triple system less tightly bound, thereby facilitating its decay, with a subsequent transition to motion of the bodies away from each other in an accelerating regime with a linear Hubble-law dependence of the velocity on distance. The coefficient of proportionality between the velocity and distance in this asymptotic relation corresponds to the universal value H Λ = 61 km s-1 Mpc-1, which depends only on the dark-energy density. The similarity of this relation to the large-scale recession of galaxies indicates that double and triple galaxies represent elementary dynamical cells realizing the overall behavior of a system dominated by dark energy on their own scale, independent of their masses and dimensions.

  1. Weakly dynamic dark energy via metric-scalar couplings with torsion

    SciT

    Sur, Sourav; Bhatia, Arshdeep Singh, E-mail: sourav.sur@gmail.com, E-mail: arshdeepsb@gmail.com

    We study the dynamical aspects of dark energy in the context of a non-minimally coupled scalar field with curvature and torsion. Whereas the scalar field acts as the source of the trace mode of torsion, a suitable constraint on the torsion pseudo-trace provides a mass term for the scalar field in the effective action. In the equivalent scalar-tensor framework, we find explicit cosmological solutions representing dark energy in both Einstein and Jordan frames. We demand the dynamical evolution of the dark energy to be weak enough, so that the present-day values of the cosmological parameters could be estimated keeping themmore » within the confidence limits set for the standard LCDM model from recent observations. For such estimates, we examine the variations of the effective matter density and the dark energy equation of state parameters over different redshift ranges. In spite of being weakly dynamic, the dark energy component differs significantly from the cosmological constant, both in characteristics and features, for e.g. it interacts with the cosmological (dust) fluid in the Einstein frame, and crosses the phantom barrier in the Jordan frame. We also obtain the upper bounds on the torsion mode parameters and the lower bound on the effective Brans-Dicke parameter. The latter turns out to be fairly large, and in agreement with the local gravity constraints, which therefore come in support of our analysis.« less

  2. An instability of the standard model of cosmology creates the anomalous acceleration without dark energy

    NASA Astrophysics Data System (ADS)

    Smoller, Joel; Temple, Blake; Vogler, Zeke

    2017-11-01

    We identify the condition for smoothness at the centre of spherically symmetric solutions of Einstein's original equations without the cosmological constant or dark energy. We use this to derive a universal phase portrait which describes general, smooth, spherically symmetric solutions near the centre of symmetry when the pressure p=0. In this phase portrait, the critical k=0 Friedmann space-time appears as a saddle rest point which is unstable to spherical perturbations. This raises the question as to whether the Friedmann space-time is observable by redshift versus luminosity measurements looking outwards from any point. The unstable manifold of the saddle rest point corresponding to Friedmann describes the evolution of local uniformly expanding space-times whose accelerations closely mimic the effects of dark energy. A unique simple wave perturbation from the radiation epoch is shown to trigger the instability, match the accelerations of dark energy up to second order and distinguish the theory from dark energy at third order. In this sense, anomalous accelerations are not only consistent with Einstein's original theory of general relativity, but are a prediction of it without the cosmological constant or dark energy.

  3. Light bending, static dark energy, and related uniqueness of Schwarzschild-de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Ali, Md Sabir; Bhattacharya, Sourav

    2018-01-01

    Since the Schwarzschild-de Sitter spacetime is static inside the cosmological event horizon, if the dark energy state parameter is sufficiently close to -1 , apparently one could still expect an effectively static geometry, in the attraction dominated region inside the maximum turnaround radius, RTA ,max, of a cosmic structure. We take the first order metric derived recently assuming a static and ideal dark energy fluid with equation of state P (r )=α ρ (r ) as a source in Bhattacharya and Tomaras [Eur. Phys. J. C 77, 526 (2017), 10.1140/epjc/s10052-017-5102-4], which reproduced the expression for RTA ,max found earlier in the cosmological McVittie spacetime. Here we show that the equality originates from the equivalence of geodesic motion in these two backgrounds, in the nonrelativistic regime. We extend this metric up to the third order and compute the bending of light using the Rindler-Ishak method. For α ≠-1 , a dark energy dependent term appears in the bending equation, unlike the case of the cosmological constant, α =-1 . Because of this new term in particular, existing data for the light bending at galactic scales yields (1 +α )≲O (10-14), thereby practically ruling out any such static and inhomogeneous dark energy fluid we started with. Implication of this result pertaining to the uniqueness of the Schwarzschild-de Sitter spacetime in such an inhomogeneous dark energy background is discussed.

  4. Weakly dynamic dark energy via metric-scalar couplings with torsion

    NASA Astrophysics Data System (ADS)

    Sur, Sourav; Singh Bhatia, Arshdeep

    2017-07-01

    We study the dynamical aspects of dark energy in the context of a non-minimally coupled scalar field with curvature and torsion. Whereas the scalar field acts as the source of the trace mode of torsion, a suitable constraint on the torsion pseudo-trace provides a mass term for the scalar field in the effective action. In the equivalent scalar-tensor framework, we find explicit cosmological solutions representing dark energy in both Einstein and Jordan frames. We demand the dynamical evolution of the dark energy to be weak enough, so that the present-day values of the cosmological parameters could be estimated keeping them within the confidence limits set for the standard LCDM model from recent observations. For such estimates, we examine the variations of the effective matter density and the dark energy equation of state parameters over different redshift ranges. In spite of being weakly dynamic, the dark energy component differs significantly from the cosmological constant, both in characteristics and features, for e.g. it interacts with the cosmological (dust) fluid in the Einstein frame, and crosses the phantom barrier in the Jordan frame. We also obtain the upper bounds on the torsion mode parameters and the lower bound on the effective Brans-Dicke parameter. The latter turns out to be fairly large, and in agreement with the local gravity constraints, which therefore come in support of our analysis.

  5. Cosmological effects of scalar-photon couplings: dark energy and varying-α Models

    SciT

    Avgoustidis, A.; Martins, C.J.A.P.; Monteiro, A.M.R.V.L.

    2014-06-01

    We study cosmological models involving scalar fields coupled to radiation and discuss their effect on the redshift evolution of the cosmic microwave background temperature, focusing on links with varying fundamental constants and dynamical dark energy. We quantify how allowing for the coupling of scalar fields to photons, and its important effect on luminosity distances, weakens current and future constraints on cosmological parameters. In particular, for evolving dark energy models, joint constraints on the dark energy equation of state combining BAO radial distance and SN luminosity distance determinations, will be strongly dominated by BAO. Thus, to fully exploit future SN datamore » one must also independently constrain photon number non-conservation arising from the possible coupling of SN photons to the dark energy scalar field. We discuss how observational determinations of the background temperature at different redshifts can, in combination with distance measures data, set tight constraints on interactions between scalar fields and photons, thus breaking this degeneracy. We also discuss prospects for future improvements, particularly in the context of Euclid and the E-ELT and show that Euclid can, even on its own, provide useful dark energy constraints while allowing for photon number non-conservation.« less

  6. An instability of the standard model of cosmology creates the anomalous acceleration without dark energy.

    PubMed

    Smoller, Joel; Temple, Blake; Vogler, Zeke

    2017-11-01

    We identify the condition for smoothness at the centre of spherically symmetric solutions of Einstein's original equations without the cosmological constant or dark energy. We use this to derive a universal phase portrait which describes general, smooth, spherically symmetric solutions near the centre of symmetry when the pressure p =0. In this phase portrait, the critical k =0 Friedmann space-time appears as a saddle rest point which is unstable to spherical perturbations. This raises the question as to whether the Friedmann space-time is observable by redshift versus luminosity measurements looking outwards from any point. The unstable manifold of the saddle rest point corresponding to Friedmann describes the evolution of local uniformly expanding space-times whose accelerations closely mimic the effects of dark energy. A unique simple wave perturbation from the radiation epoch is shown to trigger the instability, match the accelerations of dark energy up to second order and distinguish the theory from dark energy at third order. In this sense, anomalous accelerations are not only consistent with Einstein's original theory of general relativity, but are a prediction of it without the cosmological constant or dark energy.

  7. Accelerating dark energy cosmological model in two fluids with hybrid scale factor

    NASA Astrophysics Data System (ADS)

    Mishra, B.; Sahoo, P. K.; Ray, Pratik P.

    In this paper, we have investigated the anisotropic behavior of the accelerating universe in Bianchi V spacetime in the framework of General Relativity (GR). The matter field we have considered is of two non-interacting fluids, i.e. the usual string fluid and dark energy (DE) fluid. In order to represent the pressure anisotropy, the skewness parameters are introduced along three different spatial directions. To achieve a physically realistic solutions to the field equations, we have considered a scale factor, known as hybrid scale factor, which is generated by a time-varying deceleration parameter. This simulates a cosmic transition from early deceleration to late time acceleration. It is observed that the string fluid dominates the universe at early deceleration phase but does not affect nature of cosmic dynamics substantially at late phase, whereas the DE fluid dominates the universe in present time, which is in accordance with the observations results. Hence, we analyzed here the role of two fluids in the transitional phases of universe with respect to time which depicts the reason behind the cosmic expansion and DE. The role of DE with variable equation of state parameter (EoS) and skewness parameters, is also discussed along with physical and geometrical properties.

  8. Photometric redshift analysis in the Dark Energy Survey Science Verification data

    NASA Astrophysics Data System (ADS)

    Sánchez, C.; Carrasco Kind, M.; Lin, H.; Miquel, R.; Abdalla, F. B.; Amara, A.; Banerji, M.; Bonnett, C.; Brunner, R.; Capozzi, D.; Carnero, A.; Castander, F. J.; da Costa, L. A. N.; Cunha, C.; Fausti, A.; Gerdes, D.; Greisel, N.; Gschwend, J.; Hartley, W.; Jouvel, S.; Lahav, O.; Lima, M.; Maia, M. A. G.; Martí, P.; Ogando, R. L. C.; Ostrovski, F.; Pellegrini, P.; Rau, M. M.; Sadeh, I.; Seitz, S.; Sevilla-Noarbe, I.; Sypniewski, A.; de Vicente, J.; Abbot, T.; Allam, S. S.; Atlee, D.; Bernstein, G.; Bernstein, J. P.; Buckley-Geer, E.; Burke, D.; Childress, M. J.; Davis, T.; DePoy, D. L.; Dey, A.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A.; Fernández, E.; Finley, D.; Flaugher, B.; Frieman, J.; Gaztanaga, E.; Glazebrook, K.; Honscheid, K.; Kim, A.; Kuehn, K.; Kuropatkin, N.; Lidman, C.; Makler, M.; Marshall, J. L.; Nichol, R. C.; Roodman, A.; Sánchez, E.; Santiago, B. X.; Sako, M.; Scalzo, R.; Smith, R. C.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, D. L.; Uddin, S. A.; Valdés, F.; Walker, A.; Yuan, F.; Zuntz, J.

    2014-12-01

    We present results from a study of the photometric redshift performance of the Dark Energy Survey (DES), using the early data from a Science Verification period of observations in late 2012 and early 2013 that provided science-quality images for almost 200 sq. deg. at the nominal depth of the survey. We assess the photometric redshift (photo-z) performance using about 15 000 galaxies with spectroscopic redshifts available from other surveys. These galaxies are used, in different configurations, as a calibration sample, and photo-z's are obtained and studied using most of the existing photo-z codes. A weighting method in a multidimensional colour-magnitude space is applied to the spectroscopic sample in order to evaluate the photo-z performance with sets that mimic the full DES photometric sample, which is on average significantly deeper than the calibration sample due to the limited depth of spectroscopic surveys. Empirical photo-z methods using, for instance, artificial neural networks or random forests, yield the best performance in the tests, achieving core photo-z resolutions σ68 ˜ 0.08. Moreover, the results from most of the codes, including template-fitting methods, comfortably meet the DES requirements on photo-z performance, therefore, providing an excellent precedent for future DES data sets.

  9. Photometric redshift analysis in the Dark Energy Survey Science Verification data

    DOE PAGES

    Sanchez, C.; Carrasco Kind, M.; Lin, H.; ...

    2014-10-09

    In this study, we present results from a study of the photometric redshift performance of the Dark Energy Survey (DES), using the early data from a Science Verification period of observations in late 2012 and early 2013 that provided science-quality images for almost 200 sq. deg. at the nominal depth of the survey. We assess the photometric redshift (photo-z) performance using about 15 000 galaxies with spectroscopic redshifts available from other surveys. These galaxies are used, in different configurations, as a calibration sample, and photo-z's are obtained and studied using most of the existing photo-z codes. A weighting method inmore » a multidimensional colour–magnitude space is applied to the spectroscopic sample in order to evaluate the photo-z performance with sets that mimic the full DES photometric sample, which is on average significantly deeper than the calibration sample due to the limited depth of spectroscopic surveys. In addition, empirical photo-z methods using, for instance, artificial neural networks or random forests, yield the best performance in the tests, achieving core photo-z resolutions σ68 ~ 0.08. Moreover, the results from most of the codes, including template-fitting methods, comfortably meet the DES requirements on photo-z performance, therefore, providing an excellent precedent for future DES data sets.« less

  10. Effects of anisotropy on interacting ghost dark energy in Brans-Dicke theories

    NASA Astrophysics Data System (ADS)

    Hossienkhani, H.; Fayaz, V.; Azimi, N.

    2017-03-01

    In this work we concentrate on the ghost dark energy model within the framework of the Brans-Dicke theory in an anisotropic Universe. Within this framework we discuss the behavior of equation of state, deceleration and dark energy density parameters of the model. We consider the squared sound speed and quest for signs of stability of the model. We also probe observational constraints by using the latest observational data on the ghost dark energy models as the unification of dark matter and dark energy. In order to do so, we focus on observational determinations of the Hubble expansion rate (namely, the expansion history) H(z). Then we evaluate the evolution of the growth of perturbations in the linear regime for both ghost DE and Brans-Dicke theory and compare the results with standard FRW and ΛCDM models. We display the effects of the anisotropy on the evolutionary behavior the ghost DE models where the growth rate is higher in this models. Eventually the growth factor for the ΛCDM Universe will always fall behind the ghost DE models in an anisotropic Universe.

  11. Fitting and forecasting coupled dark energy in the non-linear regime

    SciT

    Casas, Santiago; Amendola, Luca; Pettorino, Valeria

    2016-01-01

    We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used tomore » test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β{sup 2}, with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications.« less

  12. Age of high redshift objects—a litmus test for the dark energy models

    NASA Astrophysics Data System (ADS)

    Jain, Deepak; Dev, Abha

    2006-02-01

    The discovery of the quasar, the APM 08279+5255 at z=3.91 whose age is 2 3 Gyr has once again led to “age crisis”. The noticeable fact about this object is that it cannot be accommodated in a universe with Ω=0.27, currently accepted value of matter density parameter and ω=const. In this work, we explore the concordance of various dark energy parameterizations (w(z) models) with the age estimates of the old high redshift objects. It is alarming to note that the quasar cannot be accommodated in any dark energy model even for Ω=0.23, which corresponds to 1σ deviation below the best fit value provided by WMAP. There is a need to look for alternative cosmologies or some other dark energy parameterizations which allow the existence of the high redshift objects.

  13. The imprint of dark matter haloes on the size and velocity dispersion evolution of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Posti, Lorenzo; Nipoti, Carlo; Stiavelli, Massimo; Ciotti, Luca

    2014-05-01

    Early-type galaxies (ETGs) are observed to be more compact, on average, at z ≳ 2 than at z ≃ 0, at fixed stellar mass. Recent observational works suggest that such size evolution could reflect the similar evolution of the host dark matter halo density as a function of the time of galaxy quenching. We explore this hypothesis by studying the distribution of halo central velocity dispersion (σ0) and half-mass radius (rh) as functions of halo mass M and redshift z, in a cosmological Λ cold dark matter N-body simulation. In the range 0 ≲ z ≲ 2.5, we find σ0∝M0.31-0.37 and rh∝M0.28-0.32, close to the values expected for homologous virialized systems. At fixed M in the range 1011 M⊙ ≲ M ≲ 5.5 × 1014 M⊙ we find σ0 ∝ (1 + z)0.35 and rh ∝ (1 + z)-0.7. We show that such evolution of the halo scaling laws is driven by individual haloes growing in mass following the evolutionary tracks σ0 ∝ M0.2 and rh ∝ M0.6, consistent with simple dissipationless merging models in which the encounter orbital energy is accounted for. We compare the N-body data with ETGs observed at 0 ≲ z ≲ 3 by populating the haloes with a stellar component under simple but justified assumptions: the resulting galaxies evolve consistently with the observed ETGs up to z ≃ 2, but the model has difficulty in reproducing the fast evolution observed at z ≳ 2. We conclude that a substantial fraction of the size evolution of ETGs can be ascribed to a systematic dependence on redshift of the dark matter haloes structural properties.

  14. Holographic dark energy from fluid/gravity duality constraint by cosmological observations

    NASA Astrophysics Data System (ADS)

    Pourhassan, Behnam; Bonilla, Alexander; Faizal, Mir; Abreu, Everton M. C.

    2018-06-01

    In this paper, we obtain a holographic model of dark energy using the fluid/gravity duality. This model will be dual to a higher dimensional Schwarzschild black hole, and we would use fluid/gravity duality to relate to the parameters of this black hole to such a cosmological model. We will also analyze the thermodynamics of such a solution, and discuss the stability model. Finally, we use cosmological data to constraint the parametric space of this dark energy model. Thus, we will use observational data to perform cosmography for this holographic model based on fluid/gravity duality.

  15. Elucidating dark energy with future 21 cm observations at the epoch of reionization

    SciT

    Kohri, Kazunori; Oyama, Yoshihiko; Sekiguchi, Toyokazu

    2017-02-01

    We investigate how precisely we can determine the nature of dark energy such as the equation of state (EoS) and its time dependence by using future observations of 21 cm fluctuations at the epoch of reionization (06.8∼< z ∼<1) such as Square Kilometre Array (SKA) and Omniscope in combination with those from cosmic microwave background, baryon acoustic oscillation, type Ia supernovae and direct measurement of the Hubble constant. We consider several parametrizations for the EoS and find that future 21 cm observations will be powerful in constraining models of dark energy, especially when its EoS varies at high redshifts.

  16. More on the holographic Ricci dark energy model: smoothing Rips through interaction effects?

    NASA Astrophysics Data System (ADS)

    Bouhmadi-López, Mariam; Errahmani, Ahmed; Ouali, Taoufik; Tavakoli, Yaser

    2018-04-01

    The background cosmological dynamics of the late Universe is analysed on the framework of a dark energy model described by an holographic Ricci dark energy component. Several kind of interactions between the dark energy and the dark matter components are considered herein. We solve the background cosmological dynamics for the different choices of interactions with the aim to analyse not only the current evolution of the universe but also its asymptotic behaviour and, in particular, possible future singularities removal. We show that in most of the cases, the Big Rip singularity, a finger print of this model in absence of an interaction between the dark sectors, is substituted by a de Sitter or a Minkowski state. Most importantly, we found two new future bouncing solutions leading to two possible asymptotic behaviours, we named Little Bang and Little Sibling of the Big Bang. At a Little Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate and its cosmic time derivative blow up. In addition, at a Little sibling of the Big Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate blows up but its cosmic time derivative is finite. These two abrupt events can happen as well in the past.

  17. More on the holographic Ricci dark energy model: smoothing Rips through interaction effects?

    PubMed

    Bouhmadi-López, Mariam; Errahmani, Ahmed; Ouali, Taoufik; Tavakoli, Yaser

    2018-01-01

    The background cosmological dynamics of the late Universe is analysed on the framework of a dark energy model described by an holographic Ricci dark energy component. Several kind of interactions between the dark energy and the dark matter components are considered herein. We solve the background cosmological dynamics for the different choices of interactions with the aim to analyse not only the current evolution of the universe but also its asymptotic behaviour and, in particular, possible future singularities removal. We show that in most of the cases, the Big Rip singularity, a finger print of this model in absence of an interaction between the dark sectors, is substituted by a de Sitter or a Minkowski state. Most importantly, we found two new future bouncing solutions leading to two possible asymptotic behaviours, we named Little Bang and Little Sibling of the Big Bang. At a Little Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate and its cosmic time derivative blow up. In addition, at a Little sibling of the Big Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate blows up but its cosmic time derivative is finite. These two abrupt events can happen as well in the past.

  18. Effect of electromagnetic dipole dark matter on energy transport in the solar interior

    SciT

    Geytenbeek, Ben; Rao, Soumya; White, Martin

    In recent years, a revised set of solar abundances has led to a discrepancy in the sound-speed profile between helioseismology and theoretical solar models. Conventional solutions require additional mechanisms for energy transport within the Sun. Vincent et al. have recently suggested that dark matter with a momentum or velocity dependent cross section could provide a solution. In this work, we consider three models of dark matter with such cross sections and their effect on the stellar structure. In particular, the three models incorporate dark matter particles interacting through an electromagnetic dipole moment: an electric dipole, a magnetic dipole or anmore » anapole. Each model is implemented in the DarkStec stellar evolution program, which incorporates the effects of dark matter capture and heat transport within the solar interior. We show that dark matter with an anapole moment of ∼ 1 GeV{sup −2} or magnetic dipole moment of ∼ 10{sup −3}μ {sub p} can improve the sound-speed profile, small frequency separations and convective zone radius with respect to the Standard Solar Model. However, the required dipole moments are strongly excluded by direct detection experiments.« less

  19. Effective theory of dark energy at redshift survey scales

    SciT

    Gleyzes, Jérôme; Mancarella, Michele; Vernizzi, Filippo

    2016-02-01

    We explore the phenomenological consequences of general late-time modifications of gravity in the quasi-static approximation, in the case where cold dark matter is non-minimally coupled to the gravitational sector. Assuming spectroscopic and photometric surveys with configuration parameters similar to those of the Euclid mission, we derive constraints on our effective description from three observables: the galaxy power spectrum in redshift space, tomographic weak-lensing shear power spectrum and the correlation spectrum between the integrated Sachs-Wolfe effect and the galaxy distribution. In particular, with ΛCDM as fiducial model and a specific choice for the time dependence of our effective functions, we performmore » a Fisher matrix analysis and find that the unmarginalized 68% CL errors on the parameters describing the modifications of gravity are of order σ∼10{sup −2}–10{sup −3}. We also consider two other fiducial models. A nonminimal coupling of CDM enhances the effects of modified gravity and reduces the above statistical errors accordingly. In all cases, we find that the parameters are highly degenerate, which prevents the inversion of the Fisher matrices. Some of these degeneracies can be broken by combining all three observational probes.« less

  20. Scalar-fluid interacting dark energy: Cosmological dynamics beyond the exponential potential

    NASA Astrophysics Data System (ADS)

    Dutta, Jibitesh; Khyllep, Wompherdeiki; Tamanini, Nicola

    2017-01-01

    We extend the dynamical systems analysis of scalar-fluid interacting dark energy models performed in C. G. Boehmer et al., Phys. Rev. D 91, 123002 (2015), 10.1103/PhysRevD.91.123002 by considering scalar field potentials beyond the exponential type. The properties and stability of critical points are examined using a combination of linear analysis, computational methods and advanced mathematical techniques, such as center manifold theory. We show that the interesting results obtained with an exponential potential can generally be recovered also for more complicated scalar field potentials. In particular, employing power law and hyperbolic potentials as examples, we find late time accelerated attractors, transitions from dark matter to dark energy domination with specific distinguishing features, and accelerated scaling solutions capable of solving the cosmic coincidence problem.

  1. Solar Power Plants: Dark Horse in the Energy Stable

    ERIC Educational Resources Information Center

    Caputo, Richard S.

    1977-01-01

    Twelfth in a series of reports on solar energy, this article provides information relating to the following questions: (1) economic cost of solar-thermal-electric central power plants; (2) cost comparison with nuclear or coal plants; (3) locations of this energy source; and (4) its use and social costs. (CS)

  2. Testing modified gravity with Planck: The case of coupled dark energy

    NASA Astrophysics Data System (ADS)

    Pettorino, Valeria

    2013-09-01

    The Planck collaboration has recently published maps of the cosmic microwave background (CMB) radiation, in good agreement with a ΛCDM model, a fit especially valid for multipoles ℓ>40. We explore here the possibility that dark energy is dynamical and gravitational attraction between dark matter particles is effectively different from the standard one in general relativity: this is the case of coupled dark energy models, where dark matter particles feel the presence of a fifth force, larger than gravity by a factor 2β2, defining an effective gravitational constant Geff=G(1+2β2). We investigate constraints on the strength of the coupling β in view of Planck data. Interestingly, we show that a nonzero coupling is compatible with data and find a likelihood peak at β=0.036±0.016 [Planck+WMAPpolarization(WP)+baryonicacousticoscillations(BAO)] (compatible with zero at 2.2σ). The significance of the peak increases to β=0.066±0.018 [Planck+WP+HubbleSpaceTelescope(HST)] (around 3.6σ from zero coupling) when Planck is combined to HST data by . This peak comes mostly from the small difference between the Hubble parameter determined with CMB measurements and the one coming from astrophysics measurements and is already present in the combination with BAO. Future observations and further tests of current observations are needed to determine whether the discrepancy is due to systematics in any of the data sets. Our aim here is not to claim new physics but rather to show that a clear understanding of such tension has a considerable impact on dark energy models: it can be used to provide information on dynamical dark energy and modified gravity, allowing us to test the strength of an effective fifth force.

  3. Effects of a neutrino-dark energy coupling on oscillations of high-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Klop, Niki; Ando, Shin'ichiro

    2018-03-01

    If dark energy (DE) is a dynamical field rather than a cosmological constant, an interaction between DE and the neutrino sector could exist, modifying the neutrino oscillation phenomenology and causing C P and apparent Lorentz violating effects. The terms in the Hamiltonian for flavor propagation induced by the DE-neutrino coupling do not depend on the neutrino energy, while the ordinary components decrease as Δ m2/Eν. Therefore, the DE-induced effects are absent at lower neutrino energies, but become significant at higher energies, allowing to be searched for by neutrino observatories. We explore the impact of the DE-neutrino coupling on the oscillation probability and the flavor transition in the three-flavor framework, and investigate the C P -violating and apparent Lorentz violating effects. We find that DE-induced effects become observable for Eνmeff˜10-20 GeV2, where meff is the effective mass parameter in the DE-induced oscillation probability, and C P is violated over a wide energy range. We also show that current and future experiments have the sensitivity to detect anomalous effects induced by a DE-neutrino coupling and probe the new mixing parameters. The DE-induced effects on neutrino oscillation can be distinguished from other new physics possibilities with similar effects, through the detection of the directional dependence of the interaction, which is specific to this interaction with DE. However, current experiments will not yet be able to measure the small changes of ˜0.03 % in the flavor composition due to this directional effect.

  4. "Type Ia Supernovae: Tools for Studying Dark Energy" Final Technical Report

    SciT

    Woosley, Stan; Kasen, Dan

    2017-05-10

    Final technical report for project "Type Ia Supernovae: Tools for the Study of Dark Energy" awarded jointly to scientists at the University of California, Santa Cruz and Berkeley, for computer modeling, theory and data analysis relevant to the use of Type Ia supernovae as standard candles for cosmology.

  5. Uncorrelated measurements of the cosmic expansion history and dark energy from supernovae

    SciT

    Wang Yun; Tegmark, Max; Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104

    We present a method for measuring the cosmic expansion history H(z) in uncorrelated redshift bins, and apply it to current and simulated type Ia supernova data assuming spatial flatness. If the matter density parameter {omega}{sub m} can be accurately measured from other data, then the dark-energy density history X(z)={rho}{sub X}(z)/{rho}{sub X}(0) can trivially be derived from this expansion history H(z). In contrast to customary 'black box' parameter fitting, our method is transparent and easy to interpret: the measurement of H(z){sup -1} in a redshift bin is simply a linear combination of the measured comoving distances for supernovae in that bin,more » making it obvious how systematic errors propagate from input to output. We find the Riess et al. (2004) gold sample to be consistent with the vanilla concordance model where the dark energy is a cosmological constant. We compare two mission concepts for the NASA/DOE Joint Dark-Energy Mission (JDEM), the Joint Efficient Dark-energy Investigation (JEDI), and the Supernova Accelaration Probe (SNAP), using simulated data including the effect of weak lensing (based on numerical simulations) and a systematic bias from K corrections. Estimating H(z) in seven uncorrelated redshift bins, we find that both provide dramatic improvements over current data: JEDI can measure H(z) to about 10% accuracy and SNAP to 30%-40% accuracy.« less

  6. Bayesian evidences for dark energy models in light of current observational data

    NASA Astrophysics Data System (ADS)

    Lonappan, Anto. I.; Kumar, Sumit; Ruchika; Dinda, Bikash R.; Sen, Anjan A.

    2018-02-01

    We do a comprehensive study of the Bayesian evidences for a large number of dark energy models using a combination of latest cosmological data from SNIa, CMB, BAO, strong lensing time delay, growth measurements, measurements of Hubble parameter at different redshifts and measurements of angular diameter distance by Megamaser Cosmology Project. We consider a variety of scalar field models with different potentials as well as different parametrizations for the dark energy equation of state. Among 21 models that we consider in our study, we do not find strong evidences in favor of any evolving dark energy model compared to Λ CDM . For the evolving dark energy models, we show that purely nonphantom models have much better evidences compared to those models that allow both phantom and nonphantom behaviors. Canonical scalar field with exponential and tachyon field with square potential have highest evidences among all the models considered in this work. We also show that a combination of low redshift measurements decisively favors an accelerating Λ CDM model compared to a nonaccelerating power law model.

  7. High Energy Cosmic Electrons: Messengers from Nearby Cosmic Ray Sources or Dark Matter?

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2011-01-01

    This slide presentation reviews the recent discoveries by the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-Ray Telescope in reference to high energy cosmic electrons, and whether their source is cosmic rays or dark matter. Specific interest is devoted to Cosmic Ray electrons anisotropy,

  8. Weak Lensing Peaks in Simulated Light-Cones: Investigating the Coupling between Dark Matter and Dark Energy

    NASA Astrophysics Data System (ADS)

    Giocoli, Carlo; Moscardini, Lauro; Baldi, Marco; Meneghetti, Massimo; Metcalf, Robert B.

    2018-05-01

    In this paper, we study the statistical properties of weak lensing peaks in light-cones generated from cosmological simulations. In order to assess the prospects of such observable as a cosmological probe, we consider simulations that include interacting Dark Energy (hereafter DE) models with coupling term between DE and Dark Matter. Cosmological models that produce a larger population of massive clusters have more numerous high signal-to-noise peaks; among models with comparable numbers of clusters those with more concentrated haloes produce more peaks. The most extreme model under investigation shows a difference in peak counts of about 20% with respect to the reference ΛCDM model. We find that peak statistics can be used to distinguish a coupling DE model from a reference one with the same power spectrum normalisation. The differences in the expansion history and the growth rate of structure formation are reflected in their halo counts, non-linear scale features and, through them, in the properties of the lensing peaks. For a source redshift distribution consistent with the expectations of future space-based wide field surveys, we find that typically seventy percent of the cluster population contributes to weak-lensing peaks with signal-to-noise ratios larger than two, and that the fraction of clusters in peaks approaches one-hundred percent for haloes with redshift z ≤ 0.5. Our analysis demonstrates that peak statistics are an important tool for disentangling DE models by accurately tracing the structure formation processes as a function of the cosmic time.

  9. Dynamics of a spherically symmetric inhomogeneous coupled dark energy model with coupling term proportional to non relatvistic matter

    NASA Astrophysics Data System (ADS)

    Izquierdo, Germán; Blanquet-Jaramillo, Roberto C.; Sussman, Roberto A.

    2018-01-01

    The quasi-local scalar variables approach is applied to a spherically symmetric inhomogeneous Lemaître-Tolman-Bondi metric containing a mixture of non-relativistic cold dark matter and coupled dark energy with constant equation of state. The quasi-local coupling term considered is proportional to the quasi-local cold dark matter energy density and a quasi-local Hubble factor-like scalar via a coupling constant α . The autonomous numerical system obtained from the evolution equations is classified for different choices of the free parameters: the adiabatic constant of the dark energy w and α . The presence of a past attractor in a non-physical region of the energy densities phase-space of the system makes the coupling term non physical when the energy flows from the matter to the dark energy in order to avoid negative values of the dark energy density in the past. On the other hand, if the energy flux goes from dark energy to dark matter, the past attractor lies in a physical region. The system is also numerically solved for some interesting initial profiles leading to different configurations: an ever expanding mixture, a scenario where the dark energy is completely consumed by the non-relativistic matter by means of the coupling term, a scenario where the dark energy disappears in the inner layers while the outer layers expand as a mixture of both sources, and, finally, a structure formation toy model scenario, where the inner shells containing the mixture collapse while the outer shells expand.

  10. CASIMIR Effect in a Supersymmetry-Breaking Brane-World as Dark Energy

    SciT

    Chen, P

    2004-09-29

    A new model for the origin of dark energy is proposed based on the Casimir effect in a supersymmetry-breaking brane-world. Supersymmetry is assumed to be preserved in the bulk while broken on a 3-brane. Due to the boundary conditions imposed on the compactified extra dimensions, there is an effective Casimir energy induced on the brane. The net Casimir energy contributed from the graviton and the gravitino modes as a result of supersymmetry-breaking on the brane is identified as the observed dark energy, which in our construction is a cosmological constant. We show that the smallness of the cosmological constant, whichmore » results from the huge contrast in the extra-dimensional volumes between that associated with the 3-brane and that of the bulk, is attainable under very relaxed condition.« less

  11. Comparison of Measured Dark Current Distributions with Calculated Damage Energy Distributions in HgCdTe

    NASA Technical Reports Server (NTRS)

    Marshall, C. J.; Marshall, P. W.; Howe, C. L.; Reed, R. A.; Weller, R. A.; Mendenhall, M.; Waczynski, A.; Ladbury, R.; Jordan, T. M.

    2007-01-01

    This paper presents a combined Monte Carlo and analytic approach to the calculation of the pixel-to-pixel distribution of proton-induced damage in a HgCdTe sensor array and compares the results to measured dark current distributions after damage by 63 MeV protons. The moments of the Coulombic, nuclear elastic and nuclear inelastic damage distributions were extracted from Monte Carlo simulations and combined to form a damage distribution using the analytic techniques first described in [1]. The calculations show that the high energy recoils from the nuclear inelastic reactions (calculated using the Monte Carlo code MCNPX [2]) produce a pronounced skewing of the damage energy distribution. While the nuclear elastic component (also calculated using the MCNPX) contributes only a small fraction of the total nonionizing damage energy, its inclusion in the shape of the damage across the array is significant. The Coulombic contribution was calculated using MRED [3-5], a Geant4 [4,6] application. The comparison with the dark current distribution strongly suggests that mechanisms which are not linearly correlated with nonionizing damage produced according to collision kinematics are responsible for the observed dark current increases. This has important implications for the process of predicting the on-orbit dark current response of the HgCdTe sensor array.

  12. A Low Nuclear Recoil Energy Threshold for Dark Matter Search with CRESST-III Detectors

    NASA Astrophysics Data System (ADS)

    Mancuso, M.; Angloher, G.; Bauer, P.; Bento, A.; Bucci, C.; Canonica, L.; D'Addabbo, A.; Defay, X.; Erb, A.; von Feilitzsch, Franz; Ferreiro Iachellini, N.; Gorla, P.; Gütlein, A.; Hauff, D.; Jochum, J.; Kiefer, M.; Kluck, H.; Kraus, H.; Lanfranchi, J. C.; Langenkämper, A.; Loebell, J.; Mondragon, E.; Münster, A.; Pagliarone, C.; Petricca, F.; Potzel, W.; Pröbst, F.; Puig, R.; Reindl, F.; Rothe, J.; Schäffner, K.; Schieck, J.; Schipperges, V.; Schönert, S.; Seidel, W.; Stahlberg, M.; Stodolsky, L.; Strandhagen, C.; Strauss, R.; Tanzke, A.; Thi, H. H. Trinh; Türkoglu, C.; Uffinger, M.; Ulrich, A.; Usherov, I.; Wawoczny, S.; Willers, M.; Wüstrich, M.

    2018-05-01

    The CRESST-III experiment (Cryogenic Rare Events Search with Superconducting Thermometers), located at the underground facility Laboratori Nazionali del Gran Sasso in Italy, uses scintillating CaWO_4 crystals as cryogenic calorimeters to search for direct dark matter interactions in detectors. A large part of the parameter space for spin-independent scattering off nuclei remains untested for dark matter particles with masses below a few GeV/c^2 , despite many naturally motivated theoretical models for light dark matter particles. The CRESST-III detectors are designed to achieve the performance required to probe the low-mass region of the parameter space with a sensitivity never reached before. In this paper, new results on the performance and an overview of the CRESST-III detectors will be presented, emphasizing the results about the low-energy threshold for nuclear recoil of CRESST-III Phase 1 which started collecting data in August 2016.

  13. Self-accelerated Universe Induced by Repulsive Effects as an Alternative to Dark Energy and Modified Gravities

    NASA Astrophysics Data System (ADS)

    Luongo, Orlando; Quevedo, Hernando

    2018-01-01

    The existence of current-time universe's acceleration is usually modeled by means of two main strategies. The first makes use of a dark energy barotropic fluid entering by hand the energy-momentum tensor of Einstein's theory. The second lies on extending the Hilbert-Einstein action giving rise to the class of extended theories of gravity. In this work, we propose a third approach, derived as an intrinsic geometrical effect of space-time, which provides repulsive regions under certain circumstances. We demonstrate that the effects of repulsive gravity naturally emerge in the field of a homogeneous and isotropic universe. To this end, we use an invariant definition of repulsive gravity based upon the behavior of the curvature eigenvalues. Moreover, we show that repulsive gravity counterbalances the standard gravitational attraction influencing both late and early times of the universe evolution. This phenomenon leads to the present speed up and to the fast expansion due to the inflationary epoch. In so doing, we are able to unify both dark energy and inflation in a single scheme, showing that the universe changes its dynamics when {\\ddot{H}\\over H}=-2 \\dot{H}, at the repulsion onset time where this condition is satisfied. Further, we argue that the spatial scalar curvature can be taken as vanishing because it does not affect at all the emergence of repulsive gravity. We check the goodness of our approach through two cosmological fits involving the most recent union 2.1 supernova compilation.

  14. How CMB and large-scale structure constrain chameleon interacting dark energy

    SciT

    Boriero, Daniel; Das, Subinoy; Wong, Yvonne Y.Y., E-mail: boriero@physik.uni-bielefeld.de, E-mail: subinoy@iiap.res.in, E-mail: yvonne.y.wong@unsw.edu.au

    2015-07-01

    We explore a chameleon type of interacting dark matter-dark energy scenario in which a scalar field adiabatically traces the minimum of an effective potential sourced by the dark matter density. We discuss extensively the effect of this coupling on cosmological observables, especially the parameter degeneracies expected to arise between the model parameters and other cosmological parameters, and then test the model against observations of the cosmic microwave background (CMB) anisotropies and other cosmological probes. We find that the chameleon parameters α and β, which determine respectively the slope of the scalar field potential and the dark matter-dark energy coupling strength,more » can be constrained to α < 0.17 and β < 0.19 using CMB data and measurements of baryon acoustic oscillations. The latter parameter in particular is constrained only by the late Integrated Sachs-Wolfe effect. Adding measurements of the local Hubble expansion rate H{sub 0} tightens the bound on α by a factor of two, although this apparent improvement is arguably an artefact of the tension between the local measurement and the H{sub 0} value inferred from Planck data in the minimal ΛCDM model. The same argument also precludes chameleon models from mimicking a dark radiation component, despite a passing similarity between the two scenarios in that they both delay the epoch of matter-radiation equality. Based on the derived parameter constraints, we discuss possible signatures of the model for ongoing and future large-scale structure surveys.« less

  15. Energy-exchange collisions of dark-bright-bright vector solitons.

    PubMed

    Radhakrishnan, R; Manikandan, N; Aravinthan, K

    2015-12-01

    We find a dark component guiding the practically interesting bright-bright vector one-soliton to two different parametric domains giving rise to different physical situations by constructing a more general form of three-component dark-bright-bright mixed vector one-soliton solution of the generalized Manakov model with nine free real parameters. Moreover our main investigation of the collision dynamics of such mixed vector solitons by constructing the multisoliton solution of the generalized Manakov model with the help of Hirota technique reveals that the dark-bright-bright vector two-soliton supports energy-exchange collision dynamics. In particular the dark component preserves its initial form and the energy-exchange collision property of the bright-bright vector two-soliton solution of the Manakov model during collision. In addition the interactions between bound state dark-bright-bright vector solitons reveal oscillations in their amplitudes. A similar kind of breathing effect was also experimentally observed in the Bose-Einstein condensates. Some possible ways are theoretically suggested not only to control this breathing effect but also to manage the beating, bouncing, jumping, and attraction effects in the collision dynamics of dark-bright-bright vector solitons. The role of multiple free parameters in our solution is examined to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation of our solution. It is interesting to note that the polarization vector of our mixed vector one-soliton evolves in sphere or hyperboloid depending upon the initial parametric choices.

  16. Gauss-Bonnet chameleon mechanism of dark energy

    SciT

    Ito, Yusaku; Nojiri, Shin'ichi

    2009-05-15

    As a model of the current accelerated expansion of the Universe, we consider a model of the scalar-Einstein-Gauss-Bonnet gravity. This model includes the propagating scalar modes, which might give a large correction to the Newton law. In order to avoid this problem, we propose an extension of the chameleon mechanism where the scalar mode becomes massive due to the coupling with the Gauss-Bonnet term. Since the Gauss-Bonnet invariant does not vanish near the Earth or in the Solar System, even in the vacuum, the scalar mode is massive even in the vacuum and the correction to the Newton law couldmore » be small. We also discuss the possibility that the model could describe simultaneously the inflation in the early Universe, in addition to the current accelerated expansion.« less

  17. USING A PHENOMENOLOGICAL MODEL TO TEST THE COINCIDENCE PROBLEM OF DARK ENERGY

    SciT

    Chen Yun; Zhu Zonghong; Alcaniz, J. S.

    2010-03-01

    By assuming a phenomenological form for the ratio of the dark energy and matter densities rho{sub X} {proportional_to} rho{sub m} a {sup x}i, we discuss the cosmic coincidence problem in light of current observational data. Here, xi is a key parameter to denote the severity of the coincidence problem. In this scenario, xi = 3 and xi = 0 correspond to LAMBDACDM and the self-similar solution without the coincidence problem, respectively. Hence, any solution with a scaling parameter 0 < xi < 3 makes the coincidence problem less severe. In addition, the standard cosmology without interaction between dark energy andmore » dark matter is characterized by xi + 3omega{sub X} = 0, where omega{sub X} is the equation of state of the dark energy component, whereas the inequality xi + 3omega{sub X} {ne} 0 represents non-standard cosmology. We place observational constraints on the parameters (OMEGA{sub X,0}, omega{sub X}, xi) of this model, where OMEGA{sub X,0} is the present value of density parameter of dark energy OMEGA{sub X}, by using the Constitution Set (397 supernovae of type Ia data, hereafter SNeIa), the cosmic microwave background shift parameter from the five-year Wilkinson Microwave Anisotropy Probe and the Sloan Digital Sky Survey baryon acoustic peak. Combining the three samples, we get OMEGA{sub X,0} = 0.72 +- 0.02, omega{sub X} = -0.98 +- 0.07, and xi = 3.06 +- 0.35 at 68.3% confidence level. The result shows that the LAMBDACDM model still remains a good fit to the recent observational data, and the coincidence problem indeed exists and is quite severe, in the framework of this simple phenomenological model. We further constrain the model with the transition redshift (deceleration/acceleration). It shows that if the transition from deceleration to acceleration happens at the redshift z > 0.73, within the framework of this model, we can conclude that the interaction between dark energy and dark matter is necessary.« less

  18. β-Glucan and dark chocolate: a randomized crossover study on short-term satiety and energy intake.

    PubMed

    Akyol, Asli; Dasgin, Halil; Ayaz, Aylin; Buyuktuncer, Zehra; Besler, H Tanju

    2014-09-23

    The aims of this study were to adapt a traditional recipe into a healthier form by adding 3 g of oat β-glucan, substituting milk chocolate to dark chocolate with 70% cocoa, and to examine the effect of these alterations on short-term satiety and energy intake. Study subjects (n = 25) were tested in a randomized, crossover design with four products closely matched for energy content. Four different versions of a traditional recipe including milk chocolate-control (CON), oat β-glucan (B-GLU), dark chocolate (DARK) or oat β-glucan and dark chocolate (B-GLU + DARK) were given to subjects on different test days. After subjects were asked to report visual analog scale (VAS) scores on sensory outcomes and related satiety for four hours ad libitum, lunch was served and energy intake of individuals was measured. VAS scores indicated that none of the test foods exerted an improved effect on satiety feelings. However, energy intake of individuals during ad libitum lunch was significantly lower in dark chocolate groups (CON: 849.46 ± 47.45 kcal versus DARK: 677.69 ± 48.45 kcal and B-GLU + DARK: 691.08 ± 47.45 kcal, p = 0.014). The study demonstrated that substituting dark chocolate for milk chocolate is more effective in inducing satiety during subsequent food intake in healthy subjects.

  19. β-Glucan and Dark Chocolate: A Randomized Crossover Study on Short-Term Satiety and Energy Intake

    PubMed Central

    Akyol, Asli; Dasgin, Halil; Ayaz, Aylin; Buyuktuncer, Zehra; Besler, H. Tanju

    2014-01-01

    Aim: The aims of this study were to adapt a traditional recipe into a healthier form by adding 3 g of oat β-glucan, substituting milk chocolate to dark chocolate with 70% cocoa, and to examine the effect of these alterations on short-term satiety and energy intake. Materials and Methods: Study subjects (n = 25) were tested in a randomized, crossover design with four products closely matched for energy content. Four different versions of a traditional recipe including milk chocolate-control (CON), oat β-glucan (B-GLU), dark chocolate (DARK) or oat β-glucan and dark chocolate (B-GLU + DARK) were given to subjects on different test days. After subjects were asked to report visual analog scale (VAS) scores on sensory outcomes and related satiety for four hours ad libitum, lunch was served and energy intake of individuals was measured. Results: VAS scores indicated that none of the test foods exerted an improved effect on satiety feelings. However, energy intake of individuals during ad libitum lunch was significantly lower in dark chocolate groups (CON: 849.46 ± 47.45 kcal versus DARK: 677.69 ± 48.45 kcal and B-GLU + DARK: 691.08 ± 47.45 kcal, p = 0.014). Conclusion: The study demonstrated that substituting dark chocolate for milk chocolate is more effective in inducing satiety during subsequent food intake in healthy subjects. PMID:25251294

  20. Binary Mixture of Perfect Fluid and Dark Energy in Modified Theory of Gravity

    NASA Astrophysics Data System (ADS)

    Shaikh, A. Y.

    2016-07-01

    A self consistent system of Plane Symmetric gravitational field and a binary mixture of perfect fluid and dark energy in a modified theory of gravity are considered. The gravitational field plays crucial role in the formation of soliton-like solutions, i.e., solutions with limited total energy, spin, and charge. The perfect fluid is taken to be the one obeying the usual equation of state, i.e., p = γρ with γ∈ [0, 1] whereas, the dark energy is considered to be either the quintessence like equation of state or Chaplygin gas. The exact solutions to the corresponding field equations are obtained for power-law and exponential volumetric expansion. The geometrical and physical parameters for both the models are studied.

  1. Modified Holographic Ricci Dark Energy in Chameleon Brans-Dicke Cosmology and Its Thermodynamic Consequence

    NASA Astrophysics Data System (ADS)

    Jawad, A.; Chattopadhyay, S.; Bhattacharya, S.; Pasqua, A.

    2015-04-01

    The objective of this paper is to discuss the Chameleon Brans-Dicke gravity with non-minimally matter coupling of scalar field. We take modified Holographic Ricci dark energy model in this gravity with its energy density in interaction with energy density of cold dark matter. We assume power-law ansatz for scale factor and scalar field to discuss potential as well as coupling functions in the evolving universe. These reconstructed functions are plotted versus scalar field and time for different values of power component of scale factor n. We observe that potential and coupling functions represent increasing behavior, in particular, consistent results for a specific value of n. Finally, we have examined validity of the generalized second law of thermodynamics and we have observed its validity for all values of n. The financial Supported from Department of Science and Technology, Govt. of India under Project Grant No. SR/FTP/PS-167/2011 is thankfully acknowledged by SC

  2. Dark Matter: The "Gravitational Pull" of Maternalist Discourses on Politicians' Decision Making for Early Childhood Policy in Australia

    ERIC Educational Resources Information Center

    Bown, Kathryn; Sumsion, Jennifer; Press, Frances

    2011-01-01

    The article reports on a study investigating influences on Australian politicians' decision making for early childhood education and care (ECEC) policy. The astronomical concept of dark matter is utilised as a metaphor for considering normalising, and therefore frequently difficult to detect and disrupt, influences implicated in politicians'…

  3. Effects of coupled dark energy on the Milky Way and its satellites

    NASA Astrophysics Data System (ADS)

    Penzo, Camilla; Macciò, Andrea V.; Baldi, Marco; Casarini, Luciano; Oñorbe, Jose; Dutton, Aaron A.

    2016-09-01

    We present the first numerical simulations in coupled dark energy cosmologies with high enough resolution to investigate the effects of the coupling on galactic and subgalactic scales. We choose two constant couplings and a time-varying coupling function and we run simulations of three Milky Way-sized haloes (˜1012 M⊙), a lower mass halo (6 × 1011 M⊙) and a dwarf galaxy halo (5 × 109 M⊙). We resolve each halo with several million dark matter particles. On all scales, the coupling causes lower halo concentrations and a reduced number of substructures with respect to Λ cold dark matter (ΛCDM). We show that the reduced concentrations are not due to different formation times. We ascribe them to the extra terms that appear in the equations describing the gravitational dynamics. On the scale of the Milky Way satellites, we show that the lower concentrations can help in reconciling observed and simulated rotation curves, but the coupling values necessary to have a significant difference from ΛCDM are outside the current observational constraints. On the other hand, if other modifications to the standard model allowing a higher coupling (e.g. massive neutrinos) are considered, coupled dark energy can become an interesting scenario to alleviate the small-scale issues of the ΛCDM model.

  4. A Direct Dark Matter Search with the MAJORANA Low-Background Broad Energy Germanium Detector

    NASA Astrophysics Data System (ADS)

    Finnerty, Padraic Seamus

    It is well established that a significant portion of our Universe is comprised of invisible, non-luminous matter, commonly referred to as dark matter. The detection and characterization of this missing matter is an active area of research in cosmology and particle astrophysics. A general class of candidates for non-baryonic particle dark matter is weakly interacting massive particles (WIMPs). WIMPs emerge naturally from supersymmetry with predicted masses between 1--1000 GeV. There are many current and near-future experiments that may shed light on the nature of dark matter by directly detecting WIMP-nucleus scattering events. The MAJORANA experiment will use p-type point contact (PPC) germanium detectors as both the source and detector to search for neutrinoless double-beta decay in 76Ge. These detectors have both exceptional energy resolution and low-energy thresholds. The low-energy performance of PPC detectors, due to their low-capacitance point-contact design, makes them suitable for direct dark matter searches. As a part of the research and development efforts for the MAJORANA experiment, a custom Canberra PPC detector has been deployed at the Kimballton Underground Research Facility in Ripplemead, Virginia. This detector has been used to perform a search for low-mass (< 10 GeV) WIMP induced nuclear recoils using a 221.49 live-day exposure. It was found that events originating near the surface of the detector plague the signal region, even after all cuts. For this reason, only an upper limit on WIMP induced nuclear recoils was placed. This limit is inconsistent with several recent claims to have observed light WIMP based dark matter.

  5. Kinematic properties and dark matter fraction of Virgo dwarf early-type galaxies

    NASA Astrophysics Data System (ADS)

    Toloba, E.; Boselli, A.; Peletier, R.; Gorgas, J.

    2015-03-01

    What happens to dwarf galaxies as they enter the cluster potential well is one of the main unknowns in studies of galaxy evolution. Several evidence suggests that late-type galaxies enter the cluster and are transformed to dwarf early-type galaxies (dEs). We study the Virgo cluster to understand which mechanisms are involved in this transformation. We find that the dEs in the outer parts of Virgo have rotation curves with shapes and amplitudes similar to late-type galaxies of the same luminosity (Fig. 1). These dEs are rotationally supported, have disky isophotes, and younger ages than those dEs in the center of Virgo, which are pressure supported, often have boxy isophotes and are older (Fig. 1). Ram pressure stripping, thus, explains the properties of the dEs located in the outskirts of Virgo. However, the dEs in the central cluster regions, which have lost their angular momentum, must have suffered a more violent transformation. A combination of ram pressure stripping and harassment is not enough to remove the rotation and the spiral/disky structures of these galaxies. We find that on the the Faber-Jackson and the Fundamental Plane relations dEs deviate from the trends of massive elliptical galaxies towards the position of dark matter dominated systems such as the dwarf spheroidal satellites of the Milky Way and M31. Both, rotationally and pressure supported dEs, however, populate the same region in these diagrams. This indicates that dEs have a non-negligible dark matter fraction within their half light radius.

  6. The Hawking temperature in the context of dark energy

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Debashis; Manna, Goutam

    2012-11-01

    An emergent-gravity metric incorporating k-essence scalar fields ϕ having a Born-Infeld-type Lagrangian is mapped into a metric whose structure is similar to that of a blackhole of large mass M that has swallowed a global monopole. However, here the field is not that of a monopole but rather that of a k-essence scalar field. If ϕemergent are the solutions of the emergent-gravity equations of motion under cosmological boundary conditions at ∞, then for r\\rightarrow \\infty the rescaled field \\frac {\\phi _{emergent}}{2GM-1} has exact correspondence with ϕ with ϕ(r,t) = ϕ1(r) + ϕ2(t). The Hawking temperature of this metric is T_{ emergent}= \\frac {\\hbar c^{3}}{8\\pi GM k_{B}}(1-K)^{2}\\equiv \\frac {\\hbar }{8\\pi GM k_{B}}(1-K)^{2} , taking the speed of light c = 1. Here K=\\dot \\phi _{2}^{2} is the kinetic energy of the k-essence field ϕ and K is always less than unity, kB is the Boltzmann constant. This is phenomenologically interesting in the context of Belgiorno et al.'s gravitational analogue experiment.

  7. Bianchi Type-I Anisotropic Dark Energy Model with Constant Deceleration Parameter

    NASA Astrophysics Data System (ADS)

    Pradhan, Anirudh; Amirhashchi, H.; Saha, Bijan

    2011-09-01

    A new dark energy model in anisotropic Bianchi type-I (B-I) space-time with time dependent equation of state (EoS) parameter and constant deceleration parameter has been investigated in the present paper. The Einstein's field equations have been solved by applying a variation law for generalized Hubble's parameter (Berman in Il Nuovo Cimento B 74:182, 1983) which generates two types of solutions, one is of power-law type and other is of the exponential form. The existing range of the dark energy EoS parameter ω for derived model is found to be in good agreement with the three recent observations (i) SNe Ia data (Knop et al. in Astrophys. J. 598:102, 2003), (ii) SNe Ia data collaborated with CMBR anisotropy and galaxy clustering statistics (Tegmark et al. in Astrophys. J. 606:702, 2004) and (iii) a combination of cosmological datasets coming from CMB anisotropies, luminosity distances of high redshift type Ia supernovae and galaxy clustering (Hinshaw et al. in Astrophys. J. Suppl. Ser. 180:225, 2009 and Komatsu et al. in Astrophys. J. Suppl. Ser. 180:330, 2009). The cosmological constant Λ is found to be a decreasing function of time and it approaches a small positive value at the present epoch which is corroborated by results from recent supernovae Ia observations. It has also been suggested that the dark energy that explains the observed accelerating universe may arise due to the contribution to the vacuum energy of the EoS in a time dependent background. Geometric and kinematic properties of the model and the behaviour of the anisotropy of the dark energy have been carried out.

  8. “Local” Dark Energy Outflows Around Galaxy Groups and Rich Clusters

    NASA Astrophysics Data System (ADS)

    Byrd, Gene G.; Chernin, A. D.; Teerikorpi, P.; Dolgachev, V. P.; Kanter, A. A.; Domozhilova, L. M.; Valtonen, M.

    2013-01-01

    First detected at large Gpc distances, dark energy is a vacuum energy formulated as Einstein's cosmological constant, Λ. We have found its effects on “small” 1-3 Mpc scales in our Local Group. We have now found these effects in other nearby groups using member Doppler shifts and 3D distances from group centers (Cen A-M83; M81-M82; CV I). For the larger 20-30 Mpc Virgo and Fornax clusters, we now have found similar effects. Observationally, for both groups and clusters, gravity dominates a bound central system. The system gravitation and dark energy create a “zero-gravity” radius (R_{ZG}) from the center where the two balance. Smaller members bound inside R_{ZG} may be pulled out along with the less bound members which recede farther. A linear increase of recession with distance results which approaches a linear global Hubble law. These outflows are seen around groups in cosmological simulations which include galaxies as small as ~10^{-4} of the group mass. Scaled plots of asymptotic recessional velocity, V/(H(R_{ZG})), versus distance/ R_{ZG} of the outer galaxies are very similar for both the small groups and large clusters. This similarity on 1-30 Mpc scales suggests that a quasi-stationary bound central component and an expanding outflow applies to a wide range of groups and clusters due to small scale action of dark energy. Our new text book: Byrd, G., Chernin, A., Terrikorpi, P. and Valtonen, M. 2012, "Paths to Dark Energy: Theory and Observation," de Gruyter, Berlin/Boston, contains background and cosmological simulation plots. Group data and scaled plots are in our new article: A. D. Chernin, P. Teerikorpi, V. P. Dolgachev, A. A. Kanter, L. M. Domozhilova, M. J. Valtonen, and G. G. Byrd, 2012, Astronomy Reports, Vol. 56 , p. 653-669.

  9. Model of a multiverse providing the dark energy of our universe

    NASA Astrophysics Data System (ADS)

    Rebhan, E.

    2017-09-01

    It is shown that the dark energy presently observed in our universe can be regarded as the energy of a scalar field driving an inflation-like expansion of a multiverse with ours being a subuniverse among other parallel universes. A simple model of this multiverse is elaborated: Assuming closed space geometry, the origin of the multiverse can be explained by quantum tunneling from nothing; subuniverses are supposed to emerge from local fluctuations of separate inflation fields. The standard concept of tunneling from nothing is extended to the effect that in addition to an inflationary scalar field, matter is also generated, and that the tunneling leads to an (unstable) equilibrium state. The cosmological principle is assumed to pertain from the origin of the multiverse until the first subuniverses emerge. With increasing age of the multiverse, its spatial curvature decays exponentially so fast that, due to sharing the same space, the flatness problem of our universe resolves by itself. The dark energy density imprinted by the multiverse on our universe is time-dependent, but such that the ratio w = ϱ/(c2p) of its mass density and pressure (times c2) is time-independent and assumes a value - 1 + 𝜖 with arbitrary 𝜖 > 0. 𝜖 can be chosen so small, that the dark energy model of this paper can be fitted to the current observational data as well as the cosmological constant model.

  10. Probing dark energy with braneworld cosmology in the light of recent cosmological data

    NASA Astrophysics Data System (ADS)

    García-Aspeitia, Miguel A.; Magaña, Juan; Hernández-Almada, A.; Motta, V.

    We investigate a brane model based on Randall-Sundrum scenarios with a generic dark energy component. The latter drives the accelerated expansion at late-times of the universe. In this scheme, extra terms are added into Einstein Field equations that are propagated to the Friedmann equations. To constrain the dark energy equation-of-state (EoS) and the brane tension we use observational data with different energy levels (Supernovae Type Ia, H(z), baryon acoustic oscillations, and cosmic microwave background radiation distance, and a joint analysis) in a background cosmology. Beside EoS being consistent with a cosmological constant at the 3σ confidence level for each dataset, the baryon acoustic oscillations probe favors an EoS consistent with a quintessence dark energy. Although we found different lower limit bounds on the brane tension for each dataset, being the most restricted for CMB, there is not enough evidence of modifications in the cosmological evolution of the universe by the existence of an extra dimension within observational uncertainties. Nevertheless, these new bounds are complementary to those obtained by other probes like table-top experiments, Big Bang Nucleosynthesis, and stellar dynamics. Our results show that a further test of the braneworld model with appropriate correction terms or a profound analysis with perturbations, may be needed to improve the constraints provided by the current data.

  11. The effect of repeated light-dark shifts on uterine receptivity and early gestation in mice undergoing embryo transfer.

    PubMed

    Goldstein, Cathy A; O'Brien, Louise M; Bergin, Ingrid L; Saunders, Thomas L

    2018-04-01

    Female shift workers are at increased risk for negative reproductive outcomes, and animal evidence suggests that manipulation of the light-dark cycle is detrimental to early gestation in female mice. Specifically, failure of implantation may be responsible for these findings. The objective of this study was to better delineate which reproductive processes are vulnerable to detrimental effects of maternal circadian disturbance. We exposed mice undergoing embryo transfer to repetitive phase advances of the photoperiod. Embryos were derived from donor sperm and eggs from mice living in normal light-dark conditions to isolate the effects of photoperiod disruption on uterine receptivity and early gestation. Twenty-eight mice receiving embryo transfer underwent an experimental light-dark condition (advance of lights on and lights off by 6 hours every 4 days). Twenty-eight mice remained in a normal light-dark condition. Animals lived in their assigned light-dark condition beginning 2 weeks prior to embryo transfer and ending the day of uterine necropsy (post-coitus day 14.5). Wilcoxon-Mann-Whitney test demonstrated no significant differences between control and experimental light-dark conditions in pups (Z=0.10, p=.92), resorptions (Z=0.20, p=.84), or implantations (Z=-0.34, p=.73). Pup and placental weights were similar between groups. In this investigation, uterine receptivity and maintenance of early gestation were preserved despite recurrent phase advances in photoperiod. This finding, in the context of the current literature, suggests that the negative effects of circadian disruption are mediated by reproductive processes upstream of implantation.

  12. Will there be again a transition from acceleration to deceleration in course of the dark energy evolution of the universe?

    NASA Astrophysics Data System (ADS)

    Pan, Supriya; Chakraborty, Subenoy

    2013-09-01

    In this work we consider the evolution of the interactive dark fluids in the background of homogeneous and isotropic FRW model of the universe. The dark fluids consist of a warm dark matter and a dark energy and both are described as perfect fluid with barotropic equation of state. The dark species interact non-gravitationally through an additional term in the energy conservation equations. An autonomous system is formed in the energy density spaces and fixed points are analyzed. A general expression for the deceleration parameter has been obtained and it is possible to have more than one zero of the deceleration parameter. Finally, vanishing of the deceleration parameter has been examined with some examples.

  13. Deflation of the cosmological constant associated with inflation and dark energy

    SciT

    Geng, Chao-Qiang; Lee, Chung-Chi, E-mail: geng@phys.nthu.edu.tw, E-mail: chungchi@mx.nthu.edu.tw

    2016-06-01

    In order to solve the fine-tuning problem of the cosmological constant, we propose a simple model with the vacuum energy non-minimally coupled to the inflaton field. In this model, the vacuum energy decays to the inflaton during pre-inflation and inflation eras, so that the cosmological constant effectively deflates from the Planck mass scale to a much smaller one after inflation and plays the role of dark energy in the late-time of the universe. We show that our deflationary scenario is applicable to arbitrary slow-roll inflation models. We also take two specific inflation potentials to illustrate our results.

  14. Scalar field dark energy with a minimal coupling in a spherically symmetric background

    NASA Astrophysics Data System (ADS)

    Matsumoto, Jiro

    Dark energy models and modified gravity theories have been actively studied and the behaviors in the solar system have been also carefully investigated in a part of the models. However, the isotropic solutions of the field equations in the simple models of dark energy, e.g. quintessence model without matter coupling, have not been well investigated. One of the reason would be the nonlinearity of the field equations. In this paper, a method to evaluate the solution of the field equations is constructed, and it is shown that there is a model that can easily pass the solar system tests, whereas, there is also a model that is constrained from the solar system tests.

  15. Holographic dark energy in braneworld models with moving branes and the w = -1 crossing

    NASA Astrophysics Data System (ADS)

    Saridakis, E. N.

    2008-04-01

    We apply the bulk holographic dark energy in general 5D two-brane models. We extract the Friedmann equation on the physical brane and we show that in the general moving-brane case the effective 4D holographic dark energy behaves as a quintom for a large parameter-space area of a simple solution subclass. We find that wΛ was larger than -1 in the past while its present value is wΛ0≈-1.05, and the phantom bound wΛ = -1 was crossed at zp≈0.41, a result in agreement with observations. Such a behavior arises naturally, without the inclusion of special fields or potential terms, but a fine-tuning between the 4D Planck mass and the brane tension has to be imposed.

  16. Hobby-Eberly Telescope Dark Energy Experiment Fiber Optic Testing System

    NASA Astrophysics Data System (ADS)

    Fuller, Lindsay

    2011-01-01

    The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) is a spectroscopic survey that will collect data from nearly one million Lyman-α emitting galaxies at a redshift of 1.8 < z < 3.8 in order to characterize dark energy. To accomplish this, over 33,000 optical fibers will feed light from these galaxies into 150 Visible Integral-Field Replicable Unit Spectrographs (VIRUS), an order of magnitude greater than has been done before. A fiber optic test bench has been constructed at the University of Texas at Austin in order to test the transmission and focal ratio degradation (FRD) of individual fibers at several wavelengths ranging from 350-600nm. Furthermore, the fiber optic bundles are undergoing extensive lifetime tests at the Center for Electromechanics on the university’s research campus which will simulate 10 years of motion on the Hobby-Eberly Telescope.

  17. Observation of two new L4 Neptune Trojans in the Dark Energy Survey supernova fields

    DOE PAGES

    Gerdes, D. W.

    2016-01-28

    We report the discovery of the eighth and ninth known Trojans in stable orbits around Neptune's leading Lagrange point, L4. The objects 2014 QO 441 and 2014 QP 441 were detected in data obtained during the 2013-14 and 2014-15 observing seasons by the Dark Energy Survey, using the Dark Energy Camera (DECam) on the 4-meter Blanco telescope at Cerro Tololo Inter- American Observatory. Both are in high-inclination orbits (18.8° and 19.4° respectively). Furthermore, with an eccentricity of 0.104, 2014 QO 441 has the most eccentric orbit of the eleven known stable Neptune Trojans. We describe the search procedure and investigatemore » the objects' long-term dynamical stability and physical properties.« less

  18. Latest astronomical constraints on some non-linear parametric dark energy models

    NASA Astrophysics Data System (ADS)

    Yang, Weiqiang; Pan, Supriya; Paliathanasis, Andronikos

    2018-04-01

    We consider non-linear redshift-dependent equation of state parameters as dark energy models in a spatially flat Friedmann-Lemaître-Robertson-Walker universe. To depict the expansion history of the universe in such cosmological scenarios, we take into account the large-scale behaviour of such parametric models and fit them using a set of latest observational data with distinct origin that includes cosmic microwave background radiation, Supernove Type Ia, baryon acoustic oscillations, redshift space distortion, weak gravitational lensing, Hubble parameter measurements from cosmic chronometers, and finally the local Hubble constant from Hubble space telescope. The fitting technique avails the publicly available code Cosmological Monte Carlo (COSMOMC), to extract the cosmological information out of these parametric dark energy models. From our analysis, it follows that those models could describe the late time accelerating phase of the universe, while they are distinguished from the Λ-cosmology.

  19. Probing a steep EoS for dark energy with latest observations

    NASA Astrophysics Data System (ADS)

    Jaber, Mariana; Macorra, Axel de la

    2018-01-01

    We present a parametrization for the Dark Energy Equation of State "EoS" which has a rich structure, performing a transition at pivotal redshift zT between the present day value w0 to an early time wi =wa +w0 ≡ w(z ≫ 0) with a steepness given in terms of q parameter. The proposed parametrization is w =w0 +wa(z /zT) q /(1 +(z /zT)) q , with w0, wi, q and zT constant parameters. It reduces to the widely used EoS w =w0 +wa(1 - a) for zT = q = 1 . This transition is motivated by scalar field dynamics such as for example quintessence models. We study if a late time transition is favored by BAO measurements combined with local determination of H0 and information from the CMB. We find that our dynamical DE model allows to simultaneously fit H0 from local determinations and Planck CMB measurements, alleviating the tension obtained in a ΛCDM model. We obtain a smaller χ2 in our DE model than in ΛCDM showing that a dynamical DE is preferred with a reduction of 4.8%, 20.2% and 42.8% using BAO + H0, BAO + CMB and BAO + CMB + H0 datasets, respectively. However due to the increased number of free parameters in the EoS information criteria favors ΛCDM over our DE model at this stage. Nevertheless it is crucial to obtain the dynamics of DE from the observational data to show the path for theoretical DE models based on fundamental physics.

  20. ProtoDESI: First On-Sky Technology Demonstration for the Dark Energy Spectroscopic Instrument

    SciT

    Fagrelius, Parker; Abareshi, Behzad; Allen, Lori

    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the universe using the baryon acoustic oscillations technique. The spectra of 35 million galaxies and quasars over 14,000 square degrees will be measured during a 5-year survey. A new prime focus corrector for the Mayall telescope at Kitt Peak National Observatory will deliver light to 5,000 individually targeted fiber-fed robotic positioners. The fibers in turn feed ten broadband multi-object spectrographs. We describe the ProtoDESI experiment, that was installed and commissioned on the 4-m Mayall telescope from 2016 August 14 to September 30. ProtoDESI was anmore » on-sky technology demonstration with the goal to reduce technical risks associated with aligning optical fibers with targets using robotic fiber positioners and maintaining the stability required to operate DESI. The ProtoDESI prime focus instrument, consisting of three fiber positioners, illuminated fiducials, and a guide camera, was installed behind the existing Mosaic corrector on the Mayall telescope. A fiber view camera was mounted in the Cassegrain cage of the telescope and provided feedback metrology for positioning the fibers. ProtoDESI also provided a platform for early integration of hardware with the DESI Instrument Control System that controls the subsystems, provides communication with the Telescope Control System, and collects instrument telemetry data. In conclusion, lacking a spectrograph, ProtoDESI monitored the output of the fibers using a fiber photometry camera mounted on the prime focus instrument. ProtoDESI was successful in acquiring targets with the robotically positioned fibers and demonstrated that the DESI guiding requirements can be met.« less

  1. ProtoDESI: First On-Sky Technology Demonstration for the Dark Energy Spectroscopic Instrument

    DOE PAGES

    Fagrelius, Parker; Abareshi, Behzad; Allen, Lori; ...

    2018-01-15

    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the universe using the baryon acoustic oscillations technique. The spectra of 35 million galaxies and quasars over 14,000 square degrees will be measured during a 5-year survey. A new prime focus corrector for the Mayall telescope at Kitt Peak National Observatory will deliver light to 5,000 individually targeted fiber-fed robotic positioners. The fibers in turn feed ten broadband multi-object spectrographs. We describe the ProtoDESI experiment, that was installed and commissioned on the 4-m Mayall telescope from 2016 August 14 to September 30. ProtoDESI was anmore » on-sky technology demonstration with the goal to reduce technical risks associated with aligning optical fibers with targets using robotic fiber positioners and maintaining the stability required to operate DESI. The ProtoDESI prime focus instrument, consisting of three fiber positioners, illuminated fiducials, and a guide camera, was installed behind the existing Mosaic corrector on the Mayall telescope. A fiber view camera was mounted in the Cassegrain cage of the telescope and provided feedback metrology for positioning the fibers. ProtoDESI also provided a platform for early integration of hardware with the DESI Instrument Control System that controls the subsystems, provides communication with the Telescope Control System, and collects instrument telemetry data. In conclusion, lacking a spectrograph, ProtoDESI monitored the output of the fibers using a fiber photometry camera mounted on the prime focus instrument. ProtoDESI was successful in acquiring targets with the robotically positioned fibers and demonstrated that the DESI guiding requirements can be met.« less

  2. ProtoDESI: First On-Sky Technology Demonstration for the Dark Energy Spectroscopic Instrument

    NASA Astrophysics Data System (ADS)

    Fagrelius, Parker; Abareshi, Behzad; Allen, Lori; Ballester, Otger; Baltay, Charles; Besuner, Robert; Buckley-Geer, Elizabeth; Butler, Karen; Cardiel, Laia; Dey, Arjun; Duan, Yutong; Elliott, Ann; Emmet, William; Gershkovich, Irena; Honscheid, Klaus; Illa, Jose M.; Jimenez, Jorge; Joyce, Richard; Karcher, Armin; Kent, Stephen; Lambert, Andrew; Lampton, Michael; Levi, Michael; Manser, Christopher; Marshall, Robert; Martini, Paul; Paat, Anthony; Probst, Ronald; Rabinowitz, David; Reil, Kevin; Robertson, Amy; Rockosi, Connie; Schlegel, David; Schubnell, Michael; Serrano, Santiago; Silber, Joseph; Soto, Christian; Sprayberry, David; Summers, David; Tarlé, Greg; Weaver, Benjamin A.

    2018-02-01

    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the universe using the baryon acoustic oscillations technique. The spectra of 35 million galaxies and quasars over 14,000 square degrees will be measured during a 5-year survey. A new prime focus corrector for the Mayall telescope at Kitt Peak National Observatory will deliver light to 5,000 individually targeted fiber-fed robotic positioners. The fibers in turn feed ten broadband multi-object spectrographs. We describe the ProtoDESI experiment, that was installed and commissioned on the 4-m Mayall telescope from 2016 August 14 to September 30. ProtoDESI was an on-sky technology demonstration with the goal to reduce technical risks associated with aligning optical fibers with targets using robotic fiber positioners and maintaining the stability required to operate DESI. The ProtoDESI prime focus instrument, consisting of three fiber positioners, illuminated fiducials, and a guide camera, was installed behind the existing Mosaic corrector on the Mayall telescope. A fiber view camera was mounted in the Cassegrain cage of the telescope and provided feedback metrology for positioning the fibers. ProtoDESI also provided a platform for early integration of hardware with the DESI Instrument Control System that controls the subsystems, provides communication with the Telescope Control System, and collects instrument telemetry data. Lacking a spectrograph, ProtoDESI monitored the output of the fibers using a fiber photometry camera mounted on the prime focus instrument. ProtoDESI was successful in acquiring targets with the robotically positioned fibers and demonstrated that the DESI guiding requirements can be met.

  3. Evidence for dark energy from the cosmic microwave background alone using the Atacama Cosmology Telescope lensing measurements.

    PubMed

    Sherwin, Blake D; Dunkley, Joanna; Das, Sudeep; Appel, John W; Bond, J Richard; Carvalho, C Sofia; Devlin, Mark J; Dünner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hincks, Adam D; Hlozek, Renée; Hughes, John P; Irwin, Kent D; Klein, Jeff; Kosowsky, Arthur; Marriage, Tobias A; Marsden, Danica; Moodley, Kavilan; Menanteau, Felipe; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Parker, Lucas; Reese, Erik D; Schmitt, Benjamin L; Sehgal, Neelima; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Visnjic, Katerina; Wollack, Ed

    2011-07-08

    For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w = -1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the Wilkinson Microwave Anisotropy Probe. The lensing data break the geometric degeneracy of different cosmological models with similar CMB temperature power spectra. Our CMB-only measurement of the dark energy density Ω(Λ) confirms other measurements from supernovae, galaxy clusters, and baryon acoustic oscillations, and demonstrates the power of CMB lensing as a new cosmological tool.

  4. Evidence for Dark Energy from the Cosmic Microwave Background Alone Using the Atacama Cosmology Telescope Lensing Measurements

    NASA Technical Reports Server (NTRS)

    Sherwin, Blake D.; Dunkley, Joanna; Das, Sudeep; Appel, John W.; Bond, J. Richard; Carvalho, C. Sofia; Devlin, Mark J.; Duenner, Rolando; Essinger-Hileman, Thomas; Fowler, Joesph J.; hide

    2011-01-01

    For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w = -1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the "Wilkinson Microwave Anisotropy Probe. The lensing data break the geometric degeneracy of different cosmological models with similar CMB temperature power spectra. Our CMB-only measurement of the dark energy density Omega(delta) confirms other measurements from supernovae, galaxy clusters and baryon acoustic oscillations, and demonstrates the power of CMB lensing as a new cosmological tool.

  5. Laboratory Constraints on Chameleon Dark Energy and Power-Law Fields

    SciT

    Steffen, J. H.; Baumbaugh, A.; Chou, A. S.

    2010-12-31

    We report results from a search for chameleon particles created via photon-chameleon oscillations within a magnetic field. This experiment is sensitive to a wide class of unexplored chameleon power-law and dark energy models. These results exclude 5 orders of magnitude in the coupling of chameleons to photons covering a range of 4 orders of magnitude in chameleon effective mass and, for individual models, exclude between 4 and 12 orders of magnitude in chameleon couplings to matter.

  6. The ΩDE-ΩM Plane in Dark Energy Cosmology

    NASA Astrophysics Data System (ADS)

    Qiang, Yuan; Zhang, Tong-Jie

    The dark energy cosmology with the equation of state w=const. is considered in this paper. The ΩDE-ΩM plane has been used to study the present state and expansion history of the universe. Through the mathematical analysis, we give the theoretical constraint of cosmological parameters. Together with some observations such as the transition redshift from deceleration to acceleration, more precise constraint on cosmological parameters can be acquired.

  7. Weak lensing magnification in the Dark Energy Survey Science Verification data

    NASA Astrophysics Data System (ADS)

    Garcia-Fernandez, M.; Sanchez, E.; Sevilla-Noarbe, I.; Suchyta, E.; Huff, E. M.; Gaztanaga, E.; Aleksić, J.; Ponce, R.; Castander, F. J.; Hoyle, B.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Eifler, T. F.; Evrard, A. E.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; James, D. J.; Jarvis, M.; Kirk, D.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; MacCrann, N.; Maia, M. A. G.; March, M.; Marshall, J. L.; Melchior, P.; Miquel, R.; Mohr, J. J.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Scarpine, V.; Schubnell, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Tarle, G.; Thomas, D.; Walker, A. R.; Wester, W.; DES Collaboration

    2018-05-01

    In this paper, the effect of weak lensing magnification on galaxy number counts is studied by cross-correlating the positions of two galaxy samples, separated by redshift, using the Dark Energy Survey Science Verification data set. This analysis is carried out for galaxies that are selected only by its photometric redshift. An extensive analysis of the systematic effects, using new methods based on simulations is performed, including a Monte Carlo sampling of the selection function of the survey.

  8. Disentangling dark energy and cosmic tests of gravity from weak lensing systematics

    NASA Astrophysics Data System (ADS)

    Laszlo, Istvan; Bean, Rachel; Kirk, Donnacha; Bridle, Sarah

    2012-06-01

    We consider the impact of key astrophysical and measurement systematics on constraints on dark energy and modifications to gravity on cosmic scales. We focus on upcoming photometric ‘stage III’ and ‘stage IV’ large-scale structure surveys such as the Dark Energy Survey (DES), the Subaru Measurement of Images and Redshifts survey, the Euclid survey, the Large Synoptic Survey Telescope (LSST) and Wide Field Infra-Red Space Telescope (WFIRST). We illustrate the different redshift dependencies of gravity modifications compared to intrinsic alignments, the main astrophysical systematic. The way in which systematic uncertainties, such as galaxy bias and intrinsic alignments, are modelled can change dark energy equation-of-state parameter and modified gravity figures of merit by a factor of 4. The inclusion of cross-correlations of cosmic shear and galaxy position measurements helps reduce the loss of constraining power from the lensing shear surveys. When forecasts for Planck cosmic microwave background and stage IV surveys are combined, constraints on the dark energy equation-of-state parameter and modified gravity model are recovered, relative to those from shear data with no systematic uncertainties, provided fewer than 36 free parameters in total are used to describe the galaxy bias and intrinsic alignment models as a function of scale and redshift. While some uncertainty in the intrinsic alignment (IA) model can be tolerated, it is going to be important to be able to parametrize IAs well in order to realize the full potential of upcoming surveys. To facilitate future investigations, we also provide a fitting function for the matter power spectrum arising from the phenomenological modified gravity model we consider.

  9. Beyond the Förster formulation for resonance energy transfer: the role of dark states.

    PubMed

    Sissa, C; Manna, A K; Terenziani, F; Painelli, A; Pati, S K

    2011-07-28

    Resonance Energy Transfer (RET) is investigated in pairs of charge-transfer (CT) chromophores. CT chromophores are an interesting class of π conjugated chromophores decorated with one or more electron-donor and acceptor groups in polar (D-π-A), quadrupolar (D-π-A-π-D or A-π-D-π-A) or octupolar (D(-π-A)(3) or A(-π-D)(3)) structures. Essential-state models accurately describe low-energy linear and nonlinear spectra of CT-chromophores and proved very useful to describe spectroscopic effects of electrostatic interchromophore interactions in multichromophoric assemblies. Here we apply the same approach to describe RET between CT-chromophores. The results are quantitatively validated by an extensive comparison with time-dependent density functional theory (TDDFT) calculations, confirming that essential-state models offer a simple and reliable approach for the calculation of electrostatic interchromophore interactions. This is an important result since it sets the basis for more refined treatments of RET: essential-state models are in fact easily extended to account for molecular vibrations in truly non-adiabatic approaches and to account for inhomogeneous broadening effects due to polar solvation. Optically forbidden (dark) states of quadrupolar and octupolar chromophores offer an interesting opportunity to verify the reliability of the dipolar approximation. In striking contrast with the dipolar approximation that strictly forbids RET towards or from dark states, our results demonstrate that dark states can take an active role in RET with interaction energies that, depending on the relative orientation of the chromophores, can be even larger than those relevant to allowed states. Essential-state models, whose predictions are quantitatively confirmed by TDDFT results, allow us to relate RET interaction energies towards allowed and dark states to the supramolecular symmetry of the RET-pair, offering reliable design strategies to optimize RET-interactions. This

  10. Comparison of the linear bias models in the light of the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Papageorgiou, A.; Basilakos, S.; Plionis, M.

    2018-05-01

    The evolution of the linear and scale independent bias, based on the most popular dark matter bias models within the Λ cold dark matter (ΛCDM) cosmology, is confronted to that of the Dark Energy Survey (DES) luminous red galaxies (LRGs). Applying a χ2 minimization procedure between models and data, we find that all the considered linear bias models reproduce well the LRG bias data. The differences among the bias models are absorbed in the predicted mass of the dark-matter halo in which LRGs live and which ranges between ˜6 × 1012 and 1.4 × 1013 h-1 M⊙, for the different bias models. Similar results, reaching however a maximum value of ˜2 × 1013 h-1 M⊙, are found by confronting the SDSS (2SLAQ) Large Red Galaxies clustering with theoretical clustering models, which also include the evolution of bias. This later analysis also provides a value of Ωm = 0.30 ± 0.01, which is in excellent agreement with recent joint analyses of different cosmological probes and the reanalysis of the Planck data.

  11. Optimizing future imaging survey of galaxies to confront dark energy and modified gravity models

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuhiro; Parkinson, David; Hamana, Takashi; Nichol, Robert C.; Suto, Yasushi

    2007-07-01

    We consider the extent to which future imaging surveys of galaxies can distinguish between dark energy and modified gravity models for the origin of the cosmic acceleration. Dynamical dark energy models may have similar expansion rates as models of modified gravity, yet predict different growth of structure histories. We parametrize the cosmic expansion by the two parameters, w0 and wa, and the linear growth rate of density fluctuations by Linder’s γ, independently. Dark energy models generically predict γ≈0.55, while the Dvali-Gabadadze-Porrati (DGP) model γ≈0.68. To determine if future imaging surveys can constrain γ within 20% (or Δγ<0.1), we perform the Fisher matrix analysis for a weak-lensing survey such as the ongoing Hyper Suprime-Cam (HSC) project. Under the condition that the total observation time is fixed, we compute the figure of merit (FoM) as a function of the exposure time texp. We find that the tomography technique effectively improves the FoM, which has a broad peak around texp≃several˜10min; a shallow and wide survey is preferred to constrain the γ parameter. While Δγ<0.1 cannot be achieved by the HSC weak-lensing survey alone, one can improve the constraints by combining with a follow-up spectroscopic survey like Wide-field Fiber-fed Multi-Object Spectrograph (WFMOS) and/or future cosmic microwave background (CMB) observations.

  12. Preliminary constraints on variable w dark energy cosmologies from the SNLS

    NASA Astrophysics Data System (ADS)

    Carlberg, R. G.; Conley, A.; Howell, D. A.; Neill, J. D.; Perrett, K.; Pritchet, C. J.; Sullivan, M.

    2005-12-01

    The first 71 confirmed Ia supernovae from the Supernova Legacy Survey being conducted with CFHT imaging and Gemini, VLT and Keck spectroscopy set limits on variable dark energy cosmological models. For a generalized Chaplygin gas, in which the dark energy content is (1-Ω M)/ρ a, we find that a is statistically consistent with zero, with a best fit a=-0.2±-0.3 (68 systematic errors requires a further refinement of the photometric calibration and the potential model biases. A variable dark energy equation of state with w=w0+w_1 z shows the expected degeneracy between increasingly positive w0 and negative w1. The existing data rule out the parameters of the Weller & Linder (2002) Super-gravity inspired model cosmology (w0,w_1)=(-0.81,0.31). The full 700 Ia of the completed survey will provide a statistical error limit of w1 of about 0.2 and significant constraints on variable w models. The Canadian NSERC provided funding for the scientific analysis. These results are based on observations obtained at the CFHT, Gemini, VLT and Keck observatories.

  13. Probing the matter and dark energy sources in a viable Big Rip model of the Universe

    NASA Astrophysics Data System (ADS)

    Kumar, Suresh

    2014-08-01

    Chevallier-Polarski-Linder (CPL) parametrization for the equation of state (EoS) of dark energy in terms of cosmic redshift or scale factor have been frequently studied in the literature. In this study, we consider cosmic time-based CPL parametrization for the EoS parameter of the effective cosmic fluid that fills the fabric of spatially flat and homogeneous Robertson-Walker (RW) spacetime in General Relativity. The model exhibits two worthy features: (i) It fits the observational data from the latest H(z) and Union 2.1 SN Ia compilations matching the success of ΛCDM model. (ii) It describes the evolution of the Universe from the matter-dominated phase to the recent accelerating phase similar to the ΛCDM model but leads to Big Rip end of the Universe contrary to the everlasting de Sitter expansion in the ΛCDM model. We investigate the matter and dark energy sources in the model, in particular, behavior of the dynamical dark energy responsible for the Big Rip end of Universe.

  14. On the implementation of the spherical collapse model for dark energy models

    NASA Astrophysics Data System (ADS)

    Pace, Francesco; Meyer, Sven; Bartelmann, Matthias

    2017-10-01

    In this work we review the theory of the spherical collapse model and critically analyse the aspects of the numerical implementation of its fundamental equations. By extending a recent work by [1], we show how different aspects, such as the initial integration time, the definition of constant infinity and the criterion for the extrapolation method (how close the inverse of the overdensity has to be to zero at the collapse time) can lead to an erroneous estimation (a few per mill error which translates to a few percent in the mass function) of the key quantity in the spherical collapse model: the linear critical overdensity δc, which plays a crucial role for the mass function of halos. We provide a better recipe to adopt in designing a code suitable to a generic smooth dark energy model and we compare our numerical results with analytic predictions for the EdS and the ΛCDM models. We further discuss the evolution of δc for selected classes of dark energy models as a general test of the robustness of our implementation. We finally outline which modifications need to be taken into account to extend the code to more general classes of models, such as clustering dark energy models and non-minimally coupled models.

  15. DESAlert: Enabling Real-Time Transient Follow-Up with Dark Energy Survey Data

    DOE PAGES

    Poci, A.; Kuehn, K.; Abbott, T.; ...

    2016-09-30

    Here, the Dark Energy Survey is undertaking an observational programme imaging 1/4 of the southern hemisphere sky with unprecedented photometric accuracy. In the process of observing millions of faint stars and galaxies to constrain the parameters of the dark energy equation of state, the Dark Energy Survey will obtain pre-discovery images of the regions surrounding an estimated 100 gamma-ray bursts over 5 yr. Once gamma-ray bursts are detected by, e.g., the Swift satellite, the DES data will be extremely useful for follow-up observations by the transient astronomy community. We describe a recently-commissioned suite of software that listens continuously for automatedmore » notices of gamma-ray burst activity, collates information from archival DES data, and disseminates relevant data products back to the community in near-real-time. Of particular importance are the opportunities that non-public DES data provide for relative photometry of the optical counterparts of gamma-ray bursts, as well as for identifying key characteristics (e.g., photometric redshifts) of potential gamma-ray burst host galaxies. We provide the functional details of the DESAlert software, and its data products, and we show sample results from the application of DESAlert to numerous previously detected gamma-ray bursts, including the possible identification of several heretofore unknown gamma-ray burst hosts.« less

  16. DESAlert: Enabling Real-Time Transient Follow-Up with Dark Energy Survey Data

    SciT

    Poci, A.; Kuehn, K.; Abbott, T.

    Here, the Dark Energy Survey is undertaking an observational programme imaging 1/4 of the southern hemisphere sky with unprecedented photometric accuracy. In the process of observing millions of faint stars and galaxies to constrain the parameters of the dark energy equation of state, the Dark Energy Survey will obtain pre-discovery images of the regions surrounding an estimated 100 gamma-ray bursts over 5 yr. Once gamma-ray bursts are detected by, e.g., the Swift satellite, the DES data will be extremely useful for follow-up observations by the transient astronomy community. We describe a recently-commissioned suite of software that listens continuously for automatedmore » notices of gamma-ray burst activity, collates information from archival DES data, and disseminates relevant data products back to the community in near-real-time. Of particular importance are the opportunities that non-public DES data provide for relative photometry of the optical counterparts of gamma-ray bursts, as well as for identifying key characteristics (e.g., photometric redshifts) of potential gamma-ray burst host galaxies. We provide the functional details of the DESAlert software, and its data products, and we show sample results from the application of DESAlert to numerous previously detected gamma-ray bursts, including the possible identification of several heretofore unknown gamma-ray burst hosts.« less

  17. Crowded Cluster Cores. Algorithms for Deblending in Dark Energy Survey Images

    DOE PAGES

    Zhang, Yuanyuan; McKay, Timothy A.; Bertin, Emmanuel; ...

    2015-10-26

    Deep optical images are often crowded with overlapping objects. We found that this is especially true in the cores of galaxy clusters, where images of dozens of galaxies may lie atop one another. Accurate measurements of cluster properties require deblending algorithms designed to automatically extract a list of individual objects and decide what fraction of the light in each pixel comes from each object. In this article, we introduce a new software tool called the Gradient And Interpolation based (GAIN) deblender. GAIN is used as a secondary deblender to improve the separation of overlapping objects in galaxy cluster cores inmore » Dark Energy Survey images. It uses image intensity gradients and an interpolation technique originally developed to correct flawed digital images. Our paper is dedicated to describing the algorithm of the GAIN deblender and its applications, but we additionally include modest tests of the software based on real Dark Energy Survey co-add images. GAIN helps to extract an unbiased photometry measurement for blended sources and improve detection completeness, while introducing few spurious detections. When applied to processed Dark Energy Survey data, GAIN serves as a useful quick fix when a high level of deblending is desired.« less

  18. On the implementation of the spherical collapse model for dark energy models

    SciT

    Pace, Francesco; Meyer, Sven; Bartelmann, Matthias, E-mail: francesco.pace@manchester.ac.uk, E-mail: sven.meyer@uni-heidelberg.de, E-mail: bartelmann@uni-heidelberg.de

    In this work we review the theory of the spherical collapse model and critically analyse the aspects of the numerical implementation of its fundamental equations. By extending a recent work by [1], we show how different aspects, such as the initial integration time, the definition of constant infinity and the criterion for the extrapolation method (how close the inverse of the overdensity has to be to zero at the collapse time) can lead to an erroneous estimation (a few per mill error which translates to a few percent in the mass function) of the key quantity in the spherical collapsemore » model: the linear critical overdensity δ{sub c}, which plays a crucial role for the mass function of halos. We provide a better recipe to adopt in designing a code suitable to a generic smooth dark energy model and we compare our numerical results with analytic predictions for the EdS and the ΛCDM models. We further discuss the evolution of δ{sub c} for selected classes of dark energy models as a general test of the robustness of our implementation. We finally outline which modifications need to be taken into account to extend the code to more general classes of models, such as clustering dark energy models and non-minimally coupled models.« less

  19. Testing Dark Energy with the Advanced Liquid-Mirror Probe of Asteroids, Cosmology and Astrophysics

    NASA Astrophysics Data System (ADS)

    LoVerde, M.; Corasaniti, P. S.; Crotts, A.; Blake, C.

    2006-06-01

    The Advanced Liquid-Mirror Probe of Asteroids, Cosmology and Astrophysics (ALPACA) is a proposed 8-meter liquid mirror telescope surveying ˜ 1000 deg2 of the southern-hemisphere sky. It will be a remarkably simple and inexpensive telescope that will nonetheless deliver a powerful sample of optical data for studying dark energy. The bulk of the cosmological data consists of nightly, high signal-to-noise, multiband light curves of SN Ia. At the end of the three-year run ALPACA is expected to collect ˜ 100,000 SN Ia up to z ˜ 1. This will allow accurate calibration of the standard-candle relation and reduce the systematic uncertainties. The survey will also provide several other datasets such as the detection of baryon acoustic oscillations in the matter power spectrum and shear weak lensing measurements. In this preliminary analysis we forecast constraints on dark energy parameters from SN Ia and baryon acoustic oscillations. The combination of these two datasets will provide competitive constraints on the dark energy parameters with minimal prior assumptions. Further studies are needed to address the accuracy of weak lensing measurements.

  20. Testing dark energy with the Advanced Liquid-mirror Probe of Asteroids, Cosmology and Astrophysics

    NASA Astrophysics Data System (ADS)

    Corasaniti, Pier Stefano; LoVerde, Marilena; Crotts, Arlin; Blake, Chris

    2006-06-01

    The Advanced Liquid-mirror Probe of Asteroids, Cosmology and Astrophysics (ALPACA) is a proposed 8-m liquid-mirror telescope surveying ~1000deg2 of the Southern hemisphere sky. It will be a remarkably simple and inexpensive telescope that none the less will deliver a powerful sample of optical data for studying dark energy. The bulk of the cosmological data consist of nightly, high signal-to-noise ratio, multiband light curves of Type Ia supernovae (SNe Ia). At the end of the 3-yr run, ALPACA is expected to collect >~100000 SNe Ia up to z ~ 1. This will allow us to reduce present systematic uncertainties affecting the standard-candle relation. The survey will also provide several other data sets such as the detection of baryon acoustic oscillations in the matter power spectrum and shear weak-lensing measurements. In this preliminary analysis, we forecast constraints on dark energy parameters from SNe Ia and baryon acoustic oscillations. The combination of these two data sets will provide competitive constraints on the dark energy parameters under minimal prior assumptions. Further studies are needed to address the accuracy of weak-lensing measurements.